WO2014126254A1 - Membrane-binding protein expression vector - Google Patents

Membrane-binding protein expression vector Download PDF

Info

Publication number
WO2014126254A1
WO2014126254A1 PCT/JP2014/053730 JP2014053730W WO2014126254A1 WO 2014126254 A1 WO2014126254 A1 WO 2014126254A1 JP 2014053730 W JP2014053730 W JP 2014053730W WO 2014126254 A1 WO2014126254 A1 WO 2014126254A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
cell
target protein
membrane
antibody
Prior art date
Application number
PCT/JP2014/053730
Other languages
French (fr)
Japanese (ja)
Inventor
恵 黒川
恵奈 山口
梨沙 小川
正義 塚原
洋子 林
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2014126254A1 publication Critical patent/WO2014126254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/44Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/44Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor
    • C12N2840/445Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor for trans-splicing, e.g. polypyrimidine tract, branch point splicing

Definitions

  • the present invention provides a target protein expression vector, target protein, or target protein capable of simultaneously expressing a target protein and a target protein fused with a membrane-binding domain or a fragment of the target protein using one gene.
  • the present invention relates to a method for screening a cell that expresses a fragment, a cell that highly produces a target protein, a method for producing a cell that highly produces a target protein, and a method for producing the target protein using the cell.
  • Non-patent Document 1 In the production of protein drugs such as cytokines, growth factors, hormones, and antibodies using mammalian cells as hosts, it is important to select and screen high-producing cells simply and rapidly for shortening the drug development period.
  • conventional selection of target protein producing cells has the following three problems. (1) Disagreement between cells with drug resistance phenotype and cells expressing the target protein Currently, cells producing the target protein have host cells with the drug resistance marker gene incorporated in the same expression vector as the target protein or in another expression vector. As a result, the cells are indirectly screened by selecting cells having a drug-resistant phenotype (Non-patent Document 1).
  • the expression of the drug resistance gene does not necessarily match the expression of the target protein. That is, a cell exhibiting a drug resistance trait does not always express the target protein at a high level. Therefore, select a cell population based on drug resistance traits, and measure the amount of the target protein directly using the enzyme-linked immuno-sorbent assay (ELISA) method for cells that highly express the target protein. Thus, the protein producing cells must be rescreened (Non-patent Document 2). Since cell selection is performed in a process with two or more steps, screening time and labor are required.
  • the expressed drug resistance marker protein is an impurity protein that is unnecessary in the production of the target protein. That is, when the target protein is used as a pharmaceutical, it is necessary to remove this drug resistance marker protein in the purification process. Furthermore, it has been reported that high expression of a drug resistance marker protein used for cell selection changes the metabolism of the host cell and conversely reduces the expression of the target protein (Non-patent Document 3). In addition, fluorescent proteins are generally used as marker proteins for cell selection, but are known to have cytotoxicity, and improvements to fluorescent proteins with low toxicity are being promoted (Patent Document 1).
  • SFACS fluorescence-activated cell sorter
  • flow cytometry flow cytometry
  • the cell sorter can select cells in the state of individual clones.
  • cell selection marker genes examples include green fluorescent protein and red fluorescent protein (Non-patent Document 4).
  • the expression of the fluorescent protein does not necessarily match the expression of the target protein. That is, as described in (1), cells that highly express the fluorescent protein do not necessarily express the target protein at a high level.
  • Patent Document 2 a method in which a target protein and a fluorescent protein are fused and expressed in the same gene cassette.
  • the activity and quality of the target protein may be affected.
  • it is not a practical protein production method because of concerns such as antigenicity.
  • IRES internal ribosome entry site
  • Patent Document 4 a method has been reported in which the target protein is expressed on the cell membrane of the production cell and the expression level of the target protein is directly detected using a cell sorter.
  • a protein expression vector in which a polypeptide for cell membrane binding is arranged immediately downstream of the stop codon of the target protein is introduced into a host cell, and the protein is translated by treating the cell with an aminoglycoside antibiotic.
  • the target protein expressed on the cell membrane can be expressed by reducing the recognition of the termination codon by the translation initiation factor complex (read-through). Is detected with a cell sorter, and it is reported that cells expressing the target protein can be selected.
  • a target protein expression vector for efficiently and mass-producing a protein composition and safely manufacturing a protein drug, a cell into which the expression vector is introduced, and a method for producing the target protein using the cell .
  • the present invention relates to the following (1) to (13).
  • a target protein expression vector comprising a DNA sequence encoding a target protein including a splicing donor sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order.
  • An expression vector for the protein of interest in order.
  • mRNA messenger RNA
  • B A cell in which at least 1 ⁇ 10 3 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
  • a screening method for cells that produce a target protein in a high amount comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to (3) or (4).
  • a method for producing the cell according to (3) or (4) comprising the steps of culturing the cell according to (3) or (4), accumulating the target protein in a culture solution, and purifying the target protein from the cell culture solution.
  • Simultaneous expression of both the target protein and the target protein or a protein in which the target protein fragment and the transmembrane region are fused including the step of introducing the target protein expression vector described in (1) into a host cell How to make.
  • a A cell in which messenger RNA (mRNA) encoding a protein in which a target protein or a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 5% of the total mRNA of the target protein.
  • mRNA messenger RNA
  • a cell in which mRNA encoding a target protein or a protein in which a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 2% of the total mRNA of the target protein.
  • a cell in which 1 ⁇ 10 3 to 1 ⁇ 10 7 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
  • a screening method for cells that produce a target protein in a high amount comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to (9) or (10).
  • (12) A method for producing the cell according to (9) or (10).
  • (13) A method for producing a target protein comprising the steps of culturing the cell according to (9) or (10), accumulating the target protein in a culture solution, and purifying the target protein from the cell culture solution.
  • an expression vector for a target protein that can simultaneously express a target protein and a protein in which the target protein or a fragment of the target protein and a transmembrane region are fused using one gene, It is possible to provide a method for screening cells to be expressed, a cell that produces a target protein at a high level, a method for producing a cell that produces a target protein at a high level, and a method for producing the target protein using the cell.
  • FIG. 2 shows a schematic diagram of a human antibody expression vector pINC_OX40L / CD98H vector containing DNA fragments encoding the anti-human OX40 antibody L chain and the anti-human CD98 / LAT1 antibody H chain.
  • CMV is the CMV promoter
  • Poly A is the BGH polyadenylation site
  • Hc is the anti-human CD98 / LAT1 complex antibody heavy chain
  • Lc is the anti-human OX40 antibody light chain
  • SV is the SV40 polyadenylation site.
  • CHX-r represents a cycloheximide resistance gene, respectively.
  • DNA fragment encoding anti-human CD98 / LAT1 antibody H chain including anti-human OX40 antibody L chain, splicing donor (SD) sequence, first bovine growth factor (BGH) polyadenylation signal sequence, polypyrimidine sequence Of the secreted human antibody and membrane-bound human antibody expression vector pINC_TMSP_AC27, including DNA sequences encoding (poly-Pyr), splicing acceptor (SA) sequence, platelet ⁇ derived growth factor receptor (PDGFR) transmembrane region (PDGFRtm) A schematic diagram is shown.
  • CMV is the CMV promoter
  • Poly A is the BGH polyadenylation site
  • Hc is the anti-human CD98 / LAT1 complex antibody heavy chain
  • Lc is the anti-human OX40 antibody light chain
  • SV is the SV40 polyadenylation site.
  • CHX-r represents a cycloheximide resistance gene
  • TM represents PDGFRtm.
  • pINC_TMSP_AC27 the downstream of the platelet derived growth factor receptor membrane region (PDGFRtm) from the DNA fragment (Hc) encoding the H chain of the CD98 / LAT1 antibody.
  • Hc is the anti-human CD98 / LAT1 complex antibody heavy chain
  • SD is the splicing donor sequence
  • polyA is the BGH polyadenylation signal sequence
  • T / C25 is the 25-base polypyrimidine sequence consisting of thymine and cytosine.
  • SA represents a splicing acceptor sequence
  • TM represents PDGFRtm.
  • Including anti-human OX40 antibody L chain DNA fragment encoding anti-human CD98 / LAT1 antibody H chain containing SD sequence, 1st BGH-polyA sequence, poly-Pyr sequence, SA sequence, including DNA sequence encoding PDGFRtm,
  • CMV is the CMV promoter
  • Poly A is the BGH polyadenylation site
  • Hc is the anti-human CD98 / LAT1 complex antibody heavy chain
  • Lc is the anti-human OX40 antibody light chain
  • SV is the SV40 polyadenylation site.
  • CHX-r represents a cycloheximide resistance gene
  • TM represents PDGFRtm
  • Tol2-L represents a left-end Tol2 transposon
  • Tol2-R represents a right-end Tol2 transposon.
  • the correlation between the antibody concentration of the secretory antibody (mg / L) and the fluorescence intensity when stained with a PE-conjugated anti-human IgG mouse antibody when CHO-K1 cells transformed with the pINC_TMSP_AC27 vector are cultured is shown.
  • the vertical axis represents the fluorescence intensity (FI)
  • the horizontal axis represents the antibody concentration (mg / L) of the culture supernatant.
  • A The gate diagram developed by forward scatter (FS) and side scatter (SS) in flow cytometer (FCM) analysis is shown.
  • B Fluorescence intensity due to binding of PE-conjugated anti-human mouse antibody is shown on the horizontal axis, and the number of counts on the vertical axis. The horizontal line represents the 0.1% fraction of the total count.
  • the analysis result of the antibody H chain mRNA expression level of the CHO-K1 cell into which the secreted / membrane-bound human antibody-expressing Tol2 transposon vector AC10 / TnPMug, AC17 / TnPMug, or AC27 / TnPMug vector was introduced is shown.
  • A shows the mRNA expression level of the membrane-bound human antibody H chain in each cell when the expression in the cell into which the AC10 / TnPMug vector is introduced is 1.
  • (C) shows the ratio (%) of the mRNA expression level of the membrane-bound human antibody H chain in the mRNA expression level of all antibody H chains.
  • a schematic diagram of a membrane-bound Fab fragment encoded by a membrane-bound Fab fragment expression vector is shown.
  • VH is the heavy chain variable region
  • CH1-3 is the heavy chain constant region
  • SD is the region corresponding to the splicing donor sequence
  • SA is the region corresponding to the splicing acceptor sequence
  • PDGFRtm is the platelet derived growth factor
  • Each of the receptor (PDGFR) transmembrane regions is shown.
  • a protein in which a target protein and a transmembrane region are fused is defined as a membrane-bound protein.
  • a protein in which a fragment of a target protein and a transmembrane region are fused is defined as a fragment of a membrane-bound protein.
  • the DNA sequence consists of adenine, thymine, guanine and cytosine bases and is abbreviated as A, T, G and C, respectively.
  • the RNA sequence consists of adenine, uracil, guanine and cytosine bases and is abbreviated as A, U, G and C, respectively.
  • the expression vector means a DNA in which exogenous DNA is incorporated and can increase in the introduced host cell, and may be simply described as a vector.
  • the vector includes a nucleic acid sequence having a gene expression control region necessary for expressing foreign DNA and a sequence encoding a target protein. Examples of the gene expression control region include enhancers, promoters, and terminators.
  • splicing refers to a splicing donor sequence (abbreviated as SD), a branch site (branch site), and a splicing acceptor sequence (splicing acceptor sequence) present in a messenger ⁇ RNA (mRNA) precursor (pre-mRNA).
  • SD splicing donor sequence
  • branch site branch site
  • splicing acceptor sequence messenger ⁇ RNA (mRNA) precursor
  • pre-mRNA messenger ⁇ RNA
  • SA refers to a reaction in which an intron is excluded from an exon by a cleavage-binding reaction by a spliceosome reaction that is a complex of RNA and protein.
  • Examples of the expression vector of the present invention include an expression vector containing a DNA sequence encoding a target protein and a DNA sequence encoding a transmembrane region, which are cis-actuated on one gene.
  • a protein membrane-bound protein or membrane-bound protein fragment
  • mRNA messenger RNA
  • the expression vector of the present invention include an expression vector comprising a DNA sequence encoding a target protein including a splicing donor sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order. . More specifically, such an expression vector of the present invention, more specifically, a DNA encoding a target protein containing a splicing donor sequence present at the 5 ′ end of a stop codon (TAG, TAA or TGA) of the DNA sequence encoding the protein. An expression vector comprising a DNA sequence encoding a sequence, a polypyrimidine sequence, a splicing acceptor sequence and a transmembrane region.
  • the splicing donor sequence may be a naturally occurring sequence or an artificially inserted sequence.
  • artificial splicing is performed by designing the codon of the amino acid sequence encoded by the inserted splicing donor sequence and the codon of the target protein to match.
  • Donor sequences can be inserted into expression vectors.
  • the expression vector of the present invention includes a DNA sequence encoding a protein containing a splicing donor sequence, a first polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order. Also included are expression vectors. Further, the expression vector of the present invention includes a DNA sequence encoding a protein containing a splicing donor sequence, a first polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence, a DNA sequence encoding a transmembrane region, and a second sequence. An expression vector containing a polyadenylation signal sequence in order is mentioned.
  • the expression vector of the present invention includes a DNA sequence encoding a polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence and a transmembrane region on the 3 ′ end side of a DNA sequence encoding a protein containing a splicing donor sequence. And an expression vector containing.
  • the expression vector when animal cells are used as a host, any of those capable of functioning in animal cells can be used. For example, pcDNAI, pCDM8 (manufactured by Funakoshi), pAGE107 [JP-A-3-22979].
  • CMV cytomegalovirus
  • SV40 early promoter SV40 early promoter
  • retrovirus promoter metallothionein promoter
  • heat shock promoter SR ⁇ promoter
  • moloney murine leukemia virus promoter And enhancers moloney murine leukemia virus promoter And enhancers.
  • an IE gene enhancer of human CMV may be used together with a promoter.
  • the expression vector of the present invention When the expression vector of the present invention is introduced into a cell, it generates a mature mRNA encoding a membrane-bound protein or the membrane-bound protein fragment by a splicing reaction simultaneously with the generation of a mature mRNA encoding the protein. Can do.
  • the splicing donor sequence may be any of a sequence that exists in nature and is known to function as a splicing donor sequence, and an artificially created splicing donor sequence, such as M (A / G / T) GGT (A / G) (A / T) (A / G) (A / T) -containing sequence (M is A or C), preferably GTA (A / T) GT-containing sequence, Examples include sequences containing GTATGT and sequences containing M (A / G) GGT (A / G) A (A / G) T (M is A or C) (US Pat. No. 6,642,028).
  • the splicing donor sequence includes a sequence containing CAGGTAAGT (SEQ ID NO: 1), a sequence containing GACGTAAGT (SEQ ID NO: 2) (Lucas et al., Nucleic Acids Research, 24, 1774-1779, 1996.), CGGGTAAAT And a sequence containing (SEQ ID NO: 3).
  • the homology with the above consensus sequence is 80% or more, 90% or more, 95% or more, and A splicing donor sequence that causes a splicing reaction can also be used in the present invention.
  • the immunoglobulin constant region includes a sequence containing a naturally occurring splicing donor sequence, and the immunoglobulin constant region can also be applied as a splicing donor.
  • examples of the splicing acceptor sequence include a sequence containing N (C / T) AGG (N may be any nucleotide).
  • Specific examples of the splicing acceptor sequence include a sequence containing CAGAA (SEQ ID NO: 4) and a sequence containing GCAGG (SEQ ID NO: 5).
  • the splicing acceptor sequence may function even if the sequence is slightly different from the above consensus sequence, the homology with the above consensus sequence is 80% or more, 90% or more, 95% or more, A splicing acceptor sequence that causes a splicing reaction can also be used in the present invention.
  • a branch site exists between the splicing donor sequence and the splicing acceptor sequence.
  • branch site examples include a sequence containing (C / T) N (C / T) T (A / G) A (C / T) (N may be any nucleotide), and 3 'of the splicing donor sequence. Exists on the side. Specific examples include sequences including CATTAACT, TCCTAAT, and the like.
  • a polypyrimidine sequence (hereinafter sometimes abbreviated as Poly-Pyr) is a sequence in which bases consisting of C and / or T, which are pyrimidine bases, are continuous between the splicing donor sequence and the branch site. To do.
  • the number of consecutive pyrimidine bases in the polypyrimidine sequence in the present invention may be 8 bases or more, but preferably 8-30 bases, 9-30 bases, 10-30 bases, 11-30 bases, 12 Examples include lengths of -30 bases, 13-30 bases, 15-30 bases, more preferably 15-29 bases, 15-28 bases, 15-27 bases, 15-26 bases and 15-25 bases.
  • Specific examples of the Poly-Pyr sequence include the nucleotide sequences represented by SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.
  • the polypyrimidine sequence is present between the splicing donor sequence and the splicing acceptor sequence and between the polyadenylation sequence and the splicing acceptor sequence.
  • the expression vector of the present invention includes a first polyadenylation signal sequence and a second polyadenylation signal sequence
  • the polypyrimidine sequence is present between the first polyadenylation signal sequence and the splicing acceptor sequence.
  • the membrane-bound type produced by splicing after the mRNA encoding the target protein transcribed from the introduced vector Both the protein and the mRNA encoding the membrane-bound protein fragment are simultaneously expressed, and both the secreted protein and the membrane-bound protein or the membrane-bound protein fragment are expressed.
  • the sP / mP ratio can be controlled. Specifically, when the poly-Pyr sequence is shortened, the splicing reaction efficiency decreases, and when the poly-Pyr sequence is lengthened, the splicing reaction efficiency increases.
  • an amino acid sequence derived from any protein can be used as the transmembrane region as long as the protein penetrates the cell membrane or is anchored to the cell membrane.
  • the transmembrane region used in the present invention may be any of 1 to 12 transmembrane membrane proteins or GPI anchor proteins (European Patent Publication No. 1716233), such as a cell membrane ligand (or precursor ligand), Examples include a transmembrane region derived from a membrane protein selected from a cell membrane receptor, a T cell receptor, an adhesion molecule, a major histocompatibility complex (MHC), a membrane immunoglobulin and a GPI anchor protein.
  • MHC major histocompatibility complex
  • Cell membrane ligands include epidermal growth factor (EGF) ligand family, EGF, transforming growth factor- ⁇ (TGF- ⁇ ), amphiregulin, betacellulin, epiregulin, heparin-binding epidermal growth factor-like growth factor (HB-EGF ), Transmembrane regions such as NTAK, vascular endothelial growth factor (VEGF) and heregulin (neuregulin), FAS ligand, TRAIL ligand.
  • EGF epidermal growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • amphiregulin betacellulin
  • betacellulin epiregulin
  • HB-EGF heparin-binding epidermal growth factor-like growth factor
  • NTAK vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • neutral protein TRAIL
  • Cell membrane receptors include EGF receptor (EGFR), insulin-like growth factor receptor I (IGF-IR), hepatocyte growth factor receptor (HGFR, cMet), platelet derived growth factor receptor (PDGFR), vascular endothelial growth Transmembrane regions such as VEGFR), amino acid transporters, tetraspanin-type proteins, G-protein coupled receptors (GPCR), and Cluster of differentiation (CD) antigens.
  • EGF receptor EGF receptor
  • IGF-IR insulin-like growth factor receptor I
  • HGFR hepatocyte growth factor receptor
  • cMet hepatocyte growth factor receptor
  • PDGFR platelet derived growth factor receptor
  • VEGFR vascular endothelial growth Transmembrane regions
  • amino acid transporters amino acid transporters
  • tetraspanin-type proteins tetraspanin-type proteins
  • GPCR G-protein coupled receptors
  • CD Cluster of differentiation
  • MHC examples include MHC class I and class II transmembrane regions.
  • Membrane immunoglobulins include transmembrane regions of membrane-bound IgM, IgD, IgG, IgE and IgA antibodies (Peterson et al., PNAS, 83, 8883-8887, 1986, Rebecca et al., 32, 277-285, 1995, Tsurushita and Korn et al., Mol. Cell Biol., 1987, 7, 2602-2605).
  • the transmembrane region of the present invention include the PDGFR transmembrane region.
  • the DNA encoding the transmembrane region include a DNA comprising the base sequence represented by SEQ ID NO: 12.
  • the polyadenylation signal (hereinafter abbreviated as polyA) may be any polyadenylation signal as long as it contains an AATAAA consensus sequence and can be polyadenylated, and specifically, siman virus 40 (SV40) late polyadenylation signal (Scheck et al., Mol.
  • the same sequence may be used, or two different types of poly A signals may be used.
  • the DNA encoding the target protein in the present invention is a DNA sequence encoding the amino acid sequence of the full-length protein or a partial fragment of the protein, and starting from the start codon (ATG) to the stop codon (TAA, TAG or TGA) Say.
  • a full-length protein or a partial fragment of the protein may be a functional protein or a simple structural protein.
  • a DNA encoding a protein containing a splicing donor sequence is a DNA sequence encoding a target protein containing a splicing donor sequence that exists in nature in the DNA sequence encoding the amino acid sequence of the target protein.
  • Examples of the DNA sequence encoding the target protein include a splicing donor sequence artificially inserted in the DNA sequence encoding the amino acid sequence, and any of them may be used.
  • a DNA sequence encoding a target protein including a splicing donor a DNA sequence having a splicing donor sequence at the 5 ′ end side of the stop codon of the full length or partial fragment of the target protein to be expressed, and a purpose to be expressed Examples thereof include a DNA sequence in which a splicing donor sequence is artificially inserted at the 5 ′ end side of the stop codon of the full-length protein or a partial fragment.
  • the codon of the DNA sequence into which the SD sequence is inserted matches the codon encoding the amino acid sequence of the target protein, and the codon of the DNA sequence generated as a result of the splicing reaction is a membrane.
  • the splicing donor sequence so as to match the codon of the amino acid sequence of the bound protein, a vector that simultaneously expresses the target protein and the membrane-bound protein or a fragment of the membrane-bound protein can be prepared.
  • an immunoglobulin fragment when expressed as a membrane-bound protein fragment, it can be carried out by introducing a splicing donor sequence into the antibody constant region.
  • the antibody constant region may be any of a CH1 domain, a hinge domain, a CH2 domain, and a CH3 domain, and preferred examples include insertion of a splicing donor sequence into the CH2 domain.
  • a secretory antibody and a Fab fragment spliced with the CH2 domain and fused to the transmembrane region are expressed on the cell membrane of the cell into which the vector has been introduced. be able to.
  • the codon encoding the 51st glycine of the IgG2 antibody CH2 domain was replaced from GGC to GGT, and the codon encoding the 6th glycine of the IgG2 antibody CH2 domain was replaced from GGG to GGT SD sequence in which the codon encoding the 86th glycine of the CH2 domain of IgG1 antibody is replaced from GGC to GGT, and the codon encoding the 48th tyrosine of the CH2 domain of IgG1 antibody is changed from TAC to TAT.
  • Examples include substituted SD sequences.
  • the splicing donor sequence may be naturally occurring in an immunoglobulin constant region or an artificial sequence, depending on the target protein to be expressed and the membrane-bound protein or the membrane-bound protein fragment. In addition, it may be designed by inserting it at any position as long as it is at the 5 ′ end side of the stop codon in the target protein.
  • the protein in the present invention refers to a protein produced using the above-described expression vector.
  • the protein composition refers to a composition containing protein molecules produced and purified by the protein production method of the present invention.
  • a protein composition includes a protein composition that includes two or more different variations of post-translational modifications.
  • Protein post-translational modifications include SS-linked cross-linking of amino acid side chains, glycosylation (N-linked sugar chains, O-linked sugar chains), phosphorylation, sulfation, methylation, myristoylation, and peptide chain specificity
  • the protein composition in the present invention is a composition containing any degree of post-translational modification protein as long as it is a modified protein variation within a range acceptable as a protein pharmaceutical obtained by the protein production method of the present invention. Also good.
  • the target protein may be any protein as long as it can be expressed as a membrane-bound protein and protein using the expression vector of the present invention.
  • examples include human serum proteins, albumin binding proteins, peptide hormones, growth factors, cytokines, blood clotting factors, fibrinolytic proteins, antibodies, membrane proteins, and partial fragments of various proteins.
  • human intravenous immunoglobulin IVIG
  • EPO erythropoietin
  • albumin growth hormone
  • FSH follicle stimulating hormone
  • HGF hepatocyte growth factor
  • IFN interferon
  • Fas ligand blood coagulation factor
  • II, VII, VIII, IX, X prothrombin
  • fibrinogen protein C
  • protein S protein S
  • antithrombin III tissue plasminol
  • tissue plasminol examples include a gene activator (tPA), a monoclonal antibody, an oligoclonal antibody, and a polyclonal antibody.
  • Examples of the monoclonal antibody in the present invention include monoclonal antibodies and gene recombinant antibodies produced from hybridomas.
  • Examples of the recombinant antibody include a chimeric antibody, a humanized antibody [also referred to as a complementarity determining region (CDR) transplanted antibody], a human antibody, and the like.
  • the monoclonal antibody in the present invention is an antibody secreted by antibody-producing cells of a single clone, recognizes only one epitope (also called an antigenic determinant), and has a uniform amino acid sequence (primary structure) constituting the monoclonal antibody. It is.
  • Oligoclonal antibodies and polyclonal antibodies are antibody mixtures containing two or more monoclonal antibodies.
  • Antibody molecules are also called immunoglobulins (hereinafter referred to as Ig), and human antibodies are classified into IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM isotypes according to the difference in molecular structure. Is done. IgG1, IgG2, IgG3, and IgG4 having relatively high amino acid sequence homology are collectively referred to as IgG.
  • Antibody molecules are composed of polypeptides called heavy chains (hereinafter referred to as H chains) and light chains (hereinafter referred to as L chains).
  • the H chain is the H chain variable region (also referred to as VH) and the H chain constant region (also referred to as CH) from the N terminal side
  • the L chain is also expressed as the L chain variable region (VL) from the N terminal side.
  • L chain constant region also referred to as CL.
  • CH H chain variable region
  • CH H chain constant region
  • CL L chain constant region
  • ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chains are known for each subclass.
  • CH is further composed of each domain of the CH1 domain, hinge domain, CH2 domain, and CH3 domain from the N-terminal side.
  • a domain refers to a functional structural unit constituting each polypeptide of an antibody molecule.
  • the CH2 domain and the CH3 domain are collectively referred to as Fc region or simply Fc.
  • C ⁇ chain and C ⁇ chain are known.
  • examples of the fusion protein in the present invention include those obtained by fusing different protein fragments with an appropriate linker or the like.
  • an Fc fusion protein also referred to as an immunoadhesin
  • an Fc fusion protein in which multiple Fc regions are fused an Fc fusion protein in which multiple Fc regions are fused
  • GST glutathioneathS-transferase
  • FLAG fusion protein FLAG fusion protein
  • Histidine tag fusion protein green fluorescence protein (GFP) fusion protein and the like
  • GFP green fluorescence protein
  • Fc region Fc variant
  • Fc variant containing an amino acid residue modification that has been modified to enhance or lack the effector activity of the antibody, stabilize the antibody, and control the blood half-life. It can be used for an antibody expressed by the expression vector of the invention.
  • examples of the protein in the present invention include bispecific antibodies and multivalent antibodies (WO1998 / 050431, WO2001 / 7734, WO2002 / 002773, WO2009 / 131239).
  • the protein fragment in the present invention may be either a functional fragment or a structural fragment of a protein, particularly an antibody fragment.
  • antibody fragments include Fab, Fab ′, F (ab ′) 2 , single chain Fv (scFv), diabody, dsFv, peptides containing multiple CDRs (particularly peptides containing 6 CDRs of VH and VL), etc. Can be mentioned.
  • Examples of the cell of the present invention include a cell into which the above-described expression vector is introduced, and specifically includes a cell into which the expression vector of the present invention has been introduced.
  • the cell can simultaneously express both a membrane-bound protein or the membrane-bound protein fragment and a target protein.
  • the cell of the present invention is a cell into which the expression vector of the present invention has been introduced, and an mRNA encoding a target protein transcribed from the vector and an mRNA encoding a membrane-bound protein generated by splicing after transcription.
  • 0.1% or more of the cells express mRNA that encodes a membrane-bound protein.
  • the mRNA expression ratio (%) of the membrane-bound protein to the total mRNA of the protein of interest is 0.1-5%, 0.1
  • the range of ⁇ 4%, 0.1 to 3%, and 0.1 to 2% is preferable, but the range of 0.5 to 2% is preferable, more preferably 1 to 2%, 1.1 to 2%, 1.2 to 2%, and 1.3 to 2%. 1.4 to 2% range.
  • a cell into which the protein expression vector of the present invention has been introduced can simultaneously express both the target protein and a membrane-bound protein or a fragment of the membrane-bound protein, and the membrane-bound protein is expressed on the cell membrane. Yes.
  • the target protein is a secretory protein
  • a range is preferable.
  • the expression level of the membrane-bound protein or the fragment of the membrane-bound protein is a conjugate (chemical substance, antibody, protein ligand, etc.) that specifically binds to the membrane-bound protein or the fragment of the membrane-bound protein.
  • the expression level may be any level as long as it can be detected by binding analysis using a cell, and can be measured by methods such as Cell binding ELISA, flow cytometer (FCM), FMAT8100HTS system (Applied Biosystems).
  • the cell of the present invention include a cell expressing 1 ⁇ 10 3 molecules / cell or more of a membrane-bound protein or a fragment of the membrane-bound protein on the cell membrane.
  • As the expression level of the membrane-bound protein or the fragment of the membrane-bound protein on the cell membrane cells expressing 1 ⁇ 10 3 to 1 ⁇ 10 7 molecules / cell are preferable.
  • the expression level of the mRNA encoding the membrane-bound protein or the fragment of the membrane-bound protein is preferably expressed by about 0.1% to 2% of the total protein mRNA (sum of the expression levels of sP-mRNA and mP-mRNA). Cell.
  • any cell generally used for recombinant protein production such as animal cells, plant cells, and microorganisms
  • examples of cells into which the expression vector of the present invention is introduced include Chinese hamster ovary tissue-derived CHO cells, human cell PER.C6, human leukemia cell Namalwa cell, monkey cell COS, rat myeloma cell line YB2 / 3HL.P2.G11.16Ag.
  • mouse myeloma cell line NS0 cell mouse myeloma cell line SP2 / 0-Ag14 cell
  • Syrian hamster kidney tissue-derived BHK cell human Burkitt lymphoma-derived Namalva cell
  • human retinoblastoma-derived PER.C6 cell human embryonic Examples include kidney tissue-derived HEK293 cells, human myeloid leukemia-derived NM-F9 cells, embryonic stem cells, and fertilized egg cells.
  • a host cell for producing a recombinant glycoprotein pharmaceutical an embryonic stem cell or a fertilized egg cell used for producing a transgenic non-human animal producing the recombinant glycoprotein pharmaceutical, and a recombinant sugar Examples include plant cells used to produce transgenic plants that produce protein drugs.
  • NS0 cell parent cell lines include NS0 cells described in literature such as BIO / TECHNOLOGY, 10, 169 (1992), Biotechnol. Bioeng., 73, 261, (2001).
  • NS0 cell line (RCB0213) registered in RIKEN Cell Bank, or sub-strains obtained by acclimating these strains to various serum-free media are also included.
  • SP2 / 0-Ag14 cells examples include J. Immunol., 126, 317, (1981), Nature, 276, 269, (1978), Human Antibodies and Hybridomas, 3, 129, (1992), etc. SP2 / 0-Ag14 cells described in the above.
  • SP2 / 0-Ag14 cells (ATCC CRL-1581) registered in ATCC or sub-strains (ATCC CRL-1581.1) in which these strains are conditioned to various serum-free media are also included.
  • the parent cell of the rat myeloma cell line YB2 / 3HL.P2.G11.16Ag.20 cell includes a cell line established from Y3 / Ag1.2.3 cell (ATCC CRL-1631). Specific examples thereof include YB2 / 3HL.P2.G11.16Ag.20 cells described in J. CellBiol., 93, 576 (1982), Methods Enzymol. 73B, 1 (1981) and the like. Can be mentioned. In addition, YB2 / 3HL.P2.G11.16Ag.20 cells (ATCC CRL-1662) registered in ATCC or sub-strains obtained by acclimating these strains to various serum-free media are also included.
  • the amount of fucose that binds ⁇ 1,6 to N-acetylglucosamine G (GlcNAc) present at the reducing end of the N-glycoside-linked sugar chain that binds to the antibody Fc region is reduced or eliminated.
  • Cells can also be used.
  • the cell is a cell in which at least one enzyme associated with a series of fucose metabolic reactions is reduced or deficient.
  • protein such as an enzyme involved in synthesis of intracellular sugar nucleotide GDP-fucose or N-acetylglucosamine at the reducing terminal of N-glycoside-linked complex sugar chain is located at position 1 of fucose at ⁇ -position.
  • proteins such as enzymes involved in modification of the sugar chain to be bound, proteins involved in transport of intracellular sugar nucleotide GDP-fucose to the Golgi apparatus, and the like.
  • Examples of cells in which these activities are reduced or deleted include CHO cells in which the ⁇ 1,6-fucose transferase (FUT8) gene is reduced or deleted (WO2005 / 035586, WO02 / 31140), lentil lectin LCA, pea lectin PSA , Cells that have acquired resistance to lectins such as broad bean lectin VFA or yellow chawantake lectin AAL (WO02 / 31140), Lec13 [Somatic Cell and Molecular genetics, with reduced GMD-mannose-4,6-dehydratase (GMD) activity, 12, 55 (1986)], cells with reduced GMD activity, cells with reduced or deficient GDP-fucose transporter (WO2003 / 85102) and the like.
  • FUT8 ⁇ 1,6-fucose transferase
  • Mammalian cells used in the present invention are suspended in a culture solution without adhering to a cell culture support in a serum-free medium not containing fetal calf serum (hereinafter referred to as FCS). Cells that can survive and proliferate are preferred, and mammalian cells that can float and survive and proliferate in a protein-free medium without protein are more preferred.
  • the tissue culture incubator for confirming mammalian cells that can survive in a serum-free medium may be any incubator as long as it is a flask, petri dish or the like that is coated with an adhesion culture.
  • the suspension mammalian cell used in the present invention may be a cell originally adapted to suspension culture having suspension properties, or a suspension in which adhesive mammalian cells are adapted to suspension culture conditions. Any mammalian cell may be used.
  • the “floating mammalian cell obtained by acclimatizing an adherent mammalian cell to a floating culture condition” is, for example, according to the method described in Mol. Biotechnol., 2000, 15 (3), 249-257, etc. It can be produced by establishing cells that exhibit the same proliferation and viability as before suspension culture acclimation or better than those before acclimation to suspension culture (J. Biotechnol., 2007, 130 (3), 282-290).
  • any method for introducing an expression vector into cells any method can be used as long as it introduces DNA into animal cells.
  • electroporation [Cytotechnology, 3, 133 (1990)]
  • calcium phosphate method (specialized) Kaihei 2-227075)
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972), Gene, 17, 107 (1982), Molecular & General Genetics, 168, 111 (1979)]
  • the lipofection method Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • Examples of the method for expressing the target protein of the present invention include a method in which the expression vector of the present invention is introduced into a host cell and both the target protein and the membrane-bound protein or a fragment of the membrane-bound protein are expressed simultaneously.
  • the method of expressing the protein of the present invention can be used to select cells expressing a membrane-bound protein without expressing a drug selection marker gene or an unnecessary fusion protein and without selecting a drug. it can. As a result of selecting a cell that highly expresses a membrane-bound protein or a fragment of the membrane-bound protein, a cell that highly expresses the target protein can be obtained.
  • a desired plurality of target proteins such as a full length (or partial fragment) of the target protein and a membrane-bound protein can be simultaneously obtained. It can also be expressed.
  • membrane-bound target protein fragments include antibody Fab fragments when the target protein is an antibody.
  • Fab fragments can be expressed by artificial insertion of splicing donor sequences anywhere in the antibody constant region.
  • the Fab fragment can be expressed particularly by inserting an artificial splicing donor sequence in the CH2 domain.
  • Examples of the method for producing the target protein of the present invention include a method of introducing the expression vector of the present invention into a host cell and producing the target protein using the cell.
  • Examples of the method for producing a target protein of the present invention include a method for producing a target protein including the following steps (a) to (e). (a) Introducing into a host cell a protein expression vector comprising a DNA sequence encoding a protein containing a splicing donor sequence, a polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence and a DNA sequence encoding a transmembrane region. Process.
  • the expression vector of the present invention is introduced into a host cell, and a cell that highly expresses a membrane-bound protein or a fragment of the membrane-bound protein is obtained.
  • a screening method is included. As a result of selecting cells that highly express a membrane-bound protein or a fragment of the membrane-bound protein by this screening method, cells that produce the target protein at a high level can be obtained.
  • Animal cell culture media include RPMI1640 medium (Invitrogen), GIT medium (Nippon Pharmaceutical), EX-CELL301 medium (JRH), EX-CELL302 medium (JRH), IMDM medium (Invitrogen) ), Hybridoma-SFM medium (Invitrogen), CD-CHO medium (Invitrogen), EX-CELL 325-PF medium (SAFC Biosciences) and SFM4CHO medium (HyClone) it can. It can also be obtained by blending and preparing necessary sugars, amino acids, etc. in animal cell culture media.
  • static culture can be performed in a 5% CO 2 atmosphere at a culture temperature of 37 ° C. It can also be cultured by methods such as Wave bioreactor (GE Healthcare Bioscience), swirl stirrer, bioreactor culture [Cytotechnology, (2006), 52: 199-207] it can.
  • Cells expressing the membrane-bound protein of the present invention or a fragment of the membrane-bound protein are detected using a compound or protein that specifically binds to the expressed membrane-bound protein or the fragment of the membrane-bound protein. can do. Any of them can be used as long as it binds to a membrane-bound protein or a fragment of the membrane-bound protein.
  • a fluorescent protein (FITC, TRITC, etc.) can be used as a ligand protein, a receptor protein, a polyclonal antibody, a monoclonal antibody and an antigen protein.
  • PE such as Cy-5
  • an enzyme peroxidase, alkaline phosphatase
  • biotin with a radioactive substance (3 H, 14 C, 32 P, 35 S, 67 Ga, 99 Tc) detector conjugated etc.
  • a radioactive substance 3 H, 14 C, 32 P, 35 S, 67 Ga, 99 Tc
  • cells expressing a membrane-bound protein or a fragment of the membrane-bound protein can be detected.
  • the target protein to be expressed or the fragment of the target protein is a human IgG antibody or the antibody fragment
  • an anti-human IgG antibody, protein A / G or an antigen specifically recognized by the human IgG antibody is conjugated with an appropriate detection substance
  • the membrane-bound human IgG antibody can be detected using the resulting product.
  • the target protein to be expressed is a TNFR-Fc fusion protein
  • a membrane-bound TNFR is prepared using a TNF- ⁇ , anti-Fc antibody or protein A / G conjugated with an appropriate detection substance.
  • -Fc fusion protein can be detected.
  • the present invention includes a method for analyzing the protein modification ability and modification characteristics of a cell producing the target protein. That is, a cell into which a secretory / membrane-bound protein expression vector has been introduced expresses a membrane-bound protein or the membrane-bound protein fragment on the cell membrane and produces a secreted protein. By analyzing the degree of protein modification of the expressed membrane-bound protein or the membrane-bound protein fragment, the protein modification ability and modification characteristics of the cell can be identified.
  • Proteins are modified as a result of post-translational modifications such as sugar chains, amino groups, carboxyl groups, phosphoric acid, and sulfuric acid bound to the protein.
  • the protein modification level can be directly analyzed using a substance that specifically binds to a modified residue of the membrane-bound protein or the membrane-bound protein fragment, and the protein on the cell membrane can be analyzed with an enzyme or the like. It can also be analyzed indirectly by analyzing the free protein by releasing it by digesting with.
  • the protein modification is a sugar chain modification
  • it is specific to the sugar chain structure, such as a protein (lectin) that specifically binds to each sugar chain binding structure, an anti-sugar chain antibody, a ligand protein, a receptor protein, a low molecular weight compound, etc. Any one may be used as long as it is coupled.
  • a method for analyzing the sugar chain-modifying ability and sugar chain-modifying properties of protein-producing cells by the above-described method is also included in the present invention. By this method, a target protein-producing cell capable of producing a specific sugar chain structure of the target protein can be screened and obtained.
  • a detection method measurement using a method described in monoclonal antibody-Principles-and-practice, Third-edition, Academic Press (1996), monoclonal antibody experiment manual (Kodansha Scientific 1987), and specifically enzyme Examples include -linked immunosorbent assay (ELISA), fluorescence-activated cell sorter (FACS) analysis using flow cytometer (FCM) method, and fluorescence staining using FMAT8100HTS system (Applied Biosystems). Further, by sorting cells that highly express a membrane-bound protein using FACS or the like, that is, cells having high fluorescence intensity, a high protein-producing cell can be obtained more directly.
  • ELISA -linked immunosorbent assay
  • FACS fluorescence-activated cell sorter
  • FCM flow cytometer
  • FMAT8100HTS system Applied Biosystems
  • the method for measuring secretory protein in the present invention examples include the above-mentioned ELISA method, sandwich ELISA method, Biacore system using surface plasmon resonance (SPR) method, measurement method using high performance liquid chromatography (HPLC), and the like. It is done.
  • the target protein can be purified using affinity chromatography, ion exchange chromatography, ultrafiltration, gel filtration, or the like.
  • antibodies are purified from the culture supernatant of transformants using protein A-columns [Monoclonal Antibodies-Principles and practice, Third edition, Academic Press (1996), Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988) )].
  • methods used in protein purification such as gel filtration, ion exchange chromatography and ultrafiltration can be combined.
  • vector capable of simultaneously expressing secretory antibody and membrane-bound antibody (hereinafter abbreviated as secretory / membrane-bound antibody expression vectors) pINC_TMSP_AC27, pINC_TMSP_AC17 and pINC_TMSP_AC10 It was produced as follows.
  • the prepared gene fragment was inserted into an appropriate position of the pINC vector to prepare an expression vector pINC_OX40L / CD98H containing DNA encoding the anti-OX40 antibody L chain and the anti-CD98 / LAT1 complex antibody H chain (FIG. 1).
  • an antibody comprising the L chain of an anti-OX40 antibody and the H chain of an anti-CD98 / LAT1 antibody is abbreviated as a human IgG antibody).
  • BGH-PolyA bovine growth hormone polya Denylation signal sequence
  • T / C sequence 25 25-base polypyrimidine sequence consisting of thymine and cytosine
  • SA sequence acceptor sequence
  • PDGFR platelet-derived growth factor receptor
  • PCR polymerase chain reaction
  • synthetic DNA primers TM-F1 SEQ ID NO: 14
  • TM-R1 SEQ ID NO: 15
  • the synthetic DNA primers TM-F1 and TM-R3 SEQ ID NO: 17
  • a DNA fragment in which the DNA sequence encoding the transmembrane region (SEQ ID NO: 12) was bound to the 3 ′ end of the human antibody H chain was prepared.
  • DNA fragment and the pINC_OX40L / CD98H vector were treated with restriction enzymes BgIII and EcoRI, respectively, and the DNA sequence encoding the PDGFR transmembrane region was found at the 3 ′ end of the DNA sequence encoding the human antibody H chain.
  • a membrane-bound human IgG antibody expression vector pINC_TM vector containing the inserted DNA fragment was prepared.
  • PCR reaction was performed using the synthetic DNA primers AC27-F (SEQ ID NO: 18) and TMSP-R (SEQ ID NO: 19), T / C sequence 25 (SEQ ID NO: 8), SA sequence (SEQ ID NO: 5), a DNA fragment (SEQ ID NO: 11) containing PDGFRtm and BGH-PolyA sequences was prepared.
  • the first BGH-PolyA sequence the DNA encoding the human antibody H chain including the SD sequence, by inserting the prepared DNA fragment into the DNA encoding the human antibody H chain of the pINC_OX40L / CD98H expression vector treated with the restriction enzyme EcoRV , A secreted / membrane-bound human antibody expression vector pINC_TMSP_AC27 containing a poly-Pyr sequence (T / C sequence 25), an SA sequence, a PDGFRtm sequence, and a second BGH-PolyA sequence in order was prepared (FIG. 2).
  • poly-Pyr sequence T / C25 (SEQ ID NO: 8) on the 3 ′ end side of the first BGH-PolyA sequence is replaced with a 15-base poly-Pyr sequence T / C15 (SEQ ID NO: 7) consisting of T and C.
  • secreted / membrane-bound human IgG antibody expression vectors pINC_TMSP_AC17 and pINC_TMSP_AC10 substituted with 8-base poly-Pyr sequence T / C8 (SEQ ID NO: 6), respectively, were prepared.
  • the conjugated human IgG antibody expression vector is a Chinese hamster ovary cell line CHO-K1 (American Type Culture Collection, Cat. No. CCL) using a gene introduction reagent LipofectAmine (registered trademark) 2000 (Life Technologies) according to the attached manual. -61).
  • CHO-K1 cells that became 70-80% confluent in a 100 mm culture plate were washed with serum-free medium and then ⁇ -minimum essential medium medium (hereinafter referred to as MEM medium) (Life Technologies) Was added.
  • MEM medium serum-free medium
  • 24 ⁇ g of secreted / membrane-bound human IgG antibody expression vector pINC_TMSP_AC27 and 60 ⁇ L of LipofectAmine (registered trademark) 2000 solution were mixed and added to the cells, followed by static culture in a 37 ° C., 5% CO 2 incubator for 6 hours was done.
  • the medium was replaced with MEM medium supplemented with 10% fetal bovine serum (hereinafter abbreviated as FCS) (SAFC Biosciences), and diluted appropriately so that the cells did not exceed 90% confluence.
  • FCS fetal bovine serum
  • ⁇ 10 6 cells / mL of cells using phosphate buffer saline (hereinafter abbreviated as PBS) (Life Technologies).
  • PBS phosphate buffer saline
  • a suspension was prepared.
  • 50 ⁇ L of mouse Anti-Human IgG (Fc) -PE (hereinafter referred to as “anti-human IgG mouse antibody”) (BECKMAN, Cat. No. 736007) was added to the cell suspension and reacted at room temperature for 1 hour. After the reaction, the cell suspension was centrifuged, and the cells were washed with PBS to remove excess anti-human IgG mouse antibody. Next, after centrifugation, 10 mL of MEM medium was added to the cells and suspended, and the cell suspension diluted stepwise to 1 cell / well was dispensed into a 96-well plate.
  • the fluorescence intensity of the cells contained in each well was measured using a cell image analysis system (Olympus CELAVIEW RS100). As a result, wells containing multiple cells were visually excluded, and wells where fluorescence was not detected were also excluded. Wells in which fluorescence was detected at 1 cell / well were selected. The cells were cultured until the cells in the selected wells were approximately 90% confluent, and the antibody concentration in the secreted culture medium was measured. The antibody concentration in the culture was measured using HPLC (Waters).
  • the cells into which the expression vector pINC_TMSP_AC27 containing the DNA sequence encoding the human antibody H chain containing the SD sequence, the first BGH-PolyA sequence, the poly-Pyr sequence, the SA sequence, the PDGFRtm and the second BGH-PolyA sequence are introduced on the cell membrane It was revealed that a membrane-bound human IgG antibody can be expressed at the same time and a secretory IgG antibody can be expressed simultaneously in the culture supernatant. It was also revealed that the amount of membrane-bound human IgG antibody expressed on the cell membrane increased with a positive correlation with the amount of secreted human IgG antibody.
  • the anti-human IgG mouse antibody also bound to CHO-K1 cells into which any of the expression vectors pINC_TMSP_AC10, pINC_TMSP_AC17 and pINC_TMSP_AC27 was introduced. Further, IgG antibody was detected in the culture supernatant. Therefore, it was revealed that an expression vector containing a polypyrimidine sequence having a length of 8 bases or more can express both a secretory IgG antibody and a membrane-bound IgG antibody at the same time.
  • the fluorescence intensity of the membrane-bound IgG antibody expressed on the cell membrane is higher than that of cells introduced with pINC_TMSP_AC27 whose poly-Pyr sequence is 25 bases. It was low. Therefore, splicing efficiency from mRNA encoding secretory human IgG antibody to mRNA encoding membrane-bound IgG antibody is reduced in cells introduced with pINC_TMSP_AC10, which has a shorter poly-Pyr sequence than pINC_TMSP_AC27. It was revealed.
  • the pINC_TMSP_AC27 expression vector produced in Example 1 (2) was treated with restriction enzymes SalI and NotI, and human IgG antibody L chain , Including a human H chain containing an SD sequence linked under CMV-derived enhancer / promoter control, a DNA fragment containing the first BGH-polyA, SA sequence and PDGFRtm, and a cycloheximide resistance gene linked under CMV-derived enhancer / promoter control The gene fragment was excised.
  • PCR was performed using the purified gene fragment as a template and the synthetic DNA primers AC27-TnPMug FW (SEQ ID NO: 20) and AC27-TnPMug RV P2 (SEQ ID NO: 21), and restriction enzyme sites SalI and MluI A gene fragment to which was added was prepared.
  • Tol2 transposon vector excluding the antibody L chain, CMV promoter, DNA encoding cassette encoding H chain and cycloheximide resistance gene expression cassette contained in the anti-M2 antibody expressing Tol2 transposon vector described in WO2010 / 143698 (hereinafter referred to as TnPMug vector and the abbreviated) was treated with the restriction enzymes SalI and MluI, the gene fragments generated by PCR in-Fusion TM Advantage PCR Cloning Kit (Clontech , Inc., according to catalog number.
  • TnPMug vector A secreted / membrane-bound human IgG antibody-expressing Tol2 transposon vector AC27 / TnPMug inserted between the enzyme sites SalI and MluI and introduced in a Tol2 transposase-dependent manner was prepared (FIG. 3).
  • TnPMug and AC10 / TnPMug were prepared.
  • the cell suspension is suspended by adding 20 mL of CD opti CHO medium (Life Technologies) containing 200 mM L-Glutamine (hereinafter referred to as cell culture medium) to a 6-well plate. After dispensing at 3 mL / well, the cells were statically cultured for 24 hours in a 37 ° C., 5% CO 2 incubator. After the culture, stirring culture was performed in a 37 ° C., 5% CO 2 incubator for 10 days.
  • CD opti CHO medium Life Technologies
  • cell culture medium 200 mM L-Glutamine
  • CHO-K1 cells introduced with AC27 / TnPMug were centrifuged at 1000 ⁇ rpm for 5 minutes, and the supernatant was removed. Then, 10 ⁇ L (1 ⁇ g) PE-labeled anti-human IgG mouse antibody (mouse Anti-Human IgG (Fc ) -PE, Cat. No.736007, manufactured by BECKMAN), and the mixture was allowed to react for 30 to 60 minutes under light shielding at ice temperature. After the reaction, after washing with a cell culture medium, the cells were collected by centrifugation at 1000 rpm for 5 minutes, and washed twice to remove non-specifically bound PE-labeled anti-human IgG mouse antibody. . After washing, the cells were stirred with 1 mL of cell culture medium and filtered through a tube with a cell strainer.
  • PE-labeled anti-human IgG mouse antibody mouse Anti-Human IgG (Fc ) -PE, Cat. No.736007, manufactured by BECK
  • the membrane-bound antibody retains the binding epitope of the anti-human IgG antibody and the recombinant protein A that binds to the Fc region of the antibody, and a plurality of detection bodies that detect the membrane-bound antibody produce the antibody of the present invention. It was also revealed that it can be applied to cell screening.
  • Membrane-bound human antibody expression level on the cell membrane of antibody-producing cells Secretion / membrane-bound human antibody expression Tol2 transposon vector AC27 / TnPMug having 25, 15 or 8 bases contained in the polypyrimidine sequence, The amount of membrane-bound human antibody expressed on the cell membrane in CHO-K1 cells into which AC17 / TnPMug or AC10 / TnPMug was introduced was examined.
  • Each vector was introduced into CHO-K1 cells in the same manner as in Example 4 (1), and cells expressing membrane-bound human antibodies were measured by the same method as in Example 4 (2) (b). .
  • the recombinant / protein-binding human antibody-expressing Tol2 transposon vector AC27 / TnPMug, AC17 / TnPMug, or AC10 / TnPMug was significantly recombinant protein A Fluorescence intensity increased due to / G-FITC binding. Therefore, as in Example 2, it was revealed that the membrane-bound human antibody was expressed in the secretory / membrane-bound human antibody-expressing Tol2 transposon vector-introduced cells.
  • a secretory / membrane-bound human antibody expression vector containing a polypyrimidine sequence of 8 bases or more is capable of expressing a membrane-bound human antibody, and is a secreted / membrane-bound antibody comprising a polypyrimidine sequence of 15 bases or more. It has been clarified that the human antibody expression vector can highly efficiently express a membrane-bound human antibody.
  • Sorted cells were seeded in a 384-well plate containing 50 ⁇ L of cell culture medium, and statically cultured at 37 ° C. in a 5% CO 2 incubator for 2 weeks. After culturing, the cells that formed colonies were transferred to a 96-well plate in which a cell culture medium was dispensed at 150 ⁇ L / well, followed by stationary culture at 37 ° C. in a 5% CO 2 incubator for 1 week. After culturing, the culture supernatant was collected, and the expression level of the secretory antibody was quantified by the sandwich method (LENCE TM, PerkinElmer) using FRET (fluorescence resonance energy transfer) (FIGS. 6 (a), (b) and (c)).
  • sandwich method LENCE TM, PerkinElmer
  • FRET fluorescence resonance energy transfer
  • Example 4 (2) Secretory / membrane-bound human antibody-expressing Tol2 transposon vectors AC27 / TnPMug, AC17 / TnPMug, and AC10 / TnPMug Introducing cells into cells
  • (a) AC27 / TnPMug, AC17 / TnPMug
  • 8 clones in AC27 / TnPMug-introduced cells 16 in AC17 / TnPMug-introduced cells
  • 6 in AC10 / TnPMug-introduced cells Obtained a single clone.
  • the average antibody production amount of each cell was AC10 / TnPMug ⁇ AC17 / TnPMug ⁇ AC27 / TnPMug.
  • the CHO-K1 cell line expressing membrane-bound human antibodies is cultured, the expression level of membrane-bound human antibodies is examined for each clone, and the most antibody is expressed among the clones into which each expression vector has been introduced. Selected clones. The production amount of the human antibody of the antibody-expressing cell line into which each finally selected expression vector was introduced was examined. Using a production medium with CD opti CHO (Life Technologies) plus L-Glutamine (Life Technologies), seed 1 ⁇ 10 6 cells / 3 mL in a 6-well plate (Corning) at 37 ° C. Then, stirring culture was performed in a 5% CO 2 incubator for 7 days. The IgG antibody concentration was measured by HPLC (Waters) (Table 3).
  • CHO-K1 cells into which the secreted / membrane-bound human antibody-expressing Tol2 transposon vectors AC10 / TnPMug, AC17 / TnPMug, and AC27 / TnPMug were respectively introduced were 0.1 ⁇ g / L in the culture supernatant after 7 days of culture. , 0.5 g / L and 0.4 g / L secretory human IgG antibodies were produced.
  • cells transfected with the AC17 / TnPMug or AC27 / TnPMug vector produced antibodies 5 or 4 times higher than cells transfected with the AC10 / TnPMug vector.
  • antibody-producing cells can be cleaned from cells into which secreted / membrane-bound antibody expression vectors have been introduced using the expression level of membrane-bound antibody as an indicator, and antibody production can be performed using the selected cells. became.
  • the antibody-producing cells selected based on the high expression level of the membrane-bound antibody produced a high amount of secretory antibody.
  • an expression vector containing an 8-base poly-Pyr sequence was introduced into a cell into which an expression vector containing a 15-base poly-Pyr sequence was introduced.
  • the cell-bound antibody is highly expressed, and the cells that are screened using the high expression of the membrane-bound antibody as a marker show high expression of the secretory antibody. It became clear that Thus, it has also been clarified that by introducing an expression vector containing a poly-Pyr sequence of 15 bases or more into a host cell, a high antibody-producing cell can be produced more efficiently and the antibody can be produced.
  • RNA expression in secretory / membrane-bound human antibody-producing cells To analyze the expression of secretory human IgG antibody and membrane-bound human antibody mRNA in cells into which secreted / membrane-bound human antibody expression vectors have been introduced.
  • the mRNA expression of CHO-K1 cells selected in Example 5 (2) using membrane-bound human IgG antibody expression as an index was analyzed by real-time PCR.
  • Total RNA was extracted from cultured cells containing the secreted / membrane-bound human antibody expression vector using the RNeasy (registered trademark) Mini Kit (250) (Cat. No. 74106, QIAGEN) according to the attached instructions. Extracted.
  • probe 3 Fw primer (SEQ ID NO: 22) and probe 3 Rv primer (SEQ ID NO: 23) for amplifying partial fragments of membrane-bound human antibody H chain mRNA, membrane-bound human antibody and PCR of each mRNA fragment was performed using probe 1 Fw primer (SEQ ID NO: 24) and probe 1 Rv primer (SEQ ID NO: 25) for amplifying partial fragments of H chain mRNA of both secretory human antibodies (Fig. 7).
  • the amplified fragment was detected using probe 3 (SEQ ID NO: 26) and probe 1 (SEQ ID NO: 27).
  • AC27 / TnPMug vector-introduced cell membrane-bound antibody H chain mRNA expression level is 23 fold and membrane-bound antibody H in AC27 / TnPMug vector-introduced cell with 25 T / C poly-Pyr sequences
  • the mRNA expression level of the strand was 27 times (FIG. 8 (a)).
  • the total antibody H chain mRNA amount including secreted human antibody H chain and membrane-bound human antibody H chain is AC17 / TnPMug when the mRNA expression level of all antibody H chains in AC10 / TnPMug vector-introduced cells is 1.
  • the H chain mRNA expression level of the vector-introduced cells was doubled, and the H chain mRNA expression level of the AC27 / TnPMug vector-introduced cells was 1.4 times (FIG. 8 (b)).
  • the membrane-bound human antibody H chain mRNA expression level in the total antibody H chain mRNA expression level in each vector-introduced cell was 0.1%, 1.4% or 1.6%, respectively (FIG. 8 (c)).
  • the pre-mRNA encoding the antibody H chain is present in the downstream region and the splicing donor sequence at the 3 ′ end of the antibody H chain. Splicing occurs in the splicing acceptor sequence and expresses both mRNA encoding the membrane-bound human antibody H chain in which the antibody H chain and the PDGFR transmembrane region are fused and mRNA encoding the secreted human antibody H chain. (Figs. 8 (a) and (b)).
  • sequences of secretory antibody mRNA and membrane-bound mRNA expressed in the cells are shown in SEQ ID NO: 28 and SEQ ID NO: 30, and the amino acid sequences encoded by the respective mRNAs are shown in SEQ ID NOs: 29 and 31.
  • cells into which the secretory / membrane-bound human antibody expression vector has been introduced may express membrane-bound human antibody H chain mRNA at a rate of 0.1% or more of the total human antibody H chain mRNA expression level.
  • antibody-producing cells can be obtained by screening with the expression level of membrane-bound antibody (FIG. 8 (c)).
  • the mRNA expression level of membrane-bound human antibody H chain is higher than cells transfected with AC10 / TnMug vector (Figs. 8 (a) and (c))
  • an efficient splicing reaction is performed and mRNA expression of membrane-bound human antibodies is increased. It was revealed that
  • Fab fragment splicing vector (1) Production of secretory / membrane-bound antibody expression vector 4D5TM_Hc Encoding the heavy chain amino acid sequence of anti-HER2 humanized antibody trastuzumab (Herceptin (registered trademark)) (US Pat. No. 5,821,337) The DNA sequence to be inserted was inserted into a Tol2 transposon vector, and a secreted / membrane-bound antibody expression vector 4D5TM_Hc containing the polypyrimidine sequence T / C25 was prepared in the same manner as in Example 3. On the other hand, a DNA sequence encoding a light chain amino acid sequence (US Pat. No.
  • Each Fab fragment expression construct Fab, Fab1, Fab2, and Fab3 produced SD sequences by introducing mutations into genes encoding the following amino acids (FIG. 9).
  • the codon encoding the 51st glycine of the CH2 domain of Fab: IgG1 antibody was replaced from GGC to GGT.
  • the codon encoding the 6th glycine of the CH2 domain of Fab1: IgG1 antibody was replaced from GGG to GGT.
  • the codon encoding the 86th glycine of the CH2 domain of Fab2: IgG1 antibody was replaced from GGC to GGT.
  • the codon encoding the 48th tyrosine of the CH2 domain of Fab3: IgG1 antibody was replaced from TAC to TAT.
  • Membrane-bound Fab fragment expression vector 4D5TM_Fab was prepared by PCR using QuikChange II Site-Directed Mutagenesis Kit (Invitrogen) using 4D5TM_Hc as a template and primers having DNA sequences described in SEQ ID NOs: 32-35 (Table 1). Four). Further, membrane-bound Fab fragment expression vectors 4D5TM_Fab1, 4D5TM_Fab2 and 4D5TM_Fab3 are 4D5TM_Fab as a template, DNA sequence primers set forth in SEQ ID NOs: 36-39, DNA set forth in SEQ ID NOs: 36, 37, 40 and 41, respectively. The primers were prepared in the same manner as described above using the primers for the sequences and the DNA sequences described in SEQ ID NOs: 42 and 43 (Table 4).
  • the antibody-producing cells obtained in Example 8 (1) above were subjected to Fed-batch culture, and the amount of antibody production was examined.
  • the production medium was prepared by adding L-Glutamine (Life Technologies) and soybean hydrolyzate (SAFC) to CD opti CHO (Life Technologies).
  • the Feed medium was prepared by mixing CHO CD EFFICIENTFEED A (Invitrogen) and CHO CD EFFICIENTFEED B (Invitrogen) in equal amounts and adding Glucose (Wako) and Glutamine (Wako).
  • cells expressing membrane-bound IgG, membrane-bound Fab, or membrane-bound Fab1 all produce antibodies higher than cells expressing membrane-bound Fab2 or membrane-bound Fab3. It became clear. Therefore, cells expressing an antibody gene having a splicing donor sequence inserted into the CH2 domain of the antibody constant region can be selected by the expression of the spliced membrane-bound Fab, and the selected cells was confirmed to produce antibodies.
  • Herceptin heavy chain expression vector 4D5 secreted / membrane-bound heavy chain expression vector 4D5TM
  • membrane-bound Fab Fragment expression vectors 4D5TM_Fab, 4D5TM_Fab1, 4D5TM_Fab2 and 4D5TM_Fab3 were introduced into CHO-K1 cells together with Herceptin's light chain expression vector 4D5 Lc to produce a transfectant, and cycloheximide (Cat. No. C4859, SIGMA) The drug selection was carried out.
  • CD opti CHO (Life Technologies) is added with L-Glutamine (Life Technologies) and cultured in a medium containing 3 mg / mL cycloheximide to select only cells that exhibit drug resistance. did. Cycloheximide-resistant CHO cells are stained with FITC-Protein A (Cat. No. 101011, Invitrogen) or Protein G, Alexa Fluor 488 conjugate (Cat. No. P11065, Invitrogen), and using FACSCalibur (BD Pharmigen) The fluorescence intensity on the cell surface was measured. Gates with fluorescence intensities of 10 2 to 10 4 were set to show the cell population (%) that reacted with each label (Table 7).
  • CHO-K1 introduced with secretory / membrane-bound Herceptin expression vector 4D5TM and membrane-bound Fab fragment expression vector compared to CHO-K1 into which host cell CHO-K1 and secreted Herceptin expression vector 4D5 were introduced. Both bound to both Protein A and Protein G. Moreover, since CHO-K1 introduced with 4D5TM bound most strongly to both Protein A and Protein G, it was confirmed that the membrane-bound IgG antibody was expressed efficiently and predominantly.
  • CHO-K1 introduced with membrane-bound Fab fragment expression vectors 4D5TM-Fab, 4D5TM-Fab1, 4D5TM-Fab2, and 4D5TM-Fab3 all have a binding activity against Protein A compared to CHO-K1 introduced with 4D5TM.
  • 4D5TM-Fab and 4D5TM-Fab1 decreased to about 1/2
  • 4D5TM-Fab2 and 4D5TM-Fab3 decreased to about 1/4.
  • Protein G the membrane-bound Fab fragment expression vector 4D5TM-Fab or 4D5TM-Fab1 was slightly reduced in binding amount compared to CHO-K1 into which 4D5TM was introduced, but 4D5TM-Fab2 or 4D5TM-Fab3 Protein G binding activity decreased to about 1/2.
  • cells introduced with 4D5TM expressing membrane-bound IgG and cells transfected with 4D5TM-Fab and 4D5TM-Fab1 expressing membrane-bound Fab fragments efficiently expressed IgG or Fab fragments.
  • the expressed Fab fragment has a reduced binding activity to Protein A.
  • cells introduced with 4D5TM-Fab2 or 4D5TM-Fab3 have a protein-A binding activity as well as a protein-G binding activity reduced, so that compared with cells introduced with 4D5TM-Fab and 4D5TM-Fab1, membrane-bound type The possibility that the expression level of the Fab fragment was low was revealed.
  • Membrane-bound IgG may be contaminated with secretory IgG antibody in the manufacturing process of antibody drugs, but it is difficult to separate even with Protein A column purification. Therefore, by using a cell that expresses a membrane-bound Fab fragment that does not bind to Protein A, contamination in the production process of the antibody drug can be prevented.
  • an expression vector for a target protein capable of simultaneously expressing a target protein and a protein in which the target protein or the target protein fragment and the transmembrane region are fused using a single gene is expressed.
  • SEQ ID NO: 1 Splicing donor sequence
  • SEQ ID NO: 2 Splicing donor sequence
  • SEQ ID NO: 3 Splicing donor sequence
  • SEQ ID NO: 4 Splicing acceptor sequence
  • SEQ ID NO: 5 Splicing acceptor sequence
  • SEQ ID NO: 6 Polypyrimidine sequence T / C8
  • SEQ ID NO: 7 Polypyrimidine sequence T / C15
  • SEQ ID NO: 8 Polypyrimidine sequence T / C25 SEQ ID NO: 9: OX40 L chain
  • SEQ ID NO: 10 CD98 / LAT1 H chain
  • SEQ ID NO: 11 BGH polyadenylation signal sequence
  • SEQ ID NO: 12 PDGFR transmembrane region
  • SEQ ID NO: 13 Synthetic construct
  • SEQ ID NO: 16 TM-R2 primer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A desired-protein expression vector which can be used for producing a protein composition with high efficiency and in a large quantity and for producing a protein-containing medicine in a safe manner and a method for producing a desired protein using the vector have been demanded. According to the present invention, it becomes possible to provide: a desired-protein expression vector which can express both a fusion protein (a membrane-binding protein or a fragment of the membrane binding-protein) of a desired protein and a transmembrane domain and the desired protein at the same time; a cell having the vector introduced thereinto; a method for screening for a cell having the vector introduced thereinto; a method for expressing both the desired protein and the membrane-binding protein at the same time by introducing the vector into a host cell; a cell capable of producing the desired protein, which can produce the desired protein at a high level and can be obtained by screening for a cell, into which the vector has been introduced to express the membrane-binding protein, by employing the expression amount of the membrane-binding protein as a measure; and a method for producing the desired protein using the cell.

Description

膜結合型タンパク質発現ベクターMembrane-bound protein expression vector
 本発明は、1つの遺伝子を用いて目的タンパク質と、膜結合ドメインが融合した目的タンパク質又は該目的タンパク質の断片とを、同時に発現させることができる目的タンパク質の発現ベクター、目的タンパク質又は該目的タンパク質の断片を発現する細胞をスクリーニングする方法、目的タンパク質を高生産する細胞、目的タンパク質を高生産する細胞の製造方法、該細胞を用いて該目的タンパク質を生産する方法に関する。 The present invention provides a target protein expression vector, target protein, or target protein capable of simultaneously expressing a target protein and a target protein fused with a membrane-binding domain or a fragment of the target protein using one gene. The present invention relates to a method for screening a cell that expresses a fragment, a cell that highly produces a target protein, a method for producing a cell that highly produces a target protein, and a method for producing the target protein using the cell.
 哺乳動物細胞を宿主としたサイトカイン、増殖因子、ホルモンおよび抗体等のタンパク質医薬品の製造において、高生産細胞を簡便に且つ迅速に選抜・スクリーニングすることは医薬品開発期間を短縮する上で重要である。しかし、従来の目的タンパク質生産細胞の選抜には、以下のような3つの課題がある。
(1)薬剤耐性の表現型を有する細胞と目的タンパク質発現細胞の不一致
 現在、目的タンパク質を生産する細胞は、目的タンパク質と同一の発現ベクター又は別の発現ベクターに組み込んだ薬剤耐性マーカー遺伝子を宿主細胞に導入した結果、薬剤耐性の表現型を有する細胞を選抜することで、間接的にスクリーニングされている(非特許文献1)。薬剤耐性マーカーと目的タンパク質は別々の異なる遺伝子発現カセットで発現させるため、薬剤耐性遺伝子の発現が必ずしも目的タンパク質の発現とは一致しない。すなわち、薬剤耐性形質を示す細胞が必ずしも目的タンパク質を高発現しているとは限らない。従って、薬剤耐性形質によって細胞集団を選択し、更に目的タンパク質を高発現する細胞を、enzyme-linked immuno-sorbent assay (ELISA)法などを用いて、直接的に目的のタンパク質量の測定を行うことにより、タンパク質生産細胞を再スクリーニングしなければならない(非特許文献2)。このように細胞選抜を2 段階以上のプロセスで行うため、スクリーニングのための時間と労力が必要である。
(2)薬剤耐性マーカーのタンパク質生産への影響
 薬剤耐性の表現型に基づいた細胞選抜を行う際に、発現させた薬剤耐性マーカータンパク質は目的タンパク質生産において不要な不純物タンパク質である。すなわち、目的タンパク質を医薬品として利用する場合には、この薬剤耐性マーカータンパク質を精製プロセスで除く必要がある。更に、細胞選抜に使用する薬剤耐性マーカータンパク質が高発現することで宿主細胞の代謝が変化し、逆に目的タンパク質の発現が低下することが報告されている(非特許文献3)。また、蛍光タンパク質も細胞選抜のマーカータンパク質として一般に使用されているが、細胞毒性があることが知られており、毒性の低い蛍光タンパク質への改良が進められている(特許文献1)。
(3)シングルセルクローニング
 タンパク質医薬品などの組換えDNA技術応用医薬品を生産する細胞は、シングルクローンに由来した細胞でなければならない(ICH-Q5Dガイドライン、平成12 年7 月14 日付医薬審第873 号)。薬剤耐性で選抜された細胞は、必ずしもシングルクローンとは限らないので、薬剤選抜後に限界希釈法などの方法により、改めてシングルクローン化しなければならない。
In the production of protein drugs such as cytokines, growth factors, hormones, and antibodies using mammalian cells as hosts, it is important to select and screen high-producing cells simply and rapidly for shortening the drug development period. However, conventional selection of target protein producing cells has the following three problems.
(1) Disagreement between cells with drug resistance phenotype and cells expressing the target protein Currently, cells producing the target protein have host cells with the drug resistance marker gene incorporated in the same expression vector as the target protein or in another expression vector. As a result, the cells are indirectly screened by selecting cells having a drug-resistant phenotype (Non-patent Document 1). Since the drug resistance marker and the target protein are expressed in different and different gene expression cassettes, the expression of the drug resistance gene does not necessarily match the expression of the target protein. That is, a cell exhibiting a drug resistance trait does not always express the target protein at a high level. Therefore, select a cell population based on drug resistance traits, and measure the amount of the target protein directly using the enzyme-linked immuno-sorbent assay (ELISA) method for cells that highly express the target protein. Thus, the protein producing cells must be rescreened (Non-patent Document 2). Since cell selection is performed in a process with two or more steps, screening time and labor are required.
(2) Effect of drug resistance marker on protein production When cell selection is performed based on a drug resistance phenotype, the expressed drug resistance marker protein is an impurity protein that is unnecessary in the production of the target protein. That is, when the target protein is used as a pharmaceutical, it is necessary to remove this drug resistance marker protein in the purification process. Furthermore, it has been reported that high expression of a drug resistance marker protein used for cell selection changes the metabolism of the host cell and conversely reduces the expression of the target protein (Non-patent Document 3). In addition, fluorescent proteins are generally used as marker proteins for cell selection, but are known to have cytotoxicity, and improvements to fluorescent proteins with low toxicity are being promoted (Patent Document 1).
(3) Single-cell cloning Cells that produce recombinant DNA technology-applied pharmaceuticals such as protein drugs must be derived from single clones (ICH-Q5D Guidelines, Pharmaceutical Examination No. 873 dated July 14, 2000) ). Since the cells selected for drug resistance are not necessarily single clones, they must be newly cloned by a method such as limiting dilution after drug selection.
 上述の(3)の課題を解決する手段として、流動細胞計測法(フローサイトメトリー)による蛍光活性化セルソーター(fluorescence-activated cell sorter, FACS)を用いた細胞選抜法がある。セルソーターは細胞を1つ1つのクローンの状態で選抜可能である。セルソーターで利用可能な細胞選抜用のマーカー遺伝子としては、緑色蛍光タンパク質や赤色蛍光タンパク質が挙げられる(非特許文献4)。しかし、薬剤耐性遺伝子と同様に、蛍光タンパク質と目的タンパク質が別々の異なる遺伝子カセットであれば、蛍光タンパク質の発現が必ずしも目的タンパク質の発現とは一致しない。すなわち、(1)で述べたように、蛍光タンパク質を高発現している細胞が必ずしも目的タンパク質を高発現していない。この課題を解決する手段として、目的タンパク質と蛍光タンパク質とを融合し、同じ遺伝子カセット内で発現させる方法が知られている(特許文献2)。しかし、本タンパク質発現方法では、目的タンパク質と蛍光タンパク質とが融合しているため、目的タンパク質の活性や品質に影響を与える可能性がある。特に医薬品の場合は抗原性などの懸念から実用的なタンパク質生産方法ではない。 As a means for solving the above-mentioned problem (3), there is a cell selection method using a fluorescence-activated cell sorter (SFACS) by a flow cytometry method (flow cytometry). The cell sorter can select cells in the state of individual clones. Examples of cell selection marker genes that can be used in the cell sorter include green fluorescent protein and red fluorescent protein (Non-patent Document 4). However, as with the drug resistance gene, if the fluorescent protein and the target protein are different and different gene cassettes, the expression of the fluorescent protein does not necessarily match the expression of the target protein. That is, as described in (1), cells that highly express the fluorescent protein do not necessarily express the target protein at a high level. As means for solving this problem, a method is known in which a target protein and a fluorescent protein are fused and expressed in the same gene cassette (Patent Document 2). However, in the present protein expression method, since the target protein and the fluorescent protein are fused, the activity and quality of the target protein may be affected. Particularly in the case of pharmaceuticals, it is not a practical protein production method because of concerns such as antigenicity.
 これとは別に、1つの遺伝子発現カセット内に2つの遺伝子を発現させる方法として、internal ribosome entry site (IRES)配列の利用が知られている(非特許文献3、特許文献5)。このIRESを用いたタンパク質発現方法では、薬剤耐性マーカー又は蛍光タンパク質の発現と比例して目的タンパク質の発現が増加することが明らかになっている。これらのタンパク質発現方法では、マーカータンパク質の発現量と目的タンパク質の発現量とが相関しており、目的のタンパク質を発現している生産細胞を取得できる可能性があるが、依然として(2)の課題である不要なマーカータンパク質を発現させなければならない。 Separately, the use of an internal ribosome entry site (IRES) sequence is known as a method for expressing two genes in one gene expression cassette (Non-patent Document 3, Patent Document 5). In the protein expression method using this IRES, it has been clarified that the expression of the target protein increases in proportion to the expression of the drug resistance marker or the fluorescent protein. In these protein expression methods, the expression level of the marker protein correlates with the expression level of the target protein, and it is possible to obtain production cells expressing the target protein. An unwanted marker protein must be expressed.
 また、目的タンパク質を生産細胞の細胞膜上に発現させ、セルソーターを用いて直接目的タンパク質の発現量を検出する方法が報告されている(特許文献4)。この方法によれば、目的タンパク質の終始コドンのすぐ下流に細胞膜結合用のポリペプチドを配置したタンパク質発現ベクターを宿主細胞に導入し、該細胞にアミノグリコシド系抗生物質を処理することで、タンパク質が翻訳される際に翻訳開始因子複合体による終始コドンの認識を低下させる(リードスルー)ことにより、目的タンパク質と細胞膜結合ポリペプチドとが融合したタンパク質を発現させることができ、細胞膜上に発現した目的タンパク質をセルソーターで検出し、該目的タンパク質を発現している細胞を選抜することができると報告されている。しかし、本方法では短期間とはいえ、目的タンパク質生産細胞を薬剤で処理する必要があり、薬剤が生産細胞へ悪影響を与える可能性、不要な薬剤が目的タンパク質に混入してしまう可能性、更に目的タンパク質以外の別のタンパク質がリードスルーにより翻訳されてしまう結果、予想外のタンパク質が生産されてしまう可能性などのデメリットがあるため、医薬品の生産に用いる細胞への処理としては、好ましい方法ではない。 In addition, a method has been reported in which the target protein is expressed on the cell membrane of the production cell and the expression level of the target protein is directly detected using a cell sorter (Patent Document 4). According to this method, a protein expression vector in which a polypeptide for cell membrane binding is arranged immediately downstream of the stop codon of the target protein is introduced into a host cell, and the protein is translated by treating the cell with an aminoglycoside antibiotic. The target protein expressed on the cell membrane can be expressed by reducing the recognition of the termination codon by the translation initiation factor complex (read-through). Is detected with a cell sorter, and it is reported that cells expressing the target protein can be selected. However, although this method requires a short period of time, it is necessary to treat the target protein-producing cells with the drug. The drug may adversely affect the producing cells, and an unnecessary drug may be mixed into the target protein. As a result of other proteins other than the target protein being translated by read-through, there is a demerit such as the possibility that an unexpected protein may be produced. Absent.
 以上のように、目的タンパク質の一部を細胞膜上に発現させた結果、セルソーターを用いて細胞膜上のタンパク質発現量を指標に高発現細胞を選択し、シングルクローン化する方法は知られているが、目的タンパク質の生産を行なう上で不要なタンパク質の発現や不要な薬剤を使用するなど、非効率的かつ不純物混入のリスクは未だ解決されていない。
 一方、抗体遺伝子をコードするゲノム配列を宿主細胞へ導入し、C末端側の抗体定常領域と膜型IgG配列の間に位置するイントロンを短くすることで、抗体遺伝子をコードするmRNAのalternative splicingを増加させ、膜型抗体の発現を増加させた、抗体発現細胞のライブラリーを作製する方法が知られている(特許文献5)。
As described above, as a result of expressing a part of the target protein on the cell membrane, a method of selecting a high-expressing cell using a cell sorter with the protein expression level on the cell membrane as an index and performing single cloning is known. However, the risk of inefficiency and contamination with impurities, such as the expression of unnecessary proteins and the use of unnecessary drugs for producing the target protein, has not been solved.
On the other hand, by introducing a genomic sequence encoding an antibody gene into a host cell and shortening the intron located between the C-terminal antibody constant region and the membrane-type IgG sequence, alternative splicing of the mRNA encoding the antibody gene can be achieved. A method for producing a library of antibody-expressing cells in which expression of membrane-type antibodies is increased (Patent Document 5) is known.
 また、ヒトゲノムに存在する抗体遺伝子を用いて、抗体遺伝子のストップコドンの5’末端側のスプライシングドナー配列を利用して、天然の膜貫通ドメインが結合した膜型抗体を発現させることで、抗体発現細胞を作製することが知られている(特許文献6)。しかしながら、これらの方法ではalternative splicingの割合が制御されたタンパク質生産細胞の作製は開示されていない。更に、医薬品などの抗体生産細胞としては、膜型抗体が最終医薬品における不純物として混入してしまうため、医薬品製造工程において問題になる。 In addition, using antibody genes present in the human genome, using a splicing donor sequence at the 5 'end of the stop codon of the antibody gene, expressing a membrane-type antibody bound with a natural transmembrane domain, antibody expression It is known to produce cells (Patent Document 6). However, these methods do not disclose the production of protein-producing cells in which the rate of alternative splicing is controlled. Furthermore, as antibody-producing cells such as pharmaceuticals, membrane-type antibodies are mixed as impurities in the final pharmaceutical, which causes a problem in the pharmaceutical manufacturing process.
特表2004-536571Special table 2004-536571 特表2003-525605Special table 2003-525605 米国特許第6,632,637号U.S. Patent No. 6,632,637 国際公開2005/073375号パンフレットInternational Publication No. 2005/073375 Pamphlet 特許第4553584号Japanese Patent No.4553584 国際公開2007/131774号パンフレットInternational Publication 2007/131774 Pamphlet
 タンパク質組成物を効率的かつ大量に製造し、タンパク質医薬品を安全に製造するための目的タンパク質発現ベクター、該発現ベクターが導入された細胞および該細胞を用いた目的タンパク質の製造方法が求められている。 There is a need for a target protein expression vector for efficiently and mass-producing a protein composition and safely manufacturing a protein drug, a cell into which the expression vector is introduced, and a method for producing the target protein using the cell .
 本発明は、以下の(1)~(13)に関する。
(1)スプライシングドナー配列を含む目的タンパク質をコードするDNA配列、ポリピリミジン配列、スプライシングアクセプター配列およびトランスメンブレン領域をコードするDNA配列を順番に含む、目的タンパク質の発現ベクター。
(2)スプライシングドナー配列を含む目的タンパク質をコードするDNA配列、第1ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列、トランスメンブレン領域をコードするDNA配列および第2ポリアデニレーションシグナル配列を順番に含む、目的タンパク質の発現ベクター。
(3)(1)又は(2)のいずれか1項に記載の発現ベクターが導入された細胞。
(4)細胞が、(a)および(b)から選ばれる細胞である、(3)に記載の細胞。
 (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmessenger RNA(mRNA)が、目的タンパク質の全mRNAの0.1%~5%発現している細胞。
 (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103 molecules/cell以上発現している細胞。
The present invention relates to the following (1) to (13).
(1) A target protein expression vector comprising a DNA sequence encoding a target protein including a splicing donor sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order.
(2) DNA sequence encoding target protein including splicing donor sequence, first polyadenylation signal sequence, polypyrimidine sequence, splicing acceptor sequence, DNA sequence encoding transmembrane region and second polyadenylation signal sequence An expression vector for the protein of interest, in order.
(3) A cell into which the expression vector according to any one of (1) or (2) has been introduced.
(4) The cell according to (3), wherein the cell is a cell selected from (a) and (b).
(A) A cell in which messenger RNA (mRNA) encoding a protein in which a target protein or a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 5% of the total mRNA of the target protein.
(B) A cell in which at least 1 × 10 3 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
(5)(3)又は(4)に記載の細胞の細胞膜上に発現している目的タンパク質または該目的タンパク質の断片を検出することを特徴とする、目的タンパク質を高生産する細胞のスクリーニング方法。
(6)(3)又は(4)に記載の細胞を製造する方法。
(7)(3)又は(4)に記載の細胞を培養し、目的タンパク質を培養液に蓄積させ、該細胞培養液から目的タンパク質を精製する工程を含む目的タンパク質の製造方法。
(8)(1)に記載の目的タンパク質の発現ベクターを宿主細胞へ導入する工程を含む、目的タンパク質および目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合されたタンパク質の両方を同時に発現させる方法。
(5) A screening method for cells that produce a target protein in a high amount, comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to (3) or (4).
(6) A method for producing the cell according to (3) or (4).
(7) A method for producing a target protein, comprising the steps of culturing the cell according to (3) or (4), accumulating the target protein in a culture solution, and purifying the target protein from the cell culture solution.
(8) Simultaneous expression of both the target protein and the target protein or a protein in which the target protein fragment and the transmembrane region are fused, including the step of introducing the target protein expression vector described in (1) into a host cell How to make.
(9) 目的タンパク質をコードするDNA配列を含むタンパク質発現ベクターが導入され、分泌型の目的タンパク質を発現している細胞であって、(a)および(b)から選ばれる目的タンパク質発現細胞。
 (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmessenger RNA(mRNA)が、目的タンパク質の全mRNAの0.1%~5%発現している細胞。
 (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103 molecules/cell以上発現している細胞。
(10)細胞が、(a)および(b)から選ばれる細胞である、(9)に記載の細胞。
 (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmRNAが、目的タンパク質の全mRNAの0.1%~2%発現している細胞。 
 (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103~1×107molecules/cell発現している細胞。
(9) A target protein-expressing cell selected from (a) and (b), into which a protein expression vector containing a DNA sequence encoding the target protein has been introduced and which expresses a secreted target protein.
(a) A cell in which messenger RNA (mRNA) encoding a protein in which a target protein or a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 5% of the total mRNA of the target protein.
(b) A cell expressing 1 × 10 3 molecules / cell or more of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused.
(10) The cell according to (9), wherein the cell is a cell selected from (a) and (b).
(a) A cell in which mRNA encoding a target protein or a protein in which a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 2% of the total mRNA of the target protein.
(b) A cell in which 1 × 10 3 to 1 × 10 7 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
(11)(9)又は(10)に記載の細胞の細胞膜上に発現している目的タンパク質又は該目的タンパク質の断片を検出することを特徴とする、目的タンパク質を高生産する細胞のスクリーニング方法。
(12)(9)又は(10)に記載の細胞を製造する方法。
(13)(9)又は(10)に記載の細胞を培養し、目的タンパク質を培養液に蓄積させ、該細胞培養液から目的タンパク質を精製する工程を含む目的タンパク質の製造方法。
(11) A screening method for cells that produce a target protein in a high amount, comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to (9) or (10).
(12) A method for producing the cell according to (9) or (10).
(13) A method for producing a target protein comprising the steps of culturing the cell according to (9) or (10), accumulating the target protein in a culture solution, and purifying the target protein from the cell culture solution.
 本発明によれば、1つの遺伝子を用いて目的タンパク質と、目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質とを同時に発現させることができる目的タンパク質の発現ベクター、目的タンパク質を発現する細胞をスクリーニングする方法、目的タンパク質を高生産する細胞、目的タンパク質を高生産する細胞の製造方法、該細胞を用いて該目的タンパク質を生産する方法を提供することができる。 According to the present invention, an expression vector for a target protein that can simultaneously express a target protein and a protein in which the target protein or a fragment of the target protein and a transmembrane region are fused using one gene, It is possible to provide a method for screening cells to be expressed, a cell that produces a target protein at a high level, a method for producing a cell that produces a target protein at a high level, and a method for producing the target protein using the cell.
抗ヒトOX40抗体のL鎖および抗ヒトCD98/LAT1抗体のH鎖をコードするDNA断片を含むヒト抗体発現ベクターpINC_OX40L/CD98Hベクターの模式図を示す。図中、CMVはCMVプロモーターを、Poly AはBGHポリアデニレーションサイトを、Hcは抗ヒトCD98/LAT1複合体抗体H鎖を、Lcは抗ヒトOX40抗体L鎖を、SVはSV40ポリアデニレーションサイトを、CHX-rはシクロヘキシミド耐性遺伝子をそれぞれ示す。FIG. 2 shows a schematic diagram of a human antibody expression vector pINC_OX40L / CD98H vector containing DNA fragments encoding the anti-human OX40 antibody L chain and the anti-human CD98 / LAT1 antibody H chain. In the figure, CMV is the CMV promoter, Poly A is the BGH polyadenylation site, Hc is the anti-human CD98 / LAT1 complex antibody heavy chain, Lc is the anti-human OX40 antibody light chain, and SV is the SV40 polyadenylation site. CHX-r represents a cycloheximide resistance gene, respectively. (a) 抗ヒトOX40抗体のL鎖、スプライシングドナー(SD)配列を含む抗ヒトCD98/LAT1抗体のH鎖をコードするDNA断片、第1bovine growth factor (BGH)ポリアデニレーションシグナル配列、ポリピリミジン配列(poly-Pyr)、スプライシングアクセプター(SA)配列、platelet derived growth factor receptor(PDGFR)トランスメンブレン領域(PDGFRtm)をコードするDNA配列を含む、分泌型ヒト抗体および膜結合型ヒト抗体発現ベクターpINC_TMSP_AC27の模式図を示す。図中、CMVはCMVプロモーターを、Poly AはBGHポリアデニレーションサイトを、Hcは抗ヒトCD98/LAT1複合体抗体H鎖を、Lcは抗ヒトOX40抗体L鎖を、SVはSV40ポリアデニレーションサイトを、CHX-rはシクロヘキシミド耐性遺伝子を、TMはPDGFRtmをそれぞれ示す。 (b) 分泌型ヒト型抗体および膜結合型ヒト抗体発現ベクターpINC_TMSP_AC27のうち、CD98/LAT1抗体のH鎖をコードするDNA断片(Hc)からplatelet derived growth factor receptorトランスメンブレン領域(PDGFRtm)下流の第2BGHポリアデニレーションシグナル配列までの領域の模式図を示す。図中、Hcは抗ヒトCD98/LAT1複合体抗体H鎖を、SDはスプライシングドナー配列を、polyAはBGHポリアデニレーションシグナル配列を、T/C25はチミンおよびシトシンからなる25塩基のポリピリミジン配列を、SAはスプライシングアクセプター配列を、TMはPDGFRtmをそれぞれ示す。(a) DNA fragment encoding anti-human CD98 / LAT1 antibody H chain, including anti-human OX40 antibody L chain, splicing donor (SD) sequence, first bovine growth factor (BGH) polyadenylation signal sequence, polypyrimidine sequence Of the secreted human antibody and membrane-bound human antibody expression vector pINC_TMSP_AC27, including DNA sequences encoding (poly-Pyr), splicing acceptor (SA) sequence, platelet 、 derived growth factor receptor (PDGFR) transmembrane region (PDGFRtm) A schematic diagram is shown. In the figure, CMV is the CMV promoter, Poly A is the BGH polyadenylation site, Hc is the anti-human CD98 / LAT1 complex antibody heavy chain, Lc is the anti-human OX40 antibody light chain, and SV is the SV40 polyadenylation site. CHX-r represents a cycloheximide resistance gene, and TM represents PDGFRtm. (b) Among the secreted human antibody and membrane-bound human antibody expression vector pINC_TMSP_AC27, the downstream of the platelet derived growth factor receptor membrane region (PDGFRtm) from the DNA fragment (Hc) encoding the H chain of the CD98 / LAT1 antibody. A schematic diagram of the region up to the 2BGH polyadenylation signal sequence is shown. In the figure, Hc is the anti-human CD98 / LAT1 complex antibody heavy chain, SD is the splicing donor sequence, polyA is the BGH polyadenylation signal sequence, and T / C25 is the 25-base polypyrimidine sequence consisting of thymine and cytosine. , SA represents a splicing acceptor sequence, and TM represents PDGFRtm.
抗ヒトOX40抗体のL鎖、SD配列を含む抗ヒトCD98/LAT1抗体のH鎖をコードするDNA断片、第1BGH-polyA配列、poly-Pyr配列、SA配列、PDGFRtmをコードするDNA配列を含む、分泌型ヒト抗体および膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC27/TnPMugの模式図を示す。図中、CMVはCMVプロモーターを、Poly AはBGHポリアデニレーションサイトを、Hcは抗ヒトCD98/LAT1複合体抗体H鎖を、Lcは抗ヒトOX40抗体L鎖を、SVはSV40ポリアデニレーションサイトを、CHX-rはシクロヘキシミド耐性遺伝子を、TMはPDGFRtmを、Tol2-LはレフトエンドTol2トランスポゾンを、Tol2-RはライトエンドTol2トランスポゾンをそれぞれ示す。Including anti-human OX40 antibody L chain, DNA fragment encoding anti-human CD98 / LAT1 antibody H chain containing SD sequence, 1st BGH-polyA sequence, poly-Pyr sequence, SA sequence, including DNA sequence encoding PDGFRtm, A schematic diagram of a secreted human antibody and a membrane-bound human antibody expressing Tol2 transposon vector AC27 / TnPMug is shown. In the figure, CMV is the CMV promoter, Poly A is the BGH polyadenylation site, Hc is the anti-human CD98 / LAT1 complex antibody heavy chain, Lc is the anti-human OX40 antibody light chain, and SV is the SV40 polyadenylation site. CHX-r represents a cycloheximide resistance gene, TM represents PDGFRtm, Tol2-L represents a left-end Tol2 transposon, and Tol2-R represents a right-end Tol2 transposon. pINC_TMSP_AC27ベクターで形質転換したCHO-K1細胞を培養した時の、分泌型抗体の抗体濃度(mg/L)と,PEコンジュゲート抗ヒトIgGマウス抗体で染色した時の蛍光強度の相関を示す。縦軸は蛍光強度(FI)、横軸は培養上清の抗体濃度(mg/L)を示す。The correlation between the antibody concentration of the secretory antibody (mg / L) and the fluorescence intensity when stained with a PE-conjugated anti-human IgG mouse antibody when CHO-K1 cells transformed with the pINC_TMSP_AC27 vector are cultured is shown. The vertical axis represents the fluorescence intensity (FI), and the horizontal axis represents the antibody concentration (mg / L) of the culture supernatant. (a)フローサイトメーター(FCM)解析におけるforward scatter (FS)とside scatter(SS)で展開したゲート図を示す。 (b)PEコンジュゲート抗ヒトマウス抗体結合による蛍光強度を横軸に、縦軸にカウント数を示す。ソーティングした全カウント中の0.1%画分を横線で示す。(A) The gate diagram developed by forward scatter (FS) and side scatter (SS) in flow cytometer (FCM) analysis is shown. (B) Fluorescence intensity due to binding of PE-conjugated anti-human mouse antibody is shown on the horizontal axis, and the number of counts on the vertical axis. The horizontal line represents the 0.1% fraction of the total count. 分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC10/TnPMug(a)、AC17/TnPMug(b)又はAC27/TnPMug(c)ベクターが導入されたCHO-K1細胞を培養した時の、分泌型抗体の抗体濃度(mg/L)を縦軸、FITCコンジュゲートrecombinant protein A/Gの結合によるFITC蛍光強度を横軸に示す。Secreted / membrane-bound human antibody-expressing Tol2 transposon vector AC10 / TnPMug (a), AC17 / TnPMug (b) or AC27 / TnPMug (c) secreted antibody when cultured with CHO-K1 cells Antibody concentration (mg / L) is shown on the vertical axis, and FITC fluorescence intensity due to the binding of the FITC-conjugated recombinant protein A / G is shown on the horizontal axis. 分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC10/TnPMug、AC17/TnPMug又はAC27/TnPMugベクターが導入されたCHO-K1細胞における(a)膜結合型ヒト抗体の全H鎖mRNAの解析、並びに(b)分泌型ヒト抗体および膜結合型ヒト抗体H鎖mRNA解析のreal-time PCR模式図を示す。図中、Fw1はprobe 1 Fwプライマーを、Rv1はprobe 1 Rvプライマーを、Fw3はprobe 3 Fwプライマーを、Rv3はprobe 3 Rvプライマーをそれぞれ示す。(A) analysis of all H chain mRNA of membrane-bound human antibody in CHO-K1 cells into which secreted / membrane-bound human antibody-expressing Tol2 transposon vector AC10 / TnPMug, AC17 / TnPMug or AC27 / TnPMug vector was introduced, and (b) Real-time PCR schematic diagram of secreted human antibody and membrane-bound human antibody H chain mRNA analysis is shown. In the figure, Fw1 represents a probe-1 Fw primer, Rv1 represents a probe-1 Rf primer, Fw3 represents a probe 3 Fw primer, and Rv3 represents a probe 3 Rv primer. 分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC10/TnPMug、AC17/TnPMug又はAC27/TnPMugベクターが導入されたCHO-K1細胞の抗体H鎖mRNA発現量の解析結果を示す。(a)は、AC10/TnPMugベクターを導入した細胞での発現を1とした時の、各細胞における膜結合型ヒト抗体H鎖のmRNA発現量を示す。(b)は、AC10/TnPMugベクターを導入した細胞での発現を1とした時の、各細胞における分泌型ヒト抗体H鎖のmRNAおよび膜結合型ヒト抗体H鎖のmRNAを含む全抗体H鎖のmRNA発現量を示す。(c)は、全抗体H鎖のmRNA発現量中の膜結合型ヒト抗体H鎖のmRNA発現量の割合(%)を示す。The analysis result of the antibody H chain mRNA expression level of the CHO-K1 cell into which the secreted / membrane-bound human antibody-expressing Tol2 transposon vector AC10 / TnPMug, AC17 / TnPMug, or AC27 / TnPMug vector was introduced is shown. (A) shows the mRNA expression level of the membrane-bound human antibody H chain in each cell when the expression in the cell into which the AC10 / TnPMug vector is introduced is 1. (B) shows the total antibody H chain including the secretory human antibody H chain mRNA and the membrane-bound human antibody H chain mRNA in each cell when the expression in the cell into which the AC10 / TnPMug vector is introduced is 1. Shows the mRNA expression level. (C) shows the ratio (%) of the mRNA expression level of the membrane-bound human antibody H chain in the mRNA expression level of all antibody H chains. 膜結合型Fab断片発現ベクターによってコードされる膜結合型Fab断片の模式図を示す。図中、VHは重鎖可変領域を、CH1~3は重鎖定常領域を、SDはスプライシングドナー配列に相当する領域を、SAはスプライシングアクセプター配列に相当する領域を、PDGFRtmはplatelet derived growth factor receptor(PDGFR)トランスメンブレン領域をそれぞれ示す。A schematic diagram of a membrane-bound Fab fragment encoded by a membrane-bound Fab fragment expression vector is shown. In the figure, VH is the heavy chain variable region, CH1-3 is the heavy chain constant region, SD is the region corresponding to the splicing donor sequence, SA is the region corresponding to the splicing acceptor sequence, and PDGFRtm is the platelet derived growth factor Each of the receptor (PDGFR) transmembrane regions is shown.
 本発明において、目的タンパク質とトランスメンブレン領域とが融合したタンパク質を、膜結合型タンパク質と定義する。また、目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質を、膜結合型タンパク質の断片と定義する。
 本発明において、DNA配列はアデニン、チミン、グアニンおよびシトシンの塩基からなり、それぞれA、T、GおよびCと略記する。また、RNA配列は、アデニン、ウラシル、グアニンおよびシトシンの塩基からなり、それぞれA、U、GおよびCと略記する。
In the present invention, a protein in which a target protein and a transmembrane region are fused is defined as a membrane-bound protein. A protein in which a fragment of a target protein and a transmembrane region are fused is defined as a fragment of a membrane-bound protein.
In the present invention, the DNA sequence consists of adenine, thymine, guanine and cytosine bases and is abbreviated as A, T, G and C, respectively. The RNA sequence consists of adenine, uracil, guanine and cytosine bases and is abbreviated as A, U, G and C, respectively.
 本発明において発現ベクターとは、外来性DNAが組込まれており、導入した宿主細胞内で増えることのできるDNAを意味しており、単にベクターと記載する場合もある。該ベクターには、外来性DNAを発現させるために必要な遺伝子発現制御領域および目的タンパク質をコードする配列を有する核酸配列を含む。該遺伝子発現制御領域としては、例えば、エンハンサー、プロモーターおよびターミネーターなどが挙げられる。 In the present invention, the expression vector means a DNA in which exogenous DNA is incorporated and can increase in the introduced host cell, and may be simply described as a vector. The vector includes a nucleic acid sequence having a gene expression control region necessary for expressing foreign DNA and a sequence encoding a target protein. Examples of the gene expression control region include enhancers, promoters, and terminators.
 本発明においてスプライシングとは、messenger RNA(mRNA)前駆体(pre-mRNA)に存在するスプライシングドナー配列(splicing donor sequence, SDと略記する)、ブランチ部位(branch site)およびスプライシングアクセプター配列(splicing acceptor, SAと略記する)が、RNAとタンパク質からなる複合体であるスプライソソームの反応による切断結合反応により、エキソンからイントロンが排除される反応をいう。 In the present invention, splicing refers to a splicing donor sequence (abbreviated as SD), a branch site (branch site), and a splicing acceptor sequence (splicing acceptor sequence) present in a messenger 存在 RNA (mRNA) precursor (pre-mRNA). , Abbreviated as SA) refers to a reaction in which an intron is excluded from an exon by a cleavage-binding reaction by a spliceosome reaction that is a complex of RNA and protein.
 本発明の発現ベクターとしては、1つの遺伝子上にシス作動性に配置された目的タンパク質をコードするDNA配列およびトランスメンブレン領域をコードするDNA配列を含む発現ベクターが挙げられる。当該ベクターを宿主細胞に組込むことにより、メッセンジャーRNA(mRNA)のスプライシング反応によって目的タンパク質又は該目的タンパク質の断片と、トランスメンブレン領域とが融合したタンパク質(膜結合型タンパク質又は膜結合型タンパク質断片)と、分泌型目的タンパク質との両方を同時に発現させることができる。 Examples of the expression vector of the present invention include an expression vector containing a DNA sequence encoding a target protein and a DNA sequence encoding a transmembrane region, which are cis-actuated on one gene. By integrating the vector into a host cell, a protein (membrane-bound protein or membrane-bound protein fragment) in which the target protein or a fragment of the target protein and the transmembrane region are fused by a splicing reaction of messenger RNA (mRNA) Both of the secretory target proteins can be expressed simultaneously.
 本発明の発現ベクターとして具体的には、スプライシングドナー配列を含む目的タンパク質をコードするDNA配列、ポリピリミジン配列、スプライシングアクセプター配列及びトランスメンブレン領域をコードするDNA配列を順番に含む発現ベクターが挙げられる。
 そのような本発明の発現ベクターとしてさらに具体的には、タンパク質をコードするDNA配列のストップコドン(TAG、TAA又はTGA)の5′末端側に存在するスプライシングドナー配列を含む目的タンパク質をコードするDNA配列、ポリピリミジン配列、スプライシングアクセプター配列及びトランスメンブレン領域をコードするDNA配列を含む発現ベクターが挙げられる。
Specific examples of the expression vector of the present invention include an expression vector comprising a DNA sequence encoding a target protein including a splicing donor sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order. .
More specifically, such an expression vector of the present invention, more specifically, a DNA encoding a target protein containing a splicing donor sequence present at the 5 ′ end of a stop codon (TAG, TAA or TGA) of the DNA sequence encoding the protein. An expression vector comprising a DNA sequence encoding a sequence, a polypyrimidine sequence, a splicing acceptor sequence and a transmembrane region.
 スプライシングドナー配列は、天然に存在する配列であってもよいし、人工的に挿入された配列であってもよい。人工的にスプライシングドナー配列を発現ベクターに挿入する際は、挿入したスプライシングドナー配列によってコードされるアミノ酸配列のコドンと目的タンパク質のコドンとのフレームが一致するように設計することで、人工的なスプライシングドナー配列を発現ベクターに挿入することができる。 The splicing donor sequence may be a naturally occurring sequence or an artificially inserted sequence. When an artificial splicing donor sequence is inserted into an expression vector, artificial splicing is performed by designing the codon of the amino acid sequence encoded by the inserted splicing donor sequence and the codon of the target protein to match. Donor sequences can be inserted into expression vectors.
 また、本発明の発現ベクターとしては、スプライシングドナー配列を含むタンパク質をコードするDNA配列、第1ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列およびトランスメンブレン領域をコードするDNA配列を順番に含む発現ベクターも挙げられる。
 さらに、本発明の発現ベクターとしては、スプライシングドナー配列を含むタンパク質をコードするDNA配列、第1ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列、トランスメンブレン領域をコードするDNA配列および第2ポリアデニレーションシグナル配列を順番に含む発現ベクターが挙げられる。
The expression vector of the present invention includes a DNA sequence encoding a protein containing a splicing donor sequence, a first polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order. Also included are expression vectors.
Further, the expression vector of the present invention includes a DNA sequence encoding a protein containing a splicing donor sequence, a first polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence, a DNA sequence encoding a transmembrane region, and a second sequence. An expression vector containing a polyadenylation signal sequence in order is mentioned.
 本発明の発現ベクターとしては、スプライシングドナー配列を含むタンパク質をコードするDNA配列の3′末端側に、ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列およびトランスメンブレン領域をコードするDNA配列を含む発現ベクターが挙げられる。
 発現ベクターとしては、動物細胞を宿主として用いる場合、動物細胞中で機能を発揮できるものであればいずれも用いることができ、例えば、pcDNAI、pCDM8(フナコシ社製)、pAGE107[特開平3-22979;Cytotechnology, 3, 133 (1990)]、pAS3-3(特開平2-227075)、pCDM8[Nature, 329, 840 (1987)]、pcDNAI/Amp(インビトロジェン社製)、pcDNA3.1(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J. Biochemistry, 101, 1307 (1987)]、pAGE210、pME18SFL3、pKANTEX93 (WO97/10354)およびトランスポゾンベクター(WO2010/143698)などが挙げられる。
The expression vector of the present invention includes a DNA sequence encoding a polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence and a transmembrane region on the 3 ′ end side of a DNA sequence encoding a protein containing a splicing donor sequence. And an expression vector containing.
As the expression vector, when animal cells are used as a host, any of those capable of functioning in animal cells can be used. For example, pcDNAI, pCDM8 (manufactured by Funakoshi), pAGE107 [JP-A-3-22979]. ; Cytotechnology, 3, 133 (1990)], pAS3-3 (JP-A-2-27075), pCDM8 [Nature, 329, 840 (1987)], pcDNAI / Amp (Invitrogen), pcDNA3.1 (Invitrogen) ), PREP4 (manufactured by Invitrogen), pAGE103 [J. Biochemistry, 101, 1307 (1987)], pAGE210, pME18SFL3, pKANTEX93 (WO97 / 10354), and transposon vectors (WO2010 / 143698).
 プロモーターとしては、哺乳動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、サイトメガロウイルス(CMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター、モロニーマウス白血病ウイルス(moloney murine leukemia virus)のプロモーターおよびエンハンサー等を挙げることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。 Any promoter can be used as long as it can function in mammalian cells. For example, cytomegalovirus (CMV) IE (immediate early) gene promoter, SV40 early promoter, retrovirus promoter, metallothionein promoter, heat shock promoter, SRα promoter, moloney murine leukemia virus promoter And enhancers. In addition, an IE gene enhancer of human CMV may be used together with a promoter.
 本発明の発現ベクターは、細胞内に導入されることにより、タンパク質をコードする成熟mRNAの生成と同時に、スプライシング反応により膜結合型タンパク質又は該膜結合型タンパク質断片をコードした成熟mRNAを生成することができる。
 本発明においてスプライシングドナー配列としては、天然に存在し、かつスプライシングドナー配列として機能することが知られている配列、および人工的に作製されたスプライシングドナー配列のいずれのものでもよく、例えばM(A/G/T)GGT(A/G)(A/T)(A/G)(A/T)を含む配列(MはA or C)、好ましくはGTA(A/T)GTを含む配列、GTATGTを含む配列、M(A/G)GGT(A/G)A(A/G)Tを含む配列(MはA or C)(米国特許第6,642,028号)が挙げられる。
When the expression vector of the present invention is introduced into a cell, it generates a mature mRNA encoding a membrane-bound protein or the membrane-bound protein fragment by a splicing reaction simultaneously with the generation of a mature mRNA encoding the protein. Can do.
In the present invention, the splicing donor sequence may be any of a sequence that exists in nature and is known to function as a splicing donor sequence, and an artificially created splicing donor sequence, such as M (A / G / T) GGT (A / G) (A / T) (A / G) (A / T) -containing sequence (M is A or C), preferably GTA (A / T) GT-containing sequence, Examples include sequences containing GTATGT and sequences containing M (A / G) GGT (A / G) A (A / G) T (M is A or C) (US Pat. No. 6,642,028).
 スプライシングドナー配列としてより具体的には、CAGGTAAGT(配列番号1)を含む配列、GACGTAAGT(配列番号2)を含む配列(Lucas et al., Nucleic Acids Research, 24, 1774-1779、1996.)、CGGGTAAAT(配列番号3)を含む配列が挙げられる。
 また、スプライシングドナー配列は、上述のコンセンサス配列とわずかに異なる配列であっても機能する場合があるため、上述のコンセンサス配列と相同性が80%以上、90%以上、95%以上であり、かつスプライシング反応を起こすスプライシングドナー配列も本発明に用いることができる。
More specifically, the splicing donor sequence includes a sequence containing CAGGTAAGT (SEQ ID NO: 1), a sequence containing GACGTAAGT (SEQ ID NO: 2) (Lucas et al., Nucleic Acids Research, 24, 1774-1779, 1996.), CGGGTAAAT And a sequence containing (SEQ ID NO: 3).
Further, since the splicing donor sequence may function even if it is a slightly different sequence from the above consensus sequence, the homology with the above consensus sequence is 80% or more, 90% or more, 95% or more, and A splicing donor sequence that causes a splicing reaction can also be used in the present invention.
 イムノグロブリンの定常領域には、天然に存在するスプライシングドナー配列を含む配列が存在しており、イムノグロブリン定常領域をスプライシングドナーとして応用することもできる。
 本発明においてスプライシングアクセプター配列としては、N(C/T)AGGを含む配列(Nは何れのヌクレオチドでもよい)が挙げられる。スプライシングアクセプター配列として具体的には、CAGAA(配列番号4)を含む配列、GCAGG(配列番号5)を含む配列が挙げられる。
The immunoglobulin constant region includes a sequence containing a naturally occurring splicing donor sequence, and the immunoglobulin constant region can also be applied as a splicing donor.
In the present invention, examples of the splicing acceptor sequence include a sequence containing N (C / T) AGG (N may be any nucleotide). Specific examples of the splicing acceptor sequence include a sequence containing CAGAA (SEQ ID NO: 4) and a sequence containing GCAGG (SEQ ID NO: 5).
 また、スプライシングアクセプター配列は、上述のコンセンサス配列とわずかに異なる配列であっても機能する場合があるため、上述のコンセンサス配列と相同性が80%以上、90%以上、95%以上であり、かつスプライシング反応を起こすスプライシングアクセプター配列も本発明に用いることができる。
 本発明において、スプライシングドナー配列とスプライシングアクセプター配列の間にはブランチ部位が存在する。
In addition, since the splicing acceptor sequence may function even if the sequence is slightly different from the above consensus sequence, the homology with the above consensus sequence is 80% or more, 90% or more, 95% or more, A splicing acceptor sequence that causes a splicing reaction can also be used in the present invention.
In the present invention, a branch site exists between the splicing donor sequence and the splicing acceptor sequence.
 ブランチ部位としては、(C/T)N(C/T)T(A/G)A(C/T)を含む配列(Nは何れのヌクレオチドでもよい)があげられ、スプライシングドナー配列の3’側に存在する。具体的には、CATTAACTを含む配列、TCCTAATなどが挙げられる。
 また、スプライシングドナー配列とブランチ部位の間には、ピリミジン塩基であるCおよび/又はTからなる塩基が連続した配列である、ポリピリミジン配列(以下、Poly-Pyrと略記することもある)が存在する。
Examples of the branch site include a sequence containing (C / T) N (C / T) T (A / G) A (C / T) (N may be any nucleotide), and 3 'of the splicing donor sequence. Exists on the side. Specific examples include sequences including CATTAACT, TCCTAAT, and the like.
In addition, a polypyrimidine sequence (hereinafter sometimes abbreviated as Poly-Pyr) is a sequence in which bases consisting of C and / or T, which are pyrimidine bases, are continuous between the splicing donor sequence and the branch site. To do.
 本発明におけるポリピリミジン配列でピリミジン塩基が連続する塩基数としては、8塩基以上であればよいが、好ましくは、8~30塩基、9~30塩基、10~30塩基、11~30塩基、12~30塩基、13~30塩基、15~30塩基、より好ましくは15~29塩基、15~28塩基、15~27塩基、15~26塩基および15~25塩基の長さが挙げられる。
 Poly-Pyr配列として具体的には、配列番号6、配列番号7および配列番号8で示す塩基配列などが挙げられる。
The number of consecutive pyrimidine bases in the polypyrimidine sequence in the present invention may be 8 bases or more, but preferably 8-30 bases, 9-30 bases, 10-30 bases, 11-30 bases, 12 Examples include lengths of -30 bases, 13-30 bases, 15-30 bases, more preferably 15-29 bases, 15-28 bases, 15-27 bases, 15-26 bases and 15-25 bases.
Specific examples of the Poly-Pyr sequence include the nucleotide sequences represented by SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.
 また、本発明においてポリピリミジン配列はスプライシングドナー配列とスプライシングアクセプター配列の間かつポリアデニレーション配列とスプライシングアクセプター配列の間にに存在する。本発明の発現ベクターが第1ポリアデニレーションシグナル配列および第2ポリアデニレーションシグナル配列を含む場合、ポリピリミジン配列は第1ポリアデニレーションシグナル配列とスプライシングアクセプター配列の間に存在する。 In the present invention, the polypyrimidine sequence is present between the splicing donor sequence and the splicing acceptor sequence and between the polyadenylation sequence and the splicing acceptor sequence. When the expression vector of the present invention includes a first polyadenylation signal sequence and a second polyadenylation signal sequence, the polypyrimidine sequence is present between the first polyadenylation signal sequence and the splicing acceptor sequence.
 本発明の目的タンパク質および膜結合型タンパク質の両方を同時に発現できるベクターが挿入された細胞では、該導入されたベクターから転写された目的タンパク質をコードするmRNAと転写後のスプライシングによって生成する膜結合型タンパク質又は該膜結合型タンパク質断片をコードするmRNAとの両方を同時に発現しており、分泌型タンパク質と膜結合型タンパク質又は該膜結合型タンパク質断片の両方を発現している。 In a cell into which a vector capable of simultaneously expressing both the target protein and the membrane-bound protein of the present invention is inserted, the membrane-bound type produced by splicing after the mRNA encoding the target protein transcribed from the introduced vector Both the protein and the mRNA encoding the membrane-bound protein fragment are simultaneously expressed, and both the secreted protein and the membrane-bound protein or the membrane-bound protein fragment are expressed.
 目的タンパク質が分泌型タンパク質の場合、分泌型タンパク質(sP)と膜結合型タンパク質又は該膜結合型タンパク質断片(mP)との発現量比は、sP/mP=1000~50の範囲であることが好ましい。本発明において用いられるpoly-Pyr配列の長さを調節することで、sP/mP比を制御することができる。具体的には、poly-Pyr配列を短くするとスプライシング反応効率が低下し、poly-Pyr配列を長くするとスプライシング反応効率が増加する。 When the target protein is a secreted protein, the expression level ratio between the secreted protein (sP) and the membrane-bound protein or the membrane-bound protein fragment (mP) may be in the range of sP / mP = 1000-50. preferable. By adjusting the length of the poly-Pyr sequence used in the present invention, the sP / mP ratio can be controlled. Specifically, when the poly-Pyr sequence is shortened, the splicing reaction efficiency decreases, and when the poly-Pyr sequence is lengthened, the splicing reaction efficiency increases.
 本発明においてトランスメンブレン領域としては、細胞膜を貫通又は細胞膜にアンカーリングされているタンパク質であればいずれのタンパク質由来のアミノ酸配列でも利用可能である。本発明に用いられるトランスメンブレン領域としては、1~12回膜貫通型膜タンパク質又はGPIアンカータンパク質(欧州特許公開公報第1716233号)等いずれのものでもよく、細胞膜型リガンド(又は前駆体リガンド)、細胞膜受容体、T細胞受容体、接着分子、主要組織適合遺伝子複合体(major histocompatibility complex; MHC)、膜型イムノグロブリンおよびGPIアンカータンパク質から選ばれる膜タンパク質由来のトランスメンブレン領域が挙げられる。 In the present invention, an amino acid sequence derived from any protein can be used as the transmembrane region as long as the protein penetrates the cell membrane or is anchored to the cell membrane. The transmembrane region used in the present invention may be any of 1 to 12 transmembrane membrane proteins or GPI anchor proteins (European Patent Publication No. 1716233), such as a cell membrane ligand (or precursor ligand), Examples include a transmembrane region derived from a membrane protein selected from a cell membrane receptor, a T cell receptor, an adhesion molecule, a major histocompatibility complex (MHC), a membrane immunoglobulin and a GPI anchor protein.
 細胞膜型リガンドとしては、epidermal growth factor (EGF)リガンドファミリーである、EGF、transforming growth factor-α(TGF-α)、amphiregulin、betacellulin、epiregulin、heparin-binding epidermal growth factor-like growth factor(HB-EGF)、NTAK、vascular endothelial growth factor(VEGF)およびheregulin(neuregulin)、FASリガンド、TRAILリガンドなどのトランスメンブレン領域が挙げられる。 Cell membrane ligands include epidermal growth factor (EGF) ligand family, EGF, transforming growth factor-α (TGF-α), amphiregulin, betacellulin, epiregulin, heparin-binding epidermal growth factor-like growth factor (HB-EGF ), Transmembrane regions such as NTAK, vascular endothelial growth factor (VEGF) and heregulin (neuregulin), FAS ligand, TRAIL ligand.
 細胞膜受容体としては、EGF receptor (EGFR)、insulin-like growth factor receptor I (IGF-IR)、hepatocyte growth factor receptor (HGFR, cMet)、platelet derived growth factor receptor (PDGFR)、vascular endothelial growth factor receptor (VEGFR)、アミノ酸トランスポーター、テトラスパニン型タンパク質、G-protein coupled receptor (GPCR)、Cluster of differentiation (CD)抗原などのトランスメンブレン領域が挙げられる。 Cell membrane receptors include EGF receptor (EGFR), insulin-like growth factor receptor I (IGF-IR), hepatocyte growth factor receptor (HGFR, cMet), platelet derived growth factor receptor (PDGFR), vascular endothelial growth Transmembrane regions such as VEGFR), amino acid transporters, tetraspanin-type proteins, G-protein coupled receptors (GPCR), and Cluster of differentiation (CD) antigens.
 MHCとしては、MHC class I およびclass IIのトランスメンブレン領域が挙げられる。
 膜型イムノグロブリンとしては、膜結合型IgM、IgD、IgG、IgEおよびIgA抗体のトランスメンブレン領域が挙げられる(Peterson et al., P.N.A.S., 83, 8883-8887, 1986、Rebecca et al., 32, 277-285, 1995、Tsurushita and Korn et al., Mol. Cell Biol., 1987, 7, 2602-2605)。
Examples of MHC include MHC class I and class II transmembrane regions.
Membrane immunoglobulins include transmembrane regions of membrane-bound IgM, IgD, IgG, IgE and IgA antibodies (Peterson et al., PNAS, 83, 8883-8887, 1986, Rebecca et al., 32, 277-285, 1995, Tsurushita and Korn et al., Mol. Cell Biol., 1987, 7, 2602-2605).
 本発明のトランスメンブレン領域として、具体的にはPDGFRのトランスメンブレン領域が挙げられる。該トランスメンブレン領域をコードするDNAとしては配列番号12で示される塩基配列からなるDNAが挙げられる。
 本発明においてポリアデニレーションシグナル(以下、polyAと略記する)としては、AATAAAコンセンサス配列を含みかつポリアデニル化できれば何れのものでもよいが、具体的には、simian virus 40 (SV40) late polyadenylation signal (Scheck et al., Mol. Cell Biol., 12, 5386-5393, 1992.)、HIV-1 poly A (Klasens et al., 26, 1870-1876, 1998.)、βglobin poly A (Gil et al., Cell, 49, 399-406, 1987.)、HSV TK poly A (Cole et al., Mol. Cell Biol., 5, 2104-2113, 1985.)、polyoma virus poly A (Batt et al., 15, 4783-4790, 1995.)およびbovine growth hormone poly A (Gimmi et al., Necleic Acids Res., 17, 6983-6998, 1989.) βgalactosidase poly A、αglobin poly A、human growth hormone poly A (特開2002-233374号公報)などが挙げられる。
Specific examples of the transmembrane region of the present invention include the PDGFR transmembrane region. Examples of the DNA encoding the transmembrane region include a DNA comprising the base sequence represented by SEQ ID NO: 12.
In the present invention, the polyadenylation signal (hereinafter abbreviated as polyA) may be any polyadenylation signal as long as it contains an AATAAA consensus sequence and can be polyadenylated, and specifically, siman virus 40 (SV40) late polyadenylation signal (Scheck et al., Mol. Cell Biol., 12, 5386-5393, 1992.), HIV-1 poly A (Klasens et al., 26, 1870-1876, 1998.), βglobin poly A (Gil et al., Cell, 49, 399-406, 1987.), HSV TK poly A (Cole et al., Mol.Cell Biol., 5, 2104-2113, 1985.), polyoma virus poly A (Batt et al., 15, 4783-4790, 1995.) and bovine growth hormone poly A (Gimmi et al., Necleic Acids Res., 17, 6983-6998, 1989.) βgalactosidase poly A, αglobin poly A, human growth hormone poly A (JP 2002) -233374).
 本発明において、第1ポリアデニレーションシグナル又は第2ポリアデニレーションシグナルとしては、同一の配列であってもよいし、異なる2種類のpoly Aシグナルを用いてもよい。
 本発明において目的タンパク質をコードするDNAとは、タンパク質の全長又は部分断片のアミノ酸配列をコードするDNA配列であって、開始コドン(ATG)から始まりストップコドン(TAA、TAG又はTGA)までのDNA配列をいう。タンパク質の全長又は該タンパク質の部分断片は、機能性タンパク質であってもよいし単なる構造タンパク質であってもいずれでもよい。
In the present invention, as the first polyadenylation signal or the second polyadenylation signal, the same sequence may be used, or two different types of poly A signals may be used.
The DNA encoding the target protein in the present invention is a DNA sequence encoding the amino acid sequence of the full-length protein or a partial fragment of the protein, and starting from the start codon (ATG) to the stop codon (TAA, TAG or TGA) Say. A full-length protein or a partial fragment of the protein may be a functional protein or a simple structural protein.
 本発明においてスプライシングドナー配列を含むタンパク質をコードするDNAは、目的タンパク質のアミノ酸配列をコードするDNA配列中に、天然に存在しているスプライシングドナー配列を含む目的タンパク質をコードするDNA配列、目的タンパク質のアミノ酸配列をコードするDNA配列中に、人工的に挿入されたスプライシングドナー配列を含む目的タンパク質をコードするDNA配列などがあげられ、いずれのものでもよい。 In the present invention, a DNA encoding a protein containing a splicing donor sequence is a DNA sequence encoding a target protein containing a splicing donor sequence that exists in nature in the DNA sequence encoding the amino acid sequence of the target protein. Examples of the DNA sequence encoding the target protein include a splicing donor sequence artificially inserted in the DNA sequence encoding the amino acid sequence, and any of them may be used.
 スプライシングドナーを含む目的タンパク質をコードするDNA配列として具体的には、発現させたい目的タンパク質の全長又は部分断片のストップコドンの5′末端側にスプライシングドナー配列が存在するDNA配列、および発現させたい目的タンパク質の全長又は部分断片のストップコドンの5′末端側に人工的にスプライシングドナー配列を挿入したDNA配列が挙げられる。 Specifically, as a DNA sequence encoding a target protein including a splicing donor, a DNA sequence having a splicing donor sequence at the 5 ′ end side of the stop codon of the full length or partial fragment of the target protein to be expressed, and a purpose to be expressed Examples thereof include a DNA sequence in which a splicing donor sequence is artificially inserted at the 5 ′ end side of the stop codon of the full-length protein or a partial fragment.
 スプライシングドナー配列を挿入する際は、SD配列が挿入されたDNA配列のコドンが目的タンパク質のアミノ酸配列をコードするコドンと一致するように作製し、かつスプライシング反応の結果生成するDNA配列のコドンが膜結合型タンパク質のアミノ酸配列のコドンと一致するようにスプライシングドナー配列を設計することで、目的タンパク質および膜結合型タンパク質又は該膜結合型タンパク質の断片を同時に発現するベクターを作製することができる。 When inserting a splicing donor sequence, the codon of the DNA sequence into which the SD sequence is inserted matches the codon encoding the amino acid sequence of the target protein, and the codon of the DNA sequence generated as a result of the splicing reaction is a membrane. By designing the splicing donor sequence so as to match the codon of the amino acid sequence of the bound protein, a vector that simultaneously expresses the target protein and the membrane-bound protein or a fragment of the membrane-bound protein can be prepared.
 例えば、イムノグロブリン断片を膜結合タンパク質断片として発現させる場合は、抗体定常領域にスプライシングドナー配列を導入して行うことができる。抗体定常領域としては、CH1ドメイン、ヒンジドメイン、CH2ドメインおよびCH3ドメインのいずれでもよいが、CH2ドメインへのスプライシングドナー配列の挿入が好適に挙げられる。CH2ドメインへスプライシングドナー配列を挿入した抗体発現ベクターを用いた場合、分泌型抗体と、CH2ドメインでスプライシングしてトランスメンブレン領域と融合したFab断片を、該ベクターを導入した細胞の細胞膜上に発現させることができる。 For example, when an immunoglobulin fragment is expressed as a membrane-bound protein fragment, it can be carried out by introducing a splicing donor sequence into the antibody constant region. The antibody constant region may be any of a CH1 domain, a hinge domain, a CH2 domain, and a CH3 domain, and preferred examples include insertion of a splicing donor sequence into the CH2 domain. When using an antibody expression vector in which a splicing donor sequence is inserted into the CH2 domain, a secretory antibody and a Fab fragment spliced with the CH2 domain and fused to the transmembrane region are expressed on the cell membrane of the cell into which the vector has been introduced. be able to.
 具体的には、IgG1抗体のCH2ドメインの51番目のグリシンをコードするコドンがGGCからGGTに置換されたSD配列、IgG1抗体のCH2ドメインの6番目のグリシンをコードするコドンがGGGからGGTに置換されたSD配列、IgG1抗体のCH2ドメインの86番目のグリシンをコードするコドンがGGCからGGTに置換されたSD配列、及びIgG1抗体のCH2ドメインの48番目のチロシンをコードするコドンがTACからTATに置換されたSD配列などが挙げられる。 Specifically, the codon encoding the 51st glycine of the IgG2 antibody CH2 domain was replaced from GGC to GGT, and the codon encoding the 6th glycine of the IgG2 antibody CH2 domain was replaced from GGG to GGT SD sequence in which the codon encoding the 86th glycine of the CH2 domain of IgG1 antibody is replaced from GGC to GGT, and the codon encoding the 48th tyrosine of the CH2 domain of IgG1 antibody is changed from TAC to TAT. Examples include substituted SD sequences.
 スプライシングドナー配列は、イムノグロブリン定常領域中に天然に存在しているものや、人工的な配列を用いることもでき、発現させたい目的タンパク質と膜結合型タンパク質又は該膜結合型タンパク質断片に応じて、目的タンパク質中のストップコドンの5’末端側であれば何れの位置に挿入して設計してもよい。
 本発明におけるタンパク質は、上述の発現ベクターを用いて製造されたタンパク質をいう。
 本発明においてタンパク質組成物とは、本発明のタンパク質製造方法によって生産され、精製されたタンパク質分子を含む組成物をいう。本発明においてタンパク質組成物には、異なる2つ以上の翻訳後修飾のバリエーションを含むタンパク質組成物が含まれる。
The splicing donor sequence may be naturally occurring in an immunoglobulin constant region or an artificial sequence, depending on the target protein to be expressed and the membrane-bound protein or the membrane-bound protein fragment. In addition, it may be designed by inserting it at any position as long as it is at the 5 ′ end side of the stop codon in the target protein.
The protein in the present invention refers to a protein produced using the above-described expression vector.
In the present invention, the protein composition refers to a composition containing protein molecules produced and purified by the protein production method of the present invention. In the present invention, a protein composition includes a protein composition that includes two or more different variations of post-translational modifications.
 タンパク質の翻訳後修飾としては、アミノ酸側鎖のS-S結合の架橋、糖鎖付加(N結合型糖鎖、O結合型糖鎖)、リン酸化、硫酸化、メチル化、ミリストイル化およびペプチド鎖の特異的切断などが挙げられる。
 本発明におけるタンパク質組成物は、本発明のタンパク質製造方法によって得られるタンパク質医薬品として許容される範囲の修飾タンパク質バリエーションであれば、何れの程度の翻訳後修飾を受けたタンパク質を含む組成物であってもよい。
Protein post-translational modifications include SS-linked cross-linking of amino acid side chains, glycosylation (N-linked sugar chains, O-linked sugar chains), phosphorylation, sulfation, methylation, myristoylation, and peptide chain specificity For example.
The protein composition in the present invention is a composition containing any degree of post-translational modification protein as long as it is a modified protein variation within a range acceptable as a protein pharmaceutical obtained by the protein production method of the present invention. Also good.
 本発明において目的タンパク質とは、本発明の発現ベクターを用いて膜結合型タンパク質およびタンパク質として発現可能であれば、いずれのタンパク質でもよい。例えば、ヒト血清タンパク質、アルブミン結合タンパク質、ペプチドホルモン、増殖因子、サイトカイン、血液凝固因子、線溶系タンパク質、抗体、膜タンパク質および各種タンパク質の部分断片などが挙げられる。具体的には、ヒト静脈イムノグロブリン(IVIG)、エリスロポイエチン(EPO)、アルブミン、成長ホルモン(GH)、卵胞刺激ホルモン(FSH)、肝細胞増殖因子(HGF)、インスリン、インスリン様増殖因子-I(IGF-I)、インターフェロン(IFN)、Fasリガンド、血液凝固因子(II、VII、VIII、IX、X)、プロトロンビン、フィブリノーゲン、プロテインC、プロテインS、アンチトロンビンIII(ATIII)、組織プラスミノーゲンアクチベーター(tPA)、モノクローナル抗体、オリゴクローナル抗体およびポリクローナル抗体などが挙げられる。 In the present invention, the target protein may be any protein as long as it can be expressed as a membrane-bound protein and protein using the expression vector of the present invention. Examples include human serum proteins, albumin binding proteins, peptide hormones, growth factors, cytokines, blood clotting factors, fibrinolytic proteins, antibodies, membrane proteins, and partial fragments of various proteins. Specifically, human intravenous immunoglobulin (IVIG), erythropoietin (EPO), albumin, growth hormone (GH), follicle stimulating hormone (FSH), hepatocyte growth factor (HGF), insulin, insulin-like growth factor- I (IGF-I), interferon (IFN), Fas ligand, blood coagulation factor (II, VII, VIII, IX, X), prothrombin, fibrinogen, protein C, protein S, antithrombin III (ATIII), tissue plasminol Examples include a gene activator (tPA), a monoclonal antibody, an oligoclonal antibody, and a polyclonal antibody.
 本発明におけるモノクローナル抗体としては、ハイブリドーマから産生されるモノクローナル抗体、遺伝子組換え抗体が挙げられる。遺伝子組換え抗体としては、キメラ抗体、ヒト化抗体[complementarity determining region (CDR)移植抗体とも言う]およびヒト抗体などをあげることができる。
 本発明におけるモノクローナル抗体は、単一クローンの抗体産生細胞が分泌する抗体であり、ただ一つのエピトープ(抗原決定基ともいう)を認識し、モノクローナル抗体を構成するアミノ酸配列(1次構造)が均一である。オリゴクローナル抗体、ポリクローナル抗体とは、モノクローナル抗体が2種以上含まれる抗体混合物である。
Examples of the monoclonal antibody in the present invention include monoclonal antibodies and gene recombinant antibodies produced from hybridomas. Examples of the recombinant antibody include a chimeric antibody, a humanized antibody [also referred to as a complementarity determining region (CDR) transplanted antibody], a human antibody, and the like.
The monoclonal antibody in the present invention is an antibody secreted by antibody-producing cells of a single clone, recognizes only one epitope (also called an antigenic determinant), and has a uniform amino acid sequence (primary structure) constituting the monoclonal antibody. It is. Oligoclonal antibodies and polyclonal antibodies are antibody mixtures containing two or more monoclonal antibodies.
 抗体分子はイムノグロブリン(以下、Igと表記する)とも称され、ヒト抗体は、分子構造の違いに応じて、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4およびIgMのアイソタイプに分類される。アミノ酸配列の相同性が比較的高いIgG1、IgG2、IgG3およびIgG4を総称してIgGともいう。
 抗体分子は重鎖(Heavy chain、以下H鎖と記す)および軽鎖(Light chain、以下L鎖と記す)と呼ばれるポリペプチドより構成される。また、H鎖はN末端側よりH鎖可変領域(VHとも表記される)およびH鎖定常領域(CHとも表記される)、L鎖はN末端側よりL鎖可変領域(VLとも表記される)およびL鎖定常領域(CLとも表記される)の各領域により、それぞれ構成される。CHはサブクラスごとに、α、δ、ε、γおよびμ鎖がそれぞれ知られている。CHはさらに、N末端側よりCH1ドメイン、ヒンジドメイン、CH2ドメイン、CH3ドメインの各ドメインにより構成される。ドメインとは、抗体分子の各ポリペプチドを構成する機能的な構造単位をいう。また、CH2ドメインとCH3ドメインを併せてFc領域又は単にFcという。CLは、Cλ鎖およびCκ鎖が知られている。
Antibody molecules are also called immunoglobulins (hereinafter referred to as Ig), and human antibodies are classified into IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM isotypes according to the difference in molecular structure. Is done. IgG1, IgG2, IgG3, and IgG4 having relatively high amino acid sequence homology are collectively referred to as IgG.
Antibody molecules are composed of polypeptides called heavy chains (hereinafter referred to as H chains) and light chains (hereinafter referred to as L chains). In addition, the H chain is the H chain variable region (also referred to as VH) and the H chain constant region (also referred to as CH) from the N terminal side, and the L chain is also expressed as the L chain variable region (VL) from the N terminal side. ) And L chain constant region (also referred to as CL). As for CH, α, δ, ε, γ, and μ chains are known for each subclass. CH is further composed of each domain of the CH1 domain, hinge domain, CH2 domain, and CH3 domain from the N-terminal side. A domain refers to a functional structural unit constituting each polypeptide of an antibody molecule. The CH2 domain and the CH3 domain are collectively referred to as Fc region or simply Fc. As for CL, Cλ chain and Cκ chain are known.
 また、本発明における融合タンパク質としては、異なるタンパク質の断片を適当なリンカー等で融合したものが挙げられる。具体的には、抗体のFc領域と他のタンパク質を融合させたFc融合タンパク(イムノアドヘシンともいう)、複数のFc領域を融合させたFc融合タンパク質、glutathione S-transferase (GST)融合タンパク質、FLAG融合タンパク質、Histidine tag融合タンパク質、green fluorescence protein (GFP)融合タンパク質等も本発明におけるタンパク質に包含される。また、抗体のエフェクター活性を増強又は欠損させるため、抗体を安定化させるためおよび血中半減期を制御するためにアミノ酸残基改変を行ったアミノ酸残基改変を含むFc領域(Fc variant)も本発明の発現ベクターによって発現させる抗体に用いることができる。 In addition, examples of the fusion protein in the present invention include those obtained by fusing different protein fragments with an appropriate linker or the like. Specifically, an Fc fusion protein (also referred to as an immunoadhesin) in which an antibody Fc region is fused with another protein, an Fc fusion protein in which multiple Fc regions are fused, a glutathioneathS-transferase (GST) fusion protein, FLAG fusion protein, Histidine tag fusion protein, green fluorescence protein (GFP) fusion protein and the like are also included in the protein of the present invention. Also included is an Fc region (Fc variant) containing an amino acid residue modification that has been modified to enhance or lack the effector activity of the antibody, stabilize the antibody, and control the blood half-life. It can be used for an antibody expressed by the expression vector of the invention.
 更に本発明におけるタンパク質としては、バイスペシフィック抗体、多価抗体(multivalent antibody、polyvalent antibody)(WO1998/050431、WO2001/7734、WO2002/002773、WO2009/131239)などを挙げることができる。
 本発明におけるタンパク質断片としては、タンパク質の機能断片、構造断片のいずれでもよいが、特に抗体断片などが挙げられる。抗体断片としては、Fab、Fab'、F(ab')2、single chain Fv (scFv)、diabody、dsFv、複数のCDRを含むペプチド(特にVH及びVLの6個のCDRを含むペプチド)などが挙げられる。
Furthermore, examples of the protein in the present invention include bispecific antibodies and multivalent antibodies (WO1998 / 050431, WO2001 / 7734, WO2002 / 002773, WO2009 / 131239).
The protein fragment in the present invention may be either a functional fragment or a structural fragment of a protein, particularly an antibody fragment. Examples of antibody fragments include Fab, Fab ′, F (ab ′) 2 , single chain Fv (scFv), diabody, dsFv, peptides containing multiple CDRs (particularly peptides containing 6 CDRs of VH and VL), etc. Can be mentioned.
 本発明の細胞としては、上述の発現ベクターが導入された細胞が挙げられるが、具体的には、本発明の発現ベクターが導入された細胞が挙げられる。該細胞は、膜結合型タンパク質又は該膜結合型タンパク質断片と目的タンパク質の両方を同時に発現させることができる。
 本発明の細胞としては、本発明の発現ベクターが導入された細胞であって、該ベクターより転写される目的タンパク質をコードするmRNAと転写後のスプライシングによって生成する膜結合型タンパク質をコードするmRNAとの2種類の全mRNAのうち、0.1%以上が膜結合型タンパク質をコードするmRNAを発現する細胞が挙げられる。目的のタンパク質の全mRNA(膜結合型タンパク質又は該膜結合型タンパク質断片をコードするmRNA+目的タンパク質をコードするmRNA)に対する膜結合型タンパク質のmRNA発現量比(%)は、0.1~5%、0.1~4%、0.1~3%、0.1~2%の範囲がよいが、好ましくは0.5~2%の範囲、より好ましくは1~2%、1.1~2%、1.2~2%、1.3~2%、1.4~2%の範囲が挙げられる。
Examples of the cell of the present invention include a cell into which the above-described expression vector is introduced, and specifically includes a cell into which the expression vector of the present invention has been introduced. The cell can simultaneously express both a membrane-bound protein or the membrane-bound protein fragment and a target protein.
The cell of the present invention is a cell into which the expression vector of the present invention has been introduced, and an mRNA encoding a target protein transcribed from the vector and an mRNA encoding a membrane-bound protein generated by splicing after transcription. Among these two types of mRNAs, 0.1% or more of the cells express mRNA that encodes a membrane-bound protein. The mRNA expression ratio (%) of the membrane-bound protein to the total mRNA of the protein of interest (mRNA that encodes the membrane-bound protein or the membrane-bound protein fragment + mRNA that encodes the protein of interest) is 0.1-5%, 0.1 The range of ˜4%, 0.1 to 3%, and 0.1 to 2% is preferable, but the range of 0.5 to 2% is preferable, more preferably 1 to 2%, 1.1 to 2%, 1.2 to 2%, and 1.3 to 2%. 1.4 to 2% range.
 本発明のタンパク質発現ベクターが導入された細胞は、目的タンパク質と膜結合型タンパク質又は該膜結合型タンパク質の断片との両方を同時に発現することができ、膜結合型タンパク質は細胞膜上に発現している。
 本発明において、目的タンパク質が分泌型タンパク質の場合は、分泌型タンパク質(sP)と膜結合型タンパク質又は該膜結合型タンパク質断片(mP)との発現量比は、sP/mP=1000~50の範囲であることが好ましい。または分泌型タンパク質をコードするmRNA(sP-mRNA)と膜結合型タンパク質又は該膜結合型タンパク質断片をコードするmRNA(mP-mRNA)との発現量比は、sP-mRNA/mP-mRNA=1000~50の範囲であることが好ましい。
A cell into which the protein expression vector of the present invention has been introduced can simultaneously express both the target protein and a membrane-bound protein or a fragment of the membrane-bound protein, and the membrane-bound protein is expressed on the cell membrane. Yes.
In the present invention, when the target protein is a secretory protein, the expression level ratio between the secreted protein (sP) and the membrane-bound protein or the membrane-bound protein fragment (mP) is sP / mP = 1000-50. A range is preferable. Alternatively, the expression level ratio of mRNA encoding secreted protein (sP-mRNA) and mRNA encoding membrane-bound protein or membrane-bound protein fragment (mP-mRNA) is sP-mRNA / mP-mRNA = 1000 A range of ˜50 is preferred.
 本発明において膜結合型タンパク質又は該膜結合型タンパク質の断片の発現量は、膜結合型タンパク質又は該膜結合型タンパク質の断片に特異的に結合する結合体(化学物質、抗体、タンパク質リガンドなど)を用いた結合解析によって検出できるレベルの発現量であればよく、Cell binding ELISA、flow cytometer(FCM)、FMAT8100HTSシステム(アプライドバイオシステム社製)などの方法により測定することができる。 In the present invention, the expression level of the membrane-bound protein or the fragment of the membrane-bound protein is a conjugate (chemical substance, antibody, protein ligand, etc.) that specifically binds to the membrane-bound protein or the fragment of the membrane-bound protein. The expression level may be any level as long as it can be detected by binding analysis using a cell, and can be measured by methods such as Cell binding ELISA, flow cytometer (FCM), FMAT8100HTS system (Applied Biosystems).
 本発明の細胞として具体的には、細胞膜上に1×103 molecules/cell以上の膜結合型タンパク質又は該膜結合型タンパク質の断片を発現している細胞が挙げられる。細胞膜上の膜結合型タンパク質又は該膜結合型タンパク質の断片の発現量として好ましくは、1×103~1×10molecules/cellを発現している細胞がよい。また、膜結合型タンパク質又は該膜結合型タンパク質の断片をコードするmRNAの発現量として好ましくは、全タンパク質mRNA(sP-mRNAとmP-mRNAの発現量の和)の0.1%~2%程度発現している細胞が挙げられる。 Specific examples of the cell of the present invention include a cell expressing 1 × 10 3 molecules / cell or more of a membrane-bound protein or a fragment of the membrane-bound protein on the cell membrane. As the expression level of the membrane-bound protein or the fragment of the membrane-bound protein on the cell membrane, cells expressing 1 × 10 3 to 1 × 10 7 molecules / cell are preferable. The expression level of the mRNA encoding the membrane-bound protein or the fragment of the membrane-bound protein is preferably expressed by about 0.1% to 2% of the total protein mRNA (sum of the expression levels of sP-mRNA and mP-mRNA). Cell.
 本発明の発現ベクターを導入する細胞としては、動物細胞、植物細胞、微生物など、組換えタンパク質生産に一般に用いられる細胞であればいかなるものも用いることができる。
 本発明の発現ベクターを導入する細胞としては、チャイニーズハムスター卵巣組織由来CHO細胞、ヒト細胞PER.C6、ヒト白血病細胞Namalwa細胞、サル細胞COS、ラットミエローマ細胞株YB2/3HL.P2.G11.16Ag.20細胞、マウスミエローマ細胞株NS0細胞、マウスミエローマ細胞株SP2/0-Ag14細胞、シリアンハムスター腎臓組織由来BHK細胞、ヒトバーキットリンパ腫由来ナマルバ細胞、ヒト網膜芽腫由来PER.C6細胞、ヒト胚性腎臓組織由来HEK293細胞、ヒト骨髄性白血病由来NM-F9細胞、胚性幹細胞、および受精卵細胞などが挙げられる。好ましくは、遺伝子組換え糖タンパク質医薬品を製造するための宿主細胞、遺伝子組換え糖タンパク質医薬品を生産するヒト以外のトランスジェニック動物を製造するために用いる胚性幹細胞又は受精卵細胞、並びに遺伝子組換え糖タンパク質医薬品を生産するトランスジェニック植物を製造するために用いる植物細胞などが挙げられる。
As the cell into which the expression vector of the present invention is introduced, any cell generally used for recombinant protein production, such as animal cells, plant cells, and microorganisms, can be used.
Examples of cells into which the expression vector of the present invention is introduced include Chinese hamster ovary tissue-derived CHO cells, human cell PER.C6, human leukemia cell Namalwa cell, monkey cell COS, rat myeloma cell line YB2 / 3HL.P2.G11.16Ag. 20 cells, mouse myeloma cell line NS0 cell, mouse myeloma cell line SP2 / 0-Ag14 cell, Syrian hamster kidney tissue-derived BHK cell, human Burkitt lymphoma-derived Namalva cell, human retinoblastoma-derived PER.C6 cell, human embryonic Examples include kidney tissue-derived HEK293 cells, human myeloid leukemia-derived NM-F9 cells, embryonic stem cells, and fertilized egg cells. Preferably, a host cell for producing a recombinant glycoprotein pharmaceutical, an embryonic stem cell or a fertilized egg cell used for producing a transgenic non-human animal producing the recombinant glycoprotein pharmaceutical, and a recombinant sugar Examples include plant cells used to produce transgenic plants that produce protein drugs.
 親株細胞としては、例えば以下の細胞が好適に挙げられる。
 NS0細胞の親株細胞としては、BIO/TECHNOLOGY, 10, 169 (1992)、Biotechnol. Bioeng., 73, 261, (2001)等の文献に記載されているNS0細胞が挙げられる。また、理化学研究所セルバンクに登録されているNS0細胞株(RCB0213)、あるいはこれら株を様々な無血清培地に馴化させた亜株なども挙げられる。
Preferred examples of the parent cell line include the following cells.
NS0 cell parent cell lines include NS0 cells described in literature such as BIO / TECHNOLOGY, 10, 169 (1992), Biotechnol. Bioeng., 73, 261, (2001). In addition, NS0 cell line (RCB0213) registered in RIKEN Cell Bank, or sub-strains obtained by acclimating these strains to various serum-free media are also included.
 SP2/0-Ag14細胞の親株細胞としては、J. Immunol.,126, 317, (1981)、Nature, 276, 269, (1978) 、Human Antibodies and Hybridomas, 3, 129, (1992) 等の文献に記載されているSP2/0-Ag14細胞が挙げられる。また、ATCCに登録されているSP2/0-Ag14細胞(ATCC CRL-1581)あるいはこれら株を様々な無血清培地に馴化させた亜株(ATCC CRL-1581.1)なども挙げられる。 Examples of parental cells of SP2 / 0-Ag14 cells include J. Immunol., 126, 317, (1981), Nature, 276, 269, (1978), Human Antibodies and Hybridomas, 3, 129, (1992), etc. SP2 / 0-Ag14 cells described in the above. In addition, SP2 / 0-Ag14 cells (ATCC CRL-1581) registered in ATCC or sub-strains (ATCC CRL-1581.1) in which these strains are conditioned to various serum-free media are also included.
 チャイニーズハムスター卵巣組織由来CHO細胞の親株細胞としては、Journal of Experimental Medicine, 108, 945 (1958)、Proc. Natl. Acad. Sci. USA, 60, 1275 (1968)、Genetics, 55, 513 (1968)、Chromosoma, 41, 129 (1973)、Methods in Cell Science, 18, 115 (1996)、Radiation Research, 148, 260 (1997)、Proc. Natl. Acad. Sci. USA, 77, 4216 (1980)、Proc. Natl. Acad. Sci. 60, 1275 (1968)、Cell, 6, 121 (1975)、Molecular Cell Genetics, Appendix I,II (p883-900)等の文献に記載されているCHO細胞が挙げられる。また、ATCCに登録されているCHO-K1株(ATCC CCL-61)、DUXB11株(ATCC CRL-9096)、Pro-5株(ATCC CRL-1781)や、市販のCHO-S株(Life technologies社製 Cat.No.11619)、あるいはこれら株を様々な無血清培地に馴化させた亜株なども挙げられる。 As a parent cell of Chinese hamster ovary tissue-derived CHO cells, JournalJof Experimental Medicine, 108, 945 (1958), Proc. Natl. Acad. Sci. USA, 60, 1275 (1968), Genetics, 55, 513 (1968) , Chromosoma, 41, 129 (1973), Methods in Cell Science, 18, 115 (1996), Radiation Research, 148, 260 (1997), Proc. Natl. Acad. Sci. USA, 77, 4216Pro (1980), Proc CHO cells described in literature such as “Natl.” Acad. “Sci.” 60, “1275” (1968), Cell, “6”, “121” (1975), Molecular “Cell” Genetics, “Appendix I, II” (p883-900), and the like. In addition, CHO-K1 strain (ATCC CL CCL-61), DUXB11 strain (ATCC CRL-9096), Pro-5 strain (ATCC CRL-1781) registered in ATCC, and commercially available CHO-S strain (Life technologies) (Seizo Cat. No. 11619) or sub-strains obtained by acclimating these strains to various serum-free media.
 ラットミエローマ細胞株YB2/3HL.P2.G11.16Ag.20細胞の親株細胞としては、Y3/Ag1.2.3細胞(ATCC CRL-1631)から樹立された株化細胞が包含される。その具体的な例としては、J. CellBiol., 93, 576 (1982)、Methods Enzymol. 73B, 1 (1981)等の文献に記載されているYB2/3HL.P2.G11.16Ag.20細胞が挙げられる。また、ATCCに登録されているYB2/3HL.P2.G11.16Ag.20細胞(ATCC CRL-1662)あるいはこれら株を様々な無血清培地に馴化させた亜株なども挙げられる。 The parent cell of the rat myeloma cell line YB2 / 3HL.P2.G11.16Ag.20 cell includes a cell line established from Y3 / Ag1.2.3 cell (ATCC CRL-1631). Specific examples thereof include YB2 / 3HL.P2.G11.16Ag.20 cells described in J. CellBiol., 93, 576 (1982), Methods Enzymol. 73B, 1 (1981) and the like. Can be mentioned. In addition, YB2 / 3HL.P2.G11.16Ag.20 cells (ATCC CRL-1662) registered in ATCC or sub-strains obtained by acclimating these strains to various serum-free media are also included.
 高いADCC活性を有する抗体を発現させるために、抗体Fc領域に結合するN-グリコシド結合糖鎖の還元末端に存在するN-acetylglucosamine (GlcNAc)にα1,6結合するfucoseの量を低下又は欠損させた細胞を用いることもできる。本細胞は、一連のfucose代謝反応に関する少なくとも1つの酵素が低下又は欠損している細胞である。fucose代謝反応に関する酵素としては、細胞内糖ヌクレオチドGDP-fucoseの合成に関与する酵素などのタンパク質あるいはN-グリコシド結合複合型糖鎖の還元末端のN-acetylglucosamineの6位にfucoseの1位がα結合する糖鎖修飾に関与する酵素などのタンパク質、又は細胞内糖ヌクレオチドGDP-fucoseのゴルジ体への輸送に関与するタンパク質などがあげられる。これらの活性が低下又は欠失した細胞としては、例えばα1,6-フコース転移酵素(FUT8)遺伝子が低下又は欠損したCHO細胞(WO2005/035586、WO02/31140)、レンズマメレクチンLCA、エンドウマメレクチンPSA、ソラマメレクチンVFA又はヒイロチャワンタケレクチンAALなどのレクチンに対して耐性を獲得した細胞(WO02/31140)、GMD-マンノース-4,6-デヒドラターゼ(GMD)活性が低下したLec13[Somatic Cell and Molecular genetics, 12, 55 (1986)]、GMD活性が低下した細胞、GDP-フコーストランスポーターが低下又は欠損した細胞(WO2003/85102)などがあげられる。 In order to express antibodies with high ADCC activity, the amount of fucose that binds α1,6 to N-acetylglucosamine G (GlcNAc) present at the reducing end of the N-glycoside-linked sugar chain that binds to the antibody Fc region is reduced or eliminated. Cells can also be used. The cell is a cell in which at least one enzyme associated with a series of fucose metabolic reactions is reduced or deficient. As an enzyme related to fucose metabolic reaction, protein such as an enzyme involved in synthesis of intracellular sugar nucleotide GDP-fucose or N-acetylglucosamine at the reducing terminal of N-glycoside-linked complex sugar chain is located at position 1 of fucose at α-position. Examples include proteins such as enzymes involved in modification of the sugar chain to be bound, proteins involved in transport of intracellular sugar nucleotide GDP-fucose to the Golgi apparatus, and the like. Examples of cells in which these activities are reduced or deleted include CHO cells in which the α1,6-fucose transferase (FUT8) gene is reduced or deleted (WO2005 / 035586, WO02 / 31140), lentil lectin LCA, pea lectin PSA , Cells that have acquired resistance to lectins such as broad bean lectin VFA or yellow chawantake lectin AAL (WO02 / 31140), Lec13 [Somatic Cell and Molecular genetics, with reduced GMD-mannose-4,6-dehydratase (GMD) activity, 12, 55 (1986)], cells with reduced GMD activity, cells with reduced or deficient GDP-fucose transporter (WO2003 / 85102) and the like.
 本発明で用いられる哺乳動物細胞としては、ウシ胎児血清(fetal calf serum、以下FCSと記す)などが含まれていない無血清培地中で、細胞培養支持体に接着せず培養液中に浮遊して生存および増殖できる細胞が好ましく、タンパク質が含まれていない無タンパク質培地中で、浮遊して生存および増殖できる哺乳動物細胞がより好ましい。
 無血清培地中で生存可能な哺乳動物細胞を確認するための組織培養用培養器としては、接着培養用のコーティングがなされているフラスコ、シャーレ等であればいかなる培養器でもよい。具体的には、例えば、市販されている組織培養フラスコ(グライナー社製)および接着培養フラスコ(住友ベークライト社製)などを用いて細胞を培養することで、該細胞が接着培養フラスコに接着しない性質を確認することで、浮遊性の哺乳動物細胞を確認することできる。
Mammalian cells used in the present invention are suspended in a culture solution without adhering to a cell culture support in a serum-free medium not containing fetal calf serum (hereinafter referred to as FCS). Cells that can survive and proliferate are preferred, and mammalian cells that can float and survive and proliferate in a protein-free medium without protein are more preferred.
The tissue culture incubator for confirming mammalian cells that can survive in a serum-free medium may be any incubator as long as it is a flask, petri dish or the like that is coated with an adhesion culture. Specifically, for example, by culturing a cell using a commercially available tissue culture flask (manufactured by Greiner) and an adhesion culture flask (manufactured by Sumitomo Bakelite Co., Ltd.), the property that the cells do not adhere to the adhesive culture flask By confirming, it is possible to confirm floating mammalian cells.
 本発明で用いられる浮遊性の哺乳動物細胞としては、元来浮遊性の性質を有する浮遊培養に馴化された細胞でもよいし、接着性の哺乳動物細胞を浮遊性の培養条件に馴化させた浮遊性の哺乳動物細胞いずれのものでもよい。
 前記「接着性の哺乳動物細胞を浮遊性の培養条件に馴化させた浮遊性の哺乳動物細胞」は、例えばMol. Biotechnol., 2000, 15(3), 249-257に記載の方法などに従って、浮遊培養馴化前と同様、又は浮遊培養馴化前より優れた増殖および生存性を示す細胞を確立することで作製することができる(J. Biotechnol., 2007,130(3),282-290)。
The suspension mammalian cell used in the present invention may be a cell originally adapted to suspension culture having suspension properties, or a suspension in which adhesive mammalian cells are adapted to suspension culture conditions. Any mammalian cell may be used.
The “floating mammalian cell obtained by acclimatizing an adherent mammalian cell to a floating culture condition” is, for example, according to the method described in Mol. Biotechnol., 2000, 15 (3), 249-257, etc. It can be produced by establishing cells that exhibit the same proliferation and viability as before suspension culture acclimation or better than those before acclimation to suspension culture (J. Biotechnol., 2007, 130 (3), 282-290).
 細胞への発現ベクターの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法(特開平2-227075)、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)、Gene, 17, 107 (1982)、Molecular & General Genetics, 168, 111 (1979)]又はリポフェクション法[Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)]などが挙げられる。 As a method for introducing an expression vector into cells, any method can be used as long as it introduces DNA into animal cells. For example, electroporation [Cytotechnology, 3, 133 (1990)], calcium phosphate method (specialized) Kaihei 2-227075), a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972), Gene, 17, 107 (1982), Molecular & General Genetics, 168, 111 (1979)] Or the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
 本発明の目的タンパク質を発現させる方法としては、本発明の発現ベクターを宿主細胞へ導入し、目的タンパク質および膜結合型タンパク質又は該膜結合型タンパク質の断片の両方を同時に発現させる方法が挙げられる。
 本発明のタンパク質を発現させる方法は、薬剤選択マーカー遺伝子や不要な融合タンパク質を発現させず、また薬剤選抜を行なわずに、膜結合型タンパク質を発現している細胞を選択するために用いることができる。膜結合型タンパク質又は該膜結合型タンパク質の断片をより高発現している細胞を選択した結果、目的タンパク質高発現細胞を取得することができる。さらに、本発明のスプライシングドナー配列の位置やスプライシング反応の起こりやすさ(頻度)を調節することで、目的タンパク質の全長(又は部分断片)および膜結合型タンパク質等、所望の複数の目的タンパク質を同時に発現させることもできる。
Examples of the method for expressing the target protein of the present invention include a method in which the expression vector of the present invention is introduced into a host cell and both the target protein and the membrane-bound protein or a fragment of the membrane-bound protein are expressed simultaneously.
The method of expressing the protein of the present invention can be used to select cells expressing a membrane-bound protein without expressing a drug selection marker gene or an unnecessary fusion protein and without selecting a drug. it can. As a result of selecting a cell that highly expresses a membrane-bound protein or a fragment of the membrane-bound protein, a cell that highly expresses the target protein can be obtained. Furthermore, by adjusting the position of the splicing donor sequence of the present invention and the likelihood (frequency) of the splicing reaction, a desired plurality of target proteins such as a full length (or partial fragment) of the target protein and a membrane-bound protein can be simultaneously obtained. It can also be expressed.
 膜結合型の目的タンパク質断片としては、目的タンパク質が抗体の場合は、抗体Fab断片などが挙げられる。Fab断片は、抗体定常領域中のいずれかの場所にスプライシングドナー配列を人工的に挿入することで発現させることができる。Fab断片としては、特にCH2ドメイン内に人工的なスプライシングドナー配列を挿入することで発現させることができる。 Examples of membrane-bound target protein fragments include antibody Fab fragments when the target protein is an antibody. Fab fragments can be expressed by artificial insertion of splicing donor sequences anywhere in the antibody constant region. The Fab fragment can be expressed particularly by inserting an artificial splicing donor sequence in the CH2 domain.
 本発明の目的タンパク質の製造方法としては、本発明の発現ベクターを宿主細胞へ導入し、該細胞を用いて目的タンパク質を製造する方法が挙げられる。
 本発明の目的タンパク質の製造方法としては、以下の(a)~(e)の工程を含む、目的タンパク質の製造方法が挙げられる。
(a)スプライシングドナー配列を含むタンパク質をコードするDNA配列、ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列およびトランスメンブレン領域をコードするDNA配列を順番に含むタンパク質発現ベクターを宿主細胞へ導入する工程。
(b)タンパク質生産細胞の細胞外へ目的タンパク質を発現させ、かつタンパク質生産細胞の細胞膜上へ膜結合型タンパク質又は該膜結合型タンパク質の断片を発現させる工程。
(c)膜結合型タンパク質又は該膜結合型タンパク質の断片を検出し、タンパク質高生産細胞を選択する工程。
(d)選択されたタンパク質高生産細胞を大量培養する工程。
(e)培養上清から目的タンパク質を精製する工程。
Examples of the method for producing the target protein of the present invention include a method of introducing the expression vector of the present invention into a host cell and producing the target protein using the cell.
Examples of the method for producing a target protein of the present invention include a method for producing a target protein including the following steps (a) to (e).
(a) Introducing into a host cell a protein expression vector comprising a DNA sequence encoding a protein containing a splicing donor sequence, a polyadenylation signal sequence, a polypyrimidine sequence, a splicing acceptor sequence and a DNA sequence encoding a transmembrane region. Process.
(b) A step of expressing a target protein outside the protein producing cell and expressing a membrane-bound protein or a fragment of the membrane-bound protein on the cell membrane of the protein-producing cell.
(c) A step of detecting a membrane-bound protein or a fragment of the membrane-bound protein and selecting a protein-producing cell.
(d) A step of culturing the selected protein-producing cells in large quantities.
(e) A step of purifying the target protein from the culture supernatant.
 また、本発明の目的タンパク質を高生産する細胞のスクリーニング方法としては、本発明の発現ベクターを宿主細胞へ導入し、膜結合型タンパク質又は該膜結合型タンパク質の断片を高発現している細胞をスクリーニングする方法が挙げられる。本スクリーニング方法によって、膜結合型タンパク質又は該膜結合型タンパク質の断片を高発現している細胞を選択した結果、目的のタンパク質を高生産している細胞を取得することができる。 In addition, as a screening method for cells that produce the target protein of the present invention at a high level, the expression vector of the present invention is introduced into a host cell, and a cell that highly expresses a membrane-bound protein or a fragment of the membrane-bound protein is obtained. A screening method is included. As a result of selecting cells that highly express a membrane-bound protein or a fragment of the membrane-bound protein by this screening method, cells that produce the target protein at a high level can be obtained.
 動物細胞培養用培地には、RPMI1640培地(Invitrogen社製)、GIT培地(日本製薬社製)、EX-CELL301培地(JRH社製)、EX-CELL302培地(JRH社製)、IMDM培地(Invitrogen社製)、Hybridoma-SFM培地(Invitrogen社製)、CD-CHO培地(Invitrogen社)、EX-CELL 325-PF培地(SAFC Biosciences社)およびSFM4CHO培地(HyClone社)などの市販の培地を用いることができる。また、動物細胞培養用培地に必要な糖類、アミノ酸類などを配合して調製することによっても得られる。 Animal cell culture media include RPMI1640 medium (Invitrogen), GIT medium (Nippon Pharmaceutical), EX-CELL301 medium (JRH), EX-CELL302 medium (JRH), IMDM medium (Invitrogen) ), Hybridoma-SFM medium (Invitrogen), CD-CHO medium (Invitrogen), EX-CELL 325-PF medium (SAFC Biosciences) and SFM4CHO medium (HyClone) it can. It can also be obtained by blending and preparing necessary sugars, amino acids, etc. in animal cell culture media.
 培養条件としては、例えば、5% CO2雰囲気中、培養温度37℃で静置培養などによって行うことができる。また、浮遊培養専用の培養設備であるWaveバイオリアクター(GEヘルスケアバイオサイエンス社)、旋回攪拌装置、バイオリアクター培養[Cytotechnology, (2006), 52:199-207]などの方法で培養することができる。
 本発明の膜結合型タンパク質又は該膜結合型タンパク質の断片を発現する細胞は、発現させた膜結合型タンパク質又は該膜結合型タンパク質の断片に特異的に結合する化合物、タンパク質等を用いて検出することができる。膜結合型タンパク質又は該膜結合型タンパク質の断片に結合するものであれば何れも利用できるが、例えばリガンドタンパク質、受容体タンパク質、ポリクローナル抗体、モノクローナル抗体および抗原タンパク質などに蛍光物質(FITC、TRITC、PE、Cy-5など)、酵素(ペルオキシダーゼ、アルカリフォスファターゼなど)、ビオチン、放射性物質(3H、14C、32P、35S、67Ga、99Tc)などをコンジュゲートした検出体を用いて、膜結合型タンパク質又は該膜結合型タンパク質の断片を発現している細胞を検出できる。
As the culture conditions, for example, static culture can be performed in a 5% CO 2 atmosphere at a culture temperature of 37 ° C. It can also be cultured by methods such as Wave bioreactor (GE Healthcare Bioscience), swirl stirrer, bioreactor culture [Cytotechnology, (2006), 52: 199-207] it can.
Cells expressing the membrane-bound protein of the present invention or a fragment of the membrane-bound protein are detected using a compound or protein that specifically binds to the expressed membrane-bound protein or the fragment of the membrane-bound protein. can do. Any of them can be used as long as it binds to a membrane-bound protein or a fragment of the membrane-bound protein. For example, a fluorescent protein (FITC, TRITC, etc.) can be used as a ligand protein, a receptor protein, a polyclonal antibody, a monoclonal antibody and an antigen protein. PE, such as Cy-5), an enzyme (peroxidase, alkaline phosphatase), biotin, with a radioactive substance (3 H, 14 C, 32 P, 35 S, 67 Ga, 99 Tc) detector conjugated etc. In addition, cells expressing a membrane-bound protein or a fragment of the membrane-bound protein can be detected.
 発現させる目的タンパク質又は該目的タンパク質の断片がヒトIgG抗体又は該抗体断片である場合、抗ヒトIgG抗体、プロテインA/G又はヒトIgG抗体が特異的に認識する抗原に適当な検出物質をコンジュゲートさせたものを用いて、膜結合型ヒトIgG抗体を検出することができる。また、発現させる目的タンパク質が、TNFR-Fc融合タンパク質である場合には、TNF-α、抗Fc抗体又はプロテインA/Gに適当な検出物質をコンジュゲートさせたものを用いて、膜結合型TNFR-Fc融合タンパク質を検出することができる。 When the target protein to be expressed or the fragment of the target protein is a human IgG antibody or the antibody fragment, an anti-human IgG antibody, protein A / G or an antigen specifically recognized by the human IgG antibody is conjugated with an appropriate detection substance The membrane-bound human IgG antibody can be detected using the resulting product. In addition, when the target protein to be expressed is a TNFR-Fc fusion protein, a membrane-bound TNFR is prepared using a TNF-α, anti-Fc antibody or protein A / G conjugated with an appropriate detection substance. -Fc fusion protein can be detected.
 また本発明は、目的タンパク質を生産する細胞のタンパク質修飾能及び修飾特徴を分析する方法も含まれる。即ち、分泌型/膜結合型タンパク質発現ベクターを導入した細胞は、細胞膜上に膜結合型タンパク質又は該膜結合型タンパク質断片を発現し、かつ分泌型タンパク質を生産していることから、細胞膜上に発現している膜結合型タンパク質又は該膜結合型タンパク質断片のタンパク質修飾の程度を分析することで、細胞のタンパク質修飾能及び修飾特徴を同定することができる。 In addition, the present invention includes a method for analyzing the protein modification ability and modification characteristics of a cell producing the target protein. That is, a cell into which a secretory / membrane-bound protein expression vector has been introduced expresses a membrane-bound protein or the membrane-bound protein fragment on the cell membrane and produces a secreted protein. By analyzing the degree of protein modification of the expressed membrane-bound protein or the membrane-bound protein fragment, the protein modification ability and modification characteristics of the cell can be identified.
 タンパク質は、翻訳後に糖鎖、アミノ基、カルボキシル基、リン酸、硫酸など修飾残基がタンパク質に結合した結果、修飾を受ける。具体的には、膜結合型タンパク質又は該膜結合型タンパク質断片の修飾残基特異的に結合する物質を用いてタンパク質修飾レベルを直接的に分析することもできるし、細胞膜上のタンパク質を酵素等で消化することで遊離させ、遊離タンパク質を分析することで、間接的に分析することもできる。 Proteins are modified as a result of post-translational modifications such as sugar chains, amino groups, carboxyl groups, phosphoric acid, and sulfuric acid bound to the protein. Specifically, the protein modification level can be directly analyzed using a substance that specifically binds to a modified residue of the membrane-bound protein or the membrane-bound protein fragment, and the protein on the cell membrane can be analyzed with an enzyme or the like. It can also be analyzed indirectly by analyzing the free protein by releasing it by digesting with.
 タンパク質修飾が糖鎖修飾の場合は、各糖鎖結合構造に特異的に結合するタンパク質(レクチン)、抗糖鎖抗体、リガンドタンパク質、受容体タンパク質、低分子化合物など、糖鎖構造に特異的に結合するものであればいずれのものを用いても良い。
 上述の方法によってタンパク質生産細胞の糖鎖修飾能及び糖鎖修飾特性を分析する方法も本発明に包含される。本方法によって、目的タンパク質の特異的な糖鎖構造を生産し得る目的タンパク質生産細胞をスクリーニングし、取得することができる。
When the protein modification is a sugar chain modification, it is specific to the sugar chain structure, such as a protein (lectin) that specifically binds to each sugar chain binding structure, an anti-sugar chain antibody, a ligand protein, a receptor protein, a low molecular weight compound, etc. Any one may be used as long as it is coupled.
A method for analyzing the sugar chain-modifying ability and sugar chain-modifying properties of protein-producing cells by the above-described method is also included in the present invention. By this method, a target protein-producing cell capable of producing a specific sugar chain structure of the target protein can be screened and obtained.
 検出方法としては、monoclonal Antibodies-Principles and practice, Third edition, Academic Press (1996)、単クローン抗体実験マニュアル(講談社サイエンティフィック1987)などに記載された方法を用いた測定や、具体的にはenzyme-linked immunosorbent assay (ELISA)法、flow cytometer (FCM)法を利用したfluorescence-activated cell sorter (FACS)解析およびFMAT8100HTSシステム(アプライドバイオシステム社製)を用いた蛍光染色法等が挙げられる。また、FACS等を用いて膜結合型タンパク質を高発現している細胞、即ち高い蛍光強度を有する細胞をソーティングすることで、より直接的にタンパク質高生産細胞を取得することができる。 As a detection method, measurement using a method described in monoclonal antibody-Principles-and-practice, Third-edition, Academic Press (1996), monoclonal antibody experiment manual (Kodansha Scientific 1987), and specifically enzyme Examples include -linked immunosorbent assay (ELISA), fluorescence-activated cell sorter (FACS) analysis using flow cytometer (FCM) method, and fluorescence staining using FMAT8100HTS system (Applied Biosystems). Further, by sorting cells that highly express a membrane-bound protein using FACS or the like, that is, cells having high fluorescence intensity, a high protein-producing cell can be obtained more directly.
 本発明において分泌型タンパク質を測定する方法としては、上述のELISA法、サンドイッチELISA法、表面プラズモン共鳴(SPR)法を用いたビアコアシステム、high performance liquid chromatography (HPLC)を用いた測定方法等が挙げられる。
 本発明において目的タンパク質の精製は、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、限外濾過およびゲル濾過等を用いて行なうことができる。例えば抗体は、形質転換株の培養上清よりプロテインA-カラムを用いて精製する[Monoclonal Antibodies-Principles and practice, Third edition, Academic Press (1996)、Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988)]。また、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾過などのタンパク質の精製で用いられる方法を組み合わせることもできる。
Examples of the method for measuring secretory protein in the present invention include the above-mentioned ELISA method, sandwich ELISA method, Biacore system using surface plasmon resonance (SPR) method, measurement method using high performance liquid chromatography (HPLC), and the like. It is done.
In the present invention, the target protein can be purified using affinity chromatography, ion exchange chromatography, ultrafiltration, gel filtration, or the like. For example, antibodies are purified from the culture supernatant of transformants using protein A-columns [Monoclonal Antibodies-Principles and practice, Third edition, Academic Press (1996), Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988) )]. Also, methods used in protein purification such as gel filtration, ion exchange chromatography and ultrafiltration can be combined.
 以下に本発明の実施例を記載するが、本発明がこれに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
 分泌型抗体および膜結合型抗体を同時に発現できるベクターの作製
 分泌型抗体および膜結合型抗体を同時に発現できるベクター(以下、分泌型/膜結合型抗体発現ベクターと略記する)pINC_TMSP_AC27、pINC_TMSP_AC17およびpINC_TMSP_AC10を以下のようにして作製した。
(1)抗OX40抗体のL鎖および抗CD98/LAT1抗体のH鎖をコードするDNAを含む発現ベクターpINC_OX40L/CD98Hの作製
 WO2010/143698に記載の抗M2抗体発現ベクターのCMVプロモーター、シクロヘキシミド耐性遺伝子およびSV40 early ポリアデニレーションサイトを含む遺伝子断片を、逆に組み換えた抗体発現ベクター(pINCベクター)を作製した。
 次に、CMVエンハンサー/プロモーター制御下に連結された抗OX40抗体軽鎖(L鎖)を含む遺伝子断片(特表2009-518005号公報)(配列番号9)、およびCMVエンハンサー/プロモーター制御下に連結された抗CD98/LAT1複合体抗体重鎖(H鎖)(特開2009-189376号公報)(配列番号10)を含む遺伝子断片を作製した。H鎖をコードするDNA配列の3′末端には、スプライシングドナー配列GGGTAAATおよびストップコドン(TGA)を含むDNA配列を連結した。
Preparation of vector capable of simultaneously expressing secretory antibody and membrane-bound antibody Vectors capable of simultaneously expressing secretory antibody and membrane-bound antibody (hereinafter abbreviated as secretory / membrane-bound antibody expression vectors) pINC_TMSP_AC27, pINC_TMSP_AC17 and pINC_TMSP_AC10 It was produced as follows.
(1) Preparation of expression vector pINC_OX40L / CD98H containing DNA encoding anti-OX40 antibody L chain and anti-CD98 / LAT1 antibody H chain CMV promoter, cycloheximide resistance gene and anti-M2 antibody expression vector described in WO2010 / 143698 An antibody expression vector (pINC vector) was prepared by reversing the gene fragment containing the SV40 early polyadenylation site.
Next, a gene fragment containing the anti-OX40 antibody light chain (L chain) linked under the control of CMV enhancer / promoter (Special Table No. 2009-518005) (SEQ ID NO: 9), and linked under the control of CMV enhancer / promoter A gene fragment containing the anti-CD98 / LAT1 complex antibody heavy chain (H chain) (JP 2009-189376 A) (SEQ ID NO: 10) was prepared. A DNA sequence containing a splicing donor sequence GGGTAAAT and a stop codon (TGA) was ligated to the 3 ′ end of the DNA sequence encoding the H chain.
 作製した遺伝子断片をpINCベクターの適切な位置に挿入して、抗OX40抗体のL鎖および抗CD98/LAT1複合体抗体のH鎖をコードするDNAを含む発現ベクターpINC_OX40L/CD98Hを作製した(図1)(以下、本実施例において、抗OX40抗体のL鎖および抗CD98/LAT1抗体のH鎖を含む抗体を、ヒトIgG抗体と略記する)。
(2)分泌型/膜結合型ヒトIgG抗体発現ベクターpINC_TMSP_AC27、pINC_TMSP_AC17およびpINC_TMSP_AC10の作製
 分泌型ヒト抗体および膜結合型ヒト抗体を同時に発現できるベクターpINC_TMSP_AC27(図2)は、bovine growth hormone (BGH)ポリアデニレーションシグナル配列(以下、BGH-PolyAと略記する)(配列番号11)、チミンおよびシトシンからなる25塩基のポリピリミジン配列(以下、T/C配列25と略記する)(配列番号8)、スプライシングアクセプター配列(以下、SA配列と略記する)(配列番号5)およびplatelet-derived growth factor receptor (PDGFR) トランスメンブレン領域(配列番号13)をコードするDNA配列(以下、PDGFR transmembrane; PDGFRtmと略記する)(配列番号12)の順で連結したDNA断片を、H鎖のストップコドンの3′末端側に挿入して、以下のように作製した。
The prepared gene fragment was inserted into an appropriate position of the pINC vector to prepare an expression vector pINC_OX40L / CD98H containing DNA encoding the anti-OX40 antibody L chain and the anti-CD98 / LAT1 complex antibody H chain (FIG. 1). (Hereinafter, in this example, an antibody comprising the L chain of an anti-OX40 antibody and the H chain of an anti-CD98 / LAT1 antibody is abbreviated as a human IgG antibody).
(2) Preparation of secretory / membrane-bound human IgG antibody expression vectors pINC_TMSP_AC27, pINC_TMSP_AC17 and pINC_TMSP_AC10 The vector pINC_TMSP_AC27 (Fig. 2) capable of simultaneously expressing secreted human and membrane-bound human antibodies is the bovine growth hormone (BGH) polya Denylation signal sequence (hereinafter abbreviated as BGH-PolyA) (SEQ ID NO: 11), 25-base polypyrimidine sequence (hereinafter abbreviated as T / C sequence 25) consisting of thymine and cytosine (SEQ ID NO: 8), splicing DNA sequence encoding the acceptor sequence (hereinafter abbreviated as SA sequence) (SEQ ID NO: 5) and the platelet-derived growth factor receptor (PDGFR) transmembrane region (SEQ ID NO: 13) (hereinafter abbreviated as PDGFR transmembrane; PDGFRtm) ) (SEQ ID NO: 12) ligated DNA fragments were inserted into the 3 ′ end of the H chain stop codon and prepared as follows.
 pINC_OX40L/CD98H発現ベクターを鋳型として、合成DNAプライマーTM-F1(配列番号14)およびTM-R1(配列番号15)を用いてpolymerase chain reaction(PCR)を行ないDNA断片を増幅した。次に、増幅したDNA断片を鋳型として合成DNAプライマーTM-F1およびTM-R2(配列番号16)を用いたPCR反応の後、合成DNAプライマーTM-F1およびTM-R3(配列番号17)を用いたPCR反応を行い、ヒト抗体H鎖の3′末端にトランスメンブレン領域をコードするDNA配列(配列番号12)が結合したDNA断片を作製した。次に、取得したDNA断片とpINC_OX40L/CD98Hベクターをそれぞれ、制限酵素BgIIIおよびEcoRIを用いて処理し、ヒト抗体H鎖をコードするDNA配列の3′末端にPDGFRトランスメンブレン領域をコードするDNA配列が挿入されたDNA断片を含む膜結合型ヒトIgG抗体発現ベクターpINC_TMベクターを作製した。 Using the pINC_OX40L / CD98H expression vector as a template, polymerase chain reaction (PCR) was performed using synthetic DNA primers TM-F1 (SEQ ID NO: 14) and TM-R1 (SEQ ID NO: 15) to amplify DNA fragments. Next, after the PCR reaction using the amplified DNA fragment as a template and the synthetic DNA primers TM-F1 and TM-R2 (SEQ ID NO: 16), the synthetic DNA primers TM-F1 and TM-R3 (SEQ ID NO: 17) were used. A DNA fragment in which the DNA sequence encoding the transmembrane region (SEQ ID NO: 12) was bound to the 3 ′ end of the human antibody H chain was prepared. Next, the obtained DNA fragment and the pINC_OX40L / CD98H vector were treated with restriction enzymes BgIII and EcoRI, respectively, and the DNA sequence encoding the PDGFR transmembrane region was found at the 3 ′ end of the DNA sequence encoding the human antibody H chain. A membrane-bound human IgG antibody expression vector pINC_TM vector containing the inserted DNA fragment was prepared.
 次に、pINC_TMベクターを鋳型として、合成DNAプライマーAC27-F(配列番号18)およびTMSP-R(配列番号19)を用いてPCR反応を行ない、T/C配列25(配列番号8)、SA配列(配列番号5)、PDGFRtmおよびBGH-PolyA配列を含むDNA断片(配列番号11)を作製した。作製したDNA断片を、制限酵素EcoRVで処理したpINC_OX40L/CD98H発現ベクターのヒト抗体H鎖をコードするDNAに挿入することで、SD配列を含むヒト抗体H鎖をコードするDNA、第1BGH-PolyA配列、poly-Pyr配列(T/C配列25)、SA配列、PDGFRtm配列および第2BGH-PolyA配列を順番に含む分泌型/膜結合型ヒト抗体発現ベクターpINC_TMSP_AC27を作製した(図2)。 Next, using the pINC_TM vector as a template, PCR reaction was performed using the synthetic DNA primers AC27-F (SEQ ID NO: 18) and TMSP-R (SEQ ID NO: 19), T / C sequence 25 (SEQ ID NO: 8), SA sequence (SEQ ID NO: 5), a DNA fragment (SEQ ID NO: 11) containing PDGFRtm and BGH-PolyA sequences was prepared. The first BGH-PolyA sequence, the DNA encoding the human antibody H chain including the SD sequence, by inserting the prepared DNA fragment into the DNA encoding the human antibody H chain of the pINC_OX40L / CD98H expression vector treated with the restriction enzyme EcoRV , A secreted / membrane-bound human antibody expression vector pINC_TMSP_AC27 containing a poly-Pyr sequence (T / C sequence 25), an SA sequence, a PDGFRtm sequence, and a second BGH-PolyA sequence in order was prepared (FIG. 2).
 同様にして、第1BGH-PolyA配列の3′末端側のpoly-Pyr配列T/C25(配列番号8)を、TおよびCからなる、15塩基のpoly-Pyr配列T/C15(配列番号7)又は8塩基のpoly-Pyr配列T/C8(配列番号6)のそれぞれに置換した、分泌型/膜結合型ヒトIgG抗体発現ベクターpINC_TMSP_AC17およびpINC_TMSP_AC10を作製した。 Similarly, the poly-Pyr sequence T / C25 (SEQ ID NO: 8) on the 3 ′ end side of the first BGH-PolyA sequence is replaced with a 15-base poly-Pyr sequence T / C15 (SEQ ID NO: 7) consisting of T and C. Alternatively, secreted / membrane-bound human IgG antibody expression vectors pINC_TMSP_AC17 and pINC_TMSP_AC10 substituted with 8-base poly-Pyr sequence T / C8 (SEQ ID NO: 6), respectively, were prepared.
 分泌型/膜結合型ヒトIgG抗体発現ベクター導入細胞におけるヒトIgG抗体発現
(1)分泌型/膜結合型ヒトIgG抗体発現ベクターpINC_TMSP_AC27導入細胞の作製
 実施例1(2)で作製した分泌型/膜結合型ヒトIgG抗体発現ベクターは、遺伝子導入試薬LipofectAmine(登録商標) 2000(Life Technologies社)を用いて添付のマニュアルに従って、chinese hamster ovary cell line CHO-K1( American Type Culture Collection、 Cat. No. CCL-61 )へ導入された。
Expression of human IgG antibody in secretory / membrane-bound human IgG antibody expression vector-introduced cells (1) Preparation of secreted / membrane-bound human IgG antibody expression vector pINC_TMSP_AC27-introduced cells Secreted / membrane prepared in Example 1 (2) The conjugated human IgG antibody expression vector is a Chinese hamster ovary cell line CHO-K1 (American Type Culture Collection, Cat. No. CCL) using a gene introduction reagent LipofectAmine (registered trademark) 2000 (Life Technologies) according to the attached manual. -61).
 具体的には、100 mm培養プレート内で70~80%コンフルエントになったCHO-K1細胞を無血清培地で洗浄後、α-minimum essential medium培地(以下、MEM培地と記す)(Life Technologies社)を加えた。次に、分泌型/膜結合型ヒトIgG抗体発現ベクターpINC_TMSP_AC27を24μgとLipofectAmine(登録商標) 2000溶液60μLを混合し細胞に加えた後に、37℃、5% CO2インキュベータ内で6時間静置培養を行なった。培養後、10%ウシ胎児血清(以下、FCSと略記する)(SAFC Biosciences社)を添加したMEM培地に置換し、細胞が90%コンフルエントの状態を越えないように、適宜希釈培養した。 Specifically, CHO-K1 cells that became 70-80% confluent in a 100 mm culture plate were washed with serum-free medium and then α-minimum essential medium medium (hereinafter referred to as MEM medium) (Life Technologies) Was added. Next, 24 μg of secreted / membrane-bound human IgG antibody expression vector pINC_TMSP_AC27 and 60 μL of LipofectAmine (registered trademark) 2000 solution were mixed and added to the cells, followed by static culture in a 37 ° C., 5% CO 2 incubator for 6 hours Was done. After culturing, the medium was replaced with MEM medium supplemented with 10% fetal bovine serum (hereinafter abbreviated as FCS) (SAFC Biosciences), and diluted appropriately so that the cells did not exceed 90% confluence.
 7日間培養後、トリプシン処理により細胞を剥離してCHO-K1細胞を回収し、phosphate buffer saline(以下、PBSと略記する)(Life Technologies社製)を用いて1×106cells/mLの細胞懸濁液を調製した。細胞懸濁液に、50μLのmouse Anti-Human IgG(Fc)-PE(以下、抗ヒトIgGマウス抗体と称す)(BECKMAN社、Cat. No.736007)を加え、室温で1時間反応させた。反応後、細胞懸濁液を遠心分離し、PBSを用いて細胞を洗浄し余分な抗ヒトIgGマウス抗体を除去した。次に遠心分離後、細胞へ10 mLのMEM培地を加え懸濁し、1 cell/wellになるように段階的に希釈した細胞懸濁液を96ウェルプレートに分注した。 After culturing for 7 days, the cells were detached by trypsin treatment to collect CHO-K1 cells, and 1 × 10 6 cells / mL of cells using phosphate buffer saline (hereinafter abbreviated as PBS) (Life Technologies). A suspension was prepared. 50 μL of mouse Anti-Human IgG (Fc) -PE (hereinafter referred to as “anti-human IgG mouse antibody”) (BECKMAN, Cat. No. 736007) was added to the cell suspension and reacted at room temperature for 1 hour. After the reaction, the cell suspension was centrifuged, and the cells were washed with PBS to remove excess anti-human IgG mouse antibody. Next, after centrifugation, 10 mL of MEM medium was added to the cells and suspended, and the cell suspension diluted stepwise to 1 cell / well was dispensed into a 96-well plate.
 各ウェルに含まれる細胞の蛍光強度は、細胞イメージ解析システム(オリンパス社製CELAVIEW RS100)を用いて測定した結果、目視により複数の細胞を含むウェルは排除し、また蛍光が検出されないウェルも排除し、1 cell/wellで蛍光が検出されたウェルを選択した。選択したウェルの細胞がおよそ90%コンフルエントになるまで培養を行い、分泌された培養液中の抗体濃度を測定した。培養液中の抗体濃度はHPLC(Waters社製)を用いて測定した。 The fluorescence intensity of the cells contained in each well was measured using a cell image analysis system (Olympus CELAVIEW RS100). As a result, wells containing multiple cells were visually excluded, and wells where fluorescence was not detected were also excluded. Wells in which fluorescence was detected at 1 cell / well were selected. The cells were cultured until the cells in the selected wells were approximately 90% confluent, and the antibody concentration in the secreted culture medium was measured. The antibody concentration in the culture was measured using HPLC (Waters).
 その結果、抗ヒトIgGマウス抗体は、pINC_TMSP_AC27発現ベクター導入細胞に結合し、蛍光染色されたCHO-K1細胞は培養液中にIgG抗体を発現していた。また、複数の細胞クローンの結果からCHO-K1細胞の蛍光強度と培養上清中の抗体濃度は正の相関を示した(図4)。
 従って、SD配列を含むヒト抗体H鎖をコードするDNA配列、第1BGH-PolyA配列、poly-Pyr配列、SA配列、PDGFRtmおよび第2BGH-PolyA配列を含む発現ベクターpINC_TMSP_AC27を導入した細胞は、細胞膜上に膜結合型ヒトIgG抗体を発現し、かつ同時に培養上清中へ分泌型IgG抗体を発現できることが明らかになった。また、細胞膜上に発現している膜結合型ヒトIgG抗体量は分泌型ヒトIgG抗体量に正の相関関係をもって増加していることが明らかになった。
(2)分泌型/膜結合型ヒトIgG抗体発現ベクターにおけるポリピリミジン配列の検討
 実施例1(2)で作製したpoly-Pyr配列の長さが異なる分泌型/膜結合型ヒトIgG抗体発現ベクターpINC_TMSP_AC10、pINC_TMSP_AC17およびpINC_TMSP_AC27を、実施例2(1)と同様にしてCHO-K1細胞へ導入し、細胞の蛍光染色および培養上清中の抗体濃度の測定を行った。AC27の培養上清中の分泌型抗体量と抗ヒトIgGマウス抗体による蛍光染色強度を100とした時の、AC17およびAC10導入細胞の各相対値を表1に示す。
As a result, the anti-human IgG mouse antibody bound to the pINC_TMSP_AC27 expression vector-introduced cell, and the fluorescently stained CHO-K1 cell expressed the IgG antibody in the culture medium. Moreover, the fluorescence intensity of CHO-K1 cells and the antibody concentration in the culture supernatant showed a positive correlation from the results of multiple cell clones (FIG. 4).
Therefore, the cells into which the expression vector pINC_TMSP_AC27 containing the DNA sequence encoding the human antibody H chain containing the SD sequence, the first BGH-PolyA sequence, the poly-Pyr sequence, the SA sequence, the PDGFRtm and the second BGH-PolyA sequence are introduced on the cell membrane It was revealed that a membrane-bound human IgG antibody can be expressed at the same time and a secretory IgG antibody can be expressed simultaneously in the culture supernatant. It was also revealed that the amount of membrane-bound human IgG antibody expressed on the cell membrane increased with a positive correlation with the amount of secreted human IgG antibody.
(2) Examination of polypyrimidine sequence in secretory / membrane-bound human IgG antibody expression vector Secretion / membrane-bound human IgG antibody expression vector pINC_TMSP_AC10 with different lengths of the poly-Pyr sequence prepared in Example 1 (2) PINC_TMSP_AC17 and pINC_TMSP_AC27 were introduced into CHO-K1 cells in the same manner as in Example 2 (1), and fluorescence staining of the cells and measurement of the antibody concentration in the culture supernatant were performed. Table 1 shows the relative values of AC17 and AC10-introduced cells when the amount of secretory antibody in the AC27 culture supernatant and the intensity of fluorescence staining with anti-human IgG mouse antibody are taken as 100.
Figure JPOXMLDOC01-appb-T000001
   
Figure JPOXMLDOC01-appb-T000001
   
  その結果、抗ヒトIgGマウス抗体は、分泌型/膜結合型抗ヒトIgG抗体発現ベクターpINC_TMSP_AC10、pINC_TMSP_AC17およびpINC_TMSP_AC27いずれの発現ベクターを導入したCHO-K1細胞にも結合した。また、培養上清中には、IgG抗体が検出された。
 よって、8塩基以上の長さを有するポリピリミジン配列を含む発現ベクターは、分泌型IgG抗体および膜結合型IgG抗体の両方を同時に発現できることが明らかになった。
As a result, the anti-human IgG mouse antibody also bound to CHO-K1 cells into which any of the expression vectors pINC_TMSP_AC10, pINC_TMSP_AC17 and pINC_TMSP_AC27 was introduced. Further, IgG antibody was detected in the culture supernatant.
Therefore, it was revealed that an expression vector containing a polypyrimidine sequence having a length of 8 bases or more can express both a secretory IgG antibody and a membrane-bound IgG antibody at the same time.
 また、poly-Pyr配列が8塩基であるpINC_TMSP_AC10を導入した細胞では、poly-Pyr配列が25塩基であるpINC_TMSP_AC27を導入した細胞に比べて、細胞膜上に発現する膜結合型IgG抗体の蛍光強度が低かった。
 従って、pINC_TMSP_AC27と比べてpoly-Pyr配列が短いpINC_TMSP_AC10が導入された細胞では、分泌型ヒトIgG抗体をコードするmRNAから膜結合型IgG抗体をコードするmRNAへのスプライシング効率が低下していることが明らかになった。
In addition, in cells transfected with pINC_TMSP_AC10 whose poly-Pyr sequence is 8 bases, the fluorescence intensity of the membrane-bound IgG antibody expressed on the cell membrane is higher than that of cells introduced with pINC_TMSP_AC27 whose poly-Pyr sequence is 25 bases. It was low.
Therefore, splicing efficiency from mRNA encoding secretory human IgG antibody to mRNA encoding membrane-bound IgG antibody is reduced in cells introduced with pINC_TMSP_AC10, which has a shorter poly-Pyr sequence than pINC_TMSP_AC27. It was revealed.
 Tol2トランスポゾンを用いた分泌型/膜結合型抗ヒト抗体発現ベクターの作製
 実施例1(2)で作製したpINC_TMSP_AC27発現ベクターを、制限酵素SalIおよびNotIを用いて制限酵素処理し、ヒトIgG抗体L鎖、CMV由来エンハンサー/プロモーター制御下に連結されたSD配列を含むヒトH鎖、第1BGH-polyA、SA配列およびPDGFRtmを含むDNA断片並びにCMV由来エンハンサー/プロモーター制御下に連結されたシクロヘキシミド耐性遺伝子を含む遺伝子断片を切り出した。制限酵素処理後、精製した該遺伝子断片を鋳型として、合成DNAプライマーAC27-TnPMug FW(配列番号20)およびAC27-TnPMug RV P2(配列番号21)を用いたPCRを行い、制限酵素部位SalIおよびMluIが付加された遺伝子断片を作製した。
Production of secretory / membrane-bound anti-human antibody expression vector using Tol2 transposon The pINC_TMSP_AC27 expression vector produced in Example 1 (2) was treated with restriction enzymes SalI and NotI, and human IgG antibody L chain , Including a human H chain containing an SD sequence linked under CMV-derived enhancer / promoter control, a DNA fragment containing the first BGH-polyA, SA sequence and PDGFRtm, and a cycloheximide resistance gene linked under CMV-derived enhancer / promoter control The gene fragment was excised. After the restriction enzyme treatment, PCR was performed using the purified gene fragment as a template and the synthetic DNA primers AC27-TnPMug FW (SEQ ID NO: 20) and AC27-TnPMug RV P2 (SEQ ID NO: 21), and restriction enzyme sites SalI and MluI A gene fragment to which was added was prepared.
 WO2010/143698に記載の抗M2抗体発現Tol2トランスポゾンベクターに含まれる抗体L鎖、CMVプロモーター、H鎖をコードするDNAの発現カセットおよびシクロヘキシミド耐性遺伝子発現カセットを除いたTol2トランスポゾンベクター(以下、TnPMugベクターと略記する)を制限酵素SalIおよびMluIで処理し、PCRにより作製した遺伝子断片をIn-FusionTM Advantage PCR Cloning Kit(Clontech 社 、Cat.No. 639619)を用いて添付のマニュアルに従い、TnPMugベクターの制限酵素サイトSalIとMluIの間に挿入し、Tol2トランスポゼース依存的に遺伝子導入される分泌型/膜結合型ヒトIgG抗体発現Tol2トランスポゾンベクターAC27/TnPMugを作製した(図3)。同様の方法により、実施例1(2)で作製したpINC_TMSP_AC17ベクター又はpINC_TMSP_AC10ベクターを用いて、それぞれポリピリミジン配列が15塩基からなるT/C15配列、8塩基からなるT/C8配列を含む発現ベクターAC17/TnPMugおよびAC10/TnPMugを作製した。 Tol2 transposon vector excluding the antibody L chain, CMV promoter, DNA encoding cassette encoding H chain and cycloheximide resistance gene expression cassette contained in the anti-M2 antibody expressing Tol2 transposon vector described in WO2010 / 143698 (hereinafter referred to as TnPMug vector and the abbreviated) was treated with the restriction enzymes SalI and MluI, the gene fragments generated by PCR in-Fusion TM Advantage PCR Cloning Kit (Clontech , Inc., according to catalog number. six hundred and thirty-nine thousand six hundred and nineteen ) with the attached manual, restrictions TnPMug vector A secreted / membrane-bound human IgG antibody-expressing Tol2 transposon vector AC27 / TnPMug inserted between the enzyme sites SalI and MluI and introduced in a Tol2 transposase-dependent manner was prepared (FIG. 3). In the same manner, using the pINC_TMSP_AC17 vector or the pINC_TMSP_AC10 vector prepared in Example 1 (2), an expression vector AC17 containing a T / C15 sequence consisting of 15 bases and a T / C8 sequence consisting of 8 bases, respectively. / TnPMug and AC10 / TnPMug were prepared.
 トランスポゾンベクターを用いた分泌型/膜結合型ヒトIgG抗体を同時に産生する細胞の作製
(1)Tol2トランスポゾンを用いたCHO細胞形質転換体の作製
 浮遊細胞に馴化したCHO-K1細胞( American Type Culture Collection Cat. No. CCL-61)へのベクター導入は、Gene Pulser Xcell(登録商標)(BIO-RAD社)を用いたエレクトロポレーション法で、以下のように行なった。
Preparation of cells that simultaneously produce secreted / membrane-bound human IgG antibodies using transposon vectors (1) Preparation of CHO cell transformants using Tol2 transposon CHO-K1 cells (American Type Culture Collection) adapted to floating cells The vector was introduced into Cat. No. CCL-61) by electroporation using Gene Pulser Xcell (registered trademark) (BIO-RAD) as follows.
 4.0×106個の浮遊性CHO-K1細胞を1000 rpm、5分間、遠心分離し上清を除去した後、氷冷した400μLのPBS(Life Technologies社製)を加え、細胞懸濁液を調製した。該細胞懸濁液に分泌型/膜結合型ヒトIgG抗体発現Tol2トランスポゾンベクターAC27/TnPMug 10μg、Tol2トランスポゼース発現プラスミド(WO2010/143698)20μgを加え、エレクトロポレーション用キュベットに入れた後、電圧300V、静電容量500μFでエレクトロポレーションを行った。エレクトロポレーション後、細胞懸濁液に200 mM L-Glutamineを含む20 mLのCD opti CHO培地 (Life Technologies社製)(以下、細胞培養用培地と記す)を加えて懸濁し、6ウェルプレートに3mL/ウェルで分注後、37℃、5% CO2インキュベーターで24時間静置培養した。培養後、37℃、5% CO2インキュベーターで10日間、攪拌培養を行った。
(2)セルソーターを用いた抗ヒト抗体発現細胞の選抜
 (a)PE標識マウス抗ヒトIgG抗体を用いた抗体生産細胞の選抜
 分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターを導入したCHO-K1細胞は、細胞膜上に膜結合型ヒト抗体を発現しかつ分泌型ヒト抗体を生産している。このため、細胞をPE標識マウス抗ヒトIgG抗体で抗体産生細胞を染色し蛍光強度の強い細胞を選択することで、分泌型抗ヒト抗体を高発現している細胞を選抜することが可能か否か、以下のようにして検討を行った。
Centrifugation of 4.0 × 10 6 floating CHO-K1 cells at 1000 rpm for 5 minutes to remove the supernatant, and then add ice-cooled 400 μL PBS (Life Technologies) to prepare a cell suspension did. To the cell suspension was added secreted / membrane-bound human IgG antibody-expressing Tol2 transposon vector AC27 / TnPMug 10 μg, Tol2 transposase expression plasmid (WO2010 / 143698) 20 μg, and placed in an electroporation cuvette. Electroporation was performed with a capacitance of 500 μF. After electroporation, the cell suspension is suspended by adding 20 mL of CD opti CHO medium (Life Technologies) containing 200 mM L-Glutamine (hereinafter referred to as cell culture medium) to a 6-well plate. After dispensing at 3 mL / well, the cells were statically cultured for 24 hours in a 37 ° C., 5% CO 2 incubator. After the culture, stirring culture was performed in a 37 ° C., 5% CO 2 incubator for 10 days.
(2) Selection of anti-human antibody-expressing cells using a cell sorter (a) Selection of antibody-producing cells using PE-labeled mouse anti-human IgG antibody CHO-K1 introduced with a secreted / membrane-bound human antibody-expressing Tol2 transposon vector The cell expresses a membrane-bound human antibody on the cell membrane and produces a secreted human antibody. Therefore, it is possible to select cells that highly express secreted anti-human antibody by staining antibody-producing cells with PE-labeled mouse anti-human IgG antibody and selecting cells with strong fluorescence intensity. Or we examined as follows.
 AC27/TnPMugを導入したCHO-K1細胞を、培養後1000 rpm、5分間、遠心分離し上清を除去した後、10μL(1μg)のPE標識抗ヒトIgGマウス抗体(mouse Anti-Human IgG(Fc)-PE、Cat. No.736007、BECKMAN社製)を加え、遮光下、氷温下で30~60分間反応させた。反応後、細胞培養用培地で洗浄した後、1000 rpm、5分間の遠心分離を行い細胞を回収し、2回洗浄して非特異的に結合しているPE標識抗ヒトIgGマウス抗体を除去した。洗浄後、細胞を1mLの細胞培養用培地で攪拌後、セルストレーナー付きチューブでろ過を行った。 After culturing, CHO-K1 cells introduced with AC27 / TnPMug were centrifuged at 1000 培養 rpm for 5 minutes, and the supernatant was removed. Then, 10µL (1µg) PE-labeled anti-human IgG mouse antibody (mouse Anti-Human IgG (Fc ) -PE, Cat. No.736007, manufactured by BECKMAN), and the mixture was allowed to react for 30 to 60 minutes under light shielding at ice temperature. After the reaction, after washing with a cell culture medium, the cells were collected by centrifugation at 1000 rpm for 5 minutes, and washed twice to remove non-specifically bound PE-labeled anti-human IgG mouse antibody. . After washing, the cells were stirred with 1 mL of cell culture medium and filtered through a tube with a cell strainer.
 セルソーターFACSAria(BD Pharmigen社製)を用いて、PE標識マウス抗ヒト抗体で染色した細胞から、高い蛍光強度の細胞をソーティングした。
 セルソーティングは、前方散乱(Forward Scatter)と側方散乱(Side Scatter)で展開し、所望のレーザー散乱を示す細胞集団をゲーティングすることで、異常なレーザー散乱を示す細胞や細胞デブリスを除いた(図5(a))。次に、ゲート内の細胞において、PEの蛍光強度を横軸としたヒストグラムを展開し、PE蛍光強度が強い上位0.1%の細胞をソーティングし、1cell/wellになるように384ウェルプレートに播種した(図5(b))。1細胞/1ウェルであることを目視で確認後、37℃、5% CO2インキュベーターで2週間静置培養した。
Using a cell sorter FACSAria (BD Pharmigen), cells with high fluorescence intensity were sorted from cells stained with PE-labeled mouse anti-human antibody.
Cell sorting is developed with forward scatter and side scatter, and cell populations exhibiting the desired laser scatter are gated to eliminate cells and cell debris that exhibit abnormal laser scatter. (Figure 5 (a)). Next, in the cells in the gate, a histogram with the fluorescence intensity of PE as the horizontal axis was developed, the top 0.1% cells with the strongest PE fluorescence intensity were sorted, and seeded in a 384-well plate at 1 cell / well. (FIG. 5 (b)). After visually confirming that it was 1 cell / 1 well, it was statically cultured for 2 weeks in a 37 ° C., 5% CO 2 incubator.
 (b)Recombinant protein A/G-FITCを用いた抗体生産細胞の選抜
 上述の(a)と同様にして、分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターを導入したCHO-K1細胞を、recombinant protein A/G-FITC(BioVision社製、Cat. No. 6504-1)を用いて染色することで、分泌型ヒト抗体を高発現している細胞を選抜することが可能か否かを検討した。
(B) Selection of antibody-producing cells using Recombinant protein A / G-FITC In the same manner as in (a) above, CHO-K1 cells into which a secreted / membrane-bound human antibody-expressing Tol2 transposon vector was introduced were recombinant We examined whether it is possible to select cells that highly express secreted human antibodies by staining with protein A / G-FITC (BioVision, Cat. No. 6504-1). .
 その結果、PE標識抗ヒトIgGマウス抗体と同様に、recombinant protein A/G-FITCを用いた細胞の染色および細胞をソーティングすることができた。
 以上の(a)および(b)の結果から、本発明の分泌型/膜結合型ヒト抗体発現ベクターを導入した細胞では、細胞膜上に膜結合型ヒト抗体を発現しており、該膜結合型ヒトIgG抗体に結合する抗ヒトIgG抗体、recombinant protein Aおよびrecombinant protein Gを用いて、膜結合型ヒト抗体を高発現している抗体生産細胞をスクリーニングできることが明らかになった。また、膜結合型抗体は、抗ヒトIgG抗体および抗体のFc領域に結合するrecombinant protein Aの結合エピトープを保持しており、膜結合型抗体を検出する複数の検出体が、本発明の抗体生産細胞のスクリーニングに応用できることも明らかになった。
(3)抗体生産細胞の細胞膜上の膜結合型ヒト抗体発現量
 ポリピリミジン配列に含まれる塩基数が25、15又は8塩基である分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC27/TnPMug、AC17/TnPMug又はAC10/TnPMugをそれぞれ導入したCHO-K1細胞における、細胞膜上に発現する膜結合型ヒト抗体量を検討した。
As a result, as with the PE-labeled anti-human IgG mouse antibody, it was possible to stain cells and sort cells using recombinant protein A / G-FITC.
From the results of (a) and (b) above, in the cells into which the secretory / membrane-bound human antibody expression vector of the present invention has been introduced, the membrane-bound human antibody is expressed on the cell membrane, and the membrane-bound human antibody is expressed. It was revealed that antibody-producing cells that highly express membrane-bound human antibodies can be screened using anti-human IgG antibodies, recombinant protein A and recombinant protein G that bind to human IgG antibodies. In addition, the membrane-bound antibody retains the binding epitope of the anti-human IgG antibody and the recombinant protein A that binds to the Fc region of the antibody, and a plurality of detection bodies that detect the membrane-bound antibody produce the antibody of the present invention. It was also revealed that it can be applied to cell screening.
(3) Membrane-bound human antibody expression level on the cell membrane of antibody-producing cells Secretion / membrane-bound human antibody expression Tol2 transposon vector AC27 / TnPMug having 25, 15 or 8 bases contained in the polypyrimidine sequence, The amount of membrane-bound human antibody expressed on the cell membrane in CHO-K1 cells into which AC17 / TnPMug or AC10 / TnPMug was introduced was examined.
 実施例4(1)と同様にして各ベクターをそれぞれCHO-K1細胞へ導入し、実施例4(2)(b)と同様の方法により膜結合型ヒト抗体を発現している細胞を測定した。一定の細胞数当たりの、Recombinant protein A/G-FITCが結合した蛍光強度が1.0×103~1.0×105の範囲である細胞数の割合を算出した。 Each vector was introduced into CHO-K1 cells in the same manner as in Example 4 (1), and cells expressing membrane-bound human antibodies were measured by the same method as in Example 4 (2) (b). . The ratio of the number of cells in which the fluorescence intensity of Recombinant protein A / G-FITC binding per certain number of cells was in the range of 1.0 × 10 3 to 1.0 × 10 5 was calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 その結果、発現ベクターを導入していないネガティブコントロールに比べて、分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC27/TnPMug、AC17/TnPMug又はAC10/TnPMugを導入した細胞では、有意にrecombinant protein A/G-FITC結合による蛍光強度が増加した。よって実施例2と同様に、分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクター導入細胞では、膜結合型ヒト抗体が発現していることが明らかになった。 As a result, compared with the negative control without the expression vector, the recombinant / protein-binding human antibody-expressing Tol2 transposon vector AC27 / TnPMug, AC17 / TnPMug, or AC10 / TnPMug was significantly recombinant protein A Fluorescence intensity increased due to / G-FITC binding. Therefore, as in Example 2, it was revealed that the membrane-bound human antibody was expressed in the secretory / membrane-bound human antibody-expressing Tol2 transposon vector-introduced cells.
 また、AC17/TnPMug又はAC27/TnPMugベクターを導入した細胞では、AC10/TnPMugベクターを導入した細胞に比べて、蛍光強度が1×103~1×105である細胞数が約2.4倍又は2.1倍増加した。従って、8塩基以上のポリピリミジン配列を含む分泌型/膜結合型ヒト抗体発現ベクターは、膜結合型ヒト抗体発現をすることができ、また15塩基以上のポリピリミジン配列を含む分泌型/膜結合型ヒト抗体発現ベクターは、より効率的に膜結合型ヒト抗体を高発現できることが明らかになった。 In addition, in the cells into which AC17 / TnPMug or AC27 / TnPMug vectors have been introduced, the number of cells having a fluorescence intensity of 1 × 10 3 to 1 × 10 5 is about 2.4 times or 2.1 times that of cells into which AC10 / TnPMug vectors have been introduced. Doubled. Therefore, a secretory / membrane-bound human antibody expression vector containing a polypyrimidine sequence of 8 bases or more is capable of expressing a membrane-bound human antibody, and is a secreted / membrane-bound antibody comprising a polypyrimidine sequence of 15 bases or more. It has been clarified that the human antibody expression vector can highly efficiently express a membrane-bound human antibody.
 抗体生産細胞による分泌型ヒト抗体および膜結合型ヒト抗体の発現および生産
(1)分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC27/TnPMug、AC17/TnPMugおよびAC10/TnPMug導入細胞による分泌型ヒト抗体および膜結合型ヒト抗体の発現
 実施例4(1)と同様にして、各AC27/TnPMug、AC17/TnPMugおよびAC10/TnPMugベクターを遺伝子導入したCHO-K1細胞を作製した。セルソーターFACSAria(BD Pharmigen社製)を用いて、recombinant protein A/G-FITCの結合による蛍光強度が2.0×103、3.0×103および4.0×103付近にゲートを設定し、シングルセルソーティングを実施した。
Expression and production of secreted human and membrane-bound human antibodies by antibody-producing cells (1) Secreted / membrane-bound human antibody expressing Tol2 transposon vectors AC27 / TnPMug, AC17 / TnPMug, and AC10 / TnPMug-introduced cells Expression of antibody and membrane-bound human antibody In the same manner as in Example 4 (1), CHO-K1 cells into which each AC27 / TnPMug, AC17 / TnPMug, and AC10 / TnPMug vectors were introduced were prepared. Using a cell sorter FACSAria (BD Pharmigen), set the gate at around 2.0 × 10 3 , 3.0 × 10 3 and 4.0 × 10 3 for the fluorescence intensity due to the binding of recombinant protein A / G-FITC, and perform single cell sorting Carried out.
 ソーティングした細胞は、細胞培養用培地50μLを入れた384穴プレートに播種し、37℃、5% CO2インキュベーターで2週間静置培養を行った。培養後、コロニーを形成した細胞を、細胞培養用培地を150μL/wellで分注した96穴プレートに移し、37℃、5% CO2インキュベーターで1週間静置培養を行った。培養後に、培養上清を回収し分泌型抗体の発現量をFRET(蛍光共鳴エネルギー移動)を利用したサンドイッチ法(LENCETM、パーキンエルマー社)で定量した(図6(a)、(b)および(c))。 Sorted cells were seeded in a 384-well plate containing 50 μL of cell culture medium, and statically cultured at 37 ° C. in a 5% CO 2 incubator for 2 weeks. After culturing, the cells that formed colonies were transferred to a 96-well plate in which a cell culture medium was dispensed at 150 μL / well, followed by stationary culture at 37 ° C. in a 5% CO 2 incubator for 1 week. After culturing, the culture supernatant was collected, and the expression level of the secretory antibody was quantified by the sandwich method (LENCE TM, PerkinElmer) using FRET (fluorescence resonance energy transfer) (FIGS. 6 (a), (b) and (c)).
 その結果、いずれの発現ベクターを導入したCHO-K1細胞においても、recombinant protein A/G-FITCの結合による蛍光強度の増加と分泌型ヒト抗体濃度の増加とが正に相関していた(図6(a)、(b)および(c))。従って、膜結合型ヒト抗体の発現量の増加と共に、分泌型ヒト抗体の産生が増加していることが明らかになった。また、膜結合型抗体に結合する蛍光標識された抗体、protein A等の結合体を用いて抗体発現細胞を選択することで、分泌型抗体を高発現している細胞をスクリーニングできることが明らかになった。
(2)分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC27/TnPMug、AC17/TnPMugおよびAC10/TnPMug導入細胞による抗体生産
 実施例4(2)(a)において、各AC27/TnPMug、AC17/TnPMugおよびAC10/TnPMug導入細胞の蛍光強度が最も高い細胞の0.1%をシングルセルソーティングした結果、AC27/TnPMug導入細胞では8クローン、AC17/TnPMug導入細胞では16クローン、およびAC10/TnPMug導入細胞では6クローンのシングルクローンを得た。各細胞の抗体生産量の平均は、AC10/TnPMug<AC17/TnPMug ≒ AC27/TnPMugであった。
As a result, in CHO-K1 cells into which any expression vector was introduced, an increase in fluorescence intensity due to the binding of recombinant protein A / G-FITC was positively correlated with an increase in the concentration of secreted human antibody (Fig. 6). (a), (b) and (c)). Therefore, it has been clarified that the production of secreted human antibodies increases as the expression level of membrane-bound human antibodies increases. It was also clarified that cells expressing highly secreted antibodies can be screened by selecting antibody-expressing cells using conjugates such as fluorescently labeled antibodies that bind to membrane-bound antibodies and protein A. It was.
(2) Secretory / membrane-bound human antibody-expressing Tol2 transposon vectors AC27 / TnPMug, AC17 / TnPMug, and AC10 / TnPMug Introducing cells into cells In Example 4 (2) (a), AC27 / TnPMug, AC17 / TnPMug As a result of single cell sorting of 0.1% of the cells with the highest fluorescence intensity of AC10 / TnPMug-introduced cells, 8 clones in AC27 / TnPMug-introduced cells, 16 in AC17 / TnPMug-introduced cells, and 6 in AC10 / TnPMug-introduced cells Obtained a single clone. The average antibody production amount of each cell was AC10 / TnPMug <AC17 / TnPMug≈AC27 / TnPMug.
 更に、膜結合型ヒト抗体を発現しているCHO-K1細胞株を培養し、各クローンについて膜結合型ヒト抗体の発現量を検討し、各発現ベクターを導入したクローンのうち、最も抗体を発現しているクローンを選択した。最終的に選択した各発現ベクターが導入された抗体発現細胞株のヒト抗体の生産量を検討した。
 CD opti CHO(Life Technologies社)にL-Glutamine(Life Technologies社)を加えた生産培地を用いて、6ウェルプレート(Corning社)に1×106個/3 mLの細胞を播種し、37℃、5% CO2インキュベーターにて7日間攪拌培養を実施した。IgG抗体濃度はHPLC(Waters社製)にて測定した(表3)。
Furthermore, the CHO-K1 cell line expressing membrane-bound human antibodies is cultured, the expression level of membrane-bound human antibodies is examined for each clone, and the most antibody is expressed among the clones into which each expression vector has been introduced. Selected clones. The production amount of the human antibody of the antibody-expressing cell line into which each finally selected expression vector was introduced was examined.
Using a production medium with CD opti CHO (Life Technologies) plus L-Glutamine (Life Technologies), seed 1 × 10 6 cells / 3 mL in a 6-well plate (Corning) at 37 ° C. Then, stirring culture was performed in a 5% CO 2 incubator for 7 days. The IgG antibody concentration was measured by HPLC (Waters) (Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  その結果、分泌型/膜結合型ヒト抗体発現Tol2トランスポゾンベクターAC10/TnPMug、AC17/TnPMugおよびAC27/TnPMugをそれぞれ導入したCHO-K1細胞は、培養7日後の培養上清に、それぞれ0.1 g/L、0.5 g/Lおよび0.4 g/Lの分泌型ヒトIgG抗体を生産していた。また、AC17/TnPMug又はAC27/TnPMugベクターを導入した細胞は、AC10/TnPMugベクターを導入した細胞に比べて、5倍又は4倍高く抗体を生産していた。 As a result, CHO-K1 cells into which the secreted / membrane-bound human antibody-expressing Tol2 transposon vectors AC10 / TnPMug, AC17 / TnPMug, and AC27 / TnPMug were respectively introduced were 0.1 μg / L in the culture supernatant after 7 days of culture. , 0.5 g / L and 0.4 g / L secretory human IgG antibodies were produced. In addition, cells transfected with the AC17 / TnPMug or AC27 / TnPMug vector produced antibodies 5 or 4 times higher than cells transfected with the AC10 / TnPMug vector.
 従って、膜結合型抗体の発現量を指標に、分泌型/膜結合型抗体発現ベクターを導入した細胞から抗体生産細胞をクリーニングし、選択した細胞を用いて抗体生産を行なうことができることが明らかになった。また、膜結合型抗体の高い発現量を指標に選択された抗体生産細胞は、分泌型抗体を高生産していることが明らかになった。
 更に、実施例4(3)の結果と本実施例の結果から、15塩基以上のpoly-Pyr配列を含む発現ベクターが導入された細胞は、8塩基のpoly-Pyr配列を含む発現ベクターが導入された細胞と比べて、効率的にスプライシングが起こった結果膜結合型抗体を高発現しており、膜結合型抗体の高発現を指標にスクリーニングされた細胞は、分泌型抗体を高発現していることが明らかになった。よって、15塩基以上のpoly-Pyr配列を含む発現ベクターを宿主細胞へ導入することでより効率的に抗体高生産細胞を製造し、抗体産生できることも明らかになった。
Therefore, it is clear that antibody-producing cells can be cleaned from cells into which secreted / membrane-bound antibody expression vectors have been introduced using the expression level of membrane-bound antibody as an indicator, and antibody production can be performed using the selected cells. became. In addition, it was revealed that the antibody-producing cells selected based on the high expression level of the membrane-bound antibody produced a high amount of secretory antibody.
Furthermore, from the result of Example 4 (3) and the result of this example, an expression vector containing an 8-base poly-Pyr sequence was introduced into a cell into which an expression vector containing a 15-base poly-Pyr sequence was introduced. As a result of efficient splicing, the cell-bound antibody is highly expressed, and the cells that are screened using the high expression of the membrane-bound antibody as a marker show high expression of the secretory antibody. It became clear that Thus, it has also been clarified that by introducing an expression vector containing a poly-Pyr sequence of 15 bases or more into a host cell, a high antibody-producing cell can be produced more efficiently and the antibody can be produced.
 分泌型/膜結合型ヒト抗体産生細胞におけるmRNA発現解析
 分泌型/膜結合型ヒト抗体発現ベクターを導入した細胞における分泌型ヒトIgG抗体および膜結合型ヒト抗体のmRNAの発現解析を行うために、実施例5(2)で膜結合型ヒトIgG抗体発現を指標に選択されたCHO-K1細胞のmRNA発現を、real-time PCR法で解析した。
 培養した分泌型/膜結合型ヒト抗体発現ベクターを導入した細胞から、RNeasy(登録商標) Mini Kit(250)(Cat. No.74106、QIAGEN社)を用いて添付の使用説明書に従いtotal RNAを抽出した。抽出したtotal RNAを鋳型に、膜結合型ヒト抗体H鎖mRNAの部分断片を増幅するためのprobe 3 Fwプライマー(配列番号22)およびprobe 3 Rvプライマー(配列番号23)、膜結合型ヒト抗体および分泌型ヒト抗体両方のH鎖mRNAの部分断片を増幅するためのprobe 1 Fwプライマー(配列番号24)およびprobe 1 Rvプライマー(配列番号25)を用いて、各mRNA断片のPCRを行なった(図7)。増幅断片は、probe 3 (配列番号26)およびprobe 1(配列番号27)を用いて検出した。
Analysis of mRNA expression in secretory / membrane-bound human antibody-producing cells To analyze the expression of secretory human IgG antibody and membrane-bound human antibody mRNA in cells into which secreted / membrane-bound human antibody expression vectors have been introduced. The mRNA expression of CHO-K1 cells selected in Example 5 (2) using membrane-bound human IgG antibody expression as an index was analyzed by real-time PCR.
Total RNA was extracted from cultured cells containing the secreted / membrane-bound human antibody expression vector using the RNeasy (registered trademark) Mini Kit (250) (Cat. No. 74106, QIAGEN) according to the attached instructions. Extracted. Using the extracted total RNA as a template, probe 3 Fw primer (SEQ ID NO: 22) and probe 3 Rv primer (SEQ ID NO: 23) for amplifying partial fragments of membrane-bound human antibody H chain mRNA, membrane-bound human antibody and PCR of each mRNA fragment was performed using probe 1 Fw primer (SEQ ID NO: 24) and probe 1 Rv primer (SEQ ID NO: 25) for amplifying partial fragments of H chain mRNA of both secretory human antibodies (Fig. 7). The amplified fragment was detected using probe 3 (SEQ ID NO: 26) and probe 1 (SEQ ID NO: 27).
 real time-PCRは、7900HT Fast Real-Time PCR System(Applied Biosystems社)を用いて行い、データ解析はSDS software version 2.3(Applied Biosystems社)を用いて、mRNAの定量を行なった。
 その結果、T/Cが8個連続したpoly-Pyr配列を含むAC10/TnPMugベクター導入細胞の膜結合型抗体H鎖のmRNA発現量を1とすると、T/Cが15個連続したpoly-Pyr配列を含むAC17/TnPMugベクター導入細胞の膜結合型抗体H鎖のmRNA発現量は23倍、T/Cが25個連続したpoly-Pyr配列であるAC27/TnPMugベクター導入細胞の膜結合型抗体H鎖のmRNA発現量は27倍であった(図8(a))。
Real time-PCR was performed using 7900HT Fast Real-Time PCR System (Applied Biosystems), and data analysis was performed using SDS software version 2.3 (Applied Biosystems) to quantify mRNA.
As a result, assuming that the mRNA expression level of the membrane-bound antibody H chain of AC10 / TnPMug vector-introduced cells containing poly-Pyr sequences containing 8 T / C sequences is 1, poly-Pyr containing 15 T / C sequences. AC27 / TnPMug vector-introduced cell membrane-bound antibody H chain mRNA expression level is 23 fold and membrane-bound antibody H in AC27 / TnPMug vector-introduced cell with 25 T / C poly-Pyr sequences The mRNA expression level of the strand was 27 times (FIG. 8 (a)).
 一方、分泌型ヒト抗体H鎖および膜結合型ヒト抗体H鎖を含む全抗体H鎖mRNA量は、AC10/TnPMugベクター導入細胞の全抗体H鎖のmRNA発現量を1とした場合、AC17/TnPMugベクター導入細胞のH鎖mRNA発現量は2倍、AC27/TnPMugベクター導入細胞のH鎖mRNA発現量は1.4倍であった(図8(b))。また、各ベクター導入細胞における全抗体H鎖mRNA発現量中の膜結合型ヒト抗体H鎖mRNA発現量は、それぞれ0.1%、1.4%又は1.6%であった(図8(c))。 On the other hand, the total antibody H chain mRNA amount including secreted human antibody H chain and membrane-bound human antibody H chain is AC17 / TnPMug when the mRNA expression level of all antibody H chains in AC10 / TnPMug vector-introduced cells is 1. The H chain mRNA expression level of the vector-introduced cells was doubled, and the H chain mRNA expression level of the AC27 / TnPMug vector-introduced cells was 1.4 times (FIG. 8 (b)). Moreover, the membrane-bound human antibody H chain mRNA expression level in the total antibody H chain mRNA expression level in each vector-introduced cell was 0.1%, 1.4% or 1.6%, respectively (FIG. 8 (c)).
 以上の結果から、分泌型/膜結合型ヒト抗体発現ベクターが導入された細胞では、抗体H鎖をコードするpre-mRNAは、抗体H鎖の3’末端のスプライシングドナー配列と下流領域に存在するスプライシングアクセプター配列とにおいてスプライシングを起こし、抗体H鎖とPDGFRトランスメンブレン領域とが融合した膜結合型ヒト抗体H鎖をコードするmRNAと分泌型ヒト抗体H鎖をコードするmRNAの両方を発現していることが明らかになった(図8(a)、(b))。細胞内で発現している分泌型抗体mRNAと膜結合型mRNAの配列を配列番号28および配列番号30に、それぞれのmRNAによってコードされるアミノ酸配列を配列番号29および31に示す。 Based on the above results, in cells into which a secretory / membrane-bound human antibody expression vector has been introduced, the pre-mRNA encoding the antibody H chain is present in the downstream region and the splicing donor sequence at the 3 ′ end of the antibody H chain. Splicing occurs in the splicing acceptor sequence and expresses both mRNA encoding the membrane-bound human antibody H chain in which the antibody H chain and the PDGFR transmembrane region are fused and mRNA encoding the secreted human antibody H chain. (Figs. 8 (a) and (b)). The sequences of secretory antibody mRNA and membrane-bound mRNA expressed in the cells are shown in SEQ ID NO: 28 and SEQ ID NO: 30, and the amino acid sequences encoded by the respective mRNAs are shown in SEQ ID NOs: 29 and 31.
 また、分泌型/膜結合型ヒト抗体発現ベクターが導入された細胞が、全ヒト抗体H鎖のmRNA発現量のうち0.1%以上の割合で膜結合型ヒト抗体H鎖のmRNAを発現していれば、膜結合型抗体発現量によるスクリーニングを行い、抗体生産細胞を取得できることが明らかになった(図8(c))。
 特に、15塩基以上のpoly-Pyr配列を含むAC17/TnPMugおよびAC27/TnPMugベクターが導入された細胞では、AC10/TnMugベクター導入細胞と比べて膜結合型ヒト抗体H鎖のmRNA発現量が高いことから(図8(a)、(c))、15塩基以上のpoly-Pyr配列を含む発現ベクターが導入された細胞では、効率的にスプライシング反応を起こし、膜結合型ヒト抗体のmRNA発現を増加させることが明らかになった。
Also, cells into which the secretory / membrane-bound human antibody expression vector has been introduced may express membrane-bound human antibody H chain mRNA at a rate of 0.1% or more of the total human antibody H chain mRNA expression level. For example, it was revealed that antibody-producing cells can be obtained by screening with the expression level of membrane-bound antibody (FIG. 8 (c)).
In particular, in cells transfected with AC17 / TnPMug and AC27 / TnPMug vectors containing poly-Pyr sequences of 15 bases or more, the mRNA expression level of membrane-bound human antibody H chain is higher than cells transfected with AC10 / TnMug vector (Figs. 8 (a) and (c)), in cells into which an expression vector containing a poly-Pyr sequence of 15 bases or more has been introduced, an efficient splicing reaction is performed and mRNA expression of membrane-bound human antibodies is increased. It was revealed that
 更に、AC17/TnPMugおよびAC27/TnPMugベクターが導入された細胞では、AC10/TnMugベクター導入細胞と比べて、膜結合型ヒト抗体H鎖のmRNA発現量が増加しただけでなく(図8(a))、分泌型を含む全ヒト抗体H鎖のmRNA発現量が増加したことから(図8(b))、AC17/TnPMug又はAC27/TnPMugベクターが導入された細胞から、膜結合型抗体を指標に抗体発現細胞をスクリーニングすることで、抗体高生産細胞株を取得できることが明らかになった。 Furthermore, in the cells into which AC17 / TnPMug and AC27 / TnPMug vectors were introduced, not only the expression level of the membrane-bound human antibody H chain mRNA was increased compared to the cells into which AC10 / TnMug vector was introduced (FIG. 8 (a)). ), Because the mRNA expression level of all human antibody H chains including secreted type increased (Fig. 8 (b)), from the cells into which AC17 / TnPMug or AC27 / TnPMug vectors were introduced, membrane-bound antibody was used as an index. By screening antibody-expressing cells, it became clear that high antibody-producing cell lines can be obtained.
 よって、全抗体H鎖のmRNA発現量に対して、膜結合型抗体H鎖のmRNA発現量が1%以上発現している抗体生産細胞をスクリーニングすることで、分泌型抗体をより高生産する細胞を確立することができること、また、poly-Pyr配列の長さを調節することで分泌抗体H鎖のmRNAと膜結合型抗体H鎖のmRNAの発現量比を制御できることが明らかとなった。 Therefore, by screening antibody-producing cells that express 1% or more of the membrane-bound antibody H chain mRNA expression level relative to the total antibody H chain mRNA expression level, cells that produce a secretory antibody at a higher level It was revealed that the expression level ratio of secretory antibody H chain mRNA and membrane-bound antibody H chain mRNA can be controlled by adjusting the length of the poly-Pyr sequence.
Fab断片スプライシングベクターの作製
(1)分泌型/膜結合型抗体発現ベクター4D5TM_Hcの作製
 抗HER2ヒト化抗体であるtrastuzumab(Herceptin(登録商標))の重鎖アミノ酸配列(米国特許第5,821,337号)をコードするDNA配列を、Tol2トランスポゾンベクターに挿入し、ポリピリミジン配列T/C25を含む分泌型/膜結合型抗体発現ベクター4D5TM_Hcを、実施例3と同様の方法で作製した。一方、軽鎖アミノ酸配列(米国特許第5,821,337号)をコードするDNA配列を挿入し、実施例3と同様にしてHerceptin軽鎖発現Tol2トランスポゾンベクター 4D5_Lcを作製した。また、スプライシングドナー、アクセプター配列を挿入していない重鎖発現Tol2トランスポゾンベクター4D5を作製した。
(2)膜結合型Fab断片発現ベクターの作製
 抗体H鎖をコードするDNA配列のCH3ドメインの3′末端には、スプライシングドナー(SD)配列GGGTAAATが存在しているため、該SD配列を改変しかつCH2ドメインのアミノ酸配列をコードするDNA配列のうち、各コドンのアミノ酸残基が変わらないようにDNA配列を置換してSDコンセンサス配列を導入した。CH2ドメインにSD配列が導入されたH鎖は、CH2ドメインでスプライシングが起こり、Fab断片が膜貫通領域タンパク質と融合した膜結合型Fabタンパク質を細胞膜上に発現させることができる。
Production of Fab fragment splicing vector (1) Production of secretory / membrane-bound antibody expression vector 4D5TM_Hc Encoding the heavy chain amino acid sequence of anti-HER2 humanized antibody trastuzumab (Herceptin (registered trademark)) (US Pat. No. 5,821,337) The DNA sequence to be inserted was inserted into a Tol2 transposon vector, and a secreted / membrane-bound antibody expression vector 4D5TM_Hc containing the polypyrimidine sequence T / C25 was prepared in the same manner as in Example 3. On the other hand, a DNA sequence encoding a light chain amino acid sequence (US Pat. No. 5,821,337) was inserted, and a Herceptin light chain expression Tol2 transposon vector 4D5_Lc was prepared in the same manner as in Example 3. In addition, a heavy chain expression Tol2 transposon vector 4D5 into which no splicing donor or acceptor sequence was inserted was prepared.
(2) Preparation of membrane-bound Fab fragment expression vector Since the splicing donor (SD) sequence GGGTAAAT is present at the 3 'end of the CH3 domain of the DNA sequence encoding the antibody H chain, the SD sequence was modified. In addition, among the DNA sequences encoding the CH2 domain amino acid sequence, an SD consensus sequence was introduced by replacing the DNA sequence so that the amino acid residue of each codon was not changed. The H chain in which the SD sequence is introduced into the CH2 domain is spliced in the CH2 domain, and a membrane-bound Fab protein in which the Fab fragment is fused with the transmembrane domain protein can be expressed on the cell membrane.
 各Fab断片発現コンストラクトFab、Fab1、Fab2及びFab3は、以下のアミノ酸をコードする遺伝子に変異を導入することでSD配列を作製した(図9)。
Fab:IgG1抗体のCH2ドメインの51番目のグリシンをコードするコドンをGGCからGGTに置換した。
Fab1:IgG1抗体のCH2ドメインの6番目のグリシンをコードするコドンをGGGからGGTに置換した。
Fab2:IgG1抗体のCH2ドメインの86番目のグリシンをコードするコドンをGGCからGGTに置換した。
Fab3:IgG1抗体のCH2ドメインの48番目のチロシンをコードするコドンをTACからTATに置換した。
Each Fab fragment expression construct Fab, Fab1, Fab2, and Fab3 produced SD sequences by introducing mutations into genes encoding the following amino acids (FIG. 9).
The codon encoding the 51st glycine of the CH2 domain of Fab: IgG1 antibody was replaced from GGC to GGT.
The codon encoding the 6th glycine of the CH2 domain of Fab1: IgG1 antibody was replaced from GGG to GGT.
The codon encoding the 86th glycine of the CH2 domain of Fab2: IgG1 antibody was replaced from GGC to GGT.
The codon encoding the 48th tyrosine of the CH2 domain of Fab3: IgG1 antibody was replaced from TAC to TAT.
 膜結合型Fab断片発現ベクター4D5TM_Fabは、4D5TM_Hcを鋳型として配列番号32~35に記載のDNA配列のプライマーを使用して、QuikChange II Site-Directed Mutagenesis Kit(Invitrogen社製)のPCRにより作製した(表4)。
 また、膜結合型Fab断片発現ベクター4D5TM_Fab1、4D5TM_Fab2および4D5TM_Fab3は、4D5TM_Fabを鋳型として用いて、それぞれ配列番号36~39に記載のDNA配列のプライマー、配列番号36、37、40および41に記載のDNA配列のプライマー、並びに配列番号42および43に記載のDNA配列のプライマーを用いて上記と同様にして作製した(表4)。
Membrane-bound Fab fragment expression vector 4D5TM_Fab was prepared by PCR using QuikChange II Site-Directed Mutagenesis Kit (Invitrogen) using 4D5TM_Hc as a template and primers having DNA sequences described in SEQ ID NOs: 32-35 (Table 1). Four).
Further, membrane-bound Fab fragment expression vectors 4D5TM_Fab1, 4D5TM_Fab2 and 4D5TM_Fab3 are 4D5TM_Fab as a template, DNA sequence primers set forth in SEQ ID NOs: 36-39, DNA set forth in SEQ ID NOs: 36, 37, 40 and 41, respectively. The primers were prepared in the same manner as described above using the primers for the sequences and the DNA sequences described in SEQ ID NOs: 42 and 43 (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 抗体生産細胞の作製および該細胞によるタンパク質生産
(1)抗体生産細胞の作製
 実施例4(1)と同様にして、Herceptinの分泌型/膜結合型重鎖発現ベクター4D5TM_Hc並びに膜結合型Fab断片発現ベクター4D5TM_Fab_Hc、4D5TM_Fab1_Hc、4D5TM_Fab2_Hcおよび4D5TM_Fab3_Hcを、Herceptinの軽鎖発現ベクター4D5 LcとともにそれぞれCHO-K1細胞に導入し、該細胞を培養した。膜結合型IgG抗体又はFab断片の発現は、実施例4(2)(b)と同様にprotein A/G-FITCを用いて確認し、膜結合型IgG抗体又はFab断片を発現している細胞を選択した。
Production of antibody-producing cells and protein production by the cells (1) Production of antibody-producing cells In the same manner as in Example 4 (1), Herceptin secretory / membrane-bound heavy chain expression vector 4D5TM_Hc and membrane-bound Fab fragment expression Vectors 4D5TM_Fab_Hc, 4D5TM_Fab1_Hc, 4D5TM_Fab2_Hc and 4D5TM_Fab3_Hc were introduced into CHO-K1 cells together with Herceptin light chain expression vector 4D5 Lc, and the cells were cultured. Expression of membrane-bound IgG antibody or Fab fragment was confirmed using protein A / G-FITC as in Example 4 (2) (b), and cells expressing membrane-bound IgG antibody or Fab fragment Selected.
 よって、protein A/G-FITCが結合するIgG抗体又はFab断片が細胞膜上に発現していることが確認された。
(2)Batch培養による抗体生産
 実施例5(2)と同様にして、上述の実施例8(1)で取得した抗体生産細胞を培養し、培養上清中の抗体生産量を測定した(表5)。
Therefore, it was confirmed that IgG antibody or Fab fragment to which protein A / G-FITC binds is expressed on the cell membrane.
(2) Antibody production by batch culture In the same manner as in Example 5 (2), the antibody-producing cells obtained in Example 8 (1) above were cultured, and the amount of antibody produced in the culture supernatant was measured (Table Five).
 その結果、Herceptinの分泌型/膜結合型重鎖発現ベクターおよび膜結合型Fab断片発現ベクターいずれを導入した細胞においても、抗体生産が確認された。よって、IgG抗体およびFab断片を膜結合型タンパク質として発現している細胞は、いずれの細胞も分泌型IgG抗体を生産することができることが明らかになった(表5)。 As a result, antibody production was confirmed in cells into which both the herceptin secretory / membrane-bound heavy chain expression vector and the membrane-bound Fab fragment expression vector were introduced. Thus, it was revealed that any cell expressing IgG antibody and Fab fragment as a membrane-bound protein can produce secretory IgG antibody (Table 5).
Figure JPOXMLDOC01-appb-T000005
 
 
Figure JPOXMLDOC01-appb-T000005
 
 
(3)Fed-batch培養による抗体生産
 上述の実施例8(1)で取得した抗体産生細胞をFed-batch培養し、抗体産生量を検討した。生産培地は、CD opti CHO(Life Technologies社 )にL-Glutamine (Life Technologies社 )と大豆加水分解物(SAFC社)を加えて作製した。
 Feed培地はCHO CD EFFICIENTFEED A (Invitrogen社)とCHO CD EFFICIENTFEED B(Invitrogen社)を等量ずつ混合し、Glucose(Wako社)、Glutamine(Wako社)を加えて作製した。
(3) Antibody production by Fed-batch culture The antibody-producing cells obtained in Example 8 (1) above were subjected to Fed-batch culture, and the amount of antibody production was examined. The production medium was prepared by adding L-Glutamine (Life Technologies) and soybean hydrolyzate (SAFC) to CD opti CHO (Life Technologies).
The Feed medium was prepared by mixing CHO CD EFFICIENTFEED A (Invitrogen) and CHO CD EFFICIENTFEED B (Invitrogen) in equal amounts and adding Glucose (Wako) and Glutamine (Wako).
 培養の具体的方法としては、三角フラスコ(CORNING社)に作製した生産培地に細胞を0.3×106個/mLの濃度となるように播種し、37℃、5% CO2のインキュベーターにて、14日間攪拌培養を実施した。数日おきに培養液中の成分を測定し、Feed培地を添加することでGlucose、Glutamineを適宜添加した。
 その結果、Herceptinの分泌型/膜結合型重鎖発現ベクターおよび膜結合型Fab断片発現ベクターいずれを導入した細胞も、Fed-batch培養下で抗体を生産した。よって、IgG抗体およびFab断片を膜結合型タンパク質として発現している細胞は、いずれの細胞も分泌型IgG抗体を生産することができることが明らかになった(表6)。
As a specific culture method, cells were seeded in a production medium prepared in an Erlenmeyer flask (CORNING) to a concentration of 0.3 × 10 6 cells / mL, and in an incubator at 37 ° C. and 5% CO 2 . Stirring culture was performed for 14 days. Glucose and Glutamine were appropriately added by measuring ingredients in the culture solution every few days and adding Feed medium.
As a result, cells into which both the herceptin secretory / membrane-bound heavy chain expression vector and the membrane-bound Fab fragment expression vector were introduced produced antibodies under Fed-batch culture. Therefore, it was clarified that any cell expressing IgG antibody and Fab fragment as a membrane-bound protein can produce secretory IgG antibody (Table 6).
 また、膜結合型IgG、膜結合型Fab又は膜結合型Fab1を発現している細胞はいずれも、膜結合型Fab2又は膜結合型Fab3を発現している細胞に比べて、抗体を高生産することが明らかになった。
 従って、抗体定常領域のCH2ドメイン内にスプライシングドナー配列を挿入した抗体遺伝子を発現している細胞は、該スプライシングされた膜結合型Fabの発現により選択することが可能であり、かつ選択された細胞は抗体を生産することが確かめられた。
In addition, cells expressing membrane-bound IgG, membrane-bound Fab, or membrane-bound Fab1 all produce antibodies higher than cells expressing membrane-bound Fab2 or membrane-bound Fab3. It became clear.
Therefore, cells expressing an antibody gene having a splicing donor sequence inserted into the CH2 domain of the antibody constant region can be selected by the expression of the spliced membrane-bound Fab, and the selected cells Was confirmed to produce antibodies.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
膜結合型抗体のProtein A及びProtein Gへの結合活性
 実施例4(1)と同様にして、Herceptinの重鎖発現ベクター4D5、分泌型/膜結合型重鎖発現ベクター4D5TM、並びに膜結合型Fab断片発現ベクター4D5TM_Fab、4D5TM_Fab1、4D5TM_Fab2および4D5TM_Fab3を、それぞれHerceptinの軽鎖発現ベクター4D5 LcとともにCHO-K1細胞に導入し、トランスフェクタントを作製し、シクロヘキシミド(Cat. No. C4859、SIGMA社)を用いて薬剤選抜を実施した。
Binding activity of membrane-bound antibody to protein A and protein G In the same manner as in Example 4 (1), Herceptin heavy chain expression vector 4D5, secreted / membrane-bound heavy chain expression vector 4D5TM, and membrane-bound Fab Fragment expression vectors 4D5TM_Fab, 4D5TM_Fab1, 4D5TM_Fab2 and 4D5TM_Fab3 were introduced into CHO-K1 cells together with Herceptin's light chain expression vector 4D5 Lc to produce a transfectant, and cycloheximide (Cat. No. C4859, SIGMA) The drug selection was carried out.
 遺伝子導入から5日後に、CD opti CHO(Life Technologies社 )にL-Glutamine (Life Technologies社 )を添加し、3 mg/mLシクロヘキシミドを含む培地で培養することにより、薬剤耐性を示す細胞のみを選抜した。
 シクロヘキシミド耐性CHO細胞を、FITC-Protein A( Cat. No.101011、Invitrogen社)又はProtein G,Alexa Fluor 488 conjugate( Cat. No. P11065、Invitrogen社)で染色し、FACSCalibur( BD Pharmigen )を用いて細胞表面の蛍光強度を測定した。蛍光強度102~104のゲートを設定し、各標識体に反応する細胞集団(%)を示した(表7)。
Five days after gene transfer, CD opti CHO (Life Technologies) is added with L-Glutamine (Life Technologies) and cultured in a medium containing 3 mg / mL cycloheximide to select only cells that exhibit drug resistance. did.
Cycloheximide-resistant CHO cells are stained with FITC-Protein A (Cat. No. 101011, Invitrogen) or Protein G, Alexa Fluor 488 conjugate (Cat. No. P11065, Invitrogen), and using FACSCalibur (BD Pharmigen) The fluorescence intensity on the cell surface was measured. Gates with fluorescence intensities of 10 2 to 10 4 were set to show the cell population (%) that reacted with each label (Table 7).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
  その結果、宿主細胞のCHO-K1及び分泌型Herceptin発現ベクター4D5を導入したCHO-K1と比べて、分泌型/膜結合型Herceptin発現ベクター4D5TMおよび膜結合型Fab断片発現ベクターを導入したCHO-K1はいずれも、Protein A及びProtein Gの両方に結合した。
 また、4D5TMを導入したCHO-K1は、Protein A及びProtein Gの両方に最も強く結合したことから、効率的かつ優位に膜結合型IgG抗体を発現していることが確認された。
As a result, CHO-K1 introduced with secretory / membrane-bound Herceptin expression vector 4D5TM and membrane-bound Fab fragment expression vector compared to CHO-K1 into which host cell CHO-K1 and secreted Herceptin expression vector 4D5 were introduced. Both bound to both Protein A and Protein G.
Moreover, since CHO-K1 introduced with 4D5TM bound most strongly to both Protein A and Protein G, it was confirmed that the membrane-bound IgG antibody was expressed efficiently and predominantly.
 一方、膜結合型Fab断片発現ベクター4D5TM-Fab、4D5TM-Fab1、4D5TM-Fab2及び4D5TM-Fab3を導入したCHO-K1はいずれも、4D5TMを導入したCHO-K1と比べて、Protein Aに対する結合活性が大幅に低下し、4D5TM-Fab及び4D5TM-Fab1は約1/2、4D5TM-Fab2及び4D5TM-Fab3は約1/4まで結合活性が低下した。
 また、Protein Gについては、膜結合型Fab断片発現ベクター4D5TM-Fab又は4D5TM-Fab1は、4D5TMを導入したCHO-K1と比べて、わずかに結合量が低下したが、4D5TM-Fab2又は4D5TM-Fab3は、約1/2までProtein G結合活性が低下した。
On the other hand, CHO-K1 introduced with membrane-bound Fab fragment expression vectors 4D5TM-Fab, 4D5TM-Fab1, 4D5TM-Fab2, and 4D5TM-Fab3 all have a binding activity against Protein A compared to CHO-K1 introduced with 4D5TM. 4D5TM-Fab and 4D5TM-Fab1 decreased to about 1/2, and 4D5TM-Fab2 and 4D5TM-Fab3 decreased to about 1/4.
As for Protein G, the membrane-bound Fab fragment expression vector 4D5TM-Fab or 4D5TM-Fab1 was slightly reduced in binding amount compared to CHO-K1 into which 4D5TM was introduced, but 4D5TM-Fab2 or 4D5TM-Fab3 Protein G binding activity decreased to about 1/2.
 以上の結果から、膜結合型IgGを発現する4D5TMを導入した細胞及び膜結合型Fab断片を発現する4D5TM-Fabおよび4D5TM-Fab1を導入した細胞は、IgG又はFab断片を効率的に高発現しているが、発現したFab断片はProtein Aへの結合活性が低下していることが明らかになった。また、4D5TM-Fab2又は4D5TM-Fab3を導入した細胞は、Protein A結合活性と共にProtein G結合活性も低下していることから、4D5TM-Fabおよび4D5TM-Fab1を導入した細胞と比べて、膜結合型Fab断片の発現量が低い可能性が明らかになった。 Based on the above results, cells introduced with 4D5TM expressing membrane-bound IgG and cells transfected with 4D5TM-Fab and 4D5TM-Fab1 expressing membrane-bound Fab fragments efficiently expressed IgG or Fab fragments. However, it was revealed that the expressed Fab fragment has a reduced binding activity to Protein A. In addition, cells introduced with 4D5TM-Fab2 or 4D5TM-Fab3 have a protein-A binding activity as well as a protein-G binding activity reduced, so that compared with cells introduced with 4D5TM-Fab and 4D5TM-Fab1, membrane-bound type The possibility that the expression level of the Fab fragment was low was revealed.
 膜結合型IgGは、抗体医薬の製造プロセスにおいて分泌型IgG抗体にコンタミネーションする恐れがあるが、Protein Aカラム精製においても分離することが難しい。従って、Protein Aに結合しない膜結合型Fab断片を発現する細胞を用いることで、抗体医薬の製造プロセスにおけるコンタミネーションを防ぐことができる。  Membrane-bound IgG may be contaminated with secretory IgG antibody in the manufacturing process of antibody drugs, but it is difficult to separate even with Protein A column purification. Therefore, by using a cell that expresses a membrane-bound Fab fragment that does not bind to Protein A, contamination in the production process of the antibody drug can be prevented.
 本発明によれば、1つの遺伝子を用いて目的タンパク質と、目的タンパク質又は該目的タンパク質断片とトランスメンブレン領域とが融合したタンパク質とを同時に発現させることができる目的タンパク質の発現ベクター、目的タンパク質を発現する細胞のスクリーニング方法、目的タンパク質を高生産する細胞、目的タンパク質を高生産する細胞の製造方法、該細胞を用いて該目的タンパク質を生産する方法を提供することができる。 According to the present invention, an expression vector for a target protein capable of simultaneously expressing a target protein and a protein in which the target protein or the target protein fragment and the transmembrane region are fused using a single gene is expressed. A method for screening cells to be produced, a cell for producing a target protein at a high level, a method for producing a cell for producing a target protein at a high level, and a method for producing the target protein using the cell.
配列番号1:スプライシングドナー配列
配列番号2:スプライシングドナー配列
配列番号3:スプライシングドナー配列
配列番号4:スプライシングアクセプター配列
配列番号5:スプライシングアクセプター配列
配列番号6:ポリピリミジン配列T/C8
配列番号7:ポリピリミジン配列T/C15
配列番号8:ポリピリミジン配列T/C25
配列番号9:OX40 L鎖
配列番号10:CD98/LAT1 H鎖
配列番号11:BGHポリアデニレーションシグナル配列
配列番号12:PDGFRトランスメンブレン領域
配列番号13:合成コンストラクト
配列番号14:TM-F1プライマー
配列番号15:TM-R1プライマー
配列番号16:TM-R2プライマー
配列番号17:TM-R3プライマー
配列番号18:AC27-Fプライマー
配列番号19:TMSP-Rプライマー
配列番号20:AC27-TnPMug FWプライマー
配列番号21:AC27-TnPMug Rv P2プライマー
配列番号22:プローブ3 Fwプライマー
配列番号23:プローブ3 Rvプライマー
配列番号24:プローブ1 Fwプライマー
配列番号25:プローブ1 Rvプライマー
配列番号26:プローブ3
配列番号27:プローブ1
配列番号28:分泌型ヒトIgG抗体H鎖のmRNA
配列番号29:合成コンストラクト
配列番号30:膜結合型ヒトIgG抗体H鎖のmRNA
配列番号31:合成コンストラクト
配列番号32:ヒンジプライマーFw
配列番号33:ヒンジプライマーRv
配列番号34:4D5変異Fv
配列番号35:4D5変異Rv
配列番号36:FabドナーFw
配列番号37:FabドナーRv
配列番号38:Fab1ドナーFw
配列番号39:Fab1ドナーRv
配列番号40:Fab2ドナーFw
配列番号41:Fab2ドナーRv
配列番号42:Fab3ドナーFw
配列番号43:Fab3ドナーRv
 
SEQ ID NO: 1: Splicing donor sequence SEQ ID NO: 2: Splicing donor sequence SEQ ID NO: 3: Splicing donor sequence SEQ ID NO: 4: Splicing acceptor sequence SEQ ID NO: 5: Splicing acceptor sequence SEQ ID NO: 6: Polypyrimidine sequence T / C8
SEQ ID NO: 7: Polypyrimidine sequence T / C15
SEQ ID NO: 8: Polypyrimidine sequence T / C25
SEQ ID NO: 9: OX40 L chain SEQ ID NO: 10: CD98 / LAT1 H chain SEQ ID NO: 11: BGH polyadenylation signal sequence SEQ ID NO: 12: PDGFR transmembrane region SEQ ID NO: 13: Synthetic construct SEQ ID NO: 14: TM-F1 primer SEQ ID NO: 15: TM-R1 primer SEQ ID NO: 16: TM-R2 primer SEQ ID NO: 17: TM-R3 primer SEQ ID NO: 18: AC27-F primer SEQ ID NO: 19: TMSP-R primer SEQ ID NO: 20: AC27-TnPMug FW primer SEQ ID NO: 21 : AC27-TnPMug Rv P2 primer SEQ ID NO: 22: Probe 3 Fw primer SEQ ID NO: 23: Probe 3 Rv primer SEQ ID NO: 24: Probe 1 Fw primer SEQ ID NO: 25: Probe 1 Rv primer SEQ ID NO: 26: Probe 3
SEQ ID NO: 27: Probe 1
SEQ ID NO: 28: Secretory human IgG antibody H chain mRNA
SEQ ID NO: 29: Synthetic construct SEQ ID NO: 30: Membrane-bound human IgG antibody H chain mRNA
SEQ ID NO: 31: Synthetic construct SEQ ID NO: 32: Hinge primer Fw
SEQ ID NO: 33: Hinge primer Rv
SEQ ID NO: 34: 4D5 mutant Fv
SEQ ID NO: 35: 4D5 mutation Rv
SEQ ID NO: 36: Fab donor Fw
SEQ ID NO: 37: Fab donor Rv
SEQ ID NO: 38: Fab1 donor Fw
SEQ ID NO: 39: Fab1 donor Rv
SEQ ID NO: 40: Fab2 donor Fw
SEQ ID NO: 41: Fab2 donor Rv
SEQ ID NO: 42: Fab3 donor Fw
SEQ ID NO: 43: Fab3 donor Rv

Claims (13)

  1.  スプライシングドナー配列を含む目的タンパク質をコードするDNA配列、ポリピリミジン配列、スプライシングアクセプター配列およびトランスメンブレン領域をコードするDNA配列を順番に含む、目的タンパク質の発現ベクター。 An expression vector for a target protein comprising a DNA sequence encoding a target protein including a splicing donor sequence, a polypyrimidine sequence, a splicing acceptor sequence, and a DNA sequence encoding a transmembrane region in this order.
  2.  スプライシングドナー配列を含む目的タンパク質をコードするDNA配列、第1ポリアデニレーションシグナル配列、ポリピリミジン配列、スプライシングアクセプター配列、トランスメンブレン領域をコードするDNA配列および第2ポリアデニレーションシグナル配列を順番に含む、目的タンパク質の発現ベクター。 Including DNA sequence encoding target protein including splicing donor sequence, first polyadenylation signal sequence, polypyrimidine sequence, splicing acceptor sequence, DNA sequence encoding transmembrane region and second polyadenylation signal sequence An expression vector for the target protein.
  3.  請求項1又は2のいずれか1項に記載の発現ベクターが導入された細胞。 A cell into which the expression vector according to any one of claims 1 and 2 has been introduced.
  4. 細胞が、(a)および(b)から選ばれる細胞である、請求項3に記載の細胞。
     (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmessenger RNA(mRNA)が、目的タンパク質の全mRNAの0.1%~5%発現している細胞。
     (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103 molecules/cell以上発現している細胞。
    4. The cell according to claim 3, wherein the cell is a cell selected from (a) and (b).
    (A) A cell in which messenger RNA (mRNA) encoding a protein in which a target protein or a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 5% of the total mRNA of the target protein.
    (B) A cell in which at least 1 × 10 3 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
  5.  請求項3又は4に記載の細胞の細胞膜上に発現している目的タンパク質または該目的タンパク質の断片を検出することを特徴とする、目的タンパク質を高生産する細胞のスクリーニング方法。 5. A screening method for cells that produce a target protein in a high amount, comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to claim 3 or 4.
  6.  請求項3又は4に記載の細胞を製造する方法。 A method for producing the cell according to claim 3 or 4.
  7.  請求項3又は4に記載の細胞を培養し、目的タンパク質を培養液に蓄積させ、該細胞培養液から目的タンパク質を精製する工程を含む目的タンパク質の製造方法。 5. A method for producing a target protein, comprising the steps of culturing the cell according to claim 3 or 4, accumulating the target protein in a culture solution, and purifying the target protein from the cell culture solution.
  8.  請求項1に記載の目的タンパク質の発現ベクターを宿主細胞へ導入する工程を含む、目的タンパク質および目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質の両方を同時に発現させる方法。 A method of simultaneously expressing both a target protein and a target protein or a protein in which a fragment of the target protein and a transmembrane region are fused, comprising the step of introducing the target protein expression vector according to claim 1 into a host cell.
  9.  目的タンパク質をコードするDNA配列を含むタンパク質発現ベクターが導入され、分泌型の目的タンパク質を発現している細胞であって、(a)および(b)から選ばれる目的タンパク質発現細胞。
     (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmessenger RNA(mRNA)が、目的タンパク質の全mRNAの0.1%~5%発現している細胞。
    (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103 molecules/cell以上発現している細胞。
    A target protein-expressing cell selected from (a) and (b), wherein a protein expression vector containing a DNA sequence encoding the target protein is introduced and a secreted target protein is expressed.
    (a) A cell in which messenger RNA (mRNA) encoding a protein in which a target protein or a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 5% of the total mRNA of the target protein.
    (B) A cell in which at least 1 × 10 3 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
  10.  細胞が、(a)および(b)から選ばれる細胞である、請求項9に記載の細胞。
     (a)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質をコードするmRNAが、目的タンパク質の全mRNAの0.1%~2%発現している細胞。
     (b)目的タンパク質又は該目的タンパク質の断片とトランスメンブレン領域とが融合したタンパク質が1×103~1×107 molecules/cell発現している細胞。
    10. The cell according to claim 9, wherein the cell is a cell selected from (a) and (b).
    (a) A cell in which mRNA encoding a target protein or a protein in which a fragment of the target protein is fused with a transmembrane region is expressed in 0.1% to 2% of the total mRNA of the target protein.
    (b) A cell in which 1 × 10 3 to 1 × 10 7 molecules / cell of a protein in which the target protein or a fragment of the target protein and the transmembrane region are fused is expressed.
  11.  請求項9又は10に記載の細胞の細胞膜上に発現している目的タンパク質又は該目的タンパク質の断片を検出することを特徴とする、目的タンパク質を高生産する細胞のスクリーニング方法。 11. A screening method for cells that produce a target protein in a high amount, comprising detecting the target protein or a fragment of the target protein expressed on the cell membrane of the cell according to claim 9 or 10.
  12.  請求項9又は10に記載の細胞を製造する方法。 A method for producing the cell according to claim 9 or 10.
  13.  請求項9又は10に記載の細胞を培養し、目的タンパク質を培養液に蓄積させ、該細胞培養液から目的タンパク質を精製する工程を含む目的タンパク質の製造方法。
     
    11. A method for producing a target protein comprising culturing the cell according to claim 9 or 10, accumulating the target protein in a culture medium, and purifying the target protein from the cell culture medium.
PCT/JP2014/053730 2013-02-18 2014-02-18 Membrane-binding protein expression vector WO2014126254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013028515 2013-02-18
JP2013-028515 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126254A1 true WO2014126254A1 (en) 2014-08-21

Family

ID=51354252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053730 WO2014126254A1 (en) 2013-02-18 2014-02-18 Membrane-binding protein expression vector

Country Status (1)

Country Link
WO (1) WO2014126254A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508459A (en) * 2014-02-28 2017-03-30 グレンマーク ファーマシューティカルズ, エセ.アー. Expression constructs and methods for selecting host cells expressing a polypeptide
WO2017059243A3 (en) * 2015-09-30 2017-06-08 Janssen Biotech, Inc. Agonistic antibodies specifically binding human cd40 and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537124A (en) * 2006-05-17 2009-10-29 エフ.ホフマン−ラ ロシュ アーゲー Polypeptide-producing cells
WO2009151605A1 (en) * 2008-06-11 2009-12-17 Jn Biosciences Llc Expression vectors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537124A (en) * 2006-05-17 2009-10-29 エフ.ホフマン−ラ ロシュ アーゲー Polypeptide-producing cells
WO2009151605A1 (en) * 2008-06-11 2009-12-17 Jn Biosciences Llc Expression vectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COOLIDGE, C. J. ET AL.: "Functional analysis of the polypyrimidine tract in pre-mRNA splicing", NUCLEIC ACIDS RESEARCH, vol. 25, no. 4, 1997, pages 888 - 896 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508459A (en) * 2014-02-28 2017-03-30 グレンマーク ファーマシューティカルズ, エセ.アー. Expression constructs and methods for selecting host cells expressing a polypeptide
WO2017059243A3 (en) * 2015-09-30 2017-06-08 Janssen Biotech, Inc. Agonistic antibodies specifically binding human cd40 and methods of use
US10544229B2 (en) 2015-09-30 2020-01-28 Janssen Biotech, Inc. Agonistic antibodies specifically binding CD40 and methods of use
EA037882B1 (en) * 2015-09-30 2021-05-31 Янссен Байотек, Инк. Agonistic antibodies specifically binding human cd40 and methods of use thereof

Similar Documents

Publication Publication Date Title
ES2682078T3 (en) Anti-TIM-3 antibody
JP5635912B2 (en) Improved mammalian expression vectors and uses thereof
US11267899B2 (en) Afucosylated protein, cell expressing said protein and associated methods
JP5642549B2 (en) Protein expression from multiple nucleic acids
CN108368505B (en) Improved FLARE (flow cytometry attenuated reporter expression) technology for rapid batch sorting
US20170158779A1 (en) Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
Li et al. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies
US20100297697A1 (en) Methods for increasing protein titers
US9399671B2 (en) Method for producing proteins
JP2011518790A (en) Method for producing a polyclonal protein
KR102058658B1 (en) Protein production method
KR20160003705A (en) Expression process
CN111448314A (en) Selection of polypeptide drugs in eukaryotic cell display systems based on developability
CN114026224A (en) Mammalian cell line with SIRT-1 gene knockout
US20130143238A1 (en) Procedure for the generation of a high producer cell line for the expression of a recombinant anti-cd34 antibody
WO2014126254A1 (en) Membrane-binding protein expression vector
US20190031752A1 (en) Method for Producing Antibodies
EP1957660B1 (en) Materials and methods to increase peptide chain expression
JP6661549B2 (en) Methods of producing a polypeptide
Aebischer-Gumy et al. Alternative splicing for tuneable expression of protein subunits at desired ratios
CN104968791B (en) Optimized expression cassettes for expressing polypeptides with high yield

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP