WO2014129590A1 - Cyclin D1 GENE EXPRESSION INHIBITOR AND ANTICANCER DRUG - Google Patents

Cyclin D1 GENE EXPRESSION INHIBITOR AND ANTICANCER DRUG Download PDF

Info

Publication number
WO2014129590A1
WO2014129590A1 PCT/JP2014/054196 JP2014054196W WO2014129590A1 WO 2014129590 A1 WO2014129590 A1 WO 2014129590A1 JP 2014054196 W JP2014054196 W JP 2014054196W WO 2014129590 A1 WO2014129590 A1 WO 2014129590A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
amino acid
cells
seq
cyclin
Prior art date
Application number
PCT/JP2014/054196
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 大介
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2014129590A1 publication Critical patent/WO2014129590A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a Cyclin D1 gene expression inhibitor and an antitumor agent comprising a peptide having a specific amino acid sequence.
  • the number of cancer patients in the world is approximately 12.7 million / year, and the number of cancer patients in Japan is approximately 670,000 / year.
  • the leading cause of death among Japanese is “cancer” (approximately 340,000 people / year).
  • cancer multidisciplinary treatment using surgical operation, chemotherapy, radiation therapy, etc. is performed, but the current situation is that cancer has not yet been suppressed.
  • anticancer agents are organic compounds having a molecular weight of 200 to 400 that directly act on nucleic acid synthesis and have a cell-killing effect. Therefore, when such an anticancer agent is administered, normal cells, particularly normal cells that are actively proliferating, are affected, and it is difficult to avoid strong side effects.
  • Patent Document 1 proposes an Akt activity-inhibiting polypeptide.
  • Patent Document 2 discloses a therapeutic cancer peptide vaccine. Since the mechanism of action of such peptides with anticancer activity is similar to that of molecular targeted drugs, it is expected as a new anticancer agent. It is rare.
  • An object of the present invention is to provide a Cyclin D1 gene expression inhibitor and an antitumor agent capable of slowly suppressing the proliferation of cancer cells without having a cytocidal action and preventing recurrence of cancer as a new anticancer agent. That is.
  • the present inventor has previously promoted research focusing on embryonic liver hematopoiesis, which is an organ in which hematopoietic stem cells actively proliferate and differentiate, and as a result, the amino acid sequence of SEQ ID NO: 1 suppresses proliferation and differentiation of hematopoietic stem cells.
  • a novel physiologically active peptide having a molecular weight (molecular weight: 1348.5; number of amino acids: 13) (International Publication No. 2011/040500).
  • KS-13 is taken up by endocytosis in the added culture and suppresses the proliferation and differentiation of mouse / human hematopoietic cells (hereinafter, the peptide is also referred to as “KS-13”).
  • KS-13 and its derivatives can be added to cells of various cancer cell lines such as leukemia cell lines, prostate cancer cell lines, breast cancer cell lines. It was found that by suppressing the expression of the Cyclin D1 gene, which controls the cycle, to 1/100 or less, the growth of cell lines was suppressed by about 20%, that is, KS-13 and its derivatives had anticancer activity. The invention has been completed.
  • the Cyclin D1 gene expression inhibitor of the present invention is an active ingredient, (A) a peptide having the amino acid sequence shown in SEQ ID NO: 1; or (B) a peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, A cyclin D1 gene expression inhibitor comprising a peptide having a D1 gene expression inhibitory action.
  • a preferred embodiment of the present invention is the above Cyclin D1 gene expression inhibitor
  • the peptide of (B) is a Cyclin D1 gene expression inhibitor, which is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
  • a preferred embodiment of the present invention is the above Cyclin D1 gene expression inhibitor
  • the peptide of (B) is a Cyclin D1 gene expression inhibitor, which is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
  • the antitumor agent of the present invention is an active ingredient, (A) a peptide having the amino acid sequence shown in SEQ ID NO: 1; or (B) a peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, An antitumor agent comprising a peptide having a D1 gene expression inhibitory action.
  • the peptide of (B) is an antitumor agent which is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
  • the peptide (B) is an antitumor agent which is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
  • a peptide having the amino acid sequence shown in SEQ ID NO: 1 or (B) at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1 is deleted or substituted
  • a peptide that is added and has a cyclin D1 gene expression inhibitory action it slowly suppresses the growth of cancer cells without having a cytocidal action, and also prevents recurrence of cancer as a new anticancer agent. Cyclin D1 gene expression inhibitor and antitumor agent that can be prevented can be provided.
  • FIG. 1 is a graph showing the results of Experimental Example 1.
  • FIG. 2 is a photomicrograph showing the results of Experimental Example 2-1.
  • FIG. 3 is a photomicrograph showing the results of Experimental Example 2-2.
  • FIG. 4 is a graph showing the results of Experimental Example 3-1.
  • FIG. 5 is a graph showing the results of Experimental Example 3-2.
  • FIG. 6 is a graph showing the results of Experimental Example 3-3.
  • FIG. 7 is a graph showing the results of Experimental Example 4 (Example 1).
  • FIG. 8 is a photomicrograph showing the results of Experimental Example 5-1.
  • FIG. 9 is a diagram showing the results of Experimental Example 5-2.
  • FIG. 10 is a diagram illustrating the results of Experimental Example 6.
  • FIG. 11 is a diagram showing the results of Experimental Example 7-1.
  • FIG. 12 is a diagram showing the method and results of Experimental Example 7-2.
  • FIG. 13 is a diagram showing the method and results of Experimental Example 7-2.
  • FIG. 14 is a graph showing the results of Experimental Example 8-1.
  • FIG. 15 is a graph showing the results of Experimental Example 8-2.
  • FIG. 16 is a graph showing the results of Experimental Example 9-1.
  • FIG. 17 is a graph showing the results of Experimental Example 9-2.
  • FIG. 18 is a graph showing the results of Experimental Example 9-3.
  • FIG. 19 is a graph showing the results of Experimental Example 9-4.
  • FIG. 20 is a graph showing the results of Experimental Example 9-5.
  • FIG. 21 is a graph showing the results of Experimental Example 9-6.
  • FIG. 22 is a graph showing the results of Experimental Example 10 (Example 2).
  • Cyclin D1 gene is a gene encoding a cell cycle regulator and is also known as a so-called “cancer-related gene”. When expressed in normal cells, the gene is capable of tumorigenic or cancerous, and Cyclin D1 gene overexpression is caused by parathyroid adenoma, breast cancer, prostate cancer, colon cancer, lymphoma, melanoma And involved in the development of lung cancer (Morgan, D.O., (2008), Cell, 135,764-794, Lung Cancer, (2007), 55, 1-14).
  • a “gene expression inhibitor” is a drug that generally suppresses the expression of a target gene at the mRNA level or protein level. Although the mechanism of action of Cyclin D1 gene expression suppression in the gene expression inhibitor of the present invention is still unclear, it cannot be suppressed by binding a peptide having Cyclin D1 gene expression inhibitory action directly to the promoter region.
  • S12A3 Solute carrier family12 member3
  • Antineoplastic agent is a chemotherapeutic agent that is generally administered for the purpose of treating tumors in a broad sense.
  • the antitumor agent of the present invention slowly suppresses the growth of cancer cells by suppressing the expression of the cancer-related gene Cyclin D1 gene that causes normal cells to become tumorous or cancerous, and is not due to cell killing action. Therefore, it has a feature that strong side effects can be avoided.
  • the peptide targeted by the present invention is a peptide having a Cyclin D1 gene expression inhibitory action.
  • One embodiment of such a peptide is a peptide having an amino acid sequence consisting of the amino acid residues shown below:
  • the peptide consists of a partial sequence of the extracellular domain located at positions 24 to 303 of human Dlk1 (delta-like 1 homolog) protein (SEQ ID NO: 11) consisting of 383 amino acid residues in total length. As mentioned above, this peptide is also referred to herein as “KS-13”.
  • the peptide targeted by the present invention is a peptide obtained by deleting, substituting or adding at least 1, preferably about 1 to 6 amino acids in the amino acid sequence of KS-13 (SEQ ID NO: 1). And a peptide having an inhibitory effect on the expression of Cyclin D1 gene.
  • the peptide targeted by the present invention is as described above, but it is 60% or more, preferably 75% or more, more preferably 80% or more, and still more preferably 85% to 90% or more. It preferably has the same or similar amino acid sequence as shown in.
  • the ratio of “identity” or “similarity” can be calculated from the ratio of identical or similar amino acids overlapping with the total number of amino acid residues of the amino acid sequence shown in SEQ ID NO: 1.
  • similar amino acids mean amino acids similar in physicochemical properties.
  • similar amino acids include aromatic amino acid groups (Phe, Trp, Tyr), aliphatic amino acid groups (Ala, Leu, Ile).
  • Examples of the peptide obtained by substitution, deletion or addition include a peptide represented by the following amino acid sequence (SEQ ID NO: 2) and having the above action.
  • peptides corresponding to KS-13 described above consisting of a partial sequence of the extracellular domain region of a protein corresponding to an ortholog of human Dlk1 protein.
  • mouse Dlk1 protein corresponding to an ortholog of human Dlk1 protein has an amino acid sequence consisting of a total length of 385 amino acid residues (SEQ ID NO: 12).
  • SEQ ID NO: 12 amino acid sequence consisting of a total length of 385 amino acid residues
  • the region at positions 24 to 305 is the extracellular domain
  • the partial sequence sequence consisting of 13 amino acid residues at positions 124 to 136: SEQ ID NO: 3
  • the partial sequence corresponds to KS-13. It is a peptide.
  • mice In addition to mice, rodents such as rats and rats, and mammals such as pigs, horses, goats, cattle, wallabies, and giant kangaroos; It has Dlk1 protein corresponding to protein homologue or orthologue.
  • the partial sequences corresponding to the above KS-13 located in the extracellular domain of these Dlk1 proteins are shown in Table 1 together with the amino acid sequences of peptides derived from human-derived KS-13 and mouse KS-13. Amino acid residues conserved in common with human-derived KS-13 are indicated by underlining.
  • the third amino acid from the N-terminus (corresponding to “XXb” in the amino acid sequence of SEQ ID NO: 2) may be either Lys or His. It can be seen that the fifth amino acid (corresponding to “XXd” in the amino acid sequence of SEQ ID NO: 2) may be either Asp or Ala. Further, comparing the sequences of human and porcine peptides, it can be seen that the 10th amino acid from the N-terminal (corresponding to “XXf” in the amino acid sequence of SEQ ID NO: 2) may be either Ile or Met.
  • the third amino acid from the N-terminus may be deleted, and the fifth amino acid from the N-terminus (“XXd” in the amino acid sequence of SEQ ID NO: 2). It is understood that either Asp or Glu may be used.
  • the 5th amino acid from the N-terminus may be deleted, and the 9th amino acid from the N-terminus (in the amino acid sequence of SEQ ID NO: 2, “XXe”). It can be seen that any of Val and Ile can be used.
  • KS-13 is the most preferred peptide, but as shown in SEQ ID NO: 2, any one of amino acids 1 to 6 (XXa to XXf) in the amino acid sequence is another amino acid. It may be substituted, may be a peptide consisting of 12 amino acid residues with one less N-terminal or C-terminal amino acid, or a peptide consisting of 11 amino acid residues with one less amino acid Good.
  • the N-terminal amino acid may be deleted up to 5 or 4 to 3 amino acids.
  • the peptide formed by adding at least one amino acid has five amino acids derived from human Dlk1 protein at the N-terminus and / or C-terminus of the amino acid sequence, Preferred are those with 4, 3, 2 or 1 added.
  • a method for substituting, adding or deleting at least one amino acid in the amino acid sequence of KS-13 has already been conventionally used in the art.
  • DNA encoding the peptide In the case of performing via the Internet, for example, site-specific mutagenesis [Methods in Enzymology, 154, 350, 367-382 (1987); 100, 468 (1983); Nucleic Acids Res. , 12, 9441 (1984); secondary biochemistry experiment course 1 "Gene Research Method II", edited by Japanese Biochemical Society, p105 (1986)], etc., phosphate triester method, phosphate amidite method, etc. Chemical synthesis means [J. Am. Chem. Soc.
  • DNA synthesis can be performed by chemical synthesis by the phosphoramidite method or triester method, and can also be performed on a commercially available automatic oligonucleotide synthesizer.
  • Double-stranded fragments are chemically synthesized single strands produced by synthesizing complementary strands and annealing the strands together under appropriate conditions, or adding complementary strands using DNA polymerase with appropriate primer sequences. It can also be obtained from things.
  • the peptide according to the present invention can also be synthesized by a solid phase synthesis method using a peptide synthesizer, and amino acid substitution, addition or deletion changes the type of protected amino acid when using a peptide synthesizer. This can be done easily.
  • special amino acids such as D-amino acid and sarcosine (N-methylglycine) can be introduced.
  • the peptide according to the present invention may be in a free state, in the form of a salt, or in the form of a solvate containing a hydrate.
  • the salt include physiologically acceptable, that is, pharmaceutically acceptable acid addition salts and base salts.
  • acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, nitrate and sulfate; or sulfonic acid salts such as methanesulfonic acid and toluenesulfonic acid; organic acids such as trifluoroacetic acid and succinic acid.
  • Examples of the base salt include alkali metal salts such as sodium, potassium and lithium; or alkaline earth metal salts such as calcium and magnesium.
  • the peptides according to the present invention include peptides whose C-terminus is a carboxyl group (—COOH), carboxylate (—COO—), amide (—CONH 2 ), or ester (—COOR).
  • R in the ester for example, an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl and n-butyl; a cycloalkyl group having 3 to 8 carbon atoms such as cyclopentyl and cyclohexyl; phenyl, aryl groups having 6 to 12 carbon atoms such as ⁇ -naphthyl; phenyl-C1-2 alkyl groups such as benzyl and phenethyl; C7-14 aralkyl groups such as ⁇ -naphthyl-C1-2 alkyl groups such as ⁇ -naphthylmethyl; A pivaloyloxymethyl group
  • the peptide according to the present invention when the peptide according to the present invention has a carboxyl group (or carboxylate) other than the C-terminus, the peptide according to the present invention includes those in which the carboxyl group is amidated or esterified.
  • the amino group of the N-terminal amino acid residue is protected with a protecting group (for example, a C1-6 acyl group such as C1-6 alkanoyl such as formyl group and acetyl group).
  • fatty acid saturated fatty acid of C8-18
  • N-terminal glutamine residue which can be cleaved in vivo, pyroglutamine oxidized, substituent on side chain of amino acid in molecule
  • suitable protecting groups for example, C1-6 acyl groups such as C1-6 alkanoyl groups such as formyl group, acetyl group, etc.
  • a complex peptide such as a so-called glycopeptide to which a sugar chain is bound.
  • the peptides according to the present invention include those in which an imidazolyl group or SH group is alkylated (for example, methylated), aralkylated (for example, benzylated), or acylated (for example, acetylated or benzoylated).
  • the fatty acid-modified products include myristoylated peptides in which the amino group of the N-terminal amino acid residue is modified with myristic acid.
  • Cyclin D1 gene expression inhibitor The peptide according to the present invention detailed above or a pharmaceutically acceptable salt or solvate thereof as it is or with a carrier that is physiologically acceptable as necessary After mixing to make a composition, it is used as the Cyclin D1 gene expression inhibitor of the present invention.
  • the peptide based on this invention consists of 1 type individually, 2 or more types can also be used in arbitrary combinations.
  • human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), porcine-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
  • Cyclin D1 gene expression inhibitor dissolves the peptide of the present invention in water or an appropriate buffer solution (eg, phosphate buffer solution, PBS, Tris-HCl buffer solution, etc.) to an appropriate concentration. Can be prepared. Moreover, you may mix
  • an appropriate buffer solution eg, phosphate buffer solution, PBS, Tris-HCl buffer solution, etc.
  • (IV) Antitumor Agent The peptide according to the present invention detailed above or a pharmaceutically acceptable salt or solvate thereof is mixed as it is or with a physiologically acceptable carrier as necessary. After preparing the composition, it is used as the antitumor agent of the present invention. In addition, even if the peptide based on this invention consists of 1 type individually, 2 or more types can also be used in arbitrary combinations.
  • human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), porcine-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
  • the antitumor agent is prepared, for example, by dissolving the peptide according to the present invention in water or an appropriate buffer (eg, phosphate buffer, PBS, Tris-HCl buffer, etc.) to an appropriate concentration. can do. Moreover, you may mix
  • an appropriate buffer eg, phosphate buffer, PBS, Tris-HCl buffer, etc.
  • PC-3 cells are adherent cells, the cells are collected by adding 0.2% trypsin and then with RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 ⁇ g / ml KS-13.
  • FBS fetal bovine serum
  • a cell suspension of ⁇ 10 5 cells / ml was cultured in a 48-well tissue culture plate. Cultures without KS-13 were used as controls. One day, two days, and five days later, cells stained with trypan blue and unstained live cells were counted under a microscope. After 5 days, a photograph of the cell line morphology was taken under a microscope.
  • KS-13 was added to the culture medium of the K562 cell line and monitored with a horoscope microscope for 30 minutes. The results are shown in FIG. White dots indicate the KS-13 added group, and black dots indicate the control (KS-13 non-added group). That is, when KS-13 was added, differentiation of the K562 cell line was induced, the thickness changed, and it became clear that it became an irregular form. Thus, it is considered that cancer cell proliferation is suppressed by KS-13.
  • FIG. 5 shows the results of representing irregularity on the vertical axis and roughness on the horizontal axis.
  • FIG. 6 shows the results of representing irregularity on the vertical axis and roughness on the horizontal axis.
  • RNAqueous-4PCR (trademark) (manufactured by Life Technologies) according to the product protocol.
  • the mRNA was reverse transcribed using High Capacity RNA-to-cDNA Kit (manufactured by Life Technologies).
  • the quality of cDNA synthesis was checked by PCR amplification of ⁇ -actin (ACTB), a human housekeeping gene.
  • ACTB ⁇ -actin
  • KS-13 increased the expression of Cyclin D1 (CCND1) gene in human leukemia cell line (Kasumi), human prostate cancer cell line (PC-3), and human breast cancer cell line (T47D) by 141 times, It was found to be suppressed 122 times and 152 times.
  • CCND1 Cyclin D1
  • Chromatin immunoprecipitation A 2 ⁇ 10 5 cell / ml K562 cell suspension was cultured for 2 days using RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 ⁇ g / ml biotin-conjugated KS-13.
  • the number of cells used for ChIP is 1 ⁇ 10 6 cells.
  • FBS fetal bovine serum
  • ChIP ChIP lysis buffer containing SDS. Cell debris was removed by centrifugation at 12000 rpm for 10 minutes (4 ° C.). Chromosomal DNA was fragmented by sonication (250 W, 5 min / 30 sec on / off cycle) to obtain chromosomal DNA of a small size of 100-1000 bp. ChIP was performed according to the product instructions (Chromatin immunoprecipitation assay kit, MILLIPORE). That is, the fragmented DNA was diluted with a ChIP binding buffer. Genomic DNA diluted to 1% was used as a control “before ChIP”. Rabbit anti-biotin antibody was used to precipitate KS-13 and genomic DNA bound to KS-13. The precipitated chromosomal DNA was used as a “post-ChIP” template for PCR.
  • PCR A 127 bp PCR product was obtained using a primer that binds to the promoter region of human Cyclin D1.
  • K562 genomic DNA was used as a positive control for PCR, and no template was used as a negative control.
  • the PCR product was electrophoresed on a 2% agarose gel simultaneously with a DNA ladder marker for 100 bp and stained with SYBER Green.
  • FBS fetal bovine serum
  • the number of cells used for ChIP is 1 ⁇ 10 6 cells. After washing with cold PBS, the cells were lysed using an IP lysis buffer (Pierce Classic IP Kit, Thermo Scientific).
  • IP was performed according to the product instructions (Pierce Classic IP Kit, Thermo Scientific). Rabbit anti-biotin antibody was used to precipitate KS-13 and KS-13 binding proteins. The biotin-KS-13 protein complex was separated from unbound protein by adding protein G. After three washes, the protein was separated from the immune complex using low PH buffer. The eluted protein comprises heavy chain (50 kDa) and light chain (25 kDa) rabbit IgG. The eluted protein was electrophoresed on SDS-PAGE and stained with Coomassie Brilliant blue G-250 (Bio-Rad).
  • Example 7-1 Identification of K-13 binding protein in K562 cells was performed using liquid chromatography mass spectrometry (LC-MS). As a result, ATP-dependent RNA helicase (YTHDC2) and single carrier family12 member3 (S12A3) seemed to bind to K-13 in K562 cells compared to the control without addition of K-13. (See FIG. 11). Thus, two target molecules of KS-13 in the K562 leukemia cell line were revealed.
  • LC-MS liquid chromatography mass spectrometry
  • LC-MS Liquid chromatograph mass spectrometry
  • Identified K-13 binding protein Dermcidin (DCD) and U2 small nuclear ribonucleoproteins A and B (RU2A, RU2B) were identified as K-13 binding proteins of K562 cells.
  • High mobility group protein 2 (HMGN2) and SUB1 homologue (S. cerevisiae) (SUB1) binding to nucleosomes were identified as K-13 binding proteins of Kasumi cells.
  • Example 8-2 (1) Materials and Methods A suspension of 2 ⁇ 10 5 cells / ml of K562 cells was cultured for 2 days using RPMI + 10% fetal bovine serum (FBS) supplemented with 10 ⁇ g / ml of KS-13. A phosphorylated proteome array (phosphorylation-kinase array kit, R & D Systems) was performed according to the product instructions. (2) Results There was no difference in protein phosphorylation of K562 cells treated with KS-13 (see FIG. 15).
  • FBS fetal bovine serum
  • KS-13 Low low concentration 0.36 ⁇ g / g body weight
  • KS-13 High high concentration 3.6 ⁇ g / g body weight
  • leukocytes The number of WBC
  • RBC red blood cells
  • PHT platelets
  • HGB hemoglobin
  • GOT Glutamate oxaloacetate transaminase
  • GPT Glutamate pyruvate transaminase
  • KS-13 (a peptide having the amino acid sequence shown in SEQ ID NO: 1) suppresses the growth of leukemia cell line / prostate cancer cell line, leukemia cell line / breast cancer cell line / prostate It was confirmed that the CyclinD1 gene expression of the cell line was suppressed, that it did not act directly on the CyclinD1 gene expression region, that there were two molecular targets in the K562 leukemia cell line, and that no toxicity was observed after a single administration.
  • Non-obese diabetic mice are transferred intravenously with 2 ⁇ 10 7 human myeloid leukemia cell line (Kasumi).
  • PBS fetal bovine serum
  • 5FU anticancer agent
  • 5FU + 72 ⁇ g KS-13 were intravenously administered.
  • the survival of the mice was observed every week. The survival rate for each week was plotted on the graph (see FIG. 22). Dead mice were fixed with 4% formaldehyde for further analysis.
  • mice administered with PBS died.
  • mice administered KS-13 were 100% alive until the 41st week.
  • a tumor-bearing mouse using the Kasumi leukemia cell line was prepared and the anticancer effect of a single administration of KS-13 was evaluated, a clear life-prolonging effect was observed.
  • the present invention has high technical significance as 1) can contribute to the survival of cancer patients as a new drug; 2) can contribute to target molecule identification of a new drug; 3) can contribute to life science as a research reagent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided are a Cyclin D1 gene expression inhibitor and an anticancer drug that gently suppress growth of cancer cells without having a cell-destroying action, and are capable of preventing the recurrence of cancer, as a novel cancer-inhibiting drug. The present invention pertains to a Cyclin D1 gene expression inhibitor including, as effective components thereof: a peptide (A) having an amino acid sequence indicated by SEQ ID NO. 1; or a peptide (B) produced by deleting, replacing, or adding at least one amino acid residue, in an amino acid sequence indicated by SEQ ID NO. 1, said peptide having a Cyclin D1 gene expression suppressing action.

Description

Cyclin D1遺伝子発現抑制剤および抗腫瘍剤Cyclin D1 gene expression inhibitor and antitumor agent
 本発明は、特定のアミノ酸配列を有するペプチドを含むCyclin D1遺伝子発現抑制剤および抗腫瘍剤に関する。 The present invention relates to a Cyclin D1 gene expression inhibitor and an antitumor agent comprising a peptide having a specific amino acid sequence.
 世界の癌患者は、約1270万人/年、日本国内の癌患者は、約67万人/年である。また、日本人の死因第1位は“癌”である(約34万人/年)。癌に対しては、外科的手術・化学療法・放射線療法などを駆使した集学的治療が行われているが、癌の制圧には未だ至っていないのが現状である。 The number of cancer patients in the world is approximately 12.7 million / year, and the number of cancer patients in Japan is approximately 670,000 / year. The leading cause of death among Japanese is “cancer” (approximately 340,000 people / year). For cancer, multidisciplinary treatment using surgical operation, chemotherapy, radiation therapy, etc. is performed, but the current situation is that cancer has not yet been suppressed.
 現在使用されている抗癌剤の多くは、核酸合成に直接作用する分子量200~400の有機化合物であり殺細胞作用を有するものである。そのため、このような抗癌剤を投与すると正常細胞、特に活発に増殖している正常細胞に影響が及ぶため、強い副作用を回避することが困難である。 Many of the anticancer agents currently used are organic compounds having a molecular weight of 200 to 400 that directly act on nucleic acid synthesis and have a cell-killing effect. Therefore, when such an anticancer agent is administered, normal cells, particularly normal cells that are actively proliferating, are affected, and it is difficult to avoid strong side effects.
 一方、特許文献1には、Akt活性抑制ポリペプチドが提案されている。また特許文献2には、治療用癌ペプチドワクチンが開示されている。このような抗癌作用を有するペプチドの作用機序は分子標的薬に類似するものであるため新しい制癌剤として期待されており、殺細胞作用を有さないものとして、抗癌ペプチドのさらなる開発が望まれている。 On the other hand, Patent Document 1 proposes an Akt activity-inhibiting polypeptide. Patent Document 2 discloses a therapeutic cancer peptide vaccine. Since the mechanism of action of such peptides with anticancer activity is similar to that of molecular targeted drugs, it is expected as a new anticancer agent. It is rare.
日本国特許第4819321号公報Japanese Patent No. 4819321 日本国特表2012-501185号公報Japan Special Table 2012-501185
 本発明の目的は、殺細胞作用を有することなく癌細胞の増殖を緩徐に抑制し、また新しい制癌剤として癌の再発を予防することができる、Cyclin D1遺伝子発現抑制剤および抗腫瘍剤を提供することである。 An object of the present invention is to provide a Cyclin D1 gene expression inhibitor and an antitumor agent capable of slowly suppressing the proliferation of cancer cells without having a cytocidal action and preventing recurrence of cancer as a new anticancer agent. That is.
 本発明者は、従前、造血幹細胞が積極的に増殖・分化する器官である胎生期肝臓造血に注目して研究を推進した結果、造血幹細胞の増殖・分化を抑制する、配列番号1のアミノ酸配列を有する新規生理活性ペプチド(分子量:1348.5;アミノ酸数:13)を発明した(国際公開第2011/040500号)。このペプチドは、その添加培養において、KS-13はエンドサイトーシスで取り込まれ、マウス・ヒト造血細胞の増殖・分化を抑制するものである(以下、当該ペプチドを「KS-13」とも称する)。 The present inventor has previously promoted research focusing on embryonic liver hematopoiesis, which is an organ in which hematopoietic stem cells actively proliferate and differentiate, and as a result, the amino acid sequence of SEQ ID NO: 1 suppresses proliferation and differentiation of hematopoietic stem cells. Invented a novel physiologically active peptide having a molecular weight (molecular weight: 1348.5; number of amino acids: 13) (International Publication No. 2011/040500). In this added culture, KS-13 is taken up by endocytosis in the added culture and suppresses the proliferation and differentiation of mouse / human hematopoietic cells (hereinafter, the peptide is also referred to as “KS-13”).
 今回、本発明者はさらにKS-13について鋭意研究の結果、KS-13やその誘導体が、その添加培養において、白血病細胞株、前立腺癌細胞株、乳癌細胞株などの様々な癌細胞株の細胞周期を司るCyclin D1遺伝子の発現を1/100以下に抑制することによって、細胞株の増殖を約20%抑制すること、すなわち、KS-13やその誘導体が制癌活性を有することを見出し、本発明を完成するに至った。 As a result of intensive research on KS-13, the present inventor has further found that KS-13 and its derivatives can be added to cells of various cancer cell lines such as leukemia cell lines, prostate cancer cell lines, breast cancer cell lines. It was found that by suppressing the expression of the Cyclin D1 gene, which controls the cycle, to 1/100 or less, the growth of cell lines was suppressed by about 20%, that is, KS-13 and its derivatives had anticancer activity. The invention has been completed.
 即ち、本発明のCyclin D1遺伝子発現抑制剤は、有効成分として、
(A)配列番号1に示すアミノ酸配列を有するペプチド;または
(B)配列番号1に示すアミノ酸配列において、少なくとも1個のアミノ酸残基が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチド、を含むCyclin D1遺伝子発現抑制剤である。
That is, the Cyclin D1 gene expression inhibitor of the present invention is an active ingredient,
(A) a peptide having the amino acid sequence shown in SEQ ID NO: 1; or (B) a peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, A cyclin D1 gene expression inhibitor comprising a peptide having a D1 gene expression inhibitory action.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、本発明の好適形態は、上記Cyclin D1遺伝子発現抑制剤において、
前記(B)のペプチドが、配列番号2に示すアミノ酸配列を有するペプチドである、Cyclin D1遺伝子発現抑制剤である。
Moreover, a preferred embodiment of the present invention is the above Cyclin D1 gene expression inhibitor,
The peptide of (B) is a Cyclin D1 gene expression inhibitor, which is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 さらに、本発明の好適形態は、上記Cyclin D1遺伝子発現抑制剤において、
前記(B)のペプチドが、配列番号3~配列番号10から選択されるいずれか1のアミノ酸配列を有するペプチドである、Cyclin D1遺伝子発現抑制剤である。
Furthermore, a preferred embodiment of the present invention is the above Cyclin D1 gene expression inhibitor,
The peptide of (B) is a Cyclin D1 gene expression inhibitor, which is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明の抗腫瘍剤は、有効成分として、
(A)配列番号1に示すアミノ酸配列を有するペプチド;または
(B)配列番号1に示すアミノ酸配列において、少なくとも1個のアミノ酸残基が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチド、を含む抗腫瘍剤である。
The antitumor agent of the present invention is an active ingredient,
(A) a peptide having the amino acid sequence shown in SEQ ID NO: 1; or (B) a peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, An antitumor agent comprising a peptide having a D1 gene expression inhibitory action.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、本発明の好適形態は、上記抗腫瘍剤において、
前記(B)のペプチドが、配列番号2に示すアミノ酸配列を有するペプチドである、抗腫瘍剤である。
Moreover, a preferred embodiment of the present invention is the above antitumor agent,
The peptide of (B) is an antitumor agent which is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 さらに、本発明の好適形態は、上記抗腫瘍剤において、
前記(B)のペプチドが、配列番号3~配列番号10から選択されるいずれか1のアミノ酸配列を有するペプチドである、抗腫瘍剤である。
Furthermore, the suitable form of this invention is in the said antitumor agent,
The peptide (B) is an antitumor agent which is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明によれば、有効成分として、(A)配列番号1に示すアミノ酸配列を有するペプチド、または、(B)配列番号1に示すアミノ酸配列において、少なくとも1個のアミノ酸残基が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチド、を含むことにより、殺細胞作用を有することなく癌細胞の増殖を緩徐に抑制し、また新しい制癌剤として癌の再発を予防することができる、Cyclin D1遺伝子発現抑制剤および抗腫瘍剤を提供することができる。 According to the present invention, as an active ingredient, (A) a peptide having the amino acid sequence shown in SEQ ID NO: 1 or (B) at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1 is deleted or substituted In addition, by including a peptide that is added and has a cyclin D1 gene expression inhibitory action, it slowly suppresses the growth of cancer cells without having a cytocidal action, and also prevents recurrence of cancer as a new anticancer agent. Cyclin D1 gene expression inhibitor and antitumor agent that can be prevented can be provided.
図1は、実験例1の結果を示すグラフである。FIG. 1 is a graph showing the results of Experimental Example 1. 図2は、実験例2-1の結果を示す顕微鏡写真である。FIG. 2 is a photomicrograph showing the results of Experimental Example 2-1. 図3は、実験例2-2の結果を示す顕微鏡写真である。FIG. 3 is a photomicrograph showing the results of Experimental Example 2-2. 図4は、実験例3-1の結果を示すグラフである。FIG. 4 is a graph showing the results of Experimental Example 3-1. 図5は、実験例3-2の結果を示すグラフである。FIG. 5 is a graph showing the results of Experimental Example 3-2. 図6は、実験例3-3の結果を示すグラフである。FIG. 6 is a graph showing the results of Experimental Example 3-3. 図7は、実験例4(実施例1)の結果を示すグラフである。FIG. 7 is a graph showing the results of Experimental Example 4 (Example 1). 図8は、実験例5-1の結果を示す顕微鏡写真である。FIG. 8 is a photomicrograph showing the results of Experimental Example 5-1. 図9は、実験例5-2の結果を示す図である。FIG. 9 is a diagram showing the results of Experimental Example 5-2. 図10は、実験例6の結果を示す図である。FIG. 10 is a diagram illustrating the results of Experimental Example 6. 図11は、実験例7-1の結果を示す図である。FIG. 11 is a diagram showing the results of Experimental Example 7-1. 図12は、実験例7-2の方法および結果を示す図である。FIG. 12 is a diagram showing the method and results of Experimental Example 7-2. 図13は、実験例7-2の方法および結果を示す図である。FIG. 13 is a diagram showing the method and results of Experimental Example 7-2. 図14は、実験例8-1の結果を示すグラフである。FIG. 14 is a graph showing the results of Experimental Example 8-1. 図15は、実験例8-2の結果を示すグラフである。FIG. 15 is a graph showing the results of Experimental Example 8-2. 図16は、実験例9-1の結果を示すグラフである。FIG. 16 is a graph showing the results of Experimental Example 9-1. 図17は、実験例9-2の結果を示すグラフである。FIG. 17 is a graph showing the results of Experimental Example 9-2. 図18は、実験例9-3の結果を示すグラフである。FIG. 18 is a graph showing the results of Experimental Example 9-3. 図19は、実験例9-4の結果を示すグラフである。FIG. 19 is a graph showing the results of Experimental Example 9-4. 図20は、実験例9-5の結果を示すグラフである。FIG. 20 is a graph showing the results of Experimental Example 9-5. 図21は、実験例9-6の結果を示すグラフである。FIG. 21 is a graph showing the results of Experimental Example 9-6. 図22は、実験例10(実施例2)の結果を示すグラフである。FIG. 22 is a graph showing the results of Experimental Example 10 (Example 2).
(I)本発明で用いる用語の定義
 本明細書におけるアミノ酸配列などの略号による表示は、IUPAC-IUBの規定〔IUPAc-IUB communication on Biological Nomenclature,Eur.J.Biochem.,138;9(1984)〕、「塩基配列又はアミノ酸配列を含む明細書等の作製のためのガイドライン」(特許庁編)および当該分野における慣用記号に従うものとする。
(I) Definition of terms used in the present invention The abbreviations such as amino acid sequences in the present specification are defined by IUPAC-IUB [IUPAc-IUB communication on Biological Nomenclature, Eur. J. et al. Biochem. 138; 9 (1984)], “Guidelines for the preparation of specifications including base sequences or amino acid sequences” (edited by the Patent Office) and conventional symbols in the field.
 「Cyclin D1遺伝子」は、細胞周期調節因子をコードする遺伝子であり、いわゆる「癌関連遺伝子」としても知られている。正常細胞内で発現させた場合に、該細胞を腫瘍化または癌化させることが可能な遺伝子であり、Cyclin D1遺伝子の過剰発現は、副甲状腺腺腫、乳癌、前立腺癌、大腸癌、リンパ腫、メラノーマ及び肺癌の発達に関与する(Morgan,D.O.,(2008),Cell,135,764-794、Lung Cancer,(2007),55,1-14)。 “Cyclin D1 gene” is a gene encoding a cell cycle regulator and is also known as a so-called “cancer-related gene”. When expressed in normal cells, the gene is capable of tumorigenic or cancerous, and Cyclin D1 gene overexpression is caused by parathyroid adenoma, breast cancer, prostate cancer, colon cancer, lymphoma, melanoma And involved in the development of lung cancer (Morgan, D.O., (2008), Cell, 135,764-794, Lung Cancer, (2007), 55, 1-14).
 「遺伝子発現抑制剤」は、一般的に対象遺伝子の発現をmRNAレベルまたはタンパク質レベルで抑制する薬剤である。本発明の遺伝子発現抑制剤におけるCyclin D1遺伝子発現の抑制の作用機序は未だ不明な点があるが、Cyclin D1遺伝子発現抑制作用を有するペプチドが直接プロモーター領域に結合することにより抑制されるものではなく、ATP依存性RNAヘリカーゼ(YTHDC2)やSolute carrier family12 member3(S12A3)などの標的分子を介することにより抑制されるものであることが、下記の実験例5-2~実験例7-2の結果により示唆された。 A “gene expression inhibitor” is a drug that generally suppresses the expression of a target gene at the mRNA level or protein level. Although the mechanism of action of Cyclin D1 gene expression suppression in the gene expression inhibitor of the present invention is still unclear, it cannot be suppressed by binding a peptide having Cyclin D1 gene expression inhibitory action directly to the promoter region. The results of Experimental Examples 5-2 to 7-2 below are that they are suppressed by the target molecules such as ATP-dependent RNA helicase (YTHDC2) and Solute carrier family12 member3 (S12A3). Suggested by
 「抗腫瘍剤」とは、一般的に広義の腫瘍を治療する目的で投与される化学療法剤である。本発明の抗腫瘍剤は、正常細胞を腫瘍化または癌化させる癌関連遺伝子Cyclin D1遺伝子の発現を抑制することで癌細胞の増殖を緩徐に抑制するものであり、殺細胞作用によるものではないため強い副作用を回避することができるという特徴を有する。 "Antineoplastic agent" is a chemotherapeutic agent that is generally administered for the purpose of treating tumors in a broad sense. The antitumor agent of the present invention slowly suppresses the growth of cancer cells by suppressing the expression of the cancer-related gene Cyclin D1 gene that causes normal cells to become tumorous or cancerous, and is not due to cell killing action. Therefore, it has a feature that strong side effects can be avoided.
(II)本発明に係るペプチド
 本発明が対象とするペプチドは、Cyclin D1遺伝子発現抑制作用を有するペプチドである。
 かかるペプチドの一態様として、下記に示すアミノ酸残基からなるアミノ酸配列を有するペプチドを挙げることができる:
(II) Peptide according to the present invention The peptide targeted by the present invention is a peptide having a Cyclin D1 gene expression inhibitory action.
One embodiment of such a peptide is a peptide having an amino acid sequence consisting of the amino acid residues shown below:
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記ペプチドは、全長383アミノ酸残基からなるヒトDlk1(delta-like 1 homolog)タンパク質(配列番号11)の24位~303位に位置する細胞外ドメインの部分配列からなる。上述のように、本明細書では当該ペプチドを「KS-13」とも称する。 The peptide consists of a partial sequence of the extracellular domain located at positions 24 to 303 of human Dlk1 (delta-like 1 homolog) protein (SEQ ID NO: 11) consisting of 383 amino acid residues in total length. As mentioned above, this peptide is also referred to herein as “KS-13”.
 本発明が対象とするペプチドには、上記KS-13のアミノ酸配列(配列番号1)において、少なくとも1個、好ましくは1~6個程度のアミノ酸が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチドが含まれる。 The peptide targeted by the present invention is a peptide obtained by deleting, substituting or adding at least 1, preferably about 1 to 6 amino acids in the amino acid sequence of KS-13 (SEQ ID NO: 1). And a peptide having an inhibitory effect on the expression of Cyclin D1 gene.
 本発明が対象とするペプチドは、上記の通りであるが、60%以上、好ましくは75%以上、より好ましくは80%以上、さらに好ましくは85%乃至は90%以上の割合で、配列番号1に示されるアミノ酸配列と同一または類似のアミノ酸を有していることが好ましい。ここで「同一性」または「類似性」の割合は、配列番号1に示されるアミノ酸配列の全アミノ酸残基数に対して、それとオーバーラップする同一または類似するアミノ酸の割合から算出することができる。ここで「類似のアミノ酸」とは、物理化学的性質において類似したアミノ酸を意味し、例えば類似したアミノ酸は、芳香族アミノ酸群(Phe、Trp、Tyr)、脂肪族アミノ酸群(Ala、Leu、Ile、Val)、極性アミノ酸群(Gln、Asn)、塩基性アミノ酸群(Lys、Arg、His)、酸性アミノ酸群(Glu、Asp)、水酸基を有するアミノ酸群(Ser、Thr)、および側鎖の小さいアミノ酸群(Gly、Ala、Ser、Thr、Met)に分類することができる。このような類似アミノ酸間での置換は、ペプチドの性質に影響を与えない可能性が高く、この意味で保守的なアミノ酸置換ということができる(例えば、Bowieら、Science,247:1306-1310(1990)等参照)。 The peptide targeted by the present invention is as described above, but it is 60% or more, preferably 75% or more, more preferably 80% or more, and still more preferably 85% to 90% or more. It preferably has the same or similar amino acid sequence as shown in. Here, the ratio of “identity” or “similarity” can be calculated from the ratio of identical or similar amino acids overlapping with the total number of amino acid residues of the amino acid sequence shown in SEQ ID NO: 1. . Here, “similar amino acids” mean amino acids similar in physicochemical properties. For example, similar amino acids include aromatic amino acid groups (Phe, Trp, Tyr), aliphatic amino acid groups (Ala, Leu, Ile). Val), polar amino acid group (Gln, Asn), basic amino acid group (Lys, Arg, His), acidic amino acid group (Glu, Asp), amino acid group having a hydroxyl group (Ser, Thr), and small side chain It can be classified into amino acid groups (Gly, Ala, Ser, Thr, Met). Such substitution between similar amino acids is unlikely to affect the properties of the peptide, and in this sense can be referred to as conservative amino acid substitution (for example, Bowie et al., Science, 247: 1306-1310 ( 1990)).
 このように配列番号1に示されるアミノ酸配列においてアミノ酸が他のアミノ酸で置換されている場合、または一部のアミノ酸が欠失若しくは付加されている場合、その置換、欠失または付加される位置は、その結果得られるペプチドが、Cyclin D1遺伝子発現抑制作用を有するものである。 Thus, when the amino acid is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 1, or when some amino acids are deleted or added, the position of the substitution, deletion or addition is The resulting peptide has a Cyclin D1 gene expression inhibitory action.
 なお、置換、欠失または付加によって得られるペプチドが、Cyclin D1遺伝子発現抑制作用を有することは、後述する実験例1~3に示すように、ヒト癌細胞の増殖に対する抑制効果を評価することで間接的に確認することができ、また実験例4(実施例1)に示すように、リアルタイムPCRを用いてヒトCyclin D1(CCND1)遺伝子発現の解析を行うことにより、直接的に確認することができる。 The fact that the peptide obtained by substitution, deletion or addition has a cyclin D1 gene expression inhibitory effect is evaluated by evaluating the inhibitory effect on the proliferation of human cancer cells as shown in Experimental Examples 1 to 3 described later. It can be confirmed indirectly, and as shown in Experimental Example 4 (Example 1), it can be confirmed directly by analyzing human Cyclin D1 (CCND1) gene expression using real-time PCR. it can.
 置換、欠失または付加によって得られるペプチドとしては、例えば、下記アミノ酸配列(配列番号2)で示され、且つ上記作用を有するペプチドを例示することができる。 Examples of the peptide obtained by substitution, deletion or addition include a peptide represented by the following amino acid sequence (SEQ ID NO: 2) and having the above action.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 かかるペプチドとして、具体的には、ヒトDlk1タンパク質のオルソログに相当するタンパク質の細胞外ドメイン領域の部分配列からなる、上記KS-13に相当するペプチドを挙げることができる。例えば、ヒトDlk1タンパク質のオルソログに相当するマウスDlk1タンパク質は、全長385アミノ酸残基からなるアミノ酸配列を有する(配列番号12)。当該マウスDlk1タンパク質のアミノ酸配列において24~305位の領域が細胞外ドメインであり、その部分配列(124~136位の13アミノ酸残基からなる配列:配列番号3)が上記KS-13に相当するペプチドである。 Specific examples of such peptides include peptides corresponding to KS-13 described above, consisting of a partial sequence of the extracellular domain region of a protein corresponding to an ortholog of human Dlk1 protein. For example, mouse Dlk1 protein corresponding to an ortholog of human Dlk1 protein has an amino acid sequence consisting of a total length of 385 amino acid residues (SEQ ID NO: 12). In the amino acid sequence of the mouse Dlk1 protein, the region at positions 24 to 305 is the extracellular domain, and the partial sequence (sequence consisting of 13 amino acid residues at positions 124 to 136: SEQ ID NO: 3) corresponds to KS-13. It is a peptide.
 マウスの他、ラットやドブネズミ等のげっ歯類、並びにブタ、ウマ、ヤギ、ウシ、ワラビー、およびオオカンガルー等の哺乳類;キンカチョウ、カモノハシ、シチメンチョウ、ニワトリ等の鳥類などの脊椎動物は、上記ヒトDlk1タンパク質のホモログまたはオルソログに相当するDlk1タンパク質を有している。これらのDlk1タンパク質の細胞外ドメイン内に位置する上記KS-13に相当する部分配列を、ヒト由来のKS-13、およびマウスのKS-13に相当するペプチドのアミノ酸配列と共に表1に示す。ヒト由来のKS-13と共通して保存されているアミノ酸残基には下線を付して表示する。 In addition to mice, rodents such as rats and rats, and mammals such as pigs, horses, goats, cattle, wallabies, and giant kangaroos; It has Dlk1 protein corresponding to protein homologue or orthologue. The partial sequences corresponding to the above KS-13 located in the extracellular domain of these Dlk1 proteins are shown in Table 1 together with the amino acid sequences of peptides derived from human-derived KS-13 and mouse KS-13. Amino acid residues conserved in common with human-derived KS-13 are indicated by underlining.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 例えば、ヒトとマウスやラット等のげっ歯類のペプチドの配列を比較すると、N末端から3番目のアミノ酸(配列番号2のアミノ酸配列中「XXb」に相当)は、LysとHisのいずれでもよく、5番目のアミノ酸(配列番号2のアミノ酸配列中「XXd」に相当)は、AspとAlaのいずれでもよいことがわかる。またヒトとブタのペプチドの配列を比較すると、N末端から10番目のアミノ酸(配列番号2のアミノ酸配列中「XXf」に相当)は、IleとMetのいずれでもよいことがわかる。またヒトとオオカンガルーのペプチドの配列を比較すると、N末端から3番目の3つアミノ酸は欠失していてもよく、またN末端から5番目のアミノ酸(配列番号2のアミノ酸配列中「XXd」に相当)はAspとGluのいずれでもよいことがわかる。さらにヒトとニワトリのペプチドの配列を比較すると、N末端から5番目の5つアミノ酸は欠失していてもよく、またN末端から9番目のアミノ酸(配列番号2のアミノ酸配列中「XXe」に相当)はValとIleのいずれでもよいことがわかる。 For example, when comparing the sequences of peptides of rodents such as human and mouse or rat, the third amino acid from the N-terminus (corresponding to “XXb” in the amino acid sequence of SEQ ID NO: 2) may be either Lys or His. It can be seen that the fifth amino acid (corresponding to “XXd” in the amino acid sequence of SEQ ID NO: 2) may be either Asp or Ala. Further, comparing the sequences of human and porcine peptides, it can be seen that the 10th amino acid from the N-terminal (corresponding to “XXf” in the amino acid sequence of SEQ ID NO: 2) may be either Ile or Met. Further, when comparing the sequences of human and giant kangaroo peptides, the third amino acid from the N-terminus may be deleted, and the fifth amino acid from the N-terminus (“XXd” in the amino acid sequence of SEQ ID NO: 2). It is understood that either Asp or Glu may be used. Further, when comparing the sequences of human and chicken peptides, the 5th amino acid from the N-terminus may be deleted, and the 9th amino acid from the N-terminus (in the amino acid sequence of SEQ ID NO: 2, “XXe”). It can be seen that any of Val and Ile can be used.
 本発明に係るペプチドにおいて、KS-13は最も好ましいペプチドであるが、上記配列番号2で示すように、当該アミノ酸配列において1~6のアミノ酸(XXa~XXf)のいずれかが、他のアミノ酸で置換されていてもよいし、またN末端またはC末端のアミノ酸が1つ少ない12個のアミノ酸残基からなるペプチド、あるいはさらにアミノ酸が1つ少ない11個のアミノ酸残基からなるペプチドであってもよい。N末端のアミノ酸は、最大で5個、または4~3個まで欠失していてもよい。 In the peptide according to the present invention, KS-13 is the most preferred peptide, but as shown in SEQ ID NO: 2, any one of amino acids 1 to 6 (XXa to XXf) in the amino acid sequence is another amino acid. It may be substituted, may be a peptide consisting of 12 amino acid residues with one less N-terminal or C-terminal amino acid, or a peptide consisting of 11 amino acid residues with one less amino acid Good. The N-terminal amino acid may be deleted up to 5 or 4 to 3 amino acids.
 配列番号1に記載するアミノ酸配列において、少なくとも1個のアミノ酸が付加してなるペプチドとしては、上記アミノ酸配列のN末端および/またはC末端にもとのヒトDlk1タンパク質由来のアミノ酸が、5個、4個、3個、2個もしくは1個付加したものが好適に挙げられる。 In the amino acid sequence shown in SEQ ID NO: 1, the peptide formed by adding at least one amino acid has five amino acids derived from human Dlk1 protein at the N-terminus and / or C-terminus of the amino acid sequence, Preferred are those with 4, 3, 2 or 1 added.
 なお、KS-13のアミノ酸配列(配列番号1)において、少なくとも1個のアミノ酸を置換、付加または欠失するための方法は、既に当業界では慣用化されており、例えば該ペプチドをコードするDNAを経由して行う場合には、例えばサイトスペシフィック・ミュータゲネシス〔Methods in Enzymology,154,350,367-382(1987);同100,468(1983);Nucleic Acids Res.,12,9441(1984);続生化学実験講座1「遺伝子研究法II」、日本生化学会編,p105(1986)〕などの遺伝子工学的手法、リン酸トリエステル法やリン酸アミダイト法などの化学合成手段〔J.Am.Chem.Soc.,89,4801(1967);同91,3350(1969);Science,150,178(1968);Tetrahedron Lett.,22,1859(1981);同24,245(1983)〕およびそれらの組合せ方法などが例示できる。より具体的には、DNAの合成は、ホスホルアミダイト法またはトリエステル法による化学合成によることもでき、市販されている自動オリゴヌクレオチド合成装置上で行うこともできる。二本鎖断片は、相補鎖を合成し、適当な条件下で該鎖を共にアニーリングさせるか、または適当なプライマー配列と共にDNAポリメラーゼを用い相補鎖を付加するかによって、化学合成した一本鎖生成物から得ることもできる。さらに、本発明に係るペプチドは、ペプチド合成機を用いて固相合成法により合成することもでき、アミノ酸の置換、付加または欠失は、ペプチド合成機を用いる場合には保護アミノ酸の種類を変えることにより容易に行うことができる。またD-アミノ酸やサルコシン(N-メチルグリシン)等の特殊なアミノ酸を導入することもできる。 In addition, a method for substituting, adding or deleting at least one amino acid in the amino acid sequence of KS-13 (SEQ ID NO: 1) has already been conventionally used in the art. For example, DNA encoding the peptide In the case of performing via the Internet, for example, site-specific mutagenesis [Methods in Enzymology, 154, 350, 367-382 (1987); 100, 468 (1983); Nucleic Acids Res. , 12, 9441 (1984); secondary biochemistry experiment course 1 "Gene Research Method II", edited by Japanese Biochemical Society, p105 (1986)], etc., phosphate triester method, phosphate amidite method, etc. Chemical synthesis means [J. Am. Chem. Soc. 89, 4801 (1967); 91, 3350 (1969); Science, 150, 178 (1968); Tetrahedron Lett. , 22, 1859 (1981); 24, 245 (1983)] and combinations thereof. More specifically, DNA synthesis can be performed by chemical synthesis by the phosphoramidite method or triester method, and can also be performed on a commercially available automatic oligonucleotide synthesizer. Double-stranded fragments are chemically synthesized single strands produced by synthesizing complementary strands and annealing the strands together under appropriate conditions, or adding complementary strands using DNA polymerase with appropriate primer sequences. It can also be obtained from things. Furthermore, the peptide according to the present invention can also be synthesized by a solid phase synthesis method using a peptide synthesizer, and amino acid substitution, addition or deletion changes the type of protected amino acid when using a peptide synthesizer. This can be done easily. In addition, special amino acids such as D-amino acid and sarcosine (N-methylglycine) can be introduced.
 本発明に係るペプチドは、フリーの状態であってもよいし、また塩の形態であってもよいし、また水和物を含む溶媒和物の形態を有していてもよい。塩としては、生理学的に許容される、つまり薬学的に許容される酸付加塩や塩基塩を挙げることができる。かかる酸付加塩としては、塩酸塩、臭化水素酸塩、硝酸塩、硫酸塩などの無機酸塩;またはメタンスルホン酸、トルエンスルホン酸などのスルホン酸塩、トリフルオロ酢酸、コハク酸などの有機酸塩などが挙げられる。塩基塩としては、ナトリウム、カリウム、リチウムなどのアルカリ金属塩;またはカルシウム、マグネシウムなどのアルカリ土類金属塩などが挙げられる。 The peptide according to the present invention may be in a free state, in the form of a salt, or in the form of a solvate containing a hydrate. Examples of the salt include physiologically acceptable, that is, pharmaceutically acceptable acid addition salts and base salts. Such acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, nitrate and sulfate; or sulfonic acid salts such as methanesulfonic acid and toluenesulfonic acid; organic acids such as trifluoroacetic acid and succinic acid. Examples include salt. Examples of the base salt include alkali metal salts such as sodium, potassium and lithium; or alkaline earth metal salts such as calcium and magnesium.
 本発明に係るペプチドには、C末端がカルボキシル基(-COOH)、カルボキシレート(-COO-)、アミド(-CONH)、またはエステル(-COOR)であるペプチドが含まれる。ここでエステルにおけるRとしては、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル等の炭素数1~6のアルキル基;シクロペンチル、シクロヘキシルなどの炭素数3~8のシクロアルキル基;フェニル、α-ナフチルなどの炭素数6~12のアリール基;ベンジルやフェネチルなどのフェニル-C1-2アルキル基;α-ナフチルメチルなどのα-ナフチル-C1-2アルキル基などのC7-14アラルキル基;ピバロイルオキシメチル基などを例示することができる。本発明に係るペプチドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、そのカルボキシル基がアミド化またはエステル化されているものも本発明に係るペプチドに含まれる。また本発明に係るペプチドには、N末端のアミノ酸残基のアミノ基が保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイルなどのC1-6アシル基など)で保護されているものや脂肪酸(C8-18の飽和脂肪酸)で修飾されているもの、生体内で切断されて生成し得るN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイル基などのC1-6アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。さらに本発明に係るペプチドには、イミダゾリル基またはSH基がアルキル化(例えばメチル化)、アラルキル化(例えばベンジル化)、アシル化(例えばアセチル化、ベンゾイル化)されたものも含まれる。なお、上記脂肪酸修飾物としては、N末端のアミノ酸残基のアミノ基がミリスチン酸で修飾されたミリストイル化ペプチドが含まれる。 The peptides according to the present invention include peptides whose C-terminus is a carboxyl group (—COOH), carboxylate (—COO—), amide (—CONH 2 ), or ester (—COOR). Here, as R in the ester, for example, an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl and n-butyl; a cycloalkyl group having 3 to 8 carbon atoms such as cyclopentyl and cyclohexyl; phenyl, aryl groups having 6 to 12 carbon atoms such as α-naphthyl; phenyl-C1-2 alkyl groups such as benzyl and phenethyl; C7-14 aralkyl groups such as α-naphthyl-C1-2 alkyl groups such as α-naphthylmethyl; A pivaloyloxymethyl group can be exemplified. When the peptide according to the present invention has a carboxyl group (or carboxylate) other than the C-terminus, the peptide according to the present invention includes those in which the carboxyl group is amidated or esterified. In the peptide according to the present invention, the amino group of the N-terminal amino acid residue is protected with a protecting group (for example, a C1-6 acyl group such as C1-6 alkanoyl such as formyl group and acetyl group). Or modified with fatty acid (saturated fatty acid of C8-18), N-terminal glutamine residue which can be cleaved in vivo, pyroglutamine oxidized, substituent on side chain of amino acid in molecule (For example, —OH, —SH, amino group, imidazole group, indole group, guanidino group, etc.) are suitable protecting groups (for example, C1-6 acyl groups such as C1-6 alkanoyl groups such as formyl group, acetyl group, etc.) Or a complex peptide such as a so-called glycopeptide to which a sugar chain is bound. Furthermore, the peptides according to the present invention include those in which an imidazolyl group or SH group is alkylated (for example, methylated), aralkylated (for example, benzylated), or acylated (for example, acetylated or benzoylated). The fatty acid-modified products include myristoylated peptides in which the amino group of the N-terminal amino acid residue is modified with myristic acid.
 なお、国際公開第2011/040500号の内容は本明細書に参照によりその全体が取り込まれる。したがって、本発明に係るペプチドとしては、Cyclin D1遺伝子の発現抑制作用を有する限り、国際公開第2011/040500号に記載のいずれのペプチドも使用することができる。また本発明に係るペプチドは、国際公開第2011/040500号の記載を参考に製造することができる。 Note that the content of International Publication No. 2011/040500 is incorporated in its entirety into this specification. Therefore, as a peptide according to the present invention, any peptide described in International Publication No. 2011/040500 can be used as long as it has an effect of suppressing the expression of the Cyclin D1 gene. Moreover, the peptide which concerns on this invention can be manufactured with reference to description of international publication 2011/040500.
(III)Cyclin D1遺伝子発現抑制剤
 上に詳述した本発明に係るペプチドまたはその薬学的に許容される塩若しくは溶媒和は、そのままで、あるいは必要に応じて細胞生理学的に許容し得る担体とともに混合して組成物とした後に、本発明のCyclin D1遺伝子発現抑制剤として用いられる。なお、本発明に係るペプチドは1種単独からなるものであっても、2種以上のものを任意に組み合わせて用いることもできる。好ましくは、ヒト由来のKS-13(配列番号1)、げっ歯類由来のペプチド(配列番号3)、ブタ由来のペプチド(配列番号4)、ニワトリ由来のペプチド(配列番号10)であり、より好ましくはヒト由来のKS-13(配列番号1)、およびげっ歯類由来のペプチド(配列番号3)である。
(III) Cyclin D1 gene expression inhibitor The peptide according to the present invention detailed above or a pharmaceutically acceptable salt or solvate thereof as it is or with a carrier that is physiologically acceptable as necessary After mixing to make a composition, it is used as the Cyclin D1 gene expression inhibitor of the present invention. In addition, even if the peptide based on this invention consists of 1 type individually, 2 or more types can also be used in arbitrary combinations. Preferably, human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), porcine-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
 Cyclin D1遺伝子発現抑制剤は、例えば、本発明に係るペプチドを、水もしくは適当な緩衝液(例、リン酸緩衝液、PBS、トリス塩酸緩衝液など)中に適当な濃度となるように溶解することにより調製することができる。また、必要に応じて、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。 Cyclin D1 gene expression inhibitor, for example, dissolves the peptide of the present invention in water or an appropriate buffer solution (eg, phosphate buffer solution, PBS, Tris-HCl buffer solution, etc.) to an appropriate concentration. Can be prepared. Moreover, you may mix | blend the preservative, stabilizer, reducing agent, tonicity agent, etc. which are used normally as needed.
(IV)抗腫瘍剤
 上に詳述した本発明に係るペプチドまたはその薬学的に許容される塩若しくは溶媒和は、そのままで、あるいは必要に応じて細胞生理学的に許容し得る担体とともに混合して組成物とした後に、本発明の抗腫瘍剤として用いられる。なお、本発明に係るペプチドは1種単独からなるものであっても、2種以上のものを任意に組み合わせて用いることもできる。好ましくは、ヒト由来のKS-13(配列番号1)、げっ歯類由来のペプチド(配列番号3)、ブタ由来のペプチド(配列番号4)、ニワトリ由来のペプチド(配列番号10)であり、より好ましくはヒト由来のKS-13(配列番号1)、およびげっ歯類由来のペプチド(配列番号3)である。
(IV) Antitumor Agent The peptide according to the present invention detailed above or a pharmaceutically acceptable salt or solvate thereof is mixed as it is or with a physiologically acceptable carrier as necessary. After preparing the composition, it is used as the antitumor agent of the present invention. In addition, even if the peptide based on this invention consists of 1 type individually, 2 or more types can also be used in arbitrary combinations. Preferably, human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), porcine-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
 抗腫瘍剤は、例えば、本発明に係るペプチドを、水もしくは適当な緩衝液(例、リン酸緩衝液、PBS、トリス塩酸緩衝液など)中に適当な濃度となるように溶解することにより調製することができる。また、必要に応じて、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。 The antitumor agent is prepared, for example, by dissolving the peptide according to the present invention in water or an appropriate buffer (eg, phosphate buffer, PBS, Tris-HCl buffer, etc.) to an appropriate concentration. can do. Moreover, you may mix | blend the preservative, stabilizer, reducing agent, tonicity agent, etc. which are used normally as needed.
 以下、本発明を、本発明に至るまでの経緯も含め、実施例及び実験例を用いてより詳細に説明する。但し、本発明はこれらの実験例によって何ら制限を受けるものではない。 Hereinafter, the present invention will be described in more detail using examples and experimental examples, including the background to the present invention. However, the present invention is not limited by these experimental examples.
1.ヒト癌細胞の増殖におけるKS-13の影響(in vitro)
<実験例1>
(1)材料と方法
 10%ウシ胎児血清(FBS)を含むRPMI1640培地を用いてヒト白血病細胞株(K562)およびヒト前立腺癌細胞株(PC-3)を培養した。
 K562細胞は浮遊性細胞であるため、静かにピペッティングして細胞を集め、10μg/mlのKS-13を加えたRPMI1640+10%ウシ胎児血清(FBS)を用いて2×10細胞/mlの細胞懸濁液を48穴組織培養プレートにて培養した。
 PC-3細胞は付着性細胞であるため、0.2%トリプシンを添加することによって細胞を集め、その後、10μg/mlのKS-13を加えたRPMI1640+10%ウシ胎児血清(FBS)を用いて8×10細胞/mlの細胞懸濁液を48穴組織培養プレートにて培養した。
 KS-13を含まない培養をコントロールとして用いた。
 1日後、2日後、5日後に、顕微鏡下で、trypan blueで染色された細胞と、染色されていない生細胞とを計測した。また5日後には、顕微鏡下で細胞株の形態の写真を撮影した。
1. Effect of KS-13 on proliferation of human cancer cells (in vitro)
<Experimental example 1>
(1) Materials and Methods Human leukemia cell line (K562) and human prostate cancer cell line (PC-3) were cultured using RPMI 1640 medium containing 10% fetal bovine serum (FBS).
Since K562 cells are suspension cells, the cells are collected by gentle pipetting and 2 × 10 5 cells / ml using RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml KS-13. The suspension was cultured in a 48-well tissue culture plate.
Since PC-3 cells are adherent cells, the cells are collected by adding 0.2% trypsin and then with RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml KS-13. A cell suspension of × 10 5 cells / ml was cultured in a 48-well tissue culture plate.
Cultures without KS-13 were used as controls.
One day, two days, and five days later, cells stained with trypan blue and unstained live cells were counted under a microscope. After 5 days, a photograph of the cell line morphology was taken under a microscope.
(2)結果
 図1に示すように、K562細胞、PC-3細胞ともに経時的に細胞数は増加したが、KS-13の存在下では、コントロールに比べてK562細胞、PC-3細胞ともに増殖が遅くなり、全ての観察時において生細胞の数が少なくなった。(2日後のKS-13の存在下でのK562細胞の生細胞の合計は、コントロールの3倍低かった。5日後の生細胞の合計は、1日後や2日後と比較して、KS-13の存在下とコントロールの間で大きく異なり、K562細胞、PC-3細胞ともに、KS-13の存在下ではコントロールの20~30%減少した。)
 これにより、KS-13は白血病細胞と前立腺癌細胞の増殖をin vitroで抑制することが確認された。
(2) Results As shown in FIG. 1, the number of both K562 and PC-3 cells increased over time, but in the presence of KS-13, both K562 and PC-3 cells proliferated compared to the control. And the number of viable cells decreased at all observations. (The total number of viable cells of K562 cells in the presence of KS-13 after 2 days was 3 times lower than the control. The total number of viable cells after 5 days was KS-13 compared to 1 day and 2 days later. (In the presence of KS-13, both K562 cells and PC-3 cells were reduced by 20-30% of the control.)
This confirmed that KS-13 inhibited the proliferation of leukemia cells and prostate cancer cells in vitro.
<実験例2-1>
 実験例1にて培養した細胞について倒立顕微鏡を用いて観察した結果、KS-13の存在下でのK562細胞の数はコントロールに比べて少なく、細胞の形態も変化した(図2参照)。さらに、KS-13の存在下のみにおいて、サイズの大きな細胞(大型細胞)が観察された(矢印)。これにより、KS-13によって分化が誘導され、癌細胞増殖が抑制されていると考えられる。
<Experimental example 2-1>
As a result of observing the cells cultured in Experimental Example 1 using an inverted microscope, the number of K562 cells in the presence of KS-13 was smaller than that of the control, and the cell morphology was also changed (see FIG. 2). Furthermore, large cells (large cells) were observed only in the presence of KS-13 (arrows). Thereby, it is considered that differentiation is induced by KS-13 and cancer cell proliferation is suppressed.
<実験例2-2>
 実験1と同様に、10μg/mlのKS-13を加えて2日間培養したKasumi細胞(ヒト骨髄性白血病細胞株)と、KS-13を加えずに2日間培養したKasumi細胞(コントロール)について、May-Giemsa染色を行った後、正立顕微鏡を用いて観察した(図3参照)。その結果、KS-13の存在下では、様々な大きさの細胞と様々な細胞核の形態が認められ、特に大型細胞と多核の細胞が多く認められた(矢印)。
 また、コントロールと比較して、KS-13の存在下では、大型細胞の細胞質に小胞を含む傾向にあった(アローヘッド)。
<Experimental example 2-2>
As in Experiment 1, Kasumi cells (human myeloid leukemia cell line) cultured for 2 days with 10 μg / ml KS-13 and Kasumi cells (control) cultured for 2 days without KS-13 were added. After May-Giemsa staining, observation was performed using an upright microscope (see FIG. 3). As a result, in the presence of KS-13, cells of various sizes and various cell nuclei were observed, and many large cells and multinucleated cells were observed (arrows).
In addition, compared with the control, in the presence of KS-13, the cytoplasm of large cells tended to contain vesicles (arrowhead).
<実験例3-1>
 K562細胞株の培養液にKS-13を添加し、ホロスコープ型顕微鏡で30分モニタリングした。
 結果を図4に示す。白いドットはKS-13添加群を示し、黒いドットはコントロール(KS-13不添加群)を示す。すなわち、KS-13を添加すると、K562細胞株の分化が誘導されて厚みが変わり、不規則な形態になる事が明らかになった。これにより、KS-13によって癌細胞増殖が抑制されていると考えられる。
<Experimental example 3-1>
KS-13 was added to the culture medium of the K562 cell line and monitored with a horoscope microscope for 30 minutes.
The results are shown in FIG. White dots indicate the KS-13 added group, and black dots indicate the control (KS-13 non-added group). That is, when KS-13 was added, differentiation of the K562 cell line was induced, the thickness changed, and it became clear that it became an irregular form. Thus, it is considered that cancer cell proliferation is suppressed by KS-13.
<実験例3-2>
 KS-13添加またはKS-13不添加(コントロール)で、12時間の培養を行ったK562細胞株について、ホロスコープ顕微鏡を使用し、MS3 Cell Track法にて生細胞の観察を行った。不規則性を縦軸に、粗度を横軸に表した結果を図5に示す。
 図5のグラフから確認されるように、不規則性については、KS-13で処理された細胞(不規則性平均値=0.024)は、コントロール(不規則性平均値=0.006)の4倍の値を示した。一方、粗度については、KS-13で処理された細胞(粗度平均値=5.57)とコントロール(粗度平均値=5.86)の間に差異は認められなかった。これらの結果から、KS-13はK562細胞の細胞形態を変化させることが認められた。
<Experimental Example 3-2>
With respect to the K562 cell line that had been cultured for 12 hours with or without KS-13 (control), live cells were observed by the MS3 Cell Track method using a horoscope microscope. FIG. 5 shows the results of representing irregularity on the vertical axis and roughness on the horizontal axis.
As confirmed from the graph of FIG. 5, for irregularity, cells treated with KS-13 (irregularity average = 0.024) were treated with control (irregularity average = 0.006). 4 times the value. On the other hand, regarding the roughness, no difference was observed between the cells treated with KS-13 (roughness average value = 5.57) and the control (roughness average value = 5.86). From these results, it was confirmed that KS-13 changes the cell morphology of K562 cells.
<実験例3-3>
 Kasumi細胞株を用いて実験例3-2と同様に、ホロスコープ顕微鏡を使用し、MS3 Cell Track法にて生細胞の観察を行った。不規則性を縦軸に、粗度を横軸に表した結果を図6に示す。
 図6のグラフから確認されるように、不規則性については、KS-13で処理された細胞(不規則性平均値=0.062)は、コントロール(不規則性平均値=0.002)の30倍の値を示した。一方、粗度については、KS-13で処理された細胞(粗度平均値=4.59)では、コントロール(粗度平均値=6.24)と比較して、わずかな減少が認められた。これらの結果から、KS-13はKasumi細胞においても細胞形態を変化させることが確認された。
<Experimental Example 3-3>
Using the Kasumi cell line, live cells were observed by the MS3 Cell Track method using a horoscope microscope in the same manner as in Experimental Example 3-2. FIG. 6 shows the results of representing irregularity on the vertical axis and roughness on the horizontal axis.
As confirmed from the graph of FIG. 6, for irregularity, cells treated with KS-13 (irregularity average value = 0.062) were controlled (average irregularity value = 0.002). 30 times the value. On the other hand, with respect to the roughness, a slight decrease was observed in the cells treated with KS-13 (roughness average value = 4.59) compared to the control (roughness average value = 6.24). . From these results, it was confirmed that KS-13 also changed cell morphology in Kasumi cells.
2.KS-13による癌細胞株のCyclin D1の発現抑制
<実験例4(実施例1)>リアルタイムPCRによるヒトCyclin D1(CCND1)遺伝子発現の解析
 実験例1~3により、KS-13は、in vitroでのK562細胞株の増殖を抑制することが判明したため、細胞周期を制御する遺伝子である、CyclinD1遺伝子に注目し、以下の実験を行った。
2. Inhibition of Cyclin D1 Expression in Cancer Cell Lines by KS-13 <Experimental Example 4 (Example 1)> Analysis of Human Cyclin D1 (CCND1) Gene Expression by Real-Time PCR According to Experimental Examples 1-3, KS-13 was expressed in vitro. Therefore, the following experiment was conducted focusing on the CyclinD1 gene, which is a gene that controls the cell cycle.
(1)全RNA抽出とcDNA合成
 製品のプロトコールに従いRNAqueous-4PCR(商標)(Life Technologies社製)を用いて、RNAを抽出した。
 High Capacity RNA-to-cDNA Kit(Life Technologies社製)を用いて、mRNAを逆転写した。
 cDNA合成の品質は、ヒトハウスキーピング遺伝子であるβアクチン(ACTB)のPCRによる増幅によってチェックした。
(1) Total RNA extraction and cDNA synthesis RNA was extracted using RNAqueous-4PCR (trademark) (manufactured by Life Technologies) according to the product protocol.
The mRNA was reverse transcribed using High Capacity RNA-to-cDNA Kit (manufactured by Life Technologies).
The quality of cDNA synthesis was checked by PCR amplification of β-actin (ACTB), a human housekeeping gene.
(2)リアルタイムPCR
 ヒトCyclin D1(CCND1)遺伝子のレベルをTaqMan Gene Expression Mater MixとStepOnePlus(商標)RT-PCR macjine(Life Technologies社)を用いて評価した。ACTB遺伝子をリアルタイムPCRの内在性コントロールとして用いた。
 プローブは全てTaqMan Gene Expression Assay(Life Technologies社)のものとした。サンプルは三連で解析した。mRNAレベルはβアクチンで標準化し、発現の相対量は、KS-13ペプチドを添加したサンプルを1として比較した。
(3)結果
 結果を図7に示す。これにより、KS-13は、ヒト白血病細胞株(Kasumi)、ヒト前立腺癌細胞株(PC-3)、ヒト乳癌細胞株(T47D)におけるCyclin D1(CCND1)遺伝子の発現を、それぞれ、141倍、122倍、152倍、抑制することが分かった。
(2) Real-time PCR
The level of human Cyclin D1 (CCND1) gene was evaluated using TaqMan Gene Expression Mat Mix and StepOnePlus ™ RT-PCR machine (Life Technologies). The ACTB gene was used as an endogenous control for real-time PCR.
All probes were from TaqMan Gene Expression Assay (Life Technologies). Samples were analyzed in triplicate. The mRNA level was normalized with β-actin, and the relative amount of expression was compared with a sample added with KS-13 peptide as 1.
(3) Results The results are shown in FIG. Thereby, KS-13 increased the expression of Cyclin D1 (CCND1) gene in human leukemia cell line (Kasumi), human prostate cancer cell line (PC-3), and human breast cancer cell line (T47D) by 141 times, It was found to be suppressed 122 times and 152 times.
3.KS-13の細胞内への取り込み、および、KS-13のヒトCyclin D1のプロモーター領域への結合についての検討
<実験例5-1>
 Kasumi細胞において、KS-13は細胞外または細胞内のいずれで作用するかについての確認試験を行った。
(1)材料と方法
 Biotinを修飾したKS-13(10μg/mL)の存在下でKasumi細胞を2日間培養した。次いで、サイトスピンによって、10000個の細胞をスライドグラスに密着させて固定した。SA-Alexa488-ストレプトアビジンを細胞内のKS-13-biotinと二次反応させて、焦点レーザー顕微鏡(倍率:60倍)を用いて観察した。(図8参照)。なお、陰性コントロールとして、KS-13非存在下で培養したKasumi細胞を使用し、上記と同様にSA-Alexa488-ストレプトアビジンで処理した。
3. Examination of cellular uptake of KS-13 and binding of KS-13 to the promoter region of human Cyclin D1 <Experimental example 5-1>
In Kasumi cells, a confirmation test was performed to determine whether KS-13 acts extracellularly or intracellularly.
(1) Materials and Methods Kasumi cells were cultured for 2 days in the presence of Biotin-modified KS-13 (10 μg / mL). Subsequently, 10000 cells were brought into close contact with the slide glass and fixed by cytospin. SA-Alexa488-streptavidin was subjected to secondary reaction with intracellular KS-13-biotin and observed using a focused laser microscope (magnification: 60 times). (See FIG. 8). As a negative control, Kasumi cells cultured in the absence of KS-13 were used and treated with SA-Alexa488-streptavidin as described above.
(2)結果
 顕微鏡観察の結果、KS-13-biotinは、細胞の内部に取り込まれることが確認された。特に、細胞質に多く取り込まれており、核内に取り込まれる量は、比較的、少量であった。(核はTOTO-3 iodide で染色した。顕微鏡写真のスケールバーは40μmを示す。)
(2) Results As a result of microscopic observation, it was confirmed that KS-13-biotin was taken up into the cells. In particular, a large amount was taken into the cytoplasm, and the amount taken into the nucleus was relatively small. (The nuclei were stained with TOTO-3 iodide. The scale bar in the micrograph shows 40 μm.)
<実験例5-2>
 KS-13がK562細胞のヒトCyclin D1のプロモーター領域に直接結合するか否かの試験を行った。
(1)材料と方法
クロマチン免疫沈降法(ChIP)
 10μg/mlのビオチン結合したKS-13を加えたRPMI1640+10%ウシ胎児血清(FBS)を用いて2×10細胞/mlのK562細胞懸濁液を2日間培養した。ChIPに用いた細胞数は1×10細胞である。
 染色体DNAへのタンパク/ペプチドの結合について、終濃度1%のホルムアルデヒドを添加することによって架橋した。冷PBSを用いて洗浄した後、SDSを含むChIP溶解バッファーを用いて細胞を溶解した。12000rpmで10分間(4℃)遠心することにより細胞残屑を取り除いた。染色体DNAを超音波処理(250W,5分/30秒のオン/オフサイクル)で断片化し、100-1000bpの小さなサイズの染色体DNAを得た。
 製品説明書に従い、ChIPを実施した(Chromatin immunoprecipitation assay kit,MILLIPORE)。すなわち、断片化DNAをChIP結合バッファーで希釈した。1%に希釈したゲノムDNAをコントロール「ChIP前」とした。KS-13とKS-13に結合したゲノムDNAを沈降させるためにウサギ抗ビオチン抗体を用いた。沈降した染色体DNAを「ChIP後」としてPCRのテンプレートに用いた。
<Experimental example 5-2>
It was tested whether KS-13 binds directly to the promoter region of human Cyclin D1 in K562 cells.
(1) Materials and methods Chromatin immunoprecipitation (ChIP)
A 2 × 10 5 cell / ml K562 cell suspension was cultured for 2 days using RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml biotin-conjugated KS-13. The number of cells used for ChIP is 1 × 10 6 cells.
For protein / peptide binding to chromosomal DNA, it was cross-linked by adding formaldehyde at a final concentration of 1%. After washing with cold PBS, the cells were lysed using a ChIP lysis buffer containing SDS. Cell debris was removed by centrifugation at 12000 rpm for 10 minutes (4 ° C.). Chromosomal DNA was fragmented by sonication (250 W, 5 min / 30 sec on / off cycle) to obtain chromosomal DNA of a small size of 100-1000 bp.
ChIP was performed according to the product instructions (Chromatin immunoprecipitation assay kit, MILLIPORE). That is, the fragmented DNA was diluted with a ChIP binding buffer. Genomic DNA diluted to 1% was used as a control “before ChIP”. Rabbit anti-biotin antibody was used to precipitate KS-13 and genomic DNA bound to KS-13. The precipitated chromosomal DNA was used as a “post-ChIP” template for PCR.
(2)PCR
 ヒトCyclin D1のプロモーター領域に結合するプライマーを用いて、127bpのPCR産物を得た。
 K562のゲノムDNAをPCRの陽性コントロールとして使用し、テンプレートなしを陰性コントロールとした。
 PCR産物を100bp用のDNAラダーマーカーと同時に2%アガロース・ゲルで電気泳動し、SYBER Greenで染色した。
(2) PCR
A 127 bp PCR product was obtained using a primer that binds to the promoter region of human Cyclin D1.
K562 genomic DNA was used as a positive control for PCR, and no template was used as a negative control.
The PCR product was electrophoresed on a 2% agarose gel simultaneously with a DNA ladder marker for 100 bp and stained with SYBER Green.
(3)結果
 図9に示すように、「ChIP前」のサンプルではPCR産物が観察されたが、「ChIP後」のサンプルでは観察されなかった。これは、KS-13がCyclin D1のプロモーター領域には結合しなかったことを示す。このことからKS-13は直接プロモーターに結合してCyclin D1の発現を抑制するのではなく、他の分子を介して抑制することが示唆された。
(3) Results As shown in FIG. 9, PCR products were observed in the “before ChIP” sample, but not in the “after ChIP” sample. This indicates that KS-13 did not bind to the promoter region of Cyclin D1. This suggests that KS-13 does not directly bind to the promoter and suppress the expression of Cyclin D1, but suppress it via other molecules.
4.K562白血病細胞株におけるKS-13の標的分子
 KS-13が他のタンパク質に結合するか否かの試験を行った。
<実験例6>
(1)材料と方法
クロマチン免疫沈降法(ChIP)
 10μg/mlのビオチンを結合したKS-13を加えたRPMI1640+10%ウシ胎児血清(FBS)を用いて2×10細胞/mlのK562細胞を2日間培養した。ChIPに用いた細胞数は1×10細胞である。
 冷PBSを用いて洗浄した後、IP溶解バッファー(Pierce Classic IP Kit,Thermo Scientific)を用いて細胞を溶解した。12000rpmで10分間(4℃)遠心することにより細胞残屑を取り除いた。
 製品説明書に従い、IPを実施した(Pierce Classic IP Kit,Thermo Scientific)。KS-13とKS-13の結合タンパクを沈降させるためにウサギ抗ビオチン抗体を用いた。
 ビオチン-KS-13タンパク質複合体は、プロテインGを添加することにより非結合タンパク質から分離した。三回の洗浄後、低PHバッファーを用いて免疫複合体からタンパク質を分離した。
 溶出タンパク質は、重鎖(50kDa)および軽鎖(25kDa)のウサギIgGを含む。溶出タンパク質をSDS-PAGEで電気泳動し、Coomassie Briliant blue G-250(Bio-Rad)で染色した。
4). The target molecule of KS-13 in the K562 leukemia cell line was tested to see if KS-13 binds to other proteins.
<Experimental example 6>
(1) Materials and methods Chromatin immunoprecipitation (ChIP)
2 × 10 5 cells / ml of K562 cells were cultured for 2 days using RPMI 1640 + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml biotin-conjugated KS-13. The number of cells used for ChIP is 1 × 10 6 cells.
After washing with cold PBS, the cells were lysed using an IP lysis buffer (Pierce Classic IP Kit, Thermo Scientific). Cell debris was removed by centrifugation at 12000 rpm for 10 minutes (4 ° C.).
IP was performed according to the product instructions (Pierce Classic IP Kit, Thermo Scientific). Rabbit anti-biotin antibody was used to precipitate KS-13 and KS-13 binding proteins.
The biotin-KS-13 protein complex was separated from unbound protein by adding protein G. After three washes, the protein was separated from the immune complex using low PH buffer.
The eluted protein comprises heavy chain (50 kDa) and light chain (25 kDa) rabbit IgG. The eluted protein was electrophoresed on SDS-PAGE and stained with Coomassie Brilliant blue G-250 (Bio-Rad).
(2)結果
 結果を図10に示す。ウサギIgGの重鎖および軽鎖は、コントロールのKS-13(-)と、KS-13(+)の両方で確認された。このことは、免疫沈降が成功していることを示す。
 コントロールのKS-13(-)と比較すると、KS-13(+)では、50~250kDaと25~50kDaにバンドが認められた。
 さらに、タンパク質を同定するために、液体クロマトグラフィー質量分析(LC-MS)を使用した。
(2) Results The results are shown in FIG. Rabbit IgG heavy and light chains were identified in both control KS-13 (-) and KS-13 (+). This indicates that immunoprecipitation is successful.
Compared with control KS-13 (-), KS-13 (+) showed bands at 50 to 250 kDa and 25 to 50 kDa.
In addition, liquid chromatography mass spectrometry (LC-MS) was used to identify proteins.
<実験例7-1>
 液体クロマトグラフ質量分析(LC-MS)を用いてK562細胞中のK-13結合タンパク質の同定を行った。
 その結果、K-13を添加していないコントロールに比べて、K562細胞中では、ATP依存性RNAヘリカーゼ(YTHDC2)およびSolute carrier family12 member3(S12A3)がK-13に結合しているようであった(図11参照)。
 このように、K562白血病細胞株におけるKS-13の2つの標的分子が明らかとなった。
<Experimental Example 7-1>
Identification of K-13 binding protein in K562 cells was performed using liquid chromatography mass spectrometry (LC-MS).
As a result, ATP-dependent RNA helicase (YTHDC2) and single carrier family12 member3 (S12A3) seemed to bind to K-13 in K562 cells compared to the control without addition of K-13. (See FIG. 11).
Thus, two target molecules of KS-13 in the K562 leukemia cell line were revealed.
<実験例7-2>
 液体クロマトグラフ質量分析(LC-MS)を用いてK562細胞中およびKasumi細胞中のK-13結合タンパク質の同定を行った。方法および結果を図12(K562細胞)および図13(Kasumi細胞)に示す。
(1)材料と方法
 3×10個のK562細胞およびKasumi細胞をKS-13-biotin存在下で培養した。ウサギ抗ビオチンポリクローナル抗体用いて免疫沈降を行い、LC-MSを用いて免疫沈降したタンパク質を同定した。バックグラウンドコントロールとして、KS-13-biotin非存在下で培養した細胞から免疫沈降したタンパク質を用いた。バックグラウンドコントロールで確認されたタンパク質を除外したタンパク質を以下のように同定した。
<Experimental Example 7-2>
Liquid chromatograph mass spectrometry (LC-MS) was used to identify K-13 binding proteins in K562 and Kasumi cells. The method and results are shown in FIG. 12 (K562 cells) and FIG. 13 (Kasumi cells).
(1) Materials and Methods 3 × 10 6 K562 cells and Kasumi cells were cultured in the presence of KS-13-biotin. Immunoprecipitation was performed using a rabbit anti-biotin polyclonal antibody, and the immunoprecipitated protein was identified using LC-MS. As a background control, a protein immunoprecipitated from cells cultured in the absence of KS-13-biotin was used. Proteins excluding proteins confirmed by background control were identified as follows.
(2)同定されたK-13結合タンパク質
 K562細胞のK-13結合タンパク質として、Dermcidin(DCD)とU2核内低分子リボヌクレオタンパク質AおよびB(RU2A、RU2B)が同定された。
 Kasumi細胞のK-13結合タンパク質として、ヌクレオソームに結合する高移動度群タンパク質2(HMGN2)とSUB1ホモログ(S.cerevisiae)(SUB1)が同定された。
(2) Identified K-13 binding protein Dermcidin (DCD) and U2 small nuclear ribonucleoproteins A and B (RU2A, RU2B) were identified as K-13 binding proteins of K562 cells.
High mobility group protein 2 (HMGN2) and SUB1 homologue (S. cerevisiae) (SUB1) binding to nucleosomes were identified as K-13 binding proteins of Kasumi cells.
5.代表的なリン酸化タンパクの解析
 K562細胞のタンパクのリン酸化におけるKS-13の分子メカニズムを検討した。
<実験例8-1>
(1)材料と方法
 10μg/mlのKS-13を加えたRPMI+10%ウシ胎児血清(FBS)を用いて2×10細胞/mlのK562細胞懸濁液を2日間培養した。製品説明書に従い、リン酸化プロテオームアレイ(リン酸化-キナーゼアレイキット,R&D Systems)を実施した。
(2)結果
 KS-13を処理したK562細胞のタンパクリン酸化に違いはなかった(図14参照)。
5. Analysis of representative phosphorylated proteins The molecular mechanism of KS-13 in protein phosphorylation of K562 cells was examined.
<Experimental Example 8-1>
(1) Materials and Methods A suspension of 2 × 10 5 cells / ml of K562 cells was cultured for 2 days using RPMI + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml of KS-13. A phosphorylated proteome array (phosphorylation-kinase array kit, R & D Systems) was performed according to the product instructions.
(2) Results There was no difference in protein phosphorylation of K562 cells treated with KS-13 (see FIG. 14).
<実験例8-2>
(1)材料と方法
 10μg/mlのKS-13を加えたRPMI+10%ウシ胎児血清(FBS)を用いて2×10細胞/mlのK562細胞懸濁液を2日間培養した。製品説明書に従い、リン酸化プロテオームアレイ(リン酸化-キナーゼアレイキット,R&D Systems)を実施した。
(2)結果
 KS-13を処理したK562細胞のタンパクリン酸化に違いはなかった(図15参照)。
<Experimental Example 8-2>
(1) Materials and Methods A suspension of 2 × 10 5 cells / ml of K562 cells was cultured for 2 days using RPMI + 10% fetal bovine serum (FBS) supplemented with 10 μg / ml of KS-13. A phosphorylated proteome array (phosphorylation-kinase array kit, R & D Systems) was performed according to the product instructions.
(2) Results There was no difference in protein phosphorylation of K562 cells treated with KS-13 (see FIG. 15).
6.KS-13のin vivoにおける毒性の確認
<実験例9-1>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与1日後の末梢血を用いて、シスメックス社 多項目自動血球計数装置 KX-21にて解析した。
 コントロール群(PBS投与)と比較して、KS-13 Low(低濃度0.36μg/g body weight)投与群およびKS-13 High(高濃度3.6μg/g body weight)投与群において、白血球(WBC)数、赤血球(RBC)数、血小板(PLT)数、ヘモグロビン(HGB)値は正常範囲内であり、血液毒性が無い事が明らかになった(図16参照)。
6). Confirmation of toxicity of KS-13 in vivo <Experimental example 9-1>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood one day after administration, analysis was performed with a Sysmex multi-item automatic blood cell counter KX-21.
Compared with the control group (PBS administration), in the KS-13 Low (low concentration 0.36 μg / g body weight) administration group and the KS-13 High (high concentration 3.6 μg / g body weight) administration group, leukocytes ( The number of WBC), the number of red blood cells (RBC), the number of platelets (PLT), and the hemoglobin (HGB) values were within normal ranges, and it was revealed that there was no hepatotoxicity (see FIG. 16).
<実験例9-2>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与7日後の末梢血を用いて、シスメックス社 多項目自動血球計数装置 KX-21にて解析した。
 コントロール群(PBS投与)と比較して、KS-13 Low(低濃度0.36μg/g body weight)投与群およびKS-13 High(高濃度3.6μg/g body weight)投与群において、白血球(WBC)数、赤血球(RBC)数、血小板(PLT)数、ヘモグロビン(HGB)値は正常範囲内であり、血液毒性が無い事が明らかになった(図17参照)。
<Experimental Example 9-2>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood 7 days after administration, analysis was performed with Sysmex's multi-item automatic blood cell counter KX-21.
Compared with the control group (PBS administration), in the KS-13 Low (low concentration 0.36 μg / g body weight) administration group and the KS-13 High (high concentration 3.6 μg / g body weight) administration group, leukocytes ( The number of WBC), the number of red blood cells (RBC), the number of platelets (PLT), and the hemoglobin (HGB) were within normal ranges, and it was revealed that there was no hematologic toxicity (see FIG. 17).
<実験例9-3>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与7日後の末梢血血清を用いて、オリエンタル酵母工業株式会社の動物生化学検査(日立7180型自動分析装置)にて受託解析を行った。
 コントロール群(PBS投与)と比較して、KS-13 Low(低濃度0.36μg/g body weight)投与群およびKS-13 High(高濃度3.6μg/g body weight)投与群において、GOT(グルタミン酸オキサロ酢酸トランスアミナーゼ)(=AST)値、GPT(グルタミン酸ピルビン酸トランスアミナーゼ)(=ALT)値は正常範囲内であり、肝毒性が無い事が明らかになった。また尿素窒素(BUN)値、クレアチニン(CRE)値は正常範囲内であり、腎毒性が無い事が明らかになった(図18参照)。
<Experimental Example 9-3>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood serum 7 days after administration, commissioned analysis was performed by an animal biochemical test (Hitachi 7180 type automatic analyzer) of Oriental Yeast Co., Ltd.
Compared with the control group (PBS administration), in the KS-13 Low (low concentration 0.36 μg / g body weight) administration group and KS-13 High (high concentration 3.6 μg / g body weight) administration group, GOT ( Glutamate oxaloacetate transaminase (= AST) and GPT (glutamate pyruvate transaminase) (= ALT) values were within the normal range, and it was revealed that there was no hepatotoxicity. It was also revealed that urea nitrogen (BUN) value and creatinine (CRE) value were within normal ranges and there was no nephrotoxicity (see FIG. 18).
<実験例9-4>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与14日後の末梢血を用いて、シスメックス社 多項目自動血球計数装置 KX-21にて解析した。
 コントロール群(PBS投与)と比較して、KS-13(濃度3.6μg/g body weight)投与群において、白血球(WBC)数、赤血球(RBC)数、血小板(PLT)数、ヘモグロビン(HGB)値は正常範囲内であり、血液毒性が無い事が明らかになった(図19参照)。
<Experimental Example 9-4>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood 14 days after administration, analysis was performed with Sysmex's multi-item automatic blood cell counter KX-21.
Compared with the control group (PBS administration), in the KS-13 (concentration 3.6 μg / g body weight) administration group, the number of white blood cells (WBC), the number of red blood cells (RBC), the number of platelets (PLT), hemoglobin (HGB) The value was within the normal range, and it was revealed that there was no hematological toxicity (see FIG. 19).
<実験例9-5>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与28日後の末梢血を用いて、シスメックス社 多項目自動血球計数装置 KX-21にて解析した。
 コントロール群(PBS投与)と比較して、KS-13投与群(3.6μg/g body weigh)において、白血球(WBC)数、赤血球(RBC)数、血小板(PLT)数、ヘモグロビン(HGB)値は正常範囲内であり、血液毒性が無い事が明らかになった(図20参照)。
<Experimental Example 9-5>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood 28 days after administration, analysis was performed using a Sysmex multi-item automatic blood cell counter KX-21.
Compared with the control group (PBS administration), in the KS-13 administration group (3.6 μg / g body weight), the white blood cell (WBC) count, red blood cell (RBC) count, platelet (PLT) count, hemoglobin (HGB) level Was within the normal range and was found to have no hematologic toxicity (see FIG. 20).
<実験例9-6>
 KS-13のin vivoにおける毒性を確認する為に、ICRマウスへKS-13の単回投与実験を行った。投与28日後の末梢血血清を用いて、オリエンタル酵母工業株式会社の動物生化学検査(日立7180型自動分析装置)にて受託解析を行った。
 コントロール群(PBS投与)と比較して、KS-13投与群において、GOT(グルタミン酸オキサロ酢酸トランスアミナーゼ)(=AST)値、GPT(グルタミン酸ピルビン酸トランスアミナーゼ)(=ALT)値は正常範囲内であり、肝毒性が無い事が明らかになった。また尿素窒素(BUN)値、クレアチニン(CRE)値は正常範囲内であり、腎毒性が無い事が明らかになった(図21参照)。
<Experimental Example 9-6>
To confirm the in vivo toxicity of KS-13, a single dose experiment of KS-13 was performed on ICR mice. Using peripheral blood serum 28 days after administration, commissioned analysis was performed by an animal biochemical test (Hitachi 7180 type automatic analyzer) of Oriental Yeast Co., Ltd.
Compared with the control group (PBS administration), in the KS-13 administration group, GOT (glutamate oxaloacetate transaminase) (= AST) value, GPT (glutamate pyruvate transaminase) (= ALT) value is within the normal range, It became clear that there was no liver toxicity. In addition, urea nitrogen (BUN) value and creatinine (CRE) value were within the normal range, and it was revealed that there was no nephrotoxicity (see FIG. 21).
 以上の実験例1~9により、KS-13(配列番号1に示すアミノ酸配列を有するペプチド)は、白血病細胞株・前立腺癌細胞株の増殖を抑制すること、白血病細胞株・乳癌細胞株・前立腺細胞株のCyclinD1遺伝子発現を抑制すること、CyclinD1遺伝子発現領域に直接作用しないこと、K562白血病細胞株では分子標的が2つあること、単回投与で毒性を認めないこと、が確認された。 From the above Experimental Examples 1 to 9, KS-13 (a peptide having the amino acid sequence shown in SEQ ID NO: 1) suppresses the growth of leukemia cell line / prostate cancer cell line, leukemia cell line / breast cancer cell line / prostate It was confirmed that the CyclinD1 gene expression of the cell line was suppressed, that it did not act directly on the CyclinD1 gene expression region, that there were two molecular targets in the K562 leukemia cell line, and that no toxicity was observed after a single administration.
7.ヒト血液癌モデルの治療におけるKS-13の効果
<実験例10(実施例2)>
 マウスのヒト血液癌モデルの治療におけるKS-13(配列番号1に示すアミノ酸配列を有するペプチド)の効果を以下のように確認した。
(1)材料と方法
 非肥満性糖尿病マウス(NODマウス)に2×10細胞のヒト骨髄性白血病細胞株(Kasumi)を静脈から移入する。細胞を移入した1日後に、(1)PBS、(2)5FU(抗癌剤)、(3)5FU+72μgのKS-13、(4)72μgのKS-13を静脈内投与した。マウスの生存を1週間ごとに観察した。グラフに1週間ごとの生存率をプロットした(図22参照)。死亡したマウスをさらに解析するために4%のホルムアルデヒドで固定した。
7). Effect of KS-13 in treatment of human blood cancer model <Experimental Example 10 (Example 2)>
The effect of KS-13 (a peptide having the amino acid sequence shown in SEQ ID NO: 1) in the treatment of a mouse human blood cancer model was confirmed as follows.
(1) Materials and Methods Non-obese diabetic mice (NOD mice) are transferred intravenously with 2 × 10 7 human myeloid leukemia cell line (Kasumi). One day after the cells were transferred, (1) PBS, (2) 5FU (anticancer agent), (3) 5FU + 72 μg KS-13, and (4) 72 μg KS-13 were intravenously administered. The survival of the mice was observed every week. The survival rate for each week was plotted on the graph (see FIG. 22). Dead mice were fixed with 4% formaldehyde for further analysis.
(2)結果
 図22に示すように、38週目には、PBSを投与したマウスは全て死亡した。一方、KS-13を投与したマウスは41週目まで100%生存していた。このように、Kasumi白血病細胞株を用いた担癌マウスを作製し、KS-13単回投与による制癌効果を評価したところ、明らかな延命効果が認められた。
(2) Results As shown in FIG. 22, at the 38th week, all mice administered with PBS died. On the other hand, mice administered KS-13 were 100% alive until the 41st week. Thus, when a tumor-bearing mouse using the Kasumi leukemia cell line was prepared and the anticancer effect of a single administration of KS-13 was evaluated, a clear life-prolonging effect was observed.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2013年2月21日付けで出願された米国仮出願(61/767,322号)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. In addition, this application is based on the US provisional application (61 / 767,322) for which it applied on February 21, 2013, The whole is used by reference.
 本発明は、1)新規医薬品として癌患者の延命に貢献できる;2)新規医薬品の標的分子同定に貢献できる;3)研究用試薬としてライフサイエンスに貢献できるものとして、高い技術的意義を有する。 DETAILED DESCRIPTION OF THE INVENTION The present invention has high technical significance as 1) can contribute to the survival of cancer patients as a new drug; 2) can contribute to target molecule identification of a new drug; 3) can contribute to life science as a research reagent.

Claims (6)

  1.  有効成分として、(A)または(B)のペプチドを含むCyclin D1遺伝子発現抑制剤。
    (A)配列番号1に示すアミノ酸配列を有するペプチド
    (B)配列番号1に示すアミノ酸配列において、少なくとも1個のアミノ酸残基が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチド。
    Figure JPOXMLDOC01-appb-C000001
    A Cyclin D1 gene expression inhibitor comprising the peptide (A) or (B) as an active ingredient.
    (A) A peptide having the amino acid sequence shown in SEQ ID NO: 1 (B) A peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, wherein the Cyclin D1 gene Peptide having expression inhibitory action.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記(B)のペプチドが、配列番号2に示すアミノ酸配列を有するペプチドである、請求項1記載のCyclin D1遺伝子発現抑制剤。
    Figure JPOXMLDOC01-appb-C000002
    The Cyclin D1 gene expression inhibitor according to claim 1, wherein the peptide of (B) is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
    Figure JPOXMLDOC01-appb-C000002
  3.  前記(B)のペプチドが、配列番号3~配列番号10から選択されるいずれか1のアミノ酸配列を有するペプチドである、請求項1記載のCyclin D1遺伝子発現抑制剤。
    Figure JPOXMLDOC01-appb-C000003
    The Cyclin D1 gene expression inhibitor according to claim 1, wherein the peptide of (B) is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
    Figure JPOXMLDOC01-appb-C000003
  4.  有効成分として、(A)または(B)のペプチドを含む抗腫瘍剤。
    (A)配列番号1に示すアミノ酸配列を有するペプチド
    (B)配列番号1に示すアミノ酸配列において、少なくとも1個のアミノ酸残基が欠失、置換または付加してなるペプチドであって、Cyclin D1遺伝子発現抑制作用を有するペプチド。
    Figure JPOXMLDOC01-appb-C000004
    An antitumor agent comprising the peptide (A) or (B) as an active ingredient.
    (A) A peptide having the amino acid sequence shown in SEQ ID NO: 1 (B) A peptide obtained by deleting, substituting, or adding at least one amino acid residue in the amino acid sequence shown in SEQ ID NO: 1, wherein the Cyclin D1 gene Peptide having expression inhibitory action.
    Figure JPOXMLDOC01-appb-C000004
  5.  前記(B)のペプチドが、配列番号2に示すアミノ酸配列を有するペプチドである、請求項4記載の抗腫瘍剤。
    Figure JPOXMLDOC01-appb-C000005
    The antitumor agent according to claim 4, wherein the peptide of (B) is a peptide having the amino acid sequence shown in SEQ ID NO: 2.
    Figure JPOXMLDOC01-appb-C000005
  6.  前記(B)のペプチドが、配列番号3~配列番号10から選択されるいずれか1のアミノ酸配列を有するペプチドである、請求項4記載の抗腫瘍剤。
    Figure JPOXMLDOC01-appb-C000006
    The antitumor agent according to claim 4, wherein the peptide of (B) is a peptide having any one amino acid sequence selected from SEQ ID NO: 3 to SEQ ID NO: 10.
    Figure JPOXMLDOC01-appb-C000006
PCT/JP2014/054196 2013-02-21 2014-02-21 Cyclin D1 GENE EXPRESSION INHIBITOR AND ANTICANCER DRUG WO2014129590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361767322P 2013-02-21 2013-02-21
US61/767,322 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129590A1 true WO2014129590A1 (en) 2014-08-28

Family

ID=51391370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054196 WO2014129590A1 (en) 2013-02-21 2014-02-21 Cyclin D1 GENE EXPRESSION INHIBITOR AND ANTICANCER DRUG

Country Status (1)

Country Link
WO (1) WO2014129590A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056833A1 (en) * 2006-11-10 2008-05-15 Livtech Inc. ANTI-HUMAN Dlk-1 ANTIBODY SHOWING ANTI-TUMOR ACTIVITY IN VIVO
WO2011040500A1 (en) * 2009-09-29 2011-04-07 国立大学法人九州大学 Peptide inhibiting differentiation of hematopoietic stem cells or hematopoietic precursor cells and use of same
JP2012513775A (en) * 2010-03-16 2012-06-21 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー Composition for inhibiting cancer metastasis comprising DLK1-Fc fusion protein as an active ingredient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056833A1 (en) * 2006-11-10 2008-05-15 Livtech Inc. ANTI-HUMAN Dlk-1 ANTIBODY SHOWING ANTI-TUMOR ACTIVITY IN VIVO
WO2011040500A1 (en) * 2009-09-29 2011-04-07 国立大学法人九州大学 Peptide inhibiting differentiation of hematopoietic stem cells or hematopoietic precursor cells and use of same
JP2012513775A (en) * 2010-03-16 2012-06-21 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー Composition for inhibiting cancer metastasis comprising DLK1-Fc fusion protein as an active ingredient

Similar Documents

Publication Publication Date Title
Coogan et al. Toxicity and carcinogenicity of nickel compounds
US10105420B2 (en) Methods, compositions and screens for therapeutics for the treatment of synovial sarcoma
KR101604799B1 (en) Methods of protecting against apoptosis using lipopeptides
US7335641B2 (en) Method for stimulating hair follicle cell proliferation
US20150344526A1 (en) Biologically active complex and its preparation
AU2019207534B2 (en) Proteinaceous molecules and uses therefor
EP1967526B1 (en) Inhibitor of TGF-ß activation reaction
Nelson et al. AKT regulates BRCA1 stability in response to hormone signaling
Pia Pescarolo et al. A retro‐inverso peptide homologous to helix 1 of c‐Myc is a potent and specific inhibitor of proliferation in different cellular systems
US20110166079A1 (en) Methods of treating cancer with apoe peptides
CN114026114A (en) BNIP3 peptide for treating reperfusion injury
JP2008509882A (en) Cancer treatment
JP2024038022A (en) Improved anti-aging compounds and their use for cancer treatment
Nakae et al. CD70 antibody-drug conjugate as a potential therapeutic agent for uterine leiomyosarcoma
WO2014129590A1 (en) Cyclin D1 GENE EXPRESSION INHIBITOR AND ANTICANCER DRUG
KR102033920B1 (en) How to treat acute myeloid leukemia
US10925933B2 (en) Method of preventing rheumatoid arthritis comprising administering polynucleotide encoding SSU72
CN113382742A (en) Engineered flagellin-derived compositions and uses
US20080004355A1 (en) Method for Inhibiting Telomerase Activity and an Agent for Inhibiting the Same
US20240117005A1 (en) Novel bicyclic peptides
WO2022244757A1 (en) Pharmaceutical composition for treating or preventing disorder associated with administration of anticancer agent
WO2023081270A1 (en) Compositions and methods for treating cancer via ptp1b inhibition
KR20240032195A (en) KDIP-6 Peptide interfering a dimerization of KITENIN and use thereof
JP2021534826A (en) Peptide therapeutics and their use for the treatment of cancer
JPH09208486A (en) Cytotoxic material having partial structure of serum albumin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP