WO2014104355A1 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
WO2014104355A1
WO2014104355A1 PCT/JP2013/085239 JP2013085239W WO2014104355A1 WO 2014104355 A1 WO2014104355 A1 WO 2014104355A1 JP 2013085239 W JP2013085239 W JP 2013085239W WO 2014104355 A1 WO2014104355 A1 WO 2014104355A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical transmission
optical
transmission device
amplifier
post
Prior art date
Application number
PCT/JP2013/085239
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 幹哉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014554619A priority Critical patent/JPWO2014104355A1/en
Publication of WO2014104355A1 publication Critical patent/WO2014104355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25751Optical arrangements for CATV or video distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to an optical transmission system.
  • an optical amplifier as an optical transmission apparatus has a multi-port output configuration by connecting a plurality of optical distributors to the output side of one high output optical amplifier.
  • the failure may spread to a large number of subscribers connected to all output ports. Therefore, there are cases where a plurality of optical amplifiers are used in order to keep the fault spillover range as narrow as possible. (See Patent Document 1).
  • FIG. 6 is a schematic configuration diagram of an example of an optical transmission system in which a plurality of optical amplifiers are arranged on an optical transmission line branched by an optical distributor.
  • N is an integer equal to or larger than 2
  • a front optical amplifier 1020 and N rear optical amplifiers 1040-1 to 1040 are placed on an optical transmission path branched by a 1 ⁇ N optical distributor 1030.
  • -N is arranged.
  • the pre-amplifier 1020 includes a pre-amplifier 1021 that is an optical amplifier, and a pre-amplifier control circuit 1022 that is a controller that controls the operation of the pre-amplifier 1020.
  • the preamplifier control circuit 1022 stores information data D1001 (indicated by #A) used to control the operation of the preamplifier 1020.
  • the rear optical amplifiers 1040-1 to 1040-N control the operations of the rear amplifying units 1041-1 to 1041-N and the rear optical amplifiers 1040-1 to 1040-N, which are optical amplifying units, respectively.
  • post-amplifier control circuits 1042-1 to 1042-N are information data D1002-1 to D1002-N used for controlling the operations of the post-optical amplifiers 1040-1 to 1040-N, respectively. (Indicated by # 1 to #N) are stored.
  • one port side is connected to the optical output port of the front optical amplifier 1020, and the N port side is connected to each optical input port of the rear optical amplifiers 1040-1 to 1040-N. Connected via -N.
  • the pre-amplifier 1020 When signal light is input from the optical input port 1010 to the optical input port of the pre-amplifier 1020, the pre-amplifier 1020 amplifies the signal light and outputs it to the optical distributor 1030.
  • the optical distributor 1030 divides the inputted signal light into N equal parts and outputs it to each of the rear optical amplifiers 1040-1 to 1040 -N.
  • the rear optical amplifiers 1040-1 to 1040-N amplify the input signal light and output the amplified signal light to the optical output ports 1050-1 to 1050-N, respectively. Each signal light output from the optical output ports 1050-1 to 1050-N is distributed to the subscribers.
  • the failed optical amplifier is replaced with a spare optical amplifier. Since the control circuit of each optical amplifier stores data used to control the optical amplifier, after being replaced, the control circuit operates in an operation state based on the stored data.
  • the required characteristics for example, the optical amplification characteristics are different for each optical amplifier because the distance from the optical output ports 1050-1 to 1050-N to the subscriber may be different for each port. Therefore, when replacement is performed due to a failure, it is necessary to prepare a spare optical amplifier for each optical amplifier having different characteristics, so that the types of optical amplifiers to be prepared increase and management becomes complicated.
  • a general-purpose optical amplifier is used in combination with a device for adjusting amplification characteristics such as an optical attenuator.
  • a device for adjusting amplification characteristics such as an optical attenuator.
  • the present invention has been made in view of the above, and provides an optical transmission system suitable for exchanging an optical amplifier in an optical transmission system in which a plurality of optical amplifiers are arranged on a branched optical transmission line. For the purpose.
  • an optical transmission system includes a plurality of optical transmission devices configured to be replaceable on a branched optical transmission path, and the plurality of optical transmissions.
  • the apparatus includes a first optical transmission apparatus and a second optical transmission apparatus, and the first optical transmission apparatus includes a first control unit that controls an operation of the first optical transmission apparatus, and the second optical transmission apparatus
  • the apparatus includes a second control unit that controls the operation of the second optical transmission device, and the second control unit includes a reference used by the first control unit to control the first optical transmission device. Is stored, and is configured to communicate with the first control unit and transmit the data to the first control unit.
  • the second control unit transmits the data in accordance with a request from the first control unit.
  • the plurality of optical transmission devices include a rear optical transmission device and a front light positioned above the rear optical transmission device on the optical transmission path.
  • the first optical transmission device is the rear optical transmission device
  • the second optical transmission device is the front optical transmission device.
  • the plurality of optical transmission devices include a rear optical transmission device and a front light positioned above the rear optical transmission device on the optical transmission path.
  • the first optical transmission device is the front optical transmission device
  • the second optical transmission device is the rear optical transmission device.
  • the plurality of optical transmission devices are positioned higher than the plurality of rear optical transmission devices on the optical transmission path.
  • the first optical transmission device and the second optical transmission device are included in the plurality of rear optical transmission devices.
  • the plurality of optical transmission devices are positioned higher than the plurality of rear optical transmission devices on the optical transmission path.
  • a first optical transmission device the first optical transmission device being the higher optical transmission device, and the second optical transmission.
  • the apparatus is the front optical transmission apparatus or the rear optical transmission apparatus.
  • the reference information is associated with the static characteristic, dynamic characteristic, alarm condition, or specific information information of the first optical transmission apparatus. And positional information for specifying the first optical transmission device.
  • the optical transmission system according to the present invention is characterized in that, in the above invention, the plurality of optical transmission devices include optical amplifiers.
  • FIG. 1 is a schematic configuration diagram of an optical transmission system according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of the front optical amplifier.
  • FIG. 3 is a schematic configuration diagram of the optical transmission system according to the second embodiment.
  • FIG. 4 is a schematic configuration diagram of the optical transmission system according to the third embodiment.
  • FIG. 5 is a schematic configuration diagram of an optical transmission system according to the fourth embodiment.
  • FIG. 6 is a schematic configuration diagram of an example of an optical transmission system in which a plurality of optical amplifiers are arranged on an optical transmission line branched using an optical distributor.
  • FIG. 1 is a schematic configuration diagram of an optical transmission system according to Embodiment 1 of the present invention.
  • a pre-optical amplifier 20 as an optical transmission device
  • N post-optical amplifiers 40-1 as optical transmission devices on an optical transmission path branched by a 1 ⁇ N optical distributor 30.
  • ⁇ 40-N are arranged.
  • the pre-amplifier 20 includes a pre-amplifier 21 that is an optical amplifier and a pre-amplifier control circuit 22 that is a controller that controls the operation of the pre-amplifier 20.
  • the post-optical amplifiers 40-1 to 40-N control the operations of the post-amplifiers 41-1 to 41-N, which are optical amplifiers, and the post-optical amplifiers 40-1 to 40-N, respectively. And post-amplifier control circuits 42-1 to 42-N.
  • the optical distributor 30 has one port connected to the optical output port of the front optical amplifier 20, and the N port side connected to each optical input port of the rear optical amplifiers 40-1 to 40-N. Connected via -N.
  • the optical input port of the front optical amplifier 20 is connected to the optical input port 10, and the optical output ports of the rear optical amplifiers 40-1 to 40-N are connected to the optical output ports 50-1 to 50-N, respectively. ing.
  • the preamplifier control circuit 22 of the pre-amplifier 20 is connected to the post-amplifiers 40-1 to 40-N via the electrical signal transmission line EL1 and the electrical connectors 70-1 to 70-N. Each of the preamplifier control circuits 42-1 to 42-N is connected.
  • FIG. 2 is a schematic configuration diagram of the front optical amplifier.
  • Each of the rear optical amplifiers 40-1 to 40-N can have the same configuration as that shown in FIG. Further, the front optical amplifier 20 and the rear optical amplifiers 40-1 to 40-N are configured to be replaceable with spare optical amplifiers when a failure occurs.
  • the preamplifier 21 is connected to an optical coupler 21a, a photodetector 21b connected to the optical coupler 21a, a wavelength poly-multiplexing demultiplexing coupler 21c connected to the optical coupler 21a, and a wavelength poly-multiplexing demultiplexing coupler 21c.
  • a pumping laser element 21d, an amplifying optical fiber 21e connected to the wavelength multiple polymerization demultiplexing coupler 21c, an optical coupler 21f connected to the amplifying optical fiber 21e, and a photodetector 21g connected to the optical coupler 21f are provided. Yes.
  • the optical couplers 21a and 21f branch a part of the input light (for example, 1% to 10%), and are, for example, fused or filter type optical couplers.
  • the photodetectors 21b and 21g receive light and output a current having a value corresponding to the received light intensity, and are, for example, photodiodes.
  • the pump laser element 21d outputs pump laser light for pumping the amplification optical fiber 21e, and is, for example, a semiconductor laser element.
  • the wavelength multi-polymerization demultiplexing coupler 21c combines the light input from the optical coupler 21a and the pumping laser light output from the pumping laser element 21d and outputs them to the amplification optical fiber 21e. This is a filter type optical coupler.
  • the amplification optical fiber 21e is an optical fiber in which a rare earth element such as erbium or ytterbium, which is an optical amplification medium, is added to the core, and has an optical amplification function.
  • a rare earth element such as erbium or ytterbium
  • a double clad optical fiber may be used.
  • the preamplifier control circuit 22 includes a digital / analog converter 22a, an analog / digital converter 22b, an arithmetic processor 22c, a storage unit 22d, and an input / output unit 22e.
  • the digital / analog converter 22a converts a digital electric signal into an analog electric signal.
  • the analog / digital converter 22b converts an analog electric signal into a digital electric signal.
  • the arithmetic processing unit 22c performs various arithmetic processes for controlling the pre-amplifier 20, and is composed of, for example, a CPU (Central Processing Unit).
  • the storage unit 22d is used as a part for storing various programs and data (firmware and the like) used by the arithmetic processing unit 22c to perform arithmetic processing, and as a work space when the arithmetic processing unit 22c performs arithmetic processing.
  • it is composed of a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the input / output unit 22e inputs / outputs electric signals to / from other control circuits via the electric signal transmission line EL1 (see FIG. 1), and inputs / outputs electric signals to / from an external personal computer PC. is there.
  • the input / output unit 22e is, for example, an RS232C port or an Ethernet (registered trademark) port.
  • the optical coupler 21a allows the signal light to pass and branches a part thereof to the photodetector 21b side.
  • the pump laser element 21d is supplied with a drive current controlled by the preamplifier control circuit 22 and outputs pump laser light.
  • the wavelength multi-polymerization demultiplexing coupler 21c combines the signal light input from the optical coupler 21a and the pump laser light output from the pump laser element 21d, and outputs the combined light to the amplification optical fiber 21e.
  • the rare earth element is optically excited by the excitation laser light and has an optical amplification function, whereby the signal light is laser amplified and output.
  • the optical coupler 21f passes and outputs the amplified signal light and branches a part thereof to the photodetector 21g side.
  • the photodetector 21b receives the signal light branched from the optical coupler 21a to the photodetector 21b, and outputs a current having a value corresponding to the received light intensity to the analog / digital conversion unit 22b as an analog electric signal.
  • the electrical signal input from the photodetector 21b to the analog / digital converter 22b is used for an optical input monitor.
  • the light detector 21g receives the amplified signal light branched from the optical coupler 21f to the light detector 21g side, and outputs a current having a value corresponding to the received light intensity to the analog / digital conversion unit 22b as an analog electric signal. Output.
  • the electrical signal input from the photodetector 21g to the analog / digital converter 22b is used for an optical output monitor.
  • the analog / digital converter 22b also has an electrical signal indicating the temperature of the pump laser element 21d to the pump laser element 21d, the intensity of the pump laser beam being output, or the drive current of the pump laser element being driven. Is entered. These electric signals are used for controlling the excitation laser element 21d.
  • the arithmetic processing unit 22c performs predetermined arithmetic processing based on each electric signal input to the analog / digital conversion unit 22b, and drives the pump laser element 21d so that the preamplifier 21 is in a predetermined control state. Control the flow of current.
  • ALC Automatic Level Control
  • AGC Automatic Gain Control
  • ACC Automatic Current Control
  • APC Automatic Pump Power Control
  • the arithmetic processing unit 22c monitors the state of the preamplifier 21, and for example, the light input or light output becomes a predetermined value or less, or the temperature of the pump laser element 21d becomes a predetermined value or more.
  • control is performed such that the drive current to the excitation laser element 21d is cut off or an alarm is issued.
  • the value of the drive current supplied to the pump laser element 21d becomes a predetermined value or more, it is detected as an abnormal operation of the preamplifier 21, and the above control is performed.
  • the alarm is issued by voice or image display on the personal computer PC, for example.
  • the post-amplifier control circuits 42-1 to 42-N are disposed in the respective storage units in the same manner as in FIG.
  • information data D2-1 to D2-N (indicated by # 1 to #N) used for controlling the operations of the rear optical amplifiers 40-1 to 40-N are stored.
  • the preamplifier control circuit 22 of the preamplifier 20 uses information data D2 used for controlling the operations of the postamplifiers 41-1 to 41-N in the storage unit 22d.
  • Data D1 including all of -1 to D2-N is stored.
  • the preamplifier control circuit 22 stores data of information used for controlling the operation of the preamplifier 21 in the storage unit 22d.
  • the storage section 22d has a storage area A for controlling the operation of the optical amplification section to which it corresponds, and a storage area B for controlling the operation of other optical amplification to which the other control circuit corresponds. is doing.
  • the storage unit 22d includes one or a plurality of storage elements, and an independent storage element or storage element group may be allocated to each of the storage areas A and B, or the storage area A , B may correspond to a divided area of the data space formed by one or a plurality of storage elements.
  • the post optical amplifier 40-1 fails, the post optical amplifier 40-1 is replaced with a spare post optical amplifier.
  • the preamplifier control circuit 22 of the preamplifier 20 performs bidirectional communication with the postamplifier control circuit of the exchanged post optical amplifier via the electric signal transmission line EL1.
  • the data D2-1 of information used for controlling the operation of the post-amplifier unit 41-1 before the exchange is transmitted to the control circuit for the post-amplifier unit after the exchange.
  • the post-switching post-amplifier can operate under the same operating conditions as those of the post-switching post-amplifying unit 41-1 based on the transmitted data information.
  • Data communication can be performed using various protocols such as Telnet and TCP / IP.
  • the control circuit of each optical amplifier stores only data of information used for controlling the operation of the amplification unit. Various problems have occurred with the replacement.
  • the preamplifier control circuit 22 as the second control unit of the pre-amplifier 20 as the second optical transmission device includes the post-amplifier 41- Data D1 including all of data D2-1 to D2-N of information used for controlling the respective operations of 1 to 41-N is stored. Then, when a certain rear optical amplifier is replaced, information used for controlling the rear optical amplifier (first optical transmission device) after the replacement is used as a rear end of the rear optical amplifier after the replacement. The data is transmitted to the amplifier control circuit (first control unit).
  • the arithmetic processing unit 22c of the preamplifier control circuit 22 monitors the state of the rear optical amplifiers 40-1 to 40-N, and when a certain rear optical amplifier is replaced, This may be done by sending data to the post-amp after replacement.
  • the post-replacement post-amplifier may autonomously request the pre-amplifier control circuit 22 to transmit data and transmit the data according to the request.
  • the information included in these data D2-1 to D2-N is reference information for the post-replacement optical amplifier to operate in the same manner as the post-replacement post-optical amplifier.
  • the optical transmission system 100 is an optical transmission system suitable for exchanging a post-optical amplifier.
  • the information used for controlling the post-amplifier is, for example, static characteristics, dynamic characteristics, alarm conditions, or unique information of the post-amplifier. These pieces of information are then stored in association with position information for specifying the post-amplifier.
  • Information on the static characteristics of the post-amplifier includes, for example, driving conditions of the pump laser element for ACC control, output signal light power for ALC control, gain for AGC control, and optical input / output monitor information Etc. are included.
  • the information on the dynamic characteristics of the post-optical amplifier includes, for example, the timing of starting the post-optical amplifier after the post-optical amplifier is replaced, the timing of shutting down the post-optical amplifier, and the subsequent restart. .
  • the activation or restarting of the post-optical amplifier means that the pump laser element 21d of the post-optical amplifier to be activated is changed from the OFF state to the ON state, and the post-optical amplifier is shut down.
  • the pump laser element 21d of the optical amplifier is changed from the ON state to the OFF state, and the optical transmission system 100 is always in the ON state during these operations.
  • the information on the timing of shutdown and restart is necessary for matching the operation timing with the optical amplifiers connected before and after the replaced post-amplifier.
  • the matching of the operation timing is performed, for example, when the front optical amplifier 20 transmits an operation state signal (flag) indicating an ON state, and the rear optical amplifier receives this, the rear optical amplifier receives a predetermined signal. This is performed by starting or restarting according to the timing information of starting or restarting.
  • this operation timing matching is performed when, for example, the front optical amplifier 20 transmits a flag indicating an OFF state and the rear optical amplifier receives this (or the rear optical amplifier is in the ON state).
  • the post-optical amplifier is shut down in accordance with predetermined shutdown timing information. As described above, the operation timing matching is realized by the front optical amplifier 20 transmitting the flag and the rear optical amplifier receiving the flag.
  • this timing information includes information on the fall time at the time of shutdown of the pump laser light from the pump laser element 21d or the rise time at the time of restart. This is because an unexpected malfunction may occur due to mismatch of the fall time or the rise time.
  • the information related to the alarm condition of the post-amplifier includes the alarm issue / release threshold, the alarm issue / release timing, hold / non-hold condition, mask, and the like.
  • the holding / non-holding condition is, for example, a condition for holding or not holding an alarm issue. For example, if a condition is set so that an alarm is issued until a place or cause where an abnormal operation has occurred is specified, it becomes easy to identify the fault location.
  • the mask is a setting of the determination period and the number of determinations for issuing an alarm. For example, the mask is set so that an alarm is issued for the first time when an alarm generation condition occurs a predetermined number of times.
  • the specific information of the post-optical amplifier is, for example, conditions for setting operations such as static characteristics and dynamic characteristics, and firmware and hardware version information.
  • Each of the data D2-1 to D2-N may include all the information described above, or may include information appropriately selected from the information.
  • the difference between the information about the post-replacement optical amplifier before the exchange and the information about the post-replacement optical amplifier after the exchange can be obtained by the control circuit 22 for the pre-amplifier of the pre-amplifier 20 or It may be determined that only the difference is received by the post-amplifier after the replacement from the pre-amplifier control circuit 22.
  • FIG. 3 is a schematic configuration diagram of an optical transmission system according to Embodiment 2 of the present invention.
  • This optical transmission system 200 is different from the optical transmission system 100 in that an upper network element 80 is connected to the upper side of the pre-amplifier 20 via the optical input port 10, and in other points. Are identical.
  • the upper network element 80 includes, for example, an optical transmission device that is an optical transmission device that outputs signal light, and an optical transmission device such as an optical amplifier that is higher than the pre-amplifier 20.
  • the upper network element 80 is also referred to as a monitoring control device, and may include a device having a function for managing and monitoring system failure management, configuration management, and performance and security as necessary. .
  • a control circuit (first control circuit) of any one of the optical transmission devices (first optical transmission devices) constituting the upper network element 80 is connected to the rear optical amplifiers 40-1 to 40-N.
  • Data D1 including all of the information data D2-1 to D2-N used for controlling each operation and information data used for controlling the operation of the pre-amplifier 20 are stored. is doing. Then, if any of the front optical amplifier 20 and the rear optical amplifiers 40-1 to 40-N fails and is replaced, the replaced front or rear optical amplifier (second optical transmission device)
  • the control circuit (second control circuit) communicates with the control circuit of the optical transmission device of the higher-level network element 80, and data of information used to control the operation of the pre-amplifier or post-amplifier before replacement To get.
  • the post-amplifier after replacement is acquired via the pre-amplifier 20.
  • the replaced pre- or post-optical amplifier is configured to acquire data of information used from an optical transmission device higher than the pre-optical amplifier 20.
  • FIG. 4 is a schematic configuration diagram of an optical transmission system according to Embodiment 3 of the present invention. This optical transmission system 300 is different from the optical transmission system 100 in the following two points.
  • the electric signal transmission line EL2 for connecting the post-amplifier control circuits 42-1 to 42-N to each other through the pre-amplifier control circuit 22 of the pre-amplifier 20 is provided. It is configured.
  • FIG. 4 shows, as an example, an electric signal path EL3 that connects the post-amplifier control circuit 42-1 and the post-amplifier control circuit 42-N.
  • each of the post-amplifier control circuits 42-1 to 42-N stores data D1 including all of the data D2-1 to D2-N.
  • the post-amplifier control circuit for the rear optical amplifier after replacement is replaced with another rear amplifier. It communicates with the control circuit for the post-amplifier of the post-amplifier, and acquires information data used for controlling the operation of the post-amplifier before replacement.
  • a communication mode direct communication between the control circuits for the post-amplifier of the post-optical amplifier using the path EL3 and the pre-amplifier of the pre-optical amplifier 20 using the electric signal transmission line EL2 are used.
  • the communication between the post-amplifier control circuits for the post-optical amplifier via the control circuit 22 is illustrated.
  • the rear optical amplifiers 40-1 to 40-N communicate with each other to transmit and receive data, so that the optical transmission system has higher redundancy and reliability.
  • FIG. 5 is a schematic configuration diagram of an optical transmission system according to Embodiment 4 of the present invention.
  • the optical transmission system 400 is different from the optical transmission system 100 in the following points.
  • each of the post-amplifier control circuits 42-1 to 42-N is used for controlling the operation of each of the post-optical amplifiers 40-1 to 40-N.
  • Data D3 including all the data D2-1 to D2-N and information data (indicated by #PA) used for controlling the operation of the pre-amplifier 20 are stored.
  • the preamplifier control circuit 22 is connected to each of the postamplifier control circuits 42-1 to 42-N via an electrical signal transmission line and an electrical connector, but in FIG. Only the electric signal transmission line EL4 for connecting the preamplifier control circuit 22 and the postamplifier control circuits 42-2 and 42-N is shown.
  • the rear optical amplifier after the replacement is post-amplified.
  • the part control circuit communicates with the other post-amplifier control circuit of the rear optical amplifier via the front amplifier control circuit 22 of the front optical amplifier 20, and the rear optical amplifier before replacement Get the data of information that was used to control the operation of the.
  • the pre-amplifier control circuit of the pre-optical amplifier after replacement is replaced with the post-optical amplifiers 40-1 to 40-.
  • N is communicated with the control circuit for the post-amplifier unit of N (the post-optical amplifier 40-2 in FIG. 5), and the data of the information used for controlling the operation of the post-optical amplifier after the exchange get.
  • the rear optical amplifiers 40-1 to 40-N communicate with each other to transmit and receive data, and information related to the control of the upper optical amplifier 20 is transmitted to the lower optical amplifiers. Redundancy and reliability are improved by employing the configuration of 40-1 to 40-N.
  • the information used for controlling the operation of the front optical amplifier 20 for example, the static characteristics, the dynamic characteristics, the alarm conditions, or the specific information of the front optical amplifier 20, as in the first embodiment. It is.
  • the static characteristics, alarm conditions, and unique information of the front optical amplifier 20 may be the same information as the static characteristics, alarm conditions, and unique information of the rear optical amplifier described in the first embodiment.
  • the information on the dynamic characteristics of the pre-amplifier 20 includes, for example, the start timing of the pre-amplifier 20 after the replacement of the pre-amplifier 20, the shutdown timing of the pre-amplifier 20 and the subsequent restart timing. Etc. are included. Information on the timing of shutdown and restart is necessary for matching the operation timing with the optical amplifiers connected before and after the replaced pre-amplifier 20. This operation timing matching is performed, for example, when the rear optical amplifier transmits a flag indicating the OFF state as a flag and receives the OFF state flag from all the rear optical amplifiers to which the front optical amplifier 20 is connected. This is done by starting, restarting or shutting down the pre-amplifier 20 according to information of a predetermined timing.
  • this operation timing matching is performed when, for example, the pre-optical amplifier 20 is set to a predetermined state when it is recognized from the reception state of the flag of the pre-optical amplifier 20 that all the post-optical amplifiers are OFF or not connected. It may be performed by starting, restarting or shutting down according to the timing information.
  • the operation timing matching is realized by the post-optical amplifier transmitting the flag and the pre-optical amplifier 20 receiving the flag.
  • the start or restart timing can be matched so that the rear optical amplifier is not turned ON before the front optical amplifier 20.
  • the configuration of the optical amplifier according to the above embodiment is an example.
  • the optical amplifier may have, for example, a configuration including a plurality of pump laser elements or a multistage configuration.
  • the optical amplifier is composed of a front optical amplifier and a rear optical amplifier, but an optical distributor and a plurality of rear optical amplifiers may be further connected to the output side of the rear optical amplifier. .
  • data communication is performed via an electric signal transmission path, but communication may be performed by radio or optical signal.
  • the optical transmission device arranged on the branched optical transmission line is mainly an optical amplifier, but may be appropriately replaced with another optical transmission device. Further, different types of optical transmission devices may be mixed and arranged.
  • the optical transmission system according to the present invention is suitable for use in the field of optical communications.
  • Optical input port 20 Pre-amplifier 21 Pre-amplifier 21a, 21f Optical coupler 21b, 21g Photo detector 21c Wavelength multiple polymerization demultiplexer coupler 21d Excitation laser element 21e Amplifying optical fiber 22 Pre-amplifier control circuit 22a Digital / analog conversion unit 22b Analog / digital conversion unit 22c Arithmetic processing unit 22d Storage unit 22e Input / output unit 30 Optical distributors 40-1 to 40-N Post-optical amplifiers 41-1 to 41-N Post-amplifiers 42- 1 to 42-N Post-amplifier control circuit 50-1 to 50-N Optical output port 60-1 to 60-N Optical connector 70-1 to 70-N Electrical connector 80 Host network element 100, 200, 300, 400 Optical transmission system D1 data D2-1 to D2-N data D3 data EL1, EL2, EL4 Electric signal transmission Road EL3 route PC personal computer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

A plurality of optical transmission devices each configured to be replaceable are disposed on a branched optical transmission line, the plurality of optical transmission devices include a first optical transmission device and a second optical transmission device, the first optical transmission device has a first control unit for controlling the operation of the first optical transmission device, the second optical transmission device has a second control unit for controlling the operation of the second optical transmission device, the second control unit stores data relating to information serving as a reference and used for the first control unit to control the first optical transmission device and is configured to mutually communicate with the first control unit and transmit the data to the first control unit. Consequently, it is possible to provide an optical transmission system (100) in which a plurality of optical amplifiers are disposed in a branched optical transmission line, the optical transmission system being suitable for use when the optical amplifiers are replaced.

Description

光伝送システムOptical transmission system
 本発明は、光伝送システムに関するものである。 The present invention relates to an optical transmission system.
 FTTx用映像分配システムにおいて、従来、光伝送装置としての光増幅器は、1つの高出力の光増幅器の出力側に複数の光分配器を接続して、マルチポートの出力構成としている。しかしながら、光増幅器に障害が発生した場合には、すべての出力ポートに接続された多数の加入者へ障害が波及するおそれがある。そこで、障害波及範囲を極力狭い領域に収めるために複数の光増幅器を用いる場合がある。(特許文献1参照)。 In the video distribution system for FTTx, conventionally, an optical amplifier as an optical transmission apparatus has a multi-port output configuration by connecting a plurality of optical distributors to the output side of one high output optical amplifier. However, when a failure occurs in the optical amplifier, the failure may spread to a large number of subscribers connected to all output ports. Therefore, there are cases where a plurality of optical amplifiers are used in order to keep the fault spillover range as narrow as possible. (See Patent Document 1).
 図6は、光分配器によって分岐した光伝送路上に複数の光増幅器を配置した光伝送システムの一例の模式的な構成図である。この光伝送システム1000では、Nを2以上の整数として、1×Nの光分配器1030によって分岐した光伝送路上に、前置光増幅器1020と、N個の後置光増幅器1040-1~1040-Nが配置されている。 FIG. 6 is a schematic configuration diagram of an example of an optical transmission system in which a plurality of optical amplifiers are arranged on an optical transmission line branched by an optical distributor. In this optical transmission system 1000, N is an integer equal to or larger than 2, and a front optical amplifier 1020 and N rear optical amplifiers 1040-1 to 1040 are placed on an optical transmission path branched by a 1 × N optical distributor 1030. -N is arranged.
 前置光増幅器1020は、光増幅部である前置増幅部1021と、前置光増幅器1020の動作を制御する制御部である前置増幅部用制御回路1022とを備えている。前置増幅部用制御回路1022は前置光増幅器1020の動作を制御するために使用される情報のデータD1001(♯Aで示す)を記憶している。 The pre-amplifier 1020 includes a pre-amplifier 1021 that is an optical amplifier, and a pre-amplifier control circuit 1022 that is a controller that controls the operation of the pre-amplifier 1020. The preamplifier control circuit 1022 stores information data D1001 (indicated by #A) used to control the operation of the preamplifier 1020.
 後置光増幅器1040-1~1040-Nは、それぞれ、光増幅部である後置増幅部1041-1~1041-Nと、後置光増幅器1040-1~1040-Nの動作を制御する制御部である後置増幅部用制御回路1042-1~1042-Nとを備えている。後置増幅部用制御回路1042-1~1042-Nはそれぞれ、後置光増幅器1040-1~1040-Nのそれぞれの動作を制御するために使用される情報のデータD1002-1~D1002-N(♯1~♯Nで示す)をそれぞれ記憶している。 The rear optical amplifiers 1040-1 to 1040-N control the operations of the rear amplifying units 1041-1 to 1041-N and the rear optical amplifiers 1040-1 to 1040-N, which are optical amplifying units, respectively. And post-amplifier control circuits 1042-1 to 1042-N. The post-amplifier control circuits 1042-1 to 1042-N are information data D1002-1 to D1002-N used for controlling the operations of the post-optical amplifiers 1040-1 to 1040-N, respectively. (Indicated by # 1 to #N) are stored.
 光分配器1030は、1ポート側が前置光増幅器1020の光出力ポートに接続し、Nポート側が後置光増幅器1040-1~1040-Nのそれぞれの光入力ポートに光コネクタ1060-1~1060-Nを介して接続している。 In the optical distributor 1030, one port side is connected to the optical output port of the front optical amplifier 1020, and the N port side is connected to each optical input port of the rear optical amplifiers 1040-1 to 1040-N. Connected via -N.
 光入力ポート1010から前置光増幅器1020の光入力ポートに信号光が入力されると、前置光増幅器1020は信号光を増幅し、光分配器1030に出力する。光分配器1030は入力された信号光を略等分にN分岐し、後置光増幅器1040-1~1040-Nのそれぞれに出力する。後置光増幅器1040-1~1040-Nはそれぞれ入力された信号光を増幅して光出力ポート1050-1~1050-Nのそれぞれに出力する。光出力ポート1050-1~1050-Nから出力された各信号光は加入者に分配される。 When signal light is input from the optical input port 1010 to the optical input port of the pre-amplifier 1020, the pre-amplifier 1020 amplifies the signal light and outputs it to the optical distributor 1030. The optical distributor 1030 divides the inputted signal light into N equal parts and outputs it to each of the rear optical amplifiers 1040-1 to 1040 -N. The rear optical amplifiers 1040-1 to 1040-N amplify the input signal light and output the amplified signal light to the optical output ports 1050-1 to 1050-N, respectively. Each signal light output from the optical output ports 1050-1 to 1050-N is distributed to the subscribers.
特許第4948085号公報Japanese Patent No. 4948085
 図6に示した光伝送システムでは、或る光増幅器が故障した場合には、故障した光増幅器は予備の光増幅器に交換される。各光増幅器の制御回路は、その光増幅器を制御するために使用されるデータを記憶しているので、置き換えられた後、記憶されたデータに基づく動作状態で動作する。 In the optical transmission system shown in FIG. 6, when a certain optical amplifier fails, the failed optical amplifier is replaced with a spare optical amplifier. Since the control circuit of each optical amplifier stores data used to control the optical amplifier, after being replaced, the control circuit operates in an operation state based on the stored data.
 ここで、光出力ポート1050-1~1050-Nから加入者までの距離が、ポートごとで異なる場合がある等の理由によって、光増幅器ごとに必要な特性、たとえば光増幅特性が異なる。したがって、故障による交換を行う場合には、特性が異なる光増幅器ごとに予備の光増幅器を用意する必要があるので、用意すべき光増幅器の品種が多くなり、管理が煩雑になる。 Here, the required characteristics, for example, the optical amplification characteristics are different for each optical amplifier because the distance from the optical output ports 1050-1 to 1050-N to the subscriber may be different for each port. Therefore, when replacement is performed due to a failure, it is necessary to prepare a spare optical amplifier for each optical amplifier having different characteristics, so that the types of optical amplifiers to be prepared increase and management becomes complicated.
 また、この煩雑さを解消するために、各光増幅器として使用できる汎用の光増幅器を用意する場合、汎用の光増幅器とたとえば光減衰器などの増幅特性を調整するための装置とを組み合わせて使用する必要がある。たとえば、加入者までの伝送路の距離が、汎用の光増幅器の光出力に比して短い場合は、光減衰器で汎用の光増幅器の光出力を減衰させた上で、使用する必要がある。この場合、使用する装置点数の増加や電力の無駄な消費などの問題が生じる。 In addition, in order to eliminate this complexity, when preparing a general-purpose optical amplifier that can be used as each optical amplifier, a general-purpose optical amplifier is used in combination with a device for adjusting amplification characteristics such as an optical attenuator. There is a need to. For example, when the distance of the transmission line to the subscriber is shorter than the optical output of the general-purpose optical amplifier, it is necessary to use the optical output after attenuating the optical output of the general-purpose optical amplifier with an optical attenuator. . In this case, problems such as an increase in the number of devices to be used and unnecessary power consumption occur.
 また、交換前後で光増幅器の動特性が異なる場合などには、交換後の光増幅器と、その前後に接続された光増幅器との動作タイミングの不整合が生じ、意図せず問題動作を誘発させる場合がある。たとえば、後置光増幅器に前置光増幅器からの信号光の入力がない状態で後置光増幅器が立ち上がり、その後に前置光増幅器から信号光が入力された場合に、光サージが発生する等の問題が生じる。 In addition, when the dynamic characteristics of the optical amplifier are different before and after replacement, there is a mismatch in operation timing between the replaced optical amplifier and the optical amplifier connected before and after the replacement, and unintentionally induces problem operation. There is a case. For example, an optical surge occurs when the rear optical amplifier starts up without signal light input from the front optical amplifier and then signal light is input from the front optical amplifier. Problem arises.
 本発明は、上記に鑑みてなされたものであって、分岐した光伝送路上に複数の光増幅器を配置した光伝送システムにおいて、光増幅器を交換して使用するのに適する光伝送システムを提供することを目的とする。 The present invention has been made in view of the above, and provides an optical transmission system suitable for exchanging an optical amplifier in an optical transmission system in which a plurality of optical amplifiers are arranged on a branched optical transmission line. For the purpose.
 上述した課題を解決し、目的を達成するために、本発明に係る光伝送システムは、分岐した光伝送路上に、交換可能に構成された複数の光伝送装置が配置され、前記複数の光伝送装置は、第1光伝送装置と第2光伝送装置とを含み、前記第1光伝送装置は、前記第1光伝送装置の動作を制御する第1制御部を有し、前記第2光伝送装置は、前記第2光伝送装置の動作を制御する第2制御部を有し、前記第2制御部は、前記第1制御部が前記第1光伝送装置を制御するために使用する基準となる情報のデータを記憶しており、前記第1制御部と相互に通信を行って前記データを前記第1制御部に送信するように構成されていることを特徴とする。 In order to solve the above-described problems and achieve the object, an optical transmission system according to the present invention includes a plurality of optical transmission devices configured to be replaceable on a branched optical transmission path, and the plurality of optical transmissions. The apparatus includes a first optical transmission apparatus and a second optical transmission apparatus, and the first optical transmission apparatus includes a first control unit that controls an operation of the first optical transmission apparatus, and the second optical transmission apparatus The apparatus includes a second control unit that controls the operation of the second optical transmission device, and the second control unit includes a reference used by the first control unit to control the first optical transmission device. Is stored, and is configured to communicate with the first control unit and transmit the data to the first control unit.
 また、本発明に係る光伝送システムは、上記発明において、前記第2制御部は、前記第1制御部からの要求に従って前記データを送信することを特徴とする。 In the optical transmission system according to the present invention as set forth in the invention described above, the second control unit transmits the data in accordance with a request from the first control unit.
 また、本発明に係る光伝送システムは、上記発明において、前記複数の光伝送装置は、後置光伝送装置と、前記光伝送路上において前記後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、前記第1光伝送装置は、前記後置光伝送装置であり、前記第2光伝送装置は、前記前置光伝送装置であることを特徴とする。 In the optical transmission system according to the present invention as set forth in the invention described above, the plurality of optical transmission devices include a rear optical transmission device and a front light positioned above the rear optical transmission device on the optical transmission path. The first optical transmission device is the rear optical transmission device, and the second optical transmission device is the front optical transmission device.
 また、本発明に係る光伝送システムは、上記発明において、前記複数の光伝送装置は、後置光伝送装置と、前記光伝送路上において前記後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、前記第1光伝送装置は、前記前置光伝送装置であり、前記第2光伝送装置は、前記後置光伝送装置であることを特徴とする。 In the optical transmission system according to the present invention as set forth in the invention described above, the plurality of optical transmission devices include a rear optical transmission device and a front light positioned above the rear optical transmission device on the optical transmission path. The first optical transmission device is the front optical transmission device, and the second optical transmission device is the rear optical transmission device.
 また、本発明に係る光伝送システムは、上記発明において、前記複数の光伝送装置は、複数の後置光伝送装置と、前記光伝送路上において前記複数の後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、前記第1光伝送装置および前記第2光伝送装置は、前記複数の後置光伝送装置に含まれることを特徴とする。 In the optical transmission system according to the present invention, in the above invention, the plurality of optical transmission devices are positioned higher than the plurality of rear optical transmission devices on the optical transmission path. The first optical transmission device and the second optical transmission device are included in the plurality of rear optical transmission devices.
 また、本発明に係る光伝送システムは、上記発明において、前記複数の光伝送装置は、複数の後置光伝送装置と、前記光伝送路上において前記複数の後置光伝送装置よりも上位に位置する前置光伝送装置と、前記前置光伝送装置よりもさらに上位に位置する上位光伝送装置とを含み、前記第1光伝送装置は、前記上位光伝送装置であり、前記第2光伝送装置は、前記前置光伝送装置または前記後置光伝送装置であることを特徴とする。 In the optical transmission system according to the present invention, in the above invention, the plurality of optical transmission devices are positioned higher than the plurality of rear optical transmission devices on the optical transmission path. A first optical transmission device, the first optical transmission device being the higher optical transmission device, and the second optical transmission. The apparatus is the front optical transmission apparatus or the rear optical transmission apparatus.
 また、本発明に係る光伝送システムは、上記発明において、前記基準となる情報は、前記第1光伝送装置の静特性、動特性、アラーム条件、または固有情報の情報と、該情報と関連付けられた、前記第1光伝送装置を特定するための位置情報とを含むことを特徴とする。 In the optical transmission system according to the present invention as set forth in the invention described above, the reference information is associated with the static characteristic, dynamic characteristic, alarm condition, or specific information information of the first optical transmission apparatus. And positional information for specifying the first optical transmission device.
 また、本発明に係る光伝送システムは、上記発明において、前記複数の光伝送装置は光増幅器を含むことを特徴とする。 The optical transmission system according to the present invention is characterized in that, in the above invention, the plurality of optical transmission devices include optical amplifiers.
 本発明によれば、光増幅器を交換して使用するのに適する光伝送システムを実現できるという効果を奏する。 According to the present invention, it is possible to realize an optical transmission system suitable for exchanging and using an optical amplifier.
図1は、実施の形態1に係る光伝送システムの模式的な構成図である。FIG. 1 is a schematic configuration diagram of an optical transmission system according to the first embodiment. 図2は、前置光増幅器の模式的な構成図である。FIG. 2 is a schematic configuration diagram of the front optical amplifier. 図3は、実施の形態2に係る光伝送システムの模式的な構成図である。FIG. 3 is a schematic configuration diagram of the optical transmission system according to the second embodiment. 図4は、実施の形態3に係る光伝送システムの模式的な構成図である。FIG. 4 is a schematic configuration diagram of the optical transmission system according to the third embodiment. 図5は、実施の形態4に係る光伝送システムの模式的な構成図である。FIG. 5 is a schematic configuration diagram of an optical transmission system according to the fourth embodiment. 図6は、光分配器を用いて分岐した光伝送路上に複数の光増幅器を配置した光伝送システムの一例の模式的な構成図である。FIG. 6 is a schematic configuration diagram of an example of an optical transmission system in which a plurality of optical amplifiers are arranged on an optical transmission line branched using an optical distributor.
 以下に、図面を参照して本発明に係る光伝送システムの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments of an optical transmission system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in each drawing, the same code | symbol is attached | subjected suitably to the same or corresponding element. In addition, it should be noted that the drawings are schematic, and the ratio of the dimensions of each element is different from the actual one. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.
 図1は、本発明の実施の形態1に係る光伝送システムの模式的な構成図である。この光伝送システム100では、1×Nの光分配器30によって分岐した光伝送路上に、光伝送装置としての前置光増幅器20と、光伝送装置としてのN個の後置光増幅器40-1~40-Nが配置されている。 FIG. 1 is a schematic configuration diagram of an optical transmission system according to Embodiment 1 of the present invention. In this optical transmission system 100, a pre-optical amplifier 20 as an optical transmission device and N post-optical amplifiers 40-1 as optical transmission devices on an optical transmission path branched by a 1 × N optical distributor 30. ˜40-N are arranged.
 前置光増幅器20は、光増幅部である前置増幅部21と、前置光増幅器20の動作を制御する制御部である前置増幅部用制御回路22とを備えている。 The pre-amplifier 20 includes a pre-amplifier 21 that is an optical amplifier and a pre-amplifier control circuit 22 that is a controller that controls the operation of the pre-amplifier 20.
 後置光増幅器40-1~40-Nは、それぞれ、光増幅部である後置増幅部41-1~41-Nと、後置光増幅器40-1~40-Nの動作を制御する制御部である後置増幅部用制御回路42-1~42-Nとを備えている。 The post-optical amplifiers 40-1 to 40-N control the operations of the post-amplifiers 41-1 to 41-N, which are optical amplifiers, and the post-optical amplifiers 40-1 to 40-N, respectively. And post-amplifier control circuits 42-1 to 42-N.
 光分配器30は、1ポート側が前置光増幅器20の光出力ポートに接続し、Nポート側が後置光増幅器40-1~40-Nのそれぞれの光入力ポートに光コネクタ60-1~60-Nを介して接続している。 The optical distributor 30 has one port connected to the optical output port of the front optical amplifier 20, and the N port side connected to each optical input port of the rear optical amplifiers 40-1 to 40-N. Connected via -N.
 前置光増幅器20の光入力ポートは光入力ポート10に接続しており、後置光増幅器40-1~40-Nの光出力ポートはそれぞれ光出力ポート50-1~50-Nに接続している。 The optical input port of the front optical amplifier 20 is connected to the optical input port 10, and the optical output ports of the rear optical amplifiers 40-1 to 40-N are connected to the optical output ports 50-1 to 50-N, respectively. ing.
 また、前置光増幅器20の前置増幅部用制御回路22は、電気信号伝送路EL1と電気コネクタ70-1~70-Nとを介して後置光増幅器40-1~40-Nの後置増幅部用制御回路42-1~42-Nのそれぞれに接続している。 The preamplifier control circuit 22 of the pre-amplifier 20 is connected to the post-amplifiers 40-1 to 40-N via the electrical signal transmission line EL1 and the electrical connectors 70-1 to 70-N. Each of the preamplifier control circuits 42-1 to 42-N is connected.
 つぎに、光増幅器の構成の一例について説明する。図2は、前置光増幅器の模式的な構成図である。なお、後置光増幅器40-1~40-Nのそれぞれも、図2に示す構成と同様の構成を有することができる。また、前置光増幅器20および後置光増幅器40-1~40-Nは、故障した場合に予備の光増幅器に交換可能に構成されている。 Next, an example of the configuration of the optical amplifier will be described. FIG. 2 is a schematic configuration diagram of the front optical amplifier. Each of the rear optical amplifiers 40-1 to 40-N can have the same configuration as that shown in FIG. Further, the front optical amplifier 20 and the rear optical amplifiers 40-1 to 40-N are configured to be replaceable with spare optical amplifiers when a failure occurs.
 前置増幅部21は、光カプラ21aと、光カプラ21aに接続した光検出器21bと、前記光カプラ21aに接続した波長多重合分波カプラ21cと、波長多重合分波カプラ21cに接続した励起レーザ素子21dと、波長多重合分波カプラ21cに接続した増幅用光ファイバ21eと、増幅用光ファイバ21eに接続した光カプラ21fと、光カプラ21fに接続した光検出器21gとを備えている。 The preamplifier 21 is connected to an optical coupler 21a, a photodetector 21b connected to the optical coupler 21a, a wavelength poly-multiplexing demultiplexing coupler 21c connected to the optical coupler 21a, and a wavelength poly-multiplexing demultiplexing coupler 21c. A pumping laser element 21d, an amplifying optical fiber 21e connected to the wavelength multiple polymerization demultiplexing coupler 21c, an optical coupler 21f connected to the amplifying optical fiber 21e, and a photodetector 21g connected to the optical coupler 21f are provided. Yes.
 光カプラ21a、21fは、入力された光の一部(たとえば1%~10%)を分岐するものであり、たとえば溶融型やフィルタ型の光カプラである。光検出器21b、21gは、光を受光してその受光強度に応じた値の電流を出力するものであり、たとえばフォトダイオードである。励起レーザ素子21dは、増幅用光ファイバ21eを励起するための励起レーザ光を出力するものであり、たとえば半導体レーザ素子である。波長多重合分波カプラ21cは、光カプラ21aから入力された光と励起レーザ素子21dから出力された励起レーザ光を合波して増幅用光ファイバ21eに出力するものであり、たとえば溶融型やフィルタ型の光カプラである。 The optical couplers 21a and 21f branch a part of the input light (for example, 1% to 10%), and are, for example, fused or filter type optical couplers. The photodetectors 21b and 21g receive light and output a current having a value corresponding to the received light intensity, and are, for example, photodiodes. The pump laser element 21d outputs pump laser light for pumping the amplification optical fiber 21e, and is, for example, a semiconductor laser element. The wavelength multi-polymerization demultiplexing coupler 21c combines the light input from the optical coupler 21a and the pumping laser light output from the pumping laser element 21d and outputs them to the amplification optical fiber 21e. This is a filter type optical coupler.
 増幅用光ファイバ21eは、光増幅媒体であるエルビウムやイッテルビウムなどの希土類元素がコアに添加された光ファイバであり、光増幅作用を有するものである。増幅用光ファイバ21eとしてはたとえばダブルクラッド型の光ファイバを用いても良い。 The amplification optical fiber 21e is an optical fiber in which a rare earth element such as erbium or ytterbium, which is an optical amplification medium, is added to the core, and has an optical amplification function. As the amplification optical fiber 21e, for example, a double clad optical fiber may be used.
 つぎに、前置増幅部用制御回路22は、デジタル/アナログ変換部22aと、アナログ/デジタル変換部22bと、演算処理部22cと、記憶部22dと、入出力部22eとを備えている。 Next, the preamplifier control circuit 22 includes a digital / analog converter 22a, an analog / digital converter 22b, an arithmetic processor 22c, a storage unit 22d, and an input / output unit 22e.
 デジタル/アナログ変換部22aは、デジタル電気信号をアナログ電気信号に変換するものである。アナログ/デジタル変換部22bは、アナログ電気信号をデジタル電気信号に変換するものである。演算処理部22cは、前置光増幅器20の制御のための各種演算処理を行うものであり、たとえばCPU(Central Processing Unit)で構成される。記憶部22dは、演算処理部22cが演算処理を行うために使用する各種プログラムやデータ(ファームウェアなど)等が格納される部分と、演算処理部22cが演算処理を行う際の作業スペース等として使用される部分を含み、たとえばROM(Read Only Memory)とRAM(Random Access Memory)とで構成される。入出力部22eは、電気信号伝送路EL1(図1参照)を介して他の制御回路と電気信号の入出力を行ったり、外部のパーソナルコンピュータPCと電気信号の入出力を行ったりするものである。入出力部22eはたとえばRS232Cポートやイーサネット(登録商標)ポートである。 The digital / analog converter 22a converts a digital electric signal into an analog electric signal. The analog / digital converter 22b converts an analog electric signal into a digital electric signal. The arithmetic processing unit 22c performs various arithmetic processes for controlling the pre-amplifier 20, and is composed of, for example, a CPU (Central Processing Unit). The storage unit 22d is used as a part for storing various programs and data (firmware and the like) used by the arithmetic processing unit 22c to perform arithmetic processing, and as a work space when the arithmetic processing unit 22c performs arithmetic processing. For example, it is composed of a ROM (Read Only Memory) and a RAM (Random Access Memory). The input / output unit 22e inputs / outputs electric signals to / from other control circuits via the electric signal transmission line EL1 (see FIG. 1), and inputs / outputs electric signals to / from an external personal computer PC. is there. The input / output unit 22e is, for example, an RS232C port or an Ethernet (registered trademark) port.
 前置光増幅器20の基本的な動作について説明する。紙面左側の光入力ポートから信号光が入力されると、光カプラ21aは信号光を通過させるとともにその一部を光検出器21b側に分岐する。一方、励起レーザ素子21dは前置増幅部用制御回路22により制御された駆動電流を供給されて励起レーザ光を出力する。波長多重合分波カプラ21cは、光カプラ21aから入力された信号光と励起レーザ素子21dから出力された励起レーザ光を合波して増幅用光ファイバ21eに出力する。増幅用光ファイバ21eでは、希土類元素が励起レーザ光によって光励起されて光増幅作用を有しており、これによって信号光はレーザ増幅されて出力される。光カプラ21fは増幅された信号光を通過させて出力するとともにその一部を光検出器21g側に分岐する。 The basic operation of the pre-amplifier 20 will be described. When signal light is input from the optical input port on the left side of the paper, the optical coupler 21a allows the signal light to pass and branches a part thereof to the photodetector 21b side. On the other hand, the pump laser element 21d is supplied with a drive current controlled by the preamplifier control circuit 22 and outputs pump laser light. The wavelength multi-polymerization demultiplexing coupler 21c combines the signal light input from the optical coupler 21a and the pump laser light output from the pump laser element 21d, and outputs the combined light to the amplification optical fiber 21e. In the amplification optical fiber 21e, the rare earth element is optically excited by the excitation laser light and has an optical amplification function, whereby the signal light is laser amplified and output. The optical coupler 21f passes and outputs the amplified signal light and branches a part thereof to the photodetector 21g side.
 光検出器21bは、光カプラ21aから光検出器21b側に分岐された信号光を受光し、その受光強度に応じた値の電流をアナログ電気信号としてアナログ/デジタル変換部22bに出力する。光検出器21bからアナログ/デジタル変換部22bに入力された電気信号は光入力モニタに使用される。光検出器21gは、光カプラ21fから光検出器21g側に分岐された、増幅された信号光を受光し、その受光強度に応じた値の電流をアナログ電気信号としてアナログ/デジタル変換部22bに出力する。光検出器21gからアナログ/デジタル変換部22bに入力された電気信号は光出力モニタに使用される。また、アナログ/デジタル変換部22bには、励起レーザ素子21dから励起レーザ素子21dの温度、および出力している励起レーザ光の強度、若しくは、駆動している励起レーザ素子の駆動電流を示す電気信号が入力される。これらの電気信号は励起レーザ素子21dの制御に用いられる。 The photodetector 21b receives the signal light branched from the optical coupler 21a to the photodetector 21b, and outputs a current having a value corresponding to the received light intensity to the analog / digital conversion unit 22b as an analog electric signal. The electrical signal input from the photodetector 21b to the analog / digital converter 22b is used for an optical input monitor. The light detector 21g receives the amplified signal light branched from the optical coupler 21f to the light detector 21g side, and outputs a current having a value corresponding to the received light intensity to the analog / digital conversion unit 22b as an analog electric signal. Output. The electrical signal input from the photodetector 21g to the analog / digital converter 22b is used for an optical output monitor. The analog / digital converter 22b also has an electrical signal indicating the temperature of the pump laser element 21d to the pump laser element 21d, the intensity of the pump laser beam being output, or the drive current of the pump laser element being driven. Is entered. These electric signals are used for controlling the excitation laser element 21d.
 演算処理部22cは、アナログ/デジタル変換部22bに入力された各電気信号をもとに所定の演算処理を行い、前置増幅部21が所定の制御状態となるように励起レーザ素子21dに駆動電流を流す制御を行う。たとえば、前置増幅部21を光出力が一定となるように制御するALC(Automatic Level Control)制御や、前置増幅部21を利得が一定となるように制御するAGC(Automatic Gain Control)制御や、励起レーザ素子21dに流れる駆動電流が一定となるように制御するACC(Automatic Current Control)制御、或いは、励起レーザ素子21dが出力する励起レーザ光のパワーを一定制御するAPC(Automatic Pump Power Control)を行う。なお、前置光増幅器においては、ACCまたはALC制御が使用されることが多く、後置光増幅器においては、ALC制御が使用されることが多い。 The arithmetic processing unit 22c performs predetermined arithmetic processing based on each electric signal input to the analog / digital conversion unit 22b, and drives the pump laser element 21d so that the preamplifier 21 is in a predetermined control state. Control the flow of current. For example, ALC (Automatic Level Control) control for controlling the preamplifier 21 so that the optical output is constant, AGC (Automatic Gain Control) control for controlling the preamplifier 21 so that the gain is constant, ACC (Automatic Current Control) control for controlling the drive current flowing through the pump laser element 21d to be constant, or APC (Automatic Pump Power Control) for constant control of the power of the pump laser light output from the pump laser element 21d. I do. In the front optical amplifier, ACC or ALC control is often used, and in the rear optical amplifier, ALC control is often used.
 また、演算処理部22cは、前置増幅部21の状態をモニタしており、たとえば光入力や光出力が所定の値以下になったり、励起レーザ素子21dの温度が所定値以上になったり等の異常動作を検知した場合に、励起レーザ素子21dへの駆動電流を遮断したり、アラームを発出したりする制御を行なう。また、励起レーザ素子21dに供給する駆動電流の値が所定値以上になった場合にも、前置増幅部21の異常動作として検知し、上記制御を行う。アラームの発出はたとえばパーソナルコンピュータPCにて音声や画像表示によって行われる。 In addition, the arithmetic processing unit 22c monitors the state of the preamplifier 21, and for example, the light input or light output becomes a predetermined value or less, or the temperature of the pump laser element 21d becomes a predetermined value or more. When an abnormal operation is detected, control is performed such that the drive current to the excitation laser element 21d is cut off or an alarm is issued. Further, when the value of the drive current supplied to the pump laser element 21d becomes a predetermined value or more, it is detected as an abnormal operation of the preamplifier 21, and the above control is performed. The alarm is issued by voice or image display on the personal computer PC, for example.
 ここで、図1に示すように、後置光増幅器40-1~40-Nの後置増幅部用制御回路42-1~42-Nはそれぞれの記憶部において、図6の場合と同様に、後置光増幅器40-1~40-Nのそれぞれの動作を制御するために使用される情報のデータD2-1~D2-N(♯1~♯Nで示す)をそれぞれ記憶している。 Here, as shown in FIG. 1, the post-amplifier control circuits 42-1 to 42-N are disposed in the respective storage units in the same manner as in FIG. In addition, information data D2-1 to D2-N (indicated by # 1 to #N) used for controlling the operations of the rear optical amplifiers 40-1 to 40-N are stored.
 一方、前置光増幅器20の前置増幅部用制御回路22は、記憶部22dにおいて、後置増幅部41-1~41-Nのそれぞれの動作を制御するために使用される情報のデータD2-1~D2-Nのすべてを含むデータD1を記憶している。また、前置増幅部用制御回路22は、上述したように、記憶部22dにおいて前置増幅部21の動作を制御するために使用される情報のデータを記憶している。したがって、記憶部22dは、自身が対応する光増幅部の動作を制御するための記憶領域Aと、他の制御回路が対応する他の光増幅の動作の制御のための記憶領域Bとを有している。これを実現するために、記憶部22dは、1または複数の記憶素子からなり、記憶領域A、Bにはそれぞれ、独立した記憶素子または記憶素子群が割り当てられていてもよいし、記憶領域A、Bが、1または複数の記憶素子がなすデータ空間の分割された領域に対応するように構成してもよい。 On the other hand, the preamplifier control circuit 22 of the preamplifier 20 uses information data D2 used for controlling the operations of the postamplifiers 41-1 to 41-N in the storage unit 22d. Data D1 including all of -1 to D2-N is stored. Further, as described above, the preamplifier control circuit 22 stores data of information used for controlling the operation of the preamplifier 21 in the storage unit 22d. Accordingly, the storage section 22d has a storage area A for controlling the operation of the optical amplification section to which it corresponds, and a storage area B for controlling the operation of other optical amplification to which the other control circuit corresponds. is doing. In order to realize this, the storage unit 22d includes one or a plurality of storage elements, and an independent storage element or storage element group may be allocated to each of the storage areas A and B, or the storage area A , B may correspond to a divided area of the data space formed by one or a plurality of storage elements.
 この光伝送システム100において、仮に後置光増幅器40-1が故障した場合、後置光増幅器40-1は、予備の後置光増幅器に交換される。交換後、前置光増幅器20の前置増幅部用制御回路22は、電気信号伝送路EL1を介して、交換された後置光増幅器の後置増幅部用制御回路と双方向の通信を行い、交換前の後置増幅部41-1の動作を制御するために使用されていた情報のデータD2-1を、交換後の後置増幅部用制御回路に送信する。これによって、交換後の後置光増幅器は、送信されたデータの情報に基づいて、交換前の後置増幅部41-1と同様の動作条件で動作することができる。なお、データ通信は、たとえばTelnetやTCP/IP等の各種プロトコルを用いて行なうことができる。 In this optical transmission system 100, if the post optical amplifier 40-1 fails, the post optical amplifier 40-1 is replaced with a spare post optical amplifier. After the exchange, the preamplifier control circuit 22 of the preamplifier 20 performs bidirectional communication with the postamplifier control circuit of the exchanged post optical amplifier via the electric signal transmission line EL1. Then, the data D2-1 of information used for controlling the operation of the post-amplifier unit 41-1 before the exchange is transmitted to the control circuit for the post-amplifier unit after the exchange. As a result, the post-switching post-amplifier can operate under the same operating conditions as those of the post-switching post-amplifying unit 41-1 based on the transmitted data information. Data communication can be performed using various protocols such as Telnet and TCP / IP.
 上述したように、図6に示すような従来の光伝送システムでは、各光増幅器の制御回路は、当該増幅部の動作を制御するために使用される情報のデータのみを記憶していたので、交換に伴い種々の問題を生じていた。 As described above, in the conventional optical transmission system as shown in FIG. 6, the control circuit of each optical amplifier stores only data of information used for controlling the operation of the amplification unit. Various problems have occurred with the replacement.
 しかしながら、本実施の形態1に係る光伝送システム100では、第2光伝送装置としての前置光増幅器20の第2制御部としての前置増幅部用制御回路22が、後置増幅部41-1~41-Nのそれぞれの動作を制御するために使用される情報のデータD2-1~D2-Nのすべてを含むデータD1を記憶している。そして、或る後置光増幅器が交換された場合に、交換後の後置光増幅器(第1光伝送装置)を制御するために使用される情報を、交換後の後置光増幅器の後置増幅部用制御回路(第1制御部)に送信する。この送信は、たとえば前置増幅部用制御回路22の演算処理部22cが、後置光増幅器40-1~40-Nの状態を監視しており、或る後置光増幅器が交換されたら、交換後の後置光増幅器にデータを送信することによって行われてもよい。あるいは、交換後の後置光増幅器が自律的に前置増幅部用制御回路22にデータの送信を要求し、その要求に従ってデータを送信するようにしてもよい。 However, in the optical transmission system 100 according to the first embodiment, the preamplifier control circuit 22 as the second control unit of the pre-amplifier 20 as the second optical transmission device includes the post-amplifier 41- Data D1 including all of data D2-1 to D2-N of information used for controlling the respective operations of 1 to 41-N is stored. Then, when a certain rear optical amplifier is replaced, information used for controlling the rear optical amplifier (first optical transmission device) after the replacement is used as a rear end of the rear optical amplifier after the replacement. The data is transmitted to the amplifier control circuit (first control unit). In this transmission, for example, the arithmetic processing unit 22c of the preamplifier control circuit 22 monitors the state of the rear optical amplifiers 40-1 to 40-N, and when a certain rear optical amplifier is replaced, This may be done by sending data to the post-amp after replacement. Alternatively, the post-replacement post-amplifier may autonomously request the pre-amplifier control circuit 22 to transmit data and transmit the data according to the request.
 これらのデータD2-1~D2-Nに含まれる情報は、交換後の後置光増幅器が、交換前の後置光増幅器と同様に動作するための基準の情報となるものである。これによって、特性が異なる光増幅器ごとに予備の光増幅器を用意する必要がなく、使用する装置点数の増加や電力の無駄な消費などの問題が生じず、かつ交換後の光増幅器と、その前後に接続された光増幅器との動作タイミングの不整合が生じず、予期せぬ問題動作を誘発させることも防止される。その結果、この光伝送システム100は、後置光増幅器を交換して使用するのに適する光伝送システムである。 The information included in these data D2-1 to D2-N is reference information for the post-replacement optical amplifier to operate in the same manner as the post-replacement post-optical amplifier. As a result, there is no need to prepare a spare optical amplifier for each optical amplifier having different characteristics, and there are no problems such as an increase in the number of devices used and wasteful consumption of power. Inconsistency in operation timing with the optical amplifier connected to the optical amplifier does not occur, and unexpected problem operation is prevented. As a result, the optical transmission system 100 is an optical transmission system suitable for exchanging a post-optical amplifier.
 後置増幅部を制御するために使用される情報としては、たとえば、後置光増幅器の静特性、動特性、アラーム条件、または固有情報である。これらの情報は、その後置光増幅器を特定するための位置情報と関連して記憶される。 The information used for controlling the post-amplifier is, for example, static characteristics, dynamic characteristics, alarm conditions, or unique information of the post-amplifier. These pieces of information are then stored in association with position information for specifying the post-amplifier.
 後置光増幅器の静特性に関する情報には、たとえば、ACC制御のための励起レーザ素子の駆動条件、ALC制御のための出力信号光のパワー、AGC制御のための利得、光入出力のモニタ情報などが含まれる。 Information on the static characteristics of the post-amplifier includes, for example, driving conditions of the pump laser element for ACC control, output signal light power for ALC control, gain for AGC control, and optical input / output monitor information Etc. are included.
 後置光増幅器の動特性に関する情報には、たとえば、後置光増幅器が交換された後の後置光増幅器の起動のタイミング、後置光増幅器のシャットダウンおよびその後の再起動のタイミングなどが含まれる。なお、後置光増幅器の起動または再起動とは、起動させる後置光増幅器の励起レーザ素子21dをOFF状態からON状態にすることであり、後置光増幅器のシャットダウンとは、シャットダウンさせる後置光増幅器の励起レーザ素子21dをON状態からOFF状態にすることであり、これらの動作時において、光伝送システム100は常にON状態である。 The information on the dynamic characteristics of the post-optical amplifier includes, for example, the timing of starting the post-optical amplifier after the post-optical amplifier is replaced, the timing of shutting down the post-optical amplifier, and the subsequent restart. . The activation or restarting of the post-optical amplifier means that the pump laser element 21d of the post-optical amplifier to be activated is changed from the OFF state to the ON state, and the post-optical amplifier is shut down. The pump laser element 21d of the optical amplifier is changed from the ON state to the OFF state, and the optical transmission system 100 is always in the ON state during these operations.
 シャットダウンおよび再起動のタイミングの情報は、交換された後置光増幅器の前後に接続された光増幅器との動作タイミングの整合のために必要となる。この動作タイミングの整合は、たとえば、前置光増幅器20が動作状態信号(フラグ)としてON状態を示すものを送信し、後置光増幅器がこれを受信した場合に、後置光増幅器が所定の起動または再起動のタイミングの情報に従って起動または再起動することにより行われる。同様に、この動作タイミングの整合は、たとえば、前置光増幅器20がフラグとしてOFF状態を示すものを送信し、後置光増幅器がこれを受信した場合(または、後置光増幅器がON状態のフラグを受信しない場合、後置光増幅器が接続されていないと認められる場合など)に、後置光増幅器が所定のシャットダウンのタイミングの情報に従ってシャットダウンすることにより行われる。このように、動作タイミングの整合は、前置光増幅器20がフラグを送信し、後置光増幅器がフラグを受信することにより実現される。 The information on the timing of shutdown and restart is necessary for matching the operation timing with the optical amplifiers connected before and after the replaced post-amplifier. The matching of the operation timing is performed, for example, when the front optical amplifier 20 transmits an operation state signal (flag) indicating an ON state, and the rear optical amplifier receives this, the rear optical amplifier receives a predetermined signal. This is performed by starting or restarting according to the timing information of starting or restarting. Similarly, this operation timing matching is performed when, for example, the front optical amplifier 20 transmits a flag indicating an OFF state and the rear optical amplifier receives this (or the rear optical amplifier is in the ON state). When the flag is not received, or when it is recognized that the post-optical amplifier is not connected or the like), the post-optical amplifier is shut down in accordance with predetermined shutdown timing information. As described above, the operation timing matching is realized by the front optical amplifier 20 transmitting the flag and the rear optical amplifier receiving the flag.
 動作タイミングを整合させることによって、光サージの発生等の問題動作の発生を回避することができる。なお、このタイミングの情報は、励起レーザ素子21dからの励起レーザ光のシャットダウン時の立下り時間または再起動時の立上がり時間の情報も含まれている。立下り時間または立上がり時間の不整合によっても、予期せぬ誤動作が生じる可能性があるからである。 ∙ By matching the operation timing, it is possible to avoid the occurrence of problematic operations such as the occurrence of optical surges. Note that this timing information includes information on the fall time at the time of shutdown of the pump laser light from the pump laser element 21d or the rise time at the time of restart. This is because an unexpected malfunction may occur due to mismatch of the fall time or the rise time.
 後置光増幅器のアラーム条件に関する情報には、アラームの発出、解除の閾値や、アラームの発出、解除のタイミング、保持・非保持条件、マスクなどが含まれる。保持・非保持条件とは、たとえばアラームの発出を保持または非保持とする条件である。たとえば、アラームの発出を、異常動作が起こった場所や原因が特定されるまで保持するように条件を設定しておけば、故障箇所の特定が容易となる。また、マスクとは、アラームを発出するための判定期間や判定回数の設定であり、たとえばアラームの発出条件が所定の回数だけ発生したときに、初めてアラームを発出するようにマスクを設定する。 The information related to the alarm condition of the post-amplifier includes the alarm issue / release threshold, the alarm issue / release timing, hold / non-hold condition, mask, and the like. The holding / non-holding condition is, for example, a condition for holding or not holding an alarm issue. For example, if a condition is set so that an alarm is issued until a place or cause where an abnormal operation has occurred is specified, it becomes easy to identify the fault location. The mask is a setting of the determination period and the number of determinations for issuing an alarm. For example, the mask is set so that an alarm is issued for the first time when an alarm generation condition occurs a predetermined number of times.
 後置光増幅器の固有情報とは、たとえば静特性、動特性等の動作を設定するための条件や、ファームウェアやハードウェアのバージョン情報である。 The specific information of the post-optical amplifier is, for example, conditions for setting operations such as static characteristics and dynamic characteristics, and firmware and hardware version information.
 データD2-1~D2-Nのそれぞれは、上述したすべての情報を含んでいても良いし、その中から適宜選択された情報を含んでいてもよい。あるいは、交換前の後置光増幅器に関する情報と、交換後の後置光増幅器に関する情報との差分を、前置光増幅器20の前置増幅部用制御回路22または交換後の後置光増幅器が判定して、その差分だけを、交換後の後置光増幅器が前置増幅部用制御回路22から受信するようにしてもよい。 Each of the data D2-1 to D2-N may include all the information described above, or may include information appropriately selected from the information. Alternatively, the difference between the information about the post-replacement optical amplifier before the exchange and the information about the post-replacement optical amplifier after the exchange can be obtained by the control circuit 22 for the pre-amplifier of the pre-amplifier 20 or It may be determined that only the difference is received by the post-amplifier after the replacement from the pre-amplifier control circuit 22.
(実施の形態2)
 図3は、本発明の実施の形態2に係る光伝送システムの模式的な構成図である。この光伝送システム200は、前置光増幅器20の上位側に、光入力ポート10を介して上位ネットワークエレメント80が接続されている点で、光伝送システム100とは異なっており、その他の点では同一である。
(Embodiment 2)
FIG. 3 is a schematic configuration diagram of an optical transmission system according to Embodiment 2 of the present invention. This optical transmission system 200 is different from the optical transmission system 100 in that an upper network element 80 is connected to the upper side of the pre-amplifier 20 via the optical input port 10, and in other points. Are identical.
 上位ネットワークエレメント80は、たとえば、信号光を出力する光伝送装置である光送信装置や、前置光増幅器20よりもさらに上位の光増幅器等の光伝送装置で構成されている。上位ネットワークエレメント80は、監視制御装置とも呼ばれるものであり、システムの故障管理、構成の管理、また、必要に応じてパフォーマンスやセキュリティを管理・監視する機能を有する装置を含むものであってもよい。 The upper network element 80 includes, for example, an optical transmission device that is an optical transmission device that outputs signal light, and an optical transmission device such as an optical amplifier that is higher than the pre-amplifier 20. The upper network element 80 is also referred to as a monitoring control device, and may include a device having a function for managing and monitoring system failure management, configuration management, and performance and security as necessary. .
 この光伝送システム200では、上位ネットワークエレメント80を構成するいずれかの光伝送装置(第1光伝送装置)の制御回路(第1制御回路)が、後置光増幅器40-1~40-Nのそれぞれの動作を制御するために使用される情報のデータD2-1~D2-Nのすべてを含むデータD1、および、前置光増幅器20の動作を制御するために使用される情報のデータを記憶している。そして、前置光増幅器20および後置光増幅器40-1~40-Nのいずれかが故障し、交換された場合に、交換後の前置または後置光増幅器(第2光伝送装置)の制御回路(第2制御回路)は、上位ネットワークエレメント80の光伝送装置の制御回路と通信を行い、交換前の前置または後置増幅部の動作を制御するために使用されていた情報のデータを取得する。なお、交換後の後置光増幅器については、前置光増幅器20を経由してデータの取得を行う。この光伝送システム200では、交換後の前置または後置光増幅器は、前置光増幅器20よりも上位の光伝送装置から使用される情報のデータを取得する構成となっている。これによって、前置および後置光増幅器のいずれが交換されても、動作タイミングの連動性等が保たれるので、さらにインテリジェントな動作制御を設定することが可能となる。 In this optical transmission system 200, a control circuit (first control circuit) of any one of the optical transmission devices (first optical transmission devices) constituting the upper network element 80 is connected to the rear optical amplifiers 40-1 to 40-N. Data D1 including all of the information data D2-1 to D2-N used for controlling each operation and information data used for controlling the operation of the pre-amplifier 20 are stored. is doing. Then, if any of the front optical amplifier 20 and the rear optical amplifiers 40-1 to 40-N fails and is replaced, the replaced front or rear optical amplifier (second optical transmission device) The control circuit (second control circuit) communicates with the control circuit of the optical transmission device of the higher-level network element 80, and data of information used to control the operation of the pre-amplifier or post-amplifier before replacement To get. Note that the post-amplifier after replacement is acquired via the pre-amplifier 20. In this optical transmission system 200, the replaced pre- or post-optical amplifier is configured to acquire data of information used from an optical transmission device higher than the pre-optical amplifier 20. As a result, even if either the front optical amplifier or the rear optical amplifier is replaced, the interlocking of the operation timing and the like are maintained, so that more intelligent operation control can be set.
(実施の形態3)
 図4は、本発明の実施の形態3に係る光伝送システムの模式的な構成図である。この光伝送システム300は、以下の2点において、光伝送システム100とは異なっている。
(Embodiment 3)
FIG. 4 is a schematic configuration diagram of an optical transmission system according to Embodiment 3 of the present invention. This optical transmission system 300 is different from the optical transmission system 100 in the following two points.
 まず、光伝送システム300では、前置光増幅器20の前置増幅部用制御回路22を介して後置増幅部用制御回路42-1~42-Nの相互を接続する電気信号伝送路EL2が構成されている。なお、図4では、例として、後置増幅部用制御回路42-1と後置増幅部用制御回路42-Nとを接続する電気信号の経路EL3を示している。 First, in the optical transmission system 300, the electric signal transmission line EL2 for connecting the post-amplifier control circuits 42-1 to 42-N to each other through the pre-amplifier control circuit 22 of the pre-amplifier 20 is provided. It is configured. FIG. 4 shows, as an example, an electric signal path EL3 that connects the post-amplifier control circuit 42-1 and the post-amplifier control circuit 42-N.
 また、光伝送システム300では、後置増幅部用制御回路42-1~42-Nのそれぞれが、データD2-1~D2-Nのすべてを含むデータD1を記憶している。 In the optical transmission system 300, each of the post-amplifier control circuits 42-1 to 42-N stores data D1 including all of the data D2-1 to D2-N.
 光伝送システム300では、後置光増幅器40-1~40-Nのいずれかが故障し、交換された場合に、交換後の後置光増幅器の後置増幅部用制御回路は、他の後置光増幅器の後置増幅部用制御回路と通信を行い、交換前の後置光増幅器の動作を制御するために使用される情報のデータを取得する。通信の態様としては、経路EL3を用いた後置光増幅器の後置増幅部用制御回路同士の直接的な通信や、電気信号伝送路EL2を用いた、前置光増幅器20の前置増幅部用制御回路22を介した、後置光増幅器の後置増幅部用制御回路同士の通信が例示される。 In the optical transmission system 300, when one of the rear optical amplifiers 40-1 to 40-N fails and is replaced, the post-amplifier control circuit for the rear optical amplifier after replacement is replaced with another rear amplifier. It communicates with the control circuit for the post-amplifier of the post-amplifier, and acquires information data used for controlling the operation of the post-amplifier before replacement. As a communication mode, direct communication between the control circuits for the post-amplifier of the post-optical amplifier using the path EL3 and the pre-amplifier of the pre-optical amplifier 20 using the electric signal transmission line EL2 are used. The communication between the post-amplifier control circuits for the post-optical amplifier via the control circuit 22 is illustrated.
 この光伝送システム300では、後置光増幅器40-1~40-Nが相互に通信し、データの送受信を行うので、より冗長性、信頼性が高い光伝送システムである。 In this optical transmission system 300, the rear optical amplifiers 40-1 to 40-N communicate with each other to transmit and receive data, so that the optical transmission system has higher redundancy and reliability.
(実施の形態4)
 図5は、本発明の実施の形態4に係る光伝送システムの模式的な構成図である。この光伝送システム400は、以下の点において、光伝送システム100とは異なっている。
(Embodiment 4)
FIG. 5 is a schematic configuration diagram of an optical transmission system according to Embodiment 4 of the present invention. The optical transmission system 400 is different from the optical transmission system 100 in the following points.
 すなわち、光伝送システム400では、後置増幅部用制御回路42-1~42-Nのそれぞれが、後置光増幅器40-1~40-Nのそれぞれの動作を制御するために使用される情報のデータD2-1~D2-Nのすべて、および、前置光増幅器20の動作を制御するために使用される情報のデータ(♯PAで示す)を含むデータD3を記憶している。なお、前置増幅部用制御回路22は、電気信号伝送路と電気コネクタとを介して後置増幅部用制御回路42-1~42-Nのそれぞれに接続しているが、図5では、前置増幅部用制御回路22と後置増幅部用制御回路42-2、42-Nとを接続する電気信号伝送路EL4のみを示している。 That is, in the optical transmission system 400, each of the post-amplifier control circuits 42-1 to 42-N is used for controlling the operation of each of the post-optical amplifiers 40-1 to 40-N. Data D3 including all the data D2-1 to D2-N and information data (indicated by #PA) used for controlling the operation of the pre-amplifier 20 are stored. The preamplifier control circuit 22 is connected to each of the postamplifier control circuits 42-1 to 42-N via an electrical signal transmission line and an electrical connector, but in FIG. Only the electric signal transmission line EL4 for connecting the preamplifier control circuit 22 and the postamplifier control circuits 42-2 and 42-N is shown.
 この光伝送システム400では、光伝送システム300と同様に、後置光増幅器40-1~40-Nのいずれかが故障し、交換された場合に、交換後の後置光増幅器の後置増幅部用制御回路は、他の後置光増幅器の後置増幅部用制御回路と、前置光増幅器20の前置増幅部用制御回路22を介した通信を行い、交換前の後置光増幅器の動作を制御するために使用されていた情報のデータを取得する。 In this optical transmission system 400, as in the optical transmission system 300, when any of the rear optical amplifiers 40-1 to 40 -N fails and is replaced, the rear optical amplifier after the replacement is post-amplified. The part control circuit communicates with the other post-amplifier control circuit of the rear optical amplifier via the front amplifier control circuit 22 of the front optical amplifier 20, and the rear optical amplifier before replacement Get the data of information that was used to control the operation of the.
 さらに、光伝送システム400では、前置光増幅器20が故障し、交換された場合に、交換後の前置光増幅器の前置増幅部用制御回路は、後置光増幅器40-1~40-Nのいずれか(図5では後置光増幅器40-2)の後置増幅部用制御回路と通信を行い、交換後の前置光増幅器の動作を制御するために使用される情報のデータを取得する。 Further, in the optical transmission system 400, when the pre-optical amplifier 20 fails and is replaced, the pre-amplifier control circuit of the pre-optical amplifier after replacement is replaced with the post-optical amplifiers 40-1 to 40-. N is communicated with the control circuit for the post-amplifier unit of N (the post-optical amplifier 40-2 in FIG. 5), and the data of the information used for controlling the operation of the post-optical amplifier after the exchange get.
 この光伝送システム400では、後置光増幅器40-1~40-Nが相互に通信し、データの送受信を行うとともに、上位の前置光増幅器20の制御に関する情報を、下位の後置光増幅器40-1~40-Nが有する構成とすることによって、冗長性、信頼性を高めている。 In this optical transmission system 400, the rear optical amplifiers 40-1 to 40-N communicate with each other to transmit and receive data, and information related to the control of the upper optical amplifier 20 is transmitted to the lower optical amplifiers. Redundancy and reliability are improved by employing the configuration of 40-1 to 40-N.
 ここで、前置光増幅器20の動作を制御するために使用される情報としては、実施の形態1と同様に、たとえば、前置光増幅器20の静特性、動特性、アラーム条件、または固有情報である。前置光増幅器20の静特性、アラーム条件、固有情報は、実施の形態1で述べた後置光増幅器の静特性、アラーム条件、固有情報と同様の情報であってよい。 Here, as the information used for controlling the operation of the front optical amplifier 20, for example, the static characteristics, the dynamic characteristics, the alarm conditions, or the specific information of the front optical amplifier 20, as in the first embodiment. It is. The static characteristics, alarm conditions, and unique information of the front optical amplifier 20 may be the same information as the static characteristics, alarm conditions, and unique information of the rear optical amplifier described in the first embodiment.
 前置光増幅器20の動特性に関する情報には、たとえば、前置光増幅器20が交換された後の前置光増幅器20の起動のタイミング、前置光増幅器20のシャットダウンおよびその後の再起動のタイミングなどが含まれる。シャットダウンおよび再起動のタイミングの情報は、交換された前置光増幅器20の前後に接続された光増幅器との動作タイミングの整合のために必要となる。この動作タイミングの整合は、たとえば、後置光増幅器がフラグとしてOFF状態を示すものを送信し、前置光増幅器20が接続されたすべての後置光増幅器からOFF状態のフラグを受信した場合に、前置光増幅器20が所定のタイミングの情報に従って起動、再起動またはシャットダウンすることにより行われる。また、この動作タイミングの整合は、たとえば、前置光増幅器20のフラグの受信状態から、すべての後置光増幅器がOFF状態または接続されていないと認められる場合に、前置光増幅器20が所定のタイミングの情報に従って起動、再起動またはシャットダウンすることにより行われてもよい。このように、動作タイミングの整合は、後置光増幅器がフラグを送信し、前置光増幅器20がフラグを受信することにより実現される。このような動作タイミングの整合により、たとえば、後置光増幅器が前置光増幅器20より先にON状態となることがないように、起動または再起動のタイミングの整合を行うことができる。 The information on the dynamic characteristics of the pre-amplifier 20 includes, for example, the start timing of the pre-amplifier 20 after the replacement of the pre-amplifier 20, the shutdown timing of the pre-amplifier 20 and the subsequent restart timing. Etc. are included. Information on the timing of shutdown and restart is necessary for matching the operation timing with the optical amplifiers connected before and after the replaced pre-amplifier 20. This operation timing matching is performed, for example, when the rear optical amplifier transmits a flag indicating the OFF state as a flag and receives the OFF state flag from all the rear optical amplifiers to which the front optical amplifier 20 is connected. This is done by starting, restarting or shutting down the pre-amplifier 20 according to information of a predetermined timing. Also, this operation timing matching is performed when, for example, the pre-optical amplifier 20 is set to a predetermined state when it is recognized from the reception state of the flag of the pre-optical amplifier 20 that all the post-optical amplifiers are OFF or not connected. It may be performed by starting, restarting or shutting down according to the timing information. Thus, the operation timing matching is realized by the post-optical amplifier transmitting the flag and the pre-optical amplifier 20 receiving the flag. By matching the operation timings, for example, the start or restart timing can be matched so that the rear optical amplifier is not turned ON before the front optical amplifier 20.
 なお、上記実施の形態に係る光増幅器の構成は例示である。光増幅器は、たとえば複数の励起レーザ素子を備える構成や、多段構成等でもよい。 The configuration of the optical amplifier according to the above embodiment is an example. The optical amplifier may have, for example, a configuration including a plurality of pump laser elements or a multistage configuration.
 また、上記実施の形態では、前置光増幅器と後置光増幅器で構成されているが、後置光増幅器の出力側にさらに光分配器と複数の後置光増幅器とを接続してもよい。 Further, in the above embodiment, the optical amplifier is composed of a front optical amplifier and a rear optical amplifier, but an optical distributor and a plurality of rear optical amplifiers may be further connected to the output side of the rear optical amplifier. .
 また、上記実施の形態では、データの通信を、電気信号伝送路を介して行っているが、無線や光信号にて通信をおこなってもよい。 In the above embodiment, data communication is performed via an electric signal transmission path, but communication may be performed by radio or optical signal.
 また、上記実施の形態では、分岐した光伝送路上に配置されている光伝送装置としては、おもに光増幅器であるが、他の光伝送装置に適宜置き換えてもよい。また、異なる種類の光伝送装置が混在して配置されていてもよい。 In the above embodiment, the optical transmission device arranged on the branched optical transmission line is mainly an optical amplifier, but may be appropriately replaced with another optical transmission device. Further, different types of optical transmission devices may be mixed and arranged.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 以上のように、本発明に係る光伝送システムは、光通信の分野に利用して好適なものである。 As described above, the optical transmission system according to the present invention is suitable for use in the field of optical communications.
 10 光入力ポート
 20 前置光増幅器
 21 前置増幅部
 21a、21f 光カプラ
 21b、21g 光検出器
 21c 波長多重合分波カプラ
 21d 励起レーザ素子
 21e 増幅用光ファイバ
 22 前置増幅部用制御回路
 22a デジタル/アナログ変換部
 22b アナログ/デジタル変換部
 22c 演算処理部
 22d 記憶部
 22e 入出力部
 30 光分配器
 40-1~40-N 後置光増幅器
 41-1~41-N 後置増幅部
 42-1~42-N 後置増幅部用制御回路
 50-1~50-N 光出力ポート
 60-1~60-N 光コネクタ
 70-1~70-N 電気コネクタ
 80 上位ネットワークエレメント
 100、200、300、400 光伝送システム
 D1 データ
 D2-1~D2―N データ
 D3 データ
 EL1、EL2、EL4 電気信号伝送路
 EL3 経路
 PC パーソナルコンピュータ
DESCRIPTION OF SYMBOLS 10 Optical input port 20 Pre-amplifier 21 Pre-amplifier 21a, 21f Optical coupler 21b, 21g Photo detector 21c Wavelength multiple polymerization demultiplexer coupler 21d Excitation laser element 21e Amplifying optical fiber 22 Pre-amplifier control circuit 22a Digital / analog conversion unit 22b Analog / digital conversion unit 22c Arithmetic processing unit 22d Storage unit 22e Input / output unit 30 Optical distributors 40-1 to 40-N Post-optical amplifiers 41-1 to 41-N Post-amplifiers 42- 1 to 42-N Post-amplifier control circuit 50-1 to 50-N Optical output port 60-1 to 60-N Optical connector 70-1 to 70-N Electrical connector 80 Host network element 100, 200, 300, 400 Optical transmission system D1 data D2-1 to D2-N data D3 data EL1, EL2, EL4 Electric signal transmission Road EL3 route PC personal computer

Claims (8)

  1.  分岐した光伝送路上に、交換可能に構成された複数の光伝送装置が配置され、
     前記複数の光伝送装置は、第1光伝送装置と第2光伝送装置とを含み、
     前記第1光伝送装置は、前記第1光伝送装置の動作を制御する第1制御部を有し、
     前記第2光伝送装置は、前記第2光伝送装置の動作を制御する第2制御部を有し、前記第2制御部は、前記第1制御部が前記第1光伝送装置を制御するために使用する基準となる情報のデータを記憶しており、前記第1制御部と相互に通信を行って前記データを前記第1制御部に送信するように構成されていることを特徴とする光伝送システム。
    On the branched optical transmission line, a plurality of optical transmission devices configured to be replaceable are arranged,
    The plurality of optical transmission devices include a first optical transmission device and a second optical transmission device,
    The first optical transmission device has a first control unit that controls the operation of the first optical transmission device;
    The second optical transmission device includes a second control unit that controls the operation of the second optical transmission device, and the second control unit is configured so that the first control unit controls the first optical transmission device. The data of the information used as the reference | standard used for this is memorize | stored, It communicates with the said 1st control part, and it is comprised so that the said data may be transmitted to the said 1st control part Transmission system.
  2.  前記第2制御部は、前記第1制御部からの要求に従って前記データを送信することを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, wherein the second control unit transmits the data according to a request from the first control unit.
  3.  前記複数の光伝送装置は、後置光伝送装置と、前記光伝送路上において前記後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、
     前記第1光伝送装置は、前記後置光伝送装置であり、前記第2光伝送装置は、前記前置光伝送装置であることを特徴とする請求項1または2に記載の光伝送システム。
    The plurality of optical transmission devices include a rear optical transmission device, and a front optical transmission device positioned higher than the rear optical transmission device on the optical transmission path,
    3. The optical transmission system according to claim 1, wherein the first optical transmission device is the rear optical transmission device, and the second optical transmission device is the front optical transmission device. 4.
  4.  前記複数の光伝送装置は、後置光伝送装置と、前記光伝送路上において前記後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、
     前記第1光伝送装置は、前記前置光伝送装置であり、前記第2光伝送装置は、前記後置光伝送装置であることを特徴とする請求項1または2に記載の光伝送システム。
    The plurality of optical transmission devices include a rear optical transmission device, and a front optical transmission device positioned higher than the rear optical transmission device on the optical transmission path,
    The optical transmission system according to claim 1, wherein the first optical transmission device is the front optical transmission device, and the second optical transmission device is the rear optical transmission device.
  5.  前記複数の光伝送装置は、複数の後置光伝送装置と、前記光伝送路上において前記複数の後置光伝送装置よりも上位に位置する前置光伝送装置とを含み、
     前記第1光伝送装置および前記第2光伝送装置は、前記複数の後置光伝送装置に含まれることを特徴とする請求項1または2に記載の光伝送システム。
    The plurality of optical transmission devices include a plurality of rear optical transmission devices and a front optical transmission device positioned above the plurality of rear optical transmission devices on the optical transmission path,
    The optical transmission system according to claim 1, wherein the first optical transmission device and the second optical transmission device are included in the plurality of rear optical transmission devices.
  6.  前記複数の光伝送装置は、複数の後置光伝送装置と、前記光伝送路上において前記複数の後置光伝送装置よりも上位に位置する前置光伝送装置と、前記前置光伝送装置よりもさらに上位に位置する上位光伝送装置とを含み、
     前記第1光伝送装置は、前記上位光伝送装置であり、前記第2光伝送装置は、前記前置光伝送装置または前記後置光伝送装置であることを特徴とする請求項1または2に記載の光伝送システム。
    The plurality of optical transmission devices includes a plurality of rear optical transmission devices, a front optical transmission device positioned higher than the plurality of rear optical transmission devices on the optical transmission path, and the front optical transmission device. Including a higher-order optical transmission device located at a higher level,
    The first optical transmission device is the higher-order optical transmission device, and the second optical transmission device is the front optical transmission device or the rear optical transmission device. The optical transmission system described.
  7.  前記基準となる情報は、前記第1光伝送装置の静特性、動特性、アラーム条件、または固有情報の情報と、該情報と関連付けられた、前記第1光伝送装置を特定するための位置情報とを含むことを特徴とする請求項1~6のいずれか一つに記載の光伝送システム。 The reference information includes information on static characteristics, dynamic characteristics, alarm conditions, or specific information of the first optical transmission apparatus, and position information for specifying the first optical transmission apparatus associated with the information. The optical transmission system according to any one of claims 1 to 6, further comprising:
  8.  前記複数の光伝送装置は光増幅器を含むことを特徴とする請求項1~7のいずれか一つに記載の光伝送システム。 8. The optical transmission system according to claim 1, wherein the plurality of optical transmission devices include an optical amplifier.
PCT/JP2013/085239 2012-12-28 2013-12-27 Optical transmission system WO2014104355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554619A JPWO2014104355A1 (en) 2012-12-28 2013-12-27 Optical transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288611 2012-12-28
JP2012-288611 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104355A1 true WO2014104355A1 (en) 2014-07-03

Family

ID=51021416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085239 WO2014104355A1 (en) 2012-12-28 2013-12-27 Optical transmission system

Country Status (2)

Country Link
JP (1) JPWO2014104355A1 (en)
WO (1) WO2014104355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192201A (en) * 2014-03-27 2015-11-02 富士通株式会社 Optical amplification device and optical amplification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168201A (en) * 1997-08-18 1999-03-09 Oki Electric Ind Co Ltd Optical processing equipment
JP2004006710A (en) * 2002-03-15 2004-01-08 Fitel Usa Corp Wavelength variable multi-mode laser diode module, variable wavelength wavelength division multiplex raman pump and amplifier, system, method and computer program product for controlling variable wavelength multimode laser diode, raman pump and raman amplifier
JP2007220977A (en) * 2006-02-17 2007-08-30 Furukawa Electric Co Ltd:The Optical amplifier
JP2008098873A (en) * 2006-10-11 2008-04-24 Nec Corp Monitoring system, optical transmission apparatus, optical transmission system, and monitoring level setting method
JP2011250005A (en) * 2010-05-25 2011-12-08 Hitachi Ltd Network system and network device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168201A (en) * 1997-08-18 1999-03-09 Oki Electric Ind Co Ltd Optical processing equipment
JP2004006710A (en) * 2002-03-15 2004-01-08 Fitel Usa Corp Wavelength variable multi-mode laser diode module, variable wavelength wavelength division multiplex raman pump and amplifier, system, method and computer program product for controlling variable wavelength multimode laser diode, raman pump and raman amplifier
JP2007220977A (en) * 2006-02-17 2007-08-30 Furukawa Electric Co Ltd:The Optical amplifier
JP2008098873A (en) * 2006-10-11 2008-04-24 Nec Corp Monitoring system, optical transmission apparatus, optical transmission system, and monitoring level setting method
JP2011250005A (en) * 2010-05-25 2011-12-08 Hitachi Ltd Network system and network device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192201A (en) * 2014-03-27 2015-11-02 富士通株式会社 Optical amplification device and optical amplification method

Also Published As

Publication number Publication date
JPWO2014104355A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US9641242B2 (en) Optical communication system, device and method for data processing in an optical network
JP2009200633A (en) Optical transmitter for use in pon system
US11949205B2 (en) Optical amplifier modules
US8861965B2 (en) Optical transmission apparatus
US7151895B2 (en) Method and system for automatically setting gain for an amplifier in an optical network
US8712238B2 (en) Optical switching device and communications system
US10135221B2 (en) Spatial division multiplexed optical communication systems and amplifiers for the same
WO2014104355A1 (en) Optical transmission system
US8854727B2 (en) Optical amplifier and transmission system
JP2006196938A (en) Optical network system
US11870208B2 (en) Optical fiber amplifier, optical fiber amplifier control method, and transmission system
JP4356545B2 (en) Optical transmission system
JP4499618B2 (en) Optical transmission system
JP2003134089A (en) Transmitter
US20050036790A1 (en) Method and system for optical fiber transmission using Raman amplification
US11362753B2 (en) Optical node device
US9219345B2 (en) Optical amplification control apparatus and control method of the same
KR20170013059A (en) Miniaturized optical fiber amplifier
US20090190925A1 (en) Optical transmission apparatus
JPH11127135A (en) Wavelength multiplexing optical transmitter
JPWO2018190240A1 (en) Repeater and relay method
EP3148018A1 (en) Amplification device with polarized soas, for amplifying optical signals in a wdm transmission system
JP2007318013A (en) Optical amplifier, and optical transmission system
JP2006352727A (en) System and method for receiving optical signal and optical receiving apparatus
JP3670341B2 (en) Optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869092

Country of ref document: EP

Kind code of ref document: A1