WO2014112027A1 - Fourier transform spectrometer - Google Patents

Fourier transform spectrometer Download PDF

Info

Publication number
WO2014112027A1
WO2014112027A1 PCT/JP2013/007656 JP2013007656W WO2014112027A1 WO 2014112027 A1 WO2014112027 A1 WO 2014112027A1 JP 2013007656 W JP2013007656 W JP 2013007656W WO 2014112027 A1 WO2014112027 A1 WO 2014112027A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
movable mirror
light
mirror
Prior art date
Application number
PCT/JP2013/007656
Other languages
French (fr)
Japanese (ja)
Inventor
長井 慶郎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014557203A priority Critical patent/JPWO2014112027A1/en
Publication of WO2014112027A1 publication Critical patent/WO2014112027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present invention relates to a Fourier transform spectrometer, and more particularly to a Fourier transform spectrometer that uses a moving mirror that reciprocally vibrates in the optical axis direction as an optical path difference forming optical element of an interferometer.
  • a spectrometer is a device that measures a spectrum representing a component (light intensity) of each wavelength (each wave number) in predetermined light (measurement light) to be measured.
  • a Fourier transform spectrometer is known. The Fourier transform spectrometer generates interference light of predetermined light by an interferometer, measures the interference light, and Fourier-transforms the measurement result to obtain a spectrum of the predetermined light.
  • the output of the interferometer is a combined waveform obtained by causing a plurality of wavelengths of light included in the predetermined light to interfere at once with the interferometer, and is called an interferogram.
  • the Fourier transform spectrometer obtains a spectrum of predetermined light by Fourier transforming the interferogram output from the interferometer.
  • This interferogram has a profile that has one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range. The central peak among the one or more steep peaks is called a center burst.
  • the interferometer of such a Fourier transform type spectrometer includes a plurality of optical elements that form two optical paths between the incident position of the predetermined light and the interference position when the predetermined light is incident.
  • the plurality of optical elements includes an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction.
  • this optical path difference forming optical element there is a moving mirror that moves in the scanning range along the optical axis direction at a constant speed.
  • the parallel movement mechanism is disposed between the first and second leaf spring members arranged in parallel to face each other and between the first and second leaf spring members and at both ends thereof.
  • First and second supports connected to each of the two leaf spring members, and provided on the surface of one end of the first leaf spring member, one of the first and second leaf spring members is bent and deformed. Accordingly, a piezoelectric element that translates one of the first and second support bodies in the opposing direction of the first and second leaf spring members is provided.
  • the movable mirror is arrange
  • the parallel movement mechanism configured as described above is driven by a driving device connected to the parallel movement mechanism (piezoelectric element).
  • This drive device performs PLL (Phase Locked Loop) control.
  • PLL Phase Locked Loop
  • the frequency of a mechanical signal which is a signal obtained by detecting the reciprocal vibration of the movable mirror by the parallel movement mechanism, is compared with a reference frequency of a constant frequency as a reference, and a voltage controlled oscillator (VOC) is set so that they match.
  • VOC voltage controlled oscillator
  • the first leaf spring member In the translation mechanism, when the piezoelectric element is expanded by the oscillation signal from the driving device, the first leaf spring member is deformed so as to be convex upward, and as a result, the movable mirror is displaced downward in the facing direction.
  • the first leaf spring member When the piezoelectric element is reduced by the oscillation signal, the first leaf spring member is deformed so as to protrude downward, and as a result, the movable mirror is displaced upward in the facing direction.
  • the reference frequency is set to a frequency (resonance frequency) at which the parallel movement mechanism (specifically, the first and second leaf spring members) resonates, so that the movable mirror disposed in the parallel movement mechanism has a displacement amount. Repeat large displacements (ie, reciprocate).
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a Fourier transform spectrometer in which a movable mirror stably oscillates against external noise.
  • a Fourier transform spectrometer detects a reciprocal vibration of a moving mirror of an optical path difference forming optical element in an interferometer for obtaining an interferogram of predetermined light, and uses the self-excited signal based on the detection result to detect the moving mirror. Controls reciprocating vibration.
  • the present invention can provide a Fourier transform spectrometer in which the movable mirror stably oscillates against external noise.
  • the Fourier transform type spectrometer it is a figure which shows an example of the moving mirror drive signal input into a parallel displacement mechanism, the detection signal of a photo reflector, and the output signal of the comparator into which the said detection signal was input. It is a block diagram which shows the structure of the light reception process part in the said Fourier-transform type spectrometer. It is a figure which shows an example of the interference waveform of the laser beam in the said Fourier-transform type spectrometer. It is a figure which shows an example of the waveform (interferogram) of the interference light of the predetermined light measured in the said Fourier-transform spectrometer. It is a figure which shows the relationship between the said interferogram and a window function.
  • IIR filter the low-pass filter
  • the detection signal obtained from the output of the photo reflector when the reciprocating vibration of one end of the translation mechanism is measured by the photo reflector, and this detection signal is low-pass It is a figure which shows the output signal of the said low-pass filter when inputting into a filter. It is a block diagram which shows the structure of the resonant frequency detection circuit of a parallel displacement mechanism. An example of a photoreflector detection signal when the amplitude of the moving mirror is observed while changing the frequency of the moving mirror drive signal that is the oscillation signal input to the translation mechanism, and the output of the comparator when this detection signal is input It is a figure which shows a signal.
  • FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of the interferometer and its surroundings in the Fourier transform spectrometer.
  • FIG. 3 is an enlarged perspective view showing a configuration of a light reflection mechanism in the interferometer.
  • FIG. 4 is a cross-sectional view showing the reciprocal vibration of the movable mirror in the light reflecting mechanism. 4A shows a case where the piezoelectric element 155 expands, FIG. 4B shows a case where the piezoelectric element 155 contracts, and
  • FIG. 4C shows how the light reflecting mechanism 15 vibrates.
  • FIG. 5 is a block diagram showing a configuration of a moving mirror driving circuit in the Fourier transform spectrometer.
  • FIG. 5 is a block diagram showing a configuration of a moving mirror driving circuit in the Fourier transform spectrometer.
  • FIG. 6 shows a moving mirror driving signal (excitation signal or self-excited signal) input to the parallel movement mechanism, a photoreflector detection signal, and a comparator output signal to which the detection signal is input in the Fourier transform spectrometer.
  • the upper graph is the moving mirror drive signal SG1 input to the translation mechanism
  • the middle graph is the photoreflector detection signal SG2
  • the lower graph is the output signal from the comparator. SG3.
  • the horizontal axis in FIG. 6 is time
  • the vertical axis is voltage.
  • FIG. 7 is a block diagram showing a configuration of a light receiving processing unit in the Fourier transform spectrometer.
  • FIG. 8 is a diagram showing an example of an interference waveform of laser light in the Fourier transform spectrometer.
  • the horizontal axis in FIG. 8 is the optical path difference
  • the vertical axis is the amplitude.
  • a Fourier transform spectrometer (hereinafter abbreviated as “FT spectrometer”) 10 is an apparatus that measures a spectrum of predetermined light.
  • the FT spectrometer 10 causes predetermined light to interfere with the interferometer 11, and Fourier transforms the waveform (interferogram) of the interference light obtained by measuring the interference light of the predetermined light. Obtain the spectrum.
  • the FT spectrometer 10 samples a plurality of measurement data by sampling an electrical signal obtained by photoelectrically converting the interference light of the predetermined light generated in the interferometer 11 at a predetermined sampling timing. To get. Then, the FT spectrometer 10 obtains the spectrum of the predetermined light from the plurality of acquired measurement data (that is, the interferogram of the predetermined light) using Fourier transform.
  • the FT spectrometer 10 of the present embodiment uses an integrated interferogram as a Fourier transform conversion target for obtaining a spectrum of predetermined light in order to improve the SN ratio and obtain a good accuracy result.
  • This integrated interferogram is an interferogram obtained by integrating a plurality of interferograms of predetermined light generated in the interferometer 11.
  • Such an FT spectrometer 10 includes, for example, a measurement light source unit 50, an interferometer 11, a moving mirror control unit 60, a light reception processing unit 20, and a timing generation unit as shown in FIGS. 30, a control calculation unit 41, an input unit 42, and an output unit 43.
  • the measurement light source unit 50 irradiates the sample SM, which is an object to be measured, with a predetermined geometry.
  • the measurement light source unit 50 includes, for example, a measurement light source 51 (see FIG. 2) and its peripheral circuits.
  • the measurement light source 51 emits measurement light and irradiates the sample SM with the measurement light with a geometry of 45: 0 degrees, for example.
  • the measurement light is light used for measuring the spectrum of the reflected light in the sample SM, and has a continuous spectrum in a predetermined wavelength band set in advance.
  • the measurement light source 51 of this embodiment is, for example, a halogen lamp.
  • the measurement light emitted from the measurement light source 51 is incident on the surface (measurement surface SF) of the sample SM at an incident angle of 45 degrees as shown in FIG.
  • the reflected light of the measurement light reflected on the sample SM is measured from the 0 degree direction. That is, the component of the reflected light reflected in the normal direction (0 degree) of the measurement surface SF enters the interferometer 11 as the predetermined light.
  • the predetermined light of this embodiment is reflected light of the measurement light reflected on the sample SM, it is not limited to this.
  • the predetermined light may be, for example, transmitted light that has passed through the sample SM, or may be light that is re-emitted from the sample SM (for example, fluorescence emission) by irradiating the measurement light. Further, the predetermined light may be light emitted from the sample SM without being irradiated with the measurement light. That is, the FT spectrometer 10 can measure not only the reflected light but also the spectrum of transmitted light, re-radiated light, self-luminous light, and the like.
  • the interferometer 11 receives the reflected light of the measurement light reflected by the sample SM as predetermined light, and emits the interference light of the predetermined light.
  • the interferometer 11 branches the incident predetermined light into two lights (first branched light and second branched light). Then, the interferometer 11 advances (propagates) these branched first branched light and second branched light to two different paths (first optical path and second optical path), and then merges them again.
  • a Michelson interferometer 11 as shown in FIG. 2 is used.
  • the interferometer 11 includes a plurality of optical elements that form two optical paths, and a parallel movement mechanism (moving mirror driving unit) 150.
  • the plurality of optical elements includes a semi-transparent mirror (half mirror) 112, a fixed mirror 114, and a movable mirror 115 whose light reflecting surface moves in the optical axis direction.
  • These optical elements 112, 114, and 115 are arranged in the interferometer 11 as follows.
  • the fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other.
  • the semi-transparent mirror 112 is arranged so that the normal line passes through the orthogonal point of each normal line in the fixed mirror 114 and the movable mirror 115 and intersects each normal line at an angle of 45 degrees.
  • the predetermined light incident on the interferometer 11 in which the plurality of optical elements 112, 114, and 115 are arranged in this way is divided into two lights (first branched light and second branched light) in the semi-transparent mirror 112.
  • This branched light (first branched light) is a predetermined light reflected by the semi-transparent mirror 112 and enters the fixed mirror 114.
  • the first branched light is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come.
  • the other branched light (second branched light) is predetermined light that has passed through the semi-transparent mirror 112 and enters the movable mirror 115.
  • the second branched light is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again.
  • the first branched light after being reflected by the fixed mirror 114 and the second branched light after being reflected by the movable mirror 115 interfere with each other by being merged by the semi-transparent mirror 112.
  • the interferometer (Michelson interferometer) 11 having such a configuration, the predetermined light enters the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the predetermined light is transmitted from the fixed mirror 114. The light is emitted from the interferometer 11 along the normal direction on the mirror surface.
  • the interferometer 11 of the present embodiment is configured such that when the predetermined light is split into two lights (first branched light and second branched light) by the half mirror 112, the reflection side of the half mirror 112 reflected by the half mirror 112 ( Specifically, it further includes a phase compensation plate 113 that is disposed on the optical path of the first branched light reflected by the semi-transparent mirror 112 and directed toward the fixed mirror 114. That is, in the interferometer 11 of the present embodiment, the first branched light reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, reflected by the fixed mirror 114, and then phase compensated. The light enters the semi-transparent mirror 112 again through the plate 113.
  • the phase compensator 113 has a phase difference between the first branched light and the second branched light resulting from the difference between the number of transmissions of the semi-transparent mirror 112 in the first branched light and the number of transmissions of the semi-transparent mirror 112 in the second branched light. Is an optical element used to eliminate (ie, compensate for a phase difference).
  • the first branched light is half transmitted from the incident position of the predetermined light through the semi-transparent mirror 112, the phase compensation plate 113, the fixed mirror 114, and the phase compensation plate 113 in order.
  • the first optical path reaching the transparent mirror 112 is followed.
  • the second branched light follows a second optical path that reaches the semi-transparent mirror 112 again from the incident position of the predetermined light through the semi-transparent mirror 112 and the moving mirror 115 in order.
  • the interferometer 11 of this embodiment includes an incident optical system 111 that makes predetermined light incident on the semi-transparent mirror 112 as parallel light, and the predetermined light generated by causing the first and second branched lights to interfere with each other in the semi-transparent mirror 112. And an emission optical system 116 that collects the interference light and makes it incident on the first light receiving unit 21.
  • the incident optical system 111 of the present embodiment is, for example, a collimator lens, and is disposed at an appropriate position between the measurement surface SF of the sample SM and the semi-transparent mirror 112.
  • the exit optical system 116 of the present embodiment is, for example, a condenser lens, and is disposed at an appropriate position between the semi-transparent mirror 112 and the first light receiving unit 21.
  • the movable mirror 115 is one of the plurality of optical elements arranged in the interferometer 11 (included in the plurality of optical elements). For example, two optical paths (first optical paths) are generated by resonance vibration of the parallel movement mechanism 150. An optical path difference is generated between the optical path and the second optical path).
  • the movable mirror 115 is reciprocated twice or more in the optical axis direction by the parallel movement mechanism 150 in order to generate a plurality of interferograms of predetermined light. That is, in the FT spectrometer 10, one interferogram is generated by the movable mirror 115 reciprocating once in the optical axis direction.
  • the parallel movement mechanism 150 is provided with a movable mirror 115, and reciprocates (reciprocates) the movable mirror 115 in the optical axis direction (vertical direction in FIG. 2).
  • Examples of the movable mirror 115 attached to the parallel movement mechanism 150 include light reflection mechanisms disclosed in Japanese Patent Application Laid-Open Nos. 2011-80854 and 2012-42257. Note that in the light reflecting mechanism 15 described below with reference to FIG. 3, the part excluding the mirror surface region (moving mirror) 115 is the parallel moving mechanism 150.
  • the light reflecting mechanism 15 includes a pair of leaf springs (leaf spring members) including a first leaf spring 151 and a second leaf spring 152, and the leaf springs 151 and 152 to resonate the pair of leaf springs 151 and 152.
  • a movable mirror 115 formed in the above.
  • the first and second leaf springs 151 and 152 are arranged in parallel so as to face each other with a space therebetween.
  • the first support 153 is arranged at one end (the left end in FIG. 3) between the first and second leaf springs 151 and 152 so as to be connected to the first and second leaf springs 151 and 152.
  • the second support 154 has the first and second plates at the other end (the end opposite to the one end: the left end in FIG. 3) between the first and second leaf springs 151 and 152. It is connected to the spring.
  • the first and second support members 153 and 154 are arranged in a state of being separated from each other between the first and second leaf springs 151 and 152.
  • the piezoelectric element 155 is disposed on the upper surface of the other end of the first leaf spring 151. More specifically, the piezoelectric element 155 is disposed above the second support 154 in the first plate spring 151 and on the surface opposite to the second support 154. As shown in FIG. 4A, the piezoelectric element 155 is configured by sandwiching a piezoelectric material 155a such as PZT (lead zirconate titanate), which is a piezoelectric material, by a pair of electrodes 155b and 155c.
  • a piezoelectric material 155a such as PZT (lead zirconate titanate)
  • the movable mirror 115 is provided on the upper surface at one end of the first leaf spring 151. More specifically, the movable mirror 115 is provided above the first support 153 in the first leaf spring 151 and on the surface opposite to the first support 153.
  • the movable mirror 115 may be, for example, a mirror attached to the first plate spring 151, or a metal thin film such as aluminum formed (film formed) on the first plate spring 151, for example. Good.
  • the light reflection mechanism 15 configured as described above is manufactured by, for example, a MEMS (Micro Electro Mechanical Systems) technique.
  • the first leaf spring 151 when the piezoelectric element 155 expands, the first leaf spring 151 is deformed so as to protrude upward.
  • the movable mirror 115 is While the first and second leaf springs 151 and 152 are displaced downward in the opposing direction, when the piezoelectric element 155 is reduced, the first leaf spring 151 is deformed so as to protrude downward as shown in FIG. 4B. As a result, the movable mirror is displaced upward in the facing direction.
  • the light reflecting mechanism 15 repeats the displacement by resonance of the pair of leaf springs 151 and 152 in order to obtain a large amount of displacement, and causes the movable mirror 115 to reciprocate (reciprocate) along the optical axis direction. More specifically, when there is no distortion in the reciprocating vibration (reciprocating movement) at one end of the parallel moving mechanism 150, a signal (resonance frequency f 0 ) of a frequency at which the pair of leaf springs 151 and 152 resonate (see FIG. Referring No. self ⁇ 6) is input to the piezoelectric element 155, the piezoelectric element 155 repeats expansion and contraction at the resonance frequency f 0. As a result, as shown in FIG.
  • the movable mirror 115 has a maximum displacement amount from the origin position X0 around the origin position X0 (center position of the vibration amplitude) where the displacement amount becomes 0 (zero). Displaces in a substantially sinusoidal shape with the passage of time between the positions Xm and -Xm, and vibrates accurately at a specific frequency and with a constant frequency.
  • the moving mirror control unit 60 includes a moving mirror operation detecting unit 200 that can detect the operation of the moving mirror 115 in the optical axis direction, and a parallel moving mechanism 150 (light reflecting mechanism 15) based on the detection result of the moving mirror operation detecting unit 200. And a parallel movement mechanism control unit 610 for controlling.
  • the moving mirror control unit 60 constitutes the moving mirror driving circuit shown in FIG. 5 together with the light reflecting mechanism 15 (the parallel moving mechanism 150 provided with the moving mirror 115).
  • the moving mirror operation detecting unit 200 is a sensor device that detects the movement of the moving mirror 115 (specifically, the movement of the moving mirror 115 through the movement of one end of the parallel movement mechanism 150 in the optical axis direction).
  • the moving mirror operation detection unit 200 includes a photo reflector as a detection sensor.
  • This photo reflector includes a light emitting element that irradiates light to the back surface of one end of the parallel movement mechanism 150, and a light receiving element that receives light reflected by the back surface.
  • the photo reflector detects the movement (reciprocal vibration in the optical axis direction) of one end (moving mirror 115) of the parallel movement mechanism 150 by detecting the amount of reflected light that changes according to the movement of the parallel movement mechanism 150.
  • the photo reflector outputs an analog signal (detection signal) synchronized with the movement of the parallel movement mechanism 150 (that is, the reciprocating vibration of the movable mirror 115). Therefore, one cycle of the output of the photo reflector corresponds to one reciprocation of the movable mirror 115, and one scan of the movable mirror 115 can be detected from the output of the photo reflector.
  • the detection signal (analog signal) output from the moving mirror operation detection unit 200 (specifically, a photo reflector) is input to the self-excited signal generation unit 612 via a comparator (not shown).
  • This comparator is a hysteresis control comparator, and when the detection signal from the movable mirror operation detection unit 200 becomes equal to or greater than a predetermined amplitude (hysteresis voltage), a square wave (rectangular wave) corresponding to the detection signal from this comparator. Is output.
  • the parallel movement mechanism control unit 610 includes an excitation signal generation unit 611, a self-excitation signal generation unit 612, and a signal switching unit 613, via the control of the parallel movement mechanism 150.
  • the reciprocating vibration (reciprocating movement) of the movable mirror 115 is controlled.
  • the excitation signal generator 611 outputs an oscillation signal (drive signal) having a predetermined frequency (frequency) to the parallel movement mechanism 150 as an excitation signal.
  • This excitation signal is an oscillation signal having a frequency (resonance frequency) f 0 at which the pair of leaf springs (first and second leaf springs) 151 and 152 of the translation mechanism 150 resonate or a frequency close to the resonance frequency f 0. is there.
  • the resonance frequency f 0 is a frequency obtained in advance by measurement or the like.
  • the excitation signal generation unit 611 of the present embodiment is a rectangular wave generation circuit that outputs a rectangular wave having a desired frequency by counting a clock with a counter, for example.
  • the excitation signal generator 611 uses a CR oscillation circuit using an RC circuit composed of a capacitor and a resistor, or an LC circuit composed of a coil and a capacitor such as a Hartley oscillation circuit and a Colpitts oscillation circuit.
  • An LC oscillation circuit or the like may be used.
  • the excitation signal generator 611 of the present embodiment outputs an oscillation signal having a resonance frequency f 0 as an excitation signal (see the excitation state in FIG. 6).
  • the excitation signal of this embodiment is a square wave signal.
  • the self-excited signal generation unit 612 uses the parallel oscillation mechanism 150 (specifically, a pair of electrodes 155b of the piezoelectric element 155) using an oscillation signal (drive signal) having a frequency based on the detection signal output from the moving mirror operation detection unit 200 as a self-excitation signal. To 155c).
  • the self-excited signal generator 612 is parallel to the reciprocating vibration of the movable mirror 115 detected by the movable mirror motion detector 200 (specifically, the resonance vibration of the pair of leaf springs 151 and 152 (vibration at the resonance frequency f 0 )).
  • An oscillation signal whose phase is delayed by 90 ° with respect to the reciprocal vibration of the movable mirror 115 detected through the reciprocal vibration of one end of the moving mechanism 150 is output as a self-excited signal.
  • This self-excited signal is a square wave signal having a resonance frequency f 0 whose phase is delayed by 90 ° with respect to the reciprocating vibration of the movable mirror.
  • the self-excited signal whose phase is delayed by 90 ° with respect to the detection signal is input to the piezoelectric element 155 of the parallel movement mechanism 150, so that the movable mirror 115 moves in one direction or the other in the reciprocal vibration of the movable mirror 115.
  • the driving force to one end of the parallel movement mechanism 150 becomes zero, while the one end (the movable mirror) 115) is at an intermediate position (position where the moving speed is the highest: origin position X0 in FIG. 4C) from the one end (or the other end) to the other end (or the one end) in the vibration direction.
  • the amplitude (the amount of displacement in the optical axis direction) of the movable mirror 115 can be kept large in the reciprocating drive by the parallel movement mechanism 150 of the movable mirror 115.
  • the self-excited signal generator 612 of the present embodiment is, for example, a 90 degree phase shifter, but is not limited to this.
  • the self-excited signal may be an oscillation signal whose phase is delayed by approximately 90 ° with respect to the detection signal (reciprocating vibration of the movable mirror 115). That is, as described above, when one end of the parallel movement mechanism 150 is at an intermediate position from one end (other end) to the other end (one end) in the vibration direction and in the vicinity thereof (up and down position with the origin position X0 in FIG. 4C).
  • the reciprocating vibration of the moving mirror 115 can be maintained.
  • the phase delay with respect to may be shifted from 90 °.
  • the signal switching unit 613 includes a first switch element 614 disposed between the excitation signal generation unit 611 and the parallel movement mechanism 150, and a second switch disposed between the self-excitation signal generation unit 612 and the parallel movement mechanism 150.
  • a switch element 615 and a switching control unit 616 that switches between the switch elements 614 and 615 are provided.
  • the signal switching unit 613 transmits an oscillation signal (moving mirror drive signal) input to the parallel movement mechanism 150 between the self-excitation signal from the self-excitation signal generation unit 612 and the excitation signal from the excitation signal generation unit 611. Switch.
  • the switching control unit 616 inputs the self-excitation signal from the self-excitation signal generation unit 612 or the excitation signal from the excitation signal generation unit 611 to the parallel movement mechanism 150 (piezoelectric element 155) by switching the switch elements 614 and 615. Let More specifically, when the FT spectrometer 10 starts measuring predetermined light, the switching control unit 616 first turns on the first switch element 614 and turns off the second switch element 615. As a result, the excitation signal output from the excitation signal generator 611 is input to the translation mechanism 150. Then, the switching control unit 616 turns off the first switch element 614 and turns on the second switch element 615 at a predetermined timing, and receives the moving mirror drive signal input to the parallel movement mechanism 150 from the excitation signal.
  • the self-excitation signal output from the excitation signal generator 612 is switched.
  • the predetermined timing is such that the movable mirror 115 in a stationary (stopped) state starts reciprocating vibration, and the amplitude of the reciprocating vibration becomes a predetermined magnitude and is stable. It's time. Details are as follows.
  • the switching control unit 616 determines whether or not the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude based on the detection signal input from the movable mirror operation detection unit 200. More specifically, when a detection signal (analog signal: see the middle graph in FIG. 6) output from the photoreflector is input to the switching control unit 616, the switching control unit 616 determines the width of the voltage of the detection signal ( (Corresponding to the amplitude) exceeds a predetermined value, it is determined that the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude. In addition, when the detection signal (square wave signal: see the lower graph in FIG.
  • the switching control unit 616 is input via the comparator (hysteresis control comparator), the switching control unit 616, for example, When the amplitude appears continuously, it is determined that the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude. Further, the switching control unit 616 is configured to determine that the reciprocating vibration of the movable mirror 115 has become a predetermined magnitude when the frequency of the square wave signal starts to move at the same frequency as the frequency of the excitation signal. May be.
  • the switching control unit 616 determines that the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude, the first switch element 614 is turned on and the second switch element 615 is turned off, so that the first switch The element 614 is turned off and the second switch element 615 is turned on. Thereby, the movable mirror drive signal input to the parallel movement mechanism 150 is switched from the excitation signal to the self-excitation signal.
  • the light reception processing unit 20 receives the interference light of the predetermined light generated in the interferometer 11 and photoelectrically converts the electrical signal (in the interference light of the predetermined light). An electrical signal indicating a change in light intensity) is output.
  • the light receiving processing unit 20 is a circuit that sequentially outputs a plurality of measurement data by sampling the electrical signal at a predetermined sampling timing.
  • the light reception processing unit 20 includes a first light reception unit 21, an amplification unit 22, a band pass filter (Band Pass Filter) 23, and an analog-digital conversion unit (hereinafter referred to as “AD conversion”). 26).
  • the first light receiving unit 21 receives the interference light of the predetermined light generated in the interferometer 11, performs photoelectric conversion, and outputs an electrical signal (first light reception signal) corresponding to the light intensity in the interference light of the predetermined light. It is.
  • the FT spectrometer 10 of the present embodiment uses, for example, light in the infrared region with a wavelength of 1200 nm or more, more specifically, light in the infrared region with a wavelength of 1200 nm or more and 2500 nm or less. Therefore, the first light receiving unit 21 is, for example, an infrared sensor including an InGaAs photodiode and its peripheral circuit. The first light receiving unit 21 outputs the light reception result to the amplification unit 22.
  • the amplifying unit 22 is an amplifier that amplifies the output (amplification result) of the first light receiving unit 21 with a predetermined amplification factor set in advance.
  • the amplifying unit 22 includes, for example, an amplifier such as an operational amplifier and its peripheral circuit.
  • the amplifying unit 22 outputs the amplification result to the band pass filter 23 (specifically, the high pass filter 24 constituting a part of the band pass filter 23).
  • the band pass filter 23 is a high pass filter (High Pass).
  • a filter 24 and a low-pass filter 25 are provided to pass only a desired frequency band in order to cut noise.
  • the high-pass filter 24 is a circuit for passing a signal having a frequency equal to or higher than a predetermined cutoff frequency and cutting low-frequency noise, and outputs a filtered result to the low-pass filter 25.
  • the low-pass filter 25 is a circuit for passing a signal having a frequency equal to or lower than a predetermined cutoff frequency and cutting high-frequency noise, and outputs the filtered result to the AD conversion unit 26.
  • the AD conversion unit 26 is a circuit that converts the output of the amplification unit 22 from an analog signal to a digital signal (AD conversion).
  • the AD conversion timing (sampling timing) is the zero cross timing of the zero cross signal input from the timing generator 30 (specifically, the zero cross detector 37 of the timing generator 30).
  • the AD conversion unit 26 outputs a digital signal as a result of the conversion to the control calculation unit 41.
  • the timing generator 30 generates a sampling timing for sampling the electrical signal in the light receiving processor 20 (specifically, the AD converter 26).
  • the timing generation unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, and a zero cross detection unit 37.
  • the timing generator 30, as shown in FIG. 2 uses a collimator lens 32, an optical multiplexer 33, an optical multiplexer to obtain interference light of the laser light emitted from the position measurement light source 31.
  • a duplexer 34 and a condenser lens 35 are further provided.
  • the position measuring light source 31 emits monochromatic laser light having a known wavelength.
  • the position measurement light source 31 of this embodiment includes, for example, a semiconductor laser that emits red laser light having a wavelength of 680 nm.
  • the collimator lens 32 and the optical multiplexer 33 constitute an incident optical system for causing the laser light emitted from the position measurement light source 31 to enter the interferometer 11 as parallel light.
  • the optical multiplexer 33 is, for example, a dichroic mirror that reflects laser light and transmits predetermined light.
  • the optical multiplexer 33 is disposed between the collimator lens 111 and the semi-transparent mirror 112 so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees.
  • the collimator lens 32 is a biconvex lens, for example, so that the laser light emitted from the position measuring light source 31 is incident on the optical multiplexer 33 arranged as described above at an incident angle of 45 degrees. Arranged at an appropriate position.
  • the optical demultiplexer 34 and the condensing lens 35 constitute an emission optical system for taking out the interference light of the laser light generated in the interferometer 11 from the interferometer 11.
  • the optical demultiplexer 34 is, for example, a dichroic mirror that reflects interference light of laser light and transmits predetermined interference light.
  • the optical demultiplexer 34 is disposed between the semi-transparent mirror 112 and the condenser lens 116 so that the normal line intersects the normal line (optical axis) of the fixed mirror 114 at 45 degrees.
  • the condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser light emitted at an emission angle of 45 degrees in the optical demultiplexer 34 arranged as described above, and the second light receiving unit. 36 is incident.
  • the optical elements such as the collimator lens 32, the optical multiplexer 33, the optical demultiplexer 34, and the condenser lens 35 are arranged in this way, the monochromatic laser light emitted from the position measuring light source 31 is converted into the collimator lens 32. And the optical path thereof is bent about 90 degrees by an optical multiplexer (a dichroic mirror in the example of the present embodiment), whereby the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). Proceed along. Therefore, this laser light travels in the interferometer 11 like the predetermined light, and the interference light of the laser light is generated in the interferometer 11.
  • an optical multiplexer a dichroic mirror in the example of the present embodiment
  • the interference light of this laser light is bent by about 90 degrees by an optical demultiplexer (in the example of the present embodiment) 34 and taken out from the interferometer 11.
  • the extracted interference light of the laser beam is condensed by the condenser lens 35 and received by the second light receiving unit 36.
  • the second light receiving unit 36 receives and photoelectrically converts the interference light of the laser light generated in the interferometer 11, and performs an electrical signal (second light reception) according to the light intensity of the interference light of the laser light. Signal).
  • the second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit.
  • SPD silicon photodiode
  • the second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to the zero cross detection unit 37.
  • the zero cross detection unit 37 is a circuit that detects a timing (zero cross timing) at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero.
  • the zero cross detector 37 outputs a zero cross signal to the AD converter 26 at the zero cross timing.
  • the zero cross timing is a position on the time axis at which a predetermined reference voltage is set to a zero level and the electric signal is at the zero level. Details are as follows.
  • FIG. 8 is a diagram illustrating an example of an interference waveform of laser light in the Fourier transform spectrometer of the present embodiment.
  • the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the fixed mirror 114 is again transmitted from the semi-transparent mirror 112 through the movable mirror 115.
  • the phase of the laser beam returned to the semi-transparent mirror is shifted again. For this reason, the interference light of the laser light becomes strong and weak in a sine wave shape according to the amount of movement of the movable mirror 115.
  • the movable mirror 115 of the interferometer 11 moves by a length that is 1 ⁇ 2 of the wavelength of the laser light
  • the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is shifted by this movement. 2 ⁇ before and after.
  • the interference light of the laser light repeatedly increases and decreases in a sine wave shape as the movable mirror 115 moves in the optical axis direction.
  • the zero cross detector 37 detects the zero cross of the electric signal that repeats the strength in a sine wave form. Then, the zero cross detection unit 37 outputs a zero cross signal to the AD conversion unit 26 at the detected zero cross timing. When this zero-cross signal is input, the AD conversion unit 26 samples and converts the electrical signal according to the light intensity of the interference light of the predetermined light input from the first light receiving unit 21 at the zero-cross timing. .
  • control calculation unit 41 controls each part of the FT spectrometer 10 according to the function of each part in order to obtain the spectrum of the predetermined light.
  • the control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Erasable Programmable Read) that stores various programs executed by the CPU and data necessary for the execution in advance. It is composed of a non-volatile memory element such as “Only Memory”, a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of this CPU, and a microcomputer provided with its peripheral circuits.
  • the control calculation unit 41 may further include a relatively large-capacity storage device such as a hard disk in order to store data output from the AD conversion unit 26.
  • the control calculation unit 41 configured in this manner functionally executes a program when the control calculation unit 41 executes a program, so that a sampling data storage unit 411, a center burst position calculation unit 412, and an integrated interferogram calculation are performed.
  • the unit 413 and the spectrum calculation unit 414 are configured.
  • the sampling data storage unit 411 stores measurement data regarding the interference light of the predetermined light output from the AD conversion unit 26. As described above, this measurement data is data obtained by sampling the electrical signal corresponding to the light intensity of the interference light of the predetermined light by the AD conversion unit 26 at the timing of the zero cross detected by the zero cross detection unit 37. It is.
  • the integrated interferogram calculation unit 413 obtains an integrated interferogram by integrating a plurality of interferograms obtained by continuously measuring predetermined light a plurality of times while performing alignment.
  • the center burst position calculation unit 412 obtains the position of the center burst from the measurement data stored in the sampling data storage unit 411 by a known conventional method.
  • the spectrum calculation unit 414 obtains a spectrum by Fourier-transforming the integrated interferogram obtained by integrating a plurality of interferograms in the integrated interferogram calculating unit 413.
  • the input unit 42 measures, for example, various commands such as a command for instructing the measurement start of the sample SM, and a spectrum such as an input of an identifier in the sample SM to be measured and a selection input of a window function used for Fourier transform.
  • This is a device for inputting various data necessary for the operation to the FT spectrometer 10, such as a keyboard and a mouse.
  • the output unit 43 is a device that outputs commands and data input from the input unit 42 and a spectrum of predetermined light measured by the FT spectrometer 10.
  • the output unit 43 is, for example, a display device such as a CRT display, LCD, organic EL display, or plasma display, or a printing device such as a printer.
  • the switching control unit 616 switches the first switch element 614 on and the second switch element 615 off, and generates an excitation signal.
  • the excitation signal output from the unit 611 is input to the translation mechanism 150. Since the frequency of the excitation signal is a frequency at which the pair of leaf springs 151 and 152 of the translation mechanism 150 resonate and vibrate (resonance frequency f 0 ), the translation mechanism 150 receives one end portion of the translation mechanism 150 by the input of the excitation signal. Begins to vibrate in the direction of the optical axis. That is, the translation mechanism 150 starts resonance vibration.
  • the input from the inputted movable mirror operation detection unit 200 photo reflector. Since the amplitude of the detection signal (the vertical width of the voltage) exceeds the hysteresis voltage of the comparator, the comparator outputs a square wave signal (detection signal) with a frequency corresponding to the frequency of the input detection signal (analog signal). start.
  • the self-excitation signal generator 612 When this detection signal (square wave signal) is input, the self-excitation signal generator 612 has a self-excitation signal (phase-shifted by 90 ° with respect to the input detection signal (reciprocating vibration of the movable mirror 115)). Output of a square wave signal is started.
  • the switching control unit 616 determines that the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude from the input detection signal from the movable mirror operation detection unit 200, the switching control unit 616 turns off the first switch element 614.
  • the second switch element 615 is turned on, and the moving mirror drive signal input to the parallel movement mechanism 150 is switched from the excitation signal to the self-excitation signal.
  • the FT spectrometer 10 starts to reciprocate the moving mirror that was in a stationary (stopped) state when starting the measurement of the predetermined light using the excitation signal output from the excitation signal generator 611.
  • the driving of the moving mirror 115 is switched to driving using an oscillation signal (self-excited signal) based on the reciprocating vibration of the moving mirror 115 (driving by self-excited oscillation).
  • the reciprocating vibration of the moving mirror 115 is stabilized. This is done.
  • the sample SM is set in the FT spectrometer 10, and then the measurement of the sample SM is started by the FT spectrometer 10.
  • the measurement light source 51 emits the measurement light to the sample SM at an incident angle of, for example, 45 degrees by emitting the measurement light.
  • the reflected light of the measurement light reflected by the sample SM enters the interferometer 11 from the 0 degree direction as predetermined light.
  • the predetermined light incident on the interferometer 11 is received by the first light receiving unit 21 of the light receiving processing unit 20 as interference light of the predetermined light by the interferometer 11. More specifically, the predetermined light is converted into parallel light by the collimator lens 111, and is reflected and transmitted by the semi-transparent mirror 112 via the optical multiplexer 33, thereby being branched into first and second branched lights.
  • the first branched light branched off by being reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, is reflected by the fixed mirror 114, and travels back in the opposite optical path to the semi-transparent mirror 112 again. Return.
  • the second branched light branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115, reflected by the movable mirror 115, and returns to the semi-transparent mirror 112 by tracing back the optical path that has come.
  • the first branched light reflected by these fixed mirrors 114 and the second branched light reflected by the movable mirror 115 merge at the semi-transparent mirror 112 and interfere with each other.
  • the interference light of the predetermined light is emitted from the interferometer 11 to the first light receiving unit 21.
  • the first light receiving unit 21 photoelectrically converts the incident interference light of the predetermined light and outputs an electrical signal corresponding to the light intensity in the interference light of the predetermined light to the amplification unit 22.
  • the amplification unit 22 amplifies the electrical signal output from the first light receiving unit 21 (the electrical signal corresponding to the light intensity in the interference light of the predetermined light) with a predetermined amplification factor, and outputs the amplified signal to the AD conversion unit 26.
  • the interferometer 11 also captures a monochromatic laser beam emitted from the position measurement light source 31.
  • This laser light enters the interferometer 11 via the optical multiplexer 33 and interferes with the interferometer 11 in the same manner as described above.
  • the laser light that has become the interference light is received by the second light receiving unit 36 via the optical demultiplexer 34.
  • the second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam and outputs an electric signal corresponding to the light intensity in the interference light of the laser beam to the zero cross detection unit 37.
  • the zero cross detection unit 37 detects the timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as the zero cross timing, and outputs the zero cross timing to the AD conversion unit 26 as the sampling timing (AD conversion timing).
  • the movable mirror 115 of the interferometer 11 is reciprocally oscillated (reciprocated) in the optical axis direction by driving by the self-excited oscillation described above. .
  • the AD conversion unit 26 samples the electrical signal corresponding to the light intensity in the interference light of the predetermined light output from the amplification unit 22 at the zero cross timing input from the zero cross detection unit 37, and converts the analog signal into a digital signal. A / D conversion is performed. Then, the AD conversion unit 26 outputs the electric signal of the digital signal after the AD conversion to the control calculation unit 41.
  • FIG. 9 shows an example of the waveform (interferogram) of the interference light of the predetermined light actually measured in the Fourier transform spectrometer of the present embodiment.
  • the horizontal axis in FIG. 9 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude Fm (x) of the interferogram.
  • FIG. 10 shows the relationship between the interferogram and the window function.
  • the horizontal axis in FIG. 10 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude.
  • the solid line in FIG. 10 shows the interferogram shape, and the broken line shows the window function.
  • the measurement data in the interferogram of the predetermined light is output from the AD conversion unit 26 to the control calculation unit 41, and this measurement data is stored in the sampling data storage unit 411. Then, in order to improve the S / N ratio and obtain a result with good accuracy, the interferogram of such a predetermined light is measured in a similar manner a plurality of times in accordance with the reciprocation of the movable mirror 115, Each measurement data of the interferogram is stored in the sampling data storage unit 411. That is, when the movable mirror 115 reciprocates once, one scan is completed, and one measurement data of the interferogram is obtained.
  • the integrated interferogram calculation unit 413 obtains an integrated interferogram for the predetermined light by integrating a plurality of interferograms of the predetermined light obtained by measuring a plurality of times while performing alignment. .
  • the center burst position calculation unit 412 obtains the position of the center burst in the integrated interferogram.
  • the spectrum calculation part 414 calculates
  • the interferogram F m at m th measurement (x i) is the optical path difference and x i, the wave number and [nu j, the spectral amplitude of the wave number [nu j and B ([nu j), the optical path difference 0
  • m represents the measurement result of the mth measurement.
  • Equation 2 the integrated interferogram F (x i ) is expressed by Equation 2.
  • the spectrum calculating unit 414 obtains a spectrum of predetermined light by, for example, fast Fourier transform (FFT) of the integrated interferogram.
  • FFT fast Fourier transform
  • FIG. 11 shows an example of the amplitude
  • the horizontal axis in FIG. 11 indicates the wavelength ( ⁇ j ), and the vertical axis indicates the spectral intensity
  • the window function A window (x i ) can include various appropriate functions. For example, it is a function represented by Formula 5-1 to Formula 5-3. Equation 5-1 is called the Hanning Window function, Equation 5-2 is called the Hamming Window function, and Equation 5-3 is called the Blackman Window function. .
  • control calculation unit 41 outputs the obtained spectrum to the output unit 43.
  • control of the reciprocating vibration of the movable mirror 115 is controlled using an oscillation signal (self-excited signal) based on the reciprocal vibration of the movable mirror 115 (so-called self-excited driving is performed). ), The reciprocating vibration of the movable mirror 115 can be stabilized against the noise.
  • a PLL control negative feedback circuit
  • a moving mirror driving unit driving mechanism
  • a reciprocating vibration of the moving mirror Is compared with the detection signal actually detected, and an oscillation signal having a frequency based on this comparison is output from the voltage controlled oscillator to the moving mirror driving unit.
  • the Fourier transform spectrometer of the conventional example is easily unlocked when noise is applied to any of the signals (that is, the frequency of the oscillation signal input to the moving mirror driving unit changes), and the moving mirror reciprocates. The vibration cannot be stabilized.
  • the switching control unit 616 switches the switch elements 614 and 615 to excite the moving mirror drive signal (oscillation signal) input to the parallel movement mechanism 150 (piezoelectric element 155).
  • the FT spectrometer 10 of the present embodiment can reciprocately vibrate from the state where the moving mirror 115 is stationary (stopped) in the interferometer 11. That is, since the reciprocal vibration of the moving mirror 115 cannot be detected by the moving mirror operation detecting unit 200 when the moving mirror 115 is stationary (the detection signal is flat), the self-excited signal generating unit 612 cannot be driven.
  • the parallel movement mechanism 150 drives the movable mirror 115, and the movable mirror 115 starts to reciprocate (resonance vibration).
  • the amplitude of the reciprocating vibration of the movable mirror 115 reaches a predetermined magnitude (in this embodiment, the voltage width (amplitude) of the detection signal is equal to or greater than the hysteresis voltage of the comparator)
  • the movable mirror operation detection unit 200 reciprocates the movable mirror 115.
  • the self-excitation signal that can drive the parallel movement mechanism 150 is output from the self-excitation signal generation unit 612 by detecting the vibration, the moving mirror drive signal input to the parallel movement mechanism 150 by the signal switching unit 613 is derived from the excitation signal.
  • the self-excited signal driving by self-excited oscillation is performed, and the reciprocating vibration of the movable mirror 115 is hardly affected by external noise.
  • FIG. 12 is a block diagram showing the configuration of the moving mirror drive circuit and the amplitude control circuit of the Fourier transform spectrometer according to the second embodiment.
  • FIG. 13 is a diagram showing how the amplitude of the movable mirror responds when the amplitude target of the movable mirror is changed in the Fourier transform spectrometer.
  • the horizontal axis in FIG. 13 is time, and the vertical axis is the amplitude of the moving mirror.
  • TC is an amplitude target change timing.
  • the configuration of the moving mirror control unit 60A is different from that of the FT spectrometer 10 of the first embodiment. More specifically, the moving mirror control unit 60A of this embodiment includes a moving mirror operation detection unit 200 and a parallel movement mechanism control unit 610A, and the parallel movement mechanism control unit 610A includes an excitation signal generation unit 611. A self-excited signal generation unit 612, a signal switching unit 613, and an amplitude control unit 620.
  • the amplitude controller 620 includes an amplitude detector 621, an amplitude controller 622, and a mixer 623, and controls the amplitude of the reciprocating vibration of the movable mirror 115 based on the detection result of the movable mirror operation detector 200.
  • the amplitude detector 621 detects the amplitude of the reciprocating vibration of the movable mirror 115 based on the detection signal output from the movable mirror operation detector 200 and outputs an amplitude signal corresponding to the amplitude signal to the amplitude controller 622. More specifically, the amplitude detector 621 receives the self-excitation signal output from the self-excitation signal generation unit 612 and the zero-cross signal output from the zero-cross detection unit 37, so that the amplitude in the reciprocal vibration of the movable mirror 15 is input. Is detected.
  • the self-excited signal input to the amplitude detector 621 is delayed in phase by 90 ° with respect to the detection signal, but since the frequency is the same as that of the detection signal, the period of the reciprocating vibration of the movable mirror 115 ( One reciprocal movement in the optical axis direction) can be detected.
  • the amplitude detector 621 detects the number of zero crosses in one cycle (or half cycle) of the movable mirror 115 detected from the self-excited signal using the input zero cross signal, and according to the detection result. Output an amplitude signal.
  • the amplitude detector 621 of the present embodiment acquires the detection signal from the moving mirror operation detecting unit 200 as a self-excited signal through the self-excited signal generating unit 612, and the reciprocating of the moving mirror 115 based on this signal. Detect the period of vibration. Then, the amplitude detector 621 simulates the number of zero crossings in one cycle (or half cycle) of the movable mirror 115 with the amplitude in the reciprocating vibration of the movable mirror 115 and outputs it to the amplitude controller 622.
  • the amplitude detector 621 directly detects the amplitude of the reciprocating vibration of the movable mirror 115 from the detection signal (for example, the amplitude of the detection signal (the vertical width of the voltage)) from the movable mirror operation detection unit 200. Also good.
  • the amplitude controller 622 outputs an amplitude adjustment signal for adjusting the amplitude (voltage) of the self-excitation signal and the excitation signal based on the input amplitude signal.
  • the amplitude controller 622 of this embodiment is, for example, a PID controller.
  • the amplitude controller 622 can obtain an optical path difference (an optical path difference between the first and second optical paths of the interferometer 11) necessary for obtaining a target half width of a spectrum of predetermined light (for example, the movable mirror 115).
  • the amplitude adjustment signal is output so that the number of zero crossings in one cycle becomes a predetermined value.
  • the mixer 623 mixes the amplitude adjustment signal output from the amplitude controller 622 with the self-excited signal or excitation signal input to the translation mechanism 150, thereby adjusting the amplitude (voltage) of the self-excited signal or excitation signal. Adjust and output.
  • the parallel movement mechanism control unit 610A of the present embodiment further includes a D / A control signal generator 617 and a D / A converter 618.
  • the D / A control signal generator 617 creates a control signal (digital signal) for controlling the translation mechanism 150 from the self-excitation signal or the excitation signal whose amplitude is adjusted by the amplitude control unit 620, and the D / A converter Output to 618.
  • the D / A converter 618 converts the control signal (digital signal) from the D / A control signal generator 617 into an analog signal and outputs the analog signal to the parallel movement mechanism 150.
  • the above FT spectrometer can accurately adjust the amplitude of the reciprocating vibration of the moving mirror 115 (specifically, the moving distance in the optical axis direction). That is, the FT spectrometer of the present embodiment detects the actual amplitude of the movable mirror 115 when the amplitude magnitude (amplitude target) of the target movable mirror 115 is changed, and based on this detection result. Since the amplitude of the movable mirror 115 can be adjusted, as shown in FIG. 13, the amplitude of the movable mirror 115 after changing the magnitude of the amplitude can be accurately matched with the amplitude target.
  • the FT spectrometer of the present embodiment the actual amplitude of the movable mirror 115 is detected and the amplitude of the movable mirror 115 is adjusted based on the detection result. Therefore, the FT spectrometer of the present embodiment is
  • the reciprocating vibration of the movable mirror 115 can be made constant, that is, the maximum value and the minimum value of the optical path difference generated between the two optical paths that guide the predetermined light in the interferometer 11 can be made constant.
  • the spectrum of the predetermined light can be measured with higher accuracy.
  • FIG. 14 is a block diagram showing a configuration of a moving mirror driving circuit and an amplitude control circuit of a Fourier transform spectrometer according to the third embodiment.
  • FIG. 15 is a circuit diagram showing a configuration of a low-pass filter (IIR filter) that constitutes a self-excited signal generator of the Fourier transform spectrometer.
  • FIG. 16 is a diagram illustrating the characteristics of the low-pass filter, FIG. 16A illustrates the frequency characteristics, and FIG. 16B illustrates the phase characteristics.
  • FIG. 17 is a diagram illustrating an example of a square-wave detection signal and an output waveform of the low-pass filter when the detection signal is input to the low-pass filter.
  • FIG. 17A illustrates an example of a square-wave detection signal, and FIG.
  • FIG. 17B is a diagram illustrating an output waveform of the low-pass filter when the detection signal illustrated in FIG. 17A is input to the low-pass filter.
  • the horizontal axis of FIG. 17A and FIG. 17B is time, and each of those vertical axes is amplitude.
  • FIG. 18 is a diagram illustrating an example of a detection signal on which noise is superimposed and the detection signal converted into a square wave signal by passing through a comparator.
  • the upper graph is the detection signal SG4 output from the photoreflector
  • the lower graph is the detection signal SG5 that has been converted to a square wave signal by passing through a comparator.
  • the horizontal axis in FIG. 18 is time, and the vertical axis is voltage.
  • the FT spectrometer of the present embodiment is different from the FT spectrometer of the second embodiment in the configuration of the self-excited signal generator 612B in the moving mirror controller 60B.
  • the moving mirror control unit 60B includes a moving mirror operation detection unit 200 and a parallel movement mechanism control unit 610B.
  • the parallel movement mechanism control unit 610B includes an excitation signal generation unit 611 and a low-pass filter 612B.
  • the low-pass filter 612B of the present embodiment has a phase with respect to the reciprocal vibration of the movable mirror 115 detected by the movable mirror operation detection unit 200 when the second switch element 615 is turned on and the first switch element 614 is turned off. Outputs a sine wave self-excited signal delayed by 90 °.
  • this low-pass filter 612B constitutes a self-excited signal generator.
  • the low-pass filter 612B is a digital low-pass filter such as an IIR filter (Infinite Impulse Response Filter: Infinite Impulse Response Filter) or an FIR filter (Finite Impulse Response Filter: Finite Impulse Response Filter).
  • IIR filter Infinite Impulse Response Filter: Infinite Impulse Response Filter
  • FIR filter Finite Impulse Response Filter: Finite Impulse Response Filter
  • the IIR filter (self-excited signal generator) 612B is a circuit including a feedback path and a forward path, which is configured by an amplifier, a subtracter, an adder, and a delay element. More specifically, the IIR filter 612B of the present embodiment includes four amplifiers (first to fourth amplifiers 6001 to 6004), two subtracters (first and second subtractors 6011 and 6012), 2 There are two adders (first and second adders 6021 and 6022) and two delay elements (first and second delay elements 6031 to 6032).
  • the first amplifier 6001 amplifies the input signal (detection signal) from the movable mirror operation detection unit 200 at a predetermined magnification, and first subtracts the amplified signal (first amplification signal). Output to the device 6011.
  • the first amplified signal output from the first amplifier 6001 and the second amplified signal output from the second amplifier 6002 are input to the first subtractor 6011, and the first subtractor 6011 outputs the input signals.
  • the first difference signal that is the difference is output to the second subtractor 6012.
  • the first differential signal output from the first subtractor 6011 and the fourth amplified signal output from the fourth amplifier 6004 are input to the second subtractor 6012, and the second subtractor 6012 receives the input signals.
  • the second difference signal that is the difference is output to the first delay element 6031 and the first adder 6021.
  • the first delay element 6031 delays the second differential signal output from the second subtractor 6012 by one cycle (one clock), and the delayed signal (first delay signal) is sent to the second amplifier 6002 and the second amplifier 6002. To the second delay element 6032 and the third amplifier 6003.
  • the second amplifier 6002 amplifies the first delayed signal output from the first delay element by a predetermined magnification, and outputs the amplified signal (second amplified signal) to the first subtractor 6011.
  • the second delay element 6032 further delays the first delay signal output from the first delay element 6031 by one period (one clock), and the delayed signal (second delay signal) is the fourth amplifier 6004. And output to the second adder 6022.
  • the third amplifier 6003 amplifies the first delayed signal output from the first delay element 6031 by a predetermined magnification, and outputs the amplified signal (third amplified signal) to the first adder 6021.
  • the second difference signal output from the second subtractor 6012 and the third amplified signal output from the third amplifier 6003 are input to the first adder 6021, and the first adder 6021 receives these inputs.
  • the first sum signal which is the sum of the received signals, is output to the second adder 6022.
  • the first sum signal output from the first adder 6021 and the second delay signal output from the second delay element 6032 are input to the second adder 6022, and the second adder 6022 receives these inputs.
  • the second sum signal, which is the sum of the signals is output to the mixer 623 connected to the output side of the IIR filter 612B.
  • this IIR filter (self-excited signal generator) 612B has a characteristic that the phase is delayed by 90 ° at the resonance frequency f 0 (70 Hz in the present embodiment) of the parallel movement mechanism 150. Yes.
  • This self-excited signal generation unit 612B receives a detection signal (square wave signal: see FIG. 17A) from the moving mirror operation detection unit 200, and sine wave oscillation whose phase is delayed by 90 ° with respect to the detection signal. A signal (see FIG. 17B) is output.
  • the low-pass filter 612B of this embodiment also has a function as a sine wave generator by being disposed between the excitation signal generator 611 and the D / A control signal generator 617. That is, the low-pass filter 612B according to the present embodiment converts the excitation signal (square wave oscillation signal) output from the excitation signal generation unit 611 into a sine wave oscillation signal (excitation signal) to generate a D / A control signal generator. To 617.
  • both the self-excitation signal and the excitation signal input to the translation mechanism 150 are sinusoidal oscillation signals, the FT spectrometer of this embodiment
  • the oscillation due to the higher-order resonance mode of the translation mechanism 150 that occurs when a square-wave oscillation signal is input to the translation mechanism 150 can be prevented.
  • the low-pass filter 612B is configured by a digital low-pass filter. Therefore, the FT spectrometer of the present embodiment has a filter characteristic that is caused by variations in circuit constants such as an analog low-pass filter. Variations can be prevented from occurring.
  • the low-pass filter 612B By configuring the low-pass filter 612B with a digital low-pass filter, no external IC is required, and the FT spectrometer of this embodiment can reduce the size of the filter circuit.
  • the low-pass filter 612B is a high-frequency filter in the FT spectrometer of this embodiment.
  • the FT spectrometer of this embodiment can suppress the noise of the self-excited signal after passing through the low-pass filter 612B.
  • FIG. 19 is a diagram illustrating the relationship between the distance from the photo reflector to the measurement target and the output voltage from the photo reflector.
  • the horizontal axis in FIG. 19 is the distance from the photo reflector to the measurement object, and the vertical axis is the output of the photo reflector.
  • FIG. 20 is a non-linear region in the relationship between the distance to the measurement object and the output voltage, and the detection signal obtained from the output of the photoreflector when the reciprocal vibration of one end of the translation mechanism is measured by the photoreflector, and this It is a figure which shows the output signal of the said low-pass filter when a detection signal is input into a low-pass filter.
  • FIG. 20A is obtained from the output of the photoreflector when the reciprocal vibration of one end of the translation mechanism is measured by the photoreflector in a region that is not a linear region in the diagram showing the relationship between the distance to the measurement target and the output voltage.
  • FIG. 20B is a diagram illustrating an output signal of the low-pass filter when the detection signal of FIG. 20A is input to the low-pass filter.
  • the horizontal axis in FIGS. 20A and 20B is time, and the vertical axis thereof is amplitude.
  • the amplitude of the movable mirror 115 (specifically, the change in the distance from the photo reflector to the back surface (measurement target) of one end of the parallel movement mechanism 150) is detected in the range (linear region) with good linearity in FIG.
  • a detection signal having a duty ratio of 50% is obtained from the photo reflector.
  • the photoreflector is arranged in the interferometer 11 so as to be detected in a range with poor linearity in FIG. 19 (for example, a range in which the peak position of the graph shown in FIG. 19 is included, that is, a region that is not a linear region). Then, only a detection signal having a duty ratio smaller than 50% can be obtained from this photo reflector.
  • a detection signal with a small duty ratio (for example, a detection signal with a duty ratio of 30%: see FIG. 20A) is passed through the low-pass filter (self-excited signal generation unit) 612B of the present embodiment to be third order or higher.
  • a sinusoidal signal (self-excited signal) with a duty ratio of 50% is obtained (see FIG. 20B).
  • the FT spectrometer of the present embodiment even if the arrangement position of the photo reflector is a position where the amplitude of the movable mirror 115 is detected in the range with poor linearity (nonlinear region) in FIG.
  • Self-excited signal having a duty ratio of 50% that is, an oscillation signal (moving mirror drive signal) whose phase is delayed by 90 ° with respect to the detection signal input to low-pass filter 612B
  • the measurement accuracy of the spectrum of the predetermined light does not decrease.
  • the sine wave generator and the self-excited signal generator arranged between the excitation signal generator 611 and the D / A control signal generator 617 have a common low-pass filter 612B.
  • the self-excitation signal generation unit also serves as a sine wave generation unit that converts a square-wave excitation signal into a sine-wave excitation signal, but is not limited to this configuration.
  • the sine wave generator and the self-excited signal generator disposed between the excitation signal generator 611 and the D / A control signal generator 617 may be configured by different low-pass filters.
  • FIG. 21 is a block diagram showing the configuration of the resonance frequency detection circuit of the parallel movement mechanism.
  • FIG. 22 shows an example of a photoreflector detection signal when the amplitude of the moving mirror is observed while changing the frequency of the moving mirror drive signal that is an oscillation signal input to the parallel movement mechanism, and when this detection signal is input. It is a figure which shows the output signal of this comparator.
  • the upper graph is the photoreflector detection signal SG6, and the lower graph is the comparator output signal SG7.
  • the horizontal axis of FIG. 22 is frequency
  • the vertical axis is voltage.
  • the FT spectrometer of the present embodiment is different from the FT spectrometers of the first to third embodiments in the configuration of the excitation signal generator 611C and the control calculator 41C.
  • the excitation signal generation unit 611C and the control calculation unit 41C generate an excitation signal (specifically, the parallel movement mechanism 150 in a stationary state based on the detection result by the moving mirror operation detection unit 200 when the oscillation signal is output while changing the frequency).
  • the frequency of the oscillation signal output from the excitation signal generation unit 611C in order to start the reciprocating vibration is determined.
  • the excitation signal generator 611C of this embodiment can change the frequency of the oscillation signal to be output.
  • the control calculation unit 41C further includes a storage unit (storage area) 415 and an excitation frequency determination unit 416.
  • the storage unit 415 stores the detection signal input from the movable mirror operation detection unit 200 and the frequency of the oscillation signal output from the excitation signal generation unit 611C in association with each other.
  • the excitation frequency determining unit 416 uses the frequency f 1 (see FIG. 22) of the oscillation signal when the amplitude (the vertical width of the voltage in the detection signal) is maximum in the detection signal as the resonance frequency at which resonance vibration occurs in the translation mechanism 150.
  • f is 0 and fiction, to output the oscillation signal of the frequency f 1 as the excitation signal to the excitation signal generator 611C.
  • the movable mirror 115 is moved by the parallel movement mechanism 150 while changing the frequency of the oscillation signal output from the excitation signal generator 611C at intervals of ⁇ f from the frequency f min to f max.
  • the excitation frequency determination unit 416 monitors the amplitude of the movable mirror 115 based on the detection signal from the movable mirror operation detection unit 200 input during this period. Then, the excitation frequency determination unit 416 extracts the frequency f 1 of the oscillation signal when the amplitude of the movable mirror 115 becomes the maximum in the detection signal from the storage unit 415, and uses this frequency f 1 as the resonance frequency f 0 (see FIG. 22).
  • the excitation signal generator 611C outputs the oscillation signal of this frequency f1 as an excitation signal. Even if the frequency input to the parallel movement mechanism 150 is slightly deviated from the resonance frequency f 0 , this deviation is within the range in which the vibration of the movable mirror in FIG. 22 is detected (for example, the frequencies f 2 to f in FIG. 22). 3 ), the translation mechanism 150 starts to vibrate.
  • the above FT spectrometer can reliably reciprocate the movable mirror 115 from the stationary state in the interferometer 11. That is, the FT spectrometer of the present embodiment, for example, when the frequency of the excitation signal deviates from the value set in the excitation signal generator 611, or when the value is not set in advance, The frequency of the oscillation signal is scanned to obtain the frequency when the reciprocal vibration of the movable mirror 115 is detected, and the oscillation signal (excitation signal) of this frequency is output to the parallel movement mechanism 150, whereby the interferometer 11 performs the movable mirror 115 can be reliably reciprocated from a stationary state.
  • the excitation frequency determination unit 416 of the present embodiment uses the frequency f 1 of the oscillation signal output from the excitation signal generation unit 611C when the amplitude of the movable mirror 115 is maximized in the input detection signal as the resonance frequency f 0.
  • the excitation frequency determination unit 416 converts the detection signal into a square wave signal through a hysteresis control comparator, the frequency range f 2 to f 3 in which the vibration of the movable mirror 115 is detected in the square wave signal.
  • the configuration may be such that the center frequency f 4 (see the lower graph in FIG. 22) is simulated as the resonance frequency f 0 and the excitation signal generator 611C outputs the oscillation signal of the frequency f 4 as the excitation signal.
  • the parallel movement mechanism 150 is used as an example of the moving mirror driving unit, but the moving mirror driving unit is not limited to this.
  • the movable mirror driving unit includes a magnet unit provided on the first support 153, and a coil unit disposed away from the magnet unit so as to face the magnet unit. May be provided instead of the piezoelectric element 155.
  • the coil portion is disposed at a position that does not interfere with the movement ranges of the first leaf spring 151, the second leaf spring 152, and the movable mirror 115 (a position that does not hinder each movement).
  • the first support 153 alternately applies force upward and downward due to the interaction between the magnetic field generated in the coil part by applying an AC voltage to the coil part and the magnetic field of the magnet part. Receiving and resonance driving. When this AC voltage is applied, the coil unit is controlled by the parallel movement mechanism control unit 610 using a self-excited signal that is an oscillation signal based on the detection result of the moving mirror operation detection unit 200.
  • a Fourier transform spectrometer is a Fourier transform spectrometer that obtains a spectrum of the predetermined light by performing a Fourier transform on an interferogram of the predetermined light, and includes a distance from an incident position of the predetermined light to an interference position.
  • a plurality of optical elements that form two optical paths between them, and a movable mirror included in the plurality of optical elements based on an input oscillation signal are reciprocally oscillated in the direction of the optical axis.
  • a self-excited signal that is an oscillation signal based on a detection result of the moving mirror operation detecting unit, a moving mirror operation detecting unit that detects reciprocal vibration of the moving mirror, A self-excited signal generating unit that outputs a signal to the movable mirror driving unit.
  • Such a Fourier transform spectrometer controls the reciprocating vibration of the moving mirror using an oscillation signal (self-excited signal) based on the reciprocating vibration (reciprocating movement) of the moving mirror (so-called self-excited oscillation is performed). Therefore, it is difficult to be affected by external noise, so that the reciprocating vibration of the movable mirror can be stabilized against the noise.
  • a PLL control negative feedback circuit
  • a moving mirror driving unit driving mechanism of an interferometer in a conventional Fourier transform spectrometer
  • a reference frequency signal supplied from an oscillator or the like and a reciprocating vibration of the moving mirror are generated.
  • the actually detected detection signal is compared, and an oscillation signal having a frequency based on this comparison is output from the voltage controlled oscillator to the moving mirror driving unit.
  • the conventional Fourier transform spectrometer is easily unlocked when noise is applied to any signal (that is, the frequency of the oscillation signal input to the moving mirror drive unit changes), and the reciprocating vibration of the moving mirror Cannot be stabilized.
  • the Fourier transform spectrometer having the above-described configuration is driven by self-excited oscillation (that is, the reciprocating vibration of the moving mirror is controlled based on the signal that detects the actual reciprocating vibration of the moving mirror).
  • the reciprocal vibration of the movable mirror can be stabilized against the noise.
  • the moving mirror driving unit that drives the moving mirror of the interferometer includes a parallel moving mechanism including a pair of leaf spring members arranged in parallel so as to face each other.
  • a leaf spring driving unit that vibrates the leaf spring member based on the input oscillation signal, and the movable mirror is reciprocally vibrated in the optical axis direction by the vibration of the pair of leaf spring members.
  • the Fourier transform spectrometer preferably has an excitation signal generator that outputs an excitation signal, which is an oscillation signal based on a resonance frequency at which the pair of leaf spring members resonate, to the movable mirror drive unit; You may further provide the signal switching part which switches the oscillation signal input into a moving mirror drive part between the self-excitation signal from the said self-excitation signal generation part, and the excitation signal from the said excitation signal generation part.
  • the movable mirror can reciprocate from a stationary state in the interferometer. That is, the Fourier transform spectrometer cannot be driven by self-excited oscillation because the moving mirror operation detector cannot detect the reciprocal vibration of the moving mirror when the moving mirror is stationary (ie, the moving mirror drive from the signal generator).
  • the moving mirror driving unit drives the moving mirror and starts reciprocating vibration.
  • the movable mirror operation detector detects the reciprocal vibration of the movable mirror and outputs a self-excited signal that can drive the movable mirror driver from the self-excited signal generator.
  • the signal switching unit generates an oscillation signal to be output to the moving mirror driving unit from the excitation signal when the moving mirror operation detecting unit detects reciprocal vibration of the moving mirror. Switch to excitation signal.
  • the Fourier transform spectrometer can be automatically switched to drive by self-excited oscillation after reciprocating vibration from the stopped state using the excitation signal.
  • the signal switching unit switches the oscillation signal to be output from the excitation signal to the self-excitation signal after outputting the excitation signal to the movable mirror driving unit for a predetermined time, for example.
  • the Fourier transform spectrometer can automatically switch to driving by self-excited oscillation after reciprocatingly vibrating the movable mirror from a stationary state using an excitation signal. That is, according to the above-described configuration, when the excitation signal is input to the movable mirror driving unit for a predetermined time, the movable mirror starts reciprocating vibration from a stopped state, and thereafter (after the predetermined time elapses), driving by self-excited oscillation Control to switch to is performed.
  • the excitation signal generation unit outputs the excitation signal based on a detection result by the moving mirror operation detection unit when an oscillation signal is output while changing the frequency. decide.
  • a Fourier transform spectrometer can reliably reciprocate the moving mirror from the stationary state in the interferometer. That is, for example, even when the frequency of the excitation signal deviates from the value set in the excitation signal generator, or when the value is not set in advance, such a Fourier transform spectrometer can oscillate.
  • the frequency of the signal is swept (scanned) to obtain the frequency when the reciprocating vibration of the moving mirror is detected, and the oscillation signal (excitation signal) of the obtained frequency is output to the moving mirror driving unit, so that the interferometer
  • the movable mirror can be reliably reciprocated from a stationary state.
  • the moving mirror driving unit vibrates the pair of leaf spring members with a driving force according to an amplitude of an input oscillation signal
  • the self-excited signal generator outputs an oscillation signal whose phase is delayed by 90 ° with respect to the reciprocating vibration of the movable mirror detected by the movable mirror operation detector.
  • the driving force to the moving mirror becomes zero when the moving mirror is at one end or the other end position in the vibration direction (see Xm and -Xm in FIG. 4B) in the reciprocating vibration of the moving mirror.
  • the largest driving force is applied in the moving direction when the moving mirror is at an intermediate position (position where the moving speed is the highest: see origin position X0 in FIG. 4B) from one end (the other end) to the other end (the one end) in the vibration direction. .
  • such a Fourier transform spectrometer can keep the amplitude (the displacement amount in the optical axis direction) of the movable mirror large.
  • the moving mirror driving unit vibrates the pair of leaf spring members with a driving force according to an amplitude of an input oscillation signal
  • the self-excited signal generation unit may include a low-pass filter that outputs a sinusoidal self-excited signal that is detected by the moving mirror operation detecting unit and whose phase is delayed by 90 ° with respect to the reciprocating vibration of the moving mirror.
  • Such a Fourier transform spectrometer prevents oscillation due to the higher-order resonance mode of the moving mirror drive unit that occurs in the case of a square wave (rectangular wave) self-excited signal, and also detects the detection result from the moving mirror operation detection unit ( Even if noise is present on the detection signal), this noise can be reduced by the low-pass filter to suppress the influence of the noise on the spectrum measurement result.
  • the low-pass filter is preferably a digital low-pass filter.
  • a Fourier transform spectrometer can prevent the occurrence of variations in filter characteristics due to variations in circuit constants, such as an analog low-pass filter, by using a digital low-pass filter.
  • the above-described Fourier transform spectrometer may further include an amplitude control unit that controls the amplitude of the reciprocating vibration of the movable mirror based on the detection result of the movable mirror operation detection unit.
  • Such a Fourier transform spectrometer can accurately adjust the amplitude of the reciprocating vibration of the moving mirror (specifically, the moving distance in the optical axis direction). That is, such a Fourier transform spectrometer detects the actual amplitude of the moving mirror when the amplitude magnitude (amplitude target) of the target moving mirror is changed, and based on the detection result, the moving mirror Therefore, the amplitude of the movable mirror after changing the amplitude can be accurately matched with the amplitude target.
  • the Fourier transform spectrometer detects the actual amplitude of the moving mirror and adjusts the amplitude of the moving mirror based on the detection result.
  • the amplitude can be made constant, that is, the maximum value and the minimum value of the optical path difference generated between the two optical paths that guide the predetermined light in the interferometer can be made constant, whereby the spectrum of the predetermined light can be measured more accurately. .
  • a Fourier transform spectrometer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A Fourier transform spectrometer pertaining to the present invention detects reciprocal vibrations of a moving mirror in an optical element for forming an optical path difference in an interferometer for obtaining an interferogram of a predetermined light, and controls the reciprocal vibrations of the moving mirror using self-excited signals based on the detection results. The present invention is thereby capable of providing a Fourier transform spectrometer in which the moving mirror reciprocally vibrates in a stable manner in response to noise from the exterior.

Description

フーリエ変換型分光計Fourier transform spectrometer
 本発明は、フーリエ変換型分光計に関し、特に、干渉計の光路差形成光学素子として、光軸方向に往復振動する移動鏡を用いたフーリエ変換型分光計に関する。 The present invention relates to a Fourier transform spectrometer, and more particularly to a Fourier transform spectrometer that uses a moving mirror that reciprocally vibrates in the optical axis direction as an optical path difference forming optical element of an interferometer.
 分光計は、測定対象の所定光(被測定光)における各波長(各波数)の成分(光強度)を表すスペクトルを測定する装置である。この分光計の1つとして、フーリエ変換型分光計が知られている。このフーリエ変換型分光計は、干渉計で所定光の干渉光を生成し、この干渉光を測定してその測定結果をフーリエ変換することによって所定光のスペクトルを求める。 A spectrometer is a device that measures a spectrum representing a component (light intensity) of each wavelength (each wave number) in predetermined light (measurement light) to be measured. As one of the spectrometers, a Fourier transform spectrometer is known. The Fourier transform spectrometer generates interference light of predetermined light by an interferometer, measures the interference light, and Fourier-transforms the measurement result to obtain a spectrum of the predetermined light.
 フーリエ変換型分光計において、干渉計の出力は、所定光に含まれる複数の波長の光を干渉計によって一括で干渉させた合成波形であり、インターフェログラムと呼ばれる。フーリエ変換型分光計は、干渉計から出力されたインターフェログラムをフーリエ変換することによって、所定光のスペクトルを求めている。このインターフェログラムは、所定の範囲で1または複数の急峻なピークを持つと共に残余の範囲では略ゼロレベルとなるプロファイルとなる。この1または複数の急峻なピークのうちの中央のピークは、センターバーストと呼ばれる。 In a Fourier transform spectrometer, the output of the interferometer is a combined waveform obtained by causing a plurality of wavelengths of light included in the predetermined light to interfere at once with the interferometer, and is called an interferogram. The Fourier transform spectrometer obtains a spectrum of predetermined light by Fourier transforming the interferogram output from the interferometer. This interferogram has a profile that has one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range. The central peak among the one or more steep peaks is called a center burst.
 このようなフーリエ変換型分光計の前記干渉計は、所定光が入射した場合にこの所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備える。これら複数の光学素子には、光軸方向に移動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれている。この光路差形成光学素子として、一定速度で走査範囲を光軸方向に沿って移動する移動鏡が挙げられる。 The interferometer of such a Fourier transform type spectrometer includes a plurality of optical elements that form two optical paths between the incident position of the predetermined light and the interference position when the predetermined light is incident. The plurality of optical elements includes an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction. As this optical path difference forming optical element, there is a moving mirror that moves in the scanning range along the optical axis direction at a constant speed.
 この移動鏡の移動には、通常、ガスベアリングやボイスコイルモータが用いられるために、干渉計が比較的大型化してしまう。このため、干渉計のより小型化を図るべく、例えば、特許文献1に開示された平行移動機構によって駆動される移動鏡が提案されている。 ∙ Normally, gas bearings and voice coil motors are used to move the movable mirror, so that the interferometer becomes relatively large. For this reason, in order to reduce the size of the interferometer, for example, a moving mirror that is driven by a parallel movement mechanism disclosed in Patent Document 1 has been proposed.
 この平行移動機構は、互いに対向して平行配置される第1および第2板バネ部材と、前記第1および第2板バネ部材の間であってその両端部にそれぞれ配置され、第1および第2板バネ部材のそれぞれに連結される第1および第2支持体と、前記第1板バネ部材の一方端の表面上に設けられ、前記第1および第2板バネ部材の一方を曲げ変形させることにより前記第1および第2支持体の一方を前記第1および第2板バネ部材の対向方向に平行移動させる圧電素子とを備えている。そして、移動鏡は、平行移動機構の第1板バネ部材の他方端の表面上に配置されている。 The parallel movement mechanism is disposed between the first and second leaf spring members arranged in parallel to face each other and between the first and second leaf spring members and at both ends thereof. First and second supports connected to each of the two leaf spring members, and provided on the surface of one end of the first leaf spring member, one of the first and second leaf spring members is bent and deformed. Accordingly, a piezoelectric element that translates one of the first and second support bodies in the opposing direction of the first and second leaf spring members is provided. And the movable mirror is arrange | positioned on the surface of the other end of the 1st leaf | plate spring member of a parallel displacement mechanism.
 このように構成される平行移動機構は、当該平行移動機構(圧電素子)に接続された駆動装置によって駆動される。この駆動装置は、PLL(Phase Locked Loop)制御を行う。このPLL制御は、平行移動機構による移動鏡の往復振動を検出した信号である機械信号の周波数と、基準となる一定周波数の基準周波数とを比較し、これらが一致するように電圧制御発振器(VOC:Voltage Controlled Oscillator)から平行移動機構(圧電素子)に出力される発振信号を調整する。 The parallel movement mechanism configured as described above is driven by a driving device connected to the parallel movement mechanism (piezoelectric element). This drive device performs PLL (Phase Locked Loop) control. In this PLL control, the frequency of a mechanical signal, which is a signal obtained by detecting the reciprocal vibration of the movable mirror by the parallel movement mechanism, is compared with a reference frequency of a constant frequency as a reference, and a voltage controlled oscillator (VOC) is set so that they match. : Adjust the oscillation signal output from the Voltage Controlled Oscillator) to the translation mechanism (piezoelectric element).
 平行移動機構では、駆動装置からの発振信号によって圧電素子が伸張すると、前記第1板バネ部材が上に凸となるように変形し、この結果、移動鏡が対向方向の下方に変位する一方、前記発振信号によって圧電素子が縮小すると、前記第1板バネ部材が下に凸となるように変形し、この結果、移動鏡が対向方向の上方に変位する。駆動装置において、基準周波数が、平行移動機構(詳しくは第1および第2板バネ部材)が共振する周波数(共振周波数)に設定されるため、平行移動機構に配置された移動鏡が変位量の大きな変位を繰り返す(すなわち、往復振動する)。 In the translation mechanism, when the piezoelectric element is expanded by the oscillation signal from the driving device, the first leaf spring member is deformed so as to be convex upward, and as a result, the movable mirror is displaced downward in the facing direction. When the piezoelectric element is reduced by the oscillation signal, the first leaf spring member is deformed so as to protrude downward, and as a result, the movable mirror is displaced upward in the facing direction. In the driving device, the reference frequency is set to a frequency (resonance frequency) at which the parallel movement mechanism (specifically, the first and second leaf spring members) resonates, so that the movable mirror disposed in the parallel movement mechanism has a displacement amount. Repeat large displacements (ie, reciprocate).
 上記のフーリエ変換型分光計のように、干渉計における移動鏡の往復振動がPLL制御されていると、外部からのノイズ、例えば、電圧変化等によるノイズが機械信号(移動鏡の往復振動を検出した信号)に重畳した場合に、ロック(電圧制御発振器が基準周波数と同じ周波数の発振信号を出力する状態)が外れ易かった。このようにPLL制御においてロックが外れて平行移動機構に出力される発振信号の周波数が変化すると、移動鏡の往復振動が安定しない。 When the reciprocating vibration of the moving mirror in the interferometer is PLL-controlled as in the above Fourier transform spectrometer, noise from the outside, for example, noise due to voltage change, etc. is detected as a mechanical signal (reciprocating vibration of the moving mirror is detected. (The state in which the voltage-controlled oscillator outputs an oscillation signal having the same frequency as the reference frequency) is easily released. Thus, when the frequency of the oscillation signal output to the parallel movement mechanism changes in the PLL control and the reciprocating vibration of the movable mirror changes, the reciprocating vibration of the movable mirror is not stabilized.
特開2011-250572号公報JP 2011-250572 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、外部からのノイズに対して移動鏡が安定して往復振動するフーリエ変換型分光計を提供するである。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a Fourier transform spectrometer in which a movable mirror stably oscillates against external noise.
 本発明にかかるフーリエ変換型分光計は、所定光のインターフェログラムを得るための干渉計における光路差形成光学素子の移動鏡の往復振動を検出し、検出結果に基づく自励信号で前記移動鏡の往復振動を制御する。これによって、本発明では、外部からのノイズに対して移動鏡が安定して往復振動するフーリエ変換型分光計が提供できる。 A Fourier transform spectrometer according to the present invention detects a reciprocal vibration of a moving mirror of an optical path difference forming optical element in an interferometer for obtaining an interferogram of predetermined light, and uses the self-excited signal based on the detection result to detect the moving mirror. Controls reciprocating vibration. As a result, the present invention can provide a Fourier transform spectrometer in which the movable mirror stably oscillates against external noise.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態にかかるフーリエ変換型分光計の構成を示すブロック図である。It is a block diagram which shows the structure of the Fourier-transform type spectrometer concerning 1st Embodiment. 前記フーリエ変換型分光計における干渉計およびその周辺の構成を示す図である。It is a figure which shows the structure of the interferometer and its periphery in the said Fourier-transform type spectrometer. 前記干渉計における光反射機構の構成を示す拡大斜視図である。It is an expansion perspective view which shows the structure of the light reflection mechanism in the said interferometer. 前記光反射機構における移動鏡の往復振動の様子を示す断面図である。It is sectional drawing which shows the mode of the reciprocating vibration of the movable mirror in the said light reflection mechanism. 前記フーリエ変換型分光計における移動鏡駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the moving mirror drive circuit in the said Fourier-transform type spectrometer. 前記フーリエ変換型分光計において、平行移動機構に入力される移動鏡駆動信号、フォトリフレクターの検出信号、および前記検出信号が入力されたコンパレータの出力信号の一例を示す図である。In the Fourier transform type spectrometer, it is a figure which shows an example of the moving mirror drive signal input into a parallel displacement mechanism, the detection signal of a photo reflector, and the output signal of the comparator into which the said detection signal was input. 前記フーリエ変換型分光計における受光処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the light reception process part in the said Fourier-transform type spectrometer. 前記フーリエ変換型分光計におけるレーザ光の干渉波形の一例を示す図である。It is a figure which shows an example of the interference waveform of the laser beam in the said Fourier-transform type spectrometer. 前記フーリエ変換型分光計において、実測した所定光の干渉光の波形(インターフェログラム)の一例を示す図である。It is a figure which shows an example of the waveform (interferogram) of the interference light of the predetermined light measured in the said Fourier-transform spectrometer. 前記インターフェログラムと窓関数との関係を示す図である。It is a figure which shows the relationship between the said interferogram and a window function. 前記フーリエ変換型分光計において求められるスペクトルの一例を示す図である。It is a figure which shows an example of the spectrum calculated | required in the said Fourier-transform type spectrometer. 第2実施形態にかかるフーリエ変換型分光計の移動鏡駆動回路および振幅制御回路の構成を示すブロック図である。It is a block diagram which shows the structure of the moving mirror drive circuit and amplitude control circuit of a Fourier-transform type spectrometer concerning 2nd Embodiment. 前記フーリエ変換型分光計において移動鏡の振幅目標を変えた場合の移動鏡の振幅の応答の様子を示す図である。It is a figure which shows the mode of the response of the amplitude of a moving mirror at the time of changing the amplitude target of a moving mirror in the said Fourier-transform type spectrometer. 第3実施形態にかかるフーリエ変換型分光計の移動鏡駆動回路および振幅制御回路の構成を示すブロック図である。It is a block diagram which shows the structure of the moving mirror drive circuit and amplitude control circuit of a Fourier-transform type spectrometer concerning 3rd Embodiment. 前記フーリエ変換型分光計の自励信号発生部を構成するローパスフィルタ(IIRフィルタ)の構成を示す回路図である。It is a circuit diagram which shows the structure of the low-pass filter (IIR filter) which comprises the self-excitation signal generation part of the said Fourier-transform type spectrometer. 前記ローパスフィルタの特性を示す図である。It is a figure which shows the characteristic of the said low pass filter. 方形波状の検出信号の一例とこの検出信号を前記ローパスフィルタに入力したときの当該ローパスフィルタの出力波形を示す図である。It is a figure which shows an example of a square wave detection signal, and the output waveform of the said low-pass filter when this detection signal is input into the said low-pass filter. ノイズが重畳した検出信号の一例と、コンパレータに通すことによって方形波状の信号に変換された前記検出信号とを示す図である。It is a figure which shows an example of the detection signal with which the noise was superimposed, and the said detection signal converted into the square wave signal by passing through a comparator. フォトリフレクターから測定対象までの距離と、フォトリフレクターからの出力電圧との関係を示す図である。It is a figure which shows the relationship between the distance from a photo reflector to a measuring object, and the output voltage from a photo reflector. 測定対象までの距離と出力電圧との関係における非線形領域で、フォトリフレクターにより平行移動機構の一方端部の往復振動を測定した場合にフォトリフレクターの出力から得られる検出信号と、この検出信号をローパスフィルタに入力したときの当該ローパスフィルタの出力信号とを示す図である。In the non-linear region in the relationship between the distance to the object to be measured and the output voltage, the detection signal obtained from the output of the photo reflector when the reciprocating vibration of one end of the translation mechanism is measured by the photo reflector, and this detection signal is low-pass It is a figure which shows the output signal of the said low-pass filter when inputting into a filter. 平行移動機構の共振周波数検出回路の構成を示すブロック図である。It is a block diagram which shows the structure of the resonant frequency detection circuit of a parallel displacement mechanism. 平行移動機構に入力される発振信号である移動鏡駆動信号の周波数を変えつつ移動鏡の振幅を観測したときのフォトリフレクターの検出信号の一例と、この検出信号が入力されたときのコンパレータの出力信号とを示す図である。An example of a photoreflector detection signal when the amplitude of the moving mirror is observed while changing the frequency of the moving mirror drive signal that is the oscillation signal input to the translation mechanism, and the output of the comparator when this detection signal is input It is a figure which shows a signal.
 以下、本発明の第1実施形態について、図1~図11を参照しつつ説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、第1実施形態にかかるフーリエ変換型分光計の構成を示すブロック図である。図2は、前記フーリエ変換型分光計における干渉計およびその周辺の構成を示す図である。図3は、前記干渉計における光反射機構の構成を示す拡大斜視図である。図4は、前記光反射機構における移動鏡の往復振動の様子を示す断面図である。図4Aは、圧電素子155が伸張した場合を示し、図4Bは、圧電素子155が縮小した場合を示し、図4Cは、光反射機構15の振動の様子を示す。図5は、前記フーリエ変換型分光計における移動鏡駆動回路の構成を示すブロック図である。図6は、前記フーリエ変換型分光計において、平行移動機構に入力される移動鏡駆動信号(励振信号または自励信号)、フォトリフレクターの検出信号、および前記検出信号が入力されたコンパレータの出力信号の一例を示す図である。図6において、上段のグラフは、平行移動機構に入力される移動鏡駆動信号SG1であり、中段のグラフは、フォトリフレクターの検出信号SG2であり、そして、下段のグラフは、コンパレータからの出力信号SG3である。図6の横軸は、時間であり、縦軸は、電圧である。図7は、前記フーリエ変換型分光計における受光処理部の構成を示すブロック図である。図8は、前記フーリエ変換型分光計におけるレーザ光の干渉波形の一例を示す図である。図8の横軸は、光路差であり、その縦軸は、振幅である。 FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer according to the first embodiment. FIG. 2 is a diagram showing the configuration of the interferometer and its surroundings in the Fourier transform spectrometer. FIG. 3 is an enlarged perspective view showing a configuration of a light reflection mechanism in the interferometer. FIG. 4 is a cross-sectional view showing the reciprocal vibration of the movable mirror in the light reflecting mechanism. 4A shows a case where the piezoelectric element 155 expands, FIG. 4B shows a case where the piezoelectric element 155 contracts, and FIG. 4C shows how the light reflecting mechanism 15 vibrates. FIG. 5 is a block diagram showing a configuration of a moving mirror driving circuit in the Fourier transform spectrometer. FIG. 6 shows a moving mirror driving signal (excitation signal or self-excited signal) input to the parallel movement mechanism, a photoreflector detection signal, and a comparator output signal to which the detection signal is input in the Fourier transform spectrometer. It is a figure which shows an example. In FIG. 6, the upper graph is the moving mirror drive signal SG1 input to the translation mechanism, the middle graph is the photoreflector detection signal SG2, and the lower graph is the output signal from the comparator. SG3. The horizontal axis in FIG. 6 is time, and the vertical axis is voltage. FIG. 7 is a block diagram showing a configuration of a light receiving processing unit in the Fourier transform spectrometer. FIG. 8 is a diagram showing an example of an interference waveform of laser light in the Fourier transform spectrometer. The horizontal axis in FIG. 8 is the optical path difference, and the vertical axis is the amplitude.
 本実施形態にかかるフーリエ変換型分光計(以下、「FT型分光計」と略記する。)10は、所定光のスペクトルを測定する装置である。このFT型分光計10は、所定光を干渉計11によって干渉させ、この所定光の干渉光を測定して得られた前記干渉光の波形(インターフェログラム)をフーリエ変換することによって所定光のスペクトルを求める。 A Fourier transform spectrometer (hereinafter abbreviated as “FT spectrometer”) 10 according to the present embodiment is an apparatus that measures a spectrum of predetermined light. The FT spectrometer 10 causes predetermined light to interfere with the interferometer 11, and Fourier transforms the waveform (interferogram) of the interference light obtained by measuring the interference light of the predetermined light. Obtain the spectrum.
 より具体的には、FT型分光計10は、干渉計11において生成された所定光の干渉光を光電変換することによって得られた電気信号を、所定のサンプリングタイミングでサンプリングして複数の測定データを取得する。そして、FT型分光計10は、この取得した複数の測定データ(すなわち、所定光のインターフェログラム)からフーリエ変換を用いて所定光のスペクトルを求める。本実施形態のFT型分光計10は、SN比を改善し、良好な精度の結果を得るために、所定光のスペクトルを求めるためのフーリエ変換の変換対象として、積算インターフェログラムを用いる。この積算インターフェログラムは、干渉計11において生成された所定光のインターフェログラムを複数積算することによって得られたインターフェログラムである。 More specifically, the FT spectrometer 10 samples a plurality of measurement data by sampling an electrical signal obtained by photoelectrically converting the interference light of the predetermined light generated in the interferometer 11 at a predetermined sampling timing. To get. Then, the FT spectrometer 10 obtains the spectrum of the predetermined light from the plurality of acquired measurement data (that is, the interferogram of the predetermined light) using Fourier transform. The FT spectrometer 10 of the present embodiment uses an integrated interferogram as a Fourier transform conversion target for obtaining a spectrum of predetermined light in order to improve the SN ratio and obtain a good accuracy result. This integrated interferogram is an interferogram obtained by integrating a plurality of interferograms of predetermined light generated in the interferometer 11.
 このようなFT型分光計10は、例えば、図1ないし図7に示すように、測定光光源部50と、干渉計11と、移動鏡制御部60と、受光処理部20と、タイミング発生部30と、制御演算部41と、入力部42と、出力部43と、を備える。 Such an FT spectrometer 10 includes, for example, a measurement light source unit 50, an interferometer 11, a moving mirror control unit 60, a light reception processing unit 20, and a timing generation unit as shown in FIGS. 30, a control calculation unit 41, an input unit 42, and an output unit 43.
 測定光光源部50は、測定光を所定のジオメトリで測定対象の物体である試料SMへ照射する。この測定光光源部50は、例えば、測定光光源51(図2参照)およびその周辺回路を備える。測定光光源51は、測定光を放射してこの測定光を例えば45:0度のジオメトリで試料SMへ照射する。測定光は、試料SMにおけるその反射光のスペクトルを測定するために用いられる光であり、予め設定された所定の波長帯において連続スペクトルを持つ。本実施形態の測定光光源51は、例えば、ハロゲンランプである。 The measurement light source unit 50 irradiates the sample SM, which is an object to be measured, with a predetermined geometry. The measurement light source unit 50 includes, for example, a measurement light source 51 (see FIG. 2) and its peripheral circuits. The measurement light source 51 emits measurement light and irradiates the sample SM with the measurement light with a geometry of 45: 0 degrees, for example. The measurement light is light used for measuring the spectrum of the reflected light in the sample SM, and has a continuous spectrum in a predetermined wavelength band set in advance. The measurement light source 51 of this embodiment is, for example, a halogen lamp.
 本実施形態のFT型分光計10では、測定光光源51から照射された測定光は、図2に示されるように、45度の入射角で試料SMの表面(測定面SF)に入射する。試料SM(測定面SF)において反射された測定光の反射光は、0度の方向から測定される。すなわち、測定面SFの法線方向(0度)に反射した反射光の成分が所定光として干渉計11に入射する。 In the FT spectrometer 10 of the present embodiment, the measurement light emitted from the measurement light source 51 is incident on the surface (measurement surface SF) of the sample SM at an incident angle of 45 degrees as shown in FIG. The reflected light of the measurement light reflected on the sample SM (measurement surface SF) is measured from the 0 degree direction. That is, the component of the reflected light reflected in the normal direction (0 degree) of the measurement surface SF enters the interferometer 11 as the predetermined light.
 なお、本実施形態の所定光は、試料SMにおいて反射した測定光の反射光であるが、これに限定されない。所定光は、例えば、試料SMを透過した透過光であってもよく、また、測定光を照射することによって試料SMから再放射(例えば蛍光発光等)される光であってもよい。また、所定光は、測定光が照射されることなく、試料SMが自発光した光であってもよい。すなわち、FT型分光計10は、反射光だけでなく、透過光、再放射の光、自発光等のスペクトルも測定可能である。 In addition, although the predetermined light of this embodiment is reflected light of the measurement light reflected on the sample SM, it is not limited to this. The predetermined light may be, for example, transmitted light that has passed through the sample SM, or may be light that is re-emitted from the sample SM (for example, fluorescence emission) by irradiating the measurement light. Further, the predetermined light may be light emitted from the sample SM without being irradiated with the measurement light. That is, the FT spectrometer 10 can measure not only the reflected light but also the spectrum of transmitted light, re-radiated light, self-luminous light, and the like.
 干渉計11は、試料SMで反射した測定光の反射光が所定光として入射し、この所定光の干渉光を射出する。この干渉計11は、所定光が入射したときに、この入射した所定光を2個の光(第1分岐光および第2分岐光)に分岐する。そして、干渉計11は、これら分岐させた第1分岐光および第2分岐光を、互いに異なる2個の経路(第1光路および第2光路)に進行(伝播)させた後、再び合流させる。このとき、第1光路および第2光路において、所定光の分岐点(分岐位置)から、分岐させた光の合流点(合流位置、干渉位置)までの間に光路差があると、前記合流の際に第1分岐光と第2分岐光との間に位相差が生じるため干渉縞が生じる。 The interferometer 11 receives the reflected light of the measurement light reflected by the sample SM as predetermined light, and emits the interference light of the predetermined light. When the predetermined light is incident, the interferometer 11 branches the incident predetermined light into two lights (first branched light and second branched light). Then, the interferometer 11 advances (propagates) these branched first branched light and second branched light to two different paths (first optical path and second optical path), and then merges them again. At this time, in the first optical path and the second optical path, if there is an optical path difference between the branch point (branch position) of the predetermined light and the junction point (merging position, interference position) of the branched light, At this time, since a phase difference is generated between the first branched light and the second branched light, interference fringes are generated.
 本実施形態のFT型分光計10では、例えば、図2に示すような、マイケルソン干渉計11が用いられる。 In the FT spectrometer 10 of the present embodiment, for example, a Michelson interferometer 11 as shown in FIG. 2 is used.
 より具体的には、干渉計11は、2個の光路を形成する複数の光学素子と、平行移動機構(移動鏡駆動部)150と、を備える。 More specifically, the interferometer 11 includes a plurality of optical elements that form two optical paths, and a parallel movement mechanism (moving mirror driving unit) 150.
 複数の光学素子は、半透鏡(ハーフミラー)112と、固定鏡114と、光反射面が光軸方向に移動する移動鏡115とを含む。これらの光学素子112、114、115は、干渉計11において、以下のように配置されている。 The plurality of optical elements includes a semi-transparent mirror (half mirror) 112, a fixed mirror 114, and a movable mirror 115 whose light reflecting surface moves in the optical axis direction. These optical elements 112, 114, and 115 are arranged in the interferometer 11 as follows.
 固定鏡114と移動鏡115とは、各鏡面の各法線が互いに直交するようにそれぞれ配置されている。半透鏡112は、その法線が固定鏡114および移動鏡115における各法線の直交点を通り、これら各法線に対して45度の角度で交差するように配置されている。 The fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other. The semi-transparent mirror 112 is arranged so that the normal line passes through the orthogonal point of each normal line in the fixed mirror 114 and the movable mirror 115 and intersects each normal line at an angle of 45 degrees.
 このように複数の光学素子112、114、115が配置された干渉計11に入射した所定光は、半透鏡112において2個の光(第1分岐光および第2分岐光)に分けられる。この分岐した一方の光(第1分岐光)は、半透鏡112において反射された所定光であり、固定鏡114に入射する。そして、第1分岐光は、固定鏡114で反射され、来た光路を逆に辿って再び半透鏡112に戻る。一方、この分岐した他方の光(第2分岐光)は、半透鏡112を通過した所定光であり、移動鏡115に入射する。そして、第2分岐光は、移動鏡115で反射され、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された後の第1分岐光と、移動鏡115で反射された後の第2分岐光は、半透鏡112で合流することにより干渉する。このような構成の干渉計(マイケルソン干渉計)11では、所定光は、移動鏡115の鏡面における法線方向に沿って干渉計11に入射し、所定光の干渉光は、固定鏡114の鏡面における法線方向に沿って干渉計11から射出される。 The predetermined light incident on the interferometer 11 in which the plurality of optical elements 112, 114, and 115 are arranged in this way is divided into two lights (first branched light and second branched light) in the semi-transparent mirror 112. This branched light (first branched light) is a predetermined light reflected by the semi-transparent mirror 112 and enters the fixed mirror 114. Then, the first branched light is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come. On the other hand, the other branched light (second branched light) is predetermined light that has passed through the semi-transparent mirror 112 and enters the movable mirror 115. Then, the second branched light is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again. The first branched light after being reflected by the fixed mirror 114 and the second branched light after being reflected by the movable mirror 115 interfere with each other by being merged by the semi-transparent mirror 112. In the interferometer (Michelson interferometer) 11 having such a configuration, the predetermined light enters the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the predetermined light is transmitted from the fixed mirror 114. The light is emitted from the interferometer 11 along the normal direction on the mirror surface.
 本実施形態の干渉計11は、所定光を半透鏡112によって2個の光(第1分岐光および第2分岐光)に分岐する場合において、半透鏡112で反射した半透鏡112の反射側(詳しくは、半透鏡112によって反射されて固定鏡114に向かう第1分岐光の光路上)に配置される位相補償板113をさらに備えている。すなわち、本実施形態の干渉計11では、半透鏡112で反射された第1分岐光は、位相補償板113を介して固定鏡114に入射し、この固定鏡114で反射された後、位相補償板113を介して再び半透鏡112に入射する。この位相補償板113は、第1分岐光における半透鏡112の透過回数と第2分岐光における半透鏡112の透過回数との相違から生じる第1分岐光と第2分岐光との間の位相差を無くす(すなわち、位相差を補償する)ために用いられる光学素子である。 The interferometer 11 of the present embodiment is configured such that when the predetermined light is split into two lights (first branched light and second branched light) by the half mirror 112, the reflection side of the half mirror 112 reflected by the half mirror 112 ( Specifically, it further includes a phase compensation plate 113 that is disposed on the optical path of the first branched light reflected by the semi-transparent mirror 112 and directed toward the fixed mirror 114. That is, in the interferometer 11 of the present embodiment, the first branched light reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, reflected by the fixed mirror 114, and then phase compensated. The light enters the semi-transparent mirror 112 again through the plate 113. The phase compensator 113 has a phase difference between the first branched light and the second branched light resulting from the difference between the number of transmissions of the semi-transparent mirror 112 in the first branched light and the number of transmissions of the semi-transparent mirror 112 in the second branched light. Is an optical element used to eliminate (ie, compensate for a phase difference).
 以上のように、本実施形態の干渉計11において、第1分岐光は、所定光の入射位置から、半透鏡112、位相補償板113、固定鏡114、および位相補償板113を順に介して半透鏡112に再び至る第1光路を辿る。また、本実施形態の干渉計11において、第2分岐光は、所定光の入射位置から、半透鏡112および移動鏡115を順に介して半透鏡112に再び至る第2光路を辿る。 As described above, in the interferometer 11 of the present embodiment, the first branched light is half transmitted from the incident position of the predetermined light through the semi-transparent mirror 112, the phase compensation plate 113, the fixed mirror 114, and the phase compensation plate 113 in order. The first optical path reaching the transparent mirror 112 is followed. Further, in the interferometer 11 of the present embodiment, the second branched light follows a second optical path that reaches the semi-transparent mirror 112 again from the incident position of the predetermined light through the semi-transparent mirror 112 and the moving mirror 115 in order.
 本実施形態の干渉計11は、所定光を平行光で半透鏡112へ入射させる入射光学系111と、半透鏡112において第1分岐光および第2分岐光を干渉させることによって生じた所定光の干渉光を集光して第1受光部21へ入射させる射出光学系116とを有する。本実施形態の入射光学系111は、例えば、コリメータレンズであり、試料SMの測定面SFと半透鏡112との間の適宜な位置に配置されている。本実施形態の射出光学系116は、例えば、集光レンズであり、半透鏡112と第1受光部21との間の適宜な位置に配置されている。 The interferometer 11 of this embodiment includes an incident optical system 111 that makes predetermined light incident on the semi-transparent mirror 112 as parallel light, and the predetermined light generated by causing the first and second branched lights to interfere with each other in the semi-transparent mirror 112. And an emission optical system 116 that collects the interference light and makes it incident on the first light receiving unit 21. The incident optical system 111 of the present embodiment is, for example, a collimator lens, and is disposed at an appropriate position between the measurement surface SF of the sample SM and the semi-transparent mirror 112. The exit optical system 116 of the present embodiment is, for example, a condenser lens, and is disposed at an appropriate position between the semi-transparent mirror 112 and the first light receiving unit 21.
 移動鏡115は、干渉計11に配置される前記複数の光学素子の一つであり(前記複数の光学素子に含まれ)、例えば、平行移動機構150の共振振動によって2個の光路(第1光路および第2光路)間に光路差を生じさせる。この移動鏡115は、所定光のインターフェログラムを複数生成するために、平行移動機構150によって光軸方向に2回以上往復させられる。すなわち、FT型分光計10では、移動鏡115が光軸方向に1往復することによって1つのインターフェログラムが生成される。 The movable mirror 115 is one of the plurality of optical elements arranged in the interferometer 11 (included in the plurality of optical elements). For example, two optical paths (first optical paths) are generated by resonance vibration of the parallel movement mechanism 150. An optical path difference is generated between the optical path and the second optical path). The movable mirror 115 is reciprocated twice or more in the optical axis direction by the parallel movement mechanism 150 in order to generate a plurality of interferograms of predetermined light. That is, in the FT spectrometer 10, one interferogram is generated by the movable mirror 115 reciprocating once in the optical axis direction.
 平行移動機構150は、移動鏡115が取り付けられ、この移動鏡115を光軸方向(図2における上下方向)に往復振動(往復移動)させる。移動鏡115がこの平行移動機構150に取り付けられたものとして、例えば、特開2011-80854号公報や特開2012-42257号公報に開示の光反射機構が挙げられる。なお、図3も参照しつつ以下に説明する光反射機構15において、鏡面領域(移動鏡)115を除く部位が平行移動機構150である。 The parallel movement mechanism 150 is provided with a movable mirror 115, and reciprocates (reciprocates) the movable mirror 115 in the optical axis direction (vertical direction in FIG. 2). Examples of the movable mirror 115 attached to the parallel movement mechanism 150 include light reflection mechanisms disclosed in Japanese Patent Application Laid-Open Nos. 2011-80854 and 2012-42257. Note that in the light reflecting mechanism 15 described below with reference to FIG. 3, the part excluding the mirror surface region (moving mirror) 115 is the parallel moving mechanism 150.
 この光反射機構15は、第1板バネ151および第2板バネ152からなる一対の板バネ(板バネ部材)と、これら一対の板バネ151、152を共振させるために板バネ151、152同士を連結する一対の支持体(第1支持体および第2支持体)153、154と、一対の板バネ151、152を駆動する圧電素子(板バネ駆動部)155と、一方の板バネ151上に形成された移動鏡115と、を備えている。 The light reflecting mechanism 15 includes a pair of leaf springs (leaf spring members) including a first leaf spring 151 and a second leaf spring 152, and the leaf springs 151 and 152 to resonate the pair of leaf springs 151 and 152. A pair of supports (first support and second support) 153, 154, a piezoelectric element (plate spring drive unit) 155 that drives the pair of plate springs 151, 152, and one plate spring 151 And a movable mirror 115 formed in the above.
 第1および第2板バネ151、152は、間隔を空けて互いに対向するように平行配置されている。 The first and second leaf springs 151 and 152 are arranged in parallel so as to face each other with a space therebetween.
 第1支持体153は、第1および第2板バネ151、152の間における一方端部(図3における左側端部)において、当該第1および第2板バネ151、152に連結されて配置されている。第2支持体154は、第1および第2板バネ151、152の間における他方端部(一方端部と反対側の端部:図3における左側端部)において、当該第1および第2板バネに連結されて配置されている。これら第1および第2支持体153、154は、第1および第2板バネ151、152の間において、互いに離間した状態で配置されている。 The first support 153 is arranged at one end (the left end in FIG. 3) between the first and second leaf springs 151 and 152 so as to be connected to the first and second leaf springs 151 and 152. ing. The second support 154 has the first and second plates at the other end (the end opposite to the one end: the left end in FIG. 3) between the first and second leaf springs 151 and 152. It is connected to the spring. The first and second support members 153 and 154 are arranged in a state of being separated from each other between the first and second leaf springs 151 and 152.
 圧電素子155は、第1板バネ151の他方端部における上面に配置されている。より詳しくは、圧電素子155は、第1板バネ151における第2支持体154の上方で、かつ、第2支持体154とは反対側の表面上に配置されている。この圧電素子155は、図4Aに示されるように、圧電材料である例えばPZT(チタン酸ジルコン酸鉛)等の圧電体155aを一対の電極155b、155cによって狭持することにより構成されている。 The piezoelectric element 155 is disposed on the upper surface of the other end of the first leaf spring 151. More specifically, the piezoelectric element 155 is disposed above the second support 154 in the first plate spring 151 and on the surface opposite to the second support 154. As shown in FIG. 4A, the piezoelectric element 155 is configured by sandwiching a piezoelectric material 155a such as PZT (lead zirconate titanate), which is a piezoelectric material, by a pair of electrodes 155b and 155c.
 移動鏡115は、第1板バネ151の一方端部における上面上に設けられている。より詳しくは、移動鏡115は、第1板バネ151における第1支持体153の上方で、かつ、第1支持体153とは反対側の表面上に設けられている。この移動鏡115は、例えば、鏡を第1板バネ151に貼着等したものでもよく、また、例えば、アルミニウム等の金属の薄膜を第1板バネ151上に形成(成膜)したものでもよい。 The movable mirror 115 is provided on the upper surface at one end of the first leaf spring 151. More specifically, the movable mirror 115 is provided above the first support 153 in the first leaf spring 151 and on the surface opposite to the first support 153. The movable mirror 115 may be, for example, a mirror attached to the first plate spring 151, or a metal thin film such as aluminum formed (film formed) on the first plate spring 151, for example. Good.
 以上のように構成される光反射機構15は、例えば、MEMS(Micro Electro Mechanical Systems)技術によって製造される。 The light reflection mechanism 15 configured as described above is manufactured by, for example, a MEMS (Micro Electro Mechanical Systems) technique.
 このような構造の光反射機構15では、図4Aに示されるように、圧電素子155が伸張すると、第1板バネ151が上に凸となるように変形し、この結果、移動鏡115が、第1および第2板バネ151、152に関する対向方向の下方に変位する一方、圧電素子155が縮小すると、図4Bに示されるように、第1板バネ151が、下に凸となるように変形し、この結果、移動鏡が前記対向方向の上方に変位する。そして、この光反射機構15は、大きな変位量を得るために一対の板バネ151、152の共振によって前記変位を繰り返し、移動鏡115を光軸方向に沿って往復振動(往復移動)させる。より具体的には、平行移動機構150の一方端部の往復振動(往復移動)に歪みがない場合には、一対の板バネ151、152が共振する周波数(共振周波数f)の信号(図6の自励信号参照)が圧電素子155に入力されると、圧電素子155が共振周波数fで伸縮を繰り返す。これにより、移動鏡115は、図4Cに示されるように、変位量が0(ゼロ)となる原点位置X0(振動振幅の中心位置)を中心に、この原点位置X0からの変位量が最大となる位置Xm、-Xmの間で時間経過とともに略正弦波状に変位し、固有振動数で一定の周期でかつ正確に振動する。 In the light reflecting mechanism 15 having such a structure, as shown in FIG. 4A, when the piezoelectric element 155 expands, the first leaf spring 151 is deformed so as to protrude upward. As a result, the movable mirror 115 is While the first and second leaf springs 151 and 152 are displaced downward in the opposing direction, when the piezoelectric element 155 is reduced, the first leaf spring 151 is deformed so as to protrude downward as shown in FIG. 4B. As a result, the movable mirror is displaced upward in the facing direction. The light reflecting mechanism 15 repeats the displacement by resonance of the pair of leaf springs 151 and 152 in order to obtain a large amount of displacement, and causes the movable mirror 115 to reciprocate (reciprocate) along the optical axis direction. More specifically, when there is no distortion in the reciprocating vibration (reciprocating movement) at one end of the parallel moving mechanism 150, a signal (resonance frequency f 0 ) of a frequency at which the pair of leaf springs 151 and 152 resonate (see FIG. Referring No. self励信6) is input to the piezoelectric element 155, the piezoelectric element 155 repeats expansion and contraction at the resonance frequency f 0. As a result, as shown in FIG. 4C, the movable mirror 115 has a maximum displacement amount from the origin position X0 around the origin position X0 (center position of the vibration amplitude) where the displacement amount becomes 0 (zero). Displaces in a substantially sinusoidal shape with the passage of time between the positions Xm and -Xm, and vibrates accurately at a specific frequency and with a constant frequency.
 移動鏡制御部60は、移動鏡115の光軸方向の動作を検出可能な移動鏡動作検出部200と、移動鏡動作検出部200の検出結果に基づいて平行移動機構150(光反射機構15)を制御する平行移動機構制御部610と、を有する。この移動鏡制御部60は、光反射機構15(移動鏡115が設けられた平行移動機構150)と共に図5に示される移動鏡駆動回路を構成する。 The moving mirror control unit 60 includes a moving mirror operation detecting unit 200 that can detect the operation of the moving mirror 115 in the optical axis direction, and a parallel moving mechanism 150 (light reflecting mechanism 15) based on the detection result of the moving mirror operation detecting unit 200. And a parallel movement mechanism control unit 610 for controlling. The moving mirror control unit 60 constitutes the moving mirror driving circuit shown in FIG. 5 together with the light reflecting mechanism 15 (the parallel moving mechanism 150 provided with the moving mirror 115).
 移動鏡動作検出部200は、移動鏡115の動き(詳しくは、平行移動機構150の一方端部の光軸方向の動きを介して移動鏡115の動き)を検出するセンサ装置である。図2に示す例では、移動鏡動作検出部200は、検出センサとしてフォトリフレクターを備えている。このフォトリフレクターは、平行移動機構150の一方端部の裏面に光を照射する発光素子と、前記裏面で反射した光を受光する受光素子とを備える。そして、フォトリフレクターは、平行移動機構150の動きに従って変化する反射光の光量を検出することによって当該平行移動機構150の一方端部(移動鏡115)の動き(光軸方向の往復振動)を検出する。このフォトリフレクターは、平行移動機構150の動き(すなわち、移動鏡115の往復振動)に同期したアナログ信号(検出信号)を出力する。このため、フォトリフレクターの出力の1周期が移動鏡115の1往復に相当し、フォトリフレクターの出力から、移動鏡115の1回の走査が検出できる。 The moving mirror operation detecting unit 200 is a sensor device that detects the movement of the moving mirror 115 (specifically, the movement of the moving mirror 115 through the movement of one end of the parallel movement mechanism 150 in the optical axis direction). In the example illustrated in FIG. 2, the moving mirror operation detection unit 200 includes a photo reflector as a detection sensor. This photo reflector includes a light emitting element that irradiates light to the back surface of one end of the parallel movement mechanism 150, and a light receiving element that receives light reflected by the back surface. The photo reflector detects the movement (reciprocal vibration in the optical axis direction) of one end (moving mirror 115) of the parallel movement mechanism 150 by detecting the amount of reflected light that changes according to the movement of the parallel movement mechanism 150. To do. The photo reflector outputs an analog signal (detection signal) synchronized with the movement of the parallel movement mechanism 150 (that is, the reciprocating vibration of the movable mirror 115). Therefore, one cycle of the output of the photo reflector corresponds to one reciprocation of the movable mirror 115, and one scan of the movable mirror 115 can be detected from the output of the photo reflector.
 この移動鏡動作検出部200(詳しくは、フォトリフレクター)が出力した検出信号(アナログ信号)は、図略のコンパレータを介して自励信号発生部612に入力される。このコンパレータは、ヒステリシス制御のコンパレータであり、移動鏡動作検出部200からの検出信号が所定の振幅(ヒステリシス電圧)以上になったときに、このコンパレータから検出信号に対応した方形波状(矩形波状)の信号が出力される。 The detection signal (analog signal) output from the moving mirror operation detection unit 200 (specifically, a photo reflector) is input to the self-excited signal generation unit 612 via a comparator (not shown). This comparator is a hysteresis control comparator, and when the detection signal from the movable mirror operation detection unit 200 becomes equal to or greater than a predetermined amplitude (hysteresis voltage), a square wave (rectangular wave) corresponding to the detection signal from this comparator. Is output.
 平行移動機構制御部610は、図5にも示されるように、励振信号発生部611と、自励信号発生部612と、信号切換部613と、を有し、平行移動機構150の制御を介して移動鏡115の往復振動(往復移動)を制御する。 As shown in FIG. 5, the parallel movement mechanism control unit 610 includes an excitation signal generation unit 611, a self-excitation signal generation unit 612, and a signal switching unit 613, via the control of the parallel movement mechanism 150. The reciprocating vibration (reciprocating movement) of the movable mirror 115 is controlled.
 励振信号発生部611は、所定の周波数(振動数)の発振信号(駆動信号)を励振信号として平行移動機構150に向けて出力する。この励振信号は、平行移動機構150の一対の板バネ(第1および第2板バネ)151、152が共振する周波数(共振周波数)f、またはこの共振周波数fに近い周波数の発振信号である。この共振周波数fは、測定等によって予め求められた周波数である。本実施形態の励振信号発生部611は、例えば、カウンターにてクロックをカウントすることにより所望の周波数の矩形波を出力する矩形波発生回路である。あるいは、励振信号発生部611は、コンデンサと抵抗とで構成されるRC回路を用いたCR発振回路や、ハートレー発振回路およびコルピッツ発振回路等のようなコイルとコンデンサとで構成されるLC回路を用いたLC発振回路等であってもよい。本実施形態の励振信号発生部611は、共振周波数fの発振信号を励振信号として出力する(図6の励振状態参照)。本実施形態の励振信号は方形波状の信号である。 The excitation signal generator 611 outputs an oscillation signal (drive signal) having a predetermined frequency (frequency) to the parallel movement mechanism 150 as an excitation signal. This excitation signal is an oscillation signal having a frequency (resonance frequency) f 0 at which the pair of leaf springs (first and second leaf springs) 151 and 152 of the translation mechanism 150 resonate or a frequency close to the resonance frequency f 0. is there. The resonance frequency f 0 is a frequency obtained in advance by measurement or the like. The excitation signal generation unit 611 of the present embodiment is a rectangular wave generation circuit that outputs a rectangular wave having a desired frequency by counting a clock with a counter, for example. Alternatively, the excitation signal generator 611 uses a CR oscillation circuit using an RC circuit composed of a capacitor and a resistor, or an LC circuit composed of a coil and a capacitor such as a Hartley oscillation circuit and a Colpitts oscillation circuit. An LC oscillation circuit or the like may be used. The excitation signal generator 611 of the present embodiment outputs an oscillation signal having a resonance frequency f 0 as an excitation signal (see the excitation state in FIG. 6). The excitation signal of this embodiment is a square wave signal.
 自励信号発生部612は、移動鏡動作検出部200が出力する検出信号に基づく周波数の発振信号(駆動信号)を自励信号として平行移動機構150(詳しくは圧電素子155の一対の電極155b、155c)に向けて出力する。この自励信号発生部612は、移動鏡動作検出部200によって検出された移動鏡115の往復振動(詳しくは、一対の板バネ151、152の共振振動(共振周波数fでの振動)による平行移動機構150の一方端部の往復振動を介して検出された移動鏡115の往復振動)に対して位相が90°遅れた発振信号を自励信号として出力する。この自励信号は、移動鏡の往復振動に対して位相が90°遅れた共振周波数fの方形波状の信号である。 The self-excited signal generation unit 612 uses the parallel oscillation mechanism 150 (specifically, a pair of electrodes 155b of the piezoelectric element 155) using an oscillation signal (drive signal) having a frequency based on the detection signal output from the moving mirror operation detection unit 200 as a self-excitation signal. To 155c). The self-excited signal generator 612 is parallel to the reciprocating vibration of the movable mirror 115 detected by the movable mirror motion detector 200 (specifically, the resonance vibration of the pair of leaf springs 151 and 152 (vibration at the resonance frequency f 0 )). An oscillation signal whose phase is delayed by 90 ° with respect to the reciprocal vibration of the movable mirror 115 detected through the reciprocal vibration of one end of the moving mechanism 150 is output as a self-excited signal. This self-excited signal is a square wave signal having a resonance frequency f 0 whose phase is delayed by 90 ° with respect to the reciprocating vibration of the movable mirror.
 このように検出信号に対して位相が90°遅れた自励信号が平行移動機構150の圧電素子155に入力されることで、移動鏡115の往復振動において移動鏡115が振動方向の一端または他端位置(図4Cにおける位置Xmまたは-Xm)のときに平行移動機構150の一方端部(移動鏡115の取り付けられた部位)への駆動力が0になる一方、前記一方端部(移動鏡115)が振動方向の前記一端(または前記他端)から前記他端(または前記一端)に向かう中間位置(移動速度が最も大きな位置:図4Cにおける原点位置X0)のときに前記一方端部(移動鏡115)に対しその移動方向に最も大きな駆動力が加わる。このため、移動鏡115の平行移動機構150による往復駆動において移動鏡115の振幅(光軸方向の変位量)を大きく保つことができる。 In this way, the self-excited signal whose phase is delayed by 90 ° with respect to the detection signal is input to the piezoelectric element 155 of the parallel movement mechanism 150, so that the movable mirror 115 moves in one direction or the other in the reciprocal vibration of the movable mirror 115. At the end position (position Xm or −Xm in FIG. 4C), the driving force to one end of the parallel movement mechanism 150 (the part to which the movable mirror 115 is attached) becomes zero, while the one end (the movable mirror) 115) is at an intermediate position (position where the moving speed is the highest: origin position X0 in FIG. 4C) from the one end (or the other end) to the other end (or the one end) in the vibration direction. The largest driving force is applied to the moving mirror 115) in the moving direction. For this reason, the amplitude (the amount of displacement in the optical axis direction) of the movable mirror 115 can be kept large in the reciprocating drive by the parallel movement mechanism 150 of the movable mirror 115.
 本実施形態の自励信号発生部612は、例えば、90度移相器であるが、これに限定されない。なお、自励信号は、検出信号(移動鏡115の往復振動)に対して位相が略90°遅れた発振信号であればよい。すなわち、上述のように平行移動機構150の一方端部が振動方向の一端(他端)から他端(一端)に向かう中間位置およびその近傍(図4Cの原点位置X0を挟む上下位置)のときに前記一方端部に移動方向への大きな駆動力が加わって移動鏡115の光軸方向の変位量を所定の大きさ以上に保つことが可能な範囲内であれば、移動鏡115の往復振動に対する位相の遅れが90°からずれていてもよい。 The self-excited signal generator 612 of the present embodiment is, for example, a 90 degree phase shifter, but is not limited to this. The self-excited signal may be an oscillation signal whose phase is delayed by approximately 90 ° with respect to the detection signal (reciprocating vibration of the movable mirror 115). That is, as described above, when one end of the parallel movement mechanism 150 is at an intermediate position from one end (other end) to the other end (one end) in the vibration direction and in the vicinity thereof (up and down position with the origin position X0 in FIG. 4C). If a large driving force in the moving direction is applied to the one end portion and the displacement amount of the moving mirror 115 in the optical axis direction is within a predetermined range, the reciprocating vibration of the moving mirror 115 can be maintained. The phase delay with respect to may be shifted from 90 °.
 信号切換部613は、励振信号発生部611と平行移動機構150との間に配置される第1スイッチ素子614と、自励信号発生部612と平行移動機構150との間に配置される第2スイッチ素子615と、各スイッチ素子614、615の切り換えを行う切換制御部616と、を有する。この信号切換部613は、平行移動機構150に入力される発振信号(移動鏡駆動信号)を、自励信号発生部612からの自励信号と励振信号発生部611からの励振信号との間で切り換える。 The signal switching unit 613 includes a first switch element 614 disposed between the excitation signal generation unit 611 and the parallel movement mechanism 150, and a second switch disposed between the self-excitation signal generation unit 612 and the parallel movement mechanism 150. A switch element 615 and a switching control unit 616 that switches between the switch elements 614 and 615 are provided. The signal switching unit 613 transmits an oscillation signal (moving mirror drive signal) input to the parallel movement mechanism 150 between the self-excitation signal from the self-excitation signal generation unit 612 and the excitation signal from the excitation signal generation unit 611. Switch.
 切換制御部616は、各スイッチ素子614、615を切り換えることにより、自励信号発生部612からの自励信号または励振信号発生部611からの励振信号を平行移動機構150(圧電素子155)に入力させる。より具体的には、切換制御部616は、FT型分光計10において所定光の測定を開始すると、先ず、第1スイッチ素子614をオンにすると共に第2スイッチ素子615をオフにする。これにより、励振信号発生部611が出力する励振信号が平行移動機構150に入力される。そして、切換制御部616は、所定のタイミングで第1スイッチ素子614をオフにすると共に第2スイッチ素子615をオンにし、平行移動機構150に入力される移動鏡駆動信号を前記励振信号から、自励信号発生部612が出力する自励信号に切り換える。本実施形態において前記所定のタイミングは、図6に示されるように、静止(停止)した状態の移動鏡115が往復振動を開始し、この往復振動の振幅が所定の大きさになって安定した時である。詳しくは、以下の通りである。 The switching control unit 616 inputs the self-excitation signal from the self-excitation signal generation unit 612 or the excitation signal from the excitation signal generation unit 611 to the parallel movement mechanism 150 (piezoelectric element 155) by switching the switch elements 614 and 615. Let More specifically, when the FT spectrometer 10 starts measuring predetermined light, the switching control unit 616 first turns on the first switch element 614 and turns off the second switch element 615. As a result, the excitation signal output from the excitation signal generator 611 is input to the translation mechanism 150. Then, the switching control unit 616 turns off the first switch element 614 and turns on the second switch element 615 at a predetermined timing, and receives the moving mirror drive signal input to the parallel movement mechanism 150 from the excitation signal. The self-excitation signal output from the excitation signal generator 612 is switched. In the present embodiment, as shown in FIG. 6, the predetermined timing is such that the movable mirror 115 in a stationary (stopped) state starts reciprocating vibration, and the amplitude of the reciprocating vibration becomes a predetermined magnitude and is stable. It's time. Details are as follows.
 切換制御部616は、移動鏡動作検出部200から入力された検出信号に基づいて、移動鏡115の往復振動の振幅が所定の大きさになったか否かを判断する。より具体的には、フォトリフレクターが出力する検出信号(アナログ信号:図6の中段のグラフ参照)が切換制御部616に入力される場合は、切換制御部616は、検出信号の電圧の幅(振幅に相当)が所定の値以上になれば移動鏡115の往復振動が所定の大きさになったと判断する。また、前記コンパレータ(ヒステリシス制御のコンパレータ)を介した前記検出信号(方形波状の信号:図6の下段のグラフ参照)が入力される場合は、切換制御部616は、例えば、方形波状の信号の振幅が連続して現れたときに、移動鏡115の往復振動が所定の大きさになったと判断する。また、切換制御部616は、方形波状の信号の周波数が励振信号の周波数と同じ周波数で動くようになったときに、移動鏡115の往復振動が所定の大きさになったと判断するように構成されてもよい。 The switching control unit 616 determines whether or not the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude based on the detection signal input from the movable mirror operation detection unit 200. More specifically, when a detection signal (analog signal: see the middle graph in FIG. 6) output from the photoreflector is input to the switching control unit 616, the switching control unit 616 determines the width of the voltage of the detection signal ( (Corresponding to the amplitude) exceeds a predetermined value, it is determined that the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude. In addition, when the detection signal (square wave signal: see the lower graph in FIG. 6) is input via the comparator (hysteresis control comparator), the switching control unit 616, for example, When the amplitude appears continuously, it is determined that the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude. Further, the switching control unit 616 is configured to determine that the reciprocating vibration of the movable mirror 115 has become a predetermined magnitude when the frequency of the square wave signal starts to move at the same frequency as the frequency of the excitation signal. May be.
 そして、切換制御部616は、移動鏡115の往復振動の振幅が所定の大きさになったと判断すると、第1スイッチ素子614がオンで且つ第2スイッチ素子615がオフの状態から、第1スイッチ素子614をオフにすると共に第2スイッチ素子615をオンにする。これにより、平行移動機構150に入力される移動鏡駆動信号が、励振信号から自励信号に切り換わる。 When the switching control unit 616 determines that the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude, the first switch element 614 is turned on and the second switch element 615 is turned off, so that the first switch The element 614 is turned off and the second switch element 615 is turned on. Thereby, the movable mirror drive signal input to the parallel movement mechanism 150 is switched from the excitation signal to the self-excitation signal.
 図1に戻って、受光処理部20は、干渉計11において生成された所定光の干渉光を受光して光電変換することによって所定光の干渉光の波形に関する電気信号(所定光の干渉光における光強度変化を表す電気信号)を出力する。この受光処理部20は、前記電気信号を所定のサンプリングタイミングでサンプリングすることによって複数の測定データを順次に出力する回路である。受光処理部20は、例えば、図7に示されるように、第1受光部21と、増幅部22と、バンドパスフィルタ(Band Pass Filter)23と、アナログ-デジタル変換部(以下、「AD変換部」と呼称する。)26と、を備える。 Returning to FIG. 1, the light reception processing unit 20 receives the interference light of the predetermined light generated in the interferometer 11 and photoelectrically converts the electrical signal (in the interference light of the predetermined light). An electrical signal indicating a change in light intensity) is output. The light receiving processing unit 20 is a circuit that sequentially outputs a plurality of measurement data by sampling the electrical signal at a predetermined sampling timing. For example, as shown in FIG. 7, the light reception processing unit 20 includes a first light reception unit 21, an amplification unit 22, a band pass filter (Band Pass Filter) 23, and an analog-digital conversion unit (hereinafter referred to as “AD conversion”). 26).
 第1受光部21は、干渉計11において生成された所定光の干渉光を受光して光電変換し、所定光の干渉光における光強度に応じた電気信号(第1受光信号)を出力する回路である。本実施形態のFT型分光計10は、例えば、波長1200nm以上の赤外域の光、より具体的には、波長1200nm以上から2500nm以下までの赤外域の光を測定対象とする。このため、第1受光部21は、例えばInGaAsフォトダイオードおよびその周辺回路を備えた赤外線センサ等である。第1受光部21は、受光結果を増幅部22へ出力する。 The first light receiving unit 21 receives the interference light of the predetermined light generated in the interferometer 11, performs photoelectric conversion, and outputs an electrical signal (first light reception signal) corresponding to the light intensity in the interference light of the predetermined light. It is. The FT spectrometer 10 of the present embodiment uses, for example, light in the infrared region with a wavelength of 1200 nm or more, more specifically, light in the infrared region with a wavelength of 1200 nm or more and 2500 nm or less. Therefore, the first light receiving unit 21 is, for example, an infrared sensor including an InGaAs photodiode and its peripheral circuit. The first light receiving unit 21 outputs the light reception result to the amplification unit 22.
 増幅部22は、第1受光部21の出力(増幅結果)を予め設定された所定の増幅率で増幅する増幅器である。この増幅部22は、例えば、オペアンプなどの増幅器とその周辺回路とを備えている。増幅部22は、その増幅結果をバンドパスフィルタ23(詳しくはバンドパスフィルタ23の一部を構成するハイパスフィルタ24)へ出力する。 The amplifying unit 22 is an amplifier that amplifies the output (amplification result) of the first light receiving unit 21 with a predetermined amplification factor set in advance. The amplifying unit 22 includes, for example, an amplifier such as an operational amplifier and its peripheral circuit. The amplifying unit 22 outputs the amplification result to the band pass filter 23 (specifically, the high pass filter 24 constituting a part of the band pass filter 23).
 バンドパスフィルタ23は、ハイパスフィルタ(High Pass
Filter)24と、ローパスフィルタ(Low Pass Filter)25とを有し、ノイズをカットするために、所望の周波数帯域のみを通過させる。ハイパスフィルタ24は、所定の遮断周波数以上の周波数の信号を通過させ、低域のノイズをカットするための回路であり、濾波結果をローパスフィルタ25へ出力する。ローパスフィルタ25は、所定の遮断周波数以下の周波数の信号を通過させ、高域のノイズをカットするための回路であり、濾波結果をAD変換部26へ出力する。
The band pass filter 23 is a high pass filter (High Pass).
A filter 24 and a low-pass filter 25 are provided to pass only a desired frequency band in order to cut noise. The high-pass filter 24 is a circuit for passing a signal having a frequency equal to or higher than a predetermined cutoff frequency and cutting low-frequency noise, and outputs a filtered result to the low-pass filter 25. The low-pass filter 25 is a circuit for passing a signal having a frequency equal to or lower than a predetermined cutoff frequency and cutting high-frequency noise, and outputs the filtered result to the AD conversion unit 26.
 AD変換部26は、増幅部22の出力をアナログ信号からデジタル信号へ変換(AD変換)する回路である。このAD変換のタイミング(サンプリングタイミング)は、タイミング発生部30(詳しくは、タイミング発生部30のゼロクロス検出部37)から入力されたゼロクロス信号のゼロクロスタイミングである。AD変換部26は、その変換結果のデジタル信号を制御演算部41へ出力する。 The AD conversion unit 26 is a circuit that converts the output of the amplification unit 22 from an analog signal to a digital signal (AD conversion). The AD conversion timing (sampling timing) is the zero cross timing of the zero cross signal input from the timing generator 30 (specifically, the zero cross detector 37 of the timing generator 30). The AD conversion unit 26 outputs a digital signal as a result of the conversion to the control calculation unit 41.
 タイミング発生部30は、受光処理部20(詳しくはAD変換部26)において電気信号をサンプリングするためのサンプリングタイミングを生成する。このタイミング発生部30は、例えば、位置測定用光源31と、第2受光部36と、ゼロクロス検出部37と、を備えている。このタイミング発生部30は、位置測定用光源31から放射されたレーザ光の干渉光を干渉計11で得るために、図2に示されるように、コリメータレンズ32と、光合波器33と、光分波器34と、集光レンズ35とをさらに備えている。 The timing generator 30 generates a sampling timing for sampling the electrical signal in the light receiving processor 20 (specifically, the AD converter 26). The timing generation unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, and a zero cross detection unit 37. As shown in FIG. 2, the timing generator 30, as shown in FIG. 2, uses a collimator lens 32, an optical multiplexer 33, an optical multiplexer to obtain interference light of the laser light emitted from the position measurement light source 31. A duplexer 34 and a condenser lens 35 are further provided.
 位置測定用光源31は、波長の既知な単色レーザ光を放射する。本実施形態の位置測定用光源31は、例えば、波長680nmの赤色レーザ光を発光する半導体レーザを備える。 The position measuring light source 31 emits monochromatic laser light having a known wavelength. The position measurement light source 31 of this embodiment includes, for example, a semiconductor laser that emits red laser light having a wavelength of 680 nm.
 図2において、コリメータレンズ32および光合波器33は、位置測定用光源31から放射されたレーザ光を平行光で干渉計11へ入射させるための入射光学系を構成する。光合波器33は、例えばレーザ光を反射すると共に所定光を透過するダイクロイックミラー等である。この光合波器33は、その法線が移動鏡115の法線(光軸)に対し45度で交差するように、コリメータレンズ111と半透鏡112との間に配置される。コリメータレンズ32は、例えば両凸のレンズであり、前記のように配置された光合波器33に対し45度の入射角で位置測定用光源31から放射されたレーザ光が入射されるように、適宜な位置に配置される。 2, the collimator lens 32 and the optical multiplexer 33 constitute an incident optical system for causing the laser light emitted from the position measurement light source 31 to enter the interferometer 11 as parallel light. The optical multiplexer 33 is, for example, a dichroic mirror that reflects laser light and transmits predetermined light. The optical multiplexer 33 is disposed between the collimator lens 111 and the semi-transparent mirror 112 so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees. The collimator lens 32 is a biconvex lens, for example, so that the laser light emitted from the position measuring light source 31 is incident on the optical multiplexer 33 arranged as described above at an incident angle of 45 degrees. Arranged at an appropriate position.
 また、光分波器34および集光レンズ35は、干渉計11において生成された前記レーザ光の干渉光を干渉計11から取り出すための射出光学系を構成する。光分波器34は、例えばレーザ光の干渉光を反射すると共に所定光の干渉光を透過するダイクロイックミラー等である。この光分波器34は、その法線が固定鏡114の法線(光軸)に対し45度で交差するように、半透鏡112と集光レンズ116との間に配置される。集光レンズ35は、例えば両凸のレンズであり、前記のように配置された光分波器34において45度の射出角で射出されるレーザ光の干渉光を集光して第2受光部36へ入射させる。 The optical demultiplexer 34 and the condensing lens 35 constitute an emission optical system for taking out the interference light of the laser light generated in the interferometer 11 from the interferometer 11. The optical demultiplexer 34 is, for example, a dichroic mirror that reflects interference light of laser light and transmits predetermined interference light. The optical demultiplexer 34 is disposed between the semi-transparent mirror 112 and the condenser lens 116 so that the normal line intersects the normal line (optical axis) of the fixed mirror 114 at 45 degrees. The condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser light emitted at an emission angle of 45 degrees in the optical demultiplexer 34 arranged as described above, and the second light receiving unit. 36 is incident.
 このようにコリメータレンズ32、光合波器33、光分波器34および集光レンズ35の各光学素子が配置されると、位置測定用光源31から放射された単色のレーザ光は、コリメータレンズ32によって平行光とされ、その光路が光合波器(本実施形態の例ではダイクロイックミラー)33によって約90度曲げられ、これにより、干渉計11の光軸(移動鏡115の鏡面における法線方向)に沿って進行する。したがって、このレーザ光は、所定光と同様に、干渉計11内を進行し、干渉計11において前記レーザ光の干渉光が生成される。そして、このレーザ光の干渉光は、光分波器(本実施形態の例では、ダイクロイックミラー)34によって約90度曲げられて、干渉計11から外部に取り出される。この取り出されたレーザ光の干渉光は、集光レンズ35によって集光されて第2受光部36によって受光される。 When the optical elements such as the collimator lens 32, the optical multiplexer 33, the optical demultiplexer 34, and the condenser lens 35 are arranged in this way, the monochromatic laser light emitted from the position measuring light source 31 is converted into the collimator lens 32. And the optical path thereof is bent about 90 degrees by an optical multiplexer (a dichroic mirror in the example of the present embodiment), whereby the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). Proceed along. Therefore, this laser light travels in the interferometer 11 like the predetermined light, and the interference light of the laser light is generated in the interferometer 11. Then, the interference light of this laser light is bent by about 90 degrees by an optical demultiplexer (in the example of the present embodiment) 34 and taken out from the interferometer 11. The extracted interference light of the laser beam is condensed by the condenser lens 35 and received by the second light receiving unit 36.
 図1に戻って、第2受光部36は、干渉計11において生成されたレーザ光の干渉光を受光して光電変換し、レーザ光の干渉光の光強度に応じた電気信号(第2受光信号)を出力する回路である。この第2受光部36は、例えば、シリコンフォトダイオード(SPD)およびその周辺回路を備えた受光センサ等である。第2受光部36は、レーザ光の干渉光の光強度に応じた電気信号をゼロクロス検出部37へ出力する。 Returning to FIG. 1, the second light receiving unit 36 receives and photoelectrically converts the interference light of the laser light generated in the interferometer 11, and performs an electrical signal (second light reception) according to the light intensity of the interference light of the laser light. Signal). The second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit. The second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to the zero cross detection unit 37.
 ゼロクロス検出部37は、第2受光部36から入力された、レーザ光の干渉光の光強度に応じた電気信号がゼロとなるタイミング(ゼロクロスタイミング)を検出する回路である。ゼロクロス検出部37は、ゼロクロス信号をゼロクロスタイミングでAD変換部26へ出力する。 The zero cross detection unit 37 is a circuit that detects a timing (zero cross timing) at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero. The zero cross detector 37 outputs a zero cross signal to the AD converter 26 at the zero cross timing.
 ゼロクロスタイミングは、所定の基準電圧をゼロレベルとして、前記電気信号がこのゼロレベルとなる時間軸上の位置である。詳しくは、以下の通りである。なお、図8は、本実施形態のフーリエ変換型分光計におけるレーザ光の干渉波形の一例を示す図である。 The zero cross timing is a position on the time axis at which a predetermined reference voltage is set to a zero level and the electric signal is at the zero level. Details are as follows. FIG. 8 is a diagram illustrating an example of an interference waveform of laser light in the Fourier transform spectrometer of the present embodiment.
 干渉計11の移動鏡115が光軸方向に移動している場合、半透鏡112から固定鏡114を介して再び半透鏡に戻ったレーザ光の位相に対し、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相がずれる。このため、レーザ光の干渉光は、移動鏡115の移動量に応じて正弦波状に強弱する。このとき、干渉計11の移動鏡115がレーザ光の波長の1/2の長さだけ移動すると、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相は、この移動の前後において、2πずれる。このため、レーザ光の干渉光は、例えば、図8に示されるように、移動鏡115の光軸方向への移動に従って正弦波状に強弱を繰り返す。 When the movable mirror 115 of the interferometer 11 is moved in the optical axis direction, the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the fixed mirror 114 is again transmitted from the semi-transparent mirror 112 through the movable mirror 115. As a result, the phase of the laser beam returned to the semi-transparent mirror is shifted again. For this reason, the interference light of the laser light becomes strong and weak in a sine wave shape according to the amount of movement of the movable mirror 115. At this time, when the movable mirror 115 of the interferometer 11 moves by a length that is ½ of the wavelength of the laser light, the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is shifted by this movement. 2π before and after. For this reason, as shown in FIG. 8, for example, the interference light of the laser light repeatedly increases and decreases in a sine wave shape as the movable mirror 115 moves in the optical axis direction.
 ゼロクロス検出部37は、この正弦波状に強弱を繰り返す前記電気信号のゼロクロスを検出する。そして、ゼロクロス検出部37は、この検出したゼロクロスのタイミングでゼロクロス信号をAD変換部26へ出力する。AD変換部26は、このゼロクロス信号が入力されると、ゼロクロスのタイミングで、第1受光部21から入力された、所定光の干渉光の光強度に応じた電気信号をサンプリングしてAD変換する。 The zero cross detector 37 detects the zero cross of the electric signal that repeats the strength in a sine wave form. Then, the zero cross detection unit 37 outputs a zero cross signal to the AD conversion unit 26 at the detected zero cross timing. When this zero-cross signal is input, the AD conversion unit 26 samples and converts the electrical signal according to the light intensity of the interference light of the predetermined light input from the first light receiving unit 21 at the zero-cross timing. .
 図1に戻って、制御演算部41は、所定光のスペクトルを求めるべく、FT型分光計10の各部を当該各部の機能に応じてそれぞれ制御する。この制御演算部41は、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成される。なお、制御演算部41は、AD変換部26から出力されるデータ等を記憶するために、例えばハードディスク等の比較的大容量の記憶装置をさらに備えてもよい。 Returning to FIG. 1, the control calculation unit 41 controls each part of the FT spectrometer 10 according to the function of each part in order to obtain the spectrum of the predetermined light. The control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Erasable Programmable Read) that stores various programs executed by the CPU and data necessary for the execution in advance. It is composed of a non-volatile memory element such as “Only Memory”, a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of this CPU, and a microcomputer provided with its peripheral circuits. The control calculation unit 41 may further include a relatively large-capacity storage device such as a hard disk in order to store data output from the AD conversion unit 26.
 このように構成される制御演算部41には、当該制御演算部41がプログラムを実行することによって、機能的に、サンプリングデータ記憶部411と、センターバースト位置算出部412と、積算インターフェログラム算出部413と、スペクトル算出部414と、が構成される。 The control calculation unit 41 configured in this manner functionally executes a program when the control calculation unit 41 executes a program, so that a sampling data storage unit 411, a center burst position calculation unit 412, and an integrated interferogram calculation are performed. The unit 413 and the spectrum calculation unit 414 are configured.
 サンプリングデータ記憶部411は、AD変換部26から出力された、所定光の干渉光に関する測定データを記憶する。この測定データは、上述したように、所定光の干渉光における光強度に応じた電気信号を、ゼロクロス検出部37において検出したゼロクロスのタイミングで、AD変換部26によってサンプリングすることで得られたデータである。 The sampling data storage unit 411 stores measurement data regarding the interference light of the predetermined light output from the AD conversion unit 26. As described above, this measurement data is data obtained by sampling the electrical signal corresponding to the light intensity of the interference light of the predetermined light by the AD conversion unit 26 at the timing of the zero cross detected by the zero cross detection unit 37. It is.
 積算インターフェログラム算出部413は、所定光を連続的に複数回測定することによって得られた複数のインターフェログラムを、位置合わせを行いつつ積算することによって、積算インターフェログラムを求める。 The integrated interferogram calculation unit 413 obtains an integrated interferogram by integrating a plurality of interferograms obtained by continuously measuring predetermined light a plurality of times while performing alignment.
 センターバースト位置算出部412は、サンプリングデータ記憶部411に記憶された測定データから、公知の常套手法によってセンターバーストの位置を求める。 The center burst position calculation unit 412 obtains the position of the center burst from the measurement data stored in the sampling data storage unit 411 by a known conventional method.
 スペクトル算出部414は、積算インターフェログラム算出部413においてインターフェログラムを複数積算することによって得られた積算インターフェログラムをフーリエ変換することによってスペクトルを求める。 The spectrum calculation unit 414 obtains a spectrum by Fourier-transforming the integrated interferogram obtained by integrating a plurality of interferograms in the integrated interferogram calculating unit 413.
 入力部42は、例えば、試料SMの測定開始を指示するコマンド等の各種コマンド、および、測定対象の試料SMにおける識別子の入力やフーリエ変換の際に用いられる窓関数の選択入力等のスペクトルを測定する上で必要な各種データをFT型分光計10に入力する機器であり、例えば、キーボードやマウス等である。 The input unit 42 measures, for example, various commands such as a command for instructing the measurement start of the sample SM, and a spectrum such as an input of an identifier in the sample SM to be measured and a selection input of a window function used for Fourier transform. This is a device for inputting various data necessary for the operation to the FT spectrometer 10, such as a keyboard and a mouse.
 出力部43は、入力部42から入力されたコマンドやデータ、および、FT型分光計10によって測定された所定光のスペクトルを出力する機器である。この出力部43は、例えばCRTディスプレイ、LCD、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The output unit 43 is a device that outputs commands and data input from the input unit 42 and a spectrum of predetermined light measured by the FT spectrometer 10. The output unit 43 is, for example, a display device such as a CRT display, LCD, organic EL display, or plasma display, or a printing device such as a printer.
 次に、以上のように構成されるFT型分光計10の動作について説明する。 Next, the operation of the FT spectrometer 10 configured as described above will be described.
 FT型分光計10では、測定対象である試料SMの測定が開始され前に、まず、切換制御部616によって第1スイッチ素子614がオン、第2スイッチ素子615がオフに切り換えられ、励振信号発生部611の出力する励振信号が平行移動機構150に入力される。この励振信号の周波数が、平行移動機構150の一対の板バネ151、152が共振振動する周波数(共振周波数f)であるため、前記励振信号の入力によって平行移動機構150は、その一方端部を光軸方向に振動させ始める。すなわち、平行移動機構150が共振振動を開始する。 In the FT spectrometer 10, before the measurement of the sample SM as a measurement target is started, first, the switching control unit 616 switches the first switch element 614 on and the second switch element 615 off, and generates an excitation signal. The excitation signal output from the unit 611 is input to the translation mechanism 150. Since the frequency of the excitation signal is a frequency at which the pair of leaf springs 151 and 152 of the translation mechanism 150 resonate and vibrate (resonance frequency f 0 ), the translation mechanism 150 receives one end portion of the translation mechanism 150 by the input of the excitation signal. Begins to vibrate in the direction of the optical axis. That is, the translation mechanism 150 starts resonance vibration.
 そして、図6に示されるように、移動鏡115の往復振動の振幅が時間の経過と共に徐々に大きくなって所定の振幅以上になると、入力された移動鏡動作検出部200(フォトリフレクター)からの検出信号の振幅(電圧の上下幅)がコンパレータのヒステリシス電圧以上となるため、コンパレータが、入力された検出信号(アナログ信号)の周波数に対応する周波数の方形波状の信号(検出信号)を出力し始める。この検出信号(方形波状の信号)が入力されると、自励信号発生部612は、入力された検出信号(移動鏡115の往復振動)に対して移相が90°遅れた自励信号(方形波状の信号)の出力を開始する。 As shown in FIG. 6, when the amplitude of the reciprocating vibration of the movable mirror 115 gradually increases with time and becomes equal to or greater than a predetermined amplitude, the input from the inputted movable mirror operation detection unit 200 (photo reflector). Since the amplitude of the detection signal (the vertical width of the voltage) exceeds the hysteresis voltage of the comparator, the comparator outputs a square wave signal (detection signal) with a frequency corresponding to the frequency of the input detection signal (analog signal). start. When this detection signal (square wave signal) is input, the self-excitation signal generator 612 has a self-excitation signal (phase-shifted by 90 ° with respect to the input detection signal (reciprocating vibration of the movable mirror 115)). Output of a square wave signal is started.
 切換制御部616は、入力された移動鏡動作検出部200からの検出信号から、移動鏡115の往復振動の振幅が所定の大きさになったと判断すると、第1スイッチ素子614をオフにすると共に第2スイッチ素子615をオンにし、平行移動機構150に入力される移動鏡駆動信号を励振信号から自励信号に切り換える。 When the switching control unit 616 determines that the amplitude of the reciprocating vibration of the movable mirror 115 has reached a predetermined magnitude from the input detection signal from the movable mirror operation detection unit 200, the switching control unit 616 turns off the first switch element 614. The second switch element 615 is turned on, and the moving mirror drive signal input to the parallel movement mechanism 150 is switched from the excitation signal to the self-excitation signal.
 このようにして、当該FT型分光計10では、所定光の測定を始めるときに静止(停止)状態であった移動鏡を、励振信号発生部611が出力する励振信号を用いて往復振動させ始め、移動鏡115の往復振動が安定した後、移動鏡115の駆動を、当該移動鏡115の往復振動に基づく発振信号(自励信号)を用いた駆動(自励発振による駆動)に切り換える。そして、FT型分光計10において、移動鏡115の駆動が、励振信号に基づく駆動から自励発振による駆動に切り換わると、移動鏡115の往復振動が安定するため、所定光の測定が以下のようにして行われる。 In this manner, the FT spectrometer 10 starts to reciprocate the moving mirror that was in a stationary (stopped) state when starting the measurement of the predetermined light using the excitation signal output from the excitation signal generator 611. After the reciprocating vibration of the moving mirror 115 is stabilized, the driving of the moving mirror 115 is switched to driving using an oscillation signal (self-excited signal) based on the reciprocating vibration of the moving mirror 115 (driving by self-excited oscillation). In the FT spectrometer 10, when the driving of the moving mirror 115 is switched from driving based on the excitation signal to driving by self-excited oscillation, the reciprocating vibration of the moving mirror 115 is stabilized. This is done.
 試料SMがFT型分光計10にセットされ、その後、FT型分光計10によって試料SMの測定が開始される。測定が開始されると、測定光光源51は、測定光を放射することにより、試料SMへ例えば45度の入射角で測定光を照射する。そして、試料SMで反射した測定光の反射光は、所定光として0度方向から干渉計11に入射する。 The sample SM is set in the FT spectrometer 10, and then the measurement of the sample SM is started by the FT spectrometer 10. When the measurement is started, the measurement light source 51 emits the measurement light to the sample SM at an incident angle of, for example, 45 degrees by emitting the measurement light. Then, the reflected light of the measurement light reflected by the sample SM enters the interferometer 11 from the 0 degree direction as predetermined light.
 干渉計11に入射した所定光は、干渉計11で所定光の干渉光となって受光処理部20の第1受光部21によって受光される。より具体的には、所定光は、コリメータレンズ111によって平行光とされ、光合波器33を介して半透鏡112で反射および透過することにより第1および第2分岐光に分岐される。半透鏡112で反射することによって分岐した第1分岐光は、位相補償板113を介して固定鏡114へ入射し、固定鏡114において反射し、来た光路を逆に辿って再び半透鏡112に戻る。一方、半透鏡112を通過することによって分岐した第2分岐光は、移動鏡115へ入射し、移動鏡115において反射し、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された第1分岐光、および移動鏡115で反射された第2分岐光は、半透鏡112において合流して干渉する。この所定光の干渉光は、干渉計11から第1受光部21へ射出される。第1受光部21は、入射した所定光の干渉光を光電変換し、前記所定光の干渉光における光強度に応じた電気信号を増幅部22へ出力する。増幅部22は、第1受光部21から出力された電気信号(所定光の干渉光における光強度に応じた電気信号)を所定の増幅率で増幅し、AD変換部26へ出力する。 The predetermined light incident on the interferometer 11 is received by the first light receiving unit 21 of the light receiving processing unit 20 as interference light of the predetermined light by the interferometer 11. More specifically, the predetermined light is converted into parallel light by the collimator lens 111, and is reflected and transmitted by the semi-transparent mirror 112 via the optical multiplexer 33, thereby being branched into first and second branched lights. The first branched light branched off by being reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, is reflected by the fixed mirror 114, and travels back in the opposite optical path to the semi-transparent mirror 112 again. Return. On the other hand, the second branched light branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115, reflected by the movable mirror 115, and returns to the semi-transparent mirror 112 by tracing back the optical path that has come. The first branched light reflected by these fixed mirrors 114 and the second branched light reflected by the movable mirror 115 merge at the semi-transparent mirror 112 and interfere with each other. The interference light of the predetermined light is emitted from the interferometer 11 to the first light receiving unit 21. The first light receiving unit 21 photoelectrically converts the incident interference light of the predetermined light and outputs an electrical signal corresponding to the light intensity in the interference light of the predetermined light to the amplification unit 22. The amplification unit 22 amplifies the electrical signal output from the first light receiving unit 21 (the electrical signal corresponding to the light intensity in the interference light of the predetermined light) with a predetermined amplification factor, and outputs the amplified signal to the AD conversion unit 26.
 一方、干渉計11は、位置測定用光源31から放射された単色のレーザ光も取り込む。このレーザ光は、光合波器33を介して干渉計11に入射し、上述と同様に干渉計11で干渉する。干渉光となったレーザ光は、光分波器34を介して第2受光部36によって受光される。第2受光部36は、この入射したレーザ光の干渉光を光電変換し、このレーザ光の干渉光における光強度に応じた電気信号をゼロクロス検出部37へ出力する。ゼロクロス検出部37は、前記レーザ光の干渉光に応じた電気信号がゼロとなるタイミングをゼロクロスタイミングとして検出し、このゼロクロスタイミングをサンプリングタイミング(AD変換タイミング)としてAD変換部26へ出力する。 On the other hand, the interferometer 11 also captures a monochromatic laser beam emitted from the position measurement light source 31. This laser light enters the interferometer 11 via the optical multiplexer 33 and interferes with the interferometer 11 in the same manner as described above. The laser light that has become the interference light is received by the second light receiving unit 36 via the optical demultiplexer 34. The second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam and outputs an electric signal corresponding to the light intensity in the interference light of the laser beam to the zero cross detection unit 37. The zero cross detection unit 37 detects the timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as the zero cross timing, and outputs the zero cross timing to the AD conversion unit 26 as the sampling timing (AD conversion timing).
 このような所定光およびレーザ光がそれぞれ干渉計11に取り込まれている間、干渉計11の移動鏡115は、上述の自励発振による駆動によって光軸方向に往復振動(往復移動)している。 While the predetermined light and the laser light are respectively taken into the interferometer 11, the movable mirror 115 of the interferometer 11 is reciprocally oscillated (reciprocated) in the optical axis direction by driving by the self-excited oscillation described above. .
 AD変換部26は、増幅部22から出力された、前記所定光の干渉光における光強度に応じた電気信号を、ゼロクロス検出部37から入力されたゼロクロスタイミングでサンプリングしてアナログ信号からデジタル信号へAD変換する。そして、AD変換部26は、このAD変換したデジタル信号の前記電気信号を制御演算部41へ出力する。 The AD conversion unit 26 samples the electrical signal corresponding to the light intensity in the interference light of the predetermined light output from the amplification unit 22 at the zero cross timing input from the zero cross detection unit 37, and converts the analog signal into a digital signal. A / D conversion is performed. Then, the AD conversion unit 26 outputs the electric signal of the digital signal after the AD conversion to the control calculation unit 41.
 ここで、図9に、本実施形態のフーリエ変換型分光計において、実測した所定光の干渉光の波形(インターフェログラム)の一例が示されている。図9の横軸は、第1光路と第2光路との間の光路差xであり、その縦軸は、インターフェログラムの振幅Fm(x)である。また、図10に、インターフェログラムと窓関数との関係が示されている。図10の横軸は、第1光路と第2光路との間の光路差xであり、その縦軸は、振幅である。図10中の実線は、インターフェログラム形状を示し、破線は、窓関数を示す。 Here, FIG. 9 shows an example of the waveform (interferogram) of the interference light of the predetermined light actually measured in the Fourier transform spectrometer of the present embodiment. The horizontal axis in FIG. 9 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude Fm (x) of the interferogram. FIG. 10 shows the relationship between the interferogram and the window function. The horizontal axis in FIG. 10 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude. The solid line in FIG. 10 shows the interferogram shape, and the broken line shows the window function.
 上述のように動作することによって、所定光のインターフェログラムにおける測定データがAD変換部26から制御演算部41へ出力され、この測定データがサンプリングデータ記憶部411に記憶される。そして、SN比を改善し、良好な精度の結果を得るために、このような所定光のインターフェログラムが移動鏡115の往復に合わせて連続的に複数回、同様に、測定され、これら各インターフェログラムの各測定データがサンプリングデータ記憶部411にそれぞれ記憶される。すなわち、移動鏡115が1往復すると、1回の走査が終了し、インターフェログラムの測定データが1つ得られる。 By operating as described above, the measurement data in the interferogram of the predetermined light is output from the AD conversion unit 26 to the control calculation unit 41, and this measurement data is stored in the sampling data storage unit 411. Then, in order to improve the S / N ratio and obtain a result with good accuracy, the interferogram of such a predetermined light is measured in a similar manner a plurality of times in accordance with the reciprocation of the movable mirror 115, Each measurement data of the interferogram is stored in the sampling data storage unit 411. That is, when the movable mirror 115 reciprocates once, one scan is completed, and one measurement data of the interferogram is obtained.
 次に、積算インターフェログラム算出部413は、複数回測定することによって得られた所定光の複数のインターフェログラムを、位置合わせを行いつつ積算することによって、所定光に対する積算インターフェログラムを求める。 Next, the integrated interferogram calculation unit 413 obtains an integrated interferogram for the predetermined light by integrating a plurality of interferograms of the predetermined light obtained by measuring a plurality of times while performing alignment. .
 次に、センターバースト位置算出部412は、積算インターフェログラムにおけるセンターバーストの位置を求める。そして、スペクトル算出部414は、積算インターフェログラム算出部413によって求められた積算インターフェログラムをフーリエ変換することによって、所定光のスペクトルを求める。以下では、このスペクトルの算出について、より詳しく説明する。 Next, the center burst position calculation unit 412 obtains the position of the center burst in the integrated interferogram. And the spectrum calculation part 414 calculates | requires the spectrum of predetermined light by carrying out the Fourier transformation of the integration interferogram calculated | required by the integration interferogram calculation part 413. FIG. Hereinafter, the calculation of this spectrum will be described in more detail.
 まず、m回目の測定でのインターフェログラムF(x)は、光路差をxとし、波数をνとし、波数νのスペクトル振幅をB(ν)とし、光路差0の位置をXとし、波数νの光路差0の位置における位相をφ(ν)とする場合に、式1で表される。なお、mは、m番目の測定による測定結果であることを表す。 First, the interferogram F m at m th measurement (x i) is the optical path difference and x i, the wave number and [nu j, the spectral amplitude of the wave number [nu j and B ([nu j), the optical path difference 0 When the position is X 0 and the phase at the position of the optical path difference 0 of the wave number ν j is φ (ν j ), it is expressed by Expression 1. Note that m represents the measurement result of the mth measurement.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 したがって、積算インターフェログラムF(x)は、式2で表される。 Therefore, the integrated interferogram F (x i ) is expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このように積算インターフェログラムが積算インターフェログラム算出部413において求められると、スペクトル算出部414は、積算インターフェログラムを例えば高速フーリエ変換(FFT)することによって所定光のスペクトルを求める。 Thus, when the integrated interferogram is obtained by the integrated interferogram calculating unit 413, the spectrum calculating unit 414 obtains a spectrum of predetermined light by, for example, fast Fourier transform (FFT) of the integrated interferogram.
 より具体的には、高速フーリエ変換する場合には、サイドローブの発生を低減するために、光路差0(センターバーストの位置)を中心に左右対称な窓関数Awindow(x)が掛け合わされてから(式3)、高速フーリエ変換が行われ、所定光のスペクトルの振幅|Bwindow(ν)|が求められる(式4)。 More specifically, in the case of fast Fourier transform, in order to reduce the occurrence of side lobes, a window function A window (x i ) that is symmetric about the optical path difference 0 (center burst position) is multiplied. (Expression 3), fast Fourier transform is performed to obtain the amplitude | B windowj ) | of the spectrum of the predetermined light (Expression 4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、図11には、所定光のスペクトルの振幅|Bwindow(ν)|の例が示されている。図11の横軸は、波長(λ)を示し、その縦軸は、スペクトル強度|Bwindow(ν)|を示す。 Here, FIG. 11 shows an example of the amplitude | B windowj ) | of the spectrum of the predetermined light. The horizontal axis in FIG. 11 indicates the wavelength (λ j ), and the vertical axis indicates the spectral intensity | B windowj ) |.
 上記窓関数Awindow(x)は、適宜な種々の関数を挙げることができる。例えば、式5-1ないし式5-3で表される関数である。式5-1は、Hanning Window(ハニング窓)関数と呼ばれ、式5-2は、Hamming Window(ハミング窓)関数と呼ばれ、式5-3は、Blackman Window(ブラックマン窓)関数と呼ばれる。 The window function A window (x i ) can include various appropriate functions. For example, it is a function represented by Formula 5-1 to Formula 5-3. Equation 5-1 is called the Hanning Window function, Equation 5-2 is called the Hamming Window function, and Equation 5-3 is called the Blackman Window function. .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述のように、スペクトルが求められると、制御演算部41は、この求めたスペクトルを出力部43へ出力する。 As described above, when the spectrum is obtained, the control calculation unit 41 outputs the obtained spectrum to the output unit 43.
 以上のFT型分光計10によれば、移動鏡115の往復振動の制御をこの移動鏡115の往復振動に基づく発振信号(自励信号)を用いて制御する(いわゆる自励発振による駆動を行う)ことによって外部からのノイズの影響を受け難くなるため、前記ノイズに対して移動鏡115の往復振動を安定できる。 According to the FT spectrometer 10 described above, control of the reciprocating vibration of the movable mirror 115 is controlled using an oscillation signal (self-excited signal) based on the reciprocal vibration of the movable mirror 115 (so-called self-excited driving is performed). ), The reciprocating vibration of the movable mirror 115 can be stabilized against the noise.
 すなわち、従来例のフーリエ変換型分光計における干渉計の移動鏡駆動部(駆動機構)のようなPLL制御(負帰還回路)では、発振器等から供給される基準周波数信号と、移動鏡の往復振動を実際に検出した検出信号とが比較され、この比較に基づく周波数の発振信号が電圧制御発振器から移動鏡駆動部に出力される。このため、従来例のフーリエ変換型分光計は、いずれかの信号にノイズが乗るとロックが外れ易く(すなわち、移動鏡駆動部に入力される発振信号の周波数が変化し)、移動鏡の往復振動を安定させることができない。しかし、本実施形態のFT型分光計10のように自励発振による駆動を行う(すなわち、移動鏡115の実際の往復振動を検出した信号のみに基づいて移動鏡115の往復振動を制御する)ことによって外部からのノイズの影響を受け難くなり、前記ノイズに対して移動鏡115の往復振動を安定できる。 That is, in a PLL control (negative feedback circuit) such as a moving mirror driving unit (driving mechanism) of an interferometer in a conventional Fourier transform spectrometer, a reference frequency signal supplied from an oscillator or the like and a reciprocating vibration of the moving mirror Is compared with the detection signal actually detected, and an oscillation signal having a frequency based on this comparison is output from the voltage controlled oscillator to the moving mirror driving unit. For this reason, the Fourier transform spectrometer of the conventional example is easily unlocked when noise is applied to any of the signals (that is, the frequency of the oscillation signal input to the moving mirror driving unit changes), and the moving mirror reciprocates. The vibration cannot be stabilized. However, driving by self-excited oscillation is performed as in the FT spectrometer 10 of the present embodiment (that is, the reciprocating vibration of the moving mirror 115 is controlled based only on the signal that detects the actual reciprocating vibration of the moving mirror 115). As a result, it becomes difficult to be influenced by external noise, and the reciprocating vibration of the movable mirror 115 can be stabilized against the noise.
 また、本実施形態のFT型分光計10では、切換制御部616が各スイッチ素子614、615を切り換えて平行移動機構150(圧電素子155)に入力される移動鏡駆動信号(発振信号)を励振信号から自励信号に切り換える制御が行われることで、本実施形態のFT型分光計10は、干渉計11において移動鏡115を静止(停止)した状態から往復振動させることができる。すなわち、移動鏡115が静止した状態では移動鏡動作検出部200によって移動鏡115の往復振動を検出できない(検出信号がフラットである)ために、自励信号発生部612による駆動が行えないが、励振信号発生部611からの励振信号が平行移動機構150に入力されることで、平行移動機構150が移動鏡115を駆動して移動鏡115が往復振動(共振振動)し始める。そして、移動鏡115の往復振動の振幅が所定の大きさ(本実施形態では検出信号の電圧幅(振幅)がコンパレータのヒステリシス電圧以上)になると、移動鏡動作検出部200が移動鏡115の往復振動を検出して自励信号発生部612から平行移動機構150を駆動可能な自励信号が出力されるため、信号切換部613によって平行移動機構150に入力される移動鏡駆動信号を励振信号から自励信号に切り換えることにより、自励発振による駆動が行われて移動鏡115の往復振動が外部のノイズの影響を受け難くなる。 In the FT spectrometer 10 of the present embodiment, the switching control unit 616 switches the switch elements 614 and 615 to excite the moving mirror drive signal (oscillation signal) input to the parallel movement mechanism 150 (piezoelectric element 155). By performing the control to switch from the signal to the self-excited signal, the FT spectrometer 10 of the present embodiment can reciprocately vibrate from the state where the moving mirror 115 is stationary (stopped) in the interferometer 11. That is, since the reciprocal vibration of the moving mirror 115 cannot be detected by the moving mirror operation detecting unit 200 when the moving mirror 115 is stationary (the detection signal is flat), the self-excited signal generating unit 612 cannot be driven. When the excitation signal from the excitation signal generator 611 is input to the parallel movement mechanism 150, the parallel movement mechanism 150 drives the movable mirror 115, and the movable mirror 115 starts to reciprocate (resonance vibration). When the amplitude of the reciprocating vibration of the movable mirror 115 reaches a predetermined magnitude (in this embodiment, the voltage width (amplitude) of the detection signal is equal to or greater than the hysteresis voltage of the comparator), the movable mirror operation detection unit 200 reciprocates the movable mirror 115. Since the self-excitation signal that can drive the parallel movement mechanism 150 is output from the self-excitation signal generation unit 612 by detecting the vibration, the moving mirror drive signal input to the parallel movement mechanism 150 by the signal switching unit 613 is derived from the excitation signal. By switching to the self-excited signal, driving by self-excited oscillation is performed, and the reciprocating vibration of the movable mirror 115 is hardly affected by external noise.
 次に、第2実施形態について図12および図13を参照しつつ説明するが、上記第1実施形態と同様の構成には同一符号を用いると共にその説明を省略し、異なる構成ついてのみ以下に説明する。図12は、第2実施形態にかかるフーリエ変換型分光計の移動鏡駆動回路および振幅制御回路の構成を示すブロック図である。図13は、前記フーリエ変換型分光計において移動鏡の振幅目標を変えた場合の移動鏡の振幅の応答の様子を示す図である。図13の横軸は、時間であり、その縦軸は、移動鏡の振幅である。TCは、振幅目標の変更タイミングである。 Next, the second embodiment will be described with reference to FIGS. 12 and 13. The same reference numerals are used for the same components as those in the first embodiment, and the description thereof is omitted. Only different components will be described below. To do. FIG. 12 is a block diagram showing the configuration of the moving mirror drive circuit and the amplitude control circuit of the Fourier transform spectrometer according to the second embodiment. FIG. 13 is a diagram showing how the amplitude of the movable mirror responds when the amplitude target of the movable mirror is changed in the Fourier transform spectrometer. The horizontal axis in FIG. 13 is time, and the vertical axis is the amplitude of the moving mirror. TC is an amplitude target change timing.
 本実施形態のFT型分光計では、第1実施形態のFT型分光計10と、移動鏡制御部60Aの構成が異なる。より具体的には、本実施形態の移動鏡制御部60Aは、移動鏡動作検出部200と、平行移動機構制御部610Aと、を有し、平行移動機構制御部610Aは、励振信号発生部611と、自励信号発生部612と、信号切換部613と、振幅制御部620と、を有する。 In the FT spectrometer of the present embodiment, the configuration of the moving mirror control unit 60A is different from that of the FT spectrometer 10 of the first embodiment. More specifically, the moving mirror control unit 60A of this embodiment includes a moving mirror operation detection unit 200 and a parallel movement mechanism control unit 610A, and the parallel movement mechanism control unit 610A includes an excitation signal generation unit 611. A self-excited signal generation unit 612, a signal switching unit 613, and an amplitude control unit 620.
 振幅制御部620は、振幅検出器621と、振幅制御器622と、ミキサー623と、を有し、移動鏡動作検出部200の検出結果に基づいて移動鏡115の往復振動の振幅を制御する。 The amplitude controller 620 includes an amplitude detector 621, an amplitude controller 622, and a mixer 623, and controls the amplitude of the reciprocating vibration of the movable mirror 115 based on the detection result of the movable mirror operation detector 200.
 振幅検出器621は、移動鏡動作検出部200から出力される検出信号に基づいて、移動鏡115の往復振動における振幅を検出し、これに応じた振幅信号を振幅制御器622に出力する。より具体的には、振幅検出器621は、自励信号発生部612が出力する自励信号とゼロクロス検出部37が出力するゼロクロス信号とが入力されることにより、移動鏡15の往復振動における振幅を検出する。この振幅検出器621に入力される自励信号は、検出信号に対して位相が90°遅れているが、周波数が検出信号と同じであるため、この信号から移動鏡115の往復振動の周期(光軸方向の一往復の移動)を検出することができる。そして、振幅検出器621は、入力されたゼロクロス信号を用いて、この自励信号から検出した移動鏡115の1周期(または半周期)の期間におけるゼロクロスの回数を検出し、この検出結果に応じた振幅信号を出力する。すなわち、本実施形態の振幅検出器621は、移動鏡動作検出部200からの検出信号を、自励信号発生部612を介して自励信号として取得し、この信号に基づいて移動鏡115の往復振動の周期を検出する。そして、振幅検出器621は、移動鏡115の1周期(または半周期)におけるゼロクロスの回数を、移動鏡115の往復振動における振幅と擬制して、振幅制御器622に出力する。 The amplitude detector 621 detects the amplitude of the reciprocating vibration of the movable mirror 115 based on the detection signal output from the movable mirror operation detector 200 and outputs an amplitude signal corresponding to the amplitude signal to the amplitude controller 622. More specifically, the amplitude detector 621 receives the self-excitation signal output from the self-excitation signal generation unit 612 and the zero-cross signal output from the zero-cross detection unit 37, so that the amplitude in the reciprocal vibration of the movable mirror 15 is input. Is detected. The self-excited signal input to the amplitude detector 621 is delayed in phase by 90 ° with respect to the detection signal, but since the frequency is the same as that of the detection signal, the period of the reciprocating vibration of the movable mirror 115 ( One reciprocal movement in the optical axis direction) can be detected. The amplitude detector 621 detects the number of zero crosses in one cycle (or half cycle) of the movable mirror 115 detected from the self-excited signal using the input zero cross signal, and according to the detection result. Output an amplitude signal. That is, the amplitude detector 621 of the present embodiment acquires the detection signal from the moving mirror operation detecting unit 200 as a self-excited signal through the self-excited signal generating unit 612, and the reciprocating of the moving mirror 115 based on this signal. Detect the period of vibration. Then, the amplitude detector 621 simulates the number of zero crossings in one cycle (or half cycle) of the movable mirror 115 with the amplitude in the reciprocating vibration of the movable mirror 115 and outputs it to the amplitude controller 622.
 なお、振幅検出器621は、移動鏡動作検出部200からの検出信号(例えば検出信号の振幅(電圧の上下幅)等)から、移動鏡115の往復振動における振幅を直接検出する構成であってもよい。 The amplitude detector 621 directly detects the amplitude of the reciprocating vibration of the movable mirror 115 from the detection signal (for example, the amplitude of the detection signal (the vertical width of the voltage)) from the movable mirror operation detection unit 200. Also good.
 振幅制御器622は、入力された振幅信号に基づいて、自励信号および励振信号の振幅(電圧)を調整するための振幅調整信号を出力する。本実施形態の振幅制御器622は、例えば、PIDコントローラである。この振幅制御器622は、所定光のスペクトルの目標半値幅を得ために必要な光路差(干渉計11の第1および第2光路間の光路差)が得られるように(例えば、移動鏡115の1周期におけるゼロクロスの回数が所定の値となるように)、振幅調整信号を出力する。 The amplitude controller 622 outputs an amplitude adjustment signal for adjusting the amplitude (voltage) of the self-excitation signal and the excitation signal based on the input amplitude signal. The amplitude controller 622 of this embodiment is, for example, a PID controller. The amplitude controller 622 can obtain an optical path difference (an optical path difference between the first and second optical paths of the interferometer 11) necessary for obtaining a target half width of a spectrum of predetermined light (for example, the movable mirror 115). The amplitude adjustment signal is output so that the number of zero crossings in one cycle becomes a predetermined value.
 ミキサー623は、振幅制御器622から出力された振幅調整信号と、平行移動機構150に入力される自励信号または励振信号とを混合することにより、自励信号または励振信号の振幅(電圧)を調整して出力する。 The mixer 623 mixes the amplitude adjustment signal output from the amplitude controller 622 with the self-excited signal or excitation signal input to the translation mechanism 150, thereby adjusting the amplitude (voltage) of the self-excited signal or excitation signal. Adjust and output.
 また、本実施形態の平行移動機構制御部610Aは、D/A制御信号発生器617と、D/Aコンバータ618と、をさらに備える。D/A制御信号発生器617は、振幅制御部620によって振幅の調整された自励信号または励振信号から平行移動機構150を制御するための制御信号(デジタル信号)を作成し、D/Aコンバータ618に出力する。D/Aコンバータ618は、D/A制御信号発生器617からの制御信号(デジタル信号)をアナログ信号に変換して平行移動機構150に出力する。 Further, the parallel movement mechanism control unit 610A of the present embodiment further includes a D / A control signal generator 617 and a D / A converter 618. The D / A control signal generator 617 creates a control signal (digital signal) for controlling the translation mechanism 150 from the self-excitation signal or the excitation signal whose amplitude is adjusted by the amplitude control unit 620, and the D / A converter Output to 618. The D / A converter 618 converts the control signal (digital signal) from the D / A control signal generator 617 into an analog signal and outputs the analog signal to the parallel movement mechanism 150.
 以上のFT型分光計は、移動鏡115の往復振動の振幅(具体的には、光軸方向の移動距離)の大きさを精度よく調整することができる。すなわち、本実施形態のFT型分光計は、目標とする移動鏡115の振幅の大きさ(振幅目標)を変更したときに、移動鏡115の実際の振幅を検出してこの検出結果に基づいて移動鏡115の振幅を調整できるため、図13に示されるように、振幅の大きさを変更した後の移動鏡115の振幅を振幅目標に精度よく一致させることができる。また、本実施形態のFT型分光計では、移動鏡115の実際の振幅を検出してこの検出結果に基づいて移動鏡115の振幅を調整しているため、本実施形態のFT型分光計は、移動鏡115の往復振動を一定にする、すなわち、干渉計11において所定光を案内する2個の光路間に生じさせる光路差の最大値および最小値を一定にすることができ、これにより、所定光のスペクトルをより精度よく測定することができる。 The above FT spectrometer can accurately adjust the amplitude of the reciprocating vibration of the moving mirror 115 (specifically, the moving distance in the optical axis direction). That is, the FT spectrometer of the present embodiment detects the actual amplitude of the movable mirror 115 when the amplitude magnitude (amplitude target) of the target movable mirror 115 is changed, and based on this detection result. Since the amplitude of the movable mirror 115 can be adjusted, as shown in FIG. 13, the amplitude of the movable mirror 115 after changing the magnitude of the amplitude can be accurately matched with the amplitude target. In the FT spectrometer of the present embodiment, the actual amplitude of the movable mirror 115 is detected and the amplitude of the movable mirror 115 is adjusted based on the detection result. Therefore, the FT spectrometer of the present embodiment is The reciprocating vibration of the movable mirror 115 can be made constant, that is, the maximum value and the minimum value of the optical path difference generated between the two optical paths that guide the predetermined light in the interferometer 11 can be made constant. The spectrum of the predetermined light can be measured with higher accuracy.
 次に、第3実施形態について図14ないし図20を参照しつつ説明するが、上記第1および第2実施形態と同様の構成には同一符号を用いると共に説明を省略し、異なる構成ついてのみ以下に説明する。 Next, the third embodiment will be described with reference to FIGS. 14 to 20, but the same reference numerals are used for the same components as those of the first and second embodiments, the description thereof is omitted, and only different components will be described below. Explained.
 図14は、第3実施形態にかかるフーリエ変換型分光計の移動鏡駆動回路および振幅制御回路の構成を示すブロック図である。図15は、前記フーリエ変換型分光計の自励信号発生部を構成するローパスフィルタ(IIRフィルタ)の構成を示す回路図である。図16は、前記ローパスフィルタの特性を示す図であり、図16Aは、周波数特性を示し、図16Bは、位相特性を示す。図17は、方形波状の検出信号の一例とこの検出信号を前記ローパスフィルタに入力したときの当該ローパスフィルタの出力波形を示す図である。図17Aは、方形波状の検出信号の一例を示し、図17Bは、図17Aに示す検出信号を前記ローパスフィルタに入力したときの当該ローパスフィルタの出力波形を示す図である。図17Aおよび図17Bの横軸は、時間であり、それら各縦軸は、振幅である。図18は、ノイズが重畳した検出信号の一例と、コンパレータに通すことによって方形波状の信号に変換された前記検出信号とを示す図である。図18において、上段のグラフは、フォトリフレクターが出力する検出信号SG4であり、下段のグラフじゃ、コンパレータに通すことによって方形波状の信号に変換された前記検出信号SG5である。図18の横軸は、時間であり、その縦軸は、電圧である。 FIG. 14 is a block diagram showing a configuration of a moving mirror driving circuit and an amplitude control circuit of a Fourier transform spectrometer according to the third embodiment. FIG. 15 is a circuit diagram showing a configuration of a low-pass filter (IIR filter) that constitutes a self-excited signal generator of the Fourier transform spectrometer. FIG. 16 is a diagram illustrating the characteristics of the low-pass filter, FIG. 16A illustrates the frequency characteristics, and FIG. 16B illustrates the phase characteristics. FIG. 17 is a diagram illustrating an example of a square-wave detection signal and an output waveform of the low-pass filter when the detection signal is input to the low-pass filter. FIG. 17A illustrates an example of a square-wave detection signal, and FIG. 17B is a diagram illustrating an output waveform of the low-pass filter when the detection signal illustrated in FIG. 17A is input to the low-pass filter. The horizontal axis of FIG. 17A and FIG. 17B is time, and each of those vertical axes is amplitude. FIG. 18 is a diagram illustrating an example of a detection signal on which noise is superimposed and the detection signal converted into a square wave signal by passing through a comparator. In FIG. 18, the upper graph is the detection signal SG4 output from the photoreflector, and the lower graph is the detection signal SG5 that has been converted to a square wave signal by passing through a comparator. The horizontal axis in FIG. 18 is time, and the vertical axis is voltage.
 本実施形態のFT型分光計では、第2実施形態のFT型分光計と、移動鏡制御部60Bにおける自励信号発生部612Bの構成が異なる。より具体的には、移動鏡制御部60Bは、移動鏡動作検出部200と、平行移動機構制御部610Bとを有し、平行移動機構制御部610Bは、励振信号発生部611と、ローパスフィルタ612Bと、信号切換部613と、振幅制御部620と、を有する。 The FT spectrometer of the present embodiment is different from the FT spectrometer of the second embodiment in the configuration of the self-excited signal generator 612B in the moving mirror controller 60B. More specifically, the moving mirror control unit 60B includes a moving mirror operation detection unit 200 and a parallel movement mechanism control unit 610B. The parallel movement mechanism control unit 610B includes an excitation signal generation unit 611 and a low-pass filter 612B. A signal switching unit 613 and an amplitude control unit 620.
 本実施形態のローパスフィルタ612Bは、第2スイッチ素子615がオンにされ、第1スイッチ素子614がオフにされると、移動鏡動作検出部200によって検出した移動鏡115の往復振動に対して位相が90°遅れた正弦波状の自励信号を出力する。本実施形態においては、このローパスフィルタ612Bが自励信号発生部を構成する。このローパスフィルタ612Bは、例えば、IIRフィルタ(Infinite Impulse Response Filter:無限インパルス応答フィルタ)やFIRフィルタ(Finite Impulse Response Filter:有限インパルス応答フィルタ)等のデジタルローパスフィルタであり、本実施形態では、例えば、図15に示すようなIIRフィルタである。このIIRフィルタ(自励信号発生部)612Bは、増幅器、減算器、加算器および遅延素子によって構成される、フィードバック・パスおよびフォワード・パスからなる回路である。より具体的には、本実施形態のIIRフィルタ612Bは、4つの増幅器(第1ないし第4増幅器6001~6004)と、2つの減算器(第1および第2減算器6011、6012)と、2つの加算器(第1および第2加算器6021、6022)と、2つの遅延素子(第1および第2遅延素子6031~6032)と、を有する。このIIRフィルタ612Bでは、第1増幅器6001は、入力された移動鏡動作検出部200からの信号(検出信号)を所定の倍率で増幅し、この増幅した信号(第1増幅信号)を第1減算器6011に出力する。第1増幅器6001から出力された第1増幅信号と、第2増幅器6002から出力された第2増幅信号とが第1減算器6011に入力され、第1減算器6011は、これら入力された信号の差分である第1差分信号を第2減算器6012に出力する。第1減算器6011から出力された第1差分信号と第4増幅器6004から出力された第4増幅信号とが第2減算器6012に入力され、第2減算器6012は、これら入力された信号の差分である第2差分信号を第1遅延素子6031と第1加算器6021とに出力する。第1遅延素子6031は、第2減算器6012から出力された第2差分信号を1周期(1クロック)だけ遅延させ、この遅延させた信号(第1遅延信号)を第2増幅器6002と、第2遅延素子6032と、第3増幅器6003と、に出力する。第2増幅器6002は、第1遅延素子から出力された第1遅延信号を所定の倍率で増幅し、この増幅した信号(第2増幅信号)を第1減算器6011に出力する。また、第2遅延素子6032は、第1遅延素子6031から出力された第1遅延信号を1周期(1クロック)だけさらに遅延させ、この遅延させた信号(第2遅延信号)を第4増幅器6004と第2加算器6022に出力する。第3増幅器6003は、第1遅延素子6031から出力された第1遅延信号を所定の倍率で増幅し、この増幅した信号(第3増幅信号)を第1加算器6021に出力する。また、第2減算器6012から出力された第2差分信号と、第3増幅器6003から出力された第3増幅信号とが第1加算器6021に入力され、第1加算器6021は、これら入力された信号の和である第1和信号を第2加算器6022に出力する。第1加算器6021から出力された第1和信号と、第2遅延素子6032から出力された第2遅延信号とが第2加算器6022に入力され、第2加算器6022は、これら入力された信号の和である第2和信号を、IIRフィルタ612Bの出力側に接続されたミキサー623に出力する。 The low-pass filter 612B of the present embodiment has a phase with respect to the reciprocal vibration of the movable mirror 115 detected by the movable mirror operation detection unit 200 when the second switch element 615 is turned on and the first switch element 614 is turned off. Outputs a sine wave self-excited signal delayed by 90 °. In the present embodiment, this low-pass filter 612B constitutes a self-excited signal generator. The low-pass filter 612B is a digital low-pass filter such as an IIR filter (Infinite Impulse Response Filter: Infinite Impulse Response Filter) or an FIR filter (Finite Impulse Response Filter: Finite Impulse Response Filter). In the present embodiment, for example, It is an IIR filter as shown in FIG. The IIR filter (self-excited signal generator) 612B is a circuit including a feedback path and a forward path, which is configured by an amplifier, a subtracter, an adder, and a delay element. More specifically, the IIR filter 612B of the present embodiment includes four amplifiers (first to fourth amplifiers 6001 to 6004), two subtracters (first and second subtractors 6011 and 6012), 2 There are two adders (first and second adders 6021 and 6022) and two delay elements (first and second delay elements 6031 to 6032). In the IIR filter 612B, the first amplifier 6001 amplifies the input signal (detection signal) from the movable mirror operation detection unit 200 at a predetermined magnification, and first subtracts the amplified signal (first amplification signal). Output to the device 6011. The first amplified signal output from the first amplifier 6001 and the second amplified signal output from the second amplifier 6002 are input to the first subtractor 6011, and the first subtractor 6011 outputs the input signals. The first difference signal that is the difference is output to the second subtractor 6012. The first differential signal output from the first subtractor 6011 and the fourth amplified signal output from the fourth amplifier 6004 are input to the second subtractor 6012, and the second subtractor 6012 receives the input signals. The second difference signal that is the difference is output to the first delay element 6031 and the first adder 6021. The first delay element 6031 delays the second differential signal output from the second subtractor 6012 by one cycle (one clock), and the delayed signal (first delay signal) is sent to the second amplifier 6002 and the second amplifier 6002. To the second delay element 6032 and the third amplifier 6003. The second amplifier 6002 amplifies the first delayed signal output from the first delay element by a predetermined magnification, and outputs the amplified signal (second amplified signal) to the first subtractor 6011. The second delay element 6032 further delays the first delay signal output from the first delay element 6031 by one period (one clock), and the delayed signal (second delay signal) is the fourth amplifier 6004. And output to the second adder 6022. The third amplifier 6003 amplifies the first delayed signal output from the first delay element 6031 by a predetermined magnification, and outputs the amplified signal (third amplified signal) to the first adder 6021. In addition, the second difference signal output from the second subtractor 6012 and the third amplified signal output from the third amplifier 6003 are input to the first adder 6021, and the first adder 6021 receives these inputs. The first sum signal, which is the sum of the received signals, is output to the second adder 6022. The first sum signal output from the first adder 6021 and the second delay signal output from the second delay element 6032 are input to the second adder 6022, and the second adder 6022 receives these inputs. The second sum signal, which is the sum of the signals, is output to the mixer 623 connected to the output side of the IIR filter 612B.
 このIIRフィルタ(自励信号発生部)612Bは、図16Aおよび図16Bに示すように、平行移動機構150の共振周波数f(本実施形態では70Hz)で位相が90°遅れる特性を有している。 As shown in FIGS. 16A and 16B, this IIR filter (self-excited signal generator) 612B has a characteristic that the phase is delayed by 90 ° at the resonance frequency f 0 (70 Hz in the present embodiment) of the parallel movement mechanism 150. Yes.
 この自励信号発生部612Bは、移動鏡動作検出部200からの検出信号(方形波状の信号:図17A参照)が入力されると、位相が検出信号に対して90°遅れた正弦波状の発振信号(図17B参照)を出力する。 This self-excited signal generation unit 612B receives a detection signal (square wave signal: see FIG. 17A) from the moving mirror operation detection unit 200, and sine wave oscillation whose phase is delayed by 90 ° with respect to the detection signal. A signal (see FIG. 17B) is output.
 本実施形態のローパスフィルタ612Bは、励振信号発生部611とD/A制御信号発生器617との間に配置されることにより、正弦波発生部としての機能も有する。すなわち、本実施形態のローパスフィルタ612Bは、励振信号発生部611から出力される励振信号(方形波状の発振信号)も正弦波状の発振信号(励振信号)に変換してD/A制御信号発生器617に出力する。 The low-pass filter 612B of this embodiment also has a function as a sine wave generator by being disposed between the excitation signal generator 611 and the D / A control signal generator 617. That is, the low-pass filter 612B according to the present embodiment converts the excitation signal (square wave oscillation signal) output from the excitation signal generation unit 611 into a sine wave oscillation signal (excitation signal) to generate a D / A control signal generator. To 617.
 このように、本実施形態のFT型分光計では、平行移動機構150に入力される自励信号と励振信号との両方が正弦波状の発振信号であるため、本実施形態のFT型分光計は、方形波状の発振信号が平行移動機構150に入力された場合に生じる平行移動機構150の高次共振モードによる発振を防ぐことができる。 Thus, in the FT spectrometer of this embodiment, since both the self-excitation signal and the excitation signal input to the translation mechanism 150 are sinusoidal oscillation signals, the FT spectrometer of this embodiment The oscillation due to the higher-order resonance mode of the translation mechanism 150 that occurs when a square-wave oscillation signal is input to the translation mechanism 150 can be prevented.
 本実施形態のFT型分光計では、ローパスフィルタ612Bがデジタルローパスフィルタによって構成されているため、本実施形態のFT型分光計は、アナログローパスフィルタのような回路定数のばらつきに起因するフィルタ特性のばらつきの発生を防ぐことができる。ローパスフィルタ612Bをデジタルローパスフィルタによって構成することで、外付けのICが不要となり、本実施形態のFT型分光計は、フィルタ回路の小型化を図ることができる。 In the FT spectrometer of the present embodiment, the low-pass filter 612B is configured by a digital low-pass filter. Therefore, the FT spectrometer of the present embodiment has a filter characteristic that is caused by variations in circuit constants such as an analog low-pass filter. Variations can be prevented from occurring. By configuring the low-pass filter 612B with a digital low-pass filter, no external IC is required, and the FT spectrometer of this embodiment can reduce the size of the filter circuit.
 図18に示されるように、移動鏡動作検出部(フォトリフレクター)200から出力された検出信号にノイズが重畳していても、本実施形態のFT型分光計では、ローパスフィルタ612Bが高域のノイズをカットするため、本実施形態のFT型分光計は、ローパスフィルタ612Bを通過させた後の自励信号のノイズを抑えることができる。 As shown in FIG. 18, even if noise is superimposed on the detection signal output from the moving mirror operation detection unit (photoreflector) 200, the low-pass filter 612B is a high-frequency filter in the FT spectrometer of this embodiment. In order to cut noise, the FT spectrometer of this embodiment can suppress the noise of the self-excited signal after passing through the low-pass filter 612B.
 本実施形態のFT型分光計のように、移動鏡動作検出部200がフォトリフレクターを有する場合、自励信号発生部をローパスフィルタ612Bで構成することによって、フォトリフレクターを干渉計11に設置する際の位置決めの精度が低くても、所定光のスペクトルの測定精度への影響を抑えることができる。詳しくは、以下の通りである。なお、図19は、フォトリフレクターから測定対象までの距離と、フォトリフレクターからの出力電圧との関係を示す図である。図19の横軸は、フォトリフレクターから測定対象までの距離であり、縦軸はフォトリフレクターの出力である。図20は、測定対象までの距離と出力電圧との関係における非線形領域で、フォトリフレクターにより平行移動機構の一方端部の往復振動を測定した場合にフォトリフレクターの出力から得られる検出信号と、この検出信号をローパスフィルタに入力したときの当該ローパスフィルタの出力信号とを示す図である。図20Aは、測定対象までの距離と出力電圧との関係を示す図における線形領域でない領域において、フォトリフレクターにより平行移動機構の一方端部の往復振動を測定した場合にフォトリフレクターの出力から得られる検出信号を示す図であり、図20Bは、図20Aの検出信号をローパスフィルタに入力したときの当該ローパスフィルタの出力信号を示す図である。図20Aおよび図20Bの横軸は、時間であり、それらの縦軸は、振幅である。 When the moving mirror operation detection unit 200 includes a photo reflector as in the FT spectrometer of the present embodiment, when the photo reflector is installed in the interferometer 11 by configuring the self-excited signal generation unit with the low-pass filter 612B. Even if the positioning accuracy is low, the influence on the measurement accuracy of the spectrum of the predetermined light can be suppressed. Details are as follows. FIG. 19 is a diagram illustrating the relationship between the distance from the photo reflector to the measurement target and the output voltage from the photo reflector. The horizontal axis in FIG. 19 is the distance from the photo reflector to the measurement object, and the vertical axis is the output of the photo reflector. FIG. 20 is a non-linear region in the relationship between the distance to the measurement object and the output voltage, and the detection signal obtained from the output of the photoreflector when the reciprocal vibration of one end of the translation mechanism is measured by the photoreflector, and this It is a figure which shows the output signal of the said low-pass filter when a detection signal is input into a low-pass filter. FIG. 20A is obtained from the output of the photoreflector when the reciprocal vibration of one end of the translation mechanism is measured by the photoreflector in a region that is not a linear region in the diagram showing the relationship between the distance to the measurement target and the output voltage. FIG. 20B is a diagram illustrating an output signal of the low-pass filter when the detection signal of FIG. 20A is input to the low-pass filter. The horizontal axis in FIGS. 20A and 20B is time, and the vertical axis thereof is amplitude.
 移動鏡115の振幅(詳しくは、フォトリフレクターから平行移動機構150の一方端部の裏面(測定対象)までの距離の変化)が図19における直線性のよい範囲(線形領域)で検出されるように、干渉計11においてフォトリフレクターが配置(位置決め)されると、このフォトリフレクターからDuty比が50%の検出信号が得られる。しかし、図19において直線性の悪い範囲(例えば、図19に示すグラフのピーク位置が含まれるような範囲、すなわち、線形領域でない領域)で検出されるように、フォトリフレクターが干渉計11において配置されると、このフォトリフレクターからは、Duty比が50%よりも小さな検出信号しか得られない。 The amplitude of the movable mirror 115 (specifically, the change in the distance from the photo reflector to the back surface (measurement target) of one end of the parallel movement mechanism 150) is detected in the range (linear region) with good linearity in FIG. In addition, when a photo reflector is arranged (positioned) in the interferometer 11, a detection signal having a duty ratio of 50% is obtained from the photo reflector. However, the photoreflector is arranged in the interferometer 11 so as to be detected in a range with poor linearity in FIG. 19 (for example, a range in which the peak position of the graph shown in FIG. 19 is included, that is, a region that is not a linear region). Then, only a detection signal having a duty ratio smaller than 50% can be obtained from this photo reflector.
 このように、検出信号のDuty比が50%より小さくなると、移動鏡115の往復振動において十分な大きさの振幅が得られず、これにより、所定光のスペクトルの測定において測定精度が低下する場合があるが、このDuty比の小さな検出信号(例えば、Duty比が30%の検出信号:図20A参照)を、本実施形態のローパスフィルタ(自励信号発生部)612Bを通過させて3次以上の高調波をカットすることにより、Duty比が50%の正弦波状の信号(自励信号)が得られる(図20B参照)。このため、本実施形態のFT型分光計では、フォトリフレクターの配置位置が、移動鏡115の振幅が図19における直線性の悪い範囲(非線形領域)で検出されるような位置であっても、平行移動機構150にはDuty比が50%の自励信号(すなわち、ローパスフィルタ612Bに入力された検出信号に対して位相が90°遅れている発振信号(移動鏡駆動信号))が入力されるため、所定光のスペクトルの測定精度が低下しない。 As described above, when the duty ratio of the detection signal is smaller than 50%, a sufficiently large amplitude cannot be obtained in the reciprocating vibration of the movable mirror 115, thereby reducing the measurement accuracy in measuring the spectrum of the predetermined light. However, a detection signal with a small duty ratio (for example, a detection signal with a duty ratio of 30%: see FIG. 20A) is passed through the low-pass filter (self-excited signal generation unit) 612B of the present embodiment to be third order or higher. By cutting the higher harmonics, a sinusoidal signal (self-excited signal) with a duty ratio of 50% is obtained (see FIG. 20B). For this reason, in the FT spectrometer of the present embodiment, even if the arrangement position of the photo reflector is a position where the amplitude of the movable mirror 115 is detected in the range with poor linearity (nonlinear region) in FIG. Self-excited signal having a duty ratio of 50% (that is, an oscillation signal (moving mirror drive signal) whose phase is delayed by 90 ° with respect to the detection signal input to low-pass filter 612B) is input to translation mechanism 150. For this reason, the measurement accuracy of the spectrum of the predetermined light does not decrease.
 なお、本実施形態のFT型分光計では、励振信号発生部611とD/A制御信号発生器617との間に配置される正弦波発生部と自励信号発生部とが共通のローパスフィルタ612Bによって構成されている、すなわち、自励信号発生部が、方形波状の励振信号を正弦波状の励振信号に変換する正弦波発生部を兼ねているが、この構成に限定されない。例えば、励振信号発生部611とD/A制御信号発生器617との間に配置される正弦波発生部と自励信号発生部とが、異なるローパスフィルタによって構成されてもよい。 In the FT spectrometer according to the present embodiment, the sine wave generator and the self-excited signal generator arranged between the excitation signal generator 611 and the D / A control signal generator 617 have a common low-pass filter 612B. In other words, the self-excitation signal generation unit also serves as a sine wave generation unit that converts a square-wave excitation signal into a sine-wave excitation signal, but is not limited to this configuration. For example, the sine wave generator and the self-excited signal generator disposed between the excitation signal generator 611 and the D / A control signal generator 617 may be configured by different low-pass filters.
 次に、第4実施形態について図21および図22を参照しつつ説明するが、上記第1ないし第3実施形態と同様の構成には同一符号を用いると共に説明を省略し、異なる構成ついてのみ以下に説明する。 Next, the fourth embodiment will be described with reference to FIG. 21 and FIG. 22. The same reference numerals are used for the same components as those in the first to third embodiments, the description is omitted, and only different components are described below. Explained.
 図21は、平行移動機構の共振周波数検出回路の構成を示すブロック図である。図22は、平行移動機構に入力される発振信号である移動鏡駆動信号の周波数を変えつつ移動鏡の振幅を観測したときのフォトリフレクターの検出信号の一例と、この検出信号が入力されたときのコンパレータの出力信号とを示す図である。図22において、上段のグラフは、フォトリフレクターの検出信号SG6であり、下段のグラフは、コンパレータの出力信号SG7である。また、図22の横軸は、周波数であり、その縦軸は、電圧である。 FIG. 21 is a block diagram showing the configuration of the resonance frequency detection circuit of the parallel movement mechanism. FIG. 22 shows an example of a photoreflector detection signal when the amplitude of the moving mirror is observed while changing the frequency of the moving mirror drive signal that is an oscillation signal input to the parallel movement mechanism, and when this detection signal is input. It is a figure which shows the output signal of this comparator. In FIG. 22, the upper graph is the photoreflector detection signal SG6, and the lower graph is the comparator output signal SG7. In addition, the horizontal axis of FIG. 22 is frequency, and the vertical axis is voltage.
 本実施形態のFT型分光計では、第1ないし第3実施形態のFT型分光計と、励振信号発生部611Cおよび制御演算部41Cの構成が異なる。この励振信号発生部611Cおよび制御演算部41Cは、周波数を変えつつ発振信号を出力したときの移動鏡動作検出部200による検出結果に基づいて励振信号(詳しくは、静止した状態の平行移動機構150の往復振動を開始させるために励振信号発生部611Cが出力する発振信号の周波数)を決定する。 The FT spectrometer of the present embodiment is different from the FT spectrometers of the first to third embodiments in the configuration of the excitation signal generator 611C and the control calculator 41C. The excitation signal generation unit 611C and the control calculation unit 41C generate an excitation signal (specifically, the parallel movement mechanism 150 in a stationary state based on the detection result by the moving mirror operation detection unit 200 when the oscillation signal is output while changing the frequency). The frequency of the oscillation signal output from the excitation signal generation unit 611C in order to start the reciprocating vibration is determined.
 本実施形態の励振信号発生部611Cは、出力する発振信号の周波数を変更可能である。制御演算部41Cは、記憶部(記憶領域)415と、励振周波数決定部416とをさらに有する。記憶部415は、移動鏡動作検出部200から入力された検出信号と、励振信号発生部611Cが出力している発振信号の周波数とを関連付けて記憶する。励振周波数決定部416は、検出信号において振幅(検出信号における電圧の上下幅)が最大となったときの発振信号の周波数f(図22参照)を平行移動機構150において共振振動が生じる共振周波数fと擬制し、励振信号発生部611Cにこの周波数fの発振信号を励振信号として出力させる。 The excitation signal generator 611C of this embodiment can change the frequency of the oscillation signal to be output. The control calculation unit 41C further includes a storage unit (storage area) 415 and an excitation frequency determination unit 416. The storage unit 415 stores the detection signal input from the movable mirror operation detection unit 200 and the frequency of the oscillation signal output from the excitation signal generation unit 611C in association with each other. The excitation frequency determining unit 416 uses the frequency f 1 (see FIG. 22) of the oscillation signal when the amplitude (the vertical width of the voltage in the detection signal) is maximum in the detection signal as the resonance frequency at which resonance vibration occurs in the translation mechanism 150. f is 0 and fiction, to output the oscillation signal of the frequency f 1 as the excitation signal to the excitation signal generator 611C.
 より具体的には、本実施形態のFT型分光計では、周波数fmin~fmaxまでΔf間隔で励振信号発生部611Cから出力される発振信号の周波数を変えながら移動鏡115を平行移動機構150によって駆動し、励振周波数決定部416がこの間に入力された移動鏡動作検出部200からの検出信号によって移動鏡115の振幅をモニターする。そして、励振周波数決定部416は、検出信号において移動鏡115の振幅が最大となったときの発振信号の周波数fを記憶部415から引き出し、この周波数fを共振周波数f(図22に示す例では72Hz)と擬制し、励振信号発生部611Cにこの周波数f1の発振信号を励振信号として出力させる。なお、平行移動機構150に入力される周波数が共振周波数fから少しずれていても、このずれが図22における移動鏡の振動が検出されている範囲(例えば、図22の周波数f~fの範囲)内であれば、平行移動機構150は振動し始める。 More specifically, in the FT spectrometer of the present embodiment, the movable mirror 115 is moved by the parallel movement mechanism 150 while changing the frequency of the oscillation signal output from the excitation signal generator 611C at intervals of Δf from the frequency f min to f max. The excitation frequency determination unit 416 monitors the amplitude of the movable mirror 115 based on the detection signal from the movable mirror operation detection unit 200 input during this period. Then, the excitation frequency determination unit 416 extracts the frequency f 1 of the oscillation signal when the amplitude of the movable mirror 115 becomes the maximum in the detection signal from the storage unit 415, and uses this frequency f 1 as the resonance frequency f 0 (see FIG. 22). In the example shown, 72 Hz), the excitation signal generator 611C outputs the oscillation signal of this frequency f1 as an excitation signal. Even if the frequency input to the parallel movement mechanism 150 is slightly deviated from the resonance frequency f 0 , this deviation is within the range in which the vibration of the movable mirror in FIG. 22 is detected (for example, the frequencies f 2 to f in FIG. 22). 3 ), the translation mechanism 150 starts to vibrate.
 以上のFT型分光計は、干渉計11において移動鏡115を静止状態から確実に往復振動させることができる。すなわち、本実施形態のFT型分光計は、例えば、励振信号発生部611において励振信号の周波数が設定されていた値からずれた場合や、前記値が予め設定されてない場合であっても、発振信号の周波数を走査して移動鏡115の往復振動が検出されたときの周波数を求め、この周波数の発振信号(励振信号)を平行移動機構150に出力することにより、干渉計11において移動鏡115を静止状態から確実に往復振動させることができる。 The above FT spectrometer can reliably reciprocate the movable mirror 115 from the stationary state in the interferometer 11. That is, the FT spectrometer of the present embodiment, for example, when the frequency of the excitation signal deviates from the value set in the excitation signal generator 611, or when the value is not set in advance, The frequency of the oscillation signal is scanned to obtain the frequency when the reciprocal vibration of the movable mirror 115 is detected, and the oscillation signal (excitation signal) of this frequency is output to the parallel movement mechanism 150, whereby the interferometer 11 performs the movable mirror 115 can be reliably reciprocated from a stationary state.
 なお、本実施形態の励振周波数決定部416は、入力された検出信号において移動鏡115の振幅が最大になったときの励振信号発生部611Cが出力する発振信号の周波数fを共振周波数fと擬制しているが、この構成に限定されない。励振周波数決定部416は、例えば、ヒステリシス制御のコンパレータを通して検出信号を方形波状の信号に変換したときに、この方形波状の信号において移動鏡115の振動が検出された周波数の範囲f~f(図22の下段のグラフを参照)の中央の周波数fを共振周波数fと擬制し、励振信号発生部611Cに周波数fの発振信号を励振信号として出力させる構成であってもよい。 Note that the excitation frequency determination unit 416 of the present embodiment uses the frequency f 1 of the oscillation signal output from the excitation signal generation unit 611C when the amplitude of the movable mirror 115 is maximized in the input detection signal as the resonance frequency f 0. However, it is not limited to this configuration. For example, when the excitation frequency determination unit 416 converts the detection signal into a square wave signal through a hysteresis control comparator, the frequency range f 2 to f 3 in which the vibration of the movable mirror 115 is detected in the square wave signal. The configuration may be such that the center frequency f 4 (see the lower graph in FIG. 22) is simulated as the resonance frequency f 0 and the excitation signal generator 611C outputs the oscillation signal of the frequency f 4 as the excitation signal.
 また、上述のフーリエ変換分光計では、移動鏡駆動部の一例として、平行移動機構150が用いられたが、移動鏡駆動部は、これに限定されるものではない。例えば、移動鏡駆動部は、図3に示す構成において、第1支持体153に設けられた磁石部と、前記磁石部に対向するように、前記磁石部から離間して配置されたコイル部とを、圧電素子155に代え、備えてもよい。前記コイル部は、第1板バネ151、第2板バネ152および移動鏡115の各移動範囲と干渉しない位置(各移動を妨げない位置)に配置される。そして、前記コイル部に交流電圧が印加されることで前記コイル部に生じる磁界と前記磁石部との磁界との相互作用によって、第1支持体153は、前記上方および前記下方に交互に力を受け、共振駆動する。この交流電圧を印加する際に、コイル部は、移動鏡動作検出部200の検出結果に基づく発振信号である自励信号を用いて平行移動機構制御部610によって制御される。 In the above-described Fourier transform spectrometer, the parallel movement mechanism 150 is used as an example of the moving mirror driving unit, but the moving mirror driving unit is not limited to this. For example, in the configuration shown in FIG. 3, the movable mirror driving unit includes a magnet unit provided on the first support 153, and a coil unit disposed away from the magnet unit so as to face the magnet unit. May be provided instead of the piezoelectric element 155. The coil portion is disposed at a position that does not interfere with the movement ranges of the first leaf spring 151, the second leaf spring 152, and the movable mirror 115 (a position that does not hinder each movement). The first support 153 alternately applies force upward and downward due to the interaction between the magnetic field generated in the coil part by applying an AC voltage to the coil part and the magnetic field of the magnet part. Receiving and resonance driving. When this AC voltage is applied, the coil unit is controlled by the parallel movement mechanism control unit 610 using a self-excited signal that is an oscillation signal based on the detection result of the moving mirror operation detection unit 200.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるフーリエ変換型分光計は、所定光のインターフェログラムをフーリエ変換することによって前記所定光のスペクトルを求めるフーリエ変換型分光計であって、前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子、および、入力される発振信号に基づいて前記複数の光学素子に含まれる移動鏡を光軸方向に往復振動させることによって前記2個の光路間に光路差を生じさせる移動鏡駆動部、を有する干渉計と、前記移動鏡の往復振動を検出する移動鏡動作検出部と、前記移動鏡動作検出部の検出結果に基づく発振信号である自励信号を前記移動鏡駆動部に出力する自励信号発生部と、を備える。 A Fourier transform spectrometer according to one aspect is a Fourier transform spectrometer that obtains a spectrum of the predetermined light by performing a Fourier transform on an interferogram of the predetermined light, and includes a distance from an incident position of the predetermined light to an interference position. A plurality of optical elements that form two optical paths between them, and a movable mirror included in the plurality of optical elements based on an input oscillation signal are reciprocally oscillated in the direction of the optical axis. A self-excited signal that is an oscillation signal based on a detection result of the moving mirror operation detecting unit, a moving mirror operation detecting unit that detects reciprocal vibration of the moving mirror, A self-excited signal generating unit that outputs a signal to the movable mirror driving unit.
 このようなフーリエ変換型分光計は、移動鏡の往復振動をこの移動鏡の往復振動(往復移動)に基づく発振信号(自励信号)を用いて制御する(いわゆる自励発振による駆動を行う)ことによって外部からのノイズの影響を受け難くなるため、前記ノイズに対して移動鏡の往復振動を安定できる。 Such a Fourier transform spectrometer controls the reciprocating vibration of the moving mirror using an oscillation signal (self-excited signal) based on the reciprocating vibration (reciprocating movement) of the moving mirror (so-called self-excited oscillation is performed). Therefore, it is difficult to be affected by external noise, so that the reciprocating vibration of the movable mirror can be stabilized against the noise.
 すなわち、従来のフーリエ変換型分光計における干渉計の移動鏡駆動部(駆動機構)のようなPLL制御(負帰還回路)では、発振器等から供給される基準周波数信号と、移動鏡の往復振動を実際に検出した検出信号とが比較され、この比較に基づく周波数の発振信号が電圧制御発振器から移動鏡駆動部に出力される。このため、従来のフーリエ変換型分光計は、いずれかの信号にノイズが乗るとロックが外れ易く(すなわち、移動鏡駆動部に入力される発振信号の周波数が変化し)、移動鏡の往復振動を安定できない。しかしながら、上述の構成のフーリエ変換型分光計は、自励発振による駆動を行う(すなわち、移動鏡の実際の往復振動を検出した信号に基づいて移動鏡の往復振動を制御する)ことによって外部からのノイズの影響を受け難くなり、前記ノイズに対して移動鏡の往復振動を安定できる。 That is, in a PLL control (negative feedback circuit) such as a moving mirror driving unit (driving mechanism) of an interferometer in a conventional Fourier transform spectrometer, a reference frequency signal supplied from an oscillator or the like and a reciprocating vibration of the moving mirror are generated. The actually detected detection signal is compared, and an oscillation signal having a frequency based on this comparison is output from the voltage controlled oscillator to the moving mirror driving unit. For this reason, the conventional Fourier transform spectrometer is easily unlocked when noise is applied to any signal (that is, the frequency of the oscillation signal input to the moving mirror drive unit changes), and the reciprocating vibration of the moving mirror Cannot be stabilized. However, the Fourier transform spectrometer having the above-described configuration is driven by self-excited oscillation (that is, the reciprocating vibration of the moving mirror is controlled based on the signal that detects the actual reciprocating vibration of the moving mirror). The reciprocal vibration of the movable mirror can be stabilized against the noise.
 他の一態様では、上述のフーリエ変換型分光計において、前記干渉計の移動鏡を駆動する前記移動鏡駆動部は、対向するように平行配置された一対の板バネ部材から成る平行移動機構と、入力された発振信号に基づいて前記板バネ部材を振動させる板バネ駆動部と、を有し、前記一対の板バネ部材の振動によって前記移動鏡を光軸方向に往復振動させる。 In another aspect, in the above-described Fourier transform spectrometer, the moving mirror driving unit that drives the moving mirror of the interferometer includes a parallel moving mechanism including a pair of leaf spring members arranged in parallel so as to face each other. A leaf spring driving unit that vibrates the leaf spring member based on the input oscillation signal, and the movable mirror is reciprocally vibrated in the optical axis direction by the vibration of the pair of leaf spring members.
 また、前記フーリエ変換型分光計は、好ましくは、前記一対の板バネ部材が共振する共振周波数に基づく発振信号である励振信号を前記移動鏡駆動部に向けて出力する励振信号発生部と、前記移動鏡駆動部に入力される発振信号を、前記自励信号発生部からの自励信号と前記励振信号発生部からの励振信号との間で切り換える信号切換部と、をさらに備えてもよい。 The Fourier transform spectrometer preferably has an excitation signal generator that outputs an excitation signal, which is an oscillation signal based on a resonance frequency at which the pair of leaf spring members resonate, to the movable mirror drive unit; You may further provide the signal switching part which switches the oscillation signal input into a moving mirror drive part between the self-excitation signal from the said self-excitation signal generation part, and the excitation signal from the said excitation signal generation part.
 このようなフーリエ変換型分光計では、干渉計において移動鏡を静止した状態から往復振動できる。すなわち、フーリエ変換型分光計は、移動鏡が静止した状態では移動鏡動作検出部によって移動鏡の往復振動を検出できないために自励発振による駆動を行えない(すなわち、信号発生部から移動鏡駆動部を駆動可能な自励信号が出力されない)が、励振信号発生部からの励振信号が移動鏡駆動部に入力されることで、移動鏡駆動部が移動鏡を駆動して往復振動を始める。そして、移動鏡が往復振動し始めると、移動鏡動作検出部が移動鏡の往復振動を検出して自励信号発生部から移動鏡駆動部を駆動可能な自励信号が出力されるため、信号切換部によって移動鏡駆動部に入力される発振信号を励振信号から自励信号に切り換えることにより、自励発振による駆動が行われ、この結果、移動鏡の往復振動が外部のノイズの影響を受け難くなる。 In such a Fourier transform spectrometer, the movable mirror can reciprocate from a stationary state in the interferometer. That is, the Fourier transform spectrometer cannot be driven by self-excited oscillation because the moving mirror operation detector cannot detect the reciprocal vibration of the moving mirror when the moving mirror is stationary (ie, the moving mirror drive from the signal generator). However, when the excitation signal from the excitation signal generation unit is input to the moving mirror driving unit, the moving mirror driving unit drives the moving mirror and starts reciprocating vibration. When the movable mirror starts to reciprocate, the movable mirror operation detector detects the reciprocal vibration of the movable mirror and outputs a self-excited signal that can drive the movable mirror driver from the self-excited signal generator. By switching the oscillation signal input to the moving mirror driving unit from the excitation signal to the self-excited signal by the switching unit, driving by self-excited oscillation is performed. As a result, the reciprocating vibration of the moving mirror is affected by external noise. It becomes difficult.
 この場合、好ましくは、前記信号切換部は、例えば、前記移動鏡動作検出部が前記移動鏡の往復振動を検出した場合に、前記移動鏡駆動部に出力する発振信号を前記励振信号から前記自励信号に切り換える。これによって、前記フーリエ変換型分光計は、励振信号を用いて移動鏡を停止した状態から往復振動させた後、自励発振による駆動に自動的に切り換え制御できる。 In this case, it is preferable that the signal switching unit generates an oscillation signal to be output to the moving mirror driving unit from the excitation signal when the moving mirror operation detecting unit detects reciprocal vibration of the moving mirror. Switch to excitation signal. As a result, the Fourier transform spectrometer can be automatically switched to drive by self-excited oscillation after reciprocating vibration from the stopped state using the excitation signal.
 また、上述の場合、好ましくは、前記信号切換部は、例えば、前記励振信号を前記移動鏡駆動部に所定時間出力した後、出力する発振信号を前記励振信号から前記自励信号に切り換える。これによって、前記フーリエ変換型分光計は、励振信号を用いて移動鏡を静止した状態から往復振動させた後、自励発振による駆動に自動的に切り換え制御できる。すなわち、上述の構成によれば、移動鏡駆動部に励振信号が所定時間入力されることで移動鏡が停止した状態から往復振動を始め、その後(前記所定時間経過後)、自励発振による駆動に切り換わる制御が行われる。 In the above case, preferably, the signal switching unit switches the oscillation signal to be output from the excitation signal to the self-excitation signal after outputting the excitation signal to the movable mirror driving unit for a predetermined time, for example. As a result, the Fourier transform spectrometer can automatically switch to driving by self-excited oscillation after reciprocatingly vibrating the movable mirror from a stationary state using an excitation signal. That is, according to the above-described configuration, when the excitation signal is input to the movable mirror driving unit for a predetermined time, the movable mirror starts reciprocating vibration from a stopped state, and thereafter (after the predetermined time elapses), driving by self-excited oscillation Control to switch to is performed.
 他の一態様では、これら上述のフーリエ変換型分光計において、前記励振信号発生部は、周波数を変えつつ発振信号を出力したときの前記移動鏡動作検出部による検出結果に基づいて前記励振信号を決定する。これにより、このようなフーリエ変換型分光計は、干渉計において移動鏡を静止状態から確実に往復振動できる。すなわち、例えば、励振信号発生部において励振信号の周波数が設定されていた値からずれた場合や、前記値が予め設定されてない場合であっても、このようなフーリエ変換型分光計は、発振信号の周波数をスイープ(走査)して移動鏡の往復振動が検出されたときの周波数を求め、この求めた周波数の発振信号(励振信号)を移動鏡駆動部に出力することにより、干渉計において移動鏡を静止状態から確実に往復振動できる。 In another aspect, in the above-described Fourier transform spectrometer, the excitation signal generation unit outputs the excitation signal based on a detection result by the moving mirror operation detection unit when an oscillation signal is output while changing the frequency. decide. As a result, such a Fourier transform spectrometer can reliably reciprocate the moving mirror from the stationary state in the interferometer. That is, for example, even when the frequency of the excitation signal deviates from the value set in the excitation signal generator, or when the value is not set in advance, such a Fourier transform spectrometer can oscillate. The frequency of the signal is swept (scanned) to obtain the frequency when the reciprocating vibration of the moving mirror is detected, and the oscillation signal (excitation signal) of the obtained frequency is output to the moving mirror driving unit, so that the interferometer The movable mirror can be reliably reciprocated from a stationary state.
 他の一態様では、これら上述のフーリエ変換型分光計において、好ましくは、前記移動鏡駆動部は、入力される発振信号の振幅に応じた駆動力で前記一対の板バネ部材を振動させ、前記自励信号発生部は、前記移動鏡動作検出部によって検出した前記移動鏡の往復振動に対して位相が90°遅れた発振信号を前記自励信号として出力する。 In another aspect, in the above-described Fourier transform spectrometer, preferably, the moving mirror driving unit vibrates the pair of leaf spring members with a driving force according to an amplitude of an input oscillation signal, The self-excited signal generator outputs an oscillation signal whose phase is delayed by 90 ° with respect to the reciprocating vibration of the movable mirror detected by the movable mirror operation detector.
 このようなフーリエ変換型分光計では、移動鏡の往復振動において移動鏡が振動方向の一端または他端位置(図4BのXmおよび-Xm参照)のときに移動鏡への駆動力が0になり、移動鏡が振動方向の一端(他端)から他端(一端)に向かう中間位置(移動速度が最も大きな位置:図4Bの原点位置X0参照)のときに移動方向に最も大きな駆動力が加わる。このため、このようなフーリエ変換型分光計は、移動鏡の振幅(光軸方向の変位量)を大きく保つことができる。 In such a Fourier transform spectrometer, the driving force to the moving mirror becomes zero when the moving mirror is at one end or the other end position in the vibration direction (see Xm and -Xm in FIG. 4B) in the reciprocating vibration of the moving mirror. The largest driving force is applied in the moving direction when the moving mirror is at an intermediate position (position where the moving speed is the highest: see origin position X0 in FIG. 4B) from one end (the other end) to the other end (the one end) in the vibration direction. . For this reason, such a Fourier transform spectrometer can keep the amplitude (the displacement amount in the optical axis direction) of the movable mirror large.
 他の一態様では、これら上述のフーリエ変換型分光計において、好ましくは、前記移動鏡駆動部は、入力される発振信号の振幅に応じた駆動力で前記一対の板バネ部材を振動させ、前記自励信号発生部は、前記移動鏡動作検出部によって検出され前記移動鏡の往復振動に対して位相が90°遅れた正弦波状の自励信号を出力するローパスフィルタを有してもよい。 In another aspect, in the above-described Fourier transform spectrometer, preferably, the moving mirror driving unit vibrates the pair of leaf spring members with a driving force according to an amplitude of an input oscillation signal, The self-excited signal generation unit may include a low-pass filter that outputs a sinusoidal self-excited signal that is detected by the moving mirror operation detecting unit and whose phase is delayed by 90 ° with respect to the reciprocating vibration of the moving mirror.
 このようなフーリエ変換型分光計は、方形波(矩形波)状の自励信号の場合に生じる移動鏡駆動部の高次共振モードによる発振を防ぐと共に、移動鏡動作検出部からの検出結果(検出信号)にノイズが乗っていてもローパスフィルタによってこのノイズを低減してスペクトルの測定結果への前記ノイズの影響を抑えることができる。 Such a Fourier transform spectrometer prevents oscillation due to the higher-order resonance mode of the moving mirror drive unit that occurs in the case of a square wave (rectangular wave) self-excited signal, and also detects the detection result from the moving mirror operation detection unit ( Even if noise is present on the detection signal), this noise can be reduced by the low-pass filter to suppress the influence of the noise on the spectrum measurement result.
 この場合、前記ローパスフィルタは、好ましくは、デジタルローパスフィルタである。このようなフーリエ変換型分光計は、デジタルローパスフィルタを用いることによって、アナログローパスフィルタのような回路定数のばらつきに起因するフィルタ特性のばらつきの発生を防ぐことができる。 In this case, the low-pass filter is preferably a digital low-pass filter. Such a Fourier transform spectrometer can prevent the occurrence of variations in filter characteristics due to variations in circuit constants, such as an analog low-pass filter, by using a digital low-pass filter.
 他の一態様では、これら上述のフーリエ変換型分光計において、前記移動鏡動作検出部の検出結果に基づいて前記移動鏡の往復振動の振幅を制御する振幅制御部を、さらに備えてもよい。 In another aspect, the above-described Fourier transform spectrometer may further include an amplitude control unit that controls the amplitude of the reciprocating vibration of the movable mirror based on the detection result of the movable mirror operation detection unit.
 このようなフーリエ変換型分光計は、移動鏡の往復振動の振幅(具体的には、光軸方向の移動距離)の大きさを精度よく調整できる。すなわち、このようなフーリエ変換型分光計は、目標とする移動鏡の振幅の大きさ(振幅目標)を変更した場合に、移動鏡の実際の振幅を検出してこの検出結果に基づいて移動鏡の振幅を調整できるため、振幅の大きさを変更した後の移動鏡の振幅を振幅目標に精度よく一致できる。また、上述の構成によれば、前記フーリエ変換型分光計は、移動鏡の実際の振幅を検出してこの検出結果に基づいて移動鏡の振幅を調整しているため、移動鏡の往復振動の振幅を一定にする、すなわち、干渉計において所定光を案内する2個の光路間に生じさせる光路差の最大値および最小値を一定にでき、これにより、所定光のスペクトルをより精度よく測定できる。 Such a Fourier transform spectrometer can accurately adjust the amplitude of the reciprocating vibration of the moving mirror (specifically, the moving distance in the optical axis direction). That is, such a Fourier transform spectrometer detects the actual amplitude of the moving mirror when the amplitude magnitude (amplitude target) of the target moving mirror is changed, and based on the detection result, the moving mirror Therefore, the amplitude of the movable mirror after changing the amplitude can be accurately matched with the amplitude target. In addition, according to the above-described configuration, the Fourier transform spectrometer detects the actual amplitude of the moving mirror and adjusts the amplitude of the moving mirror based on the detection result. The amplitude can be made constant, that is, the maximum value and the minimum value of the optical path difference generated between the two optical paths that guide the predetermined light in the interferometer can be made constant, whereby the spectrum of the predetermined light can be measured more accurately. .
 この出願は、2013年1月18日に出願された日本国特許出願特願2013-7212を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-7212 filed on January 18, 2013, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、フーリエ変換型分光計を提供することができる。 According to the present invention, a Fourier transform spectrometer can be provided.

Claims (10)

  1.  所定光のインターフェログラムをフーリエ変換することによって前記所定光のスペクトルを求めるフーリエ変換型分光計であって、
     前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子、および、入力される発振信号に基づいて前記複数の光学素子に含まれる移動鏡を光軸方向に往復振動させることによって前記2個の光路間に光路差を生じさせる移動鏡駆動部、を有する干渉計と、
     前記移動鏡の往復振動を検出する移動鏡動作検出部と、
     前記移動鏡動作検出部の検出結果に基づく発振信号である自励信号を前記移動鏡駆動部に出力する自励信号発生部と、を備える、
     フーリエ変換型分光計。
    A Fourier transform spectrometer that obtains a spectrum of the predetermined light by Fourier transforming an interferogram of the predetermined light,
    A plurality of optical elements that form two optical paths between the incident position of the predetermined light and the interference position, and a movable mirror included in the plurality of optical elements based on an input oscillation signal in the optical axis direction An interferometer having a moving mirror driving unit that causes a difference in optical path between the two optical paths by reciprocating vibration;
    A movable mirror operation detector for detecting reciprocal vibration of the movable mirror;
    A self-excited signal generating unit that outputs a self-excited signal that is an oscillation signal based on a detection result of the moving mirror operation detecting unit to the moving mirror driving unit,
    Fourier transform spectrometer.
  2.  前記移動鏡駆動部は、
     対向するように平行配置された一対の板バネ部材から成る平行移動機構と、
     入力された発振信号に基づいて前記板バネ部材を振動させる板バネ駆動部と、を有し、
     前記一対の板バネ部材の振動によって前記移動鏡を光軸方向に往復振動させる、
     請求項1に記載のフーリエ変換型分光計。
    The moving mirror driving unit is
    A parallel movement mechanism comprising a pair of leaf spring members arranged in parallel to face each other;
    A leaf spring drive unit that vibrates the leaf spring member based on the input oscillation signal,
    Reciprocally vibrate the movable mirror in the optical axis direction by vibration of the pair of leaf spring members;
    The Fourier transform spectrometer according to claim 1.
  3.  前記一対の板バネ部材が共振する共振周波数に基づく発振信号である励振信号を前記移動鏡駆動部に向けて出力する励振信号発生部と、
     前記移動鏡駆動部に入力される発振信号を、前記自励信号発生部からの自励信号と前記励振信号発生部からの励振信号との間で切り換える信号切換部と、をさらに備える、
     請求項2に記載のフーリエ変換型分光計。
    An excitation signal generating unit that outputs an excitation signal, which is an oscillation signal based on a resonance frequency at which the pair of leaf spring members resonate, to the movable mirror driving unit;
    A signal switching unit that switches an oscillation signal input to the movable mirror driving unit between a self-excitation signal from the self-excitation signal generation unit and an excitation signal from the excitation signal generation unit;
    The Fourier transform spectrometer according to claim 2.
  4.  前記信号切換部は、前記移動鏡動作検出部が前記移動鏡の往復振動を検出した場合に、前記移動鏡駆動部に出力する発振信号を前記励振信号から前記自励信号に切り換える、
     請求項3に記載のフーリエ変換型分光計。
    The signal switching unit switches the oscillation signal output to the moving mirror driving unit from the excitation signal to the self-excited signal when the moving mirror operation detecting unit detects reciprocal vibration of the moving mirror.
    The Fourier transform spectrometer according to claim 3.
  5.  前記信号切換部は、前記励振信号を前記移動鏡駆動部に所定時間出力した後、出力する発振信号を前記励振信号から前記自励信号に切り換える、
     請求項3に記載のフーリエ変換型分光計。
    The signal switching unit switches the oscillation signal to be output from the excitation signal to the self-excitation signal after outputting the excitation signal to the movable mirror driving unit for a predetermined time.
    The Fourier transform spectrometer according to claim 3.
  6.  前記励振信号発生部は、周波数を変えつつ発振信号を出力したときの前記移動鏡動作検出部による検出結果に基づいて前記励振信号を決定する、
     請求項3ないし請求項5のいずれか1項に記載のフーリエ変換型分光計。
    The excitation signal generation unit determines the excitation signal based on a detection result by the moving mirror operation detection unit when an oscillation signal is output while changing a frequency.
    The Fourier transform spectrometer according to any one of claims 3 to 5.
  7.  前記移動鏡駆動部は、入力される発振信号の振幅に応じた駆動力で前記一対の板バネ部材を振動させ、
     前記自励信号発生部は、前記移動鏡動作検出部によって検出した前記移動鏡の往復振動に対して位相が90°遅れた発振信号を前記自励信号として出力する、
     請求項2ないし請求項6のいずれか1項に記載するフーリエ変換型分光計。
    The movable mirror driving unit vibrates the pair of leaf spring members with a driving force according to the amplitude of an input oscillation signal,
    The self-excited signal generator outputs an oscillation signal whose phase is delayed by 90 ° with respect to the reciprocal vibration of the movable mirror detected by the movable mirror operation detector.
    The Fourier transform spectrometer according to any one of claims 2 to 6.
  8.  前記移動鏡駆動部は、入力される発振信号の振幅に応じた駆動力で前記一対の板バネ部材を振動させ、
     前記自励信号発生部は、前記移動鏡動作検出部によって検出され前記移動鏡の往復振動に対して位相が90°遅れた正弦波状の自励信号を出力するローパスフィルタを有する、
     請求項2ないし請求項6のいずれか1項に記載のフーリエ変換型分光計。
    The movable mirror driving unit vibrates the pair of leaf spring members with a driving force according to the amplitude of an input oscillation signal,
    The self-excited signal generator has a low-pass filter that outputs a sinusoidal self-excited signal that is detected by the movable mirror operation detector and is delayed in phase by 90 ° with respect to the reciprocating vibration of the movable mirror.
    The Fourier transform spectrometer according to any one of claims 2 to 6.
  9.  前記ローパスフィルタは、デジタルローパスフィルタである、
     請求項8に記載のフーリエ変換型分光計。
    The low pass filter is a digital low pass filter.
    The Fourier transform spectrometer according to claim 8.
  10.  前記移動鏡動作検出部の検出結果に基づいて前記移動鏡の往復振動の振幅を制御する振幅制御部を、さらに備える、
     請求項1ないし請求項9のいずれか1項に記載のフーリエ変換型分光計。
    An amplitude controller that controls the amplitude of the reciprocating vibration of the movable mirror based on the detection result of the movable mirror operation detector;
    The Fourier transform spectrometer according to any one of claims 1 to 9.
PCT/JP2013/007656 2013-01-18 2013-12-26 Fourier transform spectrometer WO2014112027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557203A JPWO2014112027A1 (en) 2013-01-18 2013-12-26 Fourier transform spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013007212 2013-01-18
JP2013-007212 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014112027A1 true WO2014112027A1 (en) 2014-07-24

Family

ID=51209153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007656 WO2014112027A1 (en) 2013-01-18 2013-12-26 Fourier transform spectrometer

Country Status (2)

Country Link
JP (1) JPWO2014112027A1 (en)
WO (1) WO2014112027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158470A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Optical module, signal processing system, and signal processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209085A (en) * 1994-01-19 1995-08-11 Yokogawa Electric Corp Fourier spectrometer
JP2001194235A (en) * 1999-10-26 2001-07-19 Yokogawa Electric Corp Moving mirror support device for optical interferometer
WO2012140980A1 (en) * 2011-04-12 2012-10-18 コニカミノルタホールディングス株式会社 Translational movement device, michelson interferometer, and fourier transform spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209085A (en) * 1994-01-19 1995-08-11 Yokogawa Electric Corp Fourier spectrometer
JP2001194235A (en) * 1999-10-26 2001-07-19 Yokogawa Electric Corp Moving mirror support device for optical interferometer
WO2012140980A1 (en) * 2011-04-12 2012-10-18 コニカミノルタホールディングス株式会社 Translational movement device, michelson interferometer, and fourier transform spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158470A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Optical module, signal processing system, and signal processing method
CN113424028A (en) * 2019-01-30 2021-09-21 浜松光子学株式会社 Optical module, signal processing system, and signal processing method
US11898841B2 (en) 2019-01-30 2024-02-13 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method

Also Published As

Publication number Publication date
JPWO2014112027A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US9291444B2 (en) Light reflection mechanism, optical interferometer and spectrometric analyzer
JP2007040994A (en) Interference measuring system
US20060098204A1 (en) Arrangement for building a miniaturized fourier transform interferometer for optical radiation according to the michelson principle a principle derived therefrom
JP4545882B2 (en) Laser diode type distance / displacement meter with double external resonator
WO2017135357A1 (en) Optical module
JP6775008B2 (en) Mirror device, mirror drive method, light irradiation device and image acquisition device
JP2011174922A (en) Device for acquiring position with confocal fabry-perot interferometer
CN114111999B (en) laser interferometer
WO2014112027A1 (en) Fourier transform spectrometer
JP5915737B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
JP2011196832A (en) Laser type gas analyzer
JP5522260B2 (en) Translation mechanism, Michelson interferometer, and Fourier transform spectrometer
JP4794677B1 (en) Mirror amplitude control device for optical scanning device
WO2014199888A1 (en) Fourier transform spectrometer and spectroscopy and fourier transform spectrometer timing generation device
CN114964352B (en) laser interferometer
JP5891955B2 (en) Timing generation apparatus for Fourier transform spectrometer and method, Fourier transform spectrometer and method
JP5974929B2 (en) Stray light correction method and Fourier transform type spectroscopic device using the same
JP6172465B2 (en) Stage position control apparatus and method
JP5947184B2 (en) Position detection method and position detection apparatus
Tortschanoff et al. Optical position feedback and phase control of moems scanner mirrors
JP2015036782A (en) Mirror driving device, and mirror driving method
RU2695027C2 (en) Method for detecting near-field optical response for scanning probe microscope
CN117471703A (en) Optical device and spectrum device
Lenzhofer et al. MOEMS translatory actuator characterisation, position encoding and closed-loop control
JP6341325B2 (en) Stage position control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871528

Country of ref document: EP

Kind code of ref document: A1