WO2014123084A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2014123084A1
WO2014123084A1 PCT/JP2014/052437 JP2014052437W WO2014123084A1 WO 2014123084 A1 WO2014123084 A1 WO 2014123084A1 JP 2014052437 W JP2014052437 W JP 2014052437W WO 2014123084 A1 WO2014123084 A1 WO 2014123084A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
trench
film
semiconductor device
barrier metal
Prior art date
Application number
PCT/JP2014/052437
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 信藤
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Priority to US14/765,792 priority Critical patent/US20150371991A1/en
Publication of WO2014123084A1 publication Critical patent/WO2014123084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a technology that is effective when applied to a semiconductor device having a DRAM (Dynamic Random Access Memory) employing a buried word line structure.
  • DRAM Dynamic Random Access Memory
  • DRAM which is one of semiconductor memory devices
  • DRAM is mounted in various electronic devices that we use every day.
  • higher performance such as lower power consumption, higher speed, and larger capacity in DRAMs.
  • One of the most effective means for realizing a high-performance DRAM is miniaturization of memory cells.
  • miniaturizing the memory cell By miniaturizing the memory cell, the length of the word line and the bit line connected to the memory cell is shortened. Therefore, the parasitic capacitance of the word line and the bit line is reduced and low voltage operation is possible, so that low power consumption can be realized.
  • the memory cell size is reduced, the capacity can be increased and the performance of the device can be improved.
  • miniaturization of the memory cell greatly contributes to high performance of the DRAM.
  • Patent Document 1 forms an insulating film (sacrificial oxide film) on a main surface of a semiconductor substrate (silicon substrate) by a CVD (Chemical Vapor Deposition) method and nitrides the insulating film A silicon film is deposited, and using the silicon nitride film as a mask, the insulating film (sacrificial oxide film) and the semiconductor substrate (silicon substrate) are etched to form trenches, and the semiconductor substrate (silicon substrate) is thermally oxidized.
  • CVD Chemical Vapor Deposition
  • the gate insulating film of the memory cell transistor is formed on the inner wall of the trench (trench), and the conductive film for the gate electrode is formed on the insulating film (sacrificial oxide film) including the inside of the trench (trench) using the CVD method.
  • a method for manufacturing a semiconductor device is disclosed in which (polycrystalline silicon film doped with n-type impurities) is formed (deposited). Note that Patent Document 1 describes that the conductive film may be deposited with an amorphous silicon film instead of the polycrystalline silicon film and doped with p-type impurities (boron) instead of n-type impurities.
  • Patent Document 2 forms a mask insulating film having an opening pattern on an upper surface of a semiconductor substrate, etches the semiconductor substrate using the mask insulating film as a mask, and forms a gate trench.
  • a gate insulating film made of a silicon oxide film is formed on the inner surface of the gate trench by a thermal oxidation method, titanium nitride (TiN) is formed by a CVD method, tungsten (W) is formed by a CVD method, and a laminated layer made of TiN and W The film is etched back by dry etching to form an embedded gate electrode (word line) made of TiN and W embedded in the gate trench, and a new gate trench formed above the embedded gate electrode is embedded.
  • a cap insulating film made of a silicon nitride film is formed by a CVD method It discloses.
  • JP 2008-028055 A paragraphs [0048] to [0052], FIGS. 3 to 6) JP 2012-099793 A (paragraphs [0046] to [0049], FIGS. 10 to 13)
  • the 65-nm node, 25-nm node, and 20-nm node and the memory cells are being miniaturized.
  • a buried word line structure in which tungsten (W) is buried in a trench structure formed by etching a semiconductor substrate (silicon substrate) as described in Patent Document 2 is employed. ing.
  • the trench width is 65 nm at the 65 nm node, 26 nm at the 25 nm node, and 12 nm at the 20 nm node.
  • the trench width is reduced to 12 nm as described above, and therefore it is necessary to make the titanium nitride (TiN) film and the tungsten (W) nucleation film as thin as possible.
  • TiN titanium nitride
  • W tungsten
  • the conventional CVD film forming method cannot reduce the thickness of the barrier metal, ensure adhesion with the metal electrode, and cannot control and control the film thickness of the thin film. There are challenges.
  • a semiconductor device includes an active region on a semiconductor substrate, a trench having a lower portion and an upper portion in the active region, a gate insulating film covering an inner wall surface of the trench, and a lower portion of the trench through the gate insulating film.
  • the film thickness of the second barrier metal is smaller than the film thickness of the first barrier metal.
  • a trench is formed in a semiconductor substrate, a gate insulating film is formed in the trench, and a first barrier metal is formed on the gate insulating film under a first film forming condition.
  • the barrier metal can be made into a thin film, the adhesion to the metal electrode can be secured, and the film thickness can be controlled and managed with the thin film.
  • FIG. 1 is a plan view showing a semiconductor device (DRAM memory cell) according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of the semiconductor device illustrated in FIG. 1.
  • FIG. 2 is a cross-sectional structure diagram showing a first manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 7 is a cross-sectional structure diagram showing a second manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 7 is a cross-sectional structure diagram showing a third manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 7 is a cross-sectional structure diagram showing a fourth manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 9 is a cross-sectional structure diagram showing a fifth manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 9 is a cross-sectional structure diagram showing a sixth manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 9 is a cross-sectional structure diagram showing a seventh manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 10 is a cross-sectional structure diagram showing an eighth manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1.
  • an element isolation region embedded with an insulating film made of a silicon oxide film is formed on a semiconductor substrate (silicon substrate) by a well-known STI (Shallow Trench Isolation) method.
  • STI Shallow Trench Isolation
  • a first interlayer insulating film made of a silicon nitride (SiN) film or a silicon oxide (SiO 2 ) film is formed on the entire surface of the semiconductor substrate (silicon substrate).
  • a trench (gate trench) is formed by tri-etching. Form.
  • a gate insulating film made of a silicon oxide film is formed by oxidizing the surface of the trench by thermal oxidation (ISSG: In-Site-Steam-Generation).
  • a barrier metal made of titanium nitride (TiN) is formed on the gate insulating film by a thermal CVD (Chemical Vapor Deposition) method using titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas as electrodes. Is deposited. Thereafter, a metal electrode made of tungsten (W) is embedded by CVD.
  • Tungsten (W) nucleation is conventionally accomplished by tungsten hexafluoride (WF 6 ) flow and monosilane (SiH 4 ) flow, or tungsten hexafluoride (WF 6 ) flow and diborane (B 2 H 6 ) flow, Alternatively, film formation is performed while alternately purging a tungsten hexafluoride (WF 6 ) flow and a hydrogen (H 2 ) flow.
  • the trench is completely filled with a laminated film made of titanium nitride (TiN) and tungsten (W).
  • the laminated film made of titanium nitride (TiN) and tungsten (W) is etched back by a dry etching method, and a buried gate electrode made of titanium nitride (TiN) and tungsten (W) embedded in the trench is formed.
  • This buried gate electrode constitutes a word line.
  • a new trench is formed above the buried gate electrode.
  • a cap insulating film made of a silicon nitride (SiN) film is formed on the entire surface by a CVD method so as to bury a new trench, and the silicon nitride (SiN) film on the surface is removed.
  • the trench width is reduced to 12 nm. Therefore, it is necessary to make the titanium nitride (TiN) film and the tungsten (W) nucleation film as thin as possible.
  • titanium nitride (TiN) is only up to 3 nm, which has no problem of adhesion with a metal electrode made of tungsten (W).
  • the barrier metal film cannot be made thin. Therefore, the resistance of the word line cannot be reduced.
  • the thickness of the titanium nitride (TiN) film in the trench is intentionally changed by changing the gas condition of titanium nitride (TiN) from the reaction-controlled region to the supply-controlled region and setting the coverage to about 100% to 50%. It is conceivable that the thickness of the titanium nitride (TiN) film above the trench is increased.
  • the epitaxial growth rate by the CVD method depends on the type of raw material gas, temperature, pressure and the like.
  • the temperature region where the epitaxial growth is possible (growth temperature region) is qualitatively divided into two regions of reaction rate control and supply rate control.
  • Supply rate limiting is also called diffusion rate limiting.
  • the reaction rate controlling region is on the low temperature side in the growth temperature region, and the growth rate increases as the temperature increases.
  • the supply rate limiting region is a region on the high temperature side of the region and having a small temperature dependency. Epitaxial growth is usually performed in this supply rate limiting region.
  • the barrier metal made of titanium nitride (TiN) changes when the surface area of the pattern changes, so the thickness of the barrier metal made of titanium nitride (TiN) cannot be controlled / managed. There is a problem.
  • an object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can reduce the thickness of the barrier metal, ensure adhesion with the metal electrode, and can control and manage the film thickness of the thin film. It is in.
  • Titanium nitride becomes a discontinuous film when deposited at 3 nm or less, and therefore has poor adhesion to tungsten (W) on the trench surface.
  • the film thickness can be controlled under reaction-controlled conditions, the thickness of the titanium nitride (TiN) film in the trench cannot be reduced to 3 nm or less.
  • the adhesion with tungsten (W) is improved.
  • the film thickness of the titanium nitride (TiN) film in the trench can be reduced to 3 nm or less.
  • the film thickness cannot be controlled and managed because it is greatly affected by the surface area fluctuation.
  • the film thickness of the barrier metal made of the titanium nitride (TiN) film in the trench is controlled and managed under the film forming conditions with a coverage of 100%, and the metal electrode made of tungsten (W) is adhered.
  • the properties are such that the film can be formed only on the trench surface, and two-stage film formation is performed in-situ.
  • the thickness of the barrier metal made of a titanium nitride (TiN) film in the trench can be made thinner than 2 nm without degrading the processing capability, and finally the resistance of the word line can be reduced.
  • the scale and number of each structure are different from each other in order to make each configuration easy to understand.
  • an XYZ coordinate system is set and the arrangement of each component will be described.
  • the Z direction is a direction perpendicular to the surface of the silicon substrate which is a semiconductor substrate
  • the X direction is a direction perpendicular to the Z direction on a plane parallel to the surface of the silicon substrate
  • the Y direction is a silicon substrate. It is a direction orthogonal to the X direction in a plane parallel to the surface of
  • the X ′ direction is a direction inclined obliquely with respect to the X direction.
  • FIGS. 3 to 10 are views showing a structure of a semiconductor device 100 according to a first embodiment of the present invention and a manufacturing method thereof.
  • the semiconductor device 100 according to the first embodiment is a DRAM (dynamic random access memory) memory cell.
  • 1 is a plan view of the semiconductor device 100
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1
  • FIGS. 3 to 10 are cross-sectional views showing a series of manufacturing steps of the semiconductor device 100.
  • the semiconductor device 100 constitutes a DRAM memory cell.
  • a silicon substrate 1 which is a semiconductor substrate, an element isolation region 12 that continuously extends in the X ′ direction and an active region 13 that also extends continuously in the X ′ direction include a Y direction. A plurality of them are alternately arranged at equal intervals and at equal pitches.
  • the element isolation region 12 is composed of an element isolation insulating film embedded in the trench.
  • a buried word line 10 (10a, 10b) extending continuously in the Y direction is disposed across the plurality of element isolation regions 12 and the plurality of active regions 13.
  • the embedded word line 10 arranged on the left side in FIG. 1 is called a first word line 10a
  • the embedded word line 10 arranged on the right side in FIG. 1 is called a second word line 10b.
  • the first capacitor contact region 37a is disposed adjacent to the left side of the first word line 10a, and the second capacitor contact region 37b is disposed adjacent to the right side of the second word line 10b.
  • a bit line contact region 32 is disposed adjacent to the first word line 10a and the second word line 10b.
  • the active region 13 includes a first capacitor contact region 37a, a first word line 10a, a bit line contact region 32, a second word line 10b, and a second capacitor contact region 37b.
  • a first cell transistor Tr1 is configured by the first capacitor contact region 37a, the first word line 10a, and the bit line contact region 32.
  • the bit line contact region 32, the second word line 10b, and the second capacitor contact region 37b constitute a second cell transistor Tr2.
  • a silicon substrate 1 is provided with a gate trench 14 for a word line that also serves as a gate electrode of a transistor.
  • a first word line 10 a and a second word line 10 b are provided at the bottom of each gate trench 14 via a gate insulating film 5 formed of a thermal oxide film covering the inner surface of each word line gate trench 14. ing.
  • a cap insulating film 27 is provided so as to cover each word line and bury each gate trench 14.
  • the semiconductor pillar located on the left side of the first word line 10a becomes the first capacitor contact region 37a, and an impurity diffusion layer 29a serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located between the first word line 10a and the second word line 10b becomes the bit line contact region 32, and an impurity diffusion layer 28 serving as the other of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located on the right side of the second word line 10b becomes the second capacitor contact region 37b, and an impurity diffusion layer 29b serving as one of the source / drain is provided on the upper surface thereof.
  • the impurity diffusion layer 29a, the gate insulating film 5, the first word line 10a, and the impurity diffusion layer 28 constitute a first transistor Tr1 (FIG. 1).
  • the impurity diffusion layer 28, the gate insulating film 5, the second word line 10b, and the impurity diffusion layer 29b constitute the second transistor Tr2 (FIG. 1).
  • a cap insulating film 27 is provided so as to cover the upper surface of each word line.
  • a first interlayer insulating film 7 made of a silicon oxide film used as a mask for forming the gate trench 14 is provided on the upper surface of the element isolation region 12 and the upper surface of the silicon substrate 1 on which the impurity diffusion layers 29a and 29b are formed. It has been.
  • bit line (BL) 26 connected to the impurity diffusion layer 28 in the bit line contact region 32 is provided.
  • a cover insulating film 33 is provided on the upper surface of BL26.
  • a liner insulating film 34 is provided on the entire surface so as to cover the side wall of the BL 26.
  • An SOD (SpinSOOnSODielectric) film 35 is provided on the liner insulating film 34 so as to bury a recessed space formed between adjacent BLs.
  • the first and second capacitor contact plugs 38a and 38b are connected to the first and second capacitor contact regions 37a and 37b through the capacitor contact holes, respectively.
  • First and second capacitor contact pads 42a and 42b are connected to the upper portions of the first and second capacitor contact plugs 38a and 38b, respectively.
  • a stopper nitride film 43 is provided so as to cover the capacitor contact pad 42.
  • a capacitor lower electrode 44 is provided on the capacitor contact pad 42.
  • a capacitor insulating film 45 covering the inner surface of the capacitor lower electrode 44 is provided, and a capacitor upper polysilicon electrode 46 and a capacitor upper tungsten electrode 47 are provided on the capacitor insulating film 45.
  • a wiring 48 and a second interlayer insulating film 49 are provided on the capacitor upper tungsten electrode 47.
  • FIGS. 3 to 10 are cross-sectional views taken along line A-A ′ in FIG.
  • an element isolation region 12 embedded in an insulating film made of a silicon oxide film on a silicon substrate 1 which is a semiconductor substrate by a well-known STI (Shallow Trench Isolation) method. Form.
  • an active region 13 (FIG. 1) that is surrounded by the element isolation region 12 and made of the silicon substrate 1 is formed.
  • a pad oxide film 2 made of a silicon oxide film is formed on the entire surface of the silicon substrate 1, and a P well region is formed through the pad oxide film 2 by a known method.
  • a first interlayer insulating film 7 made of a silicon oxide film or the like is deposited (formed) on the silicon substrate 1.
  • the first interlayer insulating film 7 is patterned with a resist (not shown), and the silicon substrate 1 is etched by dry etching to form a gate trench 14. Thereafter, the surface (inner wall) of the gate trench 14 is oxidized by thermal oxidation (ISSG: In Site Steam Generation), thereby forming the gate insulating film 5 made of a silicon oxide film.
  • ISSG In Site Steam Generation
  • the gate trench 14 extends continuously from the active region 13 to the element isolation region 12.
  • a barrier metal made of titanium nitride (TiN) to be an electrode is formed.
  • the film formation of the barrier metal made of titanium nitride (TiN) is performed under the same gas conditions.
  • the film is divided into two stages and in-site. To do.
  • the first titanium nitride 6a is covered by an ALD (Atomic Layer Deposition) method using titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas so as to cover the gate insulating film 5.
  • the formation conditions here are reaction rate-limiting conditions with a TiCl 4 / NH 3 flow rate ratio of approximately 1.
  • the gas conditions are optimized so that the coverage is 100%.
  • the film forming conditions are, for example, titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas at a flow rate of 60 sccm.
  • the flow rate of titanium tetrachloride (TiCl 4 ) gas and the flow rate of ammonia (NH 3 ) gas can be adjusted so that the coverage does not deteriorate.
  • the first titanium nitride 6a is called a first barrier metal.
  • the reaction-controlling condition is called the first film forming condition.
  • TiN titanium nitride
  • titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) are formed on the first titanium nitride 6 a on the flat portion outside the gate trench 14.
  • the second titanium nitride 6b and the first titanium nitride 6a are formed to have a film thickness of 3 nm by an ALD (Atomic Layer Deposition) method using a gas.
  • the flow rate of titanium tetrachloride (TiCl 4 ) gas is narrowed down and the flow rate of ammonia (NH 3 ) gas is increased, so that a very small amount of film is formed inside the gate trench 14 as the supply rate limiting condition. (Coverage is 0%).
  • TiCl 4 titanium tetrachloride
  • NH 3 ammonia
  • the second titanium nitride 6b is called a second barrier metal.
  • the supply rate limiting condition is referred to as a second film forming condition.
  • the film thickness of the second barrier metal 6b is thinner than the film thickness of the first barrier metal 6a inside the gate trench 14.
  • the step coverage of the second barrier metal 6b formed under the second film formation conditions is worse than the step coverage of the first barrier metal 6a formed under the first film formation conditions.
  • the first titanium nitride 6a and the second titanium nitride 6b can be formed without reducing the processing capability by continuously growing in the same chamber.
  • a continuous film having a thick titanium nitride (barrier metal) film on the flat portion outside the gate trench 14 is formed, and a metal electrode made of tungsten (W) to be formed later is formed. Adhesion can be secured.
  • the area inside the gate trench 14 is very small compared to the wafer area and the film stress direction of tungsten (W) is perpendicular to the flat portion, even if the film thickness of titanium nitride is small. Adhesiveness with tungsten (W) does not decrease.
  • a metal electrode made of tungsten (W) 9 is buried by CVD.
  • tungsten (W) 9 is formed in two steps, a nucleus formation step and a main step.
  • tungsten hexafluoride WF 6
  • diborane B 2 H 6
  • tungsten is formed with WF 6 / H 2 .
  • a wiring body is formed.
  • monosilane (SiH 4 ) is flowed to surface-treat titanium nitride (TiN).
  • TiN titanium nitride
  • WF tungsten hexafluoride
  • Diborane (B 2 H 6 ) or hydrogen (H 2 ) may be used instead of monosilane (SiH 4 ).
  • diborane (B 2 H 6 ) can reduce the specific resistance most.
  • tungsten for example, tungsten hexafluoride (WF 6 ) and hydrogen (H 2 ) are simultaneously flowed at a temperature of 390 ° C. and a pressure of 10666 pa to form a film.
  • W tungsten hexafluoride
  • H 2 hydrogen
  • the film thickness of the first titanium nitride 6a in the gate trench 14 is as thin as 1 nm, the sectional area of the tungsten (W) 9 in the gate trench 14 is increased, and the resistance of the word line 10 can be lowered. .
  • the gate trench 14 is completely buried with a laminated film made of the first titanium nitride 6a, the second titanium nitride 6b, and tungsten (W) 9.
  • the laminated film made of the first titanium nitride 6a, the second titanium nitride 6b, and tungsten (W) is etched back by a dry etching method, and buried in the gate trench 14.
  • Embedded gate electrodes 10a and 10b made of a titanium nitride 6a, a second titanium nitride 6b, and tungsten (W) are formed.
  • the buried gate electrodes 10a and 10b constitute a word line.
  • a new trench is formed above the buried gate electrodes 10a and 10b.
  • a cap insulating film 27 made of a silicon nitride (SiN) film is formed on the entire surface by a CVD method so as to bury a new trench, and CMP (Chemical-Mechanical-Polishing) is performed to form a silicon nitride (SiN) film on the surface. Remove.
  • the first barrier metal 6a, the second barrier metal 6b, the metal electrode 9 and the cap insulating film 27 are continuously extended from the active region 13 to the element isolation region 13 in the gate trench 14. Yes.
  • bit line 26 is formed.
  • bit contact connected to the upper surface of the bit line contact region 32 (FIG. 1) is formed.
  • the bit contact is formed as a line-shaped opening pattern extending in the same direction as the word line 10 (Y direction in FIG. 1). At the intersection of the bit contact pattern and the active region, the surface of the silicon substrate 1 is exposed.
  • an N-type impurity (such as arsenic) is ion-implanted to form an N-type impurity diffusion layer 28 in the vicinity of the silicon surface.
  • the formed N-type impurity diffusion layer 28 functions as a source / drain region 28 of the transistor.
  • a laminated film such as a polysilicon film, a tungsten film, and a silicon nitride film 33 is formed by, for example, a CVD method.
  • the bit line 26 is formed by patterning into a line shape using a photolithography technique and a dry etching technique.
  • the bit line 26 is formed as a pattern extending in a direction intersecting the word line 10 (X direction in FIG. 1).
  • the polysilicon film under the bit line 26 is connected to the source / drain region 28 at the silicon surface portion exposed in the bit contact.
  • a liner film 34 covering the upper surface is formed of a silicon nitride film or the like by using, for example, a CVD method.
  • an annealing process is performed in a high-temperature steam (H 2 O) atmosphere to modify the film into a solid film.
  • the planarization is performed by CMP until the upper surface of the liner film 34 is exposed.
  • a capacitive contact is formed through the SOD film 35, the liner film 34, and the first interlayer insulating film 7 by using a photolithography technique and a dry etching technique.
  • polysilicon doped with an N-type impurity phosphorus or the like
  • N-type impurity diffusion layers 29a and 29b are formed in the vicinity of the surface of the capacitor contact regions 37a and 37b by the N-type impurities doped in the polysilicon.
  • the formed N-type impurity diffusion layers 29a and 29b function as source / drain regions of the transistor.
  • Capacitance contact pads 42a and 42b are formed using photolithography technology and dry etching technology.
  • a stopper nitride film 43 is formed using a silicon nitride film so as to cover the capacitor contact pads 42a and 42b.
  • a capacitor lower electrode 44 is formed of titanium nitride or the like on the capacitor contact pads 42a and 42b.
  • the capacitor upper polysilicon electrode 46 and the capacitor upper tungsten electrode 47 are formed.
  • a wiring 48 and a second interlayer insulating film 49 are formed on the capacitor upper tungsten electrode 47 to form the semiconductor device 100.
  • the barrier metal In the semiconductor device 100, a combination of the first barrier metal 6a and the second barrier metal 6b having a thickness smaller than that of the first barrier metal 6b is used as the barrier metal.
  • the adhesion to the metal electrode can be secured, and the film thickness can be controlled and managed with a thin film.
  • a film in which a first titanium nitride 6a, a second titanium nitride 6b, and tungsten (W) 9 are sequentially stacked is used as the buried gate electrode (word line) 10.
  • the present invention is not limited to this, and various modifications as described below can be adopted.
  • a nitrided first metal may be used instead of the first and second titanium nitrides 6a and 6b.
  • each of the first metal and the second metal may be a refractory metal.
  • the refractory metal may be selected from the group of tungsten, cobalt, titanium, molybdenum, and tantalum.
  • the present invention is not limited to the embedded gate electrode of the DRAM, but can be applied to embedded gate electrodes for all products including PRAM (Phase-Change Random Access Memory), ReRAM (Resistive Random Access Memory), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Semiconductor Memories (AREA)
  • Materials Engineering (AREA)

Abstract

Provided is a semiconductor device allowing a barrier metal to be reduced in thickness, adhesion with a metal electrode to be ensured, and film thickness to be controlled/managed using the thin film. The semiconductor device is provided with an active region (13) on a semiconductor substrate (1), a trench (14) having a lower section and an upper section within the active region, a gate insulating film (5) that covers the inner wall surface of the trench, a first barrier metal (6a) that covers the lower section of the trench interposed by the gate insulating film, a second barrier metal (6b) that covers the first barrier metal, and a metal electrode (9) that covers the second barrier metal and fills up the lower section of the trench. The second barrier metal is thinner less than the first barrier metal.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造方法に関し、特に、埋め込みワード線構造を採用したDRAM(Dynamic Random Access Memory)を有する半導体装置に適用して有効な技術に関するものである。 The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a technology that is effective when applied to a semiconductor device having a DRAM (Dynamic Random Access Memory) employing a buried word line structure.
 半導体記憶装置の一つであるDRAMは、我々が日常利用する様々な電子機器に数多く搭載されている。また、近年の機器の低消費電力化、高性能化のニーズに伴い、搭載されるDRAMも低電力化、高速化、大容量化といった高性能化が強く求められている。 DRAM, which is one of semiconductor memory devices, is mounted in various electronic devices that we use every day. In addition, with recent needs for lower power consumption and higher performance of equipment, there is a strong demand for higher performance such as lower power consumption, higher speed, and larger capacity in DRAMs.
 高性能なDRAMを実現するための最も有効な手段の一つは、メモリセルの微細化である。メモリセルを微細化することにより、メモリセルに接続されるワード線およびビット線の長さが短くなる。そのため、ワード線およびビット線の寄生容量が低減され、低電圧動作が可能となるので、低消費電力化が実現できる。また、メモリセルサイズが小さくなるので、大容量化が可能となり、機器の高性能化が実現できる。このように、メモリセルに微細化は、DRAMの高性能化に大きく寄与する。 One of the most effective means for realizing a high-performance DRAM is miniaturization of memory cells. By miniaturizing the memory cell, the length of the word line and the bit line connected to the memory cell is shortened. Therefore, the parasitic capacitance of the word line and the bit line is reduced and low voltage operation is possible, so that low power consumption can be realized. In addition, since the memory cell size is reduced, the capacity can be increased and the performance of the device can be improved. Thus, miniaturization of the memory cell greatly contributes to high performance of the DRAM.
 このような半導体装置に備えられるセルトランジスタを含むメモリセルの微細化に伴い、ショートチャネル効果によるトランジスタ特性の悪化や、コンタクトホール径の縮小によるコンタクト抵抗の増加が問題となっている。 With the miniaturization of memory cells including cell transistors provided in such semiconductor devices, deterioration of transistor characteristics due to the short channel effect and increase in contact resistance due to reduction of the contact hole diameter have become problems.
 これらの問題を解決し、さらなる微細化を進めるため、メモリセルを構成するセルトランジスタに、半導体基板の表層にワード線となるゲート電極を埋め込んだ埋め込みゲート型のトランジスタを採用することが提案されている。 In order to solve these problems and advance further miniaturization, it has been proposed to employ a buried gate type transistor in which a gate electrode serving as a word line is buried in a surface layer of a semiconductor substrate as a cell transistor constituting a memory cell. Yes.
 たとえば、特開2008-028055号公報(特許文献1)は、半導体基板(シリコン基板)の主面上にCVD(Chemical Vapor Deposition)法で絶縁膜(犠牲酸化膜)を形成し、その上に窒化シリコン膜を堆積し、窒化シリコン膜をマスクに用いて、絶縁膜(犠牲酸化膜)および半導体基板(シリコン基板)をエッチングして溝(トレンチ)を形成し、半導体基板(シリコン基板)を熱酸化することにより、溝(トレンチ)の内壁にメモリセルトランジスタのゲート絶縁膜を形成し、CVD法を用いて溝(トレンチ)の内部を含む絶縁膜(犠牲酸化膜)上にゲート電極用の導電膜(n型不純物がドープされた多結晶シリコン膜)を形成(堆積)する、半導体装置の製造方法を開示している。尚、特許文献1では、導電膜に関して、多結晶シリコン膜に代えてアモルファスシリコン膜を堆積し、n型不純物に代えてp型不純物(ホウ素)をドープしてもよい、と記載している。 For example, Japanese Patent Laid-Open No. 2008-028055 (Patent Document 1) forms an insulating film (sacrificial oxide film) on a main surface of a semiconductor substrate (silicon substrate) by a CVD (Chemical Vapor Deposition) method and nitrides the insulating film A silicon film is deposited, and using the silicon nitride film as a mask, the insulating film (sacrificial oxide film) and the semiconductor substrate (silicon substrate) are etched to form trenches, and the semiconductor substrate (silicon substrate) is thermally oxidized. As a result, the gate insulating film of the memory cell transistor is formed on the inner wall of the trench (trench), and the conductive film for the gate electrode is formed on the insulating film (sacrificial oxide film) including the inside of the trench (trench) using the CVD method. A method for manufacturing a semiconductor device is disclosed in which (polycrystalline silicon film doped with n-type impurities) is formed (deposited). Note that Patent Document 1 describes that the conductive film may be deposited with an amorphous silicon film instead of the polycrystalline silicon film and doped with p-type impurities (boron) instead of n-type impurities.
 また、特開2012-099793号公報(特許文献2)は、半導体基板の上面に開口パターンを有するマスク絶縁膜を形成し、マスク絶縁膜をマスクとして半導体基板をエッチングしてゲートトレンチを形成し、ゲートトレンチの内面に酸化シリコン膜からなるゲート絶縁膜を熱酸化法により形成し、窒化チタン(TiN)をCVD法により形成し、タングステン(W)をCVD法により形成し、TiNとWからなる積層膜をドライエッチング法によりエッチバックしてゲートトレンチ内に埋設されたTiNとWからなる埋め込みゲート電極(ワード線)を形成し、埋め込みゲート電極の上方に形成された新たなゲートトレンチを埋設するように窒化シリコン膜からなるキャップ絶縁膜をCVD法により形成する、半導体装置の製造方法を開示している。 Japanese Patent Laying-Open No. 2012-099793 (Patent Document 2) forms a mask insulating film having an opening pattern on an upper surface of a semiconductor substrate, etches the semiconductor substrate using the mask insulating film as a mask, and forms a gate trench. A gate insulating film made of a silicon oxide film is formed on the inner surface of the gate trench by a thermal oxidation method, titanium nitride (TiN) is formed by a CVD method, tungsten (W) is formed by a CVD method, and a laminated layer made of TiN and W The film is etched back by dry etching to form an embedded gate electrode (word line) made of TiN and W embedded in the gate trench, and a new gate trench formed above the embedded gate electrode is embedded. For manufacturing a semiconductor device, in which a cap insulating film made of a silicon nitride film is formed by a CVD method It discloses.
特開2008-028055号公報(段落[0048]~[0052]、図3~図6)JP 2008-028055 A (paragraphs [0048] to [0052], FIGS. 3 to 6) 特開2012-099793号公報(段落[0046]~[0049]、図10~図13)JP 2012-099793 A (paragraphs [0046] to [0049], FIGS. 10 to 13)
 65nmノード、25nmノード、20nmノードとメモリセルの微細化が進んでいる。65nmノード以降のメモリセルでは、上記特許文献2に記載されているような、半導体基板(シリコン基板)をエッチングして形成したトレンチ構造にタングステン(W)を埋め込んだ、埋め込みワード線構造が採用されている。トレンチ幅は、65nmノードで65nm、25nmノードで26nm、20nmノードでは12nmである。 The 65-nm node, 25-nm node, and 20-nm node and the memory cells are being miniaturized. In the memory cell after the 65 nm node, a buried word line structure in which tungsten (W) is buried in a trench structure formed by etching a semiconductor substrate (silicon substrate) as described in Patent Document 2 is employed. ing. The trench width is 65 nm at the 65 nm node, 26 nm at the 25 nm node, and 12 nm at the 20 nm node.
 20nmノードのメモリセルでは、上述したようにトレンチ幅が12nmまで縮小するので、窒化チタン(TiN)膜及びタングステン(W)核形成膜をできる限り薄膜化する必要がある。尚、窒化チタン(TiN)はバリアメタルとも呼ばれ、タングステン(W)は金属電極とも呼ばれる。 In the 20 nm node memory cell, the trench width is reduced to 12 nm as described above, and therefore it is necessary to make the titanium nitride (TiN) film and the tungsten (W) nucleation film as thin as possible. Titanium nitride (TiN) is also called a barrier metal, and tungsten (W) is also called a metal electrode.
 しかしながら、従来使用しているCVD法の成膜方法(製造方法)では、バリアメタルを薄膜化し、且つ金属電極との密着性を確保し、且つ薄膜での膜厚制御・管理することができないという課題がある。 However, the conventional CVD film forming method (manufacturing method) cannot reduce the thickness of the barrier metal, ensure adhesion with the metal electrode, and cannot control and control the film thickness of the thin film. There are challenges.
 本発明による半導体装置は、半導体基板上の活性領域と、活性領域内にあって下部と上部を有するトレンチと、トレンチの内壁面を覆うゲート絶縁膜と、ゲート絶縁膜を介してトレンチ下部を覆う第1のバリアメタルと、第1のバリアメタルを覆う第2のバリアメタルと、第2のバリアメタルを覆い、トレンチ下部を埋設する金属電極と、トレンチの上部を埋設するキャップ絶縁膜と、を備え、第2のバリアメタルの膜厚は第1のバリアメタルの膜厚より薄い。 A semiconductor device according to the present invention includes an active region on a semiconductor substrate, a trench having a lower portion and an upper portion in the active region, a gate insulating film covering an inner wall surface of the trench, and a lower portion of the trench through the gate insulating film. A first barrier metal; a second barrier metal that covers the first barrier metal; a metal electrode that covers the second barrier metal and buryes the lower portion of the trench; and a cap insulating film that buryes the upper portion of the trench. The film thickness of the second barrier metal is smaller than the film thickness of the first barrier metal.
 また、本発明による半導体装置の製造方法は、半導体基板にトレンチを形成し、トレンチ内にゲート絶縁膜を形成し、ゲート絶縁膜上に第1のバリアメタルを第1の成膜条件で形成し、第1のバリアメタル上に第1の成膜条件と異なる第2の成膜条件で形成し、第2のバリアメタル上にトレンチを埋設するように金属材料を形成し、トレンチの上部の第1のバリアメタル、第2のバリアメタル及び金属を除去し、トレンチの上部をキャップ絶縁膜で埋設する。 In the method of manufacturing a semiconductor device according to the present invention, a trench is formed in a semiconductor substrate, a gate insulating film is formed in the trench, and a first barrier metal is formed on the gate insulating film under a first film forming condition. Forming a metal material on the first barrier metal under a second film-forming condition different from the first film-forming condition, forming a metal material so as to bury the trench on the second barrier metal, The first barrier metal, the second barrier metal, and the metal are removed, and the upper portion of the trench is buried with a cap insulating film.
 本発明によると、バリアメタルを薄膜化し、且つ金属電極との密着性を確保し、且つ薄膜での膜厚制御・管理をすることができる。 According to the present invention, the barrier metal can be made into a thin film, the adhesion to the metal electrode can be secured, and the film thickness can be controlled and managed with the thin film.
本発明の第1の実施例による半導体装置(DRAMメモリセル)を示す平面図である。1 is a plan view showing a semiconductor device (DRAM memory cell) according to a first embodiment of the present invention; 図1に示した半導体装置のA-A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of the semiconductor device illustrated in FIG. 1. 図1に示した半導体装置を製造するプロセスの第1の製造工程を示す断面構造図である。FIG. 2 is a cross-sectional structure diagram showing a first manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第2の製造工程を示す断面構造図である。FIG. 7 is a cross-sectional structure diagram showing a second manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第3の製造工程を示す断面構造図である。FIG. 7 is a cross-sectional structure diagram showing a third manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第4の製造工程を示す断面構造図である。FIG. 7 is a cross-sectional structure diagram showing a fourth manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第5の製造工程を示す断面構造図である。FIG. 9 is a cross-sectional structure diagram showing a fifth manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第6の製造工程を示す断面構造図である。FIG. 9 is a cross-sectional structure diagram showing a sixth manufacturing process in the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第7の製造工程を示す断面構造図である。FIG. 9 is a cross-sectional structure diagram showing a seventh manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を製造するプロセスの第8の製造工程を示す断面構造図である。FIG. 10 is a cross-sectional structure diagram showing an eighth manufacturing process of the process for manufacturing the semiconductor device shown in FIG. 1.
[関連技術] 
 本発明について説明する前に、本発明の理解を容易にするために、関連技術について説明する。
[Related technologies]
Prior to describing the present invention, related techniques will be described in order to facilitate understanding of the present invention.
 以下に、関連する埋め込みワード線構造の形成方法について説明する。 Hereinafter, a method for forming a related buried word line structure will be described.
 先ず、半導体基板(シリコン基板)の上に、周知のSTI(Shallow Trench Isolation)法により、酸化シリコン膜からなる絶縁膜で埋設された素子分離領域を形成する。これにより、素子分離領域で囲まれ、半導体基板(シリコン基板)からなる活性領域が形成される。 First, an element isolation region embedded with an insulating film made of a silicon oxide film is formed on a semiconductor substrate (silicon substrate) by a well-known STI (Shallow Trench Isolation) method. As a result, an active region made of a semiconductor substrate (silicon substrate) surrounded by the element isolation region is formed.
 次に、半導体基板(シリコン基板)上全面に窒化シリコン(SiN)膜又は酸化シリコン(SiO)膜から成る第1層間絶縁膜を成膜し、パターニング後、トライエッチングにてトレンチ(ゲートトレンチ)を形成する。 Next, a first interlayer insulating film made of a silicon nitride (SiN) film or a silicon oxide (SiO 2 ) film is formed on the entire surface of the semiconductor substrate (silicon substrate). After patterning, a trench (gate trench) is formed by tri-etching. Form.
 次に、トレンチの表面を熱酸化(ISSG:In Site Steam Generation)により酸化させることによって、シリコン酸化膜からなるゲート絶縁膜を形成する。 Next, a gate insulating film made of a silicon oxide film is formed by oxidizing the surface of the trench by thermal oxidation (ISSG: In-Site-Steam-Generation).
 そして、そのゲート絶縁膜の上に、電極として、四塩化チタン(TiCl)ガスとアンモニア(NH)ガスを用いた熱CVD(Chemical Vapor Deposition)法で、窒化チタン(TiN)から成るバリアメタルを成膜する。その後、CVD法でタングステン(W)から成る金属電極を埋設する。 A barrier metal made of titanium nitride (TiN) is formed on the gate insulating film by a thermal CVD (Chemical Vapor Deposition) method using titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas as electrodes. Is deposited. Thereafter, a metal electrode made of tungsten (W) is embedded by CVD.
 タングステン(W)の核形成は、従来においては、六弗化タングステン(WF)フローとモノシラン(SiH)フロー、または六弗化タングステン(WF)フローとジボラン(B)フロー、または六弗化タングステン(WF)フローと水素(H)フローを交互にパージしながら成膜を行う。 Tungsten (W) nucleation is conventionally accomplished by tungsten hexafluoride (WF 6 ) flow and monosilane (SiH 4 ) flow, or tungsten hexafluoride (WF 6 ) flow and diborane (B 2 H 6 ) flow, Alternatively, film formation is performed while alternately purging a tungsten hexafluoride (WF 6 ) flow and a hydrogen (H 2 ) flow.
 この段階でトレンチは、窒化チタン(TiN)とタングステン(W)とからなる積層膜で完全に埋設された状態となる。 At this stage, the trench is completely filled with a laminated film made of titanium nitride (TiN) and tungsten (W).
 次いで、窒化チタン(TiN)とタングステン(W)とからなる積層膜をドライエッチング法によりエッチバックして、トレンチ内に埋設された窒化チタン(TiN)とタングステン(W)とからなる埋め込みゲート電極を形成する。この埋め込みゲート電極はワード線を構成する。トレンチ内に埋め込みゲート電極が形成される結果、埋め込みゲート電極の上方に新たなトレンチが形成される。 Next, the laminated film made of titanium nitride (TiN) and tungsten (W) is etched back by a dry etching method, and a buried gate electrode made of titanium nitride (TiN) and tungsten (W) embedded in the trench is formed. Form. This buried gate electrode constitutes a word line. As a result of forming the buried gate electrode in the trench, a new trench is formed above the buried gate electrode.
 次に、新たなトレンチを埋設するように全面に窒化シリコン(SiN)膜からなるキャップ絶縁膜をCVD法により形成し、表面の窒化シリコン(SiN)膜を除去する。 Next, a cap insulating film made of a silicon nitride (SiN) film is formed on the entire surface by a CVD method so as to bury a new trench, and the silicon nitride (SiN) film on the surface is removed.
 次に、関連技術の問題点について説明する。 Next, the problem of related technology will be explained.
 前述したように、20nmノードのメモリセルでは、トレンチ幅が12nmまで縮小するので、窒化チタン(TiN)膜及びタングステン(W)核形成膜をできる限り薄膜化する必要がある。 As described above, in the 20 nm node memory cell, the trench width is reduced to 12 nm. Therefore, it is necessary to make the titanium nitride (TiN) film and the tungsten (W) nucleation film as thin as possible.
 しかしながら、従来使用しているCVD法で成膜して無機窒化チタン(TiN)から成るバリアメタルを使用すると、タングステン(W)から成る金属電極との密着性が問題無い3nmまでしか窒化チタン(TiN)膜から成るバリアメタルを薄膜化できない。そのため、ワード線の抵抗を低減することができない。 However, when a barrier metal made of inorganic titanium nitride (TiN) is used by forming a film by the conventional CVD method, titanium nitride (TiN) is only up to 3 nm, which has no problem of adhesion with a metal electrode made of tungsten (W). ) The barrier metal film cannot be made thin. Therefore, the resistance of the word line cannot be reduced.
 また、意図的に窒化チタン(TiN)のガス条件を反応律速領域から供給律速領域に変更し、ガバレッジを100%から50%程度にすることによって、トレンチ内の窒化チタン(TiN)膜の膜厚を薄膜化し、且つトレンチ上部の窒化チタン(TiN)膜の膜厚を厚膜化することが考えられる。 In addition, the thickness of the titanium nitride (TiN) film in the trench is intentionally changed by changing the gas condition of titanium nitride (TiN) from the reaction-controlled region to the supply-controlled region and setting the coverage to about 100% to 50%. It is conceivable that the thickness of the titanium nitride (TiN) film above the trench is increased.
 次に、「反応律速」と「供給律速」について簡単に説明する。 Next, “reaction rate limiting” and “supply rate limiting” will be briefly explained.
 CVD法によるエピタキシャル成長速度は、原料ガスの種類、温度、圧力等に依存する。エピタキシャル成長が可能な温度領域(成長温度領域)は定性的に、反応律速と供給律速の2領域に分けられる。供給律速は拡散律速とも呼ばれる。反応律速領域は成長温度領域内の低温側にあって、温度が高いほど成長速度が速くなる領域である。一方、供給律速領域は同領域の高温側にあって、温度依存性が小さい領域である。エピタキシャル成長は通常この供給律速領域で行われる。 The epitaxial growth rate by the CVD method depends on the type of raw material gas, temperature, pressure and the like. The temperature region where the epitaxial growth is possible (growth temperature region) is qualitatively divided into two regions of reaction rate control and supply rate control. Supply rate limiting is also called diffusion rate limiting. The reaction rate controlling region is on the low temperature side in the growth temperature region, and the growth rate increases as the temperature increases. On the other hand, the supply rate limiting region is a region on the high temperature side of the region and having a small temperature dependency. Epitaxial growth is usually performed in this supply rate limiting region.
 上記変更により、タングステン(W)から成る金属電極との密着性の向上と、トレンチ内の窒化チタン(TiN)膜から成るバリアメタルの膜厚の薄膜化とが両立できる。しかしながら、供給律速条件では、パターンの表面積が変化した際に窒化チタン(TiN)から成るバリアメタルが変化するため、窒化チタン(TiN)膜から成るバリアメタルの膜厚を制御・管理することができないという課題がある。 By the above change, it is possible to improve both the adhesion to the metal electrode made of tungsten (W) and to reduce the thickness of the barrier metal made of the titanium nitride (TiN) film in the trench. However, under the supply rate limiting condition, the barrier metal made of titanium nitride (TiN) changes when the surface area of the pattern changes, so the thickness of the barrier metal made of titanium nitride (TiN) cannot be controlled / managed. There is a problem.
 したがって、本発明の目的は、バリアメタルを薄膜化し、且つ金属電極との密着性を確保し、且つ薄膜での膜厚制御・管理をすることができる、半導体装置およびその製造方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can reduce the thickness of the barrier metal, ensure adhesion with the metal electrode, and can control and manage the film thickness of the thin film. It is in.
[実施形態]
 次に、本発明の実施形態の要旨について説明する。
[Embodiment]
Next, the gist of the embodiment of the present invention will be described.
 窒化チタン(TiN)は、3nm以下で成膜すると不連続膜になるため、トレンチ表面のタングステン(W)との密着性が悪い。 Titanium nitride (TiN) becomes a discontinuous film when deposited at 3 nm or less, and therefore has poor adhesion to tungsten (W) on the trench surface.
 反応律速条件では膜厚制御は可能であるが、トレンチ内の窒化チタン(TiN)膜の膜厚を3nm以下に薄膜化できない。 Although the film thickness can be controlled under reaction-controlled conditions, the thickness of the titanium nitride (TiN) film in the trench cannot be reduced to 3 nm or less.
 また、前述したように、窒化チタン(TiN)のガス条件を反応律速領域から反応律速領域に変更して、ガバレッジを100%から50%にすると、タングステン(W)との密着性は向上し、トレンチ内の窒化チタン(TiN)膜の膜厚も3nm以下に薄膜化することは可能である。しかしながら、表面積変動の影響を大きく受けるため、膜厚制御・管理ができない、という課題がある。 Further, as described above, when the gas condition of titanium nitride (TiN) is changed from the reaction rate limiting region to the reaction rate limiting region and the coverage is changed from 100% to 50%, the adhesion with tungsten (W) is improved. The film thickness of the titanium nitride (TiN) film in the trench can be reduced to 3 nm or less. However, there is a problem that the film thickness cannot be controlled and managed because it is greatly affected by the surface area fluctuation.
 そこで、本発明の実施形態では、トレンチ内の窒化チタン(TiN)膜から成るバリアメタルの膜厚をカバレッジ100%の成膜条件で制御・管理し、タングステン(W)から成る金属電極との密着性はトレンチ表面のみに成膜できる条件で、且つ2段階の成膜をin-situで行っている。これにより、処理能力を落とすこと無く、トレンチ内の窒化チタン(TiN)膜から成るバリアメタルの膜厚を2nmよりも薄膜化でき、最終的にワード線の抵抗低減が可能になる。 Therefore, in the embodiment of the present invention, the film thickness of the barrier metal made of the titanium nitride (TiN) film in the trench is controlled and managed under the film forming conditions with a coverage of 100%, and the metal electrode made of tungsten (W) is adhered. The properties are such that the film can be formed only on the trench surface, and two-stage film formation is performed in-situ. As a result, the thickness of the barrier metal made of a titanium nitride (TiN) film in the trench can be made thinner than 2 nm without degrading the processing capability, and finally the resistance of the word line can be reduced.
 以下、図面を参照して、本発明の第1の実施例について詳細に説明する。 The first embodiment of the present invention will be described in detail below with reference to the drawings.
 以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。また、XYZ座標系を設定し、各構成の配置を説明する。この座標系において、Z方向は半導体基板であるシリコン基板の表面に垂直な方向であり、X方向はシリコン基板の表面と水平な面においてZ方向と直交する方向であって、Y方向はシリコン基板の表面と水平な面においてX方向と直交する方向である。また、X’方向は、X方向に対して斜めに傾いた方向である。 In the following drawings, the scale and number of each structure are different from each other in order to make each configuration easy to understand. In addition, an XYZ coordinate system is set and the arrangement of each component will be described. In this coordinate system, the Z direction is a direction perpendicular to the surface of the silicon substrate which is a semiconductor substrate, the X direction is a direction perpendicular to the Z direction on a plane parallel to the surface of the silicon substrate, and the Y direction is a silicon substrate. It is a direction orthogonal to the X direction in a plane parallel to the surface of The X ′ direction is a direction inclined obliquely with respect to the X direction.
 図1~図10は、本発明の第1の実施例による半導体装置100の構造およびその製造方法を示す図である。第1の実施例による半導体装置100はDRAM(dynamic random access memory)メモリセルである。図1は半導体装置100の平面図を示し、図2は図1のA-A’断面図を示し、図3~図10は半導体装置100の一連の製造工程断面図を示している。 1 to 10 are views showing a structure of a semiconductor device 100 according to a first embodiment of the present invention and a manufacturing method thereof. The semiconductor device 100 according to the first embodiment is a DRAM (dynamic random access memory) memory cell. 1 is a plan view of the semiconductor device 100, FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1, and FIGS. 3 to 10 are cross-sectional views showing a series of manufacturing steps of the semiconductor device 100.
 最初に、図1の平面図を参照して、第1の実施例の半導体装置100について説明する。 First, the semiconductor device 100 of the first embodiment will be described with reference to the plan view of FIG.
 半導体装置100はDRAMメモリセルを構成するものである。半導体基板であるシリコン基板1(図2参照)上において、X’方向に連続して延在する素子分離領域12と、同じくX’方向に連続して延在する活性領域13とが、Y方向に交互に等間隔、等ピッチで複数配置されている。素子分離領域12は溝に埋設した素子分離絶縁膜で構成されている。複数の素子分離領域12および複数の活性領域13に跨って、Y方向に連続して延在する埋め込みワード線10(10a、10b)が配置されている。 The semiconductor device 100 constitutes a DRAM memory cell. On a silicon substrate 1 (see FIG. 2), which is a semiconductor substrate, an element isolation region 12 that continuously extends in the X ′ direction and an active region 13 that also extends continuously in the X ′ direction include a Y direction. A plurality of them are alternately arranged at equal intervals and at equal pitches. The element isolation region 12 is composed of an element isolation insulating film embedded in the trench. A buried word line 10 (10a, 10b) extending continuously in the Y direction is disposed across the plurality of element isolation regions 12 and the plurality of active regions 13.
 ここでは、図1の左側に配置された埋め込みワード線10を第1ワード線10aと呼び、図1の右側に配置された埋め込みワード線10を第2ワード線10bと呼ぶことにする。 Here, the embedded word line 10 arranged on the left side in FIG. 1 is called a first word line 10a, and the embedded word line 10 arranged on the right side in FIG. 1 is called a second word line 10b.
 第1ワード線10aの左側に隣接して第1容量コンタクト領域37aが配置され、第2ワード線10bの右側に隣接して第2容量コンタクト領域37bが配置されている。第1ワード線10aと第2ワード線10bとの間に隣接してビット線コンタクト領域32が配置されている。 The first capacitor contact region 37a is disposed adjacent to the left side of the first word line 10a, and the second capacitor contact region 37b is disposed adjacent to the right side of the second word line 10b. A bit line contact region 32 is disposed adjacent to the first word line 10a and the second word line 10b.
 活性領域13は、第1容量コンタクト領域37aと、第1ワード線10aと、ビット線コンタクト領域32と、第2ワード線10bと、第2容量コンタクト領域37bと、で構成されている。第1容量コンタクト領域37aと、第1ワード線10aと、ビット線コンタクト領域32と、で第1セルトランジスタTr1が構成されている。ビット線コンタクト領域32と、第2ワード線10bと、第2容量コンタクト領域37bと、で第2セルトランジスタTr2が構成されている。 The active region 13 includes a first capacitor contact region 37a, a first word line 10a, a bit line contact region 32, a second word line 10b, and a second capacitor contact region 37b. A first cell transistor Tr1 is configured by the first capacitor contact region 37a, the first word line 10a, and the bit line contact region 32. The bit line contact region 32, the second word line 10b, and the second capacitor contact region 37b constitute a second cell transistor Tr2.
 次に図2を参照すると、シリコン基板1に、トランジスタのゲート電極を兼ねるワード線用のゲートトレンチ14が設けられている。各々のワード線用のゲートトレンチ14の内面を覆う熱酸化膜で構成されるゲート絶縁膜5を介して、第1ワード線10aおよび第2ワード線10bが各々のゲートトレンチ14の底部に設けられている。各々のワード線を覆い、且つ、各々のゲートトレンチ14を埋設してキャップ絶縁膜27が設けられている。 Next, referring to FIG. 2, a silicon substrate 1 is provided with a gate trench 14 for a word line that also serves as a gate electrode of a transistor. A first word line 10 a and a second word line 10 b are provided at the bottom of each gate trench 14 via a gate insulating film 5 formed of a thermal oxide film covering the inner surface of each word line gate trench 14. ing. A cap insulating film 27 is provided so as to cover each word line and bury each gate trench 14.
 第1ワード線10aの左側に位置する半導体ピラーは、第1容量コンタクト領域37aとなり、その上面にはソース/ドレインの一方となる不純物拡散層29aが設けられている。第1ワード線10aと第2ワード線10bの間に位置する半導体ピラーは、ビット線コンタクト領域32となり、その上面にはソース/ドレインの他の一方となる不純物拡散層28が設けられている。 The semiconductor pillar located on the left side of the first word line 10a becomes the first capacitor contact region 37a, and an impurity diffusion layer 29a serving as one of the source / drain is provided on the upper surface thereof. The semiconductor pillar located between the first word line 10a and the second word line 10b becomes the bit line contact region 32, and an impurity diffusion layer 28 serving as the other of the source / drain is provided on the upper surface thereof.
 また、第2ワード線10bの右側に位置する半導体ピラーは、第2容量コンタクト領域37bとなり、その上面にはソース/ドレインの一方となる不純物拡散層29bが設けられている。 Further, the semiconductor pillar located on the right side of the second word line 10b becomes the second capacitor contact region 37b, and an impurity diffusion layer 29b serving as one of the source / drain is provided on the upper surface thereof.
 不純物拡散層29aとゲート絶縁膜5と第1ワード線10aと不純物拡散層28とで第1のトランジスタTr1(図1)が構成されている。また、不純物拡散層28とゲート絶縁膜5と第2ワード線10bと不純物拡散層29bとで第2のトランジスタTr2(図1)が構成されている。各々のワード線上面を覆うように、キャップ絶縁膜27が設けられている。 The impurity diffusion layer 29a, the gate insulating film 5, the first word line 10a, and the impurity diffusion layer 28 constitute a first transistor Tr1 (FIG. 1). The impurity diffusion layer 28, the gate insulating film 5, the second word line 10b, and the impurity diffusion layer 29b constitute the second transistor Tr2 (FIG. 1). A cap insulating film 27 is provided so as to cover the upper surface of each word line.
 素子分離領域12の上面および不純物拡散層29a、29bが形成されたシリコン基板1の上面には、ゲートトレンチ14を形成する際のマスクとして用いた酸化シリコン膜からなる第1層間絶縁膜7が設けられている。 A first interlayer insulating film 7 made of a silicon oxide film used as a mask for forming the gate trench 14 is provided on the upper surface of the element isolation region 12 and the upper surface of the silicon substrate 1 on which the impurity diffusion layers 29a and 29b are formed. It has been.
 キャップ絶縁膜27上には、ビット線コンタクト領域32において不純物拡散層28に接続されるビット線(BL)26が設けられる。BL26の上面にはカバー絶縁膜33が設けられている。BL26の側壁を覆うように、全面にライナー絶縁膜34が設けられている。ライナー絶縁膜34上には、隣接するBL間に形成されている凹部空間を埋設するSOD(Spin On Dielectric)膜35が設けられている。 On the cap insulating film 27, a bit line (BL) 26 connected to the impurity diffusion layer 28 in the bit line contact region 32 is provided. A cover insulating film 33 is provided on the upper surface of BL26. A liner insulating film 34 is provided on the entire surface so as to cover the side wall of the BL 26. An SOD (SpinSOOnSODielectric) film 35 is provided on the liner insulating film 34 so as to bury a recessed space formed between adjacent BLs.
 SOD膜35、ライナー膜34、および第1層間絶縁膜7を貫通して、2つの容量コンタクトホールが設けられている。これら容量コンタクトホールによって、第1および第2容量コンタクト領域37a、37bに各々第1および第2容量コンタクトプラグ38a、38bが接続している。第1および第2容量コンタクトプラグ38a、38bの上部に各々第1および第2容量コンタクトパッド42a、42bが接続している。容量コンタクトパッド42を覆うように、ストッパー窒化膜43が設けられる。容量コンタクトパッド42上にはキャパシタ下部電極44が設けられる。キャパシタ下部電極44の内表面を覆う容量絶縁膜45が設けられ、容量絶縁膜45上にキャパシタ上部ポリシリコン電極46、キャパシタ上部タングステン電極47が設けられている。 Two capacitive contact holes are provided through the SOD film 35, the liner film 34, and the first interlayer insulating film 7. The first and second capacitor contact plugs 38a and 38b are connected to the first and second capacitor contact regions 37a and 37b through the capacitor contact holes, respectively. First and second capacitor contact pads 42a and 42b are connected to the upper portions of the first and second capacitor contact plugs 38a and 38b, respectively. A stopper nitride film 43 is provided so as to cover the capacitor contact pad 42. A capacitor lower electrode 44 is provided on the capacitor contact pad 42. A capacitor insulating film 45 covering the inner surface of the capacitor lower electrode 44 is provided, and a capacitor upper polysilicon electrode 46 and a capacitor upper tungsten electrode 47 are provided on the capacitor insulating film 45.
 そして、キャパシタ上部タングステン電極47上に配線48と第2層間絶縁膜49とが設けられている。 A wiring 48 and a second interlayer insulating film 49 are provided on the capacitor upper tungsten electrode 47.
 以下、図3~図10を用いて、図1~図2に示した半導体装置100の製造方法について説明する。図3~図10は、図1におけるA-A’断面図を示している。 Hereinafter, a method of manufacturing the semiconductor device 100 shown in FIGS. 1 to 2 will be described with reference to FIGS. 3 to 10 are cross-sectional views taken along line A-A ′ in FIG.
 まず、図3に示すように、半導体基板であるシリコン基板1の上に、周知のSTI(Shallow Trench Isolation)法により、酸化シリコン膜からなる絶縁膜で埋設された素子分離領域12(図1)を形成する。これにより、素子分離領域12で囲まれ、シリコン基板1からなる活性領域13(図1)が形成される。 First, as shown in FIG. 3, an element isolation region 12 (FIG. 1) embedded in an insulating film made of a silicon oxide film on a silicon substrate 1 which is a semiconductor substrate by a well-known STI (Shallow Trench Isolation) method. Form. Thus, an active region 13 (FIG. 1) that is surrounded by the element isolation region 12 and made of the silicon substrate 1 is formed.
 次に、シリコン基板1上全面に酸化シリコン膜からなるパッド酸化膜2を形成し、このパッド酸化膜2を通して、Pウェル領域を公知の方法で形成する。 Next, a pad oxide film 2 made of a silicon oxide film is formed on the entire surface of the silicon substrate 1, and a P well region is formed through the pad oxide film 2 by a known method.
 そして、図4に示すように、シリコン基板1上にシリコン酸化膜等からなる第1層間絶縁膜7を堆積(形成)する。 Then, as shown in FIG. 4, a first interlayer insulating film 7 made of a silicon oxide film or the like is deposited (formed) on the silicon substrate 1.
 次に、図5に示すように、レジスト(図示せず)にて第1層間絶縁膜7をパターニングし、シリコン基板1をドライエッチングによってエッチングし、ゲートトレンチ14を形成する。その後、ゲートトレンチ14の表面(内壁)を熱酸化(ISSG:In Site Steam Generation)により酸化させることによって、シリコン酸化膜からなるゲート絶縁膜5を形成する。 Next, as shown in FIG. 5, the first interlayer insulating film 7 is patterned with a resist (not shown), and the silicon substrate 1 is etched by dry etching to form a gate trench 14. Thereafter, the surface (inner wall) of the gate trench 14 is oxidized by thermal oxidation (ISSG: In Site Steam Generation), thereby forming the gate insulating film 5 made of a silicon oxide film.
 ここで、ゲートトレンチ14は、活性領域13から素子分離領域12へ渡って連続して延在している。 Here, the gate trench 14 extends continuously from the active region 13 to the element isolation region 12.
 次に、電極となる窒化チタン(TiN)から成るバリアメタルを成膜する。窒化チタン(TiN)から成るバリアメタルの成膜を、関連技術では、同一ガス条件で行っていたが、本発明の第1の実施例では、後述するように、2段階に分け、in-siteで行う。 Next, a barrier metal made of titanium nitride (TiN) to be an electrode is formed. In the related art, the film formation of the barrier metal made of titanium nitride (TiN) is performed under the same gas conditions. However, in the first embodiment of the present invention, as described later, the film is divided into two stages and in-site. To do.
 まず、図6に示すように、ゲート絶縁膜5を覆うように、四塩化チタン(TiCl)ガスとアンモニア(NH)ガスを用いたALD(Atomic Layer Deposition)法で、第1窒化チタン6aを1nm形成する。ここでの形成条件は、TiCl/NH流量比をほぼ1とした反応律速条件となる。カバレッジが100%となるように、ガス条件を最適化する。本例では、トレンチ幅12nm、深さ180nmの場合、成膜条件は、例えば、四塩化チタン(TiCl)ガスとアンモニア(NH)ガスとをそれぞれ60sccmの流量で行う。但し、カバレッジが悪化しないように、四塩化チタン(TiCl)ガスの流量とアンモニア(NH)ガスの流量は、調整可能である。 First, as shown in FIG. 6, the first titanium nitride 6a is covered by an ALD (Atomic Layer Deposition) method using titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas so as to cover the gate insulating film 5. 1 nm is formed. The formation conditions here are reaction rate-limiting conditions with a TiCl 4 / NH 3 flow rate ratio of approximately 1. The gas conditions are optimized so that the coverage is 100%. In this example, when the trench width is 12 nm and the depth is 180 nm, the film forming conditions are, for example, titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) gas at a flow rate of 60 sccm. However, the flow rate of titanium tetrachloride (TiCl 4 ) gas and the flow rate of ammonia (NH 3 ) gas can be adjusted so that the coverage does not deteriorate.
 尚、第1窒化チタン6aは、第1のバリアメタルと呼ばれる。反応律速条件は第1の成膜条件と呼ばれる。 The first titanium nitride 6a is called a first barrier metal. The reaction-controlling condition is called the first film forming condition.
 ここで、前述したように、窒化チタン(TiN)は、3nm以下で成膜すると不連続膜となるため、後で形成するタングステン(W)との密着性が悪くなることに注意されたい。 Note that, as described above, titanium nitride (TiN) becomes a discontinuous film when deposited at 3 nm or less, so that adhesion with tungsten (W) to be formed later is deteriorated.
 そこで、本発明の第1の実施例では、図7に示すように、第1窒化チタン6aの上部に、ゲートトレンチ14外の平坦部において、四塩化チタン(TiCl)ガスとアンモニア(NH)ガスを用いたALD(Atomic Layer Deposition)法で、第2窒化チタン6bを、第1窒化チタン6aと合わせて膜厚3nmになるように形成する。 Therefore, in the first embodiment of the present invention, as shown in FIG. 7, titanium tetrachloride (TiCl 4 ) gas and ammonia (NH 3 ) are formed on the first titanium nitride 6 a on the flat portion outside the gate trench 14. ) The second titanium nitride 6b and the first titanium nitride 6a are formed to have a film thickness of 3 nm by an ALD (Atomic Layer Deposition) method using a gas.
 ここでは、四塩化チタン(TiCl)ガスの流量を絞り込んで、かつアンモニア(NH)ガスの流量を増加させることにより、供給律速条件として、ゲートトレンチ14内部にはごくわずかしか成膜されない条件(カバレッジが0%)を用いる。換言すれば、四塩化チタン(TiCl)ガスの分圧を下げることによって、四塩化チタン(TiCl)ガスの流量を低流量化し、且つ、アンモニア(NH)ガスの流量を高流量に設定する。 Here, the flow rate of titanium tetrachloride (TiCl 4 ) gas is narrowed down and the flow rate of ammonia (NH 3 ) gas is increased, so that a very small amount of film is formed inside the gate trench 14 as the supply rate limiting condition. (Coverage is 0%). In other words, by lowering the partial pressure of titanium tetrachloride (TiCl 4) gas, the flow rate of titanium tetrachloride (TiCl 4) gas and low flow rate reduction, and, setting ammonia flow rate of (NH 3) gas at a high flow rate To do.
 尚、第2窒化チタン6bは、第2のバリアメタルと呼ばれる。供給律速条件は、第2の成膜条件と呼ばれる。 The second titanium nitride 6b is called a second barrier metal. The supply rate limiting condition is referred to as a second film forming condition.
 したがって、ゲートトレンチ14の内部において、第2のバリアメタル6bの膜厚は、第1のバリアメタル6aの膜厚より薄い。換言すれば、第2の成膜条件で形成した第2のバリアメタル6bのステップカバレージは、第1の成膜条件で形成した第1のバリアメタル6aのステップカバレージより悪い。 Therefore, the film thickness of the second barrier metal 6b is thinner than the film thickness of the first barrier metal 6a inside the gate trench 14. In other words, the step coverage of the second barrier metal 6b formed under the second film formation conditions is worse than the step coverage of the first barrier metal 6a formed under the first film formation conditions.
 第1窒化チタン6aおよび第2窒化チタン6bは、同一チャンバ内で連続成長することにより、処理能力を落とすこと無く形成できる。第2窒化チタン6bを追加成膜することにより、ゲートトレンチ14外平坦部での窒化チタン(バリアメタル)の膜厚が厚い連続膜となり、後で形成するタングステン(W)から成る金属電極との密着性は確保できる。また、ゲートトレンチ14の内部は、ウェハ面積に比較して非常に面積が小さく、かつタングステン(W)の膜応力方向が平坦部に対して直角であるので、窒化チタンの膜厚が薄くてもタングステン(W)との密着性は低下しない。 The first titanium nitride 6a and the second titanium nitride 6b can be formed without reducing the processing capability by continuously growing in the same chamber. By additionally forming the second titanium nitride 6b, a continuous film having a thick titanium nitride (barrier metal) film on the flat portion outside the gate trench 14 is formed, and a metal electrode made of tungsten (W) to be formed later is formed. Adhesion can be secured. In addition, since the area inside the gate trench 14 is very small compared to the wafer area and the film stress direction of tungsten (W) is perpendicular to the flat portion, even if the film thickness of titanium nitride is small. Adhesiveness with tungsten (W) does not decrease.
 その後、図8に示すように、CVD法でタングステン(W)9から成る金属電極を埋設する。ここでは、タングステン(W)9を、核形成ステップとメインステップとの2ステップで成膜する。 Thereafter, as shown in FIG. 8, a metal electrode made of tungsten (W) 9 is buried by CVD. Here, tungsten (W) 9 is formed in two steps, a nucleus formation step and a main step.
 すなわち、第1および第2窒化チタン6a、6bの上部に、例えば、六弗化タングステン(WF)をジボラン(B)で還元して核を形成し、WF/Hでタングステン配線本体を形成する。 That is, for example, tungsten hexafluoride (WF 6 ) is reduced with diborane (B 2 H 6 ) to form a nucleus on top of the first and second titanium nitrides 6a and 6b, and tungsten is formed with WF 6 / H 2 . A wiring body is formed.
 詳述すると、最初に、モノシラン(SiH)を流して、窒化チタン(TiN)を表面処理し、核形成ステップでは、例えば、350℃の温度、1000paの圧力下で、六弗化タングステン(WF)とモノシラン(SiH)をパージしながら交互にガスフローを繰り返して成膜する。モノシラン(SiH)の代わりに、ジボラン(B)や水素(H)を用いてもよい。トレンチ幅が12nmの場合、ジボラン(B)が最も比抵抗を低減できる。その後、タングステン(W)のメインステップでは、例えば、390℃の温度、10666paの圧力下で、六弗化タングステン(WF)と水素(H)とを同時に流して成膜する。 More specifically, first, monosilane (SiH 4 ) is flowed to surface-treat titanium nitride (TiN). In the nucleation step, for example, tungsten hexafluoride (WF) is used at a temperature of 350 ° C. and a pressure of 1000 pa. 6 ) and film formation by alternately repeating the gas flow while purging monosilane (SiH 4 ). Diborane (B 2 H 6 ) or hydrogen (H 2 ) may be used instead of monosilane (SiH 4 ). When the trench width is 12 nm, diborane (B 2 H 6 ) can reduce the specific resistance most. Thereafter, in the main step of tungsten (W), for example, tungsten hexafluoride (WF 6 ) and hydrogen (H 2 ) are simultaneously flowed at a temperature of 390 ° C. and a pressure of 10666 pa to form a film.
 ここで、ゲートトレンチ14内の第1窒化チタン6aの膜厚は1nmと薄いため、ゲートトレンチ14内のタングステン(W)9の断面積が大きくなり、ワード線10の抵抗を低くすることができる。 Here, since the film thickness of the first titanium nitride 6a in the gate trench 14 is as thin as 1 nm, the sectional area of the tungsten (W) 9 in the gate trench 14 is increased, and the resistance of the word line 10 can be lowered. .
 この時、ゲートトレンチ14外の平坦部では、第2窒化チタン6bを追加成膜し厚くしているので、タングステン(W)9から成る金属電極の引っ張り応力による膜はがれは生じない。 At this time, since the second titanium nitride 6b is additionally formed and thickened in the flat portion outside the gate trench 14, no film peeling due to the tensile stress of the metal electrode made of tungsten (W) 9 occurs.
 この段階でゲートトレンチ14は、第1窒化チタン6a、第2窒化チタン6b、およびタングステン(W)9からなる積層膜で完全に埋設された状態となる。 At this stage, the gate trench 14 is completely buried with a laminated film made of the first titanium nitride 6a, the second titanium nitride 6b, and tungsten (W) 9.
 次いで、図9に示すように、第1窒化チタン6a、第2窒化チタン6b、およびタングステン(W)からなる積層膜をドライエッチング法によりエッチバックして、ゲートトレンチ14内に埋設された、第1窒化チタン6a、第2窒化チタン6b、およびタングステン(W)からなる埋め込みゲート電極10a、10bを形成する。この埋め込みゲート電極10a、10bはワード線を構成する。ゲートトレンチ14内に埋め込みゲート電極10a、10bが形成される結果、埋め込みゲート電極10a、10bの上方に新たなトレンチが形成される。 Next, as shown in FIG. 9, the laminated film made of the first titanium nitride 6a, the second titanium nitride 6b, and tungsten (W) is etched back by a dry etching method, and buried in the gate trench 14. Embedded gate electrodes 10a and 10b made of a titanium nitride 6a, a second titanium nitride 6b, and tungsten (W) are formed. The buried gate electrodes 10a and 10b constitute a word line. As a result of forming the buried gate electrodes 10a and 10b in the gate trench 14, a new trench is formed above the buried gate electrodes 10a and 10b.
 引き続いて、新たなトレンチを埋設するように全面に窒化シリコン(SiN)膜からなるキャップ絶縁膜27をCVD法により形成し、CMP(Chemical Mechanical Polishing)を行って、表面の窒化シリコン(SiN)膜を除去する。 Subsequently, a cap insulating film 27 made of a silicon nitride (SiN) film is formed on the entire surface by a CVD method so as to bury a new trench, and CMP (Chemical-Mechanical-Polishing) is performed to form a silicon nitride (SiN) film on the surface. Remove.
 したがって、第1のバリアメタル6a、第2のバリアメタル6b、金属電極9およびキャップ絶縁膜27は、ゲートトレンチ14内にあって活性領域13から素子分離領域13へ渡って連続して延伸している。 Accordingly, the first barrier metal 6a, the second barrier metal 6b, the metal electrode 9 and the cap insulating film 27 are continuously extended from the active region 13 to the element isolation region 13 in the gate trench 14. Yes.
 次に図10に示すように、ビット線26を形成する。 Next, as shown in FIG. 10, a bit line 26 is formed.
 詳述すると、フォトリソグラフィ技術およびドライエッチング技術を用いて、第1層間絶縁膜7の一部を除去し、ビット線コンタクト領域32(図1)の上面に接続するビットコンタクトを形成する。ビットコンタクトは、ワード線10と同じ方向(図1のY方向)に延在するライン状の開口パターンとして形成される。ビットコンタクトのパターンと活性領域の交差した部分では、シリコン基板1の表面が露出する。 More specifically, a part of the first interlayer insulating film 7 is removed using a photolithography technique and a dry etching technique, and a bit contact connected to the upper surface of the bit line contact region 32 (FIG. 1) is formed. The bit contact is formed as a line-shaped opening pattern extending in the same direction as the word line 10 (Y direction in FIG. 1). At the intersection of the bit contact pattern and the active region, the surface of the silicon substrate 1 is exposed.
 ビットコンタクトを形成した後に、N型不純物(ヒ素等)をイオン注入し、シリコン表面近傍にN型不純物拡散層28を形成する。形成したN型不純物拡散層28は、トランジスタのソース/ドレイン領域28として機能する。 After forming the bit contact, an N-type impurity (such as arsenic) is ion-implanted to form an N-type impurity diffusion layer 28 in the vicinity of the silicon surface. The formed N-type impurity diffusion layer 28 functions as a source / drain region 28 of the transistor.
 その後、ポリシリコン膜、タングステン膜、シリコン窒化膜33等の積層膜をたとえばCVD法にて形成する。そして、フォトリソグラフィ技術およびドライエッチング技術を用いてライン形状にパターニングし、ビット線26を形成する。ビット線26は、ワード線10と交差する方向(図1のX方向)に延在するパターンとして形成される。ビットコンタクト内で露出しているシリコン表面部分で、ビット線26下層のポリシリコン膜とソース/ドレイン領域28とが接続する。 Thereafter, a laminated film such as a polysilicon film, a tungsten film, and a silicon nitride film 33 is formed by, for example, a CVD method. Then, the bit line 26 is formed by patterning into a line shape using a photolithography technique and a dry etching technique. The bit line 26 is formed as a pattern extending in a direction intersecting the word line 10 (X direction in FIG. 1). The polysilicon film under the bit line 26 is connected to the source / drain region 28 at the silicon surface portion exposed in the bit contact.
 次に図2に示すように、ビット線26の側面を覆うシリコン窒化膜を形成した後に、その上面を覆うライナー膜34をシリコン窒化膜等でたとえばCVD法を用いて形成する。 Next, as shown in FIG. 2, after forming a silicon nitride film covering the side surface of the bit line 26, a liner film 34 covering the upper surface is formed of a silicon nitride film or the like by using, for example, a CVD method.
 ビット線間のスペース部を充填するように、塗布膜であるSOD膜35を堆積した後に、高温の水蒸気(HO)雰囲気中でアニール処理を行い、固体の膜に改質する。ライナー膜34の上面が露出するまでCMPを行って平坦化する。その後、フォトリソグラフィ技術およびドライエッチング技術を用いて、SOD膜35、ライナー膜34、第1層間絶縁膜7を貫通して容量コンタクトを形成する。さらに、容量コンタクトの内部に、N型不純物(リン等)をドーピングしたポリシリコンをたとえばCVD法を用いて埋め込む。ポリシリコンにドーピングされたN型不純物によって、容量コンタクト領域37a、37bの表面近傍にN型不純物拡散層29a、29bが形成される。形成されたN型不純物拡散層29a、29bは、トランジスタのソース/ドレイン領域として機能する。 After depositing the SOD film 35, which is a coating film, so as to fill the space between the bit lines, an annealing process is performed in a high-temperature steam (H 2 O) atmosphere to modify the film into a solid film. The planarization is performed by CMP until the upper surface of the liner film 34 is exposed. Thereafter, a capacitive contact is formed through the SOD film 35, the liner film 34, and the first interlayer insulating film 7 by using a photolithography technique and a dry etching technique. Further, polysilicon doped with an N-type impurity (phosphorus or the like) is embedded in the capacitor contact by using, for example, a CVD method. N-type impurity diffusion layers 29a and 29b are formed in the vicinity of the surface of the capacitor contact regions 37a and 37b by the N-type impurities doped in the polysilicon. The formed N-type impurity diffusion layers 29a and 29b function as source / drain regions of the transistor.
 次いで、ポリシリコンをエッチバックし、容量コンタクトプラグ38a、38bを完成させる。フォトリソグラフィ技術およびドライエッチング技術を用いて、容量コンタクトパッド42a、42bを形成する。 Next, the polysilicon is etched back to complete the capacitor contact plugs 38a and 38b. Capacitance contact pads 42a and 42b are formed using photolithography technology and dry etching technology.
 次に、容量コンタクトパッド42a、42b上を覆うように、シリコン窒化膜を用いてストッパー窒化膜43を形成する。容量コンタクトパッド42a、42b上に窒化チタン等でキャパシタ下部電極44を形成する。 Next, a stopper nitride film 43 is formed using a silicon nitride film so as to cover the capacitor contact pads 42a and 42b. A capacitor lower electrode 44 is formed of titanium nitride or the like on the capacitor contact pads 42a and 42b.
 さらに、キャパシタ下部電極44の表面を覆うように容量絶縁膜45を形成した後に、キャパシタ上部ポリシリコン電極46およびキャパシタ上部タングステン電極47を形成する。 Further, after the capacitor insulating film 45 is formed so as to cover the surface of the capacitor lower electrode 44, the capacitor upper polysilicon electrode 46 and the capacitor upper tungsten electrode 47 are formed.
 その後、キャパシタ上部タングステン電極47上に配線48と第2層間絶縁膜49とを形成して、半導体装置100を形成する。 Thereafter, a wiring 48 and a second interlayer insulating film 49 are formed on the capacitor upper tungsten electrode 47 to form the semiconductor device 100.
 上記半導体装置100では、バリアメタルとして、第1のバリアメタル6aとこの第1のバリアメタル6bよりも膜厚の薄い第2のバリアメタル6bとの組み合わせを使用しているので、バリアメタルを薄膜化し、且つ金属電極との密着性を確保し、且つ薄膜での膜厚制御・管理をすることができる。 In the semiconductor device 100, a combination of the first barrier metal 6a and the second barrier metal 6b having a thickness smaller than that of the first barrier metal 6b is used as the barrier metal. In addition, the adhesion to the metal electrode can be secured, and the film thickness can be controlled and managed with a thin film.
 以上、本発明の好ましい実施例について説明したが、本発明は、上記の実施例に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上述した第1の実施例では、埋め込みゲート電極(ワード線)10として、第1窒化チタン6a、第2窒化チタン6b、およびタングステン(W)9を順次積層した膜を使用しているが、本発明は、これに限定されず、以下に述べるような種々の変形例を採用することができる。 For example, in the first embodiment described above, a film in which a first titanium nitride 6a, a second titanium nitride 6b, and tungsten (W) 9 are sequentially stacked is used as the buried gate electrode (word line) 10. The present invention is not limited to this, and various modifications as described below can be adopted.
(変形例)
 第1および第2のバリアメタルとして、第1および第2窒化チタン6a、6bの代わりに窒化された第1金属を使用してよい。また、金属電極として、タングステン(W)9の代わりに第2金属を使用してよい。
(Modification)
As the first and second barrier metals, a nitrided first metal may be used instead of the first and second titanium nitrides 6a and 6b. Moreover, you may use a 2nd metal instead of tungsten (W) 9 as a metal electrode.
 この場合、第1金属および第2金属の各々は、高融点金属であればよい。高融点金属は、タングステン、コバルト、チタン、モリブデン、およびタンタルのグループから選択されるものでよい。 In this case, each of the first metal and the second metal may be a refractory metal. The refractory metal may be selected from the group of tungsten, cobalt, titanium, molybdenum, and tantalum.
 以上、実施例を参照して本発明を説明したが、本発明は上記実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明は、DRAMの埋め込みゲート電極に限定せず、PRAM(Phase-Change Random Access Memory)、ReRAM(Resistive Random Access Memory)等を含めた製品全般の埋め込みゲート電極に適応可能である。 The present invention is not limited to the embedded gate electrode of the DRAM, but can be applied to embedded gate electrodes for all products including PRAM (Phase-Change Random Access Memory), ReRAM (Resistive Random Access Memory), and the like.
 この出願は、2013年2月7日に出願された日本出願特願2013-021979号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-021979 filed on Feb. 7, 2013, the entire disclosure of which is incorporated herein.
   1  シリコン基板(半導体基板)
   2  パッド酸化膜
   5  ゲート絶縁膜
   6a  第1窒化チタン(第1のバリアメタル)
   6b  第2窒化チタン(第2のバリアメタル)
   7  第1層間絶縁膜
   9  タングステン(金属電極)
   10、10a、10b ワード線
   12  素子分離領域
   13  活性領域
   14  ゲートトレンチ(トレンチ)
   26  ビット線
   27  キャップ絶縁膜
   28  不純物拡散層(ソース/ドレイン領域)
   29a、29b  不純物拡散層
   32  ビット線コンタクト領域
   34  ライナー絶縁膜
   35  SOD膜
   37a  第1容量コンタクト領域
   37b  第2容量コンタクト領域
   38a  第1容量コンタクトプラグ
   38b  第2容量コンタクトプラグ
   42a  第1容量コンタクトパッド
   42b  第2容量コンタクトパッド
   43  ストッパー窒化膜
   44  キャパシタ下部電極
   45  容量絶縁膜
   46  キャパシタ上部ポリシリコン電極
   47  キャパシタ上部タングステン電極
   48  配線
   49  第2層間絶縁膜
   100  半導体装置
   Tr1  第1セルトランジスタ
   Tr2  第2セルトランジスタ
1 Silicon substrate (semiconductor substrate)
2 Pad oxide film 5 Gate insulating film 6a First titanium nitride (first barrier metal)
6b Second titanium nitride (second barrier metal)
7 First interlayer insulating film 9 Tungsten (metal electrode)
10, 10a, 10b Word line 12 Element isolation region 13 Active region 14 Gate trench (trench)
26 Bit line 27 Cap insulating film 28 Impurity diffusion layer (source / drain region)
29a, 29b Impurity diffusion layer 32 Bit line contact region 34 Liner insulating film 35 SOD film 37a First capacitor contact region 37b Second capacitor contact region 38a First capacitor contact plug 38b Second capacitor contact plug 42a First capacitor contact pad 42b First 2-capacitor contact pad 43 Stopper nitride film 44 Capacitor lower electrode 45 Capacitor insulating film 46 Capacitor upper polysilicon electrode 47 Capacitor upper tungsten electrode 48 Wiring 49 Second interlayer insulating film 100 Semiconductor device Tr1 First cell transistor Tr2 Second cell transistor

Claims (17)

  1.  半導体基板上の活性領域と、
     前記活性領域内にあって下部と上部を有するトレンチと、
     前記トレンチの内壁面を覆うゲート絶縁膜と、
     前記ゲート絶縁膜を介して前記トレンチ下部を覆う第1のバリアメタルと、
     前記第1のバリアメタルを覆う第2のバリアメタルと、
     前記第2のバリアメタルを覆い、前記トレンチ下部を埋設する金属電極と、
     前記トレンチの上部を埋設するキャップ絶縁膜と、を備え、
     前記第2のバリアメタルの膜厚は前記第1のバリアメタルの膜厚より薄い、半導体装置。
    An active region on a semiconductor substrate;
    A trench in the active region and having a lower portion and an upper portion;
    A gate insulating film covering an inner wall surface of the trench;
    A first barrier metal that covers the lower portion of the trench through the gate insulating film;
    A second barrier metal covering the first barrier metal;
    A metal electrode covering the second barrier metal and burying the trench lower part;
    A cap insulating film for burying the upper portion of the trench,
    The semiconductor device, wherein a film thickness of the second barrier metal is thinner than a film thickness of the first barrier metal.
  2.  前記半導体基板は前記活性領域を囲む素子分離領域を更に有し、
     前記トレンチは前記活性領域から前記素子分離領域へ渡って連続して延在し、
     前記第1のバリアメタル、前記第2のバリアメタル、前記金属電極および前記キャップ絶縁膜は前記トレンチ内にあって前記活性領域から前記素子分離領域へ渡って連続して延伸する、
    請求項1に記載の半導体装置。
    The semiconductor substrate further has an element isolation region surrounding the active region,
    The trench extends continuously from the active region to the element isolation region,
    The first barrier metal, the second barrier metal, the metal electrode, and the cap insulating film are in the trench and continuously extend from the active region to the element isolation region;
    The semiconductor device according to claim 1.
  3.  前記第1および第2のバリアメタルの各々は、窒化された第1金属から成り、
     前記金属電極は、第2金属から成る、
    請求項1又は2に記載の半導体装置。
    Each of the first and second barrier metals comprises a nitrided first metal,
    The metal electrode is made of a second metal.
    The semiconductor device according to claim 1.
  4.  前記第1金属は、高融点金属から成る、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the first metal is made of a refractory metal.
  5.  前記第2金属は、高融点金属から成る、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the second metal is made of a refractory metal.
  6.  前記高融点金属は、タングステン、コバルト、チタン、ニッケル、モリブデン、およびタンタルのグループから選択される請求項4又は5に記載の半導体装置。 6. The semiconductor device according to claim 4, wherein the refractory metal is selected from the group consisting of tungsten, cobalt, titanium, nickel, molybdenum, and tantalum.
  7.  前記第1のバリアメタルの膜厚は、1nmである請求項1又は2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the film thickness of the first barrier metal is 1 nm.
  8.  前記トレンチ外の平坦部における、前記第1および第2のバリアメタルの総膜厚は、3nmである、請求項7に記載の半導体装置。 The semiconductor device according to claim 7, wherein a total film thickness of the first and second barrier metals in a flat portion outside the trench is 3 nm.
  9.  半導体基板にトレンチを形成し、
     前記トレンチ内にゲート絶縁膜を形成し、
     前記ゲート絶縁膜上に第1のバリアメタルを第1の成膜条件で形成し、
     前記第1のバリアメタル上に前記第1の成膜条件と異なる第2の成膜条件で形成し、
     前記第2のバリアメタル上に前記トレンチを埋設するように金属材料を形成し、
     前記トレンチの上部の前記第1のバリアメタル、前記第2のバリアメタル及び前記金属を除去し、
     前記トレンチの上部をキャップ絶縁膜で埋設する、半導体装置の製造方法。
    Forming a trench in a semiconductor substrate;
    Forming a gate insulating film in the trench;
    Forming a first barrier metal on the gate insulating film under a first film-forming condition;
    Forming on the first barrier metal under a second film-forming condition different from the first film-forming condition;
    Forming a metal material so as to bury the trench on the second barrier metal;
    Removing the first barrier metal, the second barrier metal and the metal above the trench;
    A method of manufacturing a semiconductor device, wherein an upper portion of the trench is buried with a cap insulating film.
  10.  前記第2の成膜条件で形成した第2のバリアメタルのステップカバレージは、前記第1の成膜条件で形成した第1のバリアメタルのステップカバレージより悪い、
    請求項9に記載の半導体装置の製造方法。
    The step coverage of the second barrier metal formed under the second film formation condition is worse than the step coverage of the first barrier metal formed under the first film formation condition.
    A method for manufacturing a semiconductor device according to claim 9.
  11.  前記第1の成膜条件は反応律速条件で、前記第2の成膜条件は供給律速条件である、
    請求項10に記載の半導体装置の製造方法。
    The first film formation condition is a reaction rate-limiting condition, and the second film formation condition is a supply rate-limiting condition.
    A method for manufacturing a semiconductor device according to claim 10.
  12.  前記第1および第2のバリアメタルの各々は、窒化された第1金属から成り、
     前記金属電極は、第2金属から成る、
    請求項10又は11に記載の半導体装置の製造方法。
    Each of the first and second barrier metals comprises a nitrided first metal,
    The metal electrode is made of a second metal.
    12. A method for manufacturing a semiconductor device according to claim 10 or 11.
  13.  前記第1金属は、高融点金属から成る、請求項12に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 12, wherein the first metal is made of a refractory metal.
  14.  前記第2金属は、高融点金属から成る、請求項12に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 12, wherein the second metal is made of a refractory metal.
  15.  前記高融点金属は、タングステン、コバルト、チタン、ニッケル、モリブデン、およびタンタルのグループから選択される請求項13又は14に記載の半導体装置の製造方法。 15. The method of manufacturing a semiconductor device according to claim 13, wherein the refractory metal is selected from the group consisting of tungsten, cobalt, titanium, nickel, molybdenum, and tantalum.
  16.  前記第1のバリアメタルの膜厚は、1nmである請求項10又は11に記載の半導体装置の製造方法。 12. The method of manufacturing a semiconductor device according to claim 10, wherein the film thickness of the first barrier metal is 1 nm.
  17.  前記トレンチ外の平坦部における、前記第1および第2のバリアメタルの総膜厚は、3nmである、請求項16に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 16, wherein a total film thickness of the first and second barrier metals in a flat portion outside the trench is 3 nm.
PCT/JP2014/052437 2013-02-07 2014-02-03 Semiconductor device and method for manufacturing same WO2014123084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/765,792 US20150371991A1 (en) 2013-02-07 2014-02-03 Semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013021979 2013-02-07
JP2013-021979 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014123084A1 true WO2014123084A1 (en) 2014-08-14

Family

ID=51299679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052437 WO2014123084A1 (en) 2013-02-07 2014-02-03 Semiconductor device and method for manufacturing same

Country Status (3)

Country Link
US (1) US20150371991A1 (en)
TW (1) TW201501305A (en)
WO (1) WO2014123084A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017040623A1 (en) 2015-09-01 2017-03-09 Silcotek Corp. Thermal chemical vapor deposition coating
TWI560853B (en) * 2015-09-15 2016-12-01 Inotera Memories Inc Cell contact structure
US20170211180A1 (en) * 2016-01-22 2017-07-27 Silcotek Corp. Diffusion-rate-limited thermal chemical vapor deposition coating
JP6937604B2 (en) * 2017-04-26 2021-09-22 東京エレクトロン株式会社 How to form a tungsten film
CN110246842A (en) * 2018-03-08 2019-09-17 联华电子股份有限公司 A method of making semiconductor element
US10991702B2 (en) 2019-05-15 2021-04-27 Nanya Technology Corporation Semiconductor device and method of preparing the same
WO2020252306A1 (en) 2019-06-14 2020-12-17 Silcotek Corp. Nano-wire growth
CN112397508B (en) * 2019-08-15 2022-12-27 长鑫存储技术有限公司 Memory device, semiconductor structure and manufacturing method thereof
KR20220021623A (en) * 2020-08-14 2022-02-22 에스케이하이닉스 주식회사 Semiconductor device and method for fabricating the same
CN114497199B (en) * 2020-10-23 2024-05-17 长鑫存储技术有限公司 Semiconductor structure and manufacturing method thereof
US11842925B2 (en) * 2022-01-19 2023-12-12 Nanya Technology Corporation Method for fabricating conductive feature and semiconductor device
US20230328966A1 (en) * 2022-04-11 2023-10-12 Micron Technology, Inc. Metal gate memory device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198518A (en) * 2000-12-25 2002-07-12 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2011171507A (en) * 2010-02-18 2011-09-01 Elpida Memory Inc Method for manufacturing semiconductor device
US20110233778A1 (en) * 2010-03-24 2011-09-29 Applied Materials, Inc. Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance
JP2013041879A (en) * 2011-08-11 2013-02-28 Tokyo Electron Ltd Deposition method, manufacturing method of semiconductor device including the same, deposition device, and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854609B1 (en) * 2011-12-27 2018-05-08 삼성전자주식회사 Method of Forming a Gate Insulating Layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198518A (en) * 2000-12-25 2002-07-12 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2011171507A (en) * 2010-02-18 2011-09-01 Elpida Memory Inc Method for manufacturing semiconductor device
US20110233778A1 (en) * 2010-03-24 2011-09-29 Applied Materials, Inc. Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance
JP2013041879A (en) * 2011-08-11 2013-02-28 Tokyo Electron Ltd Deposition method, manufacturing method of semiconductor device including the same, deposition device, and semiconductor device

Also Published As

Publication number Publication date
US20150371991A1 (en) 2015-12-24
TW201501305A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2014123084A1 (en) Semiconductor device and method for manufacturing same
US11462545B2 (en) Semiconductor device and method for fabricating the same
KR100881825B1 (en) Semiconductor device and method for fabricating the same
CN110931552B (en) Semiconductor device having gate insulating layer
CN108511447B (en) Vertical memory device
KR101831936B1 (en) Method for forming a thin film and method for manufacturing a semiconductor device by using the same
US20140061757A1 (en) Semiconductor devices and methods of fabricating the same
WO2014077209A1 (en) Semiconductor device and method for manufacturing same
US9018708B2 (en) Semiconductor device and method for fabricating the same
KR101721036B1 (en) Semiconductor devices and methods of manufacturing the same
JP2008193078A (en) Wiring structure of semiconductor device, and forming method thereof
JP2012151435A (en) Method for manufacturing semiconductor device
JP2011146428A (en) Semiconductor device and method of manufacturing the same
JP2014038960A (en) Semiconductor device and manufacturing method of the same
JP4437301B2 (en) Manufacturing method of semiconductor device
KR20100011153A (en) A semiconductor device with have bridge shaped spacer structure in the gate electrode and method for manufacturing the same
JP4600836B2 (en) Manufacturing method of semiconductor memory device
JP2015231025A (en) Semiconductor device and manufacturing method of the same
JP2014135311A (en) Semiconductor device
TWI578496B (en) Semiconductor device including buried gate, module and system, and method for manufacturing
JP2007305681A (en) Method of manufacturing semiconductor device
WO2022016985A1 (en) Buried gate electrode and manufacturing method therefor
US8361860B2 (en) Method of manufacturing semiconductor device
WO2021020084A1 (en) Semiconductor device
JP2014053361A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14749082

Country of ref document: EP

Kind code of ref document: A1