WO2014115646A1 - Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device - Google Patents

Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device Download PDF

Info

Publication number
WO2014115646A1
WO2014115646A1 PCT/JP2014/050762 JP2014050762W WO2014115646A1 WO 2014115646 A1 WO2014115646 A1 WO 2014115646A1 JP 2014050762 W JP2014050762 W JP 2014050762W WO 2014115646 A1 WO2014115646 A1 WO 2014115646A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
decorative layer
film
electrode pattern
Prior art date
Application number
PCT/JP2014/050762
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 有冨
伊藤 英明
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014115646A1 publication Critical patent/WO2014115646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a transparent resin film, a transfer film, a conductive film laminate, a capacitive input device, and an image display device. More specifically, a transparent resin film used for filling a step between a decorative layer and a front plate of a capacitive input device capable of detecting a contact position of a finger as a change in capacitance, and including the transparent resin film.
  • the present invention relates to a transfer film, a conductive film laminate, a capacitive input device, and an image display device including the capacitive input device as a constituent element.
  • Such input devices include a resistance film type and a capacitance type.
  • the resistance film type input device has a drawback that it has a narrow operating temperature range and is susceptible to changes over time because it has a two-layer structure of film and glass that is shorted by pressing the film.
  • the capacitance-type input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate.
  • the capacitive touch panel of the cover glass integrated type (OGS: One Glass Solution) touch panel has a front plate integrated with the capacitive input device, and thus can be reduced in thickness and weight.
  • the appearance of the device has been improved by covering the sense circuit with a decorative layer.
  • limiting in particular as a decoration layer It is known that the decoration layer of various color tone (Black, white, pastel color, metallic etc.) can be provided.
  • Patent Document 1 in order to make the level
  • Patent Document 2 describes a touch panel member in which a transparent electrode layer is formed directly or indirectly on a transparent substrate, and a photosensitive siloxane resin layer is formed on the transparent electrode layer.
  • a mode in which a conductive siloxane resin layer is used as an interlayer insulating film and / or a surface protective layer having a thickness of about 1.5 ⁇ m and a transparent electrode layer is embedded in the interlayer insulating film and / or the surface protective layer and planarized is described.
  • the photosensitive siloxane resin layer can form an interlayer insulating film and / or a surface protective layer excellent in surface hardness and heat resistance.
  • Patent Document 2 does not describe any use of such a photosensitive siloxane resin layer to fill a step caused by a decorative layer.
  • Patent Document 3 describes a display protection plate made of a transparent protection plate and a transparent resin that fills the step between the printing portion and the printing portion as a method of filling the step.
  • an acrylic resin is used as a transparent resin for filling the steps.
  • Smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed and announced using a tempered glass typified by Corning's gorilla glass on the front plate (the surface directly touched by a finger) Has been.
  • the method described in Patent Document 1 for processing a concave mold with respect to a glass substrate under the decorative layer is difficult to use when such a tempered glass substrate is used, and other simpler methods. Was demanded.
  • an acrylic resin or a photosensitive siloxane resin is used for such a tempered glass substrate (hereinafter also referred to as “front plate”), transfer using a transfer film, liquid resist coating, screen printing, etc. It was found that when the decorative layer was formed by the method, a decorative layer having a tapered gentle slope at the end portion could be formed. Moreover, in order to improve the concealing power of the transparent electrode pattern provided on the decorative layer, it was found that it is necessary to provide a thickness of 5 ⁇ m or more depending on the color of the decorative layer.
  • such a decorative layer on a part of the front plate that is, a step having a gentle slope at the end and having a thickness of 5 ⁇ m or more (in other words, a step on one surface of the front plate)
  • the end of the decorative layer is tapered, so that Even if other members are laminated, it is expected that bubbles due to the step do not occur, and even if a transparent electrode pattern such as ITO is provided, the disconnection of the transparent electrode pattern due to the step does not occur.
  • the present inventors when the present inventors examined, contrary to said expectation, it has a decorative layer which has a taper-shaped gentle inclination in an end part, and has a thickness of 5 micrometers or more in part of a front board. Even though the edge of the decorative layer has a gentle slope, bubbles are formed when another member is laminated on the step (the side of the front plate where the decorative layer is formed). It has been found that there is a problem of disconnection of the transparent electrode pattern provided on the step. Moreover, the method of embedding and transparentizing the transparent electrode layer described in Patent Document 2 in an interlayer insulating film and / or a surface protective layer of about 1.5 ⁇ m can be applied to a decorative layer having a thickness exceeding 5 ⁇ m. No assumption was made, and no disclosure or suggestion was made about filling a step having a thickness exceeding 5 ⁇ m.
  • the present inventors studied to fill a step caused by the decorative layer of the OGS touch panel.
  • the transparent electrode pattern is heated in the process for producing the transparent electrode pattern.
  • the transparent resin using the acrylic binder described in Patent Document 3 is thermally yellowed by the heating in the above process, OGS It was found that it cannot be used to fill the steps of the touch panel. That is, it has been found that there is a problem in that the transparency of the transparent resin film used to fill the step caused by the decorative layer of the OGS touch panel is lowered.
  • the problem to be solved by the present invention is that a step between the front plate and the decorative layer of the capacitance type input device integrated with the front plate can be filled, and the transparency is high, and other members are provided on the decorative layer.
  • An object of the present invention is to provide a transparent resin film that can suppress bubble entrapment (bubble mixing) when layers are stacked, and can suppress disconnection of an electrode pattern disposed on a decorative layer.
  • the present inventors reduced the step of the decorative layer without reducing transparency by using a transparent resin film containing a silicone-based resin to fill the step caused by the decorative layer of the OGS touch panel.
  • the present inventors have found that a flat surface can be provided, air bubbles can be prevented from being mixed when an overcoat layer or the like is laminated, and steps can be smoothed to reduce the fear of disconnection of electrode patterns such as ITO.
  • the present invention which is a specific means for solving the above problems, is as follows.
  • a capacitive input device having a decorated layer and an electrode pattern disposed on one surface side of the front plate is used to fill a step between the front plate and the decorative layer, Transparent resin film.
  • the silicone resin is preferably a straight silicone resin.
  • the straight silicone resin is preferably a straight silicone resin containing in the molecule at least a siloxane structure represented by the following general formula (1).
  • R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms.
  • a cyclic alkyl group a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
  • the weight average molecular weight of the straight silicone resin is preferably 1,000 to 1,000,000.
  • the transparent resin film according to any one of [1] to [4] preferably has a thickness of 10 ⁇ m or more.
  • the transparent resin film according to any one of [1] to [5] is preferably manufactured using a transparent resist solution.
  • a transfer film comprising a temporary support and the transparent resin film according to any one of [1] to [6].
  • the transfer film according to [7] preferably has a thermoplastic resin layer between the temporary support and the transparent resin film.
  • a transparent front plate A decorative layer disposed on a part of one surface of the front plate; Having an electrode pattern disposed on one side of the front plate, A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film according to any one of [1] to [6].
  • a transparent front plate A decorative layer disposed on a part of one surface of the front plate; Having an electrode pattern disposed on one side of the front plate, A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film of the transfer film described in [7] or [8].
  • the thickness of the decorative layer is preferably 5 ⁇ m or more.
  • the thickness of the transparent resin film is preferably 0.3 to 1.3 times the thickness of the decorative layer. .
  • the conductive film laminate according to any one of [9] to [12] preferably includes a transparent protective layer on the transparent resin film, the decorative layer, and the electrode pattern.
  • the transparent resin film is heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm. Is preferred.
  • the electrode pattern preferably includes the following (3) to (5). (3) A plurality of first transparent electrode patterns formed by extending the plurality of pad portions in the first direction via the connection portions.
  • the conductive film laminate according to [15] is further (6) electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern It is preferable to have a conductive element different from the second electrode pattern.
  • the second electrode pattern is preferably a transparent electrode pattern.
  • the end portion of the decorative layer has a tapered shape.
  • a capacitance-type input device comprising the conductive film laminate according to any one of [9] to [18].
  • An image display device comprising the capacitive input device according to [19] as a constituent element.
  • the present invention it is possible to fill a step between the front plate and the decorative layer of the capacitance type input device integrated with the front plate, the transparency is high, and when another member is laminated on the decorative layer Can be suppressed, and a transparent resin film capable of suppressing disconnection of the electrode pattern disposed on the decorative layer can be provided.
  • FIG. 1 It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer and the 1st and 2nd transparent electrode pattern was formed.
  • FIG. 1 It is explanatory drawing which shows a metal nanowire cross section.
  • FIG. 1 It is the schematic which shows the shape after die-cutting of the transfer film used in order to form a decorating layer.
  • the transparent resin film, transfer film, conductive film laminate, capacitance-type input device and image display device of the present invention will be described.
  • the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the transparent resin film of the present invention is a transparent resin film containing at least a silicone resin as a binder resin and having a thickness of 5 ⁇ m or more.
  • the transparent resin film comprises a transparent front plate and one of the front plates.
  • the step between the front plate and the decorative layer of the capacitive input device integrated with the front plate can be filled, and the transparency is high, and when another member is laminated on the decorative layer Air bubble uptake can be suppressed, and disconnection of the electrode pattern disposed on the decorative layer can be suppressed.
  • the transparent resin film of the present invention may be in a state where the fluidity is maintained, may be in a state where the fluidity is lost, or may be in a cured or fixed state.
  • the transparent resin film of the present invention comprises a transparent front plate, a decorative layer disposed on a part of one surface of the front plate, and an electrode pattern disposed on one surface side of the front plate.
  • the capacitive input device is formed from a transparent resist solution for filling a step between the front plate and the decorative layer
  • the transparent resist solution in a state of maintaining fluidity is used as the transparent resist solution of the present invention.
  • the transparent resin film of this invention is a resin film, and what made the state which lost the fluidity
  • the coating liquid for transparent resin film formation of this invention is apply
  • the transparent resin film in the transfer film of the present invention can also be referred to as the transparent resin film of the present invention.
  • a transparent front plate, a decorative layer arranged on a part of one surface of the front plate, and one surface side of the front plate are arranged.
  • a transparent resin film cured by irradiation with actinic radiation after filling a step between the front plate and the decorative layer is also referred to as a transparent resin film of the present invention. it can.
  • silicone resin used for the transparent resin film of this invention.
  • Silicone-based resins are partially modified with the following silane compounds, dehydrated and condensed with modified silicone resins with various properties and silane compounds having alkoxy groups or silanol groups, utilizing the inherent properties of silicone. Can be classified as straight silicone resin.
  • the silicone resin is preferably a modified silicone resin or a straight silicone resin, more preferably a straight silicone resin, and at least the following general formula ( A straight silicone resin containing a siloxane structure represented by 1) is particularly preferred.
  • modified silicone resin examples include acrylic resin-modified silicone resin (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerization of a monomer obtained by reacting an acrylic monomer such as acrylic acid with a silane compound or copolymerization with another acrylic monomer, polyester Polyester resin-modified silicone resin in which a silane compound is reacted with a hydroxyl group of the epoxy resin, an epoxy resin-modified silicone resin in which an epoxy-containing silane compound is reacted with an amino group residue of the resin, an alkyd resin in which an alkyd resin is modified with a reactive silane compound
  • a modified silicone resin, a rubber silicone resin that directly forms a covalent bond with a resin using an oxime initiator, and the like can be used.
  • the straight silicone resin one containing at least a siloxane structure represented by the following general formula (1) in the molecule can be used.
  • R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms A group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 may be the same or different. That is, the straight silicone resin having a siloxane structure represented by the general formula (1) may be a condensate having the same siloxane structure or a co-condensate having a different combination.
  • Examples of the halogen atom represented by R 1 include a fluorine atom and a chlorine atom.
  • Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group. Group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
  • Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. Group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like.
  • linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms represented by R 1 an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • Examples of the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and a (meth) acryloxyalkyl group. Groups and mercaptoalkyl groups.
  • phenylmethyl (benzyl) group diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl).
  • Examples of the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 include, for example, vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group). 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like.
  • arylalkyl groups are preferred, and cumyl groups are more preferred.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group and the like.
  • aryl groups having 6 to 20 carbon atoms represented by R 1 other than unsubstituted phenyl groups, that is, o-tolyl group, m-tolyl group, p-tolyl group, , 3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl, A tolyl group, m-tolyl group, and p-tolyl group are more preferred.
  • Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group and a phenethyl group.
  • R 1 is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic group having 1 to 6 carbon atoms.
  • the siloxane structure represented by the general formula (1) preferably contains a methyl group as R 1 from the viewpoint of particularly enhancing the L value of the decorative layer.
  • the straight silicone resin has two or more general formulas (1) wherein R 1 are different from each other. It is also preferable that it is a copolymer of the siloxane structure represented by these.
  • the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group and the siloxane structure represented by the general formula (1) in which R 1 is a hydrogen atom, a substituted alkyl group, or an aryl group. And a copolymer thereof.
  • the copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50% of all the siloxane structures represented by the general formula (1).
  • the amount is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
  • the straight silicone resin used in the present invention has a siloxane structure comprising a co-condensation with a siloxane structure represented by the following general formula (2) in addition to the siloxane structure represented by the general formula (1) in the molecule.
  • the thing containing this can also be used preferably.
  • R 2 has the same meaning as that used for R 1 in general formula (1), and the preferred range is also the same as R 1 .
  • straight silicone resins include alkyl straight silicones prepared from the condensation of silane compounds having an alkyl group having 1 to 20 carbon atoms and an alkoxy group (methyl straight silicones, etc.), alkyl-aryls such as methylphenyl, etc.
  • Straight silicone, aryl straight silicone such as phenyl, and hydrogen straight silicone such as methyl hydrogen can be used. More preferred are methyl-based straight silicone resins, methyl-tolyl-based straight silicone resins, methyl-phenyl-based straight silicone resins, acrylic resin-modified silicone resins, methyl-hydrogen-based straight silicone resins, and hydrogen-hydrogen-based straight silicone resins.
  • methyl straight silicone resin methyl tolyl straight silicone resin, methyl hydrogen straight silicone resin, and hydrogen tol straight silicone resin are particularly preferable.
  • These silicone resins may be used alone or in combination of two or more, and the film physical properties can be controlled by mixing them at an arbitrary ratio.
  • the weight average molecular weight of the straight silicone resin is preferably 1000 to 1000000, more preferably 2000 to 800000, and particularly preferably 2500 to 500000. When the molecular weight is 1000 or more, the film forming property is good.
  • the weight average molecular weight in this specification can be measured, for example, by gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions.
  • GPC gel permeation chromatography
  • Solvent Tetrahydrofuran
  • Standard Monodisperse polystyrene
  • silicone resin such as a modified silicone resin and a straight silicone resin
  • commercially available products can be used.
  • the product name for example, KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5842, X-21-5844, X-21-5845, X-21-5845, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22-176B, X- 22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672, X-40- 9220, X-40-9225, X-40-9226, X-40-9227, X-40-9246, X-40-9247, X-40-9
  • the transparent resin film of the present invention may not be formed by photocuring a resin composition containing a photocurable resin and a photopolymerization initiator, and the resin composition used for forming the transparent resin film is , It may or may not contain a photocurable resin or photopolymerization initiator.
  • the transparent resin film contains an antioxidant described later, the function of the antioxidant is not hindered by the radicals generated when exposed to the photopolymerization initiator, not containing the photopolymerization initiator. From the viewpoint of sufficiently increasing the whiteness after baking. Therefore, the silicone resin is preferably thermosetting.
  • the transparent resin film preferably contains an antioxidant from the viewpoint of increasing the transparency of the transparent resin film after baking.
  • an antioxidant when forming a transparent electrode pattern such as ITO on the capacitive input device, it is necessary to bake at a high temperature. By adding an antioxidant, the transparency of the transparent resin film after baking is increased. Can be increased.
  • a known antioxidant can be used as the antioxidant. For example, hindered phenol antioxidants, semi-hindered phenol antioxidants, phosphoric acid antioxidants, and hybrid antioxidants having phosphoric acid and hindered phenol in the molecule can be used.
  • a phosphoric acid antioxidant a combination of a phosphoric acid antioxidant and a hindered phenol antioxidant or a semi-hindered phenol antioxidant; or a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule is there.
  • a commercially available antioxidant can also be used as the antioxidant.
  • examples of the phosphoric acid antioxidant include IRGAFOS168 and IRGAFOS38 (both manufactured by BASF Japan).
  • IRGAMOD295 manufactured by BASF Japan
  • Sumilizer GP Sumilizer GP (Sumitomo Chemical Co., Ltd.) as a hybrid type antioxidant having phosphoric acid and hindered phenol in the molecule.
  • the antioxidant is more preferably a phosphoric acid antioxidant from the viewpoint of improving transparency after baking of the transparent resin film, and IRGAFOS 168 is particularly preferable.
  • the amount of the antioxidant added to the total solid content of the transparent resin film is not particularly limited, but is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass. Preferably, it is 0.05 to 1% by mass.
  • the transparent resin film preferably contains a catalyst from the viewpoint of improving brittleness by curing the transparent resin film containing the silicone resin.
  • a catalyst from the viewpoint of improving brittleness by curing the transparent resin film containing the silicone resin.
  • silicone resins when two or more kinds are used, they are preferably used for promoting crosslinking by dehydration and dealcohol condensation reaction.
  • a known catalyst can be used as the catalyst.
  • organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).
  • Sn, Ti, Zn, Zr, Hf, and Ga are preferable from the viewpoint of high reaction activity
  • Zn or Ti is more preferable from the viewpoint of preventing cracking during baking
  • Zn is particularly preferable from the viewpoint of improving pot life.
  • organometallic compound catalyst containing zinc (Zn) examples include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate) and the like.
  • organometallic compound catalysts containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf), and gallium (Ga) include, for example, the catalysts described in JP2012-238636A. It can be preferably used.
  • a commercially available catalyst can also be used as the catalyst. Examples thereof include zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the said catalyst may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
  • the content of the catalyst is preferably 0.01 to 10% by mass with respect to the silicone resin from the viewpoint of preventing cracking during baking and improving pot life, and more preferably 0.03 to 5.0. % By mass.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060-0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
  • the concentration of the surfactant contained in the transparent resin film is preferably 0.01% by mass to 10% by mass.
  • the transparent resin film of the present invention has a thickness of 5 ⁇ m or more, preferably 10 ⁇ m or more. Particularly, when the decorative layer is a white decorative layer, it is preferable to increase the thickness of the white decorative layer. More preferably, it is 20 ⁇ m or more.
  • the method for producing the transparent resin film is not particularly limited, but can be formed by applying a preparation liquid containing the silicone resin or other additives, and the preparation liquid used for the application is a solvent. Can be used.
  • the solvent for producing the transparent resin film by coating the solvents described in paragraphs 0043 to 0044 of JP2011-95716A can be used.
  • the transfer film of the present invention includes a temporary support and the transparent resin film of the present invention. Moreover, you may have a thermoplastic resin layer between the said temporary support body and the said transparent resin film.
  • Temporal support a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used.
  • Examples of such a temporary support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 ⁇ m, and in the range of easy handling and versatility, the range of 10 to 150 ⁇ m is particularly preferable.
  • the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like. Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
  • the transfer film of the present invention includes the transparent resin film of the present invention.
  • the transparent resin film used for the transfer film of the present invention may have a desired size in order to fill a step between the front plate and the decorative layer in the conductive laminate and the capacitive input device of the present invention described later. preferable.
  • the transfer film of the present invention is used to fill a step between the front plate and the decorative layer by a precut process or the like. Can be size.
  • the transparent resin film used for the transfer film of the present invention does not necessarily have the size necessary to fill the step between the front plate and the decorative layer in the conductive laminate and the capacitive input device of the present invention described later. There is no need to match.
  • the transparent resin film of the present invention is used as a decorative layer at the stage of use for the transfer film. It is preferable that the thickness is adjusted to the same level as the height.
  • the viscosity of the transparent resin film measured at 100 ° C. is preferably in the range of 1 to 50000 Pa ⁇ sec.
  • the viscosity of each layer can be measured as follows.
  • the solvent is removed from the coating solution for the thermoplastic resin layer or transparent resin film by drying at atmospheric pressure and under reduced pressure to obtain a measurement sample.
  • Vibron DD-III type: manufactured by Toyo Baldwin Co., Ltd.
  • measurement is performed under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measurement value of 100 ° C. can be used.
  • thermoplastic resin layer In the transfer film of the present invention, it is preferable that a thermoplastic resin layer is provided between the temporary support and the transparent resin film.
  • the thermoplastic resin layer is preferably alkali-soluble.
  • the thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness of the base surface (including unevenness due to already formed images, etc.), and according to the unevenness of the target surface. It is preferable to have a property that can be deformed.
  • the thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component.
  • the Vicat method specifically, a polymer obtained by American Material Testing Method ASTM D1235
  • polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc.
  • thermoplastic resin layer it is preferable to add a foaming agent or the like for controlling peelability to the thermoplastic resin layer, and those described in paragraphs 0020 to 0028 of JP-A-2007-225939 can be used as appropriate.
  • thermoplastic resin layer It is also preferable to add a surfactant to the thermoplastic resin layer.
  • a surfactant for example, those described in Paragraph 0017 of Japanese Patent No. 4502784 and Paragraphs 0060 to 0071 of JP-A-2009-237362 can be used as appropriate.
  • the layer thickness of the thermoplastic resin layer is preferably 3 to 30 ⁇ m.
  • the thickness of the thermoplastic resin layer is more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent.
  • the solvent is not particularly limited as long as it can dissolve the polymer component constituting the thermoplastic resin layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol.
  • the viscosity of the thermoplastic resin layer measured at 100 ° C. is preferably in the region of 1000 to 50000 Pa ⁇ sec.
  • the transfer film of the present invention can be suitably configured by providing an intermediate layer between the transparent resin film and the thermoplastic resin layer, or further providing a protective film or the like on the surface of the transparent resin film.
  • an intermediate layer for the purpose of preventing mixing of components when applying a plurality of layers and during storage after application.
  • an oxygen-blocking film having an oxygen-blocking function which is described as “separation layer” in JP-A-5-72724, is preferable, which increases sensitivity during exposure and reduces the time load of the exposure machine. And productivity is improved.
  • the transfer film of the present invention can be produced according to the method for producing a photosensitive transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138. Specifically, when forming the transfer film of the present invention having an intermediate layer, a solution (the coating solution for the thermoplastic resin layer) in which the additive is dissolved together with the thermoplastic organic polymer is applied onto the temporary support. After drying and providing a thermoplastic resin layer, a preparation liquid (intermediate layer coating liquid) prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer. By drying and laminating an intermediate layer, and further applying a transparent resin film coating solution prepared using a solvent that does not dissolve the intermediate layer on the intermediate layer, and drying and laminating a decorative layer , Can be suitably produced.
  • the conductive film laminate of the present invention was disposed on a transparent front plate, (1) a decorative layer disposed on a part of one surface of the front plate, and one surface side of the front plate. And a step between the front plate and the decorative layer is filled with the transparent resin film of the present invention or the transparent resin film of the transfer film of the present invention. .
  • the capacitive input device of the present invention includes the conductive film laminate of the present invention.
  • the electrode pattern preferably includes the following (3) to (5) from the viewpoint of using the conductive film laminate of the present invention as a capacitive input device.
  • (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern,
  • a plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern
  • “the electrode pattern is disposed on the decorative layer” means that part of (3) or (4) among the above (3) to (5) is the decorative layer All of (3) to (5) need not be arranged on the decorative layer.
  • the electrode pattern may be arrange
  • the electrode pattern may further include the following (6).
  • the second electrode pattern may be a transparent electrode pattern.
  • the second transparent electrode pattern may be described instead of the second electrode pattern, but the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
  • the conductive film laminate and the capacitance-type input device of the present invention are the (1) decorative layer formed on the one surface side of the front plate on the side opposite to the surface facing the front plate. Further, (2) a mask layer may be provided on the surface.
  • a mask layer may be provided on the surface.
  • FIG. 14 is a cross-sectional view showing a preferred configuration among the capacitance-type input device of the present invention.
  • the capacitive input device is disposed on the transparent front plate 1, the decorative layer 2 disposed on a part of one surface of the front plate, and one surface of the front plate.
  • a step between the front plate 1 and the decorative layer 2 is filled with the transparent resin film 9 of the present invention.
  • the capacitive input device shown in FIG. 14 includes a first transparent electrode pattern 3, an insulating layer 5, and a transparent protective layer 7. As in the capacitive input device shown in FIG.
  • An element 6, a transparent protective layer 7 ′, and the transparent resin film 9 of the present invention are formed, and an electrode pattern (second transparent electrode pattern 4 and conductive element 6) is adjacent to the decorative layer 2.
  • a transparent protective layer is included on the transparent resin film, the decorative layer, and the electrode pattern (an overcoat layer is present above the electrode pattern such as ITO).
  • an overcoat layer is present above the electrode pattern such as ITO.
  • the electrode pattern (second transparent electrode pattern 4 and conductive element 6) is disposed on the decorative layer 2 via the transparent protective layer 7.
  • the conductive film laminate and the capacitance-type input device of the present invention are further provided between the decorative layer 2 and the electrode pattern, and between the transparent resin film 9 and the electrode pattern.
  • the aspect containing the transparent protective layer 7 may be sufficient.
  • the stacking order shown in FIG. 14 is preferable to the stacking order shown in FIG.
  • the edge part of the decoration layer 2 may be a taper shape, a reverse taper shape, or may not form the taper shape.
  • the decoration layer 2 has a tapered end.
  • FIG. 1 the other hand, as shown in FIG.
  • the decoration layer 2 does not need to form a taper shape.
  • the edge part of the said decoration layer is a taper shape.
  • the inner diameter (one side) L of the decorative layer 2 is equal to the width of the transparent resin film 9 of the present invention.
  • the inner diameter (one side) L of the decorative layer 2 is as long as it does not contradict the spirit of the present invention. As shown in FIG. 15, it may be wider than the width of the transparent resin film 9 of the present invention, and conversely, as shown in FIG.
  • the transparent resin film 9 existing on the decorative layer 2 is thinner than the transparent resin film 9 in direct contact with the front plate 1 due to the pressure applied during transfer due to the thickness of the decorative layer 2.
  • the width of the transparent resin film 9 of the present invention is preferably equal to or greater than the inner diameter (one side) L of the decorative layer 2 and preferably equal to or greater than 20 mm, more preferably equal to or greater than 10 mm, and equal to or greater than 5 mm. It is particularly preferable from the viewpoint of suppressing the introduction of new bubbles near the edge of the transparent resin film present on the decorative layer 2.
  • the front plate 1 is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by Corning's gorilla glass can be used.
  • a contact surface the surface on which input is performed by bringing a finger or the like into contact
  • the contact surface of the front plate 1 Is called the non-contact surface 1a.
  • the front plate may be referred to as a “base material”.
  • a mask layer may be provided on one surface of the front plate 1 with a decorative layer 2 interposed therebetween.
  • the mask layer is a frame-like pattern around the display area formed on one surface side of the front panel of the touch panel, and is formed so as not to show the lead wiring or the like.
  • the decoration layer 2 may be formed for the purpose of decoration between one surface of the touch panel front plate and the mask layer.
  • a decorative layer 2 and a mask layer (a mask layer (covering a region other than the input surface in FIG. 2) of the front plate 1 are covered. (Not shown) is preferably provided.
  • the front plate 1 can be provided with an opening 8 in a part of the front plate as shown in FIG.
  • a pressing mechanical switch can be installed in the opening 8. Since the tempered glass used as a base material has high strength and is difficult to process, it is general to form the opening 8 by forming the opening 8 before the tempering treatment and then performing the tempering treatment. . However, when trying to form the decorative layer 2 using the liquid resist for decorating layer formation or the screen printing ink on the substrate after the strengthening treatment having the opening 8, the resist component mole from the opening, There is a problem that the resist component protrudes from the glass edge in the decorative layer provided between the mask layer and the front plate, which needs to form a light-shielding pattern until the boundary of the front plate, and the back side of the substrate is contaminated. However, when the decorative layer 2 is formed on the base material having the opening 8 by using a transfer film, such a problem can be solved.
  • first transparent electrode patterns 3 On one surface of the front plate 1, a plurality of first transparent electrode patterns 3 in which a plurality of pad portions are formed extending in the first direction via connection portions, and a first transparent electrode pattern 3. And a plurality of second transparent electrode patterns 4 comprising a plurality of pad portions formed extending in a direction crossing the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 for electrically insulating the transparent electrode pattern 4 is formed.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6, which will be described later, are translucent, such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the conductive metal oxide film can be used.
  • metal films examples include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 .
  • the film thickness of each element can be set to 10 to 200 nm.
  • the electrical resistance can be reduced.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 described later use a transfer film having a conductive curable resin layer using conductive fibers described later. Can also be manufactured.
  • paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
  • At least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the front plate 1 of the decorative layer 2. It can be installed across both areas of the opposite surface and the opposite surface.
  • the second transparent electrode pattern 4 is opposite to the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the surface facing the front plate 1 of the decorative layer 2. The figure in which the second transparent electrode pattern 4 is installed across both regions of the side surface is shown.
  • FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention.
  • the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b.
  • the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 3). It is constituted by a plurality of pad portions that are formed.
  • the pad portion 3a and the connection portion 3b may be manufactured as one body, or only the connection portion 3b is manufactured and the pad portion 3a and the second portion 3b are formed.
  • the transparent electrode pattern 4 may be integrally formed (patterned).
  • the pad portion 3a and the second transparent electrode pattern 4 are produced (patterned) as a single body (patterning), as shown in FIG. 3, a part of the connection portion 3b and a part of the pad portion 3a are coupled, and an insulating layer Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
  • the conductive element 6 is installed on the surface of the decorative layer 2 opposite to the surface facing the front plate 1.
  • the conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4.
  • Another conductive element FIG. 14 shows a diagram in which another conductive element 6 is connected to the second transparent electrode pattern 4.
  • the transparent protective layer 7 is further installed between the said decoration layer 2 and the said electrode pattern, and between the said transparent resin film 9 and the said electrode pattern.
  • the transparent protective layer 7 may be configured to cover only a part of each component.
  • a transparent protective layer 7 is formed across both the regions of the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the surface of the decorative layer 2 opposite to the surface facing the front plate 1. Even in the case of installation, by using the transparent resin film 9 of the present invention, it is possible to perform lamination without generating bubbles at the boundary of the decorative layer with a simple process without using expensive equipment such as a vacuum laminator.
  • FIG. 1 As shown in FIG.
  • a transparent protective layer 7 ′ is provided so as to cover all the components.
  • a transparent protective layer 7 ′ may be provided as shown in FIG. 14 so as to cover all the components.
  • the transparent protective layer 7 or 7 ′ is sometimes called an overcoat layer.
  • the insulating layer 5 and the transparent protective layer 7 may be made of the same material or different materials. As a material constituting the insulating layer 5 and the transparent protective layers 7 and 7 ', those having high surface hardness and high heat resistance are preferable, and known photosensitive siloxane resin materials, acrylic resin materials, and the like are used.
  • FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed.
  • FIG. 5 is a top view showing an example of the front plate on which the decorative layer 2 is formed.
  • FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed.
  • FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed.
  • FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed.
  • the electrically conductive film laminated body and electrostatic capacitance type input device of this invention have (1) decoration layers arrange
  • the thickness of the decorative layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and in particular, the decorative layer is a white decorative layer.
  • the thickness of the transparent resin film is preferably 0.2 to 2.0 times, and preferably 0.3 to 1.5 times the thickness of the decorative layer. The ratio is more preferably 0.99 to 1.01 times.
  • the decorative layer includes a colorant.
  • black colorant examples include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable. In addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.
  • the white pigment described in paragraph 0019 of JP2009-191118A or paragraph 0109 of JP2000-175718A can be used.
  • white pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
  • white inorganic pigments such as titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, etc. Titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is particularly preferable.
  • titanium dioxide examples include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100AQ, 100SA, 100SAK, 100SAS, 100TV, 100Z, 100ZR, 150W, 500B, 500H, 500SA, 500SAK, 500SAS, 500T, SMT-100SAM, 100SAS, 500SAM, 500SAS Manufactured), CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S
  • the surface of the white inorganic pigment can be used in combination with silica treatment, alumina treatment, titania treatment, zirconia treatment, organic matter treatment and the like.
  • the catalytic activity of the white inorganic pigment can be suppressed, and heat resistance, fluorescence, etc. can be improved.
  • the white pigment is preferably a rutile type titanium oxide surface-treated with an inorganic substance, and at least one of alumina treatment and zirconia treatment was surface-treated.
  • a rutile type titanium oxide is more preferable, and a rutile type titanium oxide surface-treated by an alumina / zirconia combined treatment is particularly preferable.
  • pigments or dyes described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276 may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP-A-2005-17716, pigments described in paragraphs 0068 to 0072 of JP-A-2004-361447, paragraphs of JP-A-2005-17521
  • the colorants described in 0080 to 0088 can be preferably used.
  • the content of the inorganic pigment with respect to the total solid content of the decorative layer is 20 to 75% by mass to form a decorative layer having good brightness and whiteness and simultaneously satisfying other required characteristics. It is preferable from the viewpoint. Moreover, when using the transfer film of this invention for the manufacturing method of the electrostatic capacitance type input device of this invention mentioned later, also from a viewpoint of shortening development time fully, the said inorganic pigment with respect to the total solid of the said decoration layer is sufficient.
  • the content is preferably 20 to 75% by mass.
  • the content of the inorganic pigment with respect to the total solid content of the decorative layer is more preferably 25 to 60% by mass, and further preferably 30 to 50% by mass.
  • the total solid content as used in this specification means the total mass of the non-volatile component except the solvent etc. from the said decoration layer.
  • the inorganic pigment (which is the same for other colorants) is preferably used as a dispersion.
  • This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the inorganic pigment and the pigment dispersant in an organic solvent (or vehicle) described later.
  • the vehicle is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it.
  • Component (organic solvent) is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it.
  • Component organic solvent
  • the dispersing machine used for dispersing the inorganic pigment is not particularly limited.
  • Known dispersing machines such as a roll mill, atrider, super mill, dissolver, homomixer, and sand mill.
  • fine grinding may be performed using frictional force by mechanical grinding described on page 310 of the document.
  • the colorant that can be used in the present invention is preferably a colorant having an average primary particle size of 0.16 ⁇ m to 0.3 ⁇ m, more preferably 0.18 ⁇ m to 0.27 ⁇ m, from the viewpoint of dispersion stability and hiding power.
  • the colorant is preferred. Further, a colorant of 0.19 ⁇ m to 0.25 ⁇ m is particularly preferable.
  • the average particle size of the primary particles is smaller than 0.16 ⁇ m, the hiding power is suddenly lowered, and the base of the decorative layer may be easily seen or the viscosity may be increased.
  • the “average particle size of primary particles” as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and the “number average particle size” refers to the above-mentioned particle size for many particles. The diameter is determined, and among these, an average value of 100 arbitrarily selected particle diameters is referred to.
  • laser scattering HORIBA H made by Horiba Advanced Techno Co., Ltd.
  • a decoration layer contains binder resin.
  • the binder resin is preferably a silicone resin similar to the transparent resin film.
  • a catalyst is included from a viewpoint of hardening the said decoration layer containing the said silicone type resin and improving a brittleness.
  • the catalyst is preferably the same as the transparent resin film.
  • Method for forming the decoration layer Although there is no restriction
  • a coloring agent can be used for a resin layer.
  • the colorant the aforementioned colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used.
  • the opening 8 configured as shown in FIG. 2
  • the decorative layer 2 and the mask layer (not shown) shown in FIG. 1 are formed using the transfer film of the present invention
  • the opening is formed.
  • the front plate (substrate) having a portion has no resist component leakage from the opening.
  • the transfer film of the present invention in the decorative layer that needs to form a light-shielding pattern just above the boundary line of the front plate, there is no protrusion of the resist component from the glass edge, so the back side of the front plate is A touch panel having advantages of thinning and light weight can be manufactured through a simple process without contamination.
  • a method for forming the decorative layer using a transfer film will be described.
  • a transfer film when used, it can be formed by an ordinary photolithography method if the decorative layer contains a photocurable resin.
  • the transfer film may or may not contain the photocurable resin in the decorative layer, and in any case, the transfer film is used depending on the transfer method by the following half cut or the transfer method by die cut. And a decorative layer can be formed.
  • the protective film, the decorative layer and the intermediate layer of the non-image portion are removed with a tape, and further the image portion The protective film is similarly removed, and the decorative layer pattern is transferred to the substrate.
  • the transfer method by die-cutting first, as shown in FIGS. After removing the decorative layer (non-image portion 31) in the region of (2), the protective film of the image portion 32 remaining after the removal is removed with a tape, and the decorative layer pattern is transferred to the substrate. Subsequently, the decorative layer pattern can be formed by removing the thermoplastic resin layer and the intermediate layer by development. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary, and post-bake is preferably performed.
  • one surface of the base material can be subjected to surface treatment in advance.
  • the surface treatment it is preferable to carry out a surface treatment (silane coupling treatment) using a silane compound (silane coupling agent).
  • silane coupling agent those having a functional group that interacts with the photosensitive resin are preferable.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
  • a patterning method using the transfer film will be described using a method of forming the decorative layer as an example.
  • the method of forming the decorative layer is a half-cut step, that is, a step of making a cut in a depth that penetrates the decorative layer and does not penetrate the temporary support in a part of the transfer film, and the cut (1) decoration using the transfer film after removing the decoration layer in at least a part of the region surrounded by the step and removing the decoration layer in the part of the region Forming a layer.
  • the method for forming the decorative layer includes a die cutting step, that is, a step of making a cut through the temporary support from the decorative layer into a part of the transfer film, and the decoration of the partial region. And (1) forming a decorative layer using the transfer film after removing the layer.
  • a step of making a cut in a depth that does not penetrate the temporary support and through the decorative layer in a part of the transfer film, or a step of making a cut through the temporary support from the decorative layer It is also called a step of pre-cutting an image portion to be transferred in the decorative layer.
  • the step of removing the decorative layer in at least a part of the region surrounded by the cuts is also referred to as the step of removing the decorative layer of the non-image portion that is not transferred.
  • the transfer film includes a protective film, an intermediate layer, or a thermoplastic resin layer
  • the step of removing the decorative layer in at least a part of the region surrounded by the cuts is a protective film for a non-image part.
  • a step of removing the decorative layer and the protective film of the image portion is also referred to as the step of removing the decorative layer of the non-image portion that is not transferred.
  • the process of forming the decoration layer using the transfer film after removing the decoration layer of the partial area, the transfer process of transferring the decoration layer of the image part onto the substrate also say.
  • a transfer film contains a protective film, an intermediate
  • the said (1) decoration layer is formed using the said transfer film after removing the said decoration layer of the said one part area
  • the step is preferably a transfer step in which the decorative layer of the image portion of the transfer film from which the protective film has been removed is transferred onto a substrate.
  • the step of forming the decorative layer (1) using the transfer film after removing the decorative layer in the partial area further peels off the temporary support transferred onto the substrate.
  • the process to include is included.
  • the step (1) of forming the decorative layer using the transfer film after removing the decorative layer in the partial region further includes the step of removing the thermoplastic resin layer and the intermediate layer. It is preferable to include.
  • the method for forming the decorative layer includes a step of pre-cutting the image portion to be transferred among the decorative layer of the transfer film, a step of removing the protective film and the decorative layer of the non-image portion, and the protective film of the image portion, A transfer step of transferring the decorative layer of the image portion of the transfer film from which the protective film has been removed onto the substrate, a step of peeling the temporary support transferred onto the substrate, a thermoplastic resin layer, A method having a step of removing the intermediate layer is more preferable.
  • the method of forming the decorative layer includes a protective film removing step of removing the protective film from the transfer film, and the protective film is removed. And a transfer step of transferring the photocurable resin layer of the photosensitive transfer material onto a substrate. In this case, it is preferable to further include a step of post-exposing the transferred photocurable resin layer after the transfer step.
  • (A) Photolithography A patterning method will be described for the case where the decorative layer is formed using a photolithography method. After the transfer film is laminated on the front plate (base material), it is exposed to the required pattern, and in the case of negative type material, the unexposed part and in the case of positive type material, the exposed part is developed and removed. A pattern can be obtained. At this time, the development may be carried out by removing the thermoplastic resin layer and the photocurable resin layer with separate liquids, or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
  • the method of forming the transparent curable resin layer pattern when having the photocurable resin layer includes a protective film removing step of removing the protective film from the transfer film, and the light of the transfer film from which the protective film has been removed.
  • a transfer step of transferring a transparent curable resin layer containing a curable resin onto a substrate, an exposure step of exposing the photocurable resin layer transferred onto the substrate, and an exposed photocurable resin layer And a development step of obtaining a pattern image by development.
  • the transfer step is a step of transferring the photocurable resin layer of the transfer film from which the protective film has been removed onto a substrate.
  • a method of removing the temporary support after laminating the photocurable resin layer of the transfer film on the substrate is preferable.
  • Transfer (bonding) of the photocurable resin layer to the surface of the substrate is performed by stacking the photocurable resin layer on the surface of the substrate, pressurizing and heating.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
  • the exposure step is a step of exposing the photocurable resin layer transferred onto the substrate.
  • a predetermined mask is disposed above the photocurable resin layer formed on the substrate, and then exposed from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer.
  • the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.).
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned.
  • the exposure dose is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
  • the developing step is a step of developing the exposed photocurable resin layer.
  • the development can be performed using a developer.
  • the developer is not particularly limited, and a known developer such as a developer described in JP-A-5-72724 can be used.
  • the developer is preferably a developer in which the photocurable resin layer has a dissolution type development behavior.
  • a small amount of an organic solvent miscible with water may be added.
  • organic solvents miscible with water examples include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ⁇ -caprolactone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ⁇ -caprolactam, N-methylpyrrolidone and the like.
  • the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
  • a known surfactant can be added to the developer.
  • the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
  • the development method may be any of paddle development, shower development, shower & spin development, dip development, and the like.
  • the uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure.
  • a thermoplastic resin layer or an intermediate layer an alkaline liquid having a low solubility of the transparent curable resin layer containing a photocurable resin is sprayed by a shower or the like before development, and the thermoplastic resin layer, It is preferable to remove the intermediate layer and the like. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like.
  • the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
  • the pH of the developer is preferably 8 to 13.
  • the image forming method of a decoration layer needs to form an image part in a decoration layer before transfer, when not image-forming by a normal photolitho system.
  • a step (half-cut step) of cutting through the decorative layer into a part of the transfer film and not penetrating the temporary support (half-cut step) and the temporary support from the decorative layer There is a process (die cutting process) for making a cut through the body.
  • the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film in that order, for example, using a blade or a laser, from above the protective film, By cutting through the protective film, the decorative layer, and the intermediate layer and reaching part of the thermoplastic resin layer, it is possible to separate the image portion to be transferred and the non-image portion not to be transferred.
  • the process of removing the decorative layer in the non-image area In order to selectively transfer the image portion of the decorative layer precut by the half cut to the substrate, it is necessary to devise a method for not transferring the non-image portion.
  • One method is a method of removing the decorative layer in the non-image area before transfer, and after removing the protective film, the decorative layer and the intermediate layer in the non-image area are simultaneously peeled off.
  • the other is a method of peeling off the protective film on the non-image area, subsequently peeling off the decorative layer and the intermediate layer at the same time, and further peeling off the protective film on the image area. From the viewpoint of protecting the image portion of the decorative layer until just before transfer, the latter is preferable.
  • the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film in that order, for example, using a blade or a laser, from above the protective film, By providing a cut through the protective film, the decorative layer, the intermediate layer, the thermoplastic resin layer, and the temporary support, it is possible to separate between the image portion to be transferred and the non-image portion not to be transferred.
  • the transfer step is a step of transferring the decorative layer of the transfer film from which the protective film has been removed onto a substrate.
  • a method is preferred in which the decorative layer of the transfer film is laminated on a substrate and then the temporary support is removed. Transfer (bonding) of the decorative layer to the substrate surface is performed by stacking the decorative layer on the substrate surface, pressurizing and heating.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
  • the step of removing the thermoplastic resin layer and the intermediate layer can be performed using an alkaline developer generally used in a photolithography method, and the development used in the step of developing the exposed photocurable resin layer.
  • the liquid can be used as well.
  • the method of removing the thermoplastic resin layer and the intermediate layer may be any of paddle, shower, shower & spin, dip, etc. used for developing the exposed photocurable resin layer.
  • the decorative layer can be formed by heating the decorative layer after the transfer step in an environment of 0.08 to 1.2 atm at 180 to 300 ° C. to achieve both whiteness and productivity. It is preferable from the viewpoint.
  • the post-baking is more preferably performed in an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out in an environment of 1.1 atm or less, and it is particularly preferred to carry out in an environment of 1.0 atm or less.
  • the decorative layer (1) is formed by curing by heating, it is performed under a reduced pressure environment of a very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration.
  • the post-baking temperature is more preferably 200 to 280 ° C., and particularly preferably 220 to 260 ° C.
  • the post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
  • the post-baking may be performed in an air environment or a nitrogen substitution environment, but it is particularly preferable to perform the post-bake from the viewpoint of reducing the manufacturing cost without using a special decompression device.
  • the formation method of a decoration layer may have other processes, such as a post-exposure process.
  • a post-exposure process is included.
  • the post-exposure step may be performed only from the surface direction of the decorative layer on the side in contact with the base material, or from only the surface direction of the side not in contact with the transparent base material, or from both sides. Also good.
  • the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be preferably used in the present invention. it can.
  • the transfer film having the photocurable resin layer may include a protective film and an intermediate layer in addition to the photocurable resin layer, the temporary support, and the thermoplastic resin layer.
  • the preferred configuration and order of lamination of each layer is the same except that a resin layer containing a colorant (preferably a photocurable resin layer containing a colorant) is used instead of the transparent resin film of the invention in the transfer film of the invention.
  • the photocurable resin layer of the transfer film having the photocurable resin layer preferably has the following configuration.
  • the binder used in the photocurable resin layer is not particularly limited as long as it is not contrary to the gist of the present invention, and a known polymerizable compound can be used.
  • the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Furthermore, although a coloring agent, an additive, etc. are used, it is not restricted to this.
  • the alkali-soluble resin polymers described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used.
  • the decorative layer is formed by precutting, it is also preferable to use a silicone resin as the binder resin in the resin layer having the colorant as described above.
  • a silicone resin as the binder resin in the resin layer having the colorant as described above.
  • the transfer film having the photocurable resin layer is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
  • the photopolymerization initiator used in the photocurable resin layer the polymerizable compounds described in paragraphs 0031 to 0042 described in JP 2011-95716 A can be used.
  • an additive may be used for the photocurable resin layer.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060-0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
  • the transfer film having the photocurable resin layer is a negative type material
  • the transfer film may be a positive type material.
  • Viscosity of photocurable resin layer The viscosity of the photocurable resin layer measured at 100 ° C. is in the range of 2000 to 50000 Pa ⁇ sec, and preferably satisfies the following formula. Viscosity of thermoplastic resin layer ⁇ viscosity of photocurable resin layer
  • the transparent resin film of the present invention is prepared to have a size equivalent to the inner diameter of the decorative layer by using a method or a transfer method by die cutting, and the transparent resin film of the present invention is transferred to the front plate.
  • a preferred embodiment of the method for transferring the transparent resin film of the present invention to the front plate is the same as the preferred embodiment of the method for forming the decorative layer using the transfer film.
  • the front plate and the decorative layer are prepared by applying or printing the liquid resist solution for the transparent resin film of the present invention on a step portion between the front plate and the decorative layer and curing by a known method. May be filled with the transparent resin film of the present invention.
  • the transparent resin film is heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm. It is preferable from the viewpoint of compatibility.
  • the preferable aspect of a heating is the same as the preferable aspect of the post-baking in the formation method of the said decoration layer.
  • the transparent conductive material is formed by etching using the etching pattern formed by the transfer film having, and the transfer film having a temporary support, a thermoplastic resin layer, and a curable resin layer in this order. More preferably, the transparent conductive material is etched by using the formed etching pattern.
  • At least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element includes a temporary support and a photocurable resin layer, and a transfer film having a photocurable resin layer It is more preferable to use an etching pattern formed by a transfer film having a photocurable resin layer having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. It is particularly preferable to use it.
  • the manufacturing method of the capacitance-type input device includes at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, a temporary support, a conductive curable resin layer, Are preferably formed using a transfer film having a temporary support, a thermoplastic resin layer, and a conductive curable resin layer in this order.
  • the conductive curable resin layer is transferred and formed. That is, the first transparent electrode pattern 3 is preferably formed using a transfer film having an etching treatment or a conductive curable resin layer.
  • the first transparent electrode pattern 3 is formed by etching
  • a transparent electrode layer such as ITO is sputtered on one surface of the front plate 1 on which the decorative layer 2 or the transparent protective layer 7 is formed.
  • etching is performed by exposure / development using a transfer film similar to the transfer film used for forming the decorative layer 2 except that the photocurable resin layer for etching is provided as the photocurable resin layer on the transparent electrode layer.
  • the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
  • etching pattern a resist pattern can be obtained in the same manner as in the above method.
  • etching or resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP2010-152155A.
  • an etching method there is a commonly performed wet etching method of dipping in an etching solution.
  • an etchant used for wet etching an acid type or alkaline type etchant may be appropriately selected in accordance with an object to be etched.
  • acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done.
  • the acidic component a combination of a plurality of acidic components may be used.
  • alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • a mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.
  • the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
  • the resin pattern used as an etching mask (etching pattern) in the present invention is particularly excellent for acidic and alkaline etching solutions in such a temperature range by being formed using the decorative layer described above. Demonstrate resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
  • a cleaning process and a drying process may be performed as necessary to prevent line contamination. The cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
  • the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes.
  • the resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced.
  • the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
  • the stripping solution examples include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these.
  • a stripping solution dissolved in a mixed solution of You may peel by the spray method, the shower method, the paddle method etc. using the said peeling liquid.
  • the transfer film having a temporary support and a curable resin layer can be used as a lift-off material to form the first transparent electrode pattern, the second transparent electrode pattern, and other conductive members.
  • the transfer film As an example, a transfer film having the photo-curable resin layer can be used. Also in this case, the transfer film having the temporary support and the curable resin layer preferably has the thermoplastic resin layer between the temporary support and the curable resin layer.
  • the transfer film having a photocurable resin layer after patterning using a transfer film having a photocurable resin layer, after forming a transparent conductive layer on the entire surface of the substrate, the transfer film having a decorative layer or a photocurable resin layer together with the deposited transparent conductive layer A desired transparent conductive layer pattern can be obtained by dissolving and removing the photocurable resin layer in (lift-off method).
  • the first transparent electrode pattern 3 When the first transparent electrode pattern 3 is formed using a transfer film having a conductive curable resin layer, the first transparent electrode pattern 3 may be formed by transferring the conductive curable resin layer to the surface of the front plate 1. it can.
  • the front plate (substrate) having an opening has no resist component leakage from the opening, and the back side of the front plate.
  • the touch panel can be manufactured with a merit of thinning and weight reduction.
  • a transfer film having a specific layer structure having a thermoplastic resin layer between the conductive curable resin layer and the temporary support is used to laminate the transfer film. Bubble generation is prevented, and the first transparent electrode pattern 3 having excellent conductivity and low resistance can be formed.
  • the transfer film has a conductive curable resin layer
  • the conductive curable resin layer contains conductive fibers and the like.
  • a solid structure or a hollow structure is preferable.
  • the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowire”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m, and having a hollow structure may be referred to as “nanotube”.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
  • the material of the metal nanowire is not particularly limited.
  • at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
  • Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable. Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more. Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
  • a shape of the said metal nanowire there is no restriction
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side.
  • “each side of the cross section” is a straight line connecting these adjacent corners.
  • the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness.
  • the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line.
  • a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners.
  • the sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise.
  • the lower limit of the sharpness is preferably 30%, more preferably 40%.
  • the average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
  • the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated.
  • the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
  • the average major axis length of the metal nanowires was measured using, for example, a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX), and 300 metal nanowires were observed. The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle
  • the thickness of the conductive curable resin layer is preferably from 0.1 to 20 ⁇ m, more preferably from 0.5 to 18 ⁇ m, from the viewpoint of process stability such as the stability of the coating solution and the drying time during coating and the development time during patterning. 1 to 15 ⁇ m is preferable.
  • the content of the conductive fiber with respect to the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoint of conductivity and stability of the coating solution. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
  • a plurality of second electrode patterns composed of a plurality of pad portions that are electrically insulated from the first transparent electrode pattern and extend in a direction crossing the first direction>
  • the second electrode pattern is preferably a transparent electrode pattern.
  • the second transparent electrode pattern 4 can be formed by using the etching process or a transfer film having the conductive curable resin layer. A preferred embodiment at that time is the same as the method for forming the first transparent electrode pattern 3.
  • a first transparent electrode pattern is formed using a transfer film having the photocurable resin layer having an insulating photocurable resin layer as the photocurable resin layer. Further, it can be formed by transferring an insulating photocurable resin layer to the surface of the front plate 1.
  • the thickness of the insulating layer is preferably 0.1 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, more preferably 0.5 to 3 ⁇ m from the viewpoint of maintaining insulation. 2 ⁇ m is particularly preferable.
  • the another conductive element 6 can be formed using the etching process or a transfer film having the conductive curable resin layer.
  • the front plate on which each element is formed using a transfer film having the photocurable resin layer having a transparent photocurable resin layer as the photocurable resin layer It can be formed by transferring a transparent photocurable resin layer to the surface of 1.
  • the thickness of the transparent protective layer is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, from the viewpoint of exhibiting sufficient surface protection ability. Particularly preferred is ⁇ 3 ⁇ m.
  • An image display device including the capacitive input device of the present invention as a constituent element is “latest touch panel technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Touch Panel Technology and Development. The configurations disclosed in CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
  • Example 1 Production of transfer film for embedding steps- On a polyethylene terephthalate film (temporary support) having a thickness of 75 ⁇ m, a thermoplastic resin layer coating solution: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied on the thermoplastic resin layer and dried to form an intermediate layer. Furthermore, the transparent resin film coating liquid: Formulation C1 was applied on the intermediate layer and dried to form the transparent resin film of Example 1.
  • thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m
  • the intermediate layer having a dry film thickness of 1.6 ⁇ m
  • the transparent resin film of Example 1 having a dry film thickness of 35 ⁇ m on the temporary support.
  • the transparent resin film has a size equivalent to the inner diameter of the frame of the white decorative layer.
  • a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded on the transparent resin film of Example 1.
  • the transfer film of Example 1 for step embedding was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin film of Example 1 and the protective film were integrated.
  • thermoplastic resin layer coating solution Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer.
  • the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer.
  • a decorative layer coating solution: Formula L1 was applied and dried to form a decorative layer.
  • a thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m, an intermediate layer having a dry film thickness of 1.6 ⁇ m, and a white decorative layer having a dry film thickness of 35 ⁇ m were provided on the temporary support.
  • a protective film (thickness 12 ⁇ m polypropylene film) on the decorative layer was pressure-bonded.
  • a transfer film for forming a white decorative layer was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the decorative layer, and the protective film were integrated.
  • Silicone resin catalyst D-15 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Xylene solution solid content: 25% by mass
  • white pigment dispersion 1 the following composition
  • antioxidant Irgafos168, manufactured by BASF Corp.
  • interface Activator Brand name: MegaFuck F-780F, manufactured by DIC Corporation
  • the white decorative layer-forming transfer film (protective film, A decorative layer, an intermediate layer, a thermoplastic resin layer, and a temporary support were penetrated from the protective film side and punched out.
  • the white decorative layer-forming transfer film after punching is formed with an outer peripheral portion 42, a frame interior 41 having a straight portion, and a wiring extraction portion 43 having a straight portion.
  • silane coupling liquid N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by weight aqueous solution, trade name: KBM603, Shin-Etsu Chemical Co., Ltd.
  • silane coupling liquid N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by weight aqueous solution, trade name: KBM603, Shin-Etsu Chemical Co., Ltd.
  • This glass substrate was preheated at 90 ° C. for 2 minutes with a substrate preheating apparatus.
  • the white decorative layer forming transfer film punched with the blade 33 (the white decorative layer forming transfer film after punching) is protected with a tape. Only 25 was peeled off, and similarly, the two layers of the decorative layer 24 and the intermediate layer 23 of the non-image part 31 were peeled off simultaneously using a tape. Further, only the protective film 25 in the region corresponding to the image portion 32 was peeled off. The surface of the decorative layer 24 of the image portion 32 exposed after peeling off the protective film 25 and the surface of the tempered glass that has been preheated at 90 ° C. and that has been subjected to the silane coupling treatment are overlapped to form a laminator (Co., Ltd.).
  • triethanolamine developer containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water
  • shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the intermediate layer 23 of the image portion 32 and the thermoplastic resin layer 22 of the non-image portion 31 of the glass substrate.
  • air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce a liquid pool on the glass base material.
  • post-baking treatment was performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm) to form a decorative layer 24, and a decorative layer having a thickness of 35 ⁇ m was formed on the upper surface of the glass substrate.
  • a front plate was obtained.
  • the transfer film for embedding the steps (protective film, transparent)
  • a resin film, an intermediate layer, a thermoplastic resin layer, and a temporary support were penetrated from the protective film side and punched out.
  • the transfer film for embedding the step after punching is punched so as to fit inside the white decorative layer (frame shape) (region where the white decorative layer is not formed).
  • the front plate on which the decorative layer was formed was preheated at 90 ° C. for 2 minutes with a base material preheating device.
  • a transfer film of Example 1 for embedding a step after punching only the protective film of the non-image part is peeled off using a tape, and the transparent resin film and the intermediate layer 2 of the non-image part are similarly peeled off using the tape. The layers were peeled simultaneously. Further, only the protective film in the region corresponding to the image area was peeled off.
  • Laminator (Hitachi Co., Ltd.) was designed so that the transfer film of the white decorative layer was fitted so that there was no gap in the frame of the white decorative layer and did not rise above the white decorative layer (equivalent to the inner diameter of the white decorative layer). Lamination was performed at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveyance speed of 2.5 m / min. Subsequently, the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support.
  • a formed front plate was obtained.
  • the surface resistance of the ITO thin film was 80 ⁇ / ⁇ .
  • the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, and the front plate on which the transparent electrode layer is formed are cleaned, and then the protective film is applied.
  • the removed transfer film E1 for etching was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveyance speed 2.2 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 ⁇ m, and the exposure amount is 50 mJ / cm 2 (i-line).
  • An ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) is used as a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a transparent electrode layer, and a photocurable resin layer pattern for etching. ), And 100 seconds of treatment (etching treatment) to dissolve and remove the exposed transparent electrode layer that is not covered with the photo-curable resin layer for etching.
  • a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd., liquid temperature 45 ° C), immersed in a resist stripping tank, treated for 200 seconds (peeling treatment), removed the photocurable resin layer for etching, decorated layer,
  • the transparent resin film in which the step is embedded, the first surface of the front plate, and the surface of the decorative layer that is disposed on both sides of the surface opposite to the surface facing the front plate are installed as shown in FIG. A front plate having one transparent electrode pattern was obtained.
  • ⁇ Formation of insulating layer> ⁇ Preparation of transfer film W1 for forming an insulating layer>
  • the decorative layer-forming transfer film L1 was prepared in place of the decorative layer-forming coating solution: Formula W1, instead of the insulating layer-forming coating solution: Formula W1.
  • a transfer film W1 for forming an insulating layer was obtained in which a temporary support, a thermoplastic resin layer, an intermediate layer (oxygen barrier film), a photocurable resin layer for an insulating layer, and a protective film were integrated ( The film thickness of the photocurable resin layer for the insulating layer is 1.4 ⁇ m).
  • Tripentaerythritol octaacrylate (trade name: V # 802, Osaka Organic Chemical Industry Co., Ltd.): 1.8 parts by mass. Diethylthioxanthone: 0.17 parts by mass. 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: Irgacure 379, manufactured by BASF): 0.17 parts by mass Dispersant (trade name: Solsperse 20000, manufactured by Avicia): 0.19 parts by mass, interface Activator (Brand name: Megafuck F-780F, manufactured by Dainippon Ink) : 0.05 parts by mass-Methyl ethyl ketone: 23.3 parts by mass-MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the
  • the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the insulating layer was set to 100 ⁇ m, and pattern exposure was performed at an exposure amount of 30 mJ / cm 2 (i-line). .
  • the residue was removed by rubbing the face plate and spraying pure water from an ultra-high pressure cleaning nozzle. Further, a post-baking treatment at 230 ° C. for 60 minutes was performed to obtain a front plate on which a decorative layer, a transparent resin film in which a step of the decorative layer was embedded, a first transparent electrode pattern, and an insulating layer pattern were formed.
  • a front plate on which a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, and an insulating layer pattern is formed is formed using a DC magnetron.
  • Sputtering treatment conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa
  • a front plate on which a resin film, a first transparent electrode pattern, an insulating layer pattern, and a transparent electrode layer were formed was obtained.
  • the surface resistance of the ITO thin film was 110 ⁇ / ⁇ .
  • the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, A front plate on which a transparent electrode layer and a photocurable resin layer pattern for etching were formed was obtained (post-bake treatment; 130 ° C., 30 minutes). Further, in the same manner as the formation of the first transparent electrode pattern, an etching process (30 ° C., 50 seconds) is performed, and then the photocurable resin layer for etching is removed (peeling process: 45 ° C., 200 seconds).
  • the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, one surface of the front plate and the surface of the decorative layer facing the front plate A front plate having a second transparent electrode pattern formed as shown in FIG. 1 across both regions on the opposite surface was obtained.
  • ⁇ Formation of Conductive Element Separate from First and Second Transparent Electrode Pattern Similarly to the formation of the first and second transparent electrode patterns, a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, an insulating layer pattern, a second transparent The front plate on which the electrode pattern was formed was subjected to DC magnetron sputtering treatment to obtain a front plate on which a 200 nm thick aluminum (Al) thin film was formed.
  • a decorative layer, a transparent resin film in which the step of the decorative layer is embedded, and the first transparent electrode pattern A front plate on which an insulating layer pattern, a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching were formed was obtained (post-bake treatment; 130 ° C., 30 minutes).
  • the first transparent electrode pattern by etching (30 ° C., 50 seconds), and then removing the photocurable resin layer for etching (peeling treatment: 45 ° C., 200 seconds),
  • the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the conductivity different from the first and second transparent electrode patterns A front plate on which the elements were formed was obtained.
  • Front plate having a white decorative layer (frame shape) embedded with the transparent resin film of Example 1 (decorative layer, transparent resin film embedded with a step of the decorative layer, first transparent electrode pattern, insulating layer pattern) , A second transparent electrode pattern, a front plate on which a conductive element different from the first and second transparent electrode patterns is formed) on the photosensitive resin layer of the produced photosensitive transfer film, a temporary support ( After peeling at the interface with PET), it was transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).
  • thermoplastic resin layer side was exposed from the thermoplastic resin layer side at i line and 40 mJ / cm 2 .
  • triethanolamine developer containing 30% triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) 10 times with pure water (1 part of T-PD2 and 9 parts of pure water). The mixture was diluted to 30) at 30 C for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer.
  • the substrate is heat-treated at 230 ° C. for 60 minutes (post-bake), the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second A transparent electrode pattern, a conductive plate different from the first and second transparent electrode patterns, and a front plate on which a transparent protective layer-A was laminated were obtained, and the capacitive input device of Example 1 was obtained.
  • Example 2 Coating liquid for transparent resin film of Example 1: Silicone resin KR-311 (Example 2), silicone resin KR-282 (Example 3), silicone resin instead of silicone resin KR-300 in the preparation of formulation C1 KR-300 and silicone resin KR-311 solid content mixture (Example 4), Silicone resin KR-300 and silicone resin KR-311 solid content mass ratio 3: 7 mixture (Example 5), Silicone resin KR-271 (Example 6), silicone resin KR-255 (Example 7), silicone resin KR-242A (Example 8), silicone resin KR-251 (Example 9), silicone resin KR-251 and X- 40-9246 A mixture with a solid content mass ratio of 9: 1 (Example 10) Acrylic-modified silicone resin KR-970 (Example 11), except that the polyester-modified silicone resin KR-5230 (Example 12) was used.
  • a transparent resin film coating solution containing the binder shown in Table 1 below A transfer film for embedding steps of Examples 2 to 12 was prepared in the same manner as in Example 1 except that the formulations C2 to C12 were used. did.
  • a transparent resin film is fitted into the frame of the white decorative layer, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first A front plate on which a conductive element different from the first and second transparent electrode patterns and the transparent protective layer-A were formed was produced, and the capacitive input devices of Examples 2 to 12 were obtained.
  • Table 1 The results of evaluating the capacitive input devices of Examples 2 to 12 in the same manner as in Example 1 are shown in Table 1 below.
  • Example 1 the step of embedding the step-embedded transfer film, that is, in the same manner as in Example 1 except that the transparent resin is not present inside the frame of the white decorative layer, the white decorative layer, A front plate on which a transparent element pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are formed is prepared.
  • 1 capacitance type input device The results of evaluating the capacitive input device of Comparative Example 1 in the same manner as in Example 1 are shown in Table 1 below.
  • An embedded transparent resin film, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and a transparent protective layer-A were formed.
  • a front plate was produced and used as the capacitance type input devices of Comparative Examples 2 and 3, respectively.
  • the results of evaluating the capacitive input devices of Comparative Examples 2 and 3 in the same manner as in Example 1 are shown in Table 1 below.
  • Example 4 In Example 4, instead of setting the film thickness of the transparent resin film to 35 ⁇ m, the thickness was set to 5 ⁇ m (Example 13), 10 ⁇ m (Example 14), 20 ⁇ m (Example 15), and 45 ⁇ m (Example 16), respectively. Except for the above, transfer films for embedding steps of Examples 13 to 16 were produced in the same manner as Example 4. Instead of using the transfer film for embedding steps in Examples 13 to 16 instead of the transfer film for embedding steps used in Example 4, the same procedure as in the embedding of the transparent resin film in Example 4 was used except that each of the transfer films for embedding steps was used.
  • a transparent resin film is fitted into the frame of the white decorative layer, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first A front plate on which a conductive element different from the first and second transparent electrode patterns and the transparent protective layer-A were formed was produced, and the capacitive input devices of Examples 13 to 16 were obtained.
  • the results of evaluating the capacitive input devices of Examples 13 to 16 in the same manner as in Example 1 are shown in Table 2 below.
  • Example 4 the size of the transparent resin film was made equal to the inner diameter (L in FIGS. 1 and 14 to 16) of the frame of the white decorative layer in the capacitive input device of Example 4. Instead, the transparent resins of Examples 17 and 18 were the same as Example 4 except that each side was 5 mm (Example 17) or 10 mm (Example 18) larger than the inner diameter of the frame of the white decorative layer. A transfer film for embedding steps of Examples 17 and 18 having a film was prepared.
  • the transparent resin film of Examples 17 and 18 was inserted into the frame of the white decorative layer (partly across the frame of the white decorative layer), A decorative element, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, and a conductive element different from the first and second transparent electrode patterns Then, a front plate on which the transparent protective layer-A was formed was produced, and the capacitive input devices of Examples 17 and 18 were obtained.
  • the capacitance type input devices of Examples 17 and 18 were evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.
  • Example 19 and 20 Instead of fitting a transparent resin film into the frame of the white decorative layer using a transfer film, a transparent resin film was prepared by application using a liquid resist.
  • the transparent resist for preparing the transparent resin film of Example 19 the coating liquid for transparent resin film of Example 2 was used.
  • a transparent resist for forming a transparent resin film of Example 19 on a glass substrate coater manufactured by F.S. Japan, trade name: MH-1600 having a slit-like nozzle on the glass substrate. was applied.
  • Example 19 the application of the coating solution for preparing the transparent resin film was repeated 7 times, and seven layers having a film thickness of 5.0 ⁇ m were formed on the glass substrate, and the film thickness of 35.0 ⁇ m in Example 20 was formed. A transparent resin film was obtained.
  • the capacitance type input devices of Examples 19 and 20 were evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.
  • the transparency of the transferred transparent resin film after post-baking can be increased by fitting the transparent resin film of the present invention inside the frame of the white decorative layer. It has been found that the problem of air bubbles being taken in after the transparent protective layer is transferred thereon can be suppressed. Furthermore, it has been found that the problem of disconnection when the electrode pattern is formed can also be suppressed.

Abstract

This transparent resin film contains at least a silicone-based resin as a binder resin, and has a thickness of 5 μm or more. This transparent resin film is characterized by being used for the purpose of filling up the difference in level between a transparent front plate and a decorative layer in a capacitive input device that comprises the transparent front plate, the decorative layer that is arranged on a part of one surface of the front plate, and an electrode pattern that is arranged on the side of the one surface of the front plate.

Description

透明樹脂膜、転写フィルム、導電膜積層体、静電容量型入力装置および画像表示装置Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device
 本発明は、透明樹脂膜、転写フィルム、導電膜積層体、静電容量型入力装置および画像表示装置に関する。より詳しくは、指の接触位置を静電容量の変化として検出可能な静電容量型入力装置の加飾層と前面板の段差を埋めるために用いられる透明樹脂膜と、該透明樹脂膜を含む転写フィルム、導電膜積層体および静電容量型入力装置、並びに、当該静電容量型入力装置を構成要素として備えた画像表示装置に関するものである。 The present invention relates to a transparent resin film, a transfer film, a conductive film laminate, a capacitive input device, and an image display device. More specifically, a transparent resin film used for filling a step between a decorative layer and a front plate of a capacitive input device capable of detecting a contact position of a finger as a change in capacitance, and including the transparent resin film The present invention relates to a transfer film, a conductive film laminate, a capacitive input device, and an image display device including the capacitive input device as a constituent element.
 携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置され、液晶表示装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで、指示画像に対応する情報の入力が行えるものがある。 In recent years, electronic devices such as mobile phones, car navigation systems, personal computers, ticket vending machines, and bank terminals have been equipped with tablet-type input devices on the surface of liquid crystal devices and instructions displayed in the image display area of liquid crystal display devices. There is a type in which information corresponding to an instruction image can be input by touching a part where the instruction image is displayed with a finger or a touch pen while referring to the image.
 このような入力装置(タッチパネル)には、抵抗膜型、静電容量型などがある。しかし、抵抗膜型の入力装置は、フィルムとガラスとの2枚構造でフィルムを押下してショートさせる構造のため、動作温度範囲の狭さや、経時変化に弱いという欠点を有している。 Such input devices (touch panels) include a resistance film type and a capacitance type. However, the resistance film type input device has a drawback that it has a narrow operating temperature range and is susceptible to changes over time because it has a two-layer structure of film and glass that is shorted by pressing the film.
 これに対して、静電容量型の入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。カバーガラス一体型(OGS:One Glass Solution)タッチパネルの静電容量型タッチパネルは、前面板が静電容量型入力装置と一体化しているため、薄層/軽量化が可能となる。このような静電容量型タッチパネルでは、さらに加飾層によってセンス回路を覆い隠すことによって装置外観が改善されてきている。加飾層としては特に制限はなく、様々な色調(黒、白、パステルカラー、メタリック等)の加飾層を設けることができることが知られている。 On the other hand, the capacitance-type input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate. The capacitive touch panel of the cover glass integrated type (OGS: One Glass Solution) touch panel has a front plate integrated with the capacitive input device, and thus can be reduced in thickness and weight. In such a capacitive touch panel, the appearance of the device has been improved by covering the sense circuit with a decorative layer. There is no restriction | limiting in particular as a decoration layer, It is known that the decoration layer of various color tone (Black, white, pastel color, metallic etc.) can be provided.
 しかしながら、このような加飾層を設けると、加飾部と非加飾部との膜厚段差が生じ、得られるタッチパネルのセンサーの断線等などの問題が生じることがあった(特許文献1参照)。これに対し、特許文献1では、OGSタッチパネルに対して、加飾層起因の段差を小さくするため、加飾層の下部のガラス基材に凹みを作製する方法が記載されている。 However, when such a decorative layer is provided, a difference in film thickness between the decorative portion and the non-decorative portion occurs, and problems such as disconnection of the sensor of the obtained touch panel may occur (see Patent Document 1). ). On the other hand, in patent document 1, in order to make the level | step difference resulting from a decoration layer small with respect to an OGS touch panel, the method of producing a dent in the glass base material of the lower part of a decoration layer is described.
 一方、特許文献2には、透明基板上に、直接または間接に透明電極層が形成され、上記透明電極層上に、感光性シロキサン樹脂層が形成されているタッチパネル部材が記載されており、感光性シロキサン樹脂層を厚さ1.5μm程度の層間絶縁膜および/または表面保護層として用い、透明電極層を層間絶縁膜および/または表面保護層中に包埋させて平坦化した態様が記載されている。また、感光性シロキサン樹脂層は、表面硬度および耐熱性に優れる層間絶縁膜および/または表面保護層を形成できることが記載されている。特許文献2には、このような感光性シロキサン樹脂層を加飾層起因の段差を埋めるために用いることについては、何ら記載されていなかった。 On the other hand, Patent Document 2 describes a touch panel member in which a transparent electrode layer is formed directly or indirectly on a transparent substrate, and a photosensitive siloxane resin layer is formed on the transparent electrode layer. A mode in which a conductive siloxane resin layer is used as an interlayer insulating film and / or a surface protective layer having a thickness of about 1.5 μm and a transparent electrode layer is embedded in the interlayer insulating film and / or the surface protective layer and planarized is described. ing. Further, it is described that the photosensitive siloxane resin layer can form an interlayer insulating film and / or a surface protective layer excellent in surface hardness and heat resistance. Patent Document 2 does not describe any use of such a photosensitive siloxane resin layer to fill a step caused by a decorative layer.
 一方、フラットパネルディスプレイ用保護板の分野では、段差を埋める方法として、例えば特許文献3には透明の保護板と印刷部と印刷部の段差を埋める透明樹脂からなるディスプレイ保護板が記載されている。特許文献3では、段差を埋めるための透明樹脂として、アクリル樹脂が用いられていた。 On the other hand, in the field of protection panels for flat panel displays, for example, Patent Document 3 describes a display protection plate made of a transparent protection plate and a transparent resin that fills the step between the printing portion and the printing portion as a method of filling the step. . In Patent Document 3, an acrylic resin is used as a transparent resin for filling the steps.
特開2012-073726号公報JP 2012-073726 A 特開2011-150550号公報JP 2011-150550 A 特開2010-176111号公報JP 2010-176111 A
 静電容量型タッチパネルを液晶や有機ELディスプレイ上に備えたスマートフォンやタブレットPCでは前面板(直接指で接触する面)にコーニング社のゴリラガラスに代表される強化ガラスを用いたものが開発、発表されている。加飾層の下部のガラス基材に対して凹型を加工する特許文献1に記載の方法は、このような強化ガラス基材を用いた場合に用いることが困難であり、その他のより簡易な方法が求められていた。 Smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed and announced using a tempered glass typified by Corning's gorilla glass on the front plate (the surface directly touched by a finger) Has been. The method described in Patent Document 1 for processing a concave mold with respect to a glass substrate under the decorative layer is difficult to use when such a tempered glass substrate is used, and other simpler methods. Was demanded.
 本発明者らが検討したところ、このような強化ガラス基板(以下、「前面板」ともいう。)にアクリル樹脂や感光性シロキサン樹脂を用いて、転写フィルムによる転写や液体レジスト塗布やスクリーン印刷等により加飾層を形成すると、テーパー状のなだらかな傾斜を端部に有する加飾層が形成できることがわかった。また、加飾層はその上に設けられる透明電極パターンの隠蔽力を向上させるために、加飾層の色によっては5μm以上の厚みを設ける必要があることがわかった。
 ここで、前面板の一部にこのような加飾層、すなわち、テーパー状のなだらかな傾斜を端部に有し、5μm以上の厚みを有する段差(換言すれば、前面板の一方の面の一部に加飾層が配置されることに起因して生じる前面板の一方の面側の凹凸)を有していたとしても、加飾層の端部がテーパー状であることからその上に他の部材を積層したとしても段差に起因する気泡の発生は起こらず、ITOなどの透明電極パターンを設けたとしても段差に起因する透明電極パターンの断線も発生しないと予想されていた。しかしながら、本発明者らが検討したところ上記の予想に反し、前面板の一部に、テーパー状のなだらかな傾斜を端部に有し、5μm以上の厚みを有する加飾層を有していると、加飾層の端部がテーパー状のなだらかな傾斜であるにもかかわらず、段差の上(前面板のうち加飾層が形成される側)に他の部材を積層したときに気泡が発生し、段差の上に設けた透明電極パターンの断線の問題が生じることがわかった。
 また、特許文献2に記載の透明電極層を1.5μm程度の層間絶縁膜および/または表面保護層中に包埋させて平坦化する方法は、厚みが5μmを超す加飾層への応用を想定しておらず、厚みが5μmを超す段差を埋めることについて開示も示唆もされていなかった。
As a result of investigations by the present inventors, an acrylic resin or a photosensitive siloxane resin is used for such a tempered glass substrate (hereinafter also referred to as “front plate”), transfer using a transfer film, liquid resist coating, screen printing, etc. It was found that when the decorative layer was formed by the method, a decorative layer having a tapered gentle slope at the end portion could be formed. Moreover, in order to improve the concealing power of the transparent electrode pattern provided on the decorative layer, it was found that it is necessary to provide a thickness of 5 μm or more depending on the color of the decorative layer.
Here, such a decorative layer on a part of the front plate, that is, a step having a gentle slope at the end and having a thickness of 5 μm or more (in other words, a step on one surface of the front plate) Even if it has an unevenness on one side of the front plate due to the decorative layer being arranged in part), the end of the decorative layer is tapered, so that Even if other members are laminated, it is expected that bubbles due to the step do not occur, and even if a transparent electrode pattern such as ITO is provided, the disconnection of the transparent electrode pattern due to the step does not occur. However, when the present inventors examined, contrary to said expectation, it has a decorative layer which has a taper-shaped gentle inclination in an end part, and has a thickness of 5 micrometers or more in part of a front board. Even though the edge of the decorative layer has a gentle slope, bubbles are formed when another member is laminated on the step (the side of the front plate where the decorative layer is formed). It has been found that there is a problem of disconnection of the transparent electrode pattern provided on the step.
Moreover, the method of embedding and transparentizing the transparent electrode layer described in Patent Document 2 in an interlayer insulating film and / or a surface protective layer of about 1.5 μm can be applied to a decorative layer having a thickness exceeding 5 μm. No assumption was made, and no disclosure or suggestion was made about filling a step having a thickness exceeding 5 μm.
 ここで、フラットパネルディスプレイ用保護板の分野の特許文献3に記載の透明樹脂を用いて、本発明者らがOGSタッチパネルの加飾層に起因する段差を埋めることを検討したところ、OGSタッチパネルの作製では透明電極パターン作製のための工程で加熱されることとなるが、特許文献3に記載のアクリル系バインダーを使用した透明性樹脂は上記工程の加熱により熱黄変してしまうために、OGSタッチパネルの段差を埋めるためには使用できないものであることがわかった。すなわち、OGSタッチパネルの加飾層に起因する段差を埋めるために用いる透明樹脂膜の透明度が低下するという問題があることがわかった。 Here, using the transparent resin described in Patent Document 3 in the field of flat panel display protection plates, the present inventors studied to fill a step caused by the decorative layer of the OGS touch panel. In the production, the transparent electrode pattern is heated in the process for producing the transparent electrode pattern. However, since the transparent resin using the acrylic binder described in Patent Document 3 is thermally yellowed by the heating in the above process, OGS It was found that it cannot be used to fill the steps of the touch panel. That is, it has been found that there is a problem in that the transparency of the transparent resin film used to fill the step caused by the decorative layer of the OGS touch panel is lowered.
 本発明が解決しようとする課題は、前面板一体型の静電容量型入力装置の前面板と加飾層との段差を埋めることができ、透明度が高く、加飾層の上に他の部材を積層したときの気泡取り込み(気泡混入)を抑制でき、加飾層の上に配置された電極パターンの断線を抑制できる透明樹脂膜を提供することにある。 The problem to be solved by the present invention is that a step between the front plate and the decorative layer of the capacitance type input device integrated with the front plate can be filled, and the transparency is high, and other members are provided on the decorative layer. An object of the present invention is to provide a transparent resin film that can suppress bubble entrapment (bubble mixing) when layers are stacked, and can suppress disconnection of an electrode pattern disposed on a decorative layer.
 本発明者らは、OGS用タッチパネルの加飾層に起因する段差を埋めるためにシリコーン系レジンを含む透明樹脂膜を用いることにより、透明性を低下させることなく、加飾層の段差を低減した平坦な表面を提供でき、オーバーコート層などを積層した時の気泡混入を抑制でき、また、段差を平滑化できてITOなどの電極パターンの断線懸念を低減できることを見出し、本発明に至った。 The present inventors reduced the step of the decorative layer without reducing transparency by using a transparent resin film containing a silicone-based resin to fill the step caused by the decorative layer of the OGS touch panel. The present inventors have found that a flat surface can be provided, air bubbles can be prevented from being mixed when an overcoat layer or the like is laminated, and steps can be smoothed to reduce the fear of disconnection of electrode patterns such as ITO.
 上記課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 少なくともシリコーン系レジンをバインダー樹脂として含み、かつ、厚みが5μm以上である透明樹脂膜であり、透明樹脂膜が、透明な前面板と、該前面板の一方の面の一部に配置された加飾層と、前面板の一方の面側に配置された電極パターンとを有する静電容量型入力装置の、前面板と加飾層との段差を埋めるために用いられることを特徴とする透明樹脂膜。
[2] [1]に記載の透明樹脂膜は、シリコーン系レジンが、ストレートシリコーンレジンであることが好ましい。
[3] [2]に記載の透明樹脂膜は、ストレートシリコーンレジンが、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、R1は独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基を表す。
[4] [2]または[3]に記載の透明樹脂膜は、ストレートシリコーンレジンの重量平均分子量が1000~1000000であることが好ましい。
[5] [1]~[4]のいずれか一つに記載の透明樹脂膜は、透明樹脂膜の厚みが10μm以上であることが好ましい。
[6] [1]~[5]のいずれか一つに記載の透明樹脂膜は、透明レジスト溶液を用いて製造されてなることが好ましい。
[7] 仮支持体と、[1]~[6]のいずれか一つに記載の透明樹脂膜とを含むことを特徴とする転写フィルム。
[8] [7]に記載の転写フィルムは、仮支持体と透明樹脂膜との間に熱可塑性樹脂層を有することが好ましい。
[9] 透明な前面板と、
 該前面板の一方の面の一部に配置された加飾層と、
 前面板の一方の面側に配置された電極パターンとを有し、
 前面板と加飾層との段差を[1]~[6]のいずれか一つに記載の透明樹脂膜によって埋められたことを特徴とする導電膜積層体。
[10]  透明な前面板と、
 該前面板の一方の面の一部に配置された加飾層と、
 前面板の一方の面側に配置された電極パターンとを有し、
 前面板と加飾層との段差を[7]または[8]に記載の転写フィルムの透明樹脂膜によって埋められたことを特徴とする導電膜積層体。
[11] [9]または[10]に記載の導電膜積層体は、加飾層の厚みが5μm以上であることが好ましい。
[12] [9]~[11]のいずれか一つに記載の導電膜積層体は、透明樹脂膜の厚みが、加飾層の厚みの0.3~1.3倍であることが好ましい。
[13] [9]~[12]のいずれか一つに記載の導電膜積層体は、透明樹脂膜、加飾層および電極パターンの上に、透明保護層を含むことが好ましい。
[14] [9]~[13]のいずれか一つに記載の導電膜積層体は、透明樹脂膜が、0.08~1.2atmの環境下で180~300℃に加熱されてなることが好ましい。
[15] [9]~[14]のいずれか一つに記載の導電膜積層体は、電極パターンが、下記(3)~(5)を含むことが好ましい。
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)第一の透明電極パターンと電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)第一の透明電極パターンと第二の電極パターンとを電気的に絶縁する絶縁層
[16] [15]に記載の導電膜積層体は、さらに、(6)第一の透明電極パターンおよび第二の電極パターンの少なくとも一方に電気的に接続され、第一の透明電極パターンおよび第二の電極パターンとは別の導電性要素を有することが好ましい。
[17] [15]または[16]に記載の導電膜積層体は、第二の電極パターンが、透明電極パターンであることが好ましい。
[18] [9]~[17]のいずれか一つに記載の導電膜積層体は、加飾層の端部がテーパー形状であることが好ましい。
[19] [9]~[18]のいずれか一つに記載の導電膜積層体を含むことを特徴とする静電容量型入力装置。
[20] [19]に記載の静電容量型入力装置を構成要素として備えたことを特徴とする画像表示装置。
The present invention, which is a specific means for solving the above problems, is as follows.
[1] A transparent resin film containing at least a silicone resin as a binder resin and having a thickness of 5 μm or more, and the transparent resin film is disposed on a transparent front plate and a part of one surface of the front plate A capacitive input device having a decorated layer and an electrode pattern disposed on one surface side of the front plate is used to fill a step between the front plate and the decorative layer, Transparent resin film.
[2] In the transparent resin film according to [1], the silicone resin is preferably a straight silicone resin.
[3] In the transparent resin film according to [2], the straight silicone resin is preferably a straight silicone resin containing in the molecule at least a siloxane structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
[4] In the transparent resin film according to [2] or [3], the weight average molecular weight of the straight silicone resin is preferably 1,000 to 1,000,000.
[5] The transparent resin film according to any one of [1] to [4] preferably has a thickness of 10 μm or more.
[6] The transparent resin film according to any one of [1] to [5] is preferably manufactured using a transparent resist solution.
[7] A transfer film comprising a temporary support and the transparent resin film according to any one of [1] to [6].
[8] The transfer film according to [7] preferably has a thermoplastic resin layer between the temporary support and the transparent resin film.
[9] a transparent front plate;
A decorative layer disposed on a part of one surface of the front plate;
Having an electrode pattern disposed on one side of the front plate,
A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film according to any one of [1] to [6].
[10] a transparent front plate;
A decorative layer disposed on a part of one surface of the front plate;
Having an electrode pattern disposed on one side of the front plate,
A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film of the transfer film described in [7] or [8].
[11] In the conductive film laminate according to [9] or [10], the thickness of the decorative layer is preferably 5 μm or more.
[12] In the conductive film laminate according to any one of [9] to [11], the thickness of the transparent resin film is preferably 0.3 to 1.3 times the thickness of the decorative layer. .
[13] The conductive film laminate according to any one of [9] to [12] preferably includes a transparent protective layer on the transparent resin film, the decorative layer, and the electrode pattern.
[14] In the conductive film laminate according to any one of [9] to [13], the transparent resin film is heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm. Is preferred.
[15] In the conductive film laminate according to any one of [9] to [14], the electrode pattern preferably includes the following (3) to (5).
(3) A plurality of first transparent electrode patterns formed by extending the plurality of pad portions in the first direction via the connection portions. (4) electrically insulated from the first transparent electrode pattern; A plurality of second electrode patterns comprising a plurality of pad portions extending in a direction intersecting with one direction (5) electrically insulating the first transparent electrode pattern and the second electrode pattern; Insulating layer [16] The conductive film laminate according to [15] is further (6) electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern It is preferable to have a conductive element different from the second electrode pattern.
[17] In the conductive film laminate according to [15] or [16], the second electrode pattern is preferably a transparent electrode pattern.
[18] In the conductive film laminate according to any one of [9] to [17], it is preferable that the end portion of the decorative layer has a tapered shape.
[19] A capacitance-type input device comprising the conductive film laminate according to any one of [9] to [18].
[20] An image display device comprising the capacitive input device according to [19] as a constituent element.
 本発明によれば、前面板一体型の静電容量型入力装置の前面板と加飾層との段差を埋めることができ、透明度が高く、加飾層の上に他の部材を積層したときの気泡取り込みを抑制でき、加飾層の上に配置された電極パターンの断線を抑制できる透明樹脂膜を提供できる。 According to the present invention, it is possible to fill a step between the front plate and the decorative layer of the capacitance type input device integrated with the front plate, the transparency is high, and when another member is laminated on the decorative layer Can be suppressed, and a transparent resin film capable of suppressing disconnection of the electrode pattern disposed on the decorative layer can be provided.
本発明の静電容量型入力装置の一例の構成を示す断面図である。It is sectional drawing which shows the structure of an example of the electrostatic capacitance type input device of this invention. 本発明における前面板の一例を示す説明図である。It is explanatory drawing which shows an example of the front plate in this invention. 本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。It is explanatory drawing which shows an example of the 1st transparent electrode pattern in this invention, and a 2nd transparent electrode pattern. 開口部が形成された強化処理ガラスの一例を示す上面図である。It is a top view which shows an example of the tempered glass in which the opening part was formed. 加飾層が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front board in which the decoration layer was formed. 第一の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st transparent electrode pattern was formed. 第一および第二の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st and 2nd transparent electrode pattern was formed. 黒色の加飾層、第一および第二の透明電極パターンとは別の導電性要素が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer and the 1st and 2nd transparent electrode pattern was formed. 金属ナノワイヤー断面を示す説明図である。It is explanatory drawing which shows a metal nanowire cross section. 加飾層を形成するために用いる転写フィルムのダイカット後の形状を示す概略図である。It is the schematic which shows the shape after die-cutting of the transfer film used in order to form a decorating layer. 加飾層を形成するために用いる転写フィルムのダイカットの方法を示す説明図である。It is explanatory drawing which shows the method of die-cutting the transfer film used in order to form a decorating layer. 前面板のX-X’断面に加飾層を形成するために用いる転写フィルムのダイカットの方法を示す説明図である。It is explanatory drawing which shows the die-cutting method of the transfer film used in order to form a decorating layer in the X-X 'cross section of a front plate. 前面板のY-Y’断面に加飾層を形成するために用いる転写フィルムのダイカットの方法を示す説明図である。It is explanatory drawing which shows the die-cutting method of the transfer film used in order to form a decoration layer in the YY 'cross section of a front plate. 本発明の静電容量型入力装置の他の一例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the electrostatic capacitance type input device of this invention. 本発明の静電容量型入力装置の他の一例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the electrostatic capacitance type input device of this invention. 本発明の静電容量型入力装置の他の一例の構成を示す断面図である。It is sectional drawing which shows the structure of another example of the electrostatic capacitance type input device of this invention.
 以下、本発明の透明樹脂膜、転写フィルム、導電膜積層体、静電容量型入力装置および画像表示装置について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
Hereinafter, the transparent resin film, transfer film, conductive film laminate, capacitance-type input device and image display device of the present invention will be described.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
[透明樹脂膜]
 本発明の透明樹脂膜は、少なくともシリコーン系レジンをバインダー樹脂として含み、かつ、厚みが5μm以上である透明樹脂膜であり、前記透明樹脂膜が、透明な前面板と、該前面板の一方の面の一部にに配置された加飾層と、前記前面板の一方の面側に配置された電極パターンとを有する静電容量型入力装置の、前記前面板と前記加飾層との段差を埋めるために用いられることを特徴とする。
 このような構成により、前面板一体型の静電容量型入力装置の前面板と加飾層との段差を埋めることができ、透明度が高く、加飾層の上に他の部材を積層したときの気泡取り込みを抑制でき、加飾層の上に配置された電極パターンの断線を抑制できる。
[Transparent resin film]
The transparent resin film of the present invention is a transparent resin film containing at least a silicone resin as a binder resin and having a thickness of 5 μm or more. The transparent resin film comprises a transparent front plate and one of the front plates. A step between the front plate and the decorative layer of a capacitive input device having a decorative layer arranged on a part of the surface and an electrode pattern arranged on one surface side of the front plate It is used for filling in.
With such a configuration, the step between the front plate and the decorative layer of the capacitive input device integrated with the front plate can be filled, and the transparency is high, and when another member is laminated on the decorative layer Air bubble uptake can be suppressed, and disconnection of the electrode pattern disposed on the decorative layer can be suppressed.
 本発明の透明樹脂膜は流動性を保った状態であってもよく、流動性を失った状態であってもよく、硬化または固定化された状態であってもよい。
 本発明の透明樹脂膜が、透明な前面板と、該前面板の一方の面の一部にに配置された加飾層と、前記前面板の一方の面側に配置された電極パターンとを有する静電容量型入力装置の、前記前面板と前記加飾層との段差を埋めるための透明レジスト溶液から形成されてなる場合は、流動性を保った状態の透明レジスト溶液を本発明の透明樹脂膜ということができ、透明レジスト溶液を乾燥して流動性が失われた状態としたものも本発明の透明樹脂膜ということができる。
 また、本発明の透明樹脂膜を後述の本発明の転写フィルムに用いる場合、本発明の透明樹脂膜形成用塗布液を後述の仮支持体などの上に塗布し、乾燥して、ドライフィルムとしたときも、本発明の転写フィルム中の透明樹脂膜を本発明の透明樹脂膜ということができる。
 また、本発明の透明樹脂膜を用いて、透明な前面板と、該前面板の一方の面の一部にに配置された加飾層と、前記前面板の一方の面側に配置された電極パターンとを有する静電容量型入力装置の、前記前面板と前記加飾層との段差を埋めた後、活性放射線の照射などにより硬化した透明樹脂膜も本発明の透明樹脂膜ということができる。
The transparent resin film of the present invention may be in a state where the fluidity is maintained, may be in a state where the fluidity is lost, or may be in a cured or fixed state.
The transparent resin film of the present invention comprises a transparent front plate, a decorative layer disposed on a part of one surface of the front plate, and an electrode pattern disposed on one surface side of the front plate. In the case where the capacitive input device is formed from a transparent resist solution for filling a step between the front plate and the decorative layer, the transparent resist solution in a state of maintaining fluidity is used as the transparent resist solution of the present invention. It can be said that it is a resin film, and what made the state which lost the fluidity | liquidity by drying a transparent resist solution can also be called the transparent resin film of this invention.
Moreover, when using the transparent resin film of this invention for the transfer film of this invention mentioned later, the coating liquid for transparent resin film formation of this invention is apply | coated on a temporary support etc. which are mentioned later, it dries, and a dry film and In this case, the transparent resin film in the transfer film of the present invention can also be referred to as the transparent resin film of the present invention.
Moreover, using the transparent resin film of the present invention, a transparent front plate, a decorative layer arranged on a part of one surface of the front plate, and one surface side of the front plate are arranged. In a capacitive input device having an electrode pattern, a transparent resin film cured by irradiation with actinic radiation after filling a step between the front plate and the decorative layer is also referred to as a transparent resin film of the present invention. it can.
(組成)
-シリコーン系レジン-
 本発明の透明樹脂膜に用いられる前記シリコーン系レジンとして公知のものが使用できる。
 シリコーン系レジンは、樹脂を下記シラン化合物で一部変性し、多様な特性が付与されたた変性シリコーンレジンと、アルコキシ基又はシラノール基を有するシラン化合物を脱水縮合させ、シリコーン本来の性質を利用したストレートシリコーンレジンとに分類できる。本発明の透明樹脂膜および転写フィルムは、前記シリコーン系レジンが、変性シリコーンレジン、または、ストレートシリコーンレジンであることが好ましく、ストレートシリコーンレジンであることがより好ましく、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンであることが特に好ましい。
 変性シリコーンレジンとしては、アクリル酸などのアクリルモノマーにシラン化合物を反応させたモノマーを重合又は他のアクリルモノマーに共重合させたアクリル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-9706)、ポリエステルの水酸基等にシラン化合物を反応させたポリエステル樹脂変性シリコーンレジン、樹脂のアミノ基残基等にエポキシ含有シラン化合物を反応させたエポキシ樹脂変性シリコーンレジン、アルキッド樹脂を反応性シラン化合物で変性したアルキッド樹脂変性シリコーンレジン、オキシム系開始剤を用いて樹脂と直接共有結合を形成させるゴム系のシリコーンレジン等が使用できる。
(composition)
-Silicone resin-
A well-known thing can be used as said silicone resin used for the transparent resin film of this invention.
Silicone-based resins are partially modified with the following silane compounds, dehydrated and condensed with modified silicone resins with various properties and silane compounds having alkoxy groups or silanol groups, utilizing the inherent properties of silicone. Can be classified as straight silicone resin. In the transparent resin film and transfer film of the present invention, the silicone resin is preferably a modified silicone resin or a straight silicone resin, more preferably a straight silicone resin, and at least the following general formula ( A straight silicone resin containing a siloxane structure represented by 1) is particularly preferred.
Examples of the modified silicone resin include acrylic resin-modified silicone resin (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerization of a monomer obtained by reacting an acrylic monomer such as acrylic acid with a silane compound or copolymerization with another acrylic monomer, polyester Polyester resin-modified silicone resin in which a silane compound is reacted with a hydroxyl group of the epoxy resin, an epoxy resin-modified silicone resin in which an epoxy-containing silane compound is reacted with an amino group residue of the resin, an alkyd resin in which an alkyd resin is modified with a reactive silane compound A modified silicone resin, a rubber silicone resin that directly forms a covalent bond with a resin using an oxime initiator, and the like can be used.
 ストレートシリコーンレジンとしては、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するものが使用できる。
Figure JPOXMLDOC01-appb-C000003
As the straight silicone resin, one containing at least a siloxane structure represented by the following general formula (1) in the molecule can be used.
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、R1は独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基であり、複数のR1は同一であっても異なっていてもよい。すなわち前記一般式(1)で表されるシロキサン構造を有するストレートシリコーンレジンは、同一シロキサン構造の縮合体でも良いし、異なる組合せの共縮合体でも良い。 In the general formula (1), R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms A group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 may be the same or different. That is, the straight silicone resin having a siloxane structure represented by the general formula (1) may be a condensate having the same siloxane structure or a co-condensate having a different combination.
 R1の表すハロゲン原子としては、フッ素原子、塩素原子等を挙げることができる。
 R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができる。
 R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基の中では、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 また、R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基としては、例えばアリールアルキル基、フルオロアルキル基、クロロアルキル基、ヒドロキシアルキル基、(メタ)アクリロキシアルキル基およびメルカプトアルキル基を挙げることができる。これらの具体例としては、例えば、フェニルメチル(ベンジル)基、ジフェニルメチル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニル-n-プロピル基、2-フェニル-2-プロピル(クミル)基、3-フェニル-n-プロピル基、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基、1-フェニルペンチル基、2-フェニルペンチル基、3-フェニルペンチル基、4-フェニルペンチル基、5-フェニルペンチル基、 1-フェニルヘキシル基、2-フェニルヘキシル基、3-フェニルヘキシル基、4-フェニルヘキシル基、5-フェニルヘキシル基、6-フェニルヘキシル基、1-フェニルシクロヘキシル基、2-フェニルシクロヘキシル基、3-フェニルシクロヘキシル基、1-フェニルヘプチル基、2-フェニルヘプチル基、3-フェニルヘプチル基、4-フェニルヘプチル基、5-フェニルヘプチル基、6-フェニルヘプチル基、1-フェニルオクチル基、2-フェニルオクチル基、3-フェニルオクチル基、4-フェニルオクチル基、5-フェニルオクチル基、6-フェニルオクチル基、1-ナフチルエチル基、2-ナフチルエチル基、1-ナフチル-n-プロピル基、2-ナフチル-2-プロピル基、3-ナフチル-n-プロピル基、1-ナフチルブチル基、2-ナフチルブチル基、3-ナフチルブチル基、4-ナフチルブチル基、1-ナフチルペンチル基、2-ナフチルペンチル基、3-ナフチルペンチル基、4-ナフチルペンチル基、5-ナフチルペンチル基、1-ナフチルヘキシル基、2-ナフチルヘキシル基、3-ナフチルヘキシル基、4-ナフチルヘキシル基、5-ナフチルヘキシル基、6-ナフチルヘキシル基、1-ナフチルシクロヘキシル基、2-ナフチルシクロヘキシル基、3-ナフチルシクロヘキシル基、1-ナフチルヘプチル基、2-ナフチルヘプチル基、3-ナフチルヘプチル基、4-ナフチルヘプチル基、5-ナフチルヘプチル基、6-ナフチルヘプチル基、1-ナフチルオクチル基、2-ナフチルオクチル基、3-ナフチルオクチル基、4-ナフチルオクチル基、5-ナフチルオクチル基、6-ナフチルオクチル基、などのアリールアルキル基;フルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、(トリフルオロメチル)メチル基、ペンタフルオロエチル基、3-フルオロ-n-プロピル基、2-(トリフルオロメチル)エチル基、(ペンタフルオロエチル)メチル基、ヘプタフルオロ-n-プロピル基、4-フルオロ-n-ブチル基、3-(トリフルオロメチル)-n-プロピル基、2-(ペンタフルオロエチル)エチル基、(ヘプタフルオロ-n-プロピル)メチル基、ノナフルオロ-n-ブチル基、5-フルオロ-n-ペンチル基、4-(トリフルオロメチル)-n-ブチル基、3-(ペンタフルオロエチル)-n-プロピル基、2-(ヘプタフルオロ-n-プロピル)エチル基、(ノナフルオロ-n-ブチル)メチル基、パーフルオロ-n-ペンチル基、6-フルオロ-n-ヘキシル基、5-(トリフルオロメチル)-n-ペンチル基、4-(ペンタフルオロエチル)-n-ブチル基、3-(ヘプタフルオロ-n-プロピル)-n-プロピル基、2-(ノナフルオロ-n-ブチル)エチル基、(パーフルオロ-n-ペンチル)メチル基、パーフルオロ-n-ヘキシル基、7-(トリフルオロメチル)-n-ヘプチル基、6-(ペンタフルオロエチル)-n-ヘキシル基、5-(ヘプタフルオロ-n-プロピル)-n-ペンチル基、4-(ノナフルオロ-n-ブチル)-n-ブチル基、3-(パーフルオロ-n-ペンチル)-n-プロピル基、2-(パーフルオロ-n-ヘキシル)エチル基、(パーフルオロ-n-ヘプチル)メチル基、パーフルオロ-n-オクチル基、9-(トリフルオロメチル)-n-ノニル基、8-(ペンタフルオロエチル)-n-オクチル基、7-(ヘプタフルオロ-n-プロピル)-n-ヘプチル基、6-(ノナフルオロ-n-ブチル)-n-ヘキシル基、5-(パーフルオロ-n-ペンチル)-n-ペンチル基、4-(パーフルオロ-n-ヘキシル)-n-ブチル基、3-(パーフルオロ-n-ヘプチル)-n-プロピル基、2-(パーフルオロ-n-オクチル)エチル基、(パーフルオロ-n-ノニル)メチル基、パーフルオロ-n-デシル基、4-フルオロシクロペンチル基、4-フルオロシクロヘキシル基等のフルオロアルキル基;ならびにクロロメチル基、2-クロロエチル基、3-クロロ-n-プロピル基、4-クロロ-n-ブチル基、3-クロロシクロペンチル基、4-クロロシクロヘキシル基、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシシクロペンチル基、4-ヒドロキシシクロヘキシル基、3-(メタ)アクリロキシプロピル基、3-メルカプトプロピル基等を挙げることができる。
 また、R1の表す炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基としては、例えば、ビニル基、1-メチルビニル基、1-プロペニル基、アリル基(2-プロペニル基)、2-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-シクロペンテニル基、3-シクロヘキセニル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基の中では、アリールアルキル基が好ましく、クミル基がより好ましい。
 また、R1の表す炭素数6~20のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基等を挙げることができる。R1の表す炭素数6~20のアリール基のなかでは、加熱時にベンゼンを発生しにくい観点から無置換のフェニル基以外、すなわち、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基が好ましく、o-トリル基、m-トリル基、p-トリル基がより好ましい。
 また、R1の表す炭素数7~20のアラルキル基としては、例えば、ベンジル基、フェネチル基等を挙げることができる。
Examples of the halogen atom represented by R 1 include a fluorine atom and a chlorine atom.
Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group. Group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. Group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like. Among the linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms represented by R 1 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
Examples of the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and a (meth) acryloxyalkyl group. Groups and mercaptoalkyl groups. Specific examples thereof include, for example, phenylmethyl (benzyl) group, diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl). ) Group, 3-phenyl-n-propyl group, 1-phenylbutyl group, 2-phenylbutyl group, 3-phenylbutyl group, 4-phenylbutyl group, 1-phenylpentyl group, 2-phenylpentyl group, 3- Phenylpentyl group, 4-phenylpentyl group, 5-phenylpentyl group, 1-phenylhexyl group, 2-phenylhexyl group, 3-phenylhexyl group, 4-phenylhexyl group, 5-phenylhexyl group, 6-phenylhexyl Group, 1-phenylcyclohexyl group, 2-phenylcyclohexyl group, 3-phenylcyclohexyl group 1-phenylheptyl group, 2-phenylheptyl group, 3-phenylheptyl group, 4-phenylheptyl group, 5-phenylheptyl group, 6-phenylheptyl group, 1-phenyloctyl group, 2-phenyloctyl group, 3 -Phenyloctyl group, 4-phenyloctyl group, 5-phenyloctyl group, 6-phenyloctyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthyl-n-propyl group, 2-naphthyl-2- Propyl group, 3-naphthyl-n-propyl group, 1-naphthylbutyl group, 2-naphthylbutyl group, 3-naphthylbutyl group, 4-naphthylbutyl group, 1-naphthylpentyl group, 2-naphthylpentyl group, 3- Naphthylpentyl group, 4-naphthylpentyl group, 5-naphthylpentyl group, 1-naphthylhexyl group, 2-naphthyl Hexyl group, 3-naphthylhexyl group, 4-naphthylhexyl group, 5-naphthylhexyl group, 6-naphthylhexyl group, 1-naphthylcyclohexyl group, 2-naphthylcyclohexyl group, 3-naphthylcyclohexyl group, 1-naphthylheptyl group 2-naphthylheptyl group, 3-naphthylheptyl group, 4-naphthylheptyl group, 5-naphthylheptyl group, 6-naphthylheptyl group, 1-naphthyloctyl group, 2-naphthyloctyl group, 3-naphthyloctyl group, 4 -Arylalkyl groups such as naphthyloctyl group, 5-naphthyloctyl group, 6-naphthyloctyl group, etc .; fluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, (trifluoromethyl) methyl group, pentafluoroethyl group , 3-fluoro-n-propyl group, 2- (Trifluoromethyl) ethyl group, (pentafluoroethyl) methyl group, heptafluoro-n-propyl group, 4-fluoro-n-butyl group, 3- (trifluoromethyl) -n-propyl group, 2- (pentafluoro Ethyl) ethyl group, (heptafluoro-n-propyl) methyl group, nonafluoro-n-butyl group, 5-fluoro-n-pentyl group, 4- (trifluoromethyl) -n-butyl group, 3- (pentafluoro Ethyl) -n-propyl group, 2- (heptafluoro-n-propyl) ethyl group, (nonafluoro-n-butyl) methyl group, perfluoro-n-pentyl group, 6-fluoro-n-hexyl group, 5- (Trifluoromethyl) -n-pentyl group, 4- (pentafluoroethyl) -n-butyl group, 3- (heptafluoro-n-propyl) -n -Propyl group, 2- (nonafluoro-n-butyl) ethyl group, (perfluoro-n-pentyl) methyl group, perfluoro-n-hexyl group, 7- (trifluoromethyl) -n-heptyl group, 6- (Pentafluoroethyl) -n-hexyl group, 5- (heptafluoro-n-propyl) -n-pentyl group, 4- (nonafluoro-n-butyl) -n-butyl group, 3- (perfluoro-n- Pentyl) -n-propyl group, 2- (perfluoro-n-hexyl) ethyl group, (perfluoro-n-heptyl) methyl group, perfluoro-n-octyl group, 9- (trifluoromethyl) -n- Nonyl group, 8- (pentafluoroethyl) -n-octyl group, 7- (heptafluoro-n-propyl) -n-heptyl group, 6- (nonafluoro-n-butyl) -n-he Sil group, 5- (perfluoro-n-pentyl) -n-pentyl group, 4- (perfluoro-n-hexyl) -n-butyl group, 3- (perfluoro-n-heptyl) -n-propyl group Fluoroalkyl groups such as 2- (perfluoro-n-octyl) ethyl group, (perfluoro-n-nonyl) methyl group, perfluoro-n-decyl group, 4-fluorocyclopentyl group, 4-fluorocyclohexyl group; Chloromethyl group, 2-chloroethyl group, 3-chloro-n-propyl group, 4-chloro-n-butyl group, 3-chlorocyclopentyl group, 4-chlorocyclohexyl group, hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxycyclopentyl group, 4-hydroxycyclohexyl group, 3- (meth) acryloxypropyl group, 3-mercap It can be mentioned propyl group.
Examples of the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 include, for example, vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group). 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like. Of the linear, branched or cyclic substituted alkyl groups having 1 to 20 carbon atoms represented by R 1 , arylalkyl groups are preferred, and cumyl groups are more preferred.
Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group and the like. Among the aryl groups having 6 to 20 carbon atoms represented by R 1 , other than unsubstituted phenyl groups, that is, o-tolyl group, m-tolyl group, p-tolyl group, , 3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl, A tolyl group, m-tolyl group, and p-tolyl group are more preferred.
Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group and a phenethyl group.
 前記一般式(1)中、R1は独立して、水素原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~6の直鎖状、分岐状もしくは環状の置換アルキル基または炭素数6~9のアリール基であることが好ましく、水素原子、メチル基、フェニル基またはトリル基を表すことがより好ましい。
 前記一般式(1)で表されるシロキサン構造は、R1としてメチル基を含むことが、加飾層のL値を特に高めることができる観点から好ましい。
In the general formula (1), R 1 is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic group having 1 to 6 carbon atoms. Are preferably substituted alkyl groups or aryl groups having 6 to 9 carbon atoms, and more preferably represent a hydrogen atom, a methyl group, a phenyl group or a tolyl group.
The siloxane structure represented by the general formula (1) preferably contains a methyl group as R 1 from the viewpoint of particularly enhancing the L value of the decorative layer.
 前記ストレートシリコーンレジンは、R1が互いに異なる2種以上の前記一般式(1)
で表されるシロキサン構造の共重合体であることも好ましい。この場合、R1がアルキル基である前記一般式(1)で表されるシロキサン構造と、R1が水素原子、置換アルキル基またはアリール基である前記一般式(1)で表されるシロキサン構造との共重合体を好ましく挙げることができる。共重合比としては特に制限はないが、R1がアルキル基である前記一般式(1)で表されるシロキサン構造が、全ての前記一般式(1)で表されるシロキサン構造中、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。
The straight silicone resin has two or more general formulas (1) wherein R 1 are different from each other.
It is also preferable that it is a copolymer of the siloxane structure represented by these. In this case, the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group and the siloxane structure represented by the general formula (1) in which R 1 is a hydrogen atom, a substituted alkyl group, or an aryl group. And a copolymer thereof. The copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50% of all the siloxane structures represented by the general formula (1). The amount is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
 本発明に用いられるストレートシリコーンレジンとしては、分子内に前記一般式(1)で表されるシロキサン構造に加えて、下記一般式(2)で表されるシロキサン構造との共縮合からなるシロキサン構造を含有するものも好ましく使用できる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、R2は上記一般式(1)のR1と同様のものが使用できる同義であり、好ましい範囲もR1と同様である。
The straight silicone resin used in the present invention has a siloxane structure comprising a co-condensation with a siloxane structure represented by the following general formula (2) in addition to the siloxane structure represented by the general formula (1) in the molecule. The thing containing this can also be used preferably.
Figure JPOXMLDOC01-appb-C000004
In general formula (2), R 2 has the same meaning as that used for R 1 in general formula (1), and the preferred range is also the same as R 1 .
 ストレートシリコーンレジンの具体例としては、炭素数1~20のアルキル基とアルコキシ基を有するシラン化合物の縮合から調製されるアルキル系ストレートシリコーン(メチル系ストレートシリコーン等)、メチルフェニル等のアルキル・アリール系ストレートシリコーン、フェニル等のアリール系ストレートシリコーン、メチルハイドロジェン等のハイドロジェン系ストレートシリコーンが使用できる。
 より好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルフェニル系ストレートシリコーンレジン、アクリル樹脂変性シリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンであり、加熱時にベンゼンを発生せず、明度の低下抑制の観点から、特に好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンである。
 これらのシリコーン系レジンは単独で使用しても2種以上を併用してもよく、これらを任意の比率で混合することにより膜物性を制御できる。
Specific examples of straight silicone resins include alkyl straight silicones prepared from the condensation of silane compounds having an alkyl group having 1 to 20 carbon atoms and an alkoxy group (methyl straight silicones, etc.), alkyl-aryls such as methylphenyl, etc. Straight silicone, aryl straight silicone such as phenyl, and hydrogen straight silicone such as methyl hydrogen can be used.
More preferred are methyl-based straight silicone resins, methyl-tolyl-based straight silicone resins, methyl-phenyl-based straight silicone resins, acrylic resin-modified silicone resins, methyl-hydrogen-based straight silicone resins, and hydrogen-hydrogen-based straight silicone resins. From the viewpoint of preventing the decrease in lightness without generating benzene, methyl straight silicone resin, methyl tolyl straight silicone resin, methyl hydrogen straight silicone resin, and hydrogen tol straight silicone resin are particularly preferable.
These silicone resins may be used alone or in combination of two or more, and the film physical properties can be controlled by mixing them at an arbitrary ratio.
 ストレートシリコーンレジンの重量平均分子量は1000~1000000であることが好ましく、2000~800000であることがより好ましく、2500~500000であることが特に好ましい。分子量が1000以上であると、製膜性が良好となる。 The weight average molecular weight of the straight silicone resin is preferably 1000 to 1000000, more preferably 2000 to 800000, and particularly preferably 2500 to 500000. When the molecular weight is 1000 or more, the film forming property is good.
 本明細書における重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により測定することができる。具体的には、下記の条件で測定することができる。
・カラム:GPCカラム TSKgel Super HZM-H(東ソー社製)
・溶媒:テトラヒドロフラン
・標準物質:単分散ポリスチレン
The weight average molecular weight in this specification can be measured, for example, by gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions.
Column: GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation)
・ Solvent: Tetrahydrofuran ・ Standard: Monodisperse polystyrene
 変性シリコーンレジン及びストレートシリコーンレジンを調製するために使用するシラン化合物としては、
 テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトライソブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、クミルトリメトキシシラン、トリルトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、メチルトリフェノキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシランなどのトリアルコキシ、トリアシルオキシまたはトリフェノキシシラン類、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメチルジメトキシシラン、γ-メルカプトプロピルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルフェニルジエトキシシランなどのアルコキシシランまたはジアシルオキシシラン類、ジメトキシメチルシラン、トリメトキシシラン、ジメチルエトキシシラン、ジアセトキシメチルシラン、ジエトキシメチルシラン、ジエチルメチルシラン、トリエチルシラン、ブチルジメチルシラン、ジメチルフェニルシラン、メチルフェニルビニルシラン、ジフェニルメチルシラン、トリプロピルシラン、トリペンチルオキシシラン、トリフェニルシラン、トリヘキシルシラン、ジエチルシラン、アリルジメチルシラン、メチルフェニルシラン、ジフェニルシラン、フェニルシラン、オクチルシラン、1,4-ビス(ジメチルシリル)ベンゼン、および1,1,3,3-テトラメチルジシロキサン、ジメチルトリルシラン、メチルトリルビニルシラン、ジトリルメチルシラン、トリトリルシラン、ジメチルベンジルシラン、メチルベンジルビニルシラン、ジベンジルメチルシラン、トリベンジルシラン、ジフェニルシラン、2-クロロエチルシラン、ビス[(p-ジメチルシリル)フェニル]エーテル、1,4-ジメチルジシリルエタン、1,3,5-トリス(ジメチルシリル)ベンゼン、1,3,5-トリメチル-1,3,5-トリシラン、ポリ(メチルシリレン)フェニレン、及びポリ(メチルシリレン)メチレン、テトラクロロシラン、トリクロロシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、トリ-n-ブトキシシラン、トリ-sec-ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ-n-プロポキシシラン、フルオロトリ-i-プロポキシシラン、フルオロトリ-n-ブトキシシラン、フルオロトリ-sec-ブトキシシラン、メチルトリクロロシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、2-(トリフルオロメチル)エチルトリクロロシシラン、2-(トリフルオロメチル)エチルトリメトキシシラン、2-(トリフルオロメチル)エチルトリエトキシシラン、2-(トリフルオロメチル)エチルトリ-n-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-i-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-n-ブトキシシラン、2-(トリフルオロメチル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリクロロシラン、2-(パーフルオロ-n-ヘキシル)エチルトリメトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリエトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリクロロシラン、2-(パーフルオロ-n-オクチル)エチルトリメトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリエトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-sec-ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ-n-プロポキシシラン、ヒドロキシメチルトリ-i-プロポキシシラン、ヒドロキシメチルトリ-n-ブトキシシラン、ヒドロキシメチルトリ-sec-ブトキシシラン、3-(メタ)アクリロキシプロピルトリクロロシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリ-n-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-i-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-n-ブトキシシラン、3-(メタ)アクリロキシプロピルトリ-sec-ブトキシシラン、3-メルカプトプロピルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリ-n-プロポキシシラン、3-メルカプトプロピルトリ-i-プロポキシシラン、3-メルカプトプロピルトリ-n-ブトキシシラン、3-メルカプトプロピルトリ-sec-ブトキシシラン、ビニルトリクロロシラン、ビニルトリ-n-プロポキシシラン、ビニルトリ-i-プロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリ-i-プロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、フェニルトリクロロシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-i-プロポキシシラン、フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、メチルジクロロシラン、メチルジエトキシシラン、メチルジ-n-プロポキシシラン、メチルジ-i-プロポキシシラン、メチルジ-n-ブトキシシラン、メチルジ-sec-ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-i-プロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジクロロシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジエメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-i-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-sec-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジクロロシラン、(メチル)(γ-グリシドキシプロピル)ジメトキシシラン、(メチル)(γ-グリシドキシプロピル)ジエトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-i-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-sec-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジクロロシラン、(メチル)(3-メルカプトプロピル)ジ
メトキシシラン、(メチル)(3-メルカプトプロピル)ジエトキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-i-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジ-sec-ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ-n-プロポキシシラン、(メチル)(ビニル)ジ-i-プロポキシシラン、(メチル)(ビニル)ジ-n-ブトキシシラン、(メチル)(ビニル)ジ-sec-ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ-n-プロポキシシラン、ジビニルジ-i-プロポキシシラン、ジビニルジ-n-ブトキシシラン、ジビニルジ-sec-ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-i-プロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n-プロポキシトリメチルシラン、i-プロポキシトリメチルシラン、n-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、t-ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等をそれぞれ挙げることができる。但し、本発明はこれらの具体例により限定されない。
As a silane compound used to prepare a modified silicone resin and a straight silicone resin,
Tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraisobutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, propyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane , Cumyltrimethoxysilane, tolyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropi Trimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxy Silane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, β-cyanoethyltriethoxysilane, methyltriphenoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycid Xylethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypro Pyrtriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxy Propyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycid Xylbutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycid Xibutyltrimethoxy , Δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4 Epoxycyclohexyl) propyltri Trialkoxy such as toxisilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, triacyloxy or triphenoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropyl Methyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyldimethoxysilane, γ-mercaptopropyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, vinylmethyl Dimethoxysilane, vinylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethyldiethoxysilane, α-glycidoxyethyl ester Rudimethoxysilane, α-glycidoxyethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxy Propylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- Glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyl Methoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylethyldipropoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, γ-glycid Alkoxysilanes or diacyloxysilanes such as xylpropylphenyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, dimethoxymethylsilane, trimethoxysilane, dimethylethoxysilane, diacetoxymethylsilane, diethoxymethylsilane, diethylmethyl Silane, triethylsilane, butyldimethylsilane, dimethylphenylsilane, methylphenylvinylsilane, diphenylmethylsilane, tripropylsilane, tripentyloxysilane, Nylsilane, trihexylsilane, diethylsilane, allyldimethylsilane, methylphenylsilane, diphenylsilane, phenylsilane, octylsilane, 1,4-bis (dimethylsilyl) benzene, and 1,1,3,3-tetramethyldisiloxane , Dimethyltolylsilane, methyltolylvinylsilane, ditolylmethylsilane, tolylylsilane, dimethylbenzylsilane, methylbenzylvinylsilane, dibenzylmethylsilane, tribenzylsilane, diphenylsilane, 2-chloroethylsilane, bis [(p-dimethyl Silyl) phenyl] ether, 1,4-dimethyldisilylethane, 1,3,5-tris (dimethylsilyl) benzene, 1,3,5-trimethyl-1,3,5-trisilane, poly (methylsilylene) phenylene ,as well as Poly (methylsilylene) methylene, tetrachlorosilane, trichlorosilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluoro Trimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltri-n-propoxy Silane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) Tiltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (trifluoro Methyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltrimethoxy Silane, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane , 2- (Perfluoro-n-hexyl) Tiltly-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyltri Methoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxy Silane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltri Methoxysilane, hydroxy Methyltri-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) Acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3 -(Meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylto Ethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, vinyltrichlorosilane Vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, Allyltri-i-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltri-n-propoxysilane, phenyltri- -Propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, methyldichlorosilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane, Methyldi-sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, (methyl ) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) Ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i-propoxy Silane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl ) (Γ-glycidoxypropyl) dichlorosilane, (methyl) (γ-glycidoxypropyl) dimethoxysilane, (methyl) (γ-glycidoxypropyl) diethoxysilane, (methyl) (γ-glycidoxy Propyl) di-n-propoxysilane, (methyl) (γ-glycidoxypropyl) di-i-propoxysilane, (methyl) (γ-glycidoxy (Lopyl) di-n-butoxysilane, (methyl) (γ-glycidoxypropyl) di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane , (Methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) ( 3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) ( Vinyl) diethoxysilane, (methyl) (vinyl) di-n-propoxysilane, ( Methyl) (vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane , Divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, Diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane, chlorotrimethylsilane Bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane, (chloro) (Vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) (methyl) diphenylsilane Etc., respectively. However, the present invention is not limited to these specific examples.
 変性シリコーンレジン及びストレートシリコーンレジンなどの前記シリコーン系レジンとしては、市販のものを用いることができる。商品名では、例えば、
 KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9226、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-40-2460M、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR-212、KR-213、KR-217、KR-220、KR-240、KR-242A、KR-271、KR-282、KR-300、KR-311、KR-400、KR-251、KR-253、KR-255、KR-401N、KR-500、KR-510、KR-5206、KR-5230、KR-5235、KR-9218、KR-9706、KR-165(以上、信越化学工業社);
 SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
 YR3187、YR3370、TSR127B(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)
 FZ3711、FZ3722(以上、日本ユニカー社);
 DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上、チッソ社);
 メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
 エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
 グラスレジンGR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。但し、本発明はこれらの具体例により限定されない。
As the silicone resin such as a modified silicone resin and a straight silicone resin, commercially available products can be used. In the product name, for example,
KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5842, X-21-5844, X-21-5845, X-21-5845, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22-176B, X- 22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672, X-40- 9220, X-40-9225, X-40-9226, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-40- 460M, X-41-1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR-212, KR-213, KR-217, KR-220, KR- 240, KR-242A, KR-271, KR-282, KR-300, KR-311, KR-400, KR-251, KR-253, KR-255, KR-401N, KR-500, KR-510, KR-5206, KR-5230, KR-5235, KR-9218, KR-9706, KR-165 (above, Shin-Etsu Chemical Co., Ltd.);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, Toray Dow Corning);
YR3187, YR3370, TSR127B (Momentive Performance Materials Japan GK)
FZ3711, FZ3722 (Nippon Unicar Company);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, Chisso);
Methyl silicate MS51, Methyl silicate MS56 (Mitsubishi Chemical Corporation);
Ethyl silicate 28, ethyl silicate 40, ethyl silicate 48 (above, Colcoat);
Examples include partial condensates such as glass resin GR100, GR650, GR908, GR950 (above, Showa Denko). However, the present invention is not limited to these specific examples.
 ここで、本発明の透明樹脂膜は、光硬化性樹脂と光重合開始剤とを含む樹脂組成物を光硬化させて形成されなくともよく、前記透明樹脂膜の形成に用いられる樹脂組成物は、光硬化性樹脂や光重合開始剤を含んでいても含んでいなくてもよい。その中でも、前記透明樹脂膜が後述する酸化防止剤を含む場合、光重合開始剤を含まないことが、光重合開始剤に露光したときに生成するラジカルによって前記酸化防止剤の機能が阻害されず、十分にベーク後の白色度を高められる観点から好ましい。そのため、前記シリコーン系レジンは熱硬化性であることが好ましい。 Here, the transparent resin film of the present invention may not be formed by photocuring a resin composition containing a photocurable resin and a photopolymerization initiator, and the resin composition used for forming the transparent resin film is , It may or may not contain a photocurable resin or photopolymerization initiator. Among these, when the transparent resin film contains an antioxidant described later, the function of the antioxidant is not hindered by the radicals generated when exposed to the photopolymerization initiator, not containing the photopolymerization initiator. From the viewpoint of sufficiently increasing the whiteness after baking. Therefore, the silicone resin is preferably thermosetting.
-酸化防止剤-
 本発明では、前記透明樹脂膜が酸化防止剤を含むことが、ベーク後の透明樹脂膜の透明度を高める観点から好ましい。ここで、静電容量型入力装置にITOなどの透明電極パターンを形成する場合、高温でベークすることが必要となるが、酸化防止剤を添加することにより、ベーク後の透明樹脂膜の透明度を高めることができる。
 前記酸化防止剤として公知の酸化防止剤が使用できる。例えば、ヒンダードフェノール系酸化防止剤、セミヒンダードフェノール系酸化防止剤、燐酸系酸化防止剤、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤が使用できる。
 好ましくは燐酸系酸化防止剤;燐酸系酸化防止剤とヒンダードフェノール系酸化防止剤若しくはセミヒンダードフェノール系酸化防止剤の併用;または分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤である。
 前記酸化防止剤としては市販の酸化防止剤を用いることもできる。例えば、燐酸系酸化防止剤としてはIRGAFOS168、IRGAFOS38(いずれもBASFジャパン社製)を挙げることができる。燐酸/ヒンダードフェノール系酸化防止剤としてはIRGAMOD295(BASFジャパン社製)を挙げることができ、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤としてはスミライザーGP(住友化学(株)社製)を挙げることができる。
 前記酸化防止剤は、透明樹脂膜のベーク後の透明度向上の観点から燐酸系酸化防止剤であることがより好ましく、IRGAFOS168が特に好ましい。
 前記透明樹脂膜の全固形分に対する前記酸化防止剤の添加量としては、特に制限はないが、0.001~10質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.05~1質量%であることが特に好ましい。
-Antioxidant-
In the present invention, the transparent resin film preferably contains an antioxidant from the viewpoint of increasing the transparency of the transparent resin film after baking. Here, when forming a transparent electrode pattern such as ITO on the capacitive input device, it is necessary to bake at a high temperature. By adding an antioxidant, the transparency of the transparent resin film after baking is increased. Can be increased.
A known antioxidant can be used as the antioxidant. For example, hindered phenol antioxidants, semi-hindered phenol antioxidants, phosphoric acid antioxidants, and hybrid antioxidants having phosphoric acid and hindered phenol in the molecule can be used.
Preferably a phosphoric acid antioxidant; a combination of a phosphoric acid antioxidant and a hindered phenol antioxidant or a semi-hindered phenol antioxidant; or a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule is there.
A commercially available antioxidant can also be used as the antioxidant. For example, examples of the phosphoric acid antioxidant include IRGAFOS168 and IRGAFOS38 (both manufactured by BASF Japan). IRGAMOD295 (manufactured by BASF Japan) can be mentioned as a phosphoric acid / hindered phenol-based antioxidant, and Sumilizer GP (Sumitomo Chemical Co., Ltd.) as a hybrid type antioxidant having phosphoric acid and hindered phenol in the molecule. Manufactured).
The antioxidant is more preferably a phosphoric acid antioxidant from the viewpoint of improving transparency after baking of the transparent resin film, and IRGAFOS 168 is particularly preferable.
The amount of the antioxidant added to the total solid content of the transparent resin film is not particularly limited, but is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass. Preferably, it is 0.05 to 1% by mass.
-触媒-
 前記透明樹脂膜が触媒を含むことが、前記シリコーン系レジンを含む前記透明樹脂膜を硬化して脆性を改善する観点から好ましい。特に、シリコーン系レジンを2種以上用いる場合、脱水・脱アルコール縮合反応させることによる架橋促進のために好ましく用いられる。
 前記触媒として公知の触媒が使用できる。
 好ましい触媒としては、金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩のような有機金属化合物触媒が挙げられる。
 これらの中でもSn、Ti、Zn、Zr、Hf、Gaは、反応活性が高い点で好ましく、ベーク時のひび割れ防止の観点からZnまたはTiがより好ましく、ポットライフ向上の観点からZnが特に好ましい。
 亜鉛(Zn)を含有する有機金属化合物触媒としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
 スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ガリウム(Ga)を含有する有機金属化合物触媒の例としては、例えば、特開2012-238636号公報に記載の触媒を好ましく用いることができる。
 前記触媒としては市販の触媒を用いることもできる。例えば、亜鉛系縮合触媒D-15(信越化学工業式会社製)などを挙げることができる。
 前記触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ及び比率で用いてもよい。また反応促進剤や反応抑制剤と併用してもよい。
 前記触媒の含有量は、前記シリコーン系レジンに対して、0.01~10質量%であることがベーク時のひび割れ防止およびポットライフ向上の観点から好ましく、より好ましくは0.03~5.0質量%である。
-catalyst-
The transparent resin film preferably contains a catalyst from the viewpoint of improving brittleness by curing the transparent resin film containing the silicone resin. In particular, when two or more kinds of silicone resins are used, they are preferably used for promoting crosslinking by dehydration and dealcohol condensation reaction.
A known catalyst can be used as the catalyst.
As a preferable catalyst, tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum (as a metal component) Examples thereof include organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).
Among these, Sn, Ti, Zn, Zr, Hf, and Ga are preferable from the viewpoint of high reaction activity, Zn or Ti is more preferable from the viewpoint of preventing cracking during baking, and Zn is particularly preferable from the viewpoint of improving pot life.
Examples of the organometallic compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate) and the like.
Examples of organometallic compound catalysts containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf), and gallium (Ga) include, for example, the catalysts described in JP2012-238636A. It can be preferably used.
A commercially available catalyst can also be used as the catalyst. Examples thereof include zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.).
The said catalyst may be used individually by 1 type, and may use 2 or more types by arbitrary combinations and a ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
The content of the catalyst is preferably 0.01 to 10% by mass with respect to the silicone resin from the viewpoint of preventing cracking during baking and improving pot life, and more preferably 0.03 to 5.0. % By mass.
-添加剤-
 さらに、前記透明樹脂膜には、その他の添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。前記透明樹脂膜に含まれる界面活性剤の濃度は0.01質量%~10質量%が好ましい。
-Additive-
Furthermore, you may use another additive for the said transparent resin film. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060-0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706. The concentration of the surfactant contained in the transparent resin film is preferably 0.01% by mass to 10% by mass.
(厚み)
 本発明の透明樹脂膜は、厚みが5μm以上であり、10μm以上であることが好ましく、特に加飾層が白色加飾層である場合は白色加飾層の厚みを厚くすることが好ましいために20μm以上であることがより好ましい。
(Thickness)
The transparent resin film of the present invention has a thickness of 5 μm or more, preferably 10 μm or more. Particularly, when the decorative layer is a white decorative layer, it is preferable to increase the thickness of the white decorative layer. More preferably, it is 20 μm or more.
(透明樹脂膜の製造方法)
 また、透明樹脂膜の製造方法としては特に制限はないが、前記シリコーン系レジンや他の添加剤を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。
 透明樹脂膜を塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。
(Transparent resin film production method)
The method for producing the transparent resin film is not particularly limited, but can be formed by applying a preparation liquid containing the silicone resin or other additives, and the preparation liquid used for the application is a solvent. Can be used.
As the solvent for producing the transparent resin film by coating, the solvents described in paragraphs 0043 to 0044 of JP2011-95716A can be used.
[転写フィルム]
 本発明の転写フィルムは、仮支持体と、本発明の透明樹脂膜とを含むことを特徴とする。
また前記仮支持体と前記透明樹脂膜との間に熱可塑性樹脂層を有していてもよい。
[Transfer film]
The transfer film of the present invention includes a temporary support and the transparent resin film of the present invention.
Moreover, you may have a thermoplastic resin layer between the said temporary support body and the said transparent resin film.
<仮支持体>
 仮支持体としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような仮支持体の例として、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。
<Temporary support>
As the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used. Examples of such a temporary support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
 仮支持体の厚みには、特に制限はなく、5~200μmの範囲が一般的であり、取扱い易さ、汎用性などの点で、特に10~150μmの範囲が好ましい。
 また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
 また、仮支持体には、特開2005-221726号公報に記載の方法などにより、導電性を付与することができる。
The thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 μm, and in the range of easy handling and versatility, the range of 10 to 150 μm is particularly preferable.
Further, the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like.
Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
<透明樹脂膜>
 本発明の転写フィルムは、本発明の透明樹脂膜を含む。本発明の転写フィルムに用いられる透明樹脂膜は、後述の本発明の導電性積層体や静電容量型入力装置における前面板と加飾層との段差を埋めるために所望のサイズにすることが好ましい。但し、後述の本発明の導電性積層体や静電容量型入力装置の説明に記載したとおり、本発明の転写フィルムをプレカット工程などにより前面板と加飾層との段差を埋めるための所望のサイズとすることができる。そのため、本発明の転写フィルムに用いられる透明樹脂膜は、後述の本発明の導電性積層体や静電容量型入力装置における前面板と加飾層との段差を埋めるために必要なサイズと必ずしも一致させる必要はない。
 一方、後述の本発明の導電性積層体や静電容量型入力装置における前面板と加飾層との段差を埋めるために、本発明の透明樹脂膜は転写フィルムに用いる段階で、加飾層の高さと同程度の厚みに調製しておくことが好ましい。
<Transparent resin film>
The transfer film of the present invention includes the transparent resin film of the present invention. The transparent resin film used for the transfer film of the present invention may have a desired size in order to fill a step between the front plate and the decorative layer in the conductive laminate and the capacitive input device of the present invention described later. preferable. However, as described in the description of the conductive laminate and the capacitive input device of the present invention described later, the transfer film of the present invention is used to fill a step between the front plate and the decorative layer by a precut process or the like. Can be size. Therefore, the transparent resin film used for the transfer film of the present invention does not necessarily have the size necessary to fill the step between the front plate and the decorative layer in the conductive laminate and the capacitive input device of the present invention described later. There is no need to match.
On the other hand, in order to fill the step between the front plate and the decorative layer in the conductive laminate and the capacitive input device of the present invention described later, the transparent resin film of the present invention is used as a decorative layer at the stage of use for the transfer film. It is preferable that the thickness is adjusted to the same level as the height.
(透明樹脂膜の粘度)
 透明樹脂膜の100℃で測定した粘度が1~50000Pa・secの領域にあることが好ましい。
(Viscosity of transparent resin film)
The viscosity of the transparent resin film measured at 100 ° C. is preferably in the range of 1 to 50000 Pa · sec.
 ここで、各層の粘度は、次のようにして測定できる。大気圧および減圧乾燥により、熱可塑性樹脂層あるいは透明樹脂膜用塗布液から溶剤を除去して測定サンプルとし、例えば、測定器として、バイブロン(DD-III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いることができる。 Here, the viscosity of each layer can be measured as follows. The solvent is removed from the coating solution for the thermoplastic resin layer or transparent resin film by drying at atmospheric pressure and under reduced pressure to obtain a measurement sample. For example, Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) is used as a measuring instrument. Then, measurement is performed under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measurement value of 100 ° C. can be used.
<熱可塑性樹脂層>
 本発明における転写フィルムは、前記仮支持体と前記透明樹脂膜との間に熱可塑性樹脂層が設けられることが好ましい。前記熱可塑性樹脂層はアルカリ可溶性であることが好ましい。熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。)を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましい。
<Thermoplastic resin layer>
In the transfer film of the present invention, it is preferable that a thermoplastic resin layer is provided between the temporary support and the transparent resin film. The thermoplastic resin layer is preferably alkali-soluble. The thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness of the base surface (including unevenness due to already formed images, etc.), and according to the unevenness of the target surface. It is preferable to have a property that can be deformed.
 熱可塑性樹脂層は、特開平5-72724号公報に記載の有機高分子物質を成分として含む態様が好ましく、ヴィカー(Vicat)法〔具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法〕による軟化点が約80℃以下の有機高分子物質より選ばれる少なくとも1種を含む態様が特に好ましい。 The thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component. The Vicat method [specifically, a polymer obtained by American Material Testing Method ASTM D1235] An embodiment containing at least one selected from organic polymer substances having a softening point of about 80 ° C. or less according to the softening point measurement method] is particularly preferable.
 具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニルまたはそのケン化物等とのエチレン共重合体、エチレンとアクリル酸エステルまたはそのケン化物との共重合体、ポリ塩化ビニルや塩化ビニルと酢酸ビニルまたはそのケン化物等との塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステルまたはそのケン化物等とのスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステルまたはそのケン化物等とのビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等との(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N-アルコキシメチル化ナイロン、N-ジメチルアミノ化ナイロン等のポリアミド樹脂、ポリエステル、などの有機高分子が挙げられる。 Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc. Copolymer, vinyl acetate copolymer nylon, copolymer nylon N- alkoxymethyl nylon, N- dimethylamino nylon or the like of the polyamide resin, polyester, and organic polymers such as.
 また、熱可塑性樹脂層に剥離性を制御するための発泡剤等を添加することが好ましく、特開2007-225939号公報の段落0020~0028に記載のものを適宜使用することができる。 Further, it is preferable to add a foaming agent or the like for controlling peelability to the thermoplastic resin layer, and those described in paragraphs 0020 to 0028 of JP-A-2007-225939 can be used as appropriate.
 熱可塑性樹脂層に界面活性剤を添加することも好ましく、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載のものを適宜使用することができる。 It is also preferable to add a surfactant to the thermoplastic resin layer. For example, those described in Paragraph 0017 of Japanese Patent No. 4502784 and Paragraphs 0060 to 0071 of JP-A-2009-237362 can be used as appropriate.
 熱可塑性樹脂層の層厚は、3~30μmが好ましい。熱可塑性樹脂層の層厚が3μm以上の場合には、ラミネート時の追随性が十分で、下地表面の凹凸を完全に吸収しやすい。また、層厚が30μm以下である場合には、仮支持体への熱可塑性樹脂層の形成時の乾燥(溶剤除去)に負荷がかかりにくく、熱可塑性樹脂層の現像に時間を要し過ぎず、プロセス適性が良好となる。前記熱可塑性樹脂層の層厚としては、4~25μmが更に好ましく、5~20μmが特に好ましい。 The layer thickness of the thermoplastic resin layer is preferably 3 to 30 μm. When the thickness of the thermoplastic resin layer is 3 μm or more, the followability at the time of lamination is sufficient, and the unevenness of the base surface is easily absorbed. In addition, when the layer thickness is 30 μm or less, it is difficult to apply a load to drying (solvent removal) when forming the thermoplastic resin layer on the temporary support, and development of the thermoplastic resin layer does not take too much time. , Process aptitude is good. The thickness of the thermoplastic resin layer is more preferably 4 to 25 μm, and particularly preferably 5 to 20 μm.
 熱可塑性樹脂層は、熱可塑性の有機高分子を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。溶媒には、熱可塑性樹脂層を構成する高分子成分を溶解し得るものであれば特に制限なく、例えば、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、n-プロパノール、2-プロパノール等が挙げられる。 The thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent. The solvent is not particularly limited as long as it can dissolve the polymer component constituting the thermoplastic resin layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol.
 前記熱可塑性樹脂層の100℃で測定した粘度が1000~50000Pa・secの領域にあることが好ましい。 The viscosity of the thermoplastic resin layer measured at 100 ° C. is preferably in the region of 1000 to 50000 Pa · sec.
<他の層>
 本発明の転写フィルムには、透明樹脂膜と熱可塑性樹脂層との間に中間層を設けたり、あるいは透明樹脂膜の表面に保護フィルムなどを更に設けたりして好適に構成することができる。
<Other layers>
The transfer film of the present invention can be suitably configured by providing an intermediate layer between the transparent resin film and the thermoplastic resin layer, or further providing a protective film or the like on the surface of the transparent resin film.
 本発明の転写フィルムには、複数層を塗布する際および塗布後の保存の際における成分の混合を防止する目的で、中間層を設けることが好ましい。中間層としては、特開平5-72724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断膜が好ましく、露光時の感度がアップし、露光機の時間負荷を低減し得、生産性が向上する。 In the transfer film of the present invention, it is preferable to provide an intermediate layer for the purpose of preventing mixing of components when applying a plurality of layers and during storage after application. As the intermediate layer, an oxygen-blocking film having an oxygen-blocking function, which is described as “separation layer” in JP-A-5-72724, is preferable, which increases sensitivity during exposure and reduces the time load of the exposure machine. And productivity is improved.
 前記中間層および保護フィルムとしては、特開2006-259138号公報の段落0083~0087および0093に記載のものを適宜使用することができる。 As the intermediate layer and the protective film, those described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 can be appropriately used.
<転写フィルムの作製方法>
 本発明の転写フィルムは、特開2006-259138号公報の段落0094~0098に記載の感光性転写材料の作製方法に準じて作製することができる。
 具体的に中間層を有する本発明における転写フィルムを形成する場合には、仮支持体上に、熱可塑性の有機高分子と共に添加剤を溶解した溶解液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えて調製した調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製した透明樹脂膜用塗布液を塗布し、乾燥させて加飾層を積層することによって、好適に作製することができる。
<Method for producing transfer film>
The transfer film of the present invention can be produced according to the method for producing a photosensitive transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138.
Specifically, when forming the transfer film of the present invention having an intermediate layer, a solution (the coating solution for the thermoplastic resin layer) in which the additive is dissolved together with the thermoplastic organic polymer is applied onto the temporary support. After drying and providing a thermoplastic resin layer, a preparation liquid (intermediate layer coating liquid) prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer. By drying and laminating an intermediate layer, and further applying a transparent resin film coating solution prepared using a solvent that does not dissolve the intermediate layer on the intermediate layer, and drying and laminating a decorative layer , Can be suitably produced.
[導電膜積層体、静電容量型入力装置]
 本発明の導電膜積層体は、透明な前面板と、該前面板の一方の面の一部にに配置された(1)加飾層と、前記前面板の一方の面側に配置された電極パターンとを有し、前記前面板と前記(1)加飾層との段差を本発明の透明樹脂膜、あるいは、本発明の転写フィルムの前記透明樹脂膜によって埋められたことを特徴とする。
 本発明の静電容量型入力装置は、本発明の導電膜積層体を含むことを特徴とする。
[Conductive film laminate, capacitance type input device]
The conductive film laminate of the present invention was disposed on a transparent front plate, (1) a decorative layer disposed on a part of one surface of the front plate, and one surface side of the front plate. And a step between the front plate and the decorative layer is filled with the transparent resin film of the present invention or the transparent resin film of the transfer film of the present invention. .
The capacitive input device of the present invention includes the conductive film laminate of the present invention.
 本発明の導電膜積層体は、前記電極パターンが、下記(3)~(5)を含むことが本発明の導電膜積層体を、静電容量型入力装置として用いる観点から好ましい。
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
 ただし、「電極パターンが加飾層の上に配置された」とは、上記(3)~(5)のうち(3)または(4)の一部が前記加飾層の上に配置されていればよく、(3)~(5)の全てが加飾層の上に配置される必要はない。また、電極パターンは、前記加飾層に隣接して配置されていてもよく、他の層を介して配置されていてもよい。
 さらに、本発明の静電容量型入力装置は、さらに前記電極パターンが下記(6)を有していてもよい。
(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素
 また、本発明の導電膜積層体および静電容量型入力装置は、第二の電極パターンが透明電極パターンであってもよい。なお、本明細書中において第二の電極パターンの代わりに第二の透明電極パターンについて説明することがあるが、第二の電極パターンの好ましい態様も第二の透明電極パターンの好ましい態様と同様である。
 さらに本発明の導電膜積層体および静電容量型入力装置は、前記前面板の一方の面側に形成される前記(1)加飾層の、前記前面板と対向する面とは反対側の面上に、さらに(2)マスク層を設置してもよい。
 以下、本発明の導電膜積層体および静電容量型入力装置の好ましい態様について説明する。
In the conductive film laminate of the present invention, the electrode pattern preferably includes the following (3) to (5) from the viewpoint of using the conductive film laminate of the present invention as a capacitive input device.
(3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern However, “the electrode pattern is disposed on the decorative layer” means that part of (3) or (4) among the above (3) to (5) is the decorative layer All of (3) to (5) need not be arranged on the decorative layer. Moreover, the electrode pattern may be arrange | positioned adjacent to the said decoration layer, and may be arrange | positioned through another layer.
Furthermore, in the capacitance-type input device of the present invention, the electrode pattern may further include the following (6).
(6) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern; In the conductive film laminate and the capacitive input device of the present invention, the second electrode pattern may be a transparent electrode pattern. In this specification, the second transparent electrode pattern may be described instead of the second electrode pattern, but the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
Furthermore, the conductive film laminate and the capacitance-type input device of the present invention are the (1) decorative layer formed on the one surface side of the front plate on the side opposite to the surface facing the front plate. Further, (2) a mask layer may be provided on the surface.
Hereinafter, the preferable aspect of the electrically conductive film laminated body and electrostatic capacitance type input device of this invention is demonstrated.
<導電膜積層体、静電容量型入力装置の構成>
 本発明の導電膜積層体および静電容量型入力装置の構成について説明する。図14は、本発明の静電容量型入力装置の中でも好ましい構成を示す断面図である。図14において静電容量型入力装置は、透明な前面板1と、該前面板の一方の面の一部にに配置された加飾層2と、前記前面板の一方の面側に配置された電極パターン(第二の透明電極パターン4と導電性要素6)とを有し、前記前面板1と前記加飾層2との段差を本発明の透明樹脂膜9によって埋められている。さらに図14に示す静電容量型入力装置は、第一の透明電極パターン3と、絶縁層5と、透明保護層7とを有する。
 図14に示す静電容量型入力装置のように、前面板1と、加飾層2と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、透明保護層7’と、本発明の透明樹脂膜9から構成され、電極パターン(第二の透明電極パターン4と導電性要素6)は、加飾層2の上に、隣接して配置されている態様が好ましい。すなわち、前記透明樹脂膜、前記加飾層および前記電極パターンの上に、透明保護層を含むこと(ITOなどの電極パターンよりも上側に、オーバーコート層が存在すること)が、耐熱性素材ではない透明保護層を用いる場合にITOスパッタ時に透明保護層が熱変色しない観点から好ましい。
 一方、図1では、電極パターン(第二の透明電極パターン4と導電性要素6)は、加飾層2の上に、透明保護層7を介して、配置されている。図1のように、本発明の導電膜積層体および静電容量型入力装置は、前記加飾層2および前記電極パターンの間、ならびに、前記透明樹脂膜9および前記電極パターンの間に、さらに透明保護層7を含む態様でもよい。ただし、本発明の導電膜積層体は、図14に示した積層順の方が、図1に示した積層順よりも好ましい。
 加飾層2の端部はテーパー状であっても、逆テーパー状であっても、テーパー形状を形成していなくてもよい。図1では、加飾層2は端部がテーパー状である。一方、図14に示すように、加飾層2はテーパー形状を形成していなくてもよい。本発明の導電膜積層体は、前記加飾層の端部がテーパー形状であることが好ましい。
 図14および図1では、加飾層2の内径(一辺)Lは本発明の透明樹脂膜9の幅と等しい。一方、前記前面板1と前記加飾層2との段差を本発明の透明樹脂膜9で埋めたときに、本発明の趣旨に反しない限りにおいて加飾層2の内径(一辺)Lは、図15のように本発明の透明樹脂膜9の幅より広くてもよく、その逆に、図16に示すとおり、本発明の透明樹脂膜9の幅より狭くてもよい。加飾層2の厚みによる転写時の圧力のかかり方に起因して、加飾層2上に存在する透明樹脂膜9は、前面板1に直接接する透明樹脂膜9よりも、膜厚は薄くなる傾向がある。なお、本発明の透明樹脂膜9の幅は、加飾層2の内径(一辺)Lと同等以上20mm以下広いことが好ましく、同等以上10mm以下広いことがより好ましく、同等以上5mm以下広いことが、加飾層2上に存在する透明樹脂膜の端部近傍の新たな気泡混入を抑制する観点から特に好ましい。
<Structure of conductive film laminate and capacitive input device>
The structures of the conductive film laminate and the capacitance type input device of the present invention will be described. FIG. 14 is a cross-sectional view showing a preferred configuration among the capacitance-type input device of the present invention. In FIG. 14, the capacitive input device is disposed on the transparent front plate 1, the decorative layer 2 disposed on a part of one surface of the front plate, and one surface of the front plate. A step between the front plate 1 and the decorative layer 2 is filled with the transparent resin film 9 of the present invention. Further, the capacitive input device shown in FIG. 14 includes a first transparent electrode pattern 3, an insulating layer 5, and a transparent protective layer 7.
As in the capacitive input device shown in FIG. 14, the front plate 1, the decorative layer 2, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, and the conductivity An element 6, a transparent protective layer 7 ′, and the transparent resin film 9 of the present invention are formed, and an electrode pattern (second transparent electrode pattern 4 and conductive element 6) is adjacent to the decorative layer 2. Are preferably arranged. That is, a transparent protective layer is included on the transparent resin film, the decorative layer, and the electrode pattern (an overcoat layer is present above the electrode pattern such as ITO). In the case of using a transparent protective layer that is not present, it is preferable from the viewpoint that the transparent protective layer does not undergo thermal discoloration during ITO sputtering.
On the other hand, in FIG. 1, the electrode pattern (second transparent electrode pattern 4 and conductive element 6) is disposed on the decorative layer 2 via the transparent protective layer 7. As shown in FIG. 1, the conductive film laminate and the capacitance-type input device of the present invention are further provided between the decorative layer 2 and the electrode pattern, and between the transparent resin film 9 and the electrode pattern. The aspect containing the transparent protective layer 7 may be sufficient. However, in the conductive film laminate of the present invention, the stacking order shown in FIG. 14 is preferable to the stacking order shown in FIG.
The edge part of the decoration layer 2 may be a taper shape, a reverse taper shape, or may not form the taper shape. In FIG. 1, the decoration layer 2 has a tapered end. On the other hand, as shown in FIG. 14, the decoration layer 2 does not need to form a taper shape. As for the electrically conductive film laminated body of this invention, it is preferable that the edge part of the said decoration layer is a taper shape.
14 and 1, the inner diameter (one side) L of the decorative layer 2 is equal to the width of the transparent resin film 9 of the present invention. On the other hand, when the step between the front plate 1 and the decorative layer 2 is filled with the transparent resin film 9 of the present invention, the inner diameter (one side) L of the decorative layer 2 is as long as it does not contradict the spirit of the present invention. As shown in FIG. 15, it may be wider than the width of the transparent resin film 9 of the present invention, and conversely, as shown in FIG. 16, it may be narrower than the width of the transparent resin film 9 of the present invention. The transparent resin film 9 existing on the decorative layer 2 is thinner than the transparent resin film 9 in direct contact with the front plate 1 due to the pressure applied during transfer due to the thickness of the decorative layer 2. Tend to be. The width of the transparent resin film 9 of the present invention is preferably equal to or greater than the inner diameter (one side) L of the decorative layer 2 and preferably equal to or greater than 20 mm, more preferably equal to or greater than 10 mm, and equal to or greater than 5 mm. It is particularly preferable from the viewpoint of suppressing the introduction of new bubbles near the edge of the transparent resin film present on the decorative layer 2.
 前面板1は、ガラス基板等の透光性基板で構成されており、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。本明細書において、本発明の静電容量型入力装置を構成する前面板1の表面のうち、指などを接触などさせて入力が行われる面を接触面といい、前面板1の接触面とは反対側の面を非接触面1aという。以下、前面板を、「基材」と称する場合がある。 The front plate 1 is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by Corning's gorilla glass can be used. In this specification, of the surfaces of the front plate 1 constituting the capacitive input device of the present invention, the surface on which input is performed by bringing a finger or the like into contact is referred to as a contact surface, and the contact surface of the front plate 1 Is called the non-contact surface 1a. Hereinafter, the front plate may be referred to as a “base material”.
 また、前面板1の一方の面上には加飾層2を介してマスク層が設けられていてもよい。マスク層は、タッチパネル前面板の一方の面側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
 加飾層2は、タッチパネル前面板の一方の面とマスク層との間に加飾を目的に形成されてもよい。
 本発明の静電容量型入力装置には、図2に示すように、前面板1の一部の領域(図2においては入力面以外の領域)を覆うように加飾層2、マスク層(不図示)が設けられていることが好ましい。更に、前面板1には、図2に示すように前記前面板の一部に開口部8を設けることができる。開口部8には、押圧式のメカニカルなスイッチを設置することができる。基材として用いられる強化ガラスは強度が高く、加工が困難であるため、前記開口部8を形成するには強化処理前に開口部8を形成したのち、強化処理を行うのが一般的である。しかしながら、この開口部8を有した強化処理後の基板に、加飾層形成用液体レジストやスクリーン印刷インクを用いて加飾層2を形成しようとすると、開口部からのレジスト成分のモレや、前面板の境界ギリギリまで遮光パターンを形成する必要のあるマスク層と前面板の間に設けられる加飾層でのガラス端からのレジスト成分のはみ出しを生じ、基板裏側を汚染してしまうという問題が起こることがあるが、開口部8を有する基材上に転写フィルムを用いて加飾層2を形成する場合、このような問題も解決することができる。
In addition, a mask layer may be provided on one surface of the front plate 1 with a decorative layer 2 interposed therebetween. The mask layer is a frame-like pattern around the display area formed on one surface side of the front panel of the touch panel, and is formed so as not to show the lead wiring or the like.
The decoration layer 2 may be formed for the purpose of decoration between one surface of the touch panel front plate and the mask layer.
In the capacitive input device of the present invention, as shown in FIG. 2, a decorative layer 2 and a mask layer (a mask layer (covering a region other than the input surface in FIG. 2) of the front plate 1 are covered. (Not shown) is preferably provided. Further, the front plate 1 can be provided with an opening 8 in a part of the front plate as shown in FIG. A pressing mechanical switch can be installed in the opening 8. Since the tempered glass used as a base material has high strength and is difficult to process, it is general to form the opening 8 by forming the opening 8 before the tempering treatment and then performing the tempering treatment. . However, when trying to form the decorative layer 2 using the liquid resist for decorating layer formation or the screen printing ink on the substrate after the strengthening treatment having the opening 8, the resist component mole from the opening, There is a problem that the resist component protrudes from the glass edge in the decorative layer provided between the mask layer and the front plate, which needs to form a light-shielding pattern until the boundary of the front plate, and the back side of the substrate is contaminated. However, when the decorative layer 2 is formed on the base material having the opening 8 by using a transfer film, such a problem can be solved.
 前面板1の一方の面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成されている。前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する別の導電性要素6とは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO2等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。また、前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、後述の導電性繊維を用いた導電性硬化性樹脂層を有する転写フィルムを用いて製造することもできる。その他、ITO等によって第一の透明電極パターン等を形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。 On one surface of the front plate 1, a plurality of first transparent electrode patterns 3 in which a plurality of pad portions are formed extending in the first direction via connection portions, and a first transparent electrode pattern 3. And a plurality of second transparent electrode patterns 4 comprising a plurality of pad portions formed extending in a direction crossing the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 for electrically insulating the transparent electrode pattern 4 is formed. The first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6, which will be described later, are translucent, such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). The conductive metal oxide film can be used. Examples of such metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 . At this time, the film thickness of each element can be set to 10 to 200 nm. Further, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced. The first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 described later use a transfer film having a conductive curable resin layer using conductive fibers described later. Can also be manufactured. In addition, when the first transparent electrode pattern or the like is formed of ITO or the like, paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
 また、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方は、前面板1の一方の面上に配置された本発明の透明樹脂膜9および加飾層2の前面板1と対向する面とは反対側の面の両方の領域にまたがって設置することができる。図14においては、第二の透明電極パターン4が、前面板1の一方の面上に配置された本発明の透明樹脂膜9、および加飾層2の前面板1と対向する面とは反対側の面の両方の領域にまたがって第二の透明電極パターン4が設置されている図が示されている。このように、一定の厚みが必要な加飾層2と前面板裏面上に配置された本発明の透明樹脂膜9とにまたがって電極パターンを積層(例えば、後述の転写フィルムをラミネート)する場合でも、本発明の透明樹脂膜9を用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程で加飾層の境界に泡の発生や、電極パターンの断線がないラミネートが可能になる。 Further, at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the front plate 1 of the decorative layer 2. It can be installed across both areas of the opposite surface and the opposite surface. In FIG. 14, the second transparent electrode pattern 4 is opposite to the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the surface facing the front plate 1 of the decorative layer 2. The figure in which the second transparent electrode pattern 4 is installed across both regions of the side surface is shown. Thus, when laminating an electrode pattern (for example, laminating the below-mentioned transfer film) over the decoration layer 2 which needs fixed thickness, and the transparent resin film 9 of this invention arrange | positioned on the front plate back surface However, by using the transparent resin film 9 of the present invention, it is possible to laminate without the generation of bubbles at the boundary of the decorative layer and the disconnection of the electrode pattern without using expensive equipment such as a vacuum laminator. become.
 図3を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図3は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図3に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(図3における第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、前記パッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)する場合、図3に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。 The first transparent electrode pattern 3 and the second transparent electrode pattern 4 will be described with reference to FIG. FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention. As shown in FIG. 3, the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b. The second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 3). It is constituted by a plurality of pad portions that are formed. Here, when the first transparent electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be manufactured as one body, or only the connection portion 3b is manufactured and the pad portion 3a and the second portion 3b are formed. The transparent electrode pattern 4 may be integrally formed (patterned). When the pad portion 3a and the second transparent electrode pattern 4 are produced (patterned) as a single body (patterning), as shown in FIG. 3, a part of the connection portion 3b and a part of the pad portion 3a are coupled, and an insulating layer Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
 図14において、加飾層2の前面板1と対向する面とは反対側の面側には導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の導電性要素である。図14においては、別の導電性要素6が第二の透明電極パターン4に接続されている図が示されている。 In FIG. 14, the conductive element 6 is installed on the surface of the decorative layer 2 opposite to the surface facing the front plate 1. The conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Another conductive element. FIG. 14 shows a diagram in which another conductive element 6 is connected to the second transparent electrode pattern 4.
 また、図1においては、前記加飾層2および前記電極パターンの間、ならびに、前記透明樹脂膜9および前記電極パターンの間に、さらに透明保護層7が設置されている。透明保護層7は、このように各構成要素の一部のみを覆うように構成されていてもよい。前面板1の一方の面上に配置された本発明の透明樹脂膜9および加飾層2の前面板1と対向する面とは反対側の面の両方の領域にまたがって透明保護層7を設置する場合でも、本発明の透明樹脂膜9を用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程で加飾層の境界に泡の発生がないラミネートが可能になる。
 一方、図14に示すように、各構成要素の全てを覆うように透明保護層7’が設置されていることが、より好ましい。なお、図1において、さらに各構成要素の全てを覆うように透明保護層7’が図14のように設置されていてもよい。透明保護層7や7’は、オーバーコート層と呼ばれることもある。
 絶縁層5と透明保護層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と透明保護層7、7’とを構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられる。
Moreover, in FIG. 1, the transparent protective layer 7 is further installed between the said decoration layer 2 and the said electrode pattern, and between the said transparent resin film 9 and the said electrode pattern. Thus, the transparent protective layer 7 may be configured to cover only a part of each component. A transparent protective layer 7 is formed across both the regions of the transparent resin film 9 of the present invention disposed on one surface of the front plate 1 and the surface of the decorative layer 2 opposite to the surface facing the front plate 1. Even in the case of installation, by using the transparent resin film 9 of the present invention, it is possible to perform lamination without generating bubbles at the boundary of the decorative layer with a simple process without using expensive equipment such as a vacuum laminator.
On the other hand, as shown in FIG. 14, it is more preferable that a transparent protective layer 7 ′ is provided so as to cover all the components. In FIG. 1, a transparent protective layer 7 ′ may be provided as shown in FIG. 14 so as to cover all the components. The transparent protective layer 7 or 7 ′ is sometimes called an overcoat layer.
The insulating layer 5 and the transparent protective layer 7 may be made of the same material or different materials. As a material constituting the insulating layer 5 and the transparent protective layers 7 and 7 ', those having high surface hardness and high heat resistance are preferable, and known photosensitive siloxane resin materials, acrylic resin materials, and the like are used.
 本発明の静電容量型入力装置の製造過程で形成される態様例として、図4~8の態様を挙げることができる。図4は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図5は、加飾層2が形成された前面板の一例を示す上面図である。図6は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン3と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図8は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、上記説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。 Examples of the embodiment formed in the manufacturing process of the capacitive input device of the present invention include the embodiments shown in FIGS. FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed. FIG. 5 is a top view showing an example of the front plate on which the decorative layer 2 is formed. FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed. FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed. FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed. These show examples embodying the above description, and the scope of the present invention is not limitedly interpreted by these drawings.
 以下、本発明の導電膜積層体および静電容量型入力装置について、各層の詳細や各層の製造方法の好ましい態様を説明する。 Hereinafter, with respect to the conductive film laminate and the capacitance-type input device of the present invention, details of each layer and preferred modes of the manufacturing method of each layer will be described.
<加飾層>
 本発明の導電膜積層体および静電容量型入力装置は、前記前面板の一方の面側に配置された(1)加飾層を有する。
<Decoration layer>
The electrically conductive film laminated body and electrostatic capacitance type input device of this invention have (1) decoration layers arrange | positioned at the one surface side of the said front board.
 本発明の導電膜積層体および静電容量型入力装置体は、前記加飾層の厚みが5μm以上であることが好ましく、10μm以上であることがより好ましく、特に加飾層が白色加飾層である場合は白色加飾層の厚みを厚くすることが好ましいために30μm以上であることがより好ましい。
 本発明の導電膜積層体は、前記透明樹脂膜の厚みが、前記加飾層の厚みの0.2~2.0倍であることが好ましく、0.3~1.5倍であることがより好ましく、0.99~1.01倍であることが特に好ましい。
In the conductive film laminate and the capacitive input device body of the present invention, the thickness of the decorative layer is preferably 5 μm or more, more preferably 10 μm or more, and in particular, the decorative layer is a white decorative layer. When it is, since it is preferable to make the thickness of a white decoration layer thick, it is more preferable that it is 30 micrometers or more.
In the conductive film laminate of the present invention, the thickness of the transparent resin film is preferably 0.2 to 2.0 times, and preferably 0.3 to 1.5 times the thickness of the decorative layer. The ratio is more preferably 0.99 to 1.01 times.
(材料)
 前記加飾層は、着色剤を含む。
(material)
The decorative layer includes a colorant.
 黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられ、中でも、カーボンブラックが好ましい。尚、黒色着色剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。 Examples of the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable. In addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.
 白色着色剤としては、特開2009-191118号公報の段落0019や、特開2000-175718号公報の段落0109に記載の白色顔料を用いることができる。また、特開2005-7765号公報の段落0015や0114に記載の白色顔料も用いることができる。
 具体的には、本発明では、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム等の白色無機顔料が好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛がより好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)がさらに好ましく、ルチル型酸化チタンが特に好ましい。
As the white colorant, the white pigment described in paragraph 0019 of JP2009-191118A or paragraph 0109 of JP2000-175718A can be used. Also, white pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
Specifically, in the present invention, white inorganic pigments such as titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, etc. Titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is particularly preferable.
 二酸化チタンの具体例としては、JR、JRNC、JR-301、403、405、600A、605、600E、603、701、800、805、806、JA-1、C、3、4、5、MT-01、02、03、04、05、100AQ、100SA、100SAK、100SAS、100TV、100Z、100ZR、150W、500B、500H、500SA、500SAK、500SAS、500T、SMT-100SAM、100SAS、500SAM、500SAS(テイカ社製)、CR-50、50-2、57、58、58-2、60、60-2、63、67、80、85、90、90-2、93、95、97、953、Super70、PC-3、PF-690、691、711、736、737、739、740、742、R-550、580、630、670、680、780、780-2、820、830、850、855、930、980、S-305、UT771、TTO-51(A)、51(C)、55(A)、55(B)、55(C)、55(D)、S-1、S-2、S-3、S-4、V-3、V-4、MPT-136、FTL-100、110、200、300(石原産業社製)、KA-10、15、20、30、KR-310、380、KV-200、STT-30EHJ、65C-S、455、485SA15、495M、495MC(チタン工業社製)、TA-100、200、300、400、500、TR-600、700、750、840、900(富士チタン工業社製)などが挙げられ、これらを単独、もしくは混合して用いてもよい。 Specific examples of titanium dioxide include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100AQ, 100SA, 100SAK, 100SAS, 100TV, 100Z, 100ZR, 150W, 500B, 500H, 500SA, 500SAK, 500SAS, 500T, SMT-100SAM, 100SAS, 500SAM, 500SAS Manufactured), CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S-305, UT771, TTO-51 (A), 51 (C), 55 (A), 55 (B), 55 (C), 55 (D), S-1, S-2, S-3, S-4, V-3, V-4, MPT-136, FTL- 100, 110, 200, 300 (Ishihara Sangyo Co., Ltd.), KA-10, 15, 20, 30, KR-310, 380, KV-200, STT-30EHJ, 65C-S, 455, 485SA15, 495M, 495MC ( Titanium Industry Co., Ltd.), TA-100, 200, 300, 400, 500, TR-600, 700, 750, 840, 900 (Fuji Titanium Industry Co., Ltd.) and the like. It may be.
 本発明では前記白色無機顔料(特に酸化チタン)の表面はシリカ処理、アルミナ処理、チタニア処理、ジルコニア処理、有機物処理及びそれらを併用することができる。
 これにより前記白色無機顔料(特に酸化チタン)の触媒活性を抑制でき、耐熱性、褪光性等を改善することができる。
 加熱後の加飾層の白色度の観点から、本発明では前記白色顔料が無機物で表面処理されたルチル型酸化チタンであることが好ましく、アルミナ処理およびジルコニア処理のうち少なくとも一方で表面処理されたルチル型酸化チタンであることがより好ましく、アルミナ/ジルコニア併用処理で表面処理されたルチル型酸化チタンであることが特に好ましい。
In the present invention, the surface of the white inorganic pigment (particularly titanium oxide) can be used in combination with silica treatment, alumina treatment, titania treatment, zirconia treatment, organic matter treatment and the like.
Thereby, the catalytic activity of the white inorganic pigment (especially titanium oxide) can be suppressed, and heat resistance, fluorescence, etc. can be improved.
From the viewpoint of the whiteness of the decorative layer after heating, in the present invention, the white pigment is preferably a rutile type titanium oxide surface-treated with an inorganic substance, and at least one of alumina treatment and zirconia treatment was surface-treated. A rutile type titanium oxide is more preferable, and a rutile type titanium oxide surface-treated by an alumina / zirconia combined treatment is particularly preferable.
 前記その他の色の加飾層として用いるためには、特許第4546276号公報の段落0183~0185などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005-17716号公報の段落0038~0054に記載の顔料および染料、特開2004-361447号公報の段落0068~0072に記載の顔料、特開2005-17521号公報の段落0080~0088に記載の着色剤等を好適に用いることができる。 In order to use as a decorative layer of the other colors, pigments or dyes described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276 may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP-A-2005-17716, pigments described in paragraphs 0068 to 0072 of JP-A-2004-361447, paragraphs of JP-A-2005-17521 The colorants described in 0080 to 0088 can be preferably used.
 前記加飾層の全固形分に対する前記無機顔料の含有率が20~75質量%であることが、良好な明度および白色度を有し、その他の求められる特性を同時に満たす加飾層を形成する観点から好ましい。また、本発明の転写フィルムを後述の本発明の静電容量型入力装置の製造方法に用いるときに、十分に現像時間を短縮する観点からも前記加飾層の全固形分に対する前記無機顔料の含有率が20~75質量%であることが好ましい。
 前記加飾層の全固形分に対する前記無機顔料の含有率は、25~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。
 本明細書でいう全固形分とは前記加飾層から溶剤等を除いた不揮発成分の総質量を意味する。
The content of the inorganic pigment with respect to the total solid content of the decorative layer is 20 to 75% by mass to form a decorative layer having good brightness and whiteness and simultaneously satisfying other required characteristics. It is preferable from the viewpoint. Moreover, when using the transfer film of this invention for the manufacturing method of the electrostatic capacitance type input device of this invention mentioned later, also from a viewpoint of shortening development time fully, the said inorganic pigment with respect to the total solid of the said decoration layer is sufficient. The content is preferably 20 to 75% by mass.
The content of the inorganic pigment with respect to the total solid content of the decorative layer is more preferably 25 to 60% by mass, and further preferably 30 to 50% by mass.
The total solid content as used in this specification means the total mass of the non-volatile component except the solvent etc. from the said decoration layer.
 前記無機顔料(なお、その他の着色剤についても同様である)は、分散液として使用することが望ましい。この分散液は、前記無機顔料と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前記顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。 The inorganic pigment (which is the same for other colorants) is preferably used as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the inorganic pigment and the pigment dispersant in an organic solvent (or vehicle) described later. The vehicle is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it. Component (organic solvent).
 前記無機顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438頁に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。更に該文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。 The dispersing machine used for dispersing the inorganic pigment is not particularly limited. For example, a kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, First Edition, Asakura Shoten, 2000, page 438. , Known dispersing machines such as a roll mill, atrider, super mill, dissolver, homomixer, and sand mill. Further, fine grinding may be performed using frictional force by mechanical grinding described on page 310 of the document.
 本発明で用いることができる前記着色剤は、分散安定性及び隠ぺい力の観点から、一次粒子の平均粒径が0.16μm~0.3μmの着色剤が好ましく、更に0.18μm~0.27μmの着色剤が好ましい。さらに0.19μm~0.25μmの着色剤が特に好ましい。一次粒子の平均粒径が0.16μmよりも小さいと、急激に隠ぺい力が低下して加飾層の下地が見えやすくなったり、粘度上昇を起こしたりすることがある。一方、0.3μmを超えると特に白色無機顔料を用いたときに白色度が低下すると同時に急激に隠ぺい力が低下し、また塗布した際の面状が悪化する場合がある。
 尚、ここで言う「一次粒子の平均粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前記の粒径を求め、このうち、任意に選択する100個の粒径の平均値をいう。
 一方、分散液、塗布液中の平均粒径で測定する場合には、レーザー散乱HORIBA H(株式会社堀場アドバンスドテクノ社製)を用いることができる。
The colorant that can be used in the present invention is preferably a colorant having an average primary particle size of 0.16 μm to 0.3 μm, more preferably 0.18 μm to 0.27 μm, from the viewpoint of dispersion stability and hiding power. The colorant is preferred. Further, a colorant of 0.19 μm to 0.25 μm is particularly preferable. When the average particle size of the primary particles is smaller than 0.16 μm, the hiding power is suddenly lowered, and the base of the decorative layer may be easily seen or the viscosity may be increased. On the other hand, when it exceeds 0.3 μm, the whiteness is lowered particularly when a white inorganic pigment is used, and at the same time, the hiding power is suddenly lowered, and the surface condition when applied may be deteriorated.
The “average particle size of primary particles” as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and the “number average particle size” refers to the above-mentioned particle size for many particles. The diameter is determined, and among these, an average value of 100 arbitrarily selected particle diameters is referred to.
On the other hand, when measuring by the average particle diameter in a dispersion liquid and a coating liquid, laser scattering HORIBA H (made by Horiba Advanced Techno Co., Ltd.) can be used.
-バインダー樹脂-
 加飾層がバインダー樹脂を含むことが好ましい。前記バインダー樹脂としては、前記透明樹脂膜と同様のシリコーン系レジンが好ましく挙げられる。
 また、前記シリコーン系レジンを含む前記加飾層を硬化して脆性を改善する観点からは触媒を含むことが好ましい。前記触媒としては、前記透明樹脂膜と同様のものが好ましく挙げられる。
-Binder resin-
It is preferable that a decoration layer contains binder resin. The binder resin is preferably a silicone resin similar to the transparent resin film.
Moreover, it is preferable that a catalyst is included from a viewpoint of hardening the said decoration layer containing the said silicone type resin and improving a brittleness. The catalyst is preferably the same as the transparent resin film.
(加飾層の形成方法)
 前記加飾層の形成方法は、特に制限はないが、仮支持体と樹脂層とをこの順で有する転写フィルムを用いて形成することが好ましく、仮支持体と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することがより好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することが特に好ましい。例えば白色の加飾層2を形成する場合には、前記光硬化性樹脂層として白色光硬化性樹脂層を有する後述の感光性転写フィルムを用いて、前記前面板1の表面に前記白色光硬化性樹脂層を転写することで形成することが好ましい。
 前記転写フィルムを用いて加飾層を形成する場合には、樹脂層に着色剤を用いることができる。前記着色剤としては、前述の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。
(Method for forming the decoration layer)
Although there is no restriction | limiting in particular in the formation method of the said decoration layer, It is preferable to form using the transfer film which has a temporary support body and a resin layer in this order, and this temporary support body and a photocurable resin layer are made into this. It is more preferable to form using a photosensitive transfer film having in order, and it is particularly preferable to use a photosensitive transfer film having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. . For example, when the white decorative layer 2 is formed, the white light curing is performed on the surface of the front plate 1 using a photosensitive transfer film described later having a white light curing resin layer as the photocurable resin layer. It is preferable to form by transferring the conductive resin layer.
When forming a decorating layer using the said transfer film, a coloring agent can be used for a resin layer. As the colorant, the aforementioned colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used.
 図2の構成の開口部8を有する静電容量型入力装置において、図1に記載される前記加飾層2や不図示のマスク層等を、本発明の転写フィルムを用いて形成すると、開口部を有する前面板(基板)でも開口部分からレジスト成分のモレがない。特に本発明の転写フィルムを用いて形成すると、前面板の境界線直上まで遮光パターンを形成する必要のある加飾層において、ガラス端からのレジスト成分のはみ出し(モレ)がないため前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化のメリットがあるタッチパネルを製造することができる。 In the capacitance-type input device having the opening 8 configured as shown in FIG. 2, when the decorative layer 2 and the mask layer (not shown) shown in FIG. 1 are formed using the transfer film of the present invention, the opening is formed. Even the front plate (substrate) having a portion has no resist component leakage from the opening. In particular, when using the transfer film of the present invention, in the decorative layer that needs to form a light-shielding pattern just above the boundary line of the front plate, there is no protrusion of the resist component from the glass edge, so the back side of the front plate is A touch panel having advantages of thinning and light weight can be manufactured through a simple process without contamination.
 前記加飾層を、転写フィルムを用いて形成する方法について説明する。一般に転写フィルムを用いる場合、加飾層が光硬化性樹脂を含んでいれば通常のフォトリソグラフィーの方法によって形成することができる。ここで、転写フィルムは、加飾層が光硬化性樹脂を含んでいても含んでいなくてもよく、いずれの場合でも以下のハーフカットによる転写方法やダイカットによる転写方法によって、転写フィルムを用いて加飾層を形成することができる。
 ハーフカットによる転写方法では、まず、加飾層の画像部と非画像部の境界に剃刀等でプレカット後、非画像部の保護フィルム、加飾層及び中間層をテープで除去し、さらに画像部の保護フィルムを同様に除去して、基板に加飾層パターンを転写する。
 一方、ダイカットによる転写方法では、まず、図11~図13に示すように加飾層の画像部32と非画像部31の境界に剃刀等で全層を貫通するようにプレカット後、前記一部の領域の前記加飾層(非画像部31)を除去した後に残った画像部32の保護フィルムをテープで除去して、基板に加飾層パターンを転写する。
 引き続き、現像により熱可塑性樹脂層と中間層を除去することで加飾層パターンを形成することが可能である。
 必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、およびポストベークを行ってもよく、ポストベークを行うことが好ましい。
A method for forming the decorative layer using a transfer film will be described. In general, when a transfer film is used, it can be formed by an ordinary photolithography method if the decorative layer contains a photocurable resin. Here, the transfer film may or may not contain the photocurable resin in the decorative layer, and in any case, the transfer film is used depending on the transfer method by the following half cut or the transfer method by die cut. And a decorative layer can be formed.
In the transfer method by the half cut, first, after pre-cutting with a razor or the like at the boundary between the image portion and the non-image portion of the decorative layer, the protective film, the decorative layer and the intermediate layer of the non-image portion are removed with a tape, and further the image portion The protective film is similarly removed, and the decorative layer pattern is transferred to the substrate.
On the other hand, in the transfer method by die-cutting, first, as shown in FIGS. After removing the decorative layer (non-image portion 31) in the region of (2), the protective film of the image portion 32 remaining after the removal is removed with a tape, and the decorative layer pattern is transferred to the substrate.
Subsequently, the decorative layer pattern can be formed by removing the thermoplastic resin layer and the intermediate layer by development.
You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary, and post-bake is preferably performed.
 また、後の転写工程におけるラミネートによる加飾層の密着性を高めるために、予め基材(前面板)の一方の面に表面処理を施すことができる。前記表面処理としては、シラン化合物(シランカップリング剤)を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基板予備加熱でも反応を促進できる。 Also, in order to enhance the adhesion of the decorative layer by lamination in the subsequent transfer process, one surface of the base material (front plate) can be subjected to surface treatment in advance. As the surface treatment, it is preferable to carry out a surface treatment (silane coupling treatment) using a silane compound (silane coupling agent). As the silane coupling agent, those having a functional group that interacts with the photosensitive resin are preferable. For example, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed for 20 seconds by a shower, and pure water shower washing is performed. To do. Thereafter, the reaction is carried out by heating. A heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
 加飾層などの永久材を、転写フィルムを用いて形成する場合について、加飾層を形成する方法を例にして、転写フィルムを用いたパターニング方法を説明する。 In the case where a permanent material such as a decorative layer is formed using a transfer film, a patterning method using the transfer film will be described using a method of forming the decorative layer as an example.
 前記加飾層を形成する方法は、ハーフカット工程、すなわち前記転写フィルムの一部に、前記加飾層を貫通し、かつ前記仮支持体を貫通しない深さの切り込みを入れる工程と、前記切り込みによって囲まれた領域のうち少なくとも一部の領域の前記加飾層を除去する工程と、前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程と、を含むことが好ましい。
 また、前記加飾層を形成する方法は、ダイカット工程すなわち前記転写フィルムの一部に、前記加飾層から前記仮支持体を貫通する切り込みを入れる工程と、前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程と、を含むことも好ましい。
The method of forming the decorative layer is a half-cut step, that is, a step of making a cut in a depth that penetrates the decorative layer and does not penetrate the temporary support in a part of the transfer film, and the cut (1) decoration using the transfer film after removing the decoration layer in at least a part of the region surrounded by the step and removing the decoration layer in the part of the region Forming a layer.
In addition, the method for forming the decorative layer includes a die cutting step, that is, a step of making a cut through the temporary support from the decorative layer into a part of the transfer film, and the decoration of the partial region. And (1) forming a decorative layer using the transfer film after removing the layer.
 前記転写フィルムの一部に、前記加飾層を貫通し、かつ前記仮支持体を貫通しない深さの切り込みを入れる工程や、前記加飾層から前記仮支持体を貫通する切り込みを入れる工程を、加飾層のうち転写する画像部を予めプレカットする工程とも言う。 A step of making a cut in a depth that does not penetrate the temporary support and through the decorative layer in a part of the transfer film, or a step of making a cut through the temporary support from the decorative layer It is also called a step of pre-cutting an image portion to be transferred in the decorative layer.
 前記切り込みによって囲まれた領域のうち少なくとも一部の領域の前記加飾層を除去する工程を、転写しない非画像部の加飾層を除去する工程とも言う。
 さらに転写フィルムが、保護フィルムや中間層や熱可塑性樹脂層を含む場合、前記切り込みによって囲まれた領域のうち少なくとも一部の領域の前記加飾層を除去する工程は、非画像部の保護フィルム及び加飾層、並びに画像部の保護フィルムを除去する工程であることが好ましい。
The step of removing the decorative layer in at least a part of the region surrounded by the cuts is also referred to as the step of removing the decorative layer of the non-image portion that is not transferred.
Furthermore, when the transfer film includes a protective film, an intermediate layer, or a thermoplastic resin layer, the step of removing the decorative layer in at least a part of the region surrounded by the cuts is a protective film for a non-image part. And a step of removing the decorative layer and the protective film of the image portion.
 前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程を、前記画像部の加飾層を基材上に転写する転写工程とも言う。
 さらに転写フィルムが、保護フィルムや中間層や熱可塑性樹脂層を含む場合、前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程は、前記保護フィルムが除去された前記転写フィルムの前記画像部の加飾層を基材上に転写する転写工程であることが好ましい。
 この場合、さらに前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程は、基材上に転写された仮支持体を剥離する工程を含むことが好ましい。
 この場合、さらに前記一部の領域の前記加飾層を除去した後の前記転写フィルムを用いて前記(1)加飾層を形成する工程は、熱可塑性樹脂層と中間層を除去する工程を含むことが好ましい。
(1) The process of forming the decoration layer using the transfer film after removing the decoration layer of the partial area, the transfer process of transferring the decoration layer of the image part onto the substrate Also say.
Furthermore, when a transfer film contains a protective film, an intermediate | middle layer, and a thermoplastic resin layer, the said (1) decoration layer is formed using the said transfer film after removing the said decoration layer of the said one part area | region. The step is preferably a transfer step in which the decorative layer of the image portion of the transfer film from which the protective film has been removed is transferred onto a substrate.
In this case, the step of forming the decorative layer (1) using the transfer film after removing the decorative layer in the partial area further peels off the temporary support transferred onto the substrate. It is preferable that the process to include is included.
In this case, the step (1) of forming the decorative layer using the transfer film after removing the decorative layer in the partial region further includes the step of removing the thermoplastic resin layer and the intermediate layer. It is preferable to include.
 加飾層の形成方法は、転写フィルムの加飾層のうち転写する画像部を予めプレカットする工程と、非画像部の保護フィルム及び加飾層、並びに画像部の保護フィルムを除去する工程と、前記保護フィルムが除去された前記転写フィルムの前記画像部の加飾層を基材上に転写する転写工程と、基材上に転写された仮支持体を剥離する工程と、熱可塑性樹脂層と中間層を除去する工程とを有する方法がより好ましい。 The method for forming the decorative layer includes a step of pre-cutting the image portion to be transferred among the decorative layer of the transfer film, a step of removing the protective film and the decorative layer of the non-image portion, and the protective film of the image portion, A transfer step of transferring the decorative layer of the image portion of the transfer film from which the protective film has been removed onto the substrate, a step of peeling the temporary support transferred onto the substrate, a thermoplastic resin layer, A method having a step of removing the intermediate layer is more preferable.
 一方、前記加飾層が光硬化性樹脂層を有する場合に前記加飾層を形成する方法は、前記転写フィルムから前記保護フィルムを除去する保護フィルム除去工程と、前記保護フィルムが除去された前記感光性転写材料の前記光硬化性樹脂層を基材上に転写する転写工程と、を有する方法が挙げられる。この場合、さらに前記転写工程後に、転写された光硬化性樹脂層をポスト露光する工程を有することが好ましい。 On the other hand, when the decorative layer has a photocurable resin layer, the method of forming the decorative layer includes a protective film removing step of removing the protective film from the transfer film, and the protective film is removed. And a transfer step of transferring the photocurable resin layer of the photosensitive transfer material onto a substrate. In this case, it is preferable to further include a step of post-exposing the transferred photocurable resin layer after the transfer step.
(A)フォトリソグラフィー
 フォトリソグラフィー方式を用いて前記加飾層を形成する場合について、パターニング方法を説明する。
 転写フィルムは、前面板(基材)にラミネートされた後、必要なパターン様に露光され、ネガ型材料の場合は非露光部分、ポジ型材料の場合は露光部分を現像処理して除去することでパターンを得ることができる。この際、現像は熱可塑性樹脂層と、光硬化性樹脂層を別々の液で現像除去してもよいし、同一の液で除去してもよい。必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよい。
(A) Photolithography A patterning method will be described for the case where the decorative layer is formed using a photolithography method.
After the transfer film is laminated on the front plate (base material), it is exposed to the required pattern, and in the case of negative type material, the unexposed part and in the case of positive type material, the exposed part is developed and removed. A pattern can be obtained. At this time, the development may be carried out by removing the thermoplastic resin layer and the photocurable resin layer with separate liquids, or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
 前記光硬化性樹脂層を有する場合に前記透明硬化性樹脂層パターンを形成する方法は、転写フィルムから前記保護フィルムを除去する保護フィルム除去工程と、前記保護フィルムが除去された転写フィルムの前記光硬化性樹脂を含む透明硬化性樹脂層を基材上に転写する転写工程と、基材上に転写された前記光硬化性樹脂層を露光する露光工程と、露光された光硬化性樹脂層を現像してパターン画像を得る現像工程と、を有する方法が挙げられる。この場合、さらに前記転写工程後に、転写された光硬化性樹層をポスト露光する工程を有することが好ましい。 The method of forming the transparent curable resin layer pattern when having the photocurable resin layer includes a protective film removing step of removing the protective film from the transfer film, and the light of the transfer film from which the protective film has been removed. A transfer step of transferring a transparent curable resin layer containing a curable resin onto a substrate, an exposure step of exposing the photocurable resin layer transferred onto the substrate, and an exposed photocurable resin layer And a development step of obtaining a pattern image by development. In this case, it is preferable to further include a step of post-exposing the transferred photocurable resin layer after the transfer step.
-転写工程-
 前記転写工程は、前記保護フィルムが除去された転写フィルムの前記光硬化性樹脂層を基材上に転写する工程である。
 この際、転写フィルムの光硬化性樹脂層を基材にラミネート後、仮支持体を除去することによって行う方法が好ましい。
 光硬化性樹脂層の基材表面への転写(貼り合わせ)は、光硬化性樹脂層を基材表面に重ね、加圧、加熱することに行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
-Transfer process-
The transfer step is a step of transferring the photocurable resin layer of the transfer film from which the protective film has been removed onto a substrate.
At this time, a method of removing the temporary support after laminating the photocurable resin layer of the transfer film on the substrate is preferable.
Transfer (bonding) of the photocurable resin layer to the surface of the substrate is performed by stacking the photocurable resin layer on the surface of the substrate, pressurizing and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
-露光工程、現像工程、およびその他の工程-
 前記露光工程、現像工程、およびその他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。
-Exposure process, development process, and other processes-
As examples of the exposure step, the development step, and other steps, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be preferably used in the present invention.
 前記露光工程は、基材上に転写された前記光硬化性樹脂層を露光する工程である。
 具体的には、前記基材上に形成された光硬化性樹脂層の上方に所定のマスクを配置し、その後該マスク、熱可塑性樹脂層、および中間層を介してマスク上方から露光する方法が挙げられる。
 ここで、前記露光の光源としては、光硬化性樹脂層を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm2程度であり、好ましくは10~100mJ/cm2程度である。
The exposure step is a step of exposing the photocurable resin layer transferred onto the substrate.
Specifically, there is a method in which a predetermined mask is disposed above the photocurable resin layer formed on the substrate, and then exposed from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer. Can be mentioned.
Here, the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.). Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. The exposure dose is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
 前記現像工程は、露光された光硬化性樹脂層を現像する工程である。
 前記現像は、現像液を用いて行うことができる。前記現像液としては、特に制約はなく、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をする現像液が好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましいが、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。該有機溶剤の濃度は0.1質量%~30質量%が好ましい。また、前記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
The developing step is a step of developing the exposed photocurable resin layer.
The development can be performed using a developer. The developer is not particularly limited, and a known developer such as a developer described in JP-A-5-72724 can be used. The developer is preferably a developer in which the photocurable resin layer has a dissolution type development behavior. For example, a developer containing a compound having pKa = 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable. A small amount of an organic solvent miscible with water may be added. Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass. Further, a known surfactant can be added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
 前記現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディップ現像等のいずれでもよい。ここで、前記シャワー現像について説明すると、露光後の光硬化性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、熱可塑性樹脂層や中間層を設けた場合には、現像の前に光硬化性樹脂を含む透明硬化性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃~40℃が好ましく、また、現像液のpHは8~13が好ましい。 The development method may be any of paddle development, shower development, shower & spin development, dip development, and the like. Here, the shower development will be described. The uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure. In the case where a thermoplastic resin layer or an intermediate layer is provided, an alkaline liquid having a low solubility of the transparent curable resin layer containing a photocurable resin is sprayed by a shower or the like before development, and the thermoplastic resin layer, It is preferable to remove the intermediate layer and the like. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like. The liquid temperature of the developer is preferably 20 ° C. to 40 ° C., and the pH of the developer is preferably 8 to 13.
(B)プレカット工程
 加飾層の形成方法は、通常のフォトリソ方式で画像形成しない場合、転写以前に加飾層に画像部を形成する必要がある。
 プレカットの種類としては、前記転写フィルムの一部に前記加飾層を貫通し、かつ前記仮支持体を貫通しない深さの切り込みを入れる工程(ハーフカット工程)と前記加飾層から前記仮支持体を貫通する切り込みを入れる工程(ダイカット工程)がある。
(B) Pre-cut process The image forming method of a decoration layer needs to form an image part in a decoration layer before transfer, when not image-forming by a normal photolitho system.
As a kind of pre-cut, a step (half-cut step) of cutting through the decorative layer into a part of the transfer film and not penetrating the temporary support (half-cut step) and the temporary support from the decorative layer There is a process (die cutting process) for making a cut through the body.
(i)ハーフカット工程
 まず、前記加飾層を形成する方法におけるハーフカット工程、すなわち前記転写フィルムの一部に、前記加飾層を貫通し、かつ前記仮支持体を貫通しない深さの切り込みを入れる工程について、以下説明する。
 前記切り込みを入れる方法としては特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
 前記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層を貫き、熱可塑性樹脂層の一部にまで至る切り込みを入れることで、転写する画像部と転写しない非画像部の間を分離することができる。
(I) Half-cut process First, a half-cut process in the method of forming the decorative layer, that is, a cut with a depth that penetrates the decorative layer and does not penetrate the temporary support in a part of the transfer film. The process of putting in will be described below.
There is no restriction | limiting in particular as the method of making the said incision, Incision can be made by arbitrary methods, such as a blade and a laser, and it is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film in that order, for example, using a blade or a laser, from above the protective film, By cutting through the protective film, the decorative layer, and the intermediate layer and reaching part of the thermoplastic resin layer, it is possible to separate the image portion to be transferred and the non-image portion not to be transferred.
-非画像部の加飾層を除去する工程-
 ハーフカットによりプレカットした加飾層の画像部を選択的に基板に転写するには非画像部を転写させない工夫が必要となる。一つの方法は転写前に非画像部の加飾層を除去する方法であり、保護フィルム除去した後、非画像部の加飾層と中間層を同時に剥離する方法である。もう一つは非画像部上の保護フィルムを剥がし、引き続いて加飾層と中間層を同時に剥離し、さらに画像部上の保護フィルムを剥がす方法である。加飾層の画像部を転写直前まで保護する観点から、後者の方が好ましい。
-The process of removing the decorative layer in the non-image area-
In order to selectively transfer the image portion of the decorative layer precut by the half cut to the substrate, it is necessary to devise a method for not transferring the non-image portion. One method is a method of removing the decorative layer in the non-image area before transfer, and after removing the protective film, the decorative layer and the intermediate layer in the non-image area are simultaneously peeled off. The other is a method of peeling off the protective film on the non-image area, subsequently peeling off the decorative layer and the intermediate layer at the same time, and further peeling off the protective film on the image area. From the viewpoint of protecting the image portion of the decorative layer until just before transfer, the latter is preferable.
(ii)ダイカット工程
 次に、前記加飾層を形成する方法におけるダイカット工程、すなわち前記転写フィルムの一部に、前記加飾層から前記仮支持体を貫通する切り込みを入れる工程について、以下説明する。
 前記切り込みを入れる方法としてはハーフカット同様、特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
 前記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層、熱可塑性樹脂層、前記仮支持体を貫く切り込みを入れることで、転写する画像部と転写させない非画像部の間を分離することができる。
(Ii) Die-cutting step Next, the die-cutting step in the method of forming the decorative layer, that is, the step of making a cut through the temporary support from the decorative layer into a part of the transfer film will be described below. .
There is no restriction | limiting in particular as the method of making the said cut like a half cut, It can cut with arbitrary methods, such as a blade and a laser, It is preferable to make a cut with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film in that order, for example, using a blade or a laser, from above the protective film, By providing a cut through the protective film, the decorative layer, the intermediate layer, the thermoplastic resin layer, and the temporary support, it is possible to separate between the image portion to be transferred and the non-image portion not to be transferred.
 前記転写工程は、前記保護フィルムが除去された前記転写フィルムの前記加飾層を基材上に転写する工程である。
 この際、前記転写フィルムの加飾層を基材にラミネート後、仮支持体を除去することによって行う方法が好ましい。
 加飾層の基材表面への転写(貼り合わせ)は、加飾層を基材表面に重ね、加圧、加熱することに行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
The transfer step is a step of transferring the decorative layer of the transfer film from which the protective film has been removed onto a substrate.
At this time, a method is preferred in which the decorative layer of the transfer film is laminated on a substrate and then the temporary support is removed.
Transfer (bonding) of the decorative layer to the substrate surface is performed by stacking the decorative layer on the substrate surface, pressurizing and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
 前記熱可塑性樹脂層と中間層を除去する工程は、一般にフォトリソ方式で使用されるアルカリ現像液を用いて行うことができ、前記露光された光硬化性樹脂層を現像する工程において、用いられる現像液を、同様に用いることができる。 The step of removing the thermoplastic resin layer and the intermediate layer can be performed using an alkaline developer generally used in a photolithography method, and the development used in the step of developing the exposed photocurable resin layer. The liquid can be used as well.
 前記熱可塑性樹脂層と中間層を除去する工程の方式としては、前記露光された光硬化性樹脂層の現像に用いられる、パドル、シャワー、シャワー&スピン、ディップ等の方式のいずれでもよい。 The method of removing the thermoplastic resin layer and the intermediate layer may be any of paddle, shower, shower & spin, dip, etc. used for developing the exposed photocurable resin layer.
 前記転写工程後にポストベーク工程を含むことが好ましく、前記熱可塑性樹脂層と中間層を除去する工程の後にポストベークを行う工程を含むことがより好ましい。
 加飾層の形成方法は、前記転写工程後の前記加飾層を0.08~1.2atmの環境下、180~300℃で、加熱して形成することが白色度と生産性の両立の観点から好ましい。
 前記ポストベークの加熱は0.5atm以上の環境下で行うことがより好ましい。一方、1.1atm以下の環境下で行うことがより好ましく、1.0atm以下の環境下で行うことが特に好ましい。さらに、約1atm(大気圧)環境下で行うことが特別な減圧装置を用いることなく製造コストを低減できる観点からより特に好ましい。ここで、従来は前記(1)加飾層を加熱により硬化して形成する場合、非常に低い圧力の減圧環境下で行い、酸素濃度を低くすることでベーク後の白色度を維持していたが、前記シリコーン系レジンを含む加飾層用塗布液を用いて形成した転写フィルムを用いることにより、上記圧力の範囲でベークした後も加飾層の白色度を高めることができる。
 前記ポストベークの温度は、200~280℃であることがより好ましく、220~260℃であることが特に好ましい。
 前記ポストベークの時間は、20~150分であることがより好ましく、30~100分であることが特に好ましい。
 前記ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよいが、空気環境下で行うことが、特別な減圧装置を用いることなく製造コストを低減できる観点から特に好ましい。
It is preferable to include a post-baking step after the transfer step, and it is more preferable to include a step of performing post-baking after the step of removing the thermoplastic resin layer and the intermediate layer.
The decorative layer can be formed by heating the decorative layer after the transfer step in an environment of 0.08 to 1.2 atm at 180 to 300 ° C. to achieve both whiteness and productivity. It is preferable from the viewpoint.
The post-baking is more preferably performed in an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out in an environment of 1.1 atm or less, and it is particularly preferred to carry out in an environment of 1.0 atm or less. Furthermore, it is more preferable to carry out in an environment of about 1 atm (atmospheric pressure) from the viewpoint of reducing the manufacturing cost without using a special decompression device. Here, conventionally, when the decorative layer (1) is formed by curing by heating, it is performed under a reduced pressure environment of a very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration. However, by using a transfer film formed using a coating liquid for a decorative layer containing the silicone resin, the whiteness of the decorative layer can be increased even after baking in the above pressure range.
The post-baking temperature is more preferably 200 to 280 ° C., and particularly preferably 220 to 260 ° C.
The post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
The post-baking may be performed in an air environment or a nitrogen substitution environment, but it is particularly preferable to perform the post-bake from the viewpoint of reducing the manufacturing cost without using a special decompression device.
 加飾層の形成方法は、ポスト露光工程等、その他の工程を有していてもよい。
 前記加飾層が光硬化性樹脂層を有する場合に前記加飾層を形成するときは、ポスト露光工程を含むことが好ましい。前記ポスト露光工程は前記加飾層の前記基材と接している側の表面方向のみから行っても、前記透明基材と接していない側の表面方向のみから行っても、両面方向から行ってもよい。
The formation method of a decoration layer may have other processes, such as a post-exposure process.
When the said decoration layer has a photocurable resin layer and forming the said decoration layer, it is preferable that a post-exposure process is included. The post-exposure step may be performed only from the surface direction of the decorative layer on the side in contact with the base material, or from only the surface direction of the side not in contact with the transparent base material, or from both sides. Also good.
 なお、前記熱可塑性樹脂層と中間層を除去する工程、およびその他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。 As examples of the step of removing the thermoplastic resin layer and the intermediate layer and other steps, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be preferably used in the present invention. it can.
 前記光硬化性樹脂層を有する転写フィルムは、前記光硬化性樹脂層と前記仮支持体と前記熱可塑性樹脂層の他に、保護フィルムや中間層を含んでいてもよい。
 各層の好ましい構成と積層順は、本発明の転写フィルムにおいて本発明の透明樹脂膜の代わりに着色剤を含む樹脂層(好ましくは着色剤を含む光硬化性樹脂層)を用いる以外は同様である。
 前記光硬化性樹脂層を有する転写フィルムの光硬化性樹脂層は、以下の構成であることが好ましい。
The transfer film having the photocurable resin layer may include a protective film and an intermediate layer in addition to the photocurable resin layer, the temporary support, and the thermoplastic resin layer.
The preferred configuration and order of lamination of each layer is the same except that a resin layer containing a colorant (preferably a photocurable resin layer containing a colorant) is used instead of the transparent resin film of the invention in the transfer film of the invention. .
The photocurable resin layer of the transfer film having the photocurable resin layer preferably has the following configuration.
 前記光硬化性樹脂層に用いられる前記モノマーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
 前記重合性化合物としては、特許第4098550号の段落0023~0024に記載の重合性化合物を用いることができる。
There is no restriction | limiting in particular as long as it is not contrary to the meaning of this invention as said monomer used for the said photocurable resin layer, A well-known polymeric compound can be used.
As the polymerizable compound, the polymerizable compounds described in paragraphs 0023 to 0024 of Japanese Patent No. 4098550 can be used.
 前記光硬化性樹脂層に用いられる前記バインダーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
 光硬化性樹脂層を有する転写フィルムがネガ型材料である場合、光硬化性樹脂組成物には、アルカリ可溶性樹脂、重合性化合物、重合開始剤を含むことが好ましい。さらに、着色剤、添加剤、などが用いられるがこれに限られない。
 アルカリ可溶性樹脂としては、特開2011-95716号公報の段落0025、特開2010-237589号公報の段落0033~0052に記載のポリマーを用いることができる。一方、加飾層をプレカットにより形成する場合は、着色剤を有する樹脂層には、前述のとおりバインダー樹脂としてシリコーン系レジンを用いることも好ましい。
 光硬化性樹脂層を有する転写フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726記載の材料などが用いられるが、これに限られない。
The binder used in the photocurable resin layer is not particularly limited as long as it is not contrary to the gist of the present invention, and a known polymerizable compound can be used.
When the transfer film having the photocurable resin layer is a negative material, the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Furthermore, although a coloring agent, an additive, etc. are used, it is not restricted to this.
As the alkali-soluble resin, polymers described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used. On the other hand, when the decorative layer is formed by precutting, it is also preferable to use a silicone resin as the binder resin in the resin layer having the colorant as described above.
When the transfer film having the photocurable resin layer is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
 前記光硬化性樹脂層に用いられる前記光重合開始剤としては、特開2011-95716号公報に記載の段落0031~0042に記載の重合性化合物を用いることができる。 As the photopolymerization initiator used in the photocurable resin layer, the polymerizable compounds described in paragraphs 0031 to 0042 described in JP 2011-95716 A can be used.
-添加剤-
 さらに、前記光硬化性樹脂層は、添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
-Additive-
Furthermore, an additive may be used for the photocurable resin layer. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060-0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
-溶剤-
 また、光硬化性樹脂層を有する転写フィルムを塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。
-solvent-
In addition, as a solvent for producing a transfer film having a photocurable resin layer by coating, the solvents described in paragraphs 0043 to 0044 of JP-A-2011-95716 can be used.
 以上、光硬化性樹脂層を有する転写フィルムがネガ型材料である場合を中心に説明したが、前記転写フィルムは、ポジ型材料であってもよい。 Although the above description has focused on the case where the transfer film having the photocurable resin layer is a negative type material, the transfer film may be a positive type material.
(光硬化性樹脂層の粘度)
 光硬化性樹脂層の100℃で測定した粘度が2000~50000Pa・secの領域にあり、さらに次式を満たすことが好ましい。
熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度
(Viscosity of photocurable resin layer)
The viscosity of the photocurable resin layer measured at 100 ° C. is in the range of 2000 to 50000 Pa · sec, and preferably satisfies the following formula.
Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer
<透明樹脂膜>
 本発明の導電膜積層体および静電容量型入力装置は、前記前面板と前記加飾層との段差を本発明の透明樹脂膜によって埋められてなる。
<Transparent resin film>
In the conductive film laminate and the capacitive input device of the present invention, the step between the front plate and the decorative layer is filled with the transparent resin film of the present invention.
 前記前面板と前記加飾層との段差を本発明の透明樹脂膜によって埋める方法としては特に制限はないが、本発明の転写フィルムを前述の加飾層の形成方法に記載したハーフカットによる転写方法やダイカットによる転写方法を用いて、本発明の透明樹脂膜を前記加飾層の内径と同等程度の大きさに調製し、前記前面板に本発明の透明樹脂膜を転写することが好ましい。
 前記前面板に本発明の透明樹脂膜を転写する方法の好ましい態様は、前記加飾層を、前記転写フィルムを用いて形成する方法の好ましい態様と同様である。
 一方、本発明の透明樹脂膜用の液体レジスト溶液を、前記前面板と前記加飾層との段差部分に塗布または印刷し、公知の方法で硬化することにより、前記前面板と前記加飾層との段差を本発明の透明樹脂膜によって埋めてもよい。
Although there is no restriction | limiting in particular as a method of filling the level | step difference of the said front board and the said decoration layer with the transparent resin film of this invention, The transfer by the half cut described in the formation method of the above-mentioned decoration layer is used for the transfer film of this invention. It is preferable that the transparent resin film of the present invention is prepared to have a size equivalent to the inner diameter of the decorative layer by using a method or a transfer method by die cutting, and the transparent resin film of the present invention is transferred to the front plate.
A preferred embodiment of the method for transferring the transparent resin film of the present invention to the front plate is the same as the preferred embodiment of the method for forming the decorative layer using the transfer film.
Meanwhile, the front plate and the decorative layer are prepared by applying or printing the liquid resist solution for the transparent resin film of the present invention on a step portion between the front plate and the decorative layer and curing by a known method. May be filled with the transparent resin film of the present invention.
 本発明の導電膜積層体および静電容量型入力装置は、前記透明樹脂膜が、0.08~1.2atmの環境下で180~300℃に加熱されてなることが透明性と生産性の両立の観点から好ましい。加熱の好ましい態様は、前記加飾層の形成方法におけるポストベークの好ましい態様と同様である。 In the conductive film laminate and the capacitive input device according to the present invention, the transparent resin film is heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm. It is preferable from the viewpoint of compatibility. The preferable aspect of a heating is the same as the preferable aspect of the post-baking in the formation method of the said decoration layer.
<(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン>
 静電容量型入力装置の製造方法は、前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、仮支持体と光硬化性樹脂層とをこの順で有する転写フィルムによって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成することが好ましく、仮支持体と熱可塑性樹脂層と硬化性樹脂層とをこの順で有する転写フィルムによって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成することがより好ましい。
 さらに、前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、仮支持体と光硬化性樹脂層とを有する、光硬化性樹脂層を有する転写フィルムによって形成されたエッチングパターンを用いることがより好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する、光硬化性樹脂層を有する転写フィルムによって形成されたエッチングパターンを用いることが特に好ましい。
 一方、静電容量型入力装置の製造方法は、前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成することが好ましく、仮支持体と熱可塑性樹脂層と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成することがより好ましい。
 前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成するとは、具体的には、前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムの該導電性硬化性樹脂層を転写して形成することを言う。
 すなわち、前記第一の透明電極パターン3は、エッチング処理または導電性硬化性樹脂層を有する転写フィルムを用いて形成することが好ましい。
<(3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in the first direction via connection portions>
In the method of manufacturing the capacitance-type input device, at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, the temporary support and the photocurable resin layer are arranged in this order. It is preferable that the transparent conductive material is formed by etching using the etching pattern formed by the transfer film having, and the transfer film having a temporary support, a thermoplastic resin layer, and a curable resin layer in this order. More preferably, the transparent conductive material is etched by using the formed etching pattern.
Furthermore, at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element includes a temporary support and a photocurable resin layer, and a transfer film having a photocurable resin layer It is more preferable to use an etching pattern formed by a transfer film having a photocurable resin layer having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. It is particularly preferable to use it.
On the other hand, the manufacturing method of the capacitance-type input device includes at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, a temporary support, a conductive curable resin layer, Are preferably formed using a transfer film having a temporary support, a thermoplastic resin layer, and a conductive curable resin layer in this order.
Forming at least one of the first transparent electrode pattern, the second transparent electrode pattern and the conductive element using a transfer film having a temporary support and a conductive curable resin layer in this order. Specifically, a transfer film having at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, a temporary support, and a conductive curable resin layer in this order. The conductive curable resin layer is transferred and formed.
That is, the first transparent electrode pattern 3 is preferably formed using a transfer film having an etching treatment or a conductive curable resin layer.
(エッチング処理)
 エッチング処理によって、前記第一の透明電極パターン3を形成する場合、まず加飾層2または透明保護層7等が形成された前面板1の一方の面上にITO等の透明電極層をスパッタリングによって形成する。次いで、前記透明電極層上に前記光硬化性樹脂層としてエッチング用光硬化性樹脂層を有する以外は前記加飾層2の形成に用いる転写フィルムと同様の転写フィルムを用いて露光・現像によってエッチングパターンを形成する。その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
 前記光硬化性樹脂層を有する転写フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、前記方法と同様にして、レジストパターンを得ることができる。前記エッチングは、特開2010-152155公報の段落0048~0054等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。
(Etching process)
When the first transparent electrode pattern 3 is formed by etching, first, a transparent electrode layer such as ITO is sputtered on one surface of the front plate 1 on which the decorative layer 2 or the transparent protective layer 7 is formed. Form. Next, etching is performed by exposure / development using a transfer film similar to the transfer film used for forming the decorative layer 2 except that the photocurable resin layer for etching is provided as the photocurable resin layer on the transparent electrode layer. Form a pattern. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
Also when the transfer film having the photocurable resin layer is used as an etching resist (etching pattern), a resist pattern can be obtained in the same manner as in the above method. For the etching, etching or resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP2010-152155A.
 例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのエッチング液を適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。 For example, as an etching method, there is a commonly performed wet etching method of dipping in an etching solution. As an etchant used for wet etching, an acid type or alkaline type etchant may be appropriately selected in accordance with an object to be etched. Examples of acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done. As the acidic component, a combination of a plurality of acidic components may be used. In addition, alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate. A mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.
 エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、上述した加飾層を使用して形成されることにより、このような温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
 前記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm2程度)を適宜調整し行えばよい。
The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resin pattern used as an etching mask (etching pattern) in the present invention is particularly excellent for acidic and alkaline etching solutions in such a temperature range by being formed using the decorative layer described above. Demonstrate resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a cleaning process and a drying process may be performed as necessary to prevent line contamination. The cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
 次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液に基材を5~30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、前記エッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。 Next, the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes. The resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced. That is, by providing a difference in chemical temperature between the etching process and the peeling process, the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
 剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させた剥離液が挙げられる。前記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。 Examples of the stripping solution include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. A stripping solution dissolved in a mixed solution of You may peel by the spray method, the shower method, the paddle method etc. using the said peeling liquid.
(導電性硬化性樹脂層を有する転写フィルムを用いる方法)
 また、仮支持体および硬化性樹脂層を有する転写フィルムをリフトオフ材として用いて、第一の透明電極パターン、第二の透明電極パターンおよびその他の導電性部材を形成することもでき、前記転写フィルムとしては、前記光硬化性樹脂層を有する転写フィルムを挙げることができる。この場合も、前記仮支持体および硬化性樹脂層を有する転写フィルムは、前記仮支持体および前記硬化性樹脂層の間に、前記熱可塑性樹脂層を有することが好ましい。この場合、光硬化性樹脂層を有する転写フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと加飾層または光硬化性樹脂層を有する転写フィルムにおける該光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。
(Method using transfer film having conductive curable resin layer)
The transfer film having a temporary support and a curable resin layer can be used as a lift-off material to form the first transparent electrode pattern, the second transparent electrode pattern, and other conductive members. The transfer film As an example, a transfer film having the photo-curable resin layer can be used. Also in this case, the transfer film having the temporary support and the curable resin layer preferably has the thermoplastic resin layer between the temporary support and the curable resin layer. In this case, after patterning using a transfer film having a photocurable resin layer, after forming a transparent conductive layer on the entire surface of the substrate, the transfer film having a decorative layer or a photocurable resin layer together with the deposited transparent conductive layer A desired transparent conductive layer pattern can be obtained by dissolving and removing the photocurable resin layer in (lift-off method).
 導電性硬化性樹脂層を有する転写フィルムを用いて、前記第一の透明電極パターン3を形成する場合、前記前面板1の表面に前記導電性硬化性樹脂層を転写することで形成することができる。 When the first transparent electrode pattern 3 is formed using a transfer film having a conductive curable resin layer, the first transparent electrode pattern 3 may be formed by transferring the conductive curable resin layer to the surface of the front plate 1. it can.
 前記第一の透明電極パターン3を、前記導電性硬化性樹脂層を有する転写フィルムを用いて形成すると、開口部を有する前面板(基板)でも開口部分からレジスト成分のモレがなく、前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化のメリットがあるタッチパネルを製造することができる。
 さらに、第一の透明電極パターン3の形成に、導電性硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する転写フィルムを用いることで転写フィルムラミネート時の気泡発生を防止し、導電性に優れ、抵抗の少ない第一の透明電極パターン3を形成することができる。
When the first transparent electrode pattern 3 is formed using a transfer film having the conductive curable resin layer, the front plate (substrate) having an opening has no resist component leakage from the opening, and the back side of the front plate. In a simple process, the touch panel can be manufactured with a merit of thinning and weight reduction.
Furthermore, in forming the first transparent electrode pattern 3, a transfer film having a specific layer structure having a thermoplastic resin layer between the conductive curable resin layer and the temporary support is used to laminate the transfer film. Bubble generation is prevented, and the first transparent electrode pattern 3 having excellent conductivity and low resistance can be formed.
 また、前記転写フィルムが導電性硬化性樹脂層を有する場合は、前記導電性硬化性樹脂層に導電性繊維等が含有される。 Further, when the transfer film has a conductive curable resin layer, the conductive curable resin layer contains conductive fibers and the like.
~導電性硬化性樹脂層(導電性繊維)~
 前記導電性硬化性樹脂層を積層した転写フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを導電性硬化性樹脂層に用いることができる。
-Conductive curable resin layer (conductive fiber)-
When the transfer film on which the conductive curable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, the following conductive fibers can be used for the conductive curable resin layer.
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
 ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが1nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
 前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。
There is no restriction | limiting in particular as a structure of an electroconductive fiber, Although it can select suitably according to the objective, A solid structure or a hollow structure is preferable.
Here, the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”. A conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
In addition, a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 μm to 1,000 μm, and having a hollow structure may be referred to as “nanotube”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
-金属ナノワイヤー-
--金属--
 前記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
-Metal nanowires-
--metal--
The material of the metal nanowire is not particularly limited. For example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
 前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
 前記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
 前記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable.
Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
--形状--
 前記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 前記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前記「断面の各辺」の合計長さに対する前記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前記鋭利度は60%以下が好ましく、50%以下がより好ましい。前記鋭利度が75%を超えると、該角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。前記鋭利度の下限は、30%が好ましく、40%がより好ましい。
--shape--
There is no restriction | limiting in particular as a shape of the said metal nanowire, According to the objective, it can select suitably, For example, it can take arbitrary shapes, such as a column shape, a rectangular parallelepiped shape, and the column shape from which a cross section becomes a polygon. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 9, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise. The lower limit of the sharpness is preferably 30%, more preferably 40%.
--平均短軸長さおよび平均長軸長さ--
 前記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10nm~40nmが更に好ましく、15nm~35nmが特に好ましい。
 前記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
 前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
--- Average minor axis length and average major axis length--
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
The average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
 前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
 前記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
 前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。
The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowires was measured using, for example, a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX), and 300 metal nanowires were observed. The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
 導電性硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1~20μmが好ましく、0.5~18μmが更に好ましく、1~15μmが特に好ましい。前記導電性硬化性樹脂層の全固形分に対する前記導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01~50質量%が好ましく、0.05~30質量%が更に好ましく、0.1~20質量%が特に好ましい。 The thickness of the conductive curable resin layer is preferably from 0.1 to 20 μm, more preferably from 0.5 to 18 μm, from the viewpoint of process stability such as the stability of the coating solution and the drying time during coating and the development time during patterning. 1 to 15 μm is preferable. The content of the conductive fiber with respect to the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoint of conductivity and stability of the coating solution. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
<(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン> <(4) A plurality of second electrode patterns composed of a plurality of pad portions that are electrically insulated from the first transparent electrode pattern and extend in a direction crossing the first direction>
 第二の電極パターンは、透明電極パターンであることが好ましい。前記第二の透明電極パターン4は、前記エッチング処理または前記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。そのときの好ましい態様は、前記第一の透明電極パターン3の形成方法と同様である。 The second electrode pattern is preferably a transparent electrode pattern. The second transparent electrode pattern 4 can be formed by using the etching process or a transfer film having the conductive curable resin layer. A preferred embodiment at that time is the same as the method for forming the first transparent electrode pattern 3.
<(5)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層>
 絶縁層5を形成する場合には、前記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する前記光硬化性樹脂層を有する転写フィルムを用いて、第一の透明電極パターンが形成された前記前面板1の表面に絶縁性の光硬化性樹脂層を転写することで形成することができる。
 尚、転写フィルムを用いて絶縁層を形成する場合、絶縁層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。
<(5) Insulating layer that electrically insulates the first transparent electrode pattern and the second transparent electrode pattern>
When the insulating layer 5 is formed, a first transparent electrode pattern is formed using a transfer film having the photocurable resin layer having an insulating photocurable resin layer as the photocurable resin layer. Further, it can be formed by transferring an insulating photocurable resin layer to the surface of the front plate 1.
When forming an insulating layer using a transfer film, the thickness of the insulating layer is preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm, more preferably 0.5 to 3 μm from the viewpoint of maintaining insulation. 2 μm is particularly preferable.
<(6)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素>
 前記別の導電性要素6は、前記エッチング処理または前記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。
<(6) Conductivity that is electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern and is different from the first transparent electrode pattern and the second transparent electrode pattern Element>
The another conductive element 6 can be formed using the etching process or a transfer film having the conductive curable resin layer.
<(7)透明保護層>
 透明保護層7を形成する場合には、前記光硬化性樹脂層として透明の光硬化性樹脂層を有する前記光硬化性樹脂層を有する転写フィルムを用いて、各要素が形成された前記前面板1の表面に透明の光硬化性樹脂層を転写することで形成することができる。
 転写フィルムを用いて透明保護層を形成する場合、透明保護層の層厚は、十分な表面保護能を発揮させる観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。
<(7) Transparent protective layer>
When forming the transparent protective layer 7, the front plate on which each element is formed using a transfer film having the photocurable resin layer having a transparent photocurable resin layer as the photocurable resin layer It can be formed by transferring a transparent photocurable resin layer to the surface of 1.
In the case of forming a transparent protective layer using a transfer film, the thickness of the transparent protective layer is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, from the viewpoint of exhibiting sufficient surface protection ability. Particularly preferred is ˜3 μm.
《画像表示装置》
 本発明の静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
<Image display device>
An image display device including the capacitive input device of the present invention as a constituent element is “latest touch panel technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Touch Panel Technology and Development. The configurations disclosed in CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
 以下、本発明を実施例により更に具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。
Hereinafter, the present invention will be described more specifically with reference to examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below. Unless otherwise specified, “%” and “parts” are based on mass.
[実施例1]
~段差埋め込み用の転写フィルムの作製~
 厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層の上に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、中間層の上に、透明樹脂膜用塗布液:処方C1を塗布し、乾燥させて、実施例1の透明樹脂膜を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が35μmの実施例1の透明樹脂膜を設けた。透明樹脂膜は、白色加飾層の額縁の内径と同等の大きさを有する。最後に、実施例1の透明樹脂膜の上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と実施例1の透明樹脂膜と保護フィルムとが一体となった段差埋め込み用の実施例1の転写フィルムを作製した。
[Example 1]
-Production of transfer film for embedding steps-
On a polyethylene terephthalate film (temporary support) having a thickness of 75 μm, a thermoplastic resin layer coating solution: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied on the thermoplastic resin layer and dried to form an intermediate layer. Furthermore, the transparent resin film coating liquid: Formulation C1 was applied on the intermediate layer and dried to form the transparent resin film of Example 1. Thus, the thermoplastic resin layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the transparent resin film of Example 1 having a dry film thickness of 35 μm on the temporary support. Provided. The transparent resin film has a size equivalent to the inner diameter of the frame of the white decorative layer. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin film of Example 1. In this way, the transfer film of Example 1 for step embedding was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin film of Example 1 and the protective film were integrated.
(熱可塑性樹脂層用塗布液:処方H1)
・メタノール                   :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート:6.36質量部
・メチルエチルケトン               :52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジル
メタクリレート/メタクリル酸共重合体(共重合組成比(モル比)
=55/11.7/4.5/28.8、
重量平均分子量=10万、Tg(ガラス転移温度)≒70℃)
                         :5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、
 重量平均分子量=1万、Tg≒100℃)     :13.6質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製)
                          :9.1質量部
・界面活性剤(フッ素系ポリマー、商品名:メガファックF780F、
 大日本インキ化学工業(株)製)         :0.54質量部
 上記のフッ素系ポリマーは、C613CH2CH2OCOCH=CH2 40部とH(OCH(CH3)CH27OCOCH=CH2 55部とH(OCHCH27OCOCH=CH2 5部との共重合体で、重量平均分子量3万、メチルエチルケトン30質量%溶液である。
 なお、熱可塑性樹脂層用塗布液:処方H1の溶剤除去後の120℃の粘度は1500Pa・secであった。
(Coating solution for thermoplastic resin layer: Formulation H1)
Methanol: 11.1 parts by mass Propylene glycol monomethyl ether acetate: 6.36 parts by mass Methyl ethyl ketone: 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio) (Molar ratio)
= 55 / 11.7 / 4.5 / 28.8,
Weight average molecular weight = 100,000, Tg (glass transition temperature) ≒ 70 ° C)
: 5.83 parts by mass-Styrene / acrylic acid copolymer (copolymerization composition ratio (molar ratio) = 63/37,
Weight average molecular weight = 10,000, Tg≈100 ° C.): 13.6 parts by mass / monomer 1 (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.)
: 9.1 parts by mass / surfactant (fluorine polymer, trade name: Megafak F780F,
Manufactured by Dainippon Ink and Chemicals Incorporated): 0.54 parts by mass The above fluorine-containing polymer, C 6 F 13 CH 2 CH 2 OCOCH = CH 2 40 parts of H (OCH (CH 3) CH 2) 7 OCOCH = a copolymer of CH 2 55 parts of H (OCHCH 2) 7 OCOCH = CH 2 5 parts, weight average molecular weight 30,000, methyl ethyl ketone 30 wt% solution.
The viscosity at 120 ° C. after removing the solvent from the coating solution for thermoplastic resin layer: Formulation H1 was 1500 Pa · sec.
(中間層用塗布液:処方P1)
・ポリビニルアルコール              :32.2質量部
(商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン              :14.9質量部
(商品名:K-30、アイエスピー・ジャパン(株)製)
・蒸留水                      :524質量部
・メタノール                    :429質量部
(Coating liquid for intermediate layer: prescription P1)
Polyvinyl alcohol: 32.2 parts by mass (trade name: PVA205, manufactured by Kuraray Co., Ltd., saponification degree = 88%, polymerization degree 550)
・ Polyvinylpyrrolidone: 14.9 parts by mass (trade name: K-30, manufactured by IS Japan Co., Ltd.)
-Distilled water: 524 parts by mass-Methanol: 429 parts by mass
(透明樹脂膜用塗布液:処方C1)
・メチルエチルケトン(東燃化学(株)製)       :20質量部
・シリコーンレジンKR-300(信越化学工業(株)製;ストレートシリコーンのキシレン溶液(固形分50質量%)):268質量部
・酸化防止剤(Irgafos168、BASF(株)製):0.25質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製):1質量部
(Coating liquid for transparent resin film: prescription C1)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 20 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd .; xylene solution of straight silicone (solid content: 50% by mass)): 268 parts by mass (Irgafos 168, manufactured by BASF Corp.): 0.25 parts by mass. Surfactant (trade name: Megafac F-780F, manufactured by DIC Corp.): 1 part by mass
~タッチパネル用白色加飾層(額縁形状)形成用転写フィルムL1の作製~
 厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、加飾層用塗布液:処方L1を塗布し、乾燥させて加飾層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が35μmの白色の加飾層を設けた。最後に、加飾層上の保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と加飾層と保護フィルムとが一体となった白色加飾層形成用転写フィルムを作製した。
-Production of transfer film L1 for forming white decorative layer (frame shape) for touch panel-
On a polyethylene terephthalate film (temporary support) having a thickness of 75 μm, a thermoplastic resin layer coating solution: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Further, a decorative layer coating solution: Formula L1 was applied and dried to form a decorative layer. In this way, a thermoplastic resin layer having a dry film thickness of 15.1 μm, an intermediate layer having a dry film thickness of 1.6 μm, and a white decorative layer having a dry film thickness of 35 μm were provided on the temporary support. . Finally, a protective film (thickness 12 μm polypropylene film) on the decorative layer was pressure-bonded. In this way, a transfer film for forming a white decorative layer was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the decorative layer, and the protective film were integrated.
(加飾層用塗布液:処方L1)
・メチルエチルケトン(東燃化学(株)製)       :56質量部
・シリコーンレジンKR-300(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分50質量%)):584質量部
・シリコーン樹脂用触媒 D-15(信越化学工業(株)製;
 キシレン溶液(固形分25質量%))         :12質量部
・白色顔料分散物1(下記の組成)          :346質量部
・酸化防止剤(Irgafos168、BASF(株)製)    :0.6質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
                          :2.2質量部
(Coating liquid for decorative layer: Formula L1)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 56 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Straight silicone xylene solution (solid content 50% by mass): 584 parts by mass. Silicone resin catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Xylene solution (solid content: 25% by mass): 12 parts by mass, white pigment dispersion 1 (the following composition): 346 parts by mass, antioxidant (Irgafos168, manufactured by BASF Corp.): 0.6 parts by mass, interface Activator (Brand name: MegaFuck F-780F, manufactured by DIC Corporation)
: 2.2 parts by mass
-白色顔料分散物1の組成-
・酸化チタン(石原産業製CR97;アルミナ/ジルコニア処理ルチル型、
 一次粒子径0.25μm)            :70.0質量%
・ベンジルメタクリレート/メタクリル酸=72/28モル比の
 ランダム共重合物(重量平均分子量3.7万)    :3.5質量%
・メチルエチルケトン(東燃化学(株)製)     :26.5質量%
-Composition of white pigment dispersion 1-
・ Titanium oxide (CR97 manufactured by Ishihara Sangyo; alumina / zirconia-treated rutile type,
Primary particle diameter 0.25 μm): 70.0 mass%
-Random copolymer of benzyl methacrylate / methacrylic acid = 72/28 molar ratio (weight average molecular weight 37,000): 3.5% by mass
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 26.5% by mass
 A5サイズの打ち抜き前の白色加飾層形成用転写フィルムを、CO2レーザーカッター(L-CPNC550、クライムプロダクツ株式会社製)を用いて、白色加飾層形成用転写フィルムのすべて(保護フィルム、加飾層、中間層、熱可塑性樹脂層および仮支持体)を保護フィルム側から貫通させて、打ち抜いた。打ち抜き後の白色加飾層形成用転写フィルムは、図3に示すように、外周部42、直線部分を有する枠内部41、および直線部分を有する配線取出し部43が形成されている。
 この打ち抜きにより、図10の形状を有する打ち抜き後の白色加飾層形成用転写フィルムが形成された。
Using a CO 2 laser cutter (L-CPNC550, manufactured by Climb Products Co., Ltd.), transfer the white decorative layer-forming transfer film (protective film, A decorative layer, an intermediate layer, a thermoplastic resin layer, and a temporary support were penetrated from the protective film side and punched out. As shown in FIG. 3, the white decorative layer-forming transfer film after punching is formed with an outer peripheral portion 42, a frame interior 41 having a straight portion, and a wiring extraction portion 43 having a straight portion.
By this punching, a white decorative layer forming transfer film after punching having the shape of FIG. 10 was formed.
~加飾層(額縁形状)が形成された前面板の作製~
 開口部(15mmΦ)が形成された強化処理ガラス(300mm×400mm×0.7mm)を透明な前面板(ガラス基材)として用い、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。このガラス基材を基材予備加熱装置で90℃、2分間予備加熱した。
-Preparation of front plate with decorative layer (frame shape)-
Using glass (300 mm × 400 mm × 0.7 mm) tempered glass with an opening (15 mmΦ) as a transparent front plate (glass substrate) and spraying a glass detergent solution adjusted to 25 ° C. for 20 seconds with a shower Washed with a rotating brush with nylon bristles, washed with pure water shower, then silane coupling liquid (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by weight aqueous solution, trade name: KBM603, Shin-Etsu Chemical Co., Ltd.) (Made by Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water. This glass substrate was preheated at 90 ° C. for 2 minutes with a substrate preheating apparatus.
 図11および12に示すように刃33で打ち抜かれた白色加飾層形成用転写フィルム(打ち抜き後の白色加飾層形成用転写フィルム)に対して、テープを用いて非画像部31の保護フィルム25のみを剥離し、同様にテープを用いて非画像部31の加飾層24と中間層23の2層を同時に剥離した。さらに画像部32に対応する領域の保護フィルム25のみを剥離した。
 保護フィルム25を剥離後に露出した画像部32の加飾層24の表面と、前記90℃で予備加熱したシランカップリング処理済みの強化処理ガラスの表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.5m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体21を、熱可塑性樹脂層22との界面で剥離し、仮支持体21を除去した。
 これにより、前記ガラス基材の画像部32には加飾層24、中間層23および熱可塑性樹脂層22が白色加飾層形成用転写フィルムから転写され、前記ガラス基材の非画像部31には熱可塑性樹脂層22のみが白色加飾層形成用転写フィルムから転写された。
As shown in FIGS. 11 and 12, the white decorative layer forming transfer film punched with the blade 33 (the white decorative layer forming transfer film after punching) is protected with a tape. Only 25 was peeled off, and similarly, the two layers of the decorative layer 24 and the intermediate layer 23 of the non-image part 31 were peeled off simultaneously using a tape. Further, only the protective film 25 in the region corresponding to the image portion 32 was peeled off.
The surface of the decorative layer 24 of the image portion 32 exposed after peeling off the protective film 25 and the surface of the tempered glass that has been preheated at 90 ° C. and that has been subjected to the silane coupling treatment are overlapped to form a laminator (Co., Ltd.). ) Using Hitachi Industries (Lamic II type)), lamination was performed at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveying speed of 2.5 m / min. Subsequently, the polyethylene terephthalate temporary support 21 was peeled off at the interface with the thermoplastic resin layer 22 to remove the temporary support 21.
As a result, the decorative layer 24, the intermediate layer 23, and the thermoplastic resin layer 22 are transferred from the white decorative layer forming transfer film to the image portion 32 of the glass substrate, and are transferred to the non-image portion 31 of the glass substrate. Only the thermoplastic resin layer 22 was transferred from the white decorative layer forming transfer film.
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、30℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、前記ガラス基材の画像部32の熱可塑性樹脂層22と中間層23、並びに非画像部31の熱可塑性樹脂層22とを除去した。引き続き、このガラス基材の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけてガラス基材上の液だまりを減らした。
 その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行なって加飾層24を形成し、ガラス基材の上面に、膜厚35μmの加飾層が形成された前面板を得た。
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the intermediate layer 23 of the image portion 32 and the thermoplastic resin layer 22 of the non-image portion 31 of the glass substrate. Subsequently, air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce a liquid pool on the glass base material.
Thereafter, post-baking treatment was performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm) to form a decorative layer 24, and a decorative layer having a thickness of 35 μm was formed on the upper surface of the glass substrate. A front plate was obtained.
~透明樹脂膜のはめ込み~
 A5サイズの打ち抜き前の段差埋め込み用の実施例1の転写フィルムを、CO2レーザーカッター(L-CPNC550、クライムプロダクツ株式会社製)を用いて、段差埋め込み用の転写フィルムのすべて(保護フィルム、透明樹脂膜、中間層、熱可塑性樹脂層および仮支持体)を保護フィルム側から貫通させて、打ち抜いた。打ち抜き後の段差埋め込み用の転写フィルムは、白色加飾層(額縁形状)の内部(白色加飾層が形成されていない領域)にはまるように、打ち抜かれている。
-Inserting transparent resin film-
Using the CO 2 laser cutter (L-CPNC550, manufactured by Crime Products Co., Ltd.), the transfer film for embedding the steps (protective film, transparent) A resin film, an intermediate layer, a thermoplastic resin layer, and a temporary support were penetrated from the protective film side and punched out. The transfer film for embedding the step after punching is punched so as to fit inside the white decorative layer (frame shape) (region where the white decorative layer is not formed).
 加飾層が形成された前面板を、基材予備加熱装置で90℃、2分間予備加熱した。
 打ち抜き後の段差埋め込み用の実施例1の転写フィルムに対して、テープを用いて非画像部の保護フィルムのみを剥離し、同様にテープを用いて非画像部の透明樹脂膜と中間層の2層を同時に剥離した。さらに画像部に対応する領域の保護フィルムのみを剥離した。
 保護フィルムを剥離した後に露出した画像部の透明樹脂膜の表面と、前記90℃で予備加熱したシランカップリング処理済みの強化処理ガラスの表面とが接するように、また段差埋め込み用の実施例1の転写フィルムが白色加飾層の額縁内に隙間無く、かつ、白色加飾層の上に盛り上がらないようにはめこまれるようにし(白色加飾層の内径と同等)、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.5m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。
The front plate on which the decorative layer was formed was preheated at 90 ° C. for 2 minutes with a base material preheating device.
For the transfer film of Example 1 for embedding a step after punching, only the protective film of the non-image part is peeled off using a tape, and the transparent resin film and the intermediate layer 2 of the non-image part are similarly peeled off using the tape. The layers were peeled simultaneously. Further, only the protective film in the region corresponding to the image area was peeled off.
Example 1 for embedding a step so that the surface of the transparent resin film in the image area exposed after peeling off the protective film is in contact with the surface of the tempered glass pretreated at 90 ° C. and subjected to the silane coupling treatment. Laminator (Hitachi Co., Ltd.) was designed so that the transfer film of the white decorative layer was fitted so that there was no gap in the frame of the white decorative layer and did not rise above the white decorative layer (equivalent to the inner diameter of the white decorative layer). Lamination was performed at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveyance speed of 2.5 m / min. Subsequently, the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support.
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、30℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、前記ガラス基材の画像部32の熱可塑性樹脂層22と中間層23、並びに非画像部31の熱可塑性樹脂層22とを除去した。引き続き、このガラス基材の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけてガラス基材上の液だまりを減らした。
 その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行ない、白色加飾層の額縁内に実施例1の透明樹脂膜が隙間無く、かつ、白色加飾層の上に盛り上がらないようにはめこまれた前面板を得た。
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the intermediate layer 23 of the image portion 32 and the thermoplastic resin layer 22 of the non-image portion 31 of the glass substrate. Subsequently, air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce a liquid pool on the glass base material.
Thereafter, post-baking treatment is performed at 240 ° C. for 60 minutes in the air under atmospheric pressure (1 atm), and the transparent resin film of Example 1 has no gap in the frame of the white decorative layer. The front plate was obtained so that it would not rise up.
(透明性の評価)
 上記のとおり作製した、白色加飾層の額縁内に透明樹脂膜をはめ込んだ前面板を60人に観察させ、下記評価基準に従い透明樹脂膜の透明性を評価した。実用レベルはC以上である。
  〈評価基準〉
A:黄色味を帯びていると認識した人数  0~1人
B:黄色味を帯びていると認識した人数  2~3人
C:黄色味を帯びていると認識した人数  4~5人
D:黄色味を帯びていると認識した人数  6~10人
E:黄色味を帯びていると認識した人数  11人以上
 評価結果を下記表1に記載した。
(Evaluation of transparency)
The front plate with the transparent resin film fitted in the frame of the white decorative layer produced as described above was observed by 60 people, and the transparency of the transparent resin film was evaluated according to the following evaluation criteria. The practical level is C or higher.
<Evaluation criteria>
A: Number of people recognized as yellowish 0 to 1 B: Number of people recognized as yellowish 2 to 3 people C: Number of people recognized as yellowish 4 to 5 people D: Number of people recognized as yellowish 6-10 people E: Number of people recognized as yellowish 11 or more Evaluation results are shown in Table 1 below.
~静電容量型入力装置の製造~
《第一の透明電極パターンの形成》
<透明電極層の形成>
 加飾層、該加飾層の段差を埋め込んだ透明樹脂膜が形成された前面板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
-Manufacture of capacitive input devices-
<Formation of first transparent electrode pattern>
<Formation of transparent electrode layer>
A front plate on which a decorative layer and a transparent resin film in which a step of the decorative layer is embedded is formed is introduced into a vacuum chamber, and an ITO target having a SnO 2 content of 10 mass% (indium: tin = 95: 5). (Molar ratio)) is used to form an ITO thin film having a thickness of 40 nm by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode layer is formed. A formed front plate was obtained. The surface resistance of the ITO thin film was 80Ω / □.
<エッチング用転写フィルムE1の作製>
 前記白色加飾層形成用転写フィルムL1の作製において、前記加飾層用塗布液:処方L1に代えて、エッチング用光硬化性樹脂層用塗布液:処方E1を用いた以外は白色加飾層形成用転写フィルムL1の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、エッチング用光硬化性樹脂層および保護フィルムとが一体となった、エッチング用転写フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。
<Preparation of transfer film E1 for etching>
In the production of the white decorative layer forming transfer film L1, the white decorative layer was used except that the decorative layer coating solution: prescription L1 was used instead of the etching photocurable resin layer coating solution: prescription E1. The transfer film for etching in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the photocurable resin layer for etching, and the protective film are integrated as in the production of the transfer film for formation L1. E1 was obtained (the film thickness of the photocurable resin layer for etching was 2.0 μm).
(エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体
 (共重合体組成(質量%):31/40/29、質量平均分子量60000、
 酸価163mgKOH/g)              :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノ
 メタクリレート0.5モル付加物             :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジ
 メタノールモノアクリレート             :2.8質量部
・2-クロロ-N-ブチルアクリドン         :0.42質量部
・2,2-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール                  :2.17質量部
・ロイコクリスタルバイオレット           :0.26質量部
・フェノチアジン                 :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製)
                          :0.03質量部
・メチルエチルケトン                  :40質量部
・1-メトキシ-2-プロパノール            :20質量部
(Coating liquid for photocurable resin layer for etching: prescription E1)
Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, mass average molecular weight 60000,
Acid value 163 mg KOH / g): 16 parts by mass Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.6 parts by mass Tetraethylene oxide monomethacrylate 0.5 mol addition of hexamethylene diisocyanate Product: 7 parts by mass-cyclohexane dimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass-2-chloro-N-butylacridone: 0.42 parts by mass-2,2 -Bis (o-chlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole: 2.17 parts by mass, leuco crystal violet: 0.26 parts by mass, phenothiazine: 0.013 parts by mass, surfactant (Product name: Megafuck F-780F, Dainippon Inn (Ki Co., Ltd.)
: 0.03 parts by mass · Methyl ethyl ketone: 40 parts by mass · 1-methoxy-2-propanol: 20 parts by mass
<第一の透明電極パターンの形成>
 加飾層の形成における強化処理ガラスの洗浄と同様にして、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、透明電極層を形成した前面板を、洗浄し、次いで保護フィルムを除去したエッチング用転写フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面と該エッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm2(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理し、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに130℃、30分間のポストベーク処理を行って、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。
<Formation of first transparent electrode pattern>
In the same manner as the cleaning of the tempered glass in the formation of the decorative layer, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, and the front plate on which the transparent electrode layer is formed are cleaned, and then the protective film is applied. The removed transfer film E1 for etching was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveyance speed 2.2 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 μm, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 25 ° C. Developed for 100 seconds, washed with surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) 10 times with pure water) at 33 ° C. for 20 seconds, The front plate was rubbed with a rotating brush, and the residue was removed by spraying pure water from an ultra-high pressure cleaning nozzle. Further, a post-baking treatment at 130 ° C. for 30 minutes is performed to form a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a transparent electrode layer, and a photocurable resin layer pattern for etching. Obtained.
 加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒間処理(エッチング処理)し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を得た。 An ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) is used as a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a transparent electrode layer, and a photocurable resin layer pattern for etching. ), And 100 seconds of treatment (etching treatment) to dissolve and remove the exposed transparent electrode layer that is not covered with the photo-curable resin layer for etching. A front plate with a transparent electrode layer pattern with a transparent resin film in which the step of the layer was embedded and a photocurable resin layer pattern for etching was obtained.
 次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)、液温45℃)を入れたレジスト剥離槽に浸漬し、200秒間処理(剥離処理)し、エッチング用光硬化性樹脂層を除去し、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、前記前面板の一方の面および前記加飾層の前記前面板と対向する面とは反対側の面の両方の領域にまたがって図14のように設置された第一の透明電極パターンとを形成した前面板を得た。 Next, a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd., liquid temperature 45 ° C), immersed in a resist stripping tank, treated for 200 seconds (peeling treatment), removed the photocurable resin layer for etching, decorated layer, The transparent resin film in which the step is embedded, the first surface of the front plate, and the surface of the decorative layer that is disposed on both sides of the surface opposite to the surface facing the front plate are installed as shown in FIG. A front plate having one transparent electrode pattern was obtained.
《絶縁層の形成》
<絶縁層形成用転写フィルムW1の作製>
 加飾層形成用転写フィルムL1の作製において、加飾層用塗布液:処方L1に代えて、絶縁層形成用塗布液:処方W1を用いた以外は加飾層形成用転写フィルムL1の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、絶縁層用光硬化性樹脂層および保護フィルムとが一体となった、絶縁層形成用転写フィルムW1を得た(絶縁層用光硬化性樹脂層の膜厚は1.4μm)。
<Formation of insulating layer>
<Preparation of transfer film W1 for forming an insulating layer>
In the production of the decorative layer-forming transfer film L1, the decorative layer-forming transfer film L1 was prepared in place of the decorative layer-forming coating solution: Formula W1, instead of the insulating layer-forming coating solution: Formula W1. Similarly, a transfer film W1 for forming an insulating layer was obtained in which a temporary support, a thermoplastic resin layer, an intermediate layer (oxygen barrier film), a photocurable resin layer for an insulating layer, and a protective film were integrated ( The film thickness of the photocurable resin layer for the insulating layer is 1.4 μm).
(絶縁層形成用塗布液:処方W1)
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、質量平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-プロパノール、メチルエチルケトン溶液(固形分:45%)):12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)
のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
                          :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株)製
:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:
25%)                    :0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、
 大阪有機化学工業(株)製)            :1.8質量部
・ジエチルチオキサントン             :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-
 [4-(4-モルホリニル)フェニル]-1-ブタノン
 (商品名:Irgacure379、BASF製) :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製)   :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製)
                         :0.05質量部
・メチルエチルケトン               :23.3質量部
・MMPGAc(ダイセル化学(株)製)      :59.8質量部
 なお、絶縁層形成用塗布液W1の溶剤除去後の100℃の粘度は4000Pa・secであった。
(Insulating layer forming coating solution: Formula W1)
Binder 3 (cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) glycidyl methacrylate adduct (d) (composition (mass%): a / b / c / d = 46/1 / 10/43, mass average molecular weight: 36000, acid value 66 mgKOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%)): 12.5 parts by mass DPHA (dipentaerythritol hexaacrylate) Manufactured by Nippon Kayaku Co., Ltd.)
Propylene glycol monomethyl ether acetate solution (76% by mass)
: 1.4 parts by mass, urethane monomer (trade name: NK Oligo UA-32P, manufactured by Shin-Nakamura Chemical Co., Ltd .: non-volatile content 75%, propylene glycol monomethyl ether acetate:
25%): 0.68 parts by mass. Tripentaerythritol octaacrylate (trade name: V # 802,
Osaka Organic Chemical Industry Co., Ltd.): 1.8 parts by mass. Diethylthioxanthone: 0.17 parts by mass. 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1-
[4- (4-morpholinyl) phenyl] -1-butanone (trade name: Irgacure 379, manufactured by BASF): 0.17 parts by mass Dispersant (trade name: Solsperse 20000, manufactured by Avicia): 0.19 parts by mass, interface Activator (Brand name: Megafuck F-780F, manufactured by Dainippon Ink)
: 0.05 parts by mass-Methyl ethyl ketone: 23.3 parts by mass-MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the solvent of the coating liquid W1 for forming the insulating layer is 4000 Pa.・ It was sec.
 加飾層の形成における強化処理ガラス基板の洗浄と同様にして、前記加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン付の前面板を洗浄した後、シランカップリング処理し、保護フィルムを除去した絶縁層形成用転写フィルムW1をラミネートした(基材温度:100℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.3m/分)。仮支持体を剥離後、露光マスク(絶縁層用パターンを有す石英露光マスク)面と絶縁層との間の距離を100μmに設定し、露光量30mJ/cm2(i線)でパターン露光した。 In the same manner as the cleaning of the tempered glass substrate in the formation of the decorative layer, after washing the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the front plate with the first transparent electrode pattern, A transfer film W1 for forming an insulating layer, which was subjected to silane coupling treatment and from which the protective film was removed, was laminated (base material temperature: 100 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveyance speed 2.3 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the insulating layer was set to 100 μm, and pattern exposure was performed at an exposure amount of 30 mJ / cm 2 (i-line). .
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で60秒間現像処理し、さらに、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて、25℃で50秒間現像処理した。次いで、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理し、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに230℃、60分間のポストベーク処理を行って、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。 Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 33 ° C. Using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by Fuji Film Co., Ltd.) diluted 5 times with pure water) at 25 ° C. for 60 seconds. Developed for 50 seconds. Next, using a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) diluted 10-fold with pure water), cleaning was performed at 33 ° C. for 20 seconds, and the surface was cleaned with a rotating brush. The residue was removed by rubbing the face plate and spraying pure water from an ultra-high pressure cleaning nozzle. Further, a post-baking treatment at 230 ° C. for 60 minutes was performed to obtain a front plate on which a decorative layer, a transparent resin film in which a step of the decorative layer was embedded, a first transparent electrode pattern, and an insulating layer pattern were formed.
《第二の透明電極パターンの形成》
<透明電極層の形成>
 前記第一の透明電極パターンの形成と同様にして、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターンを形成した前面板を、DCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
<< Formation of second transparent electrode pattern >>
<Formation of transparent electrode layer>
In the same manner as the formation of the first transparent electrode pattern, a front plate on which a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, and an insulating layer pattern is formed is formed using a DC magnetron. Sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), forming an ITO thin film with a thickness of 80 nm, and transparent in which a decorative layer and a step of the decorative layer are embedded A front plate on which a resin film, a first transparent electrode pattern, an insulating layer pattern, and a transparent electrode layer were formed was obtained. The surface resistance of the ITO thin film was 110Ω / □.
 第一の透明電極パターンの形成と同様にして、エッチング用転写フィルムE1を用いて、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)して、次いで、エッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、前記前面板の一方の面および前記加飾層の前記前面板と対向する面とは反対側の面の両方の領域にまたがって図1のように設置された第二の透明電極パターンを形成した前面板を得た。
Similarly to the formation of the first transparent electrode pattern, using the etching transfer film E1, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, A front plate on which a transparent electrode layer and a photocurable resin layer pattern for etching were formed was obtained (post-bake treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, an etching process (30 ° C., 50 seconds) is performed, and then the photocurable resin layer for etching is removed (peeling process: 45 ° C., 200 seconds). The decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, one surface of the front plate and the surface of the decorative layer facing the front plate A front plate having a second transparent electrode pattern formed as shown in FIG. 1 across both regions on the opposite surface was obtained.
《第一および第二の透明電極パターンとは別の導電性要素の形成》
 前記第一、および第二の透明電極パターンの形成と同様にして、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板を、DCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
<< Formation of Conductive Element Separate from First and Second Transparent Electrode Pattern >>
Similarly to the formation of the first and second transparent electrode patterns, a decorative layer, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, an insulating layer pattern, a second transparent The front plate on which the electrode pattern was formed was subjected to DC magnetron sputtering treatment to obtain a front plate on which a 200 nm thick aluminum (Al) thin film was formed.
 前記第一、および第二の透明電極パターンの形成と同様にして、エッチング用転写フィルムE1を用いて、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、アルミニウム薄膜、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)し、次いでエッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
Similarly to the formation of the first and second transparent electrode patterns, using the etching transfer film E1, a decorative layer, a transparent resin film in which the step of the decorative layer is embedded, and the first transparent electrode pattern A front plate on which an insulating layer pattern, a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching were formed was obtained (post-bake treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, by etching (30 ° C., 50 seconds), and then removing the photocurable resin layer for etching (peeling treatment: 45 ° C., 200 seconds), The decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the conductivity different from the first and second transparent electrode patterns A front plate on which the elements were formed was obtained.
<透明保護層の作製>
(透明保護層-Aの形成方法)
 特開2012-78528号公報の実施例1に記載の感光性樹脂層用塗布液処方1を用いて、同公報の段落0103~0113に記載の方法に従い、仮支持体(PET)と熱可塑性樹脂層と中間層と感光性樹脂層とが一体となった感光性転写フィルムを作製した。
 実施例1の透明樹脂膜を埋め込んだ白色加飾層(額縁形状)を有する前面板(加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板)上に、作製した感光性転写フィルムの感光性樹脂層を、仮支持体(PET)との界面で剥離したのち、熱可塑性樹脂層および中間層と共に転写した(層形成工程)。
 次に、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、熱可塑性樹脂層側からi線、40mJ/cm2にて全面露光した。次に、トリエタノールアミン系現像液(トリエタノールアミン30%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍(T-PD2を1部と純水9部の割合で混合)に希釈した液)を30Cで60秒間、フラットノズル圧力0.04MPaでシャワー現像し、熱可塑性樹脂と中間層を除去した。引き続き、このガラス基材の上面(感光性樹脂層側)にエアを吹きかけて液きりした後、純水をシャワーにより10秒間吹きつけ、洗浄し、エアを吹きかけてガラス基材上の液だまりを減らした。次に、基板を230℃下で60分間加熱処理(ポストベーク)を行い、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを積層した前面板を得て、実施例1の静電容量型入力装置とした。
<Preparation of transparent protective layer>
(Method for forming transparent protective layer-A)
Using the coating solution formulation 1 for photosensitive resin layer described in Example 1 of JP2012-78528A, according to the method described in paragraphs 0103 to 0113 of the same publication, a temporary support (PET) and a thermoplastic resin A photosensitive transfer film in which a layer, an intermediate layer, and a photosensitive resin layer were integrated was produced.
Front plate having a white decorative layer (frame shape) embedded with the transparent resin film of Example 1 (decorative layer, transparent resin film embedded with a step of the decorative layer, first transparent electrode pattern, insulating layer pattern) , A second transparent electrode pattern, a front plate on which a conductive element different from the first and second transparent electrode patterns is formed) on the photosensitive resin layer of the produced photosensitive transfer film, a temporary support ( After peeling at the interface with PET), it was transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).
Next, using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp, the entire surface was exposed from the thermoplastic resin layer side at i line and 40 mJ / cm 2 . Next, triethanolamine developer (containing 30% triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) 10 times with pure water (1 part of T-PD2 and 9 parts of pure water). The mixture was diluted to 30) at 30 C for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer. Subsequently, air was blown onto the upper surface (photosensitive resin layer side) of the glass substrate to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, washed, and air was blown to remove a liquid pool on the glass substrate. Reduced. Next, the substrate is heat-treated at 230 ° C. for 60 minutes (post-bake), the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second A transparent electrode pattern, a conductive plate different from the first and second transparent electrode patterns, and a front plate on which a transparent protective layer-A was laminated were obtained, and the capacitive input device of Example 1 was obtained.
(透明保護層転写後の白色加飾層(額縁形状)近傍の気泡取り込み状態の評価)
 実施例1の透明樹脂膜を埋めこんだ白色加飾層(額縁形状)を有する前面板を、前面板の加飾層を形成した面、および加飾層を形成した面とは反対側の面を反射光及び透過光を用いて顕微鏡にて観察し、下記基準にしたがって白色加飾層近傍の気泡取り込み状態を評価した。B以上が実用レベルである。
(Evaluation of air bubble entrapment in the vicinity of the white decorative layer (frame shape) after transfer of the transparent protective layer)
The front plate having the white decorative layer (frame shape) embedded with the transparent resin film of Example 1, the surface on which the decorative layer of the front plate is formed, and the surface opposite to the surface on which the decorative layer is formed Was observed with a microscope using reflected light and transmitted light, and the state of air bubble in the vicinity of the white decorative layer was evaluated according to the following criteria. B and above are practical levels.
〈評価基準〉
A:白色加飾層(額縁形状)近傍に気泡の取り込みは、全く認められず、極めて良好。
B:白色加飾層(額縁形状)近傍に気泡の取り込みが数個認められたが、加飾層を形成した面とは反対側の面からは認識できず、良好。
C:白色加飾層(額縁形状)近傍に気泡の取り込みがかなりの個数認められ、加飾層を形成した面とは反対側の面からも気泡が観察され、極めて悪いレベル。
 評価結果を下記表1に記載した。
<Evaluation criteria>
A: No entrapment of bubbles is observed in the vicinity of the white decorative layer (frame shape), which is very good.
B: Although several bubbles were found in the vicinity of the white decorative layer (frame shape), it was not recognized from the surface opposite to the surface on which the decorative layer was formed, which is good.
C: A considerable number of bubbles were found in the vicinity of the white decorative layer (frame shape), and bubbles were observed from the surface opposite to the surface on which the decorative layer was formed.
The evaluation results are shown in Table 1 below.
(電極パターンの断線の評価)
 電極パターンの断線の有無を表面抵抗値を用いて検討し、下記基準にしたがって評価を行なった。B以上が実用レベルである。
(Evaluation of disconnection of electrode pattern)
The presence or absence of disconnection of the electrode pattern was examined using the surface resistance value and evaluated according to the following criteria. B and above are practical levels.
〈評価基準〉
 A:10Ω/□未満
 B:10Ω/□以上、10Ω/□未満
 C:10Ω/□以上
 評価結果を下記表1に記載した。
<Evaluation criteria>
A: Less than 10 2 Ω / □ B: 10 2 Ω / □ or more and less than 10 3 Ω / □ C: 10 3 Ω / □ or more Evaluation results are shown in Table 1 below.
[実施例2~12]
 実施例1の透明樹脂膜用塗布液:処方C1の調製において、シリコーンレジンKR-300に代えて、シリコーンレジンKR-311(実施例2)、シリコーンレジンKR-282(実施例3)、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分等量混合物(実施例4)、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分質量比3:7の混合物(実施例5)、シリコーンレジンKR-271(実施例6)、シリコーンレジンKR-255(実施例7)、シリコーンレジンKR-242A(実施例8)、シリコーンレジンKR-251(実施例9)、シリコーンレジンKR-251とX-40-9246の固形分質量比9:1の混合物(実施例10)アクリル変性シリコーンレジンKR-9706(実施例11)、ポリエステル変性シリコーンレジンKR-5230(実施例12)を用いた以外は実施例1の透明樹脂膜用塗布液:処方C1の調製と同様にして(固形分添加量は同じ。)、すなわち、下記表1に示すバインダーを含む透明樹脂膜用塗布液:処方C2~C12を用いた以外は実施例1と同様にして、実施例2~12の段差埋め込み用の転写フィルムを作製した。
 実施例1で用いた段差埋め込み用の転写フィルムに代えて、作製した実施例2~12の段差埋め込み用の転写フィルムをそれぞれ用いた以外は実施例1の透明樹脂膜のはめ込みと同様にして、白色加飾層の額縁内に透明樹脂膜をはめ込み、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例2~12の静電容量型入力装置とした。
 実施例2~12の静電容量型入力装置を実施例1と同様にして評価した結果を下記表1に記載した。
[Examples 2 to 12]
Coating liquid for transparent resin film of Example 1: Silicone resin KR-311 (Example 2), silicone resin KR-282 (Example 3), silicone resin instead of silicone resin KR-300 in the preparation of formulation C1 KR-300 and silicone resin KR-311 solid content mixture (Example 4), Silicone resin KR-300 and silicone resin KR-311 solid content mass ratio 3: 7 mixture (Example 5), Silicone resin KR-271 (Example 6), silicone resin KR-255 (Example 7), silicone resin KR-242A (Example 8), silicone resin KR-251 (Example 9), silicone resin KR-251 and X- 40-9246 A mixture with a solid content mass ratio of 9: 1 (Example 10) Acrylic-modified silicone resin KR-970 (Example 11), except that the polyester-modified silicone resin KR-5230 (Example 12) was used. ) That is, a transparent resin film coating solution containing the binder shown in Table 1 below: A transfer film for embedding steps of Examples 2 to 12 was prepared in the same manner as in Example 1 except that the formulations C2 to C12 were used. did.
In place of the step-embedding transfer film of Examples 2 to 12 that were used in place of the step-embedding transfer film used in Example 1, in the same manner as the embedding of the transparent resin film of Example 1, A transparent resin film is fitted into the frame of the white decorative layer, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first A front plate on which a conductive element different from the first and second transparent electrode patterns and the transparent protective layer-A were formed was produced, and the capacitive input devices of Examples 2 to 12 were obtained.
The results of evaluating the capacitive input devices of Examples 2 to 12 in the same manner as in Example 1 are shown in Table 1 below.
[比較例1]
 実施例1において、段差埋め込み用転写フィルムを転写せず、すなわち、白色加飾層の額縁の内部に透明樹脂が存在しない状態とした以外は実施例1と同様にして、白色加飾層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、比較例1の静電容量型入力装置とした。
 比較例1の静電容量型入力装置を実施例1と同様にして評価した結果を下記表1に記載した。
[Comparative Example 1]
In Example 1, the step of embedding the step-embedded transfer film, that is, in the same manner as in Example 1 except that the transparent resin is not present inside the frame of the white decorative layer, the white decorative layer, A front plate on which a transparent element pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are formed is prepared. 1 capacitance type input device.
The results of evaluating the capacitive input device of Comparative Example 1 in the same manner as in Example 1 are shown in Table 1 below.
[比較例2および3]
 実施例1の透明樹脂膜用塗布液:処方C1の調製において、シリコーンレジンKR-300に代えて、アクリル樹脂であるメチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃)(比較例2)、またはアクリル樹脂であるベンジルメタクリレート/メタクリル酸=68/32モル比のランダム共重合物、重量平均分子量5.0万)(比較例3)を用いた以外は実施例1と同様にして(固形分添加量は同じ。)、すなわち下記表1に示すバインダーを用いた以外は実施例1と同様にして、白色加飾層の額縁内に透明樹脂膜を埋め込み、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、それぞれ比較例2および3の静電容量型入力装置とした。
 比較例2および3の静電容量型入力装置を実施例1と同様にして評価した結果を下記表1に記載した。
[Comparative Examples 2 and 3]
Example 1 Transparent resin film coating solution: In the preparation of formulation C1, instead of silicone resin KR-300, an acrylic resin, methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition) Ratio (molar ratio) = 55 / 11.7 / 4.5 / 28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.) (Comparative Example 2), or acrylic resin benzyl methacrylate / Methacrylic acid = 68/32 molar ratio random copolymer, weight average molecular weight 50,000) (Comparative Example 3), except that (Comparative Example 3) was used (solid content was the same), That is, the transparent resin film was embedded in the frame of the white decorative layer in the same manner as in Example 1 except that the binder shown in Table 1 below was used, and the steps of the decorative layer and the decorative layer were changed. An embedded transparent resin film, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and a transparent protective layer-A were formed. A front plate was produced and used as the capacitance type input devices of Comparative Examples 2 and 3, respectively.
The results of evaluating the capacitive input devices of Comparative Examples 2 and 3 in the same manner as in Example 1 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例13~16]
 実施例4において、透明樹脂膜の膜厚を35μmとしたことに代えて、それぞれ5μm(実施例13)、10μm(実施例14)、20μm(実施例15)、45μm(実施例16)とした以外は実施例4と同様にして、実施例13~16の段差埋め込み用の転写フィルムを作製した。
 実施例4で用いた段差埋め込み用の転写フィルムに代えて、作製した実施例13~16の段差埋め込み用の転写フィルムをそれぞれ用いた以外は実施例4の透明樹脂膜のはめ込みと同様にして、白色加飾層の額縁内に透明樹脂膜をはめ込み、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例13~16の静電容量型入力装置とした。
 実施例13~16の静電容量型入力装置を実施例1と同様にして評価した結果を下記表2に記載した。
[Examples 13 to 16]
In Example 4, instead of setting the film thickness of the transparent resin film to 35 μm, the thickness was set to 5 μm (Example 13), 10 μm (Example 14), 20 μm (Example 15), and 45 μm (Example 16), respectively. Except for the above, transfer films for embedding steps of Examples 13 to 16 were produced in the same manner as Example 4.
Instead of using the transfer film for embedding steps in Examples 13 to 16 instead of the transfer film for embedding steps used in Example 4, the same procedure as in the embedding of the transparent resin film in Example 4 was used except that each of the transfer films for embedding steps was used. A transparent resin film is fitted into the frame of the white decorative layer, the decorative layer, the transparent resin film in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first A front plate on which a conductive element different from the first and second transparent electrode patterns and the transparent protective layer-A were formed was produced, and the capacitive input devices of Examples 13 to 16 were obtained.
The results of evaluating the capacitive input devices of Examples 13 to 16 in the same manner as in Example 1 are shown in Table 2 below.
[実施例17および18]
 実施例4において、透明樹脂膜の大きさを、実施例4の静電容量型入力装置における白色加飾層の額縁の内径(図1および図14~図16におけるL)と同等としたことに代えて、白色加飾層の額縁の内径よりも各辺5mm(実施例17)、または10mm(実施例18)ずつ大きくした以外は実施例4と同様にして、実施例17および18の透明樹脂膜を有する、実施例17および18の段差埋め込み用の転写フィルムを作製した。
 実施例17および18の段差埋め込み用の転写フィルムを用い、白色加飾層の額縁内(一部白色加飾層の額縁上にまたがって)に実施例17および18の透明樹脂膜をはめ込み、加飾層、該加飾層の段差を埋め込んだ透明樹脂膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例17および18の静電容量型入力装置とした。
 実施例17および18の静電容量型入力装置を実施例1と同様にして評価した結果を下記表2に記載した。
 ただし、加飾層の端部がテーパー形状を有する場合は、加飾層の最大高さと等しくなる部分を額縁形状の内径を測定する基準とする(図15で示されるL)。なお、実施例1~18で共通して用いた、転写フィルムからダイカットによって製造した白色加飾層は端部がテーパー形状を有していた。
[Examples 17 and 18]
In Example 4, the size of the transparent resin film was made equal to the inner diameter (L in FIGS. 1 and 14 to 16) of the frame of the white decorative layer in the capacitive input device of Example 4. Instead, the transparent resins of Examples 17 and 18 were the same as Example 4 except that each side was 5 mm (Example 17) or 10 mm (Example 18) larger than the inner diameter of the frame of the white decorative layer. A transfer film for embedding steps of Examples 17 and 18 having a film was prepared.
Using the transfer film for embedding steps of Examples 17 and 18, the transparent resin film of Examples 17 and 18 was inserted into the frame of the white decorative layer (partly across the frame of the white decorative layer), A decorative element, a transparent resin film in which a step of the decorative layer is embedded, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, and a conductive element different from the first and second transparent electrode patterns Then, a front plate on which the transparent protective layer-A was formed was produced, and the capacitive input devices of Examples 17 and 18 were obtained.
The capacitance type input devices of Examples 17 and 18 were evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.
However, when the edge part of a decoration layer has a taper shape, let the part which becomes equal to the maximum height of a decoration layer be a reference | standard which measures the internal diameter of a frame shape (L shown in FIG. 15). The white decorative layer produced by die-cutting from the transfer film used in common in Examples 1 to 18 had a tapered end.
[実施例19および20]
 白色加飾層の額縁の内部に、転写フィルムを用いて透明樹脂膜をはめ込む代わりに、液体レジストを用いた塗布により透明樹脂膜の作製を行った。
 実施例19の透明樹脂膜作成用の透明レジストは、実施例2の透明樹脂膜用塗布液を用いた。前記ガラス基材上に、スリット状ノズルを有するガラス基材用コーター(エフ・エー・エス・ジャパン社製、商品名:MH-1600)にて、実施例19の透明樹脂膜作成用の透明レジストを塗布した。引き続きVCD(真空乾燥装置、東京応化工業(株)製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ・ビード・リムーバー)にて基材周囲の不要な塗布液を除去し、120℃、3分間プリベークして、前記強化処理ガラス上に膜厚5.0μmの実施例19の透明樹脂膜を得た(液体レジスト法)。
 上記実施例19において、透明樹脂膜作製用塗布液の塗布を7回繰り返し、前記ガラス基材上に膜厚5.0μmの層が7層形成された、実施例20の膜厚35.0μmの透明樹脂膜を得た。
 実施例19および20の静電容量型入力装置を実施例1と同様にして評価した結果を下記表2に記載した。
[Examples 19 and 20]
Instead of fitting a transparent resin film into the frame of the white decorative layer using a transfer film, a transparent resin film was prepared by application using a liquid resist.
As the transparent resist for preparing the transparent resin film of Example 19, the coating liquid for transparent resin film of Example 2 was used. A transparent resist for forming a transparent resin film of Example 19 on a glass substrate coater (manufactured by F.S. Japan, trade name: MH-1600) having a slit-like nozzle on the glass substrate. Was applied. Subsequently, after part of the solvent was dried by VCD (vacuum dryer, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, the periphery of the substrate was measured by EBR (edge bead remover). The unnecessary coating solution was removed and prebaked at 120 ° C. for 3 minutes to obtain a transparent resin film of Example 19 having a thickness of 5.0 μm on the tempered glass (liquid resist method).
In Example 19 above, the application of the coating solution for preparing the transparent resin film was repeated 7 times, and seven layers having a film thickness of 5.0 μm were formed on the glass substrate, and the film thickness of 35.0 μm in Example 20 was formed. A transparent resin film was obtained.
The capacitance type input devices of Examples 19 and 20 were evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表1および表2より、白色加飾層の額縁の内部に本発明の透明樹脂膜をはめこむことにより、転写した透明樹脂膜のポストベーク後の透明度を高めることができ、加飾層の上に透明保護層を転写した後の気泡が取り込まれる問題を抑制できることがわかった。さらに、電極パターンを形成したときの、断線の問題も抑制できることがわかった。 From Table 1 and Table 2, the transparency of the transferred transparent resin film after post-baking can be increased by fitting the transparent resin film of the present invention inside the frame of the white decorative layer. It has been found that the problem of air bubbles being taken in after the transparent protective layer is transferred thereon can be suppressed. Furthermore, it has been found that the problem of disconnection when the electrode pattern is formed can also be suppressed.
1  前面板
2  加飾層
3  第一の透明電極パターン
3a パッド部分
3b 接続部分
4  第二の透明電極パターン
5  絶縁層
6  導電性要素
7、7’ 透明保護層
8  開口部
9  本発明の透明樹脂膜(段差埋め込み用)
L  加飾層の内径(一辺)
11 強化処理ガラス
C  第1の方向
D  第2の方向
21 仮支持体
22 熱可塑性樹脂層
23 中間層
24 加飾層
25 カバーフィルム(保護フィルム)
31 非画像部
32 画像部
33 刃
40  転写材料
41  枠内部
42  枠外部
43  配線取出し部
44  加飾層(取り除かれなかった領域)
45  加飾層が取り除かれた領域
DESCRIPTION OF SYMBOLS 1 Front plate 2 Decoration layer 3 1st transparent electrode pattern 3a Pad part 3b Connection part 4 Second transparent electrode pattern 5 Insulating layer 6 Conductive element 7, 7 'Transparent protective layer 8 Opening part 9 Transparent resin of this invention Film (for step filling)
L Inner diameter of decorative layer (one side)
11 Tempered glass C First direction D Second direction 21 Temporary support 22 Thermoplastic resin layer 23 Intermediate layer 24 Decorating layer 25 Cover film (protective film)
31 Non-image part 32 Image part 33 Blade 40 Transfer material 41 Inside the frame 42 Outside the frame 43 Wiring extraction part 44 Decoration layer (area not removed)
45 Area from which the decoration layer has been removed

Claims (20)

  1.  少なくともシリコーン系レジンをバインダー樹脂として含み、かつ、厚みが5μm以上である透明樹脂膜であり、
     前記透明樹脂膜が、透明な前面板と、該前面板の一方の面の一部に配置された加飾層と、前記前面板の一方の面側に配置された電極パターンとを有する静電容量型入力装置の、前記前面板と前記加飾層との段差を埋めるために用いられることを特徴とする透明樹脂膜。
    A transparent resin film containing at least a silicone resin as a binder resin and having a thickness of 5 μm or more,
    The transparent resin film has a transparent front plate, a decorative layer disposed on a part of one surface of the front plate, and an electrode pattern disposed on one surface side of the front plate. A transparent resin film used for filling a step between the front plate and the decorative layer of a capacitive input device.
  2.  前記シリコーン系レジンが、ストレートシリコーンレジンであることを特徴とする請求項1に記載の透明樹脂膜。 2. The transparent resin film according to claim 1, wherein the silicone resin is a straight silicone resin.
  3.  前記ストレートシリコーンレジンが、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンであることを特徴とする請求項2に記載の透明樹脂膜。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、R1は独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基を表す。
    3. The transparent resin film according to claim 2, wherein the straight silicone resin is a straight silicone resin containing at least a siloxane structure represented by the following general formula (1) in the molecule.
    Figure JPOXMLDOC01-appb-C000001

    In the general formula (1), R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
  4.  前記ストレートシリコーンレジンの重量平均分子量が1000~1000000であることを特徴とする請求項2または3に記載の透明樹脂膜。 4. The transparent resin film according to claim 2, wherein the weight average molecular weight of the straight silicone resin is 1,000 to 1,000,000.
  5.  前記透明樹脂膜の厚みが10μm以上であることを特徴とする請求項1~4のいずれか一項に記載の透明樹脂膜。 The transparent resin film according to any one of claims 1 to 4, wherein the transparent resin film has a thickness of 10 袖 m or more.
  6.  透明レジスト溶液を用いて製造されてなることを特徴とする請求項1~5のいずれか一項に記載の透明樹脂膜。 The transparent resin film according to any one of claims 1 to 5, wherein the transparent resin film is produced using a transparent resist solution.
  7.  仮支持体と、
     請求項1~6のいずれか一項に記載の透明樹脂膜とを含むことを特徴とする転写フィルム。
    A temporary support;
    A transfer film comprising the transparent resin film according to any one of claims 1 to 6.
  8.  前記仮支持体と前記透明樹脂膜との間に熱可塑性樹脂層を有することを特徴とする請求項7に記載の転写フィルム。 The transfer film according to claim 7, further comprising a thermoplastic resin layer between the temporary support and the transparent resin film.
  9.  透明な前面板と、
     該前面板の一方の面の一部に配置された加飾層と、
     前記前面板の一方の面側に配置された電極パターンとを有し、
     前記前面板と前記加飾層との段差を請求項1~6のいずれか一項に記載の透明樹脂膜によって埋められたことを特徴とする導電膜積層体。
    A transparent front plate,
    A decorative layer disposed on a part of one surface of the front plate;
    An electrode pattern disposed on one surface side of the front plate,
    A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film according to any one of claims 1 to 6.
  10.  透明な前面板と、
     該前面板の一方の面の一部に配置された加飾層と、
     前記前面板の一方の面側に配置された電極パターンとを有し、
     前記前面板と前記加飾層との段差を請求項7または8に記載の転写フィルムの前記透明樹脂膜によって埋められたことを特徴とする導電膜積層体。
    A transparent front plate,
    A decorative layer disposed on a part of one surface of the front plate;
    An electrode pattern disposed on one surface side of the front plate,
    A conductive film laminate in which a step between the front plate and the decorative layer is filled with the transparent resin film of the transfer film according to claim 7 or 8.
  11.  前記加飾層の厚みが5μm以上であることを特徴とする請求項9または10に記載の導電膜積層体。 The conductive film laminate according to claim 9 or 10, wherein the decorative layer has a thickness of 5 µm or more.
  12.  前記透明樹脂膜の厚みが、前記加飾層の厚みの0.3~1.3倍であることを特徴とする請求項9~11のいずれか一項に記載の導電膜積層体。 12. The conductive film laminate according to claim 9, wherein the thickness of the transparent resin film is 0.3 to 1.3 times the thickness of the decorative layer.
  13.  前記透明樹脂膜、前記加飾層および前記電極パターンの上に、透明保護層を含むことを特徴とする請求項9~12のいずれか一項に記載の導電膜積層体。 The conductive film laminate according to any one of Claims 9 to 12, further comprising a transparent protective layer on the transparent resin film, the decorative layer, and the electrode pattern.
  14.  前記透明樹脂膜が、0.08~1.2atmの環境下で180~300℃に加熱されてなることを特徴とする請求項9~13のいずれか一項に記載の導電膜積層体。 The conductive film laminate according to any one of claims 9 to 13, wherein the transparent resin film is heated to 180 to 300 ° C in an environment of 0.08 to 1.2 atm.
  15.  前記電極パターンが、下記(3)~(5)を含むことを特徴とする請求項9~14のいずれか一項に記載の導電膜積層体。
    (3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
    (4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
    (5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
    The conductive film laminate according to any one of claims 9 to 14, wherein the electrode pattern includes the following (3) to (5).
    (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern Insulating layer
  16.  さらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有することを特徴とする請求項15に記載の導電膜積層体。 And (6) a conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern and is different from the first transparent electrode pattern and the second electrode pattern. The conductive film laminate according to claim 15, comprising:
  17.  前記(4)第二の電極パターンが、透明電極パターンであることを特徴とする請求項15または16に記載の導電膜積層体。 The conductive film laminate according to claim 15 or 16, wherein the (4) second electrode pattern is a transparent electrode pattern.
  18.  前記加飾層の端部が、テーパー形状であることを特徴とする請求項9~17のいずれか一項に記載の導電膜積層体。 The conductive film laminate according to any one of claims 9 to 17, wherein an end portion of the decorative layer has a tapered shape.
  19.  請求項9~18のいずれか一項に記載の導電膜積層体を含むことを特徴とする静電容量型入力装置。 A capacitance-type input device comprising the conductive film laminate according to any one of claims 9 to 18.
  20.  請求項19に記載の静電容量型入力装置を構成要素として備えたことを特徴とする画像表示装置。 An image display device comprising the capacitive input device according to claim 19 as a constituent element.
PCT/JP2014/050762 2013-01-25 2014-01-17 Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device WO2014115646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013011907 2013-01-25
JP2013-011907 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115646A1 true WO2014115646A1 (en) 2014-07-31

Family

ID=51227438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050762 WO2014115646A1 (en) 2013-01-25 2014-01-17 Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device

Country Status (2)

Country Link
JP (1) JP2014160460A (en)
WO (1) WO2014115646A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045522A (en) * 2014-08-19 2016-04-04 富士フイルム株式会社 Laminate, transfer film, laminate manufacturing method, conductive film laminate, capacitive input device, and image display device
JP2016124720A (en) * 2014-12-26 2016-07-11 富士フイルム株式会社 Curable composition, transfer film, front plate of image display device, front plate-integrated sensor, image display device, and production method of front plate of image display device
WO2016154846A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc Transparent pressure sensing film composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108094B2 (en) * 2013-04-02 2017-04-05 大日本印刷株式会社 Front protective plate for display device with electrode and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038183A1 (en) * 2007-09-20 2009-03-26 Toyo Boseki Kabushiki Kaisha Adhesive sheet, upper electrode for touch panel, and image display device
JP2009256586A (en) * 2008-03-27 2009-11-05 Nippon Shokubai Co Ltd Curable resin composition for molded articles, molded article, and production method thereof
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
JP2011194813A (en) * 2010-03-23 2011-10-06 Lintec Corp Resin laminate for laminating flat plates, and laminate flat plate
JP2012247813A (en) * 2011-03-29 2012-12-13 Alps Electric Co Ltd Input device, and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180103A (en) * 1984-09-27 1986-04-23 Toshiba Corp Production of color filter
JP2002178656A (en) * 2000-12-14 2002-06-26 Toray Ind Inc Original plate for direct-drawing waterless lithographic printing plate
JP2004307825A (en) * 2003-03-24 2004-11-04 Asahi Breweries Ltd Colored coating agent composition for container and container coated with colored coating agent
JP2009133980A (en) * 2007-11-29 2009-06-18 Fujifilm Corp Defect correction method of color filter
TWM348999U (en) * 2008-02-18 2009-01-11 Tpk Touch Solutions Inc Capacitive touch panel
JP5077130B2 (en) * 2008-07-31 2012-11-21 東芝ライテック株式会社 Lighting device
JP2011128693A (en) * 2009-12-15 2011-06-30 Alps Electric Co Ltd Input device and method for producing the same
WO2013008754A1 (en) * 2011-07-14 2013-01-17 シャープ株式会社 Touch panel and display device equipped with said touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038183A1 (en) * 2007-09-20 2009-03-26 Toyo Boseki Kabushiki Kaisha Adhesive sheet, upper electrode for touch panel, and image display device
JP2009256586A (en) * 2008-03-27 2009-11-05 Nippon Shokubai Co Ltd Curable resin composition for molded articles, molded article, and production method thereof
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
JP2011194813A (en) * 2010-03-23 2011-10-06 Lintec Corp Resin laminate for laminating flat plates, and laminate flat plate
JP2012247813A (en) * 2011-03-29 2012-12-13 Alps Electric Co Ltd Input device, and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016045522A (en) * 2014-08-19 2016-04-04 富士フイルム株式会社 Laminate, transfer film, laminate manufacturing method, conductive film laminate, capacitive input device, and image display device
JP2016124720A (en) * 2014-12-26 2016-07-11 富士フイルム株式会社 Curable composition, transfer film, front plate of image display device, front plate-integrated sensor, image display device, and production method of front plate of image display device
WO2016154846A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc Transparent pressure sensing film composition

Also Published As

Publication number Publication date
JP2014160460A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5955787B2 (en) Transfer film, method of manufacturing capacitive input device, capacitive input device, and image display device including the same
US10336043B2 (en) Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device
JP5914392B2 (en) Photosensitive film, method for manufacturing capacitance-type input device, capacitance-type input device, and image display device including the same
WO2014007050A1 (en) Transparent layered body, electrostatic capacitance input device, and image display device
CN107066134B (en) Transfer material, capacitance-type input device, method for manufacturing capacitance-type input device, and image display device provided with capacitance-type input device and method for manufacturing capacitance-type input device
JP5857013B2 (en) SUBSTRATE WITH DECORATION MATERIAL AND ITS MANUFACTURING METHOD, TOUCH PANEL AND INFORMATION DISPLAY DEVICE
WO2014115646A1 (en) Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device
WO2014115415A1 (en) Transparent layered body and method for manufacturing same
JP6204887B2 (en) LAMINATE, TRANSFER FILM, LAMINATE MANUFACTURING METHOD, CONDUCTIVE FILM LAMINATE, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
JP5860419B2 (en) Coloring composition for heat-resistant decoration, method for manufacturing capacitive input device, capacitive input device, and image display device including the same
JP5887314B2 (en) Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same
JP6375226B2 (en) Curable composition, transfer film, front plate of image display device, front plate integrated sensor, image display device, and method for manufacturing front plate of image display device
WO2015186549A1 (en) Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device
JP6393179B2 (en) A curable composition, a front plate of an image display device, a front plate integrated sensor, an image display device, and a method of manufacturing the front plate of the image display device.
JP6207466B2 (en) Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device
TW201623694A (en) Manufacturing method of transparent electrode and transparent electrode laminate
JP2015173010A (en) Method of producing transparent conductive pattern and transparent conductive sheet
JP6404255B2 (en) TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
JP6865867B2 (en) Transfer films and transparent laminates, their manufacturing methods, capacitive input devices and image display devices
JP6646107B2 (en) Transfer film and transparent laminate, method for producing them, capacitance input device, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743043

Country of ref document: EP

Kind code of ref document: A1