WO2014103989A1 - Map making assist system - Google Patents

Map making assist system Download PDF

Info

Publication number
WO2014103989A1
WO2014103989A1 PCT/JP2013/084427 JP2013084427W WO2014103989A1 WO 2014103989 A1 WO2014103989 A1 WO 2014103989A1 JP 2013084427 W JP2013084427 W JP 2013084427W WO 2014103989 A1 WO2014103989 A1 WO 2014103989A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
detour
unit
trajectory
map
Prior art date
Application number
PCT/JP2013/084427
Other languages
French (fr)
Japanese (ja)
Inventor
川股 幸博
幹雄 板東
佑介 日永田
田中 克明
小倉 弘
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2014103989A1 publication Critical patent/WO2014103989A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/14Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by recording the course traversed by the object
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Definitions

  • the present invention relates to a map creation support system for mobile bodies such as vehicles.
  • mapping support system As one of the systems to support the movement to the destination of moving objects (vehicles etc.) moving on the ground, we support the creation of a map showing the moving route (target route) of the moving object to the destination There is a system (mapping support system).
  • an autonomous travel system for unmanned travel of the mine dump may be used, but a map used when the mine dump travels autonomously in the system A (traveling path represented by a point sequence) may be collected by a positioning device such as a GPS receiver attached to a navigation vehicle (mobile body).
  • a positioning device such as a GPS receiver attached to a navigation vehicle (mobile body).
  • the navigation vehicle is made to travel along the target route, and the travel locus (movement locus) is collected by the positioning device to generate a map (map generation mode).
  • the mining dump is autonomously traveled (unmanned travel) along the generated map (playback mode).
  • the travel route is divided by dividing the target route into a plurality of sections and causing each section to travel on a dump truck equipped with a positioning device.
  • the technology for collecting travel tracks are similarly collected only for the sections selected from the plurality of sections, and a new map is collected as a whole by combining the new travel tracks with the travel tracks pertaining to the remaining sections. Technology is also disclosed.
  • the obstacle in front of the moving object moving in each section when collecting the movement locus (For example, if there are earth and sand and rocks dropped by other dump trucks, construction vehicles traveling at low speed, dump trucks, etc.), the obstacle will be detoured and the route will deviate from the target route, which is effective for map creation. Acquisition of an effective movement trajectory (effective trajectory) may fail.
  • the technique according to the above-mentioned document is advantageous in that it is sufficient to travel again only in the section where acquisition of the effective trajectory fails, and there is no need to travel all sections of the target route again.
  • a person must specify the section in which the detour has occurred (the section in which acquisition of the effective trajectory fails).
  • it is not possible to identify at which place of each section the diversion has occurred.
  • An object of the present invention is to provide a cartographic support system capable of easily determining a location where acquisition of an effective trajectory has failed.
  • the present invention in order to achieve the above object, in a cartographic support system for creating a map based on a locus when moving a mobile object along a target route, positioning for measuring the position of the mobile object And a detour in which it is estimated that the moving object deviates from the target route based on the movement locus of the moving object stored in the locus storage unit and the locus storage unit in which the movement locus of the moving object is stored. And a detour detection unit that specifies the section from among the movement trajectories.
  • the block diagram of the cartography assistance system which concerns on the 1st Embodiment of this invention.
  • the figure which shows the own vehicle position table memorize
  • the figure which shows the detour detection table memorize
  • generation server. 6 is a flowchart of map generation processing by the map generation server.
  • trajectory collection terminal which concerns on the 4th Embodiment of this invention.
  • map creation support system used in an autonomous travel system of a dump truck (mine dump) used in a mine and in an operation management system.
  • a mapping support system is used for mining dumps based on a traveling locus when a navigation vehicle (mobile body) is moved along a target route (transportation route of mine dumping). While creating a map, while the navigation vehicle (mobile unit) travels along the target route, there is a section (detour section) where the vehicle has run away from the target route due to the presence of an obstacle, etc. When it does, it has a function which distinguishes and excludes the detour section concerned automatically from a run track of a measurement vehicle. Then, the detour section is additionally traveled at least once or more to acquire a locus effective for map creation, and a plurality of effective loci are fused to automatically generate a map close to the target route.
  • the detour section occurs when the navigation vehicle travels along the target route, (1) an obstacle that must be avoided, (2) overtaking must be performed on the target route. There are cases where there are vehicles ahead, and (3) road surface roughness that can not run along the target route.
  • the obstacle mentioned above is used in a broad sense including not only the thing which becomes an obstacle on running of the navigation vehicle but also the condition of the road surface which becomes an obstacle such as the unevenness of the road surface or the loss due to the fall of the road shoulder.
  • FIG. 1 is a block diagram of a map creation support system according to a first embodiment of the present invention.
  • the mapping support system shown in this figure is installed in a navigation vehicle (vehicle) and is installed in a trajectory collection terminal 100 for collecting a traveling trajectory which is a movement trajectory of the vehicle, a building inside a mine, etc.
  • the map generation server 150 which merges the travel locus collected by the collection terminal 100 and generates a map for mine dumping is provided.
  • the locus collection terminal 100 is a device for detecting a situation in front of the vehicle, and an obstacle detection unit (forward detection unit) 105 for detecting an obstacle existing in front of the vehicle, for example, GPS, IMU (
  • the vehicle position positioning unit 110 which is a positioning unit that executes a process of positioning the vehicle position using the inertial measurement device) and the speed information (vehicle speed information) of the vehicle, and the vehicle position measurement unit 110
  • the vehicle position is stored in association with the positioning time, and the travel locus (movement locus) of the vehicle is stored as a point sequence as a travel path of the vehicle position DB (locus storage unit) 135 and the vehicle position DB 135
  • the detour detection unit 115 in which processing for identifying a section in which the host vehicle is estimated to have deviated from the target route (sometimes referred to as a “detour section”) is performed, and the detour section detected by the detour detection unit 115 Information (“ A detour detection DB (detour section
  • FIG. 2 is a conceptual view of road-shoulder distance measurement by the navigation vehicle 210 according to the embodiment of the present invention.
  • the navigation vehicle (vehicle) 210 is shown traveling on the target route 510.
  • On the road on which the target route 510 is set there are a left road shoulder 570, a right road shoulder 580, and a road center line 520 located at the center of the left road shoulder 570 and the right road shoulder 580 in the width direction of the road.
  • a left road shoulder distance sensor 530 for measuring the distance 550 to the left road shoulder 570 and a right road shoulder distance sensor 540 for measuring the distance 560 to the right road shoulder 580 are shown. It is mounted.
  • the detection values of the sensors 530 and 540 are output to the road-shoulder distance measuring unit 143 and used when calculating the road-shoulder distances 550 and 560.
  • the left road shoulder distance sensor 530 is used, and in the fourth embodiment to be described later, both the left road shoulder distance sensor 530 and the right road shoulder distance sensor 540 are used.
  • the map generation server 150 stores the server's own vehicle position DB (trajectory storage unit) 193 in which the vehicle position information transmitted from the trajectory collection terminal 100 is stored, and the bypass information transmitted from the trajectory collection terminal 100 Out of the running path stored in the server detour detection position DB (detouring section storage unit) 195 in which is stored and the server self-location DB 193, processing for excluding the detouring section based on the detour information is executed
  • An effective trajectory DB (effective trajectory storage unit) 185 in which a traveling trajectory (sometimes referred to as an “effective trajectory”) from which a detour section has been excluded by the portion 160 and the effective trajectory extracting unit 160 is stored.
  • a trace fusion unit 155 Processing of generating a map by fusing two or more valid trajectories acquired at different times among a plurality of valid trajectories related to the same target route
  • a trace fusion unit 155 a map DB 190 in which the map generated by the trajectory fusion unit 155 is stored, a server side input unit 165 for receiving user input, a server side display unit 170 for presenting information to the user, and trajectory collection It includes a data receiving unit 175 that receives information transmitted from the terminal 100, and a server-side control unit 180 that executes processing for controlling the overall processing of the map generation server 150.
  • the trajectory collection terminal 100 and the map generation server 150 each include an arithmetic processing unit (for example, a CPU) as an arithmetic unit for executing a program related to the processing performed in each of the above-described units.
  • Storage devices as storage means for storing various data including the respective programs (for example, semiconductor memory such as ROM, RAM and flash memory, magnetic storage device such as hard disk drive), arithmetic processing device and storage device And an input / output arithmetic processing unit for performing input / output control of data, instructions and the like.
  • FIG. 3 is a flowchart of the collection process of the traveling locus by the locus collection terminal 100.
  • step 900 in FIG. 3 in the trajectory collection terminal 100, initialization setting processing is performed to confirm whether the processing start request from the user is received or whether the engine of the navigation vehicle has been operated.
  • the process start request from the user is made via the terminal side input unit 120. Further, at the start of processing, a state as to whether or not the navigation vehicle is ready is displayed to the user via the terminal display unit 125.
  • step 900 is completed, the process proceeds to step 905.
  • step 905 it is confirmed whether there is a processing end request from the user.
  • the acceptance of the termination request from the user is performed via the terminal side input unit 120.
  • the process is ended (step 950), and if there is no process end request, the process proceeds to step 910.
  • the vehicle position measurement unit 110 performs a process of measuring the position of the navigation vehicle (vehicle) and storing the position and the positioning time in the vehicle position DB 135. Positioning of the own vehicle position is performed by appropriately combining measurement of latitude and longitude by GPS, measurement of position information by an IMU (inertial measurement device), traveling distance information using wheel speed information, and the like. Furthermore, the vehicle position measurement unit 110 assigns a time stamp (positioning time) to the positioning data using the GPS time or a time such as an internal clock. The latitude and longitude information and the positioning time of the vehicle measured here are stored in the vehicle position (trajectory storage unit) DB 135. Next, the vehicle position DB 135 will be described with reference to FIG.
  • FIG. 4 is a diagram showing a vehicle position table 1000 stored in a vehicle position DB 135 according to the embodiment of the present invention.
  • the vehicle position table 1000 is a table for accumulating the vehicle position, and the vehicle position positioning time 1005, the latitude 1010 of the vehicle, the longitude 1015 of the vehicle, and the traveling for acquiring the traveling locus are A traveling cycle 1020 indicating the number of turns (the number of turns) is stored.
  • the own vehicle positioning time 1005 indicates an absolute time by the GPS absolute time or the timer, and has a role of a time stamp of the own vehicle positioning.
  • the traveling locus of the navigation vehicle 210 is stored in the vehicle position DB 135 as a set of points for each time series.
  • the number is automatically selected each time the user requests processing start in step 900.
  • the number is automatically selected each time the user requests processing start in step 900.
  • step 915 the road-shoulder distance measuring unit 143 determines the distance from the road shoulder located on the left side with respect to the traveling direction of the vehicle to the vehicle in order to determine whether the vehicle is detouring Execute processing to measure distance D.
  • the distance to the left side shoulder is measured, but in the case of right side passage, the distance to the right side shoulder is measured. That is, the distance to the road shoulder closer to the normal traveling position of the vehicle may be measured.
  • the detour detection unit 115 determines whether the left road shoulder distance D measured in step 915 is equal to or greater than a first set value (L1) and equal to or less than a second set value (L2) (L1 ⁇ D ⁇ L2). Execute the process to judge.
  • the first set value L1 and the second set value L2 are one index for confirming whether or not a detour section has occurred, and are used together with the detection result by the obstacle detection unit 105 to determine the generation of the detour section There is.
  • the first set value L1 is a value for determining the occurrence of the detour section when detouring from the left side of the obstacle ahead of the host vehicle (when approaching the road shoulder and detouring), and the second set value L2 This is a value for determining the occurrence of a detour section when detouring from the right side of the obstacle ahead of the vehicle (when detouring away from the road shoulder).
  • two setting values L1 and L2 are set on the assumption that the obstacle is detoured from both the right side and the left side of the obstacle ahead of the host vehicle, but detouring from one of them is previously performed. It is also possible to determine the occurrence of the detour section using only one set value related to the direction, as determined.
  • step 920 if the road shoulder distance D is L1 or more and L2 or less, the process proceeds to step 940; otherwise, the process proceeds to step 925.
  • FIG. 5 is a diagram showing a case where there is no obstacle in the traveling direction of the vehicle and the vehicle travels along the target route.
  • FIG. 6 since an obstacle is present at a position close to the road shoulder in the traveling direction of the vehicle, the obstacle is present at a position away from the road shoulder and away from the road shoulder in order to avoid the obstacle. It is a figure which shows the case where it detours in the direction which approaches a road shoulder in order to avoid the said obstruction.
  • the same parts as those in the previous drawings may be assigned the same reference numerals and descriptions thereof may be omitted (the same shall apply to the subsequent drawings).
  • a traveling locus 720 along the target route is drawn by the vehicle 210 traveling on the road 700 along the target route.
  • a road shoulder 750 exists on the left side of the road 700, the left road shoulder distance (D) 730 is substantially constant, and no detour section occurs. Therefore, during this time, always go to step 940 via step 920.
  • a traveling locus 850 is drawn by the vehicle 210 traveling on the road 700.
  • a road shoulder 750 exists on the left side of the road 700, an obstacle 810 near the left road shoulder, and an obstacle 830 near the center of the road (ie, far from the left road shoulder).
  • the left side road shoulder distance (D) 730 of the vehicle 210 is substantially constant during normal traveling as in the case of FIG.
  • the left road shoulder distance (D) 820 becomes larger than L2 because the vehicle 210 detours on the right side of the obstacle 810. Therefore, while avoiding the obstacle 810, the process proceeds to step 925 via step 920.
  • the left road shoulder distance (D ) 840 is smaller than L1.
  • step 940 since it is determined that the navigation vehicle 210 has not detoured, “0” is input to the detour section flag 1110 (see FIG. 7) related to the time of the detour detection DB 140.
  • the bypass detection DB 140 will be described with reference to FIG.
  • FIG. 7 is a diagram showing a bypass detection table 1100 stored in the bypass detection DB 140 according to the embodiment of the present invention.
  • the detour detection table 1100 is a table for accumulating whether or not the vehicle position related to the positioning time is included in the detour section, and stores the vehicle position measurement time 1005, the detour section flag 1110, and the traveling time 1020 doing.
  • the detour section flag 1110 is recorded at each vehicle position positioning time 1005, the flag in the case of detouring is 1 and the flag in the case of not detouring is 0. Note that the vehicle position positioning time 1005 and the traveling routine 1020 are the same as those managed by the vehicle position table 1000.
  • the detour detection unit 115 follows the vehicle itself at subsequent steps 925, 930, 935. Check if there is an obstacle in front of.
  • obstacles that the navigation vehicle 210 must avoid while traveling on the target route include (1) obstacles that move on the road (for example, other vehicles such as a mine dump), and (2) on the road. There are stationary obstacles (for example, cargo (minerals, rocks, soil, etc. dropped by mine dumps)), and (3) unevenness of the road surface (for example, including road surface roughening, pooling, road surface breakage due to road shoulder collapse, etc.) .
  • stationary obstacles for example, cargo (minerals, rocks, soil, etc. dropped by mine dumps)
  • unevenness of the road surface for example, including road surface roughening, pooling, road surface breakage due to road shoulder collapse, etc.
  • FIG. 8 is a diagram showing how a vehicle 220 such as a mine dumper is traveling at a relatively low speed in front of the navigation vehicle 210 traveling along the target route 240. As shown in FIG. In this case, the navigation vehicle 210 approaching the forward vehicle 220 must deviate from the target route 240 and overtake the forward vehicle 220, thereby drawing a travel locus 230 including a detour section.
  • a vehicle 220 such as a mine dumper
  • FIG. 9 is a view showing a state in which falling objects 310 such as minerals, rocks and earth and sand dropped by the mine dump during traveling are present in front of the navigation vehicle 210 traveling along the target route 240.
  • falling objects 310 such as minerals, rocks and earth and sand dropped by the mine dump during traveling are present in front of the navigation vehicle 210 traveling along the target route 240.
  • the navigation vehicle 210 approaching the obstacle 310 must deviate from the target path 240 and avoid the falling object 310, whereby a travel locus 330 including a detour section is drawn.
  • FIG. 10 shows that the road surface in front of the navigation vehicle 210 traveling along the target route 240 has a huge unevenness (for example, rough road, water pool, falling of It is a figure which shows a mode that the defect 410 etc. exist.
  • the navigation vehicle 210 approaching the unevenness 410 must deviate from the target path 240 and avoid the unevenness 410, thereby drawing a traveling locus 430 including a detour section.
  • the obstacle detection unit 105 detects whether or not there is an obstacle stationary on the road ahead of the vehicle (that is, corresponds to the case in FIG. 9).
  • the obstacle here refers to a stationary obstacle that impedes the traveling of the vehicle, such as soil, rocks, etc. dropped by a mining dump traveling ahead, such as other vehicles stopped ahead.
  • the obstacle detection unit 105 removes from the obstacles a tire indicating a lane provided in advance on the road, a stone on the road shoulder, a landmark such as a road sign, etc. necessary for traveling the mining dump truck.
  • step 945 When it is determined by the detour detection unit 115 that the obstacle detection unit 105 determines that there is an obstacle ahead of the vehicle path, it is determined that the host vehicle is detouring, and the process proceeds to step 945. Conversely, when it is determined by the detour detection unit 115 that there is no obstacle ahead of the vehicle route, it is determined that detouring is not performed, and the process proceeds to step 930.
  • step 930 the obstacle detection unit 105 detects whether or not the road surface unevenness is present in front of the own vehicle (that is, corresponds to the case in FIG. 10).
  • the unevenness of the road surface indicates a large unevenness to such an extent that the traveling of the mine dump is hindered.
  • the detour detection unit 115 determines that the host vehicle is detouring and proceeds to step 945. On the other hand, when it is determined by the detour detection unit 115 that there is no unevenness on the road surface ahead of the vehicle, it is determined that detouring is not performed, and the process proceeds to step 935.
  • the obstacle detection unit 105 detects whether there is an obstacle (for example, a forward vehicle) moving ahead of the host vehicle (that is, corresponds to the case in FIG. 8). Then, the obstacle detection unit 105 detects overtaking of the obstacle (front vehicle).
  • overtaking of a moving obstacle refers to overtaking of another mining dump truck or construction vehicle traveling at a relatively low speed in front of the vehicle for maintenance and the like.
  • the detour detection unit 115 determines that the host vehicle is detouring and proceeds to step 945. Conversely, if it is determined by the detour detection unit 115 that the vehicle ahead has not been overtaken, it is determined that detouring is not performed, and the process proceeds to step 940.
  • step 945 it is determined that the navigation vehicle 210 is detouring, so “1” is input to the detour section flag 1110 (see FIG. 7) related to the time of the detour detection DB 140, and the process returns to step 905.
  • the terminal side control unit 130 performs end processing of the trajectory collection terminal 100.
  • the end process includes, for example, an end process of the vehicle position DB 135, an end process of the detour detection DB 140, a power OFF process of each sensor of the obstacle detection unit 105, and a sensor such as GPS or IMU of the vehicle position measurement unit 110. Power off processing etc.
  • the detour section in the traveling locus is detected by the detour detection section 115 based on the processing results of the vehicle position measurement section 110, the road shoulder distance measurement section 143 and the obstacle detection section 105.
  • the detour detection section 115 it is possible to easily identify the place (detour section) where acquisition of the trajectory failed. That is, data necessary for map creation can be acquired by traveling again only in the detour section and collecting trajectories.
  • the host vehicle is detouring by combining the magnitude of the road shoulder distance D in step 920 and the presence or absence of an obstacle in steps 925, 930, and 935.
  • the This is based on the determination based on the road shoulder distance D in step 920 only if the vehicle deviates from the target route to achieve smooth travel of the mine dump (if the target route is inappropriate) or if the vehicle ahead It is because it can not be judged whether it diverted inevitably to avoid an obstacle. Therefore, in the present embodiment, in addition to the road shoulder distance D by the road shoulder distance measurement unit 143, the obstacle detection unit 105 determines the presence or absence of an obstacle, and the actual reason for the change in the road shoulder distance D is an obstacle. The discrimination accuracy of the bypass section is improved by discriminating whether or not it is an object. Although the determination accuracy of the bypass section is lower than the above method, the processing of steps 925, 930, and 935 by the obstacle detection unit 105 may be omitted.
  • the occurrence of the detour section can also be determined based on the locus of the vehicle position measured by the vehicle position measurement unit 110 (for example, the road width direction Or, while monitoring the movement amount and movement direction of the vehicle in the width direction of the vehicle, the vehicle moved to one side in the road width direction (vehicle width direction) and then moved to the other and returned to the original position. If it is determined that there is a method of determining that a detour interval has occurred. Therefore, the road-shoulder distance measurement unit 143 is not an essential component. However, according to the road shoulder distance measurement unit 143, since the vehicle position in the road width direction can be determined based on the road shoulder, it can be confirmed at which position the vehicle is present with respect to the road width. Detection accuracy can be improved.
  • FIG. 11 is a flowchart of data transmission processing from the trajectory collection terminal 100 to the map generation server 150.
  • Each process shown in this figure is composed of the transmission process (steps 1200 to 1225) of the trajectory collection terminal 100 and the reception process (steps 1250 to 1275) of the map generation server 150.
  • the trajectory collection terminal 100 performs initial setting processing such as acceptance of a processing start request from a user, communication connection with a map generation server (step 1200), and proceeds to step 1205.
  • the map generation server 150 performs initial setting processing such as acceptance of a processing start request from the user, communication connection with the trajectory collection terminal 100 (step 1250), and the process goes to step 1255.
  • the locus collection terminal 100 reads out the vehicle position information stored in the vehicle position DB 135 in step 1205, and proceeds to step 1210.
  • the data transmission unit 145 of the trajectory collection terminal 100 transmits the vehicle position information to the data reception unit 175 of the map generation server 150.
  • the map generation server 150 receives the vehicle position information transmitted from the data transmission unit 145 of the trajectory collection terminal 100 in step 1210 by the data reception unit 175 (step 1255), and the server position information is received by the server itself. It stores in the car position DB 193 (step 1260).
  • the information managed by the server vehicle position DB 193 of the map generation server 150 is the same as the information managed by the vehicle position DB 135, and the table structure is also the same as the vehicle position table 1000.
  • the locus collection terminal 100 that has completed the processing of step 1210 reads the detour information managed by the detour detection DB 140 (step 1215), and the detour information is transmitted from the data transmission unit 145 of the locus collection terminal 100 to the map generation server 150.
  • the data is transmitted to the data reception unit 175 of (step 1220), and the terminal side control unit 130 performs a series of end processing (step 1225).
  • end processing indicates, for example, communication disconnection processing, termination processing of the vehicle position DB 134, termination processing of the detour detection DB 140, and the like.
  • the map generation server 150 that has completed the process of step 1260 receives the detour information transmitted from the data transmission unit 145 of the trajectory collection terminal 100 in step 1220 by the data receiving unit 175 (step 1265), and detours the server detour. It accumulates in the detection DB 195 (step 1270), and the server side control unit 180 performs end processing (step 1275).
  • end processing indicates, for example, communication disconnection processing, termination processing of the server vehicle position DB 193, termination processing of the detour detection DB 195, and the like.
  • the transmission process from the locus collection terminal 100 of the vehicle position information and the detour information to the map generation server 150 may be performed via wired communication or wireless communication such as a wireless LAN such as WiFi or a mobile telephone network.
  • the data receiving unit 175 may read data written to a recording medium (USB memory, CD-ROM or the like) via the data transmission unit 145.
  • FIG. 12 is a flowchart of map generation processing by the map generation server 150.
  • the map generation server 150 performs initial setting processing such as reception of a processing start request from the user.
  • the process start request from the user is issued via the server side input unit 165.
  • a state as to whether or not the preparation of the server is completed is displayed to the user via the server side display unit 170.
  • step 1305 the server-side control unit 180 sets a variable N indicating a running cycle to one.
  • the N-th vehicle position information is acquired from the server vehicle position DB 193.
  • the N-th bypass information is acquired from the server bypass detection DB 195.
  • processing is executed in which the effective trajectory extraction unit 160 extracts the effective trajectory excluding the detour section from the traveling trajectory of the navigation vehicle (effective trajectory).
  • the effective trajectory extraction processing by the effective trajectory extraction unit 160 acquires all the vehicle position positioning times 1005 for which the detour section flag related to the N-th traveling in the server detour detection DB 195 is 0 (no detour), and the vehicle position measurement
  • the latitude 1010 and the longitude 1015 of the vehicle related to the same time as the time 1005 are obtained from the server vehicle positioning DB 193 to obtain an N-th effective trajectory.
  • FIG. 13 is a diagram showing an example of generating a map using traveling trajectories collected by traveling twice along the same target route 690 by the navigation vehicle for map generation.
  • the traveling locus relating to each traveling cycle is divided and represented for convenience in five common sections.
  • the traveling locus is only divided into five sections as a result by the two detouring sections (traveling paths 620 and 635) generated during the two travelings, and the five sections Are not divided in advance.
  • the section related to the travel locus 620 is the detour section generated by the obstacle 680 among all the travel loci related to the first travel, and the travel locus 635 among all the travel loci related to the second travel.
  • step 1325 shown in FIG. 12 the N-th effective trajectory extracted as described above in step 1320 is accumulated in the effective trajectory DB 185.
  • step 1330 it is determined in the server-side control unit 180 whether the traveling locus according to the (N + 1) th time is stored in the server vehicle position DB 193 (which may be the server bypass detection DB 195).
  • the server-side control unit 180 increases the variable N indicating the traveling cycle by one (step 1335), and the traveling locus related to the traveling cycle (N + 1) The processing of S 1310 to 1325 is performed.
  • the locus fusion unit 155 performs processing for fusing a section in which no detour section has occurred in any traveling cycle (1 to N times). Execute (step 1340).
  • the fusion processing in step 1340 will be described using the example of FIG.
  • the sections of the travel locus 605, 630, the section of the travel locus 615, 640, and the section of the travel locus 625, 650 are applicable.
  • a locus that is a part of the map is generated by taking the average (average locus) of the two traveling traces belonging to each section.
  • the closest distance is the point included in the first traveling locus and the point included in the second traveling locus among the point trains constituting the two traveling loci belonging to each section
  • an average locus 655 is generated for the section related to the traveling locus 605, 630, and an average locus 665 is generated for the section related to the traveling locus 615, 640.
  • an average trajectory 675 is generated.
  • FIG. 14 is a diagram showing an effective trajectory table 1400 stored in the effective trajectory DB 185 according to the embodiment of the present invention.
  • the effective trajectory table 1400 is a table for accumulating the effective trajectory of the vehicle position, including the vehicle position positioning time 1005, the latitude 1010 of the vehicle, and the longitude 1015 of the vehicle. A running count 1020 is stored.
  • step 1345 the trajectory fusion unit 155 executes processing for generating a trajectory for a section in which a detour section has occurred in any of the traveling times (a section not used for fusion in step 1340).
  • the fusion processing in step 1345 will be described using the example of FIG.
  • two sections of the travel loci 610 and 635 and the sections of the travel loci 620 and 645 correspond to the sections in which the detour section occurs during traveling for two times.
  • the running track relating to the section in which detouring has occurred is first removed, and a track that becomes a part of the map from the remaining running track.
  • the traveling locus 610 is extracted for the section related to the traveling locus 610, 635
  • the traveling locus 645 is extracted for the section related to the traveling locus 620, 645.
  • an average locus 660 (as a result, the same as the traveling locus 610) is generated for the section relating to the traveling locus 610, 635, and an average locus 670 (resultingly the traveling locus) is generated for the section relating to the traveling locus 620, 645. (Same as 645) is generated. Then, the trajectory fusion unit 155 stores the average trajectory 660, 670 thus obtained in the effective trajectory DB 185.
  • the trajectory fusion unit 155 fuses the average trajectory generated in step 1340 and the average trajectory generated in step 1345 to obtain one traveling trajectory (map for mine dump defined by point sequence).
  • the process of generating is executed.
  • the average trajectory 655, 665, 675 obtained in step 1340 and the average trajectory 660, 670 obtained in step 1345 are taken out from the effective trajectory DB 185, and they are merged to obtain a map.
  • FIG. 15 is a diagram showing the map generation table 1500 stored in the map DB 190 according to the embodiment of the present invention.
  • the map generation table 1500 is a table for storing a point sequence indicating a map of a mine dump, and is a set of the latitude 1510 of the vehicle, the longitude 1515 of the vehicle, and their latitudes and longitudes And the number 1505 sequentially assigned to.
  • step 1355 the server-side control unit 180 performs termination processing of the map generation server 150.
  • the end process indicates, for example, an end process of the server vehicle position DB 193, an end process of the detour detection DB 195, and the like.
  • the detour detection unit 115 can easily identify the detour section from the traveling locus. This makes it possible to easily extract an effective trajectory excluding the detour section from the traveling trajectory. Therefore, the map can be created only by traveling again only in the section where the detour has occurred. Furthermore, according to the system configured as described above, it is possible to easily create a map with high accuracy based on a plurality of traveling trajectories without detouring by fusing a plurality of effective trajectories with different acquisition times.
  • the navigation vehicle travels only twice, so in the description of step 1345 in FIG. We decided to adopt the one that left the traveling locus removed as the generation locus as it is, but when the traveling vehicle travels three times or more and collects the traveling locus, it depends on the detour section from three or more traveling loci Two or more running tracks may remain even after removing the running track. In this case, the average trajectory of the remaining two or more traveling trajectories as in the process of step 1340 may be adopted as a generation trajectory. In addition, even if the vehicle travels twice or more, if a detour section common to all the traveling times has occurred, generation of the map becomes impossible.
  • the user is prompted to re-run the section by the traveling vehicle by notifying the user by displaying the fact on the terminal-side display section 125 or the server-side display section 170, etc., and causing the detour related to the section
  • a plurality of different effective trajectories stored in the effective trajectory DB 185 may generate a map by fusing.
  • a method of generating a map by fusing a plurality of valid trajectories there is a method of obtaining an average trajectory of a plurality of valid trajectories described in the above steps 1340 and 1345.
  • the intervals at which the traveling according to each traveling cycle is performed in the above embodiment That is, N cycles may be run continuously, or N runs may be run at an arbitrary interval. However, there is a merit that the shorter the interval, the higher the tendency to generate the latest and accurate map.
  • a second embodiment of the present invention will be described.
  • a plurality of navigation vehicles equipped with the trajectory collection terminal 100 described in the first embodiment are made to travel, and a map is generated by the map generation server using the traveling tracks collected by each navigation vehicle. It is characterized by A plurality of navigation vehicles equipped with the trajectory collection terminal can be simultaneously traveled in this way, and the effective trajectory acquired by each navigation vehicle can be merged to create a map immediately.
  • FIG. 16 is a block diagram of a map creation support system according to the second embodiment of the present invention.
  • the system shown in this figure includes a plurality of trajectory collection terminals 100A, 100B, 100C, and a map generation server 150.
  • the plurality of trajectory collection terminals 100A, 100B, and 100C are provided in the same configuration as the trajectory collection terminal 100 according to the first embodiment, and are mounted on a mine dump (navigation vehicle).
  • the plurality of trajectory collection terminals 100A, 100B, and 100C are configured to be capable of data communication with the map generation server 150 via a wireless communication device or the like, as in the case of the first embodiment.
  • the processes executed by the trajectory collection terminals 100A, 100B, and 100C are the same as those shown in FIG. Although only three trajectory collection terminals are displayed in the example of FIG. 16, this is merely an example.
  • the vehicle position DB 193 (vehicle position table), the detour detection DB 195 (detour detection table), and the valid trajectory DB 185 (valid trajectory table) on the map generation server 150 side are transmitted from the trajectory collection terminals 100A, 100B, 100C.
  • the data is stored so that it can be determined from which terminal 100A, 100B, 100C the data is transmitted.
  • a record indicating the ID of each of the trajectory collection terminals 100A, 100B, and 100C may be attached to each table, or a character string unique to the terminal may be attached to traveling routine data common to each table and stored.
  • the latter method is “1001” as data indicating the first travel of the trajectory collection terminal 100A, “2001” as data indicating the first travel of the trajectory collection terminal 100B, and 1 of the trajectory collection terminal 100C.
  • "3001” is input as data indicating the second run, the thousands place of each data is set as the number of the trajectory collection terminal, and the lower one is set as the run cycle.
  • the map generation server 150 executes a process of creating a map by merging the valid trajectories collected by the terminals 100A, 100B and 100C and stored in the valid trajectory DB 185 in the same manner as in the first embodiment. Thereby, a map can be created from the effective trajectory which each terminal 100A, 100B, 100C collected.
  • the traveling locus (effective locus) can be acquired from a plurality of navigation vehicles traveling simultaneously, so that a map can be created more easily than in the first embodiment. be able to.
  • the present embodiment corresponds to one in which the trajectory collection terminal 100 and the mapping server 150 described in the first embodiment are mounted on the same navigation vehicle, and the navigation vehicle corresponds to the trajectory collection terminal 100 and the mapping server Each configuration according to 150 is provided. Thereby, the map can be generated quickly while collecting the traveling track of the navigation vehicle.
  • FIG. 17 is a block diagram of a map creation support system according to a third embodiment of the present invention.
  • the locus collection terminal 1700 shown in this figure has the configuration of the locus collection terminal 100 according to the first embodiment (the obstacle detection unit 105, the vehicle position measurement unit 110, the detour detection unit 115, the terminal side input unit 120, Configurations of the terminal side display unit 125, the terminal side control unit 130, the vehicle position DB 135, and the obstacle detection DB 140) and the map generation server 150 according to the first embodiment (trajectory fusion unit 155, effective trajectory extraction unit 160, an effective trajectory DB 185, and a map DB 190).
  • the first embodiment the obstacle detection unit 105, the vehicle position measurement unit 110, the detour detection unit 115, the terminal side input unit 120, Configurations of the terminal side display unit 125, the terminal side control unit 130, the vehicle position DB 135, and the obstacle detection DB 140
  • the map generation server 150 according to the first embodiment (trajectory fusion unit 155, effective
  • the locus collection terminal 1700 is configured to omit the function related to data transmission and reception in the first embodiment and to sequentially process in the terminal.
  • the processes relating to travel locus acquisition and map creation are the same as those described in the first embodiment, and thus will not be described.
  • mapping support system configured in this way, although the processing load on the side of the trajectory collection terminal 1700 is larger than that in the first embodiment, there is no need to go through the server 150. You can generate a map.
  • the system configuration of the present embodiment is the same as that of the first embodiment, but road shoulder distance calculation processing and detour segment determination processing in the trajectory collection terminal 100 are different from those of the first embodiment. That is, in the present embodiment, the distance to the left and right road shoulders is calculated, and based on the left and right road shoulder distances, determination of the detour section is performed by determining whether the navigation vehicle has exceeded the center of the road. .
  • FIG. 18 is a flowchart relating to travel locus collection processing by the locus collection terminal 100 according to the fourth embodiment of the present invention.
  • the flowchart shown in this figure is different from that of FIG. 3 in the processing according to the two steps (steps 1815 and 1820) following step 910.
  • step 1815 in order to determine whether or not the host vehicle is detouring, the road shoulder distance measuring unit 143 determines the distance from the left side shoulder to the host vehicle (left side shoulder distance) Dl and the distance from the right side shoulder to the host vehicle. Measure the distance (right side shoulder distance) Dr simultaneously.
  • step 1820 the detour detection unit 115 executes processing for determining whether the road center line has been exceeded using the left road shoulder distance D1 and the right road shoulder distance Dr measured in step 1815. That is, the magnitude relationship between Dl and Dr is compared.
  • step Proceed since the host vehicle during normal driving travels on the left side of the road, it is determined that the host vehicle does not exceed the road center when Dl ⁇ Dr (that is, when the left shoulder is closer), step Proceed to 940.
  • step Proceed to 940 On the other hand, it is determined that the vehicle has exceeded the road center (center line) when the magnitude relationship between the road shoulder distances Dl and Dr reverses in this case (when Dl ⁇ ⁇ Dr (when the road shoulder on the right side is closer)). And go to step 925.
  • FIG. 19 an obstacle 1930 is present near the road shoulder 1950 on the left side with respect to the traveling direction of the vehicle 210, and in order to avoid the obstacle 1930, the vehicle detours beyond the road center 1940 in the road width direction. The case is shown.
  • the vehicle travels on the left side of the road center 1940 with respect to the traveling direction.
  • the detour detection unit 115 it is confirmed by the detour detection unit 115 that the left road shoulder distance Dl (1960) is equal to or less than the right road shoulder distance Dr (1965), and it is determined that the vehicle does not exceed the road center 1940 (no detour).
  • the host vehicle detours to avoid the obstacle 1930 the vehicle travels on the right side beyond the road center 1940.
  • the detour section has occurred by determining whether or not the road center is exceeded based on the magnitude relationship between the left and right road shoulder distances Dl and Dr. .
  • This method is effective when traveling on a relatively narrow road where it is easy to measure both left and right road shoulder distances Dl and Dr, and it can be accurately determined whether or not the road center has been crossed. Further, it is possible to perform more accurate detour determination by properly using detour determination according to the first embodiment and detour determination according to the fourth embodiment according to the size of the road width of the road. . In the first embodiment, since the distance to the left side shoulder is measured, it is effective when it is difficult to measure the distance to the right side shoulder (for example, when the road width is relatively wide).
  • the detour determination may be performed based on the ratio of the left side shoulder distance and the right side shoulder distance.
  • the navigation vehicle is run to create a map of a mine dump
  • the trajectory collection terminal 100 can be mounted, the map is based on the movement trajectories of other moving objects.
  • the present invention is not limited to the above embodiment, and includes various modifications within the scope not departing from the gist of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
  • each component related to the trajectory collection terminal and the mapping server functions of each component, execution processing, etc., part or all of them are designed with hardware (for example, logic for executing each function is integrated circuit) Etc.).
  • the configurations relating to the trajectory collection terminal and the map creation server described above are also read as programs (software) in which each function relating to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU). Good.
  • the information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A map making assist system, that makes maps on the basis of a trajectory when moving a probe vehicle (210) along a target route, comprises a positioning unit (110) that measures the position of the probe vehicle (210), a self-position database (135) in which the probe vehicle (210) trajectory is stored, and a detour detecting unit (115) that specifies, from the trajectory, a detour section in which the probe vehicle (210) is presumed to have left the target route, on the basis of the trajectory of the probe vehicle (210) stored in the self-position database (135).

Description

地図作成支援システムMap making support system
 本発明は車両等の移動体用の地図作成支援システムに関する。 The present invention relates to a map creation support system for mobile bodies such as vehicles.
 地上を移動する移動体(車両等)の目的地までの移動を支援するためのシステムの1つとして、当該目的地までの当該移動体の移動経路(目標経路)を示す地図の作成を支援するシステム(地図作成支援システム)がある。 As one of the systems to support the movement to the destination of moving objects (vehicles etc.) moving on the ground, we support the creation of a map showing the moving route (target route) of the moving object to the destination There is a system (mapping support system).
 例えば、鉱山におけるダンプトラック(鉱山ダンプ)の航行では、当該鉱山ダンプを無人走行させるための自律走行システムが利用されることがあるが、当該システムにおいて鉱山ダンプが自律走行する際に利用される地図(点列によって表される走行経路)を、航測車両(移動体)に装着したGPS受信機などの測位装置で収集することがある。例えば、まず、目標経路に沿って航測車両を有人で走行させて、その走行軌跡(移動軌跡)を測位装置により収集して地図を生成する(地図生成モード)。その後、生成した地図に沿って、鉱山ダンプを自律走行(無人走行)させる(プレイバックモード)。 For example, in navigation of a dump truck (mine dump) in a mine, an autonomous travel system for unmanned travel of the mine dump may be used, but a map used when the mine dump travels autonomously in the system A (traveling path represented by a point sequence) may be collected by a positioning device such as a GPS receiver attached to a navigation vehicle (mobile body). For example, first, the navigation vehicle is made to travel along the target route, and the travel locus (movement locus) is collected by the positioning device to generate a map (map generation mode). After that, the mining dump is autonomously traveled (unmanned travel) along the generated map (playback mode).
 ところで、鉱山現場では、鉱山ダンプが走行する搬送経路が頻繁に変更されるため、その都度、目標経路(地図)作り直す必要がある。特開平9-198133号公報には、地図(自動走行コース)を生成するために、目標経路を複数の区間に分割し、測位装置を搭載したダンプトラックに当該各区間を走行させることで走行軌跡を収集する技術が開示されている。さらに、当該複数の区間の中から選択した区間のみについて走行軌跡を同様に収集し、当該新たな走行軌跡と残りの区間に係る走行軌跡とを結合することで、全体として新たな地図を収集する技術も開示されている。 By the way, at the mine site, since the transport route where the mine dump travels is frequently changed, it is necessary to recreate the target route (map) each time. In order to generate a map (automatic traveling course), the travel route is divided by dividing the target route into a plurality of sections and causing each section to travel on a dump truck equipped with a positioning device. The technology for collecting Furthermore, travel tracks are similarly collected only for the sections selected from the plurality of sections, and a new map is collected as a whole by combining the new travel tracks with the travel tracks pertaining to the remaining sections. Technology is also disclosed.
特開平9-198133号公報Japanese Patent Application Laid-Open No. 9-1998133
 上記のように目標経路に沿って移動体(航測車両)を実際に走行させることで移動軌跡及び地図を取得する方法では、移動軌跡の収集時に各区間を移動中の移動体の前方に障害物(例えば、他のダンプトラックが落とした土砂及び岩石と、低速走行する工事車両及びダンプトラック等)が存在した場合には、当該障害物を迂回したために目標経路から外れてしまい、地図作成に有効な移動軌跡(有効軌跡)の取得に失敗することがある。 As described above, in the method of acquiring the movement locus and the map by actually moving the moving object (navigation vehicle) along the target route, the obstacle in front of the moving object moving in each section when collecting the movement locus (For example, if there are earth and sand and rocks dropped by other dump trucks, construction vehicles traveling at low speed, dump trucks, etc.), the obstacle will be detoured and the route will deviate from the target route, which is effective for map creation. Acquisition of an effective movement trajectory (effective trajectory) may fail.
 この点について、上記文献に係る技術は、有効軌跡の取得に失敗した区間のみを再度走行すれば良く、目標経路の全区間を再度走行する必要が無くなる点がメリットとなる。しかし、当該技術では、迂回が発生した区間(有効軌跡の取得に失敗した区間)の特定は人が行わなければならない。また、各区間のどの場所で迂回が発生したかまでは特定できない。 In this regard, the technique according to the above-mentioned document is advantageous in that it is sufficient to travel again only in the section where acquisition of the effective trajectory fails, and there is no need to travel all sections of the target route again. However, in this technology, a person must specify the section in which the detour has occurred (the section in which acquisition of the effective trajectory fails). In addition, it is not possible to identify at which place of each section the diversion has occurred.
 本発明の目的は、有効軌跡の取得に失敗した場所を容易に判断できる地図作成支援システムを提供することにある。 An object of the present invention is to provide a cartographic support system capable of easily determining a location where acquisition of an effective trajectory has failed.
 本発明は、上記目的を達成するために、目標経路に沿って移動体を移動させた際の軌跡に基づいて地図を作成する地図作成支援システムにおいて、前記移動体の位置を測定するための測位部と、前記移動体の移動軌跡が記憶される軌跡記憶部と、前記軌跡記憶部に記憶された前記移動体の移動軌跡に基づいて、前記移動体が前記目標経路から外れたと推定される迂回区間を当該移動軌跡の中から特定する迂回検知部とを備えるものとする。 The present invention, in order to achieve the above object, in a cartographic support system for creating a map based on a locus when moving a mobile object along a target route, positioning for measuring the position of the mobile object And a detour in which it is estimated that the moving object deviates from the target route based on the movement locus of the moving object stored in the locus storage unit and the locus storage unit in which the movement locus of the moving object is stored. And a detour detection unit that specifies the section from among the movement trajectories.
 本発明によれば、有効軌跡の取得に失敗した場所を容易に判断できる。 According to the present invention, it is possible to easily determine the place where acquisition of the effective trajectory has failed.
本発明の第1の実施の形態に係る地図作成支援システムの構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the cartography assistance system which concerns on the 1st Embodiment of this invention. 航測車両による路肩距離測定の概念図。The conceptual diagram of the road shoulder distance measurement by a navigation vehicle. 軌跡収集端末による走行軌跡の収集処理のフローチャート。The flowchart of the collection process of the traveling locus by a locus | trajectory collection terminal. 自車位置DBに記憶された自車位置テーブルを示す図。The figure which shows the own vehicle position table memorize | stored in own vehicle position DB. 自車の進行方向に障害物が無く、目標経路に沿って走行している場合を示す図。The figure which shows the case where there is no obstruction in the advancing direction of the own vehicle, and is drive | working along a target route. 障害物を避けるために路肩から離れる方向に迂回する場合と、障害物を避けるために路肩に近づく方向に迂回する場合を示す図。The figure which shows the case where it diverts in the direction away from a road shoulder in order to avoid an obstacle, and the case where it diverts in the direction which approaches a road shoulder in order to avoid an obstacle. 迂回検知DBに記憶された迂回検知テーブルを示す図。The figure which shows the detour detection table memorize | stored in detour detection DB. 航測車両の前方に鉱山ダンプ等の車両が低速走行している様子を示す図。The figure which shows a mode that vehicles, such as a mine dumping, are drive | working at low speed ahead of the navigation vehicle. 航測車両の前方に落下物が存在している様子を示す図。The figure which shows a mode that the falling object exists ahead of the navigation vehicle. 航測車両の前方の路面に凹凸が存在している様子を示す図。The figure which shows a mode that unevenness exists in the road surface ahead of a measurement vehicle. 軌跡収集端末から地図生成サーバへのデータ送信処理のフローチャート。The flowchart of the data transmission process from a locus | trajectory collection terminal to a map production | generation server. 地図生成サーバによる地図生成処理のフローチャート。6 is a flowchart of map generation processing by the map generation server. 航測車両で同じ目標経路を2回走行して得た走行軌跡を利用して地図を生成する一例を示す図。The figure which shows an example which produces | generates a map using the travel locus obtained by traveling the same target route twice by the navigation vehicle. 有効軌跡DBに記憶された有効軌跡テーブルを示す図。The figure which shows the effective locus | trajectory table memorize | stored in effective locus | trajectory DB. 地図DBに記憶された地図生成テーブルを示す図。The figure which shows the map production | generation table memorize | stored in map DB. 本発明の第2の実施の形態に係る地図作成支援システムの構成図。The block diagram of the cartography assistance system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る地図作成支援システムの構成図。The block diagram of the cartography assistance system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る軌跡収集端末による走行軌跡の収集処理のフローチャート。The flowchart of the collection process of the traveling locus by the locus | trajectory collection terminal which concerns on the 4th Embodiment of this invention. 左側の路肩の近くの障害物を避けるために道路中心を越えて自車が迂回する場合を示す図。The figure which shows the case where a self-vehicle detours over the road center, in order to avoid the obstacle near the left shoulder.
 以下、本発明の実施の形態について図面を用いて説明する。ここでは、鉱山で利用されるダンプトラック(鉱山ダンプ)の自律走行システムや運行管理システムで使われる地図の作成支援システム(地図作成支援システム)を例に挙げて説明する。 Hereinafter, embodiments of the present invention will be described using the drawings. Here, a description will be given by taking as an example a map creation support system (map creation support system) used in an autonomous travel system of a dump truck (mine dump) used in a mine and in an operation management system.
 本発明の第1の実施の形態に係る地図作成支援システムは、目標経路(鉱山ダンプの運搬経路)に沿って航測車両(移動体)を移動させた際の走行軌跡に基づいて鉱山ダンプ用の地図を作成するもので、航測車両(移動体)が目標経路に沿って走行する間に、障害物の存在等を理由に当該目標経路から外れて走行してしまった区間(迂回区間)が発生したときには、航測車両の走行軌跡から当該迂回区間を自動的に判別及び除外する機能を備える。そして、当該迂回区間を少なくとも1回以上追加走行して地図作成に有効な軌跡を取得し、複数の有効な軌跡を融合することで目標経路に近い地図を自動的に生成する。なお、航測車両が目標経路に沿って走行する際に迂回区間が発生する理由の具体例としては、当該目標経路上に、(1)回避しなければならない障害物、(2)追い抜きをしなければならない前方車両、(3)目標経路に沿って走れない程の路面の荒れ、が存在していることがある。なお、前述した障害物とは、航測車両の走行上障害となる物だけでなく、路面の凹凸や路肩の崩落による欠損など、障害となる路面の状況も含む広義的意味で用いている。 A mapping support system according to a first embodiment of the present invention is used for mining dumps based on a traveling locus when a navigation vehicle (mobile body) is moved along a target route (transportation route of mine dumping). While creating a map, while the navigation vehicle (mobile unit) travels along the target route, there is a section (detour section) where the vehicle has run away from the target route due to the presence of an obstacle, etc. When it does, it has a function which distinguishes and excludes the detour section concerned automatically from a run track of a measurement vehicle. Then, the detour section is additionally traveled at least once or more to acquire a locus effective for map creation, and a plurality of effective loci are fused to automatically generate a map close to the target route. As a specific example of the reason why the detour section occurs when the navigation vehicle travels along the target route, (1) an obstacle that must be avoided, (2) overtaking must be performed on the target route. There are cases where there are vehicles ahead, and (3) road surface roughness that can not run along the target route. In addition, the obstacle mentioned above is used in a broad sense including not only the thing which becomes an obstacle on running of the navigation vehicle but also the condition of the road surface which becomes an obstacle such as the unevenness of the road surface or the loss due to the fall of the road shoulder.
 図1は本発明の第1の実施の形態に係る地図作成支援システムの構成図である。この図に示す地図作成支援システムは、航測車両(自車)に搭載され、自車の移動軌跡である走行軌跡を収集する軌跡収集端末100と、鉱山内の建屋等の内部に設置され、軌跡収集端末100で収集した走行軌跡を融合し鉱山ダンプ用の地図を生成する地図生成サーバ150を備えている。 FIG. 1 is a block diagram of a map creation support system according to a first embodiment of the present invention. The mapping support system shown in this figure is installed in a navigation vehicle (vehicle) and is installed in a trajectory collection terminal 100 for collecting a traveling trajectory which is a movement trajectory of the vehicle, a building inside a mine, etc. The map generation server 150 which merges the travel locus collected by the collection terminal 100 and generates a map for mine dumping is provided.
 軌跡収集端末100は、自車の前方の状況を検知するための装置であり、自車の前方に存在する障害物を検知する障害物検知部(前方検知部)105と、例えばGPS、IMU(慣性計測装置)及び自車の速度情報(車速情報)を使って自車位置を測位する処理が実行される測位部である自車位置測位部110と、自車位置測位部110により測位された自車位置が測位時刻に関連付けて記憶され、これにより自車の走行軌跡(移動軌跡)が点列として記憶される自車位置DB(軌跡記憶部)135と、自車位置DB135の走行軌跡に基づいて、自車が目標経路から外れたと推定される区間(「迂回区間」と称することがある)を特定する処理が実行される迂回検知部115と、迂回検知部115により検知された迂回区間の情報(「迂回情報」と称することがある)が記憶される迂回検知DB(迂回区間記憶部)140と、自車が走行する道路の路肩までの距離を計測する距離計測部である路肩距離計測部143と、ユーザからの入力を受け付ける端末側入力部120と、ユーザに対して情報を提示する端末側表示部125と、軌跡収集端末100の全体処理を制御する処理が実行される端末側制御部130と、自車位置DB135の自車の走行軌跡や迂回検知DB140の迂回区間等の情報を地図生成サーバ150に送信するデータ送信部145とを備える。 The locus collection terminal 100 is a device for detecting a situation in front of the vehicle, and an obstacle detection unit (forward detection unit) 105 for detecting an obstacle existing in front of the vehicle, for example, GPS, IMU ( The vehicle position positioning unit 110, which is a positioning unit that executes a process of positioning the vehicle position using the inertial measurement device) and the speed information (vehicle speed information) of the vehicle, and the vehicle position measurement unit 110 The vehicle position is stored in association with the positioning time, and the travel locus (movement locus) of the vehicle is stored as a point sequence as a travel path of the vehicle position DB (locus storage unit) 135 and the vehicle position DB 135 Based on the detour detection unit 115 in which processing for identifying a section in which the host vehicle is estimated to have deviated from the target route (sometimes referred to as a “detour section”) is performed, and the detour section detected by the detour detection unit 115 Information (“ A detour detection DB (detour section storage unit) 140 in which information is sometimes stored) and a road shoulder distance measurement unit 143 which is a distance measurement unit for measuring the distance to the road shoulder of the road on which the vehicle is traveling; A terminal-side input unit 120 that receives an input from a user, a terminal-side display unit 125 that presents information to the user, and a terminal-side control unit 130 that executes processing for controlling the overall processing of the trajectory collection terminal 100; And a data transmission unit 145 for transmitting information such as a traveling locus of the vehicle of the vehicle position DB 135 and a bypass section of the bypass detection DB 140 to the map generation server 150.
 図2は本発明の実施の形態に係る航測車両210による路肩距離測定の概念図である。この図では、航測車両(自車)210が目標経路510上を走行している様子を示している。目標経路510が設定される道路には、左側路肩570と、右側路肩580と、当該道路の幅方向において左側路肩570と右側路肩580の中央に位置する道路中心線520が存在する。図2に示した自車210の前方には、左側路肩570までの距離550を計測するための左路肩距離センサ530と、右側路肩580までの距離560を計測するための右路肩距離センサ540が搭載されている。センサ530,540の検出値は路肩距離計測部143に出力されて各路肩距離550,560を算出する際に利用される。なお、第1の実施の形態では左路肩距離センサ530のみが使用され、後述する第4の実施の形態では左路肩距離センサ530と右路肩距離センサ540の両方が使用される。 FIG. 2 is a conceptual view of road-shoulder distance measurement by the navigation vehicle 210 according to the embodiment of the present invention. In this figure, the navigation vehicle (vehicle) 210 is shown traveling on the target route 510. On the road on which the target route 510 is set, there are a left road shoulder 570, a right road shoulder 580, and a road center line 520 located at the center of the left road shoulder 570 and the right road shoulder 580 in the width direction of the road. At the front of the vehicle 210 shown in FIG. 2, a left road shoulder distance sensor 530 for measuring the distance 550 to the left road shoulder 570 and a right road shoulder distance sensor 540 for measuring the distance 560 to the right road shoulder 580 are shown. It is mounted. The detection values of the sensors 530 and 540 are output to the road-shoulder distance measuring unit 143 and used when calculating the road- shoulder distances 550 and 560. In the first embodiment, only the left road shoulder distance sensor 530 is used, and in the fourth embodiment to be described later, both the left road shoulder distance sensor 530 and the right road shoulder distance sensor 540 are used.
 図1に戻り、地図生成サーバ150は、軌跡収集端末100から送信される自車位置情報が蓄積されるサーバ自車位置DB(軌跡記憶部)193と、軌跡収集端末100から送信される迂回情報が蓄積されるサーバ迂回検知位置DB(迂回区間記憶部)195と、サーバ自車位置DB193に記憶された走行軌跡の中から迂回情報に基づいて迂回区間を除外する処理が実行される有効軌跡抽出部160と、有効軌跡抽出部160によって迂回区間が除外された走行軌跡(「有効軌跡」と称することがある)が記憶される有効軌跡DB(有効軌跡記憶部)185と、有効軌跡DB185に記憶された同一の目標経路に係る複数の有効軌跡のうち、異なる時刻に取得された2つ以上の有効軌跡を融合することで地図を生成する処理が実行される軌跡融合部155と、軌跡融合部155で生成された地図が格納される地図DB190と、ユーザの入力を受け付けるサーバ側入力部165と、ユーザに情報を提示するサーバ側表示部170と、軌跡収集端末100から送信される情報を受信するデータ受信部175と、地図生成サーバ150の全体処理を制御する処理が実行されるサーバ側制御部180とを備える。 Returning to FIG. 1, the map generation server 150 stores the server's own vehicle position DB (trajectory storage unit) 193 in which the vehicle position information transmitted from the trajectory collection terminal 100 is stored, and the bypass information transmitted from the trajectory collection terminal 100 Out of the running path stored in the server detour detection position DB (detouring section storage unit) 195 in which is stored and the server self-location DB 193, processing for excluding the detouring section based on the detour information is executed An effective trajectory DB (effective trajectory storage unit) 185 in which a traveling trajectory (sometimes referred to as an “effective trajectory”) from which a detour section has been excluded by the portion 160 and the effective trajectory extracting unit 160 is stored. Processing of generating a map by fusing two or more valid trajectories acquired at different times among a plurality of valid trajectories related to the same target route A trace fusion unit 155, a map DB 190 in which the map generated by the trajectory fusion unit 155 is stored, a server side input unit 165 for receiving user input, a server side display unit 170 for presenting information to the user, and trajectory collection It includes a data receiving unit 175 that receives information transmitted from the terminal 100, and a server-side control unit 180 that executes processing for controlling the overall processing of the map generation server 150.
 なお、特に図示していないが、軌跡収集端末100と地図生成サーバ150は、それぞれ、上記各部で行われる処理に係るプログラムを実行するための演算手段としての演算処理装置(例えば、CPU)と、当該各プログラムをはじめ各種データを記憶するための記憶手段としての記憶装置(例えば、ROM、RAMおよびフラッシュメモリ等の半導体メモリや、ハードディスクドライブ等の磁気記憶装置)と、演算処理装置及び記憶装置へのデータ及び指示等の入出力制御を行うための入出力演算処理装置を備えている。 Although not shown in particular, the trajectory collection terminal 100 and the map generation server 150 each include an arithmetic processing unit (for example, a CPU) as an arithmetic unit for executing a program related to the processing performed in each of the above-described units. Storage devices as storage means for storing various data including the respective programs (for example, semiconductor memory such as ROM, RAM and flash memory, magnetic storage device such as hard disk drive), arithmetic processing device and storage device And an input / output arithmetic processing unit for performing input / output control of data, instructions and the like.
 上記のように構成される第1の実施の形態に係るシステムで実行される処理フローについて図を用いて説明する。図3は、軌跡収集端末100による走行軌跡の収集処理のフローチャートである。 The processing flow executed by the system according to the first embodiment configured as described above will be described using the drawings. FIG. 3 is a flowchart of the collection process of the traveling locus by the locus collection terminal 100.
 図3におけるステップ900では、軌跡収集端末100において、ユーザからの処理開始要求の受付や、航測車両のエンジンは作動済か否か等を確認する初期設定処理を行う。ユーザからの処理開始要求は、端末側入力部120を介して行われる。また、処理開始に際して航測車両が準備完了であるか否かといった状態が端末側表示部125を介してユーザに表示される。ステップ900が終了したらステップ905に進む。 In step 900 in FIG. 3, in the trajectory collection terminal 100, initialization setting processing is performed to confirm whether the processing start request from the user is received or whether the engine of the navigation vehicle has been operated. The process start request from the user is made via the terminal side input unit 120. Further, at the start of processing, a state as to whether or not the navigation vehicle is ready is displayed to the user via the terminal display unit 125. When step 900 is completed, the process proceeds to step 905.
 ステップ905ではユーザからの処理終了要求の有無を確認する。ユーザからの終了要求の受付は、端末側入力部120を介して行われる。ここで、ユーザからの処理終了要求が有った場合には処理を終了し(ステップ950)、処理終了要求が無かった場合にはステップ910に進む。 In step 905, it is confirmed whether there is a processing end request from the user. The acceptance of the termination request from the user is performed via the terminal side input unit 120. Here, if there is a process end request from the user, the process is ended (step 950), and if there is no process end request, the process proceeds to step 910.
 ステップ910では、自車位置測位部110は、航測車両(自車)の位置を測位し、当該位置及び測位時刻を自車位置DB135に記憶する処理を実行する。自車位置の測位は、GPSによる緯度経度の計測、IMU(慣性計測装置)による位置情報の計測及び車輪速情報を使った進行距離情報などを適宜組み合わせて行われる。さらに、自車位置測位部110は、GPS時刻又は内部時計等の時刻を用いて測位データにタイムスタンプ(測位時刻)を付与する。ここで測定された自車の緯度経度情報及び測位時刻は、自車位置(軌跡記憶部)DB135に記憶される。次に自車位置DB135について図4を用いて説明する。 In step 910, the vehicle position measurement unit 110 performs a process of measuring the position of the navigation vehicle (vehicle) and storing the position and the positioning time in the vehicle position DB 135. Positioning of the own vehicle position is performed by appropriately combining measurement of latitude and longitude by GPS, measurement of position information by an IMU (inertial measurement device), traveling distance information using wheel speed information, and the like. Furthermore, the vehicle position measurement unit 110 assigns a time stamp (positioning time) to the positioning data using the GPS time or a time such as an internal clock. The latitude and longitude information and the positioning time of the vehicle measured here are stored in the vehicle position (trajectory storage unit) DB 135. Next, the vehicle position DB 135 will be described with reference to FIG.
 図4は本発明の実施の形態に係る自車位置DB135に記憶された自車位置テーブル1000を示す図である。自車位置テーブル1000は、自車位置を蓄積するためのテーブルであり、自車位置測位時刻1005と、自車の緯度1010と、自車の経度1015と、走行軌跡取得のための走行が何回目(何周目)であるかを示す走行回次1020を記憶している。自車位置測位時刻1005は、GPS絶対時刻やタイマーによる絶対時刻を示し、自車位置測位のタイムスタンプの役割を有する。このように自車位置DB135には、航測車両210の走行軌跡が時系列ごとの点の集合として記憶される。 FIG. 4 is a diagram showing a vehicle position table 1000 stored in a vehicle position DB 135 according to the embodiment of the present invention. The vehicle position table 1000 is a table for accumulating the vehicle position, and the vehicle position positioning time 1005, the latitude 1010 of the vehicle, the longitude 1015 of the vehicle, and the traveling for acquiring the traveling locus are A traveling cycle 1020 indicating the number of turns (the number of turns) is stored. The own vehicle positioning time 1005 indicates an absolute time by the GPS absolute time or the timer, and has a role of a time stamp of the own vehicle positioning. As described above, the traveling locus of the navigation vehicle 210 is stored in the vehicle position DB 135 as a set of points for each time series.
 なお、自車位置テーブル1000の走行回次1020に入力される走行回数番号のカウント方法(増加方法)としては、例えば、ステップ900でユーザから処理開始要求があったごとに当該番号を自動的に1ずつ増加する方法や、目標経路における所定の地点を通過するとごとに当該番号を自動的に1ずつ増加する方法がある。 In addition, as a counting method (increasing method) of the number-of-traveling number input to the traveling routine 1020 of the host vehicle position table 1000, for example, the number is automatically selected each time the user requests processing start in step 900. There is a method of incrementing by one or a method of automatically incrementing the number by one each time a predetermined point on the target route is passed.
 ステップ910で自車位置の取得及び記憶が完了したら、ステップ915に進む。ステップ915では、路肩距離計測部143が、自車が迂回走行をしているか否かを判断するために、自車の進行方向に対して左側に位置する路肩から自車までの距離(左側路肩距離)Dを計測する処理を実行する。なお、ここでは左側通行を前提としているため、左側の路肩までの距離を測定しているが、右側通行の場合には右側の路肩までの距離を測定することになる。すなわち、自車の通常の走行位置に近い方の路肩までの距離を測定すれば良い。 When acquisition and storage of the vehicle position are completed in step 910, the process proceeds to step 915. In step 915, the road-shoulder distance measuring unit 143 determines the distance from the road shoulder located on the left side with respect to the traveling direction of the vehicle to the vehicle in order to determine whether the vehicle is detouring Execute processing to measure distance D. In addition, since it is premised on the left side passage here, the distance to the left side shoulder is measured, but in the case of right side passage, the distance to the right side shoulder is measured. That is, the distance to the road shoulder closer to the normal traveling position of the vehicle may be measured.
 ステップ920では、迂回検知部115が、ステップ915で測定した左側路肩距離Dが第1設定値(L1)以上かつ第2設定値(L2)以下(L1≦D≦L2)であるか否かを判定する処理を実行する。第1設定値L1及び第2設定値L2は、迂回区間が発生したか否かを確認するための1つの指標であり、障害物検知部105による検知結果とともに迂回区間発生の判定に利用されている。第1設定値L1は、自車前方の障害物の左側から迂回する場合(路肩に近づいて迂回する場合)に迂回区間の発生を判定するための値であり、第2設定値L2は、自車前方の障害物の右側から迂回する場合(路肩から離れて迂回する場合)に迂回区間の発生を判定するための値である。 In step 920, the detour detection unit 115 determines whether the left road shoulder distance D measured in step 915 is equal to or greater than a first set value (L1) and equal to or less than a second set value (L2) (L1 ≦ D ≦ L2). Execute the process to judge. The first set value L1 and the second set value L2 are one index for confirming whether or not a detour section has occurred, and are used together with the detection result by the obstacle detection unit 105 to determine the generation of the detour section There is. The first set value L1 is a value for determining the occurrence of the detour section when detouring from the left side of the obstacle ahead of the host vehicle (when approaching the road shoulder and detouring), and the second set value L2 This is a value for determining the occurrence of a detour section when detouring from the right side of the obstacle ahead of the vehicle (when detouring away from the road shoulder).
 なお、ここでは、自車前方の障害物の右側及び左側の両方から当該障害物を迂回する場合を想定して2つの設定値L1,L2を設定したが、どちらか一方から迂回することを予め決めておき、当該方向に係る一方の設定値のみを用いて迂回区間の発生を判定しても良い。 Here, two setting values L1 and L2 are set on the assumption that the obstacle is detoured from both the right side and the left side of the obstacle ahead of the host vehicle, but detouring from one of them is previously performed. It is also possible to determine the occurrence of the detour section using only one set value related to the direction, as determined.
 ステップ920で、路肩距離Dが、L1以上かつL2以下の場合にはステップ940に進み、それ以外の場合にはステップ925に進む。 In step 920, if the road shoulder distance D is L1 or more and L2 or less, the process proceeds to step 940; otherwise, the process proceeds to step 925.
 ここで、上記ステップ915,920に関連して、路肩距離Dと迂回走行について図5,6を用いて説明する。図5は自車の進行方向に障害物が無く、目標経路に沿って走行している場合を示す図である。図6は、自車の進行方向の路肩に近い位置に障害物が存在するため、当該障害物を避けるために路肩から離れる方向に迂回する場合と、路肩から遠い位置に障害物が存在するため、当該障害物を避けるために路肩に近づく方向に迂回する場合を示す図である。なお、各図において先の図と同じ部分には同じ符号を付して説明を省略することがある(後の図も同様に扱う)。 Here, the shoulder distance D and the detouring will be described with reference to FIGS. FIG. 5 is a diagram showing a case where there is no obstacle in the traveling direction of the vehicle and the vehicle travels along the target route. In FIG. 6, since an obstacle is present at a position close to the road shoulder in the traveling direction of the vehicle, the obstacle is present at a position away from the road shoulder and away from the road shoulder in order to avoid the obstacle. It is a figure which shows the case where it detours in the direction which approaches a road shoulder in order to avoid the said obstruction. In the drawings, the same parts as those in the previous drawings may be assigned the same reference numerals and descriptions thereof may be omitted (the same shall apply to the subsequent drawings).
 図5の場合には、道路700上を目標経路に沿って自車210が走行することで、目標経路に沿った走行軌跡720が描かれる。道路700の左側には路肩750が存在し、左側路肩距離(D)730は略一定であり迂回区間は発生しない。したがって、この間は、ステップ920を介して常にステップ940に進むことになる。 In the case of FIG. 5, a traveling locus 720 along the target route is drawn by the vehicle 210 traveling on the road 700 along the target route. A road shoulder 750 exists on the left side of the road 700, the left road shoulder distance (D) 730 is substantially constant, and no detour section occurs. Therefore, during this time, always go to step 940 via step 920.
 一方、図6の場合、道路700上を自車210が走行することで、走行軌跡850が描かれる。道路700の左側には路肩750が存在し、左路肩に近い障害物810と、道路中央付近に存在する(すなわち、左路肩から遠い)障害物830が存在している。この場合自車210は、通常走行時では図5の場合と同様に左側路肩距離(D)730は略一定である。しかし、自車210が路肩に近い障害物810を避けようとした場合には、障害物810の右側を迂回走行するため、左側路肩距離(D)820はL2より大きくなってしまう。したがって、障害物810を避けている間は、ステップ920を介してステップ925に進むことになる。 On the other hand, in the case of FIG. 6, a traveling locus 850 is drawn by the vehicle 210 traveling on the road 700. A road shoulder 750 exists on the left side of the road 700, an obstacle 810 near the left road shoulder, and an obstacle 830 near the center of the road (ie, far from the left road shoulder). In this case, the left side road shoulder distance (D) 730 of the vehicle 210 is substantially constant during normal traveling as in the case of FIG. However, when the vehicle 210 tries to avoid the obstacle 810 near the road shoulder, the left road shoulder distance (D) 820 becomes larger than L2 because the vehicle 210 detours on the right side of the obstacle 810. Therefore, while avoiding the obstacle 810, the process proceeds to step 925 via step 920.
 また、図6において、自車が道路700の中心付近に存在する(路肩から遠い)障害物830を避けようとする場合には、障害物830の左側を迂回走行するため、左側路肩距離(D)840はL1より小さくなってしまう。したがって、障害物830を避けている間は、ステップ920を介してステップ925に進むことになる。 Further, in FIG. 6, when the vehicle tries to avoid the obstacle 830 located near the center of the road 700 (far from the road shoulder), the left road shoulder distance (D ) 840 is smaller than L1. Thus, while avoiding obstacle 830, one will proceed to step 925 via step 920.
 図3のフローチャートに戻る。ステップ940では、航測車両210は迂回していないと判定されるので、迂回検知DB140の当該時刻に係る迂回区間フラグ1110(図7参照)に「0」を入力する。ここで迂回検知DB140について図7を用いて説明する。 It returns to the flowchart of FIG. In step 940, since it is determined that the navigation vehicle 210 has not detoured, “0” is input to the detour section flag 1110 (see FIG. 7) related to the time of the detour detection DB 140. Here, the bypass detection DB 140 will be described with reference to FIG.
 図7は本発明の実施の形態に係る迂回検知DB140に記憶された迂回検知テーブル1100を示す図である。迂回検知テーブル1100は、測位時刻に係る自車位置が迂回区間に含まれるかどうかを蓄積するためのテーブルであり、自車位置測位時刻1005と、迂回区間フラグ1110と、走行回次1020を記憶している。迂回区間フラグ1110は、自車位置測位時刻1005ごとに記録されており、迂回している場合のフラグは1であり、迂回していない場合のフラグは0である。なお、自車位置測位時刻1005及び走行回次1020は、自車位置テーブル1000で管理されているものと同じである。 FIG. 7 is a diagram showing a bypass detection table 1100 stored in the bypass detection DB 140 according to the embodiment of the present invention. The detour detection table 1100 is a table for accumulating whether or not the vehicle position related to the positioning time is included in the detour section, and stores the vehicle position measurement time 1005, the detour section flag 1110, and the traveling time 1020 doing. The detour section flag 1110 is recorded at each vehicle position positioning time 1005, the flag in the case of detouring is 1 and the flag in the case of not detouring is 0. Note that the vehicle position positioning time 1005 and the traveling routine 1020 are the same as those managed by the vehicle position table 1000.
 一方、ステップ920で、路肩距離DがL1未満またはL2より大きい場合には、迂回区間が発生している可能性があるので、迂回検知部115は、後続するステップ925,930,935において自車の前方に障害物が存在しているか否かを確認する。 On the other hand, if the road shoulder distance D is smaller than L1 or larger than L2 at step 920, there is a possibility that a detour section has occurred, so the detour detection unit 115 follows the vehicle itself at subsequent steps 925, 930, 935. Check if there is an obstacle in front of.
 ここで、ステップ925,930,935を説明するに当たって、迂回区間の発生原因となる障害物の具体例について図8,9,10を用いて説明する。目標経路を走行中の航測車両210が回避しなければならない障害物としては、例えば、(1)道路上を移動する障害物(例えば、鉱山ダンプ等の他の車両)、(2)道路上に静止した障害物(例えば、鉱山ダンプが落とした積荷(鉱物、岩石、土砂等))、(3)路面の凹凸(例えば、道路荒れ、水溜まり、路肩の崩落による路面の欠損などを含む)がある。 Here, in describing steps 925, 930, and 935, a specific example of an obstacle that causes the occurrence of a bypass section will be described using FIGS. Examples of obstacles that the navigation vehicle 210 must avoid while traveling on the target route include (1) obstacles that move on the road (for example, other vehicles such as a mine dump), and (2) on the road. There are stationary obstacles (for example, cargo (minerals, rocks, soil, etc. dropped by mine dumps)), and (3) unevenness of the road surface (for example, including road surface roughening, pooling, road surface breakage due to road shoulder collapse, etc.) .
 図8は、目標経路240に沿って走行中の航測車両210の前方に鉱山ダンプ等の車両220が相対的に低速走行している様子を示す図である。この場合、前方車両220に接近した航測車両210は、目標経路240から外れて前方車両220を追い越さなければならず、これにより迂回区間を含む走行軌跡230が描かれる。 FIG. 8 is a diagram showing how a vehicle 220 such as a mine dumper is traveling at a relatively low speed in front of the navigation vehicle 210 traveling along the target route 240. As shown in FIG. In this case, the navigation vehicle 210 approaching the forward vehicle 220 must deviate from the target route 240 and overtake the forward vehicle 220, thereby drawing a travel locus 230 including a detour section.
 図9は、目標経路240に沿って走行中の航測車両210の前方に、鉱山ダンプが走行中に落とした鉱物、岩石及び土砂等の落下物310が存在している様子を示す図である。この場合、障害物310に接近した航測車両210は、目標経路240から外れて落下物310を回避せねばならず、これにより迂回区間を含む走行軌跡330が描かれる。 FIG. 9 is a view showing a state in which falling objects 310 such as minerals, rocks and earth and sand dropped by the mine dump during traveling are present in front of the navigation vehicle 210 traveling along the target route 240. In this case, the navigation vehicle 210 approaching the obstacle 310 must deviate from the target path 240 and avoid the falling object 310, whereby a travel locus 330 including a detour section is drawn.
 図10は、目標経路240に沿って走行中の航測車両210の前方の路面に、鉱山ダンプの走行の妨げにもなる程度の巨大な凹凸(例えば、道路荒れ、水溜まり、路肩の崩落による路面の欠損などを含む)410が存在している様子を示す図である。この場合、凹凸410に接近した航測車両210は、目標経路240から外れて凹凸410を回避せねばならず、これにより迂回区間を含む走行軌跡430が描かれる。 FIG. 10 shows that the road surface in front of the navigation vehicle 210 traveling along the target route 240 has a huge unevenness (for example, rough road, water pool, falling of It is a figure which shows a mode that the defect 410 etc. exist. In this case, the navigation vehicle 210 approaching the unevenness 410 must deviate from the target path 240 and avoid the unevenness 410, thereby drawing a traveling locus 430 including a detour section.
 ステップ925では、自車の前方の道路上に静止した障害物が存在するか否かを障害物検知部105で検知する(すなわち、図9のケースに該当)。ここでの障害物は、前方を走行する鉱山ダンプが落とした土砂及び岩石等、前方で停止している他の車両など、自車の走行を妨害する静止障害物を指す。例えば、道路上に予め設けられた車線を示すタイヤ、路肩の置き石、道路標識など鉱山ダンプの走行に必要なランドマーク等は、障害物検知部105によって障害物から除かれるものとする。 In step 925, the obstacle detection unit 105 detects whether or not there is an obstacle stationary on the road ahead of the vehicle (that is, corresponds to the case in FIG. 9). The obstacle here refers to a stationary obstacle that impedes the traveling of the vehicle, such as soil, rocks, etc. dropped by a mining dump traveling ahead, such as other vehicles stopped ahead. For example, it is assumed that the obstacle detection unit 105 removes from the obstacles a tire indicating a lane provided in advance on the road, a stone on the road shoulder, a landmark such as a road sign, etc. necessary for traveling the mining dump truck.
 迂回検知部115で、障害物検知部105によって車両進路前方に障害物が存在すると判断された場合には、自車が迂回走行していると判定し、ステップ945に進む。反対に、迂回検知部115で車両進路前方に障害物が存在しないと判断された場合には、迂回走行はないと判定し、ステップ930に進む。 When it is determined by the detour detection unit 115 that the obstacle detection unit 105 determines that there is an obstacle ahead of the vehicle path, it is determined that the host vehicle is detouring, and the process proceeds to step 945. Conversely, when it is determined by the detour detection unit 115 that there is no obstacle ahead of the vehicle route, it is determined that detouring is not performed, and the process proceeds to step 930.
 ステップ930では、自車の前方に路面の凹凸が存在するか否かを障害物検知部105で検知する(すなわち、図10のケースに該当)。路面の凹凸は、鉱山ダンプの走行に支障が生じる程度に大きな凹凸を指している。 In step 930, the obstacle detection unit 105 detects whether or not the road surface unevenness is present in front of the own vehicle (that is, corresponds to the case in FIG. 10). The unevenness of the road surface indicates a large unevenness to such an extent that the traveling of the mine dump is hindered.
 迂回検知部115では、障害物検知部105によって車両進路前方に路面の凹凸が存在すると判断された場合には、自車が迂回走行していると判定し、ステップ945に進む。反対に、迂回検知部115で車両進路前方に路面の凹凸が存在しないと判断された場合には、迂回走行はないと判定し、ステップ935に進む。 When the obstacle detection unit 105 determines that the road surface unevenness is present in the forward direction of the vehicle, the detour detection unit 115 determines that the host vehicle is detouring and proceeds to step 945. On the other hand, when it is determined by the detour detection unit 115 that there is no unevenness on the road surface ahead of the vehicle, it is determined that detouring is not performed, and the process proceeds to step 935.
 ステップ935では、自車の前方に移動する障害物(例えば、前方車両)が存在するか否かを障害物検知部105で検知する(すなわち、図8のケースに該当)。そして、障害物検知部105において、当該障害物(前方車両)の追い抜きを検知する。ここで移動障害物の追い抜きとは、整備メンテナンス等のために自車前方を相対的に低速で走行している他の鉱山ダンプや工事車両等の追い抜きを指す。 In step 935, the obstacle detection unit 105 detects whether there is an obstacle (for example, a forward vehicle) moving ahead of the host vehicle (that is, corresponds to the case in FIG. 8). Then, the obstacle detection unit 105 detects overtaking of the obstacle (front vehicle). Here, overtaking of a moving obstacle refers to overtaking of another mining dump truck or construction vehicle traveling at a relatively low speed in front of the vehicle for maintenance and the like.
 迂回検知部115では、障害物検知部105によって前方車両の追い抜きをしていると判断された場合には、自車が迂回走行していると判定し、ステップ945に進む。反対に、迂回検知部115で前方車両の追い抜きをしていないと判断された場合には、迂回走行はないと判定し、ステップ940に進む。 When the obstacle detection unit 105 determines that the preceding vehicle is overtaking the front vehicle, the detour detection unit 115 determines that the host vehicle is detouring and proceeds to step 945. Conversely, if it is determined by the detour detection unit 115 that the vehicle ahead has not been overtaken, it is determined that detouring is not performed, and the process proceeds to step 940.
 ステップ945では、航測車両210は迂回走行していると判定されるので、迂回検知DB140の当該時刻に係る迂回区間フラグ1110(図7参照)に「1」を入力し、ステップ905に戻る。 In step 945, it is determined that the navigation vehicle 210 is detouring, so “1” is input to the detour section flag 1110 (see FIG. 7) related to the time of the detour detection DB 140, and the process returns to step 905.
 ステップ950では、端末側制御部130において、軌跡収集端末100の終了処理を行う。ここで終了処理とは、例えば、自車位置DB135の終了処理、迂回検知DB140の終了処理、障害物検知部105の各センサの電源OFF処理、自車位置測位部110のGPS、IMUなどのセンサの電源OFF処理などを示す。 In step 950, the terminal side control unit 130 performs end processing of the trajectory collection terminal 100. Here, the end process includes, for example, an end process of the vehicle position DB 135, an end process of the detour detection DB 140, a power OFF process of each sensor of the obstacle detection unit 105, and a sensor such as GPS or IMU of the vehicle position measurement unit 110. Power off processing etc.
 上記のように構成した軌跡収集端末100によれば、自車位置測位部110、路肩距離計測部143及び障害物検知部105の処理結果に基づいて、迂回検知部115によって走行軌跡中の迂回区間が判別されるので、軌跡の取得に失敗した場所(迂回区間)を容易に特定することができる。すなわち、当該迂回区間のみを再度走行して軌跡を収集すれば地図作成に必要なデータを取得することができる。また、人が迂回区間の発生の有無を判断する必要や、当該迂回区間を覚えておく必要がなくなる点もメリットとなる。 According to the locus collection terminal 100 configured as described above, the detour section in the traveling locus is detected by the detour detection section 115 based on the processing results of the vehicle position measurement section 110, the road shoulder distance measurement section 143 and the obstacle detection section 105. As a result, it is possible to easily identify the place (detour section) where acquisition of the trajectory failed. That is, data necessary for map creation can be acquired by traveling again only in the detour section and collecting trajectories. In addition, it is also advantageous that a person does not need to determine whether or not a detour section has occurred, and that it is not necessary to remember the detour section.
 なお、本実施の形態では、ステップ920の路肩距離Dの大小と、ステップ925,930,935の障害物の有無とを組み合わせることで、自車が迂回走行をしているか否かの判定を行った。これは、ステップ920における路肩距離Dに基づく判定だけでは、鉱山ダンプのスムーズな走行を実現するために目標経路から敢えて外れた場合(目標経路が不適切だった場合)なのか、自車前方の障害物を避けるためにやむを得ず迂回したか否かを判断できないためである。そこで、本実施の形態では、路肩距離計測部143による路肩距離Dに加えて、障害物検知部105により障害物の有無を判定することで、路肩距離Dの変化が生じた実際の理由が障害物であるか否かを区別することで、迂回区間の判定精度を向上させている。なお、上記の方法よりは迂回区間の判定精度は低下するが、障害物検知部105によるステップ925,930,935の処理は省略しても良い。 In the present embodiment, it is determined whether the host vehicle is detouring by combining the magnitude of the road shoulder distance D in step 920 and the presence or absence of an obstacle in steps 925, 930, and 935. The This is based on the determination based on the road shoulder distance D in step 920 only if the vehicle deviates from the target route to achieve smooth travel of the mine dump (if the target route is inappropriate) or if the vehicle ahead It is because it can not be judged whether it diverted inevitably to avoid an obstacle. Therefore, in the present embodiment, in addition to the road shoulder distance D by the road shoulder distance measurement unit 143, the obstacle detection unit 105 determines the presence or absence of an obstacle, and the actual reason for the change in the road shoulder distance D is an obstacle. The discrimination accuracy of the bypass section is improved by discriminating whether or not it is an object. Although the determination accuracy of the bypass section is lower than the above method, the processing of steps 925, 930, and 935 by the obstacle detection unit 105 may be omitted.
 また、上記の各方法よりは精度は劣るものの、迂回区間の発生の有無は、自車位置測位部110により測位される自車位置の軌跡に基づいて判定することもできる(例えば、道路幅方向又は自車の幅方向における自車の移動量及び移動方向を監視しておき、自車が道路幅方向(車幅方向)の一方に移動した後に他方に移動して概ね元の位置に復帰したと判断された場合には、迂回区間が発生したと判定する方法がある)。そのため、路肩距離計測部143は必須の構成ではない。しかし、路肩距離計測部143によれば、道路幅方向における自車位置を路肩を基準にして判定できるので、道路幅に対してどの位置に自車が存在するかを確認でき、迂回区間の判定検出精度を向上できる。 Although the accuracy is lower than the above-described methods, the occurrence of the detour section can also be determined based on the locus of the vehicle position measured by the vehicle position measurement unit 110 (for example, the road width direction Or, while monitoring the movement amount and movement direction of the vehicle in the width direction of the vehicle, the vehicle moved to one side in the road width direction (vehicle width direction) and then moved to the other and returned to the original position. If it is determined that there is a method of determining that a detour interval has occurred. Therefore, the road-shoulder distance measurement unit 143 is not an essential component. However, according to the road shoulder distance measurement unit 143, since the vehicle position in the road width direction can be determined based on the road shoulder, it can be confirmed at which position the vehicle is present with respect to the road width. Detection accuracy can be improved.
 次に、図11を用いて、軌跡収集端末100から地図生成サーバ150への自車位置情報および迂回情報の送信処理を説明する。図11は、軌跡収集端末100から地図生成サーバ150へのデータ送信処理に関するフローチャートである。この図に示した各処理は、軌跡収集端末100の送信処理(ステップ1200~1225)と、地図生成サーバ150の受信処理(ステップ1250~1275)とから構成される。 Next, a process of transmitting vehicle position information and detour information from the trajectory collection terminal 100 to the map generation server 150 will be described using FIG. FIG. 11 is a flowchart of data transmission processing from the trajectory collection terminal 100 to the map generation server 150. Each process shown in this figure is composed of the transmission process (steps 1200 to 1225) of the trajectory collection terminal 100 and the reception process (steps 1250 to 1275) of the map generation server 150.
 まず、軌跡収集端末100では、ユーザからの処理開始要求の受付や、地図生成サーバとの通信接続など初期設定処理を行い(ステップ1200)、ステップ1205に進む。一方、地図生成サーバ150では、ユーザからの処理開始要求の受付や、軌跡収集端末100との通信接続など初期設定処理を行い(ステップ1250)、ステップ1255に進む。 First, the trajectory collection terminal 100 performs initial setting processing such as acceptance of a processing start request from a user, communication connection with a map generation server (step 1200), and proceeds to step 1205. On the other hand, the map generation server 150 performs initial setting processing such as acceptance of a processing start request from the user, communication connection with the trajectory collection terminal 100 (step 1250), and the process goes to step 1255.
 軌跡収集端末100は、ステップ1205において、自車位置DB135に記憶されている自車位置情報の読み出しを行い、ステップ1210に進む。ステップ1210では、自車位置情報を軌跡収集端末100のデータ送信部145から地図生成サーバ150のデータ受信部175に対して送信する。 The locus collection terminal 100 reads out the vehicle position information stored in the vehicle position DB 135 in step 1205, and proceeds to step 1210. In step 1210, the data transmission unit 145 of the trajectory collection terminal 100 transmits the vehicle position information to the data reception unit 175 of the map generation server 150.
 このとき、地図生成サーバ150は、ステップ1210で軌跡収集端末100のデータ送信部145から送信された自車位置情報をデータ受信部175で受信し(ステップ1255)、当該自車位置情報をサーバ自車位置DB193に記憶する(ステップ1260)。ここで、地図生成サーバ150のサーバ自車位置DB193で管理されている情報は、自車位置DB135で管理されている情報と同じで、テーブル構造も自車位置テーブル1000と同様である。 At this time, the map generation server 150 receives the vehicle position information transmitted from the data transmission unit 145 of the trajectory collection terminal 100 in step 1210 by the data reception unit 175 (step 1255), and the server position information is received by the server itself. It stores in the car position DB 193 (step 1260). Here, the information managed by the server vehicle position DB 193 of the map generation server 150 is the same as the information managed by the vehicle position DB 135, and the table structure is also the same as the vehicle position table 1000.
 ステップ1210の処理を終えた軌跡収集端末100は、迂回検知DB140で管理されている迂回情報の読み出しを行い(ステップ1215)、当該迂回情報を軌跡収集端末100のデータ送信部145から地図生成サーバ150のデータ受信部175に対して送信し(ステップ1220)、端末側制御部130において一連の終了処理を行う(ステップ1225)。ここでステップ1225における「終了処理」とは、例えば、通信の切断処理、自車位置DB134の終了処理、迂回検知DB140の終了処理などを示す。 The locus collection terminal 100 that has completed the processing of step 1210 reads the detour information managed by the detour detection DB 140 (step 1215), and the detour information is transmitted from the data transmission unit 145 of the locus collection terminal 100 to the map generation server 150. The data is transmitted to the data reception unit 175 of (step 1220), and the terminal side control unit 130 performs a series of end processing (step 1225). Here, “end processing” in step 1225 indicates, for example, communication disconnection processing, termination processing of the vehicle position DB 134, termination processing of the detour detection DB 140, and the like.
 ステップ1260の処理を終えた地図生成サーバ150は、ステップ1220において軌跡収集端末100のデータ送信部145から送信された迂回情報をデータ受信部175で受信し(ステップ1265)、当該迂回情報をサーバ迂回検知DB195に蓄積し(ステップ1270)、サーバ側制御部180において終了処理を行う(ステップ1275)。ここで、ステップ1275における「終了処理」とは、例えば、通信の切断処理、サーバ自車位置DB193の終了処理、迂回検知DB195の終了処理などを示す。 The map generation server 150 that has completed the process of step 1260 receives the detour information transmitted from the data transmission unit 145 of the trajectory collection terminal 100 in step 1220 by the data receiving unit 175 (step 1265), and detours the server detour. It accumulates in the detection DB 195 (step 1270), and the server side control unit 180 performs end processing (step 1275). Here, “end processing” in step 1275 indicates, for example, communication disconnection processing, termination processing of the server vehicle position DB 193, termination processing of the detour detection DB 195, and the like.
 なお、自車位置情報および迂回情報の軌跡収集端末100から地図生成サーバ150への送信処理は、有線通信の他、WiFiなどの無線LANまたは携帯電話網などの無線通信を介して行ってもよいし、データ送信部145を介して記録メディア(USBメモリ、CD-ROM等)に書き出したデータを、データ受信部175で読み込むといった方法を利用しても構わない。 The transmission process from the locus collection terminal 100 of the vehicle position information and the detour information to the map generation server 150 may be performed via wired communication or wireless communication such as a wireless LAN such as WiFi or a mobile telephone network. Alternatively, the data receiving unit 175 may read data written to a recording medium (USB memory, CD-ROM or the like) via the data transmission unit 145.
 次に図12を用いて、地図生成サーバ150による走行軌跡を用いた地図生成処理について説明する。図12は、地図生成サーバ150による地図生成処理に関するフローチャートである。 Next, map generation processing using a travel locus by the map generation server 150 will be described using FIG. 12. FIG. 12 is a flowchart of map generation processing by the map generation server 150.
 まず、ステップ1300では、地図生成サーバ150において、ユーザからの処理開始要求の受付などの初期設定処理を行う。ユーザからの処理開始要求は、サーバ側入力部165を介して行われる。また、処理開始に際してサーバの準備完了であるか否かといった状態がサーバ側表示部170を介してユーザに表示される。 First, in step 1300, the map generation server 150 performs initial setting processing such as reception of a processing start request from the user. The process start request from the user is issued via the server side input unit 165. In addition, when starting the process, a state as to whether or not the preparation of the server is completed is displayed to the user via the server side display unit 170.
 ステップ1305では、サーバ側制御部180において、走行回次を示す変数Nを1に設定する。ステップ1310では、N回目に係る自車位置情報をサーバ自車位置DB193から取得する。ステップ1315では、N回目に係る迂回情報をサーバ迂回検知DB195から取得する。 In step 1305, the server-side control unit 180 sets a variable N indicating a running cycle to one. In step 1310, the N-th vehicle position information is acquired from the server vehicle position DB 193. In step 1315, the N-th bypass information is acquired from the server bypass detection DB 195.
 ステップ1320では、有効軌跡抽出部160において、航測車両の走行軌跡から迂回区間を除外したもの(有効軌跡)を抽出する処理(有効軌跡抽出処理)が実行される。有効軌跡抽出部160による有効軌跡抽出処理は、サーバ迂回検知DB195におけるN回目の走行に係る迂回区間フラグが0(迂回なし)である自車位置測位時刻1005を全て取得し、当該自車位置測位時刻1005と同じ時刻に係る自車の緯度1010と経度1015をサーバ自車測位DB193から取得することでN回目の有効軌跡とする。 In step 1320, processing (effective trajectory extraction processing) is executed in which the effective trajectory extraction unit 160 extracts the effective trajectory excluding the detour section from the traveling trajectory of the navigation vehicle (effective trajectory). The effective trajectory extraction processing by the effective trajectory extraction unit 160 acquires all the vehicle position positioning times 1005 for which the detour section flag related to the N-th traveling in the server detour detection DB 195 is 0 (no detour), and the vehicle position measurement The latitude 1010 and the longitude 1015 of the vehicle related to the same time as the time 1005 are obtained from the server vehicle positioning DB 193 to obtain an N-th effective trajectory.
 有効軌跡及びその抽出処理の具体例について図13を用いて説明する。図13は、地図生成のために、航測車両で同じ目標経路690に沿って2回走行し、その2回の走行で収集した走行軌跡を使って地図を生成する一例を示す図である。ここでは、各走行回次に係る走行軌跡を、共通する5つの区間で便宜上分割して表している。なお、図13の例では、2回の走行中に発生した2つの迂回区間(走行軌跡620,635)によって走行軌跡が結果的に5つの区間に分割されただけであって、当該5つの区間に予め分割されている訳ではない。 A specific example of the effective trajectory and its extraction process will be described with reference to FIG. FIG. 13 is a diagram showing an example of generating a map using traveling trajectories collected by traveling twice along the same target route 690 by the navigation vehicle for map generation. Here, the traveling locus relating to each traveling cycle is divided and represented for convenience in five common sections. In the example of FIG. 13, the traveling locus is only divided into five sections as a result by the two detouring sections (traveling paths 620 and 635) generated during the two travelings, and the five sections Are not divided in advance.
 この図の例では、1回目の走行に係る全走行軌跡のうち走行軌跡620に係る区間が障害物680によって発生した迂回区間であり、2回目の走行に係る全走行軌跡のうち走行軌跡635に係る区間が障害物685によって発生した迂回区間である。すなわち、これらの走行軌跡620,635に含まれる自車位置が測位された時刻(自車位置測位時刻)に係る迂回区間フラグは1である。したがって、ステップ1320における有効軌跡抽出処理によれば、1回目(N=1)の走行軌跡については、全体から走行軌跡620を除外したもの(走行軌跡605,610,615,625)が有効軌跡として抽出される。また、2回目(N=2)の走行軌跡については、全体から走行軌跡635を除外したもの(走行軌跡630,640,645,650)が有効軌跡として抽出される。 In the example of this figure, the section related to the travel locus 620 is the detour section generated by the obstacle 680 among all the travel loci related to the first travel, and the travel locus 635 among all the travel loci related to the second travel. The section concerned is a detour section generated by the obstacle 685. That is, the detour section flag relating to the time at which the vehicle position included in these travel traces 620 and 635 is determined (vehicle position measurement time) is 1. Therefore, according to the effective trajectory extraction process in step 1320, with regard to the first (N = 1) traveling trajectory, the one obtained by excluding the traveling trajectory 620 from the whole (traveling routes 605, 610, 615, 625) is regarded as the effective trajectory. It is extracted. In addition, with regard to the second traveling track (N = 2), the result obtained by excluding the traveling track 635 from the whole (the traveling track 630, 640, 645, 650) is extracted as the effective track.
 図12に示すステップ1325では、ステップ1320で上記のように抽出したN回目の有効軌跡を有効軌跡DB185に蓄積する。 In step 1325 shown in FIG. 12, the N-th effective trajectory extracted as described above in step 1320 is accumulated in the effective trajectory DB 185.
 ステップ1330では、サーバ側制御部180において、N+1回目に係る走行軌跡がサーバ自車位置DB193(サーバ迂回検知DB195でも良い)に記憶されているか否かを判断する。ここで、N+1回目に係る走行軌跡が存在する場合には、サーバ側制御部180によって走行回次を示す変数Nを1つ増加し(ステップ1335)、当該走行回次(N+1)に係る走行軌跡についてS1310~1325の処理を行う。 In step 1330, it is determined in the server-side control unit 180 whether the traveling locus according to the (N + 1) th time is stored in the server vehicle position DB 193 (which may be the server bypass detection DB 195). Here, if there is a traveling locus related to the N + 1th time, the server-side control unit 180 increases the variable N indicating the traveling cycle by one (step 1335), and the traveling locus related to the traveling cycle (N + 1) The processing of S 1310 to 1325 is performed.
 一方、S1330でN+1回目に係る走行軌跡が存在しない場合には、軌跡融合部155において、いずれの走行回次(1~N回)においても迂回区間が発生したことの無い区間を融合する処理を実行する(ステップ1340)。ここでステップ1340における融合処理について図13の例を用いて説明する。 On the other hand, when there is no traveling locus relating to the N + 1th time in S1330, the locus fusion unit 155 performs processing for fusing a section in which no detour section has occurred in any traveling cycle (1 to N times). Execute (step 1340). Here, the fusion processing in step 1340 will be described using the example of FIG.
 図13の例において、2回分の走行中に迂回区間が一度も発生していな区間には、走行軌跡605,630の区間と、走行軌跡615,640の区間と、走行軌跡625,650の区間の3つの区間が該当する。本実施の形態では、これら3つの区間について、各区間に属する2回分の走行軌跡の平均(平均軌跡)をとることで地図の一部となる軌跡を生成する。 In the example of FIG. 13, in the section where the detour section has not occurred even once during the two runs, the sections of the travel locus 605, 630, the section of the travel locus 615, 640, and the section of the travel locus 625, 650 The three sections of are applicable. In the present embodiment, for these three sections, a locus that is a part of the map is generated by taking the average (average locus) of the two traveling traces belonging to each section.
 平均軌跡のとり方としては、各区間に属する2回分の走行軌跡を構成する点列のうち、1回目の走行軌跡に含まれる点と、2回目の走行軌跡に含まれる点とについて、最も近い距離になる対応関係を1つ探索し、当該対応関係にある2点の重心(中点)を平均軌跡における1点とし、これを繰り返して平均軌跡(点列)を生成する方法がある。当該方法によれば、図13に示すように、走行軌跡605,630に係る区間については平均軌跡655が生成され、走行軌跡615,640に係る区間については平均軌跡665が生成され、走行軌跡625,650に係る区間については平均軌跡675が生成される。 As the way of taking the average locus, the closest distance is the point included in the first traveling locus and the point included in the second traveling locus among the point trains constituting the two traveling loci belonging to each section There is a method of searching one correspondence relationship which becomes and setting the center of gravity (middle point) of two points in the correspondence relationship as one point in the average trajectory, and repeating this to generate an average trajectory (point sequence). According to this method, as shown in FIG. 13, an average locus 655 is generated for the section related to the traveling locus 605, 630, and an average locus 665 is generated for the section related to the traveling locus 615, 640. , 650, an average trajectory 675 is generated.
 そして、軌跡融合部155は、ステップ1340において、上記のように得られた平均軌跡655,665,675を有効軌跡DB185にさらに記憶する。図14は本発明の実施の形態に係る有効軌跡DB185に記憶された有効軌跡テーブル1400を示す図である。この図に示すように、有効軌跡テーブル1400は、自車位置の有効軌跡を蓄積するためのテーブルであり、自車位置測位時刻1005と、自車の緯度1010と、自車の経度1015と、走行回次1020を記憶している。 Then, in step 1340, the locus fusion unit 155 further stores the average locus 655, 665, 675 obtained as described above in the effective locus DB 185. FIG. 14 is a diagram showing an effective trajectory table 1400 stored in the effective trajectory DB 185 according to the embodiment of the present invention. As shown in this figure, the effective trajectory table 1400 is a table for accumulating the effective trajectory of the vehicle position, including the vehicle position positioning time 1005, the latitude 1010 of the vehicle, and the longitude 1015 of the vehicle. A running count 1020 is stored.
 次に、ステップ1345において、軌跡融合部155は、各走行回次のいずれかに迂回区間が発生した区間(ステップ1340で融合に利用されなかった区間)について軌跡を生成する処理を実行する。ここでステップ1345における融合処理について図13の例を用いて説明する。 Next, in step 1345, the trajectory fusion unit 155 executes processing for generating a trajectory for a section in which a detour section has occurred in any of the traveling times (a section not used for fusion in step 1340). Here, the fusion processing in step 1345 will be described using the example of FIG.
 図13の例において、2回分の走行中に迂回区間が発生した区間には、走行軌跡610,635の区間と、走行軌跡620,645の区間の2つの区間が該当する。本実施の形態では、これら2つの区間について、各区間に属する2回分の走行軌跡のうち迂回が発生した区間に係る走行軌跡をまず取り除き、その後に残った走行軌跡から地図の一部となる軌跡を生成する。これにより、走行軌跡610,635に係る区間については走行軌跡610が抽出され、走行軌跡620,645に係る区間については走行軌跡645が抽出される。したがって、走行軌跡610,635に係る区間については平均軌跡660(結果的には走行軌跡610と同じ)が生成され、走行軌跡620,645に係る区間については平均軌跡670(結果的には走行軌跡645と同じ)が生成される。そして、軌跡融合部155は、このように得られた平均軌跡660,670を有効軌跡DB185に記憶する。 In the example of FIG. 13, two sections of the travel loci 610 and 635 and the sections of the travel loci 620 and 645 correspond to the sections in which the detour section occurs during traveling for two times. In the present embodiment, of these two sections, of the two running tracks belonging to each section, the running track relating to the section in which detouring has occurred is first removed, and a track that becomes a part of the map from the remaining running track. Generate As a result, the traveling locus 610 is extracted for the section related to the traveling locus 610, 635, and the traveling locus 645 is extracted for the section related to the traveling locus 620, 645. Therefore, an average locus 660 (as a result, the same as the traveling locus 610) is generated for the section relating to the traveling locus 610, 635, and an average locus 670 (resultingly the traveling locus) is generated for the section relating to the traveling locus 620, 645. (Same as 645) is generated. Then, the trajectory fusion unit 155 stores the average trajectory 660, 670 thus obtained in the effective trajectory DB 185.
 ステップ1350では、軌跡融合部155において、ステップ1340で生成した平均軌跡と、ステップ1345で生成した平均軌跡とを融合することで、1本の走行軌跡(点列によって定義される鉱山ダンプ用の地図)を生成する処理が実行される。図13の例で説明すれば、ステップ1340で得られた平均軌跡655,665,675と、ステップ1345で得られた平均軌跡660,670とを有効軌跡DB185から取り出し、これらを融合することで地図を生成する。 In step 1350, the trajectory fusion unit 155 fuses the average trajectory generated in step 1340 and the average trajectory generated in step 1345 to obtain one traveling trajectory (map for mine dump defined by point sequence). The process of generating) is executed. In the example of FIG. 13, the average trajectory 655, 665, 675 obtained in step 1340 and the average trajectory 660, 670 obtained in step 1345 are taken out from the effective trajectory DB 185, and they are merged to obtain a map. Generate
 そして、このように複数の有効軌跡を融合して得られた新たな軌跡(点列)を、地図生成テーブル1500の形式で地図DB190に記憶する処理を実行する。図15は本発明の実施の形態に係る地図DB190に記憶された地図生成テーブル1500を示す図である。この図に示すように、地図生成テーブル1500は、鉱山ダンプの地図を示す点列を記憶するためのテーブルであり、自車の緯度1510と、自車の経度1515と、それらの緯度経度のセットに対してシーケンシャルに割り振られた番号1505を記憶している。 Then, a process of storing a new locus (point sequence) obtained by fusing a plurality of effective loci in this manner in the form of the map generation table 1500 in the map DB 190 is executed. FIG. 15 is a diagram showing the map generation table 1500 stored in the map DB 190 according to the embodiment of the present invention. As shown in this figure, the map generation table 1500 is a table for storing a point sequence indicating a map of a mine dump, and is a set of the latitude 1510 of the vehicle, the longitude 1515 of the vehicle, and their latitudes and longitudes And the number 1505 sequentially assigned to.
 ステップ1355では、サーバ側制御部180において、地図生成サーバ150の終了処理を行う。ここで終了処理とは、例えば、サーバ自車位置DB193の終了処理、迂回検知DB195の終了処理などを示す。 In step 1355, the server-side control unit 180 performs termination processing of the map generation server 150. Here, the end process indicates, for example, an end process of the server vehicle position DB 193, an end process of the detour detection DB 195, and the like.
 上記のように構成した地図作成支援システムによれば、迂回検知部115により、走行軌跡の中から迂回区間を容易に特定することができる。これにより、走行軌跡から当該迂回区間を除外した有効軌跡を抽出することが容易に可能となる。したがって、迂回が発生した区間のみを再度走行するだけで地図を作成することができる。さらに、上記のように構成したシステムによれば、取得時刻の異なる複数の有効軌跡を融合することで、迂回の無い複数の走行軌跡に基づいた精度の高い地図を容易に作成することができる。 According to the map creation support system configured as described above, the detour detection unit 115 can easily identify the detour section from the traveling locus. This makes it possible to easily extract an effective trajectory excluding the detour section from the traveling trajectory. Therefore, the map can be created only by traveling again only in the section where the detour has occurred. Furthermore, according to the system configured as described above, it is possible to easily create a map with high accuracy based on a plurality of traveling trajectories without detouring by fusing a plurality of effective trajectories with different acquisition times.
 なお、上記の実施の形態の説明に利用した図13の例では、航測車両の走行を2回しか行っていないため、図12中のステップ1345の説明において、2つの走行軌跡から迂回区間に係る走行軌跡を取り除いて残った方を生成軌跡としてそのまま採用することになったが、航測車両を3回以上走行させて走行軌跡を収集した場合には、3つ以上の走行軌跡から迂回区間に係る走行軌跡を取り除いた後も走行軌跡が2本以上残ることがある。この場合には、ステップ1340の処理のように残った2本以上の走行軌跡の平均軌跡を生成軌跡として採用すれば良い。また、2回以上走行したにも関わらず、すべての走行回次に共通する迂回区間が発生している場合には地図の生成が不可能になってしまう。そのため、その旨を端末側表示部125またはサーバ側表示部170に表示する等してユーザに報知することで、走行車両による当該区間の再度の走行をユーザに促し、当該区間に係る迂回の原因が解消した後にユーザに再度走行させることで、N回のうち少なくとも1回は目標経路に沿った走行軌跡が収集されるようにシステム構成することが好ましい。 In the example of FIG. 13 used in the description of the above embodiment, the navigation vehicle travels only twice, so in the description of step 1345 in FIG. We decided to adopt the one that left the traveling locus removed as the generation locus as it is, but when the traveling vehicle travels three times or more and collects the traveling locus, it depends on the detour section from three or more traveling loci Two or more running tracks may remain even after removing the running track. In this case, the average trajectory of the remaining two or more traveling trajectories as in the process of step 1340 may be adopted as a generation trajectory. In addition, even if the vehicle travels twice or more, if a detour section common to all the traveling times has occurred, generation of the map becomes impossible. Therefore, the user is prompted to re-run the section by the traveling vehicle by notifying the user by displaying the fact on the terminal-side display section 125 or the server-side display section 170, etc., and causing the detour related to the section It is preferable to configure the system so that the traveling locus along the target route is collected at least one of N times by causing the user to travel again after the cancellation of.
 また、上記の実施の形態で行ったステップ1340,1345の処理の代わりに、有効軌跡DB185に記憶された走行回次の異なる複数の有効軌跡(すなわち、異なる時刻に取得された複数の有効軌跡)を融合することで地図を生成しても良い。複数の有効軌跡を融合することで地図を生成する方法の具体例としては、上記のステップ1340,1345で説明した複数の有効軌跡の平均軌跡を求めるものがある。なお、上記の実施の形態において各走行回次に係る走行を実施する間隔については特に限定はない。すなわち、N回分を連続で走行しても良いし、N回分を任意の間隔を空けて走行してもよい。但し、間隔を短くするほど最新かつ正確な地図を生成する傾向が高くなるというメリットがある。 Further, instead of the processing of steps 1340 and 1345 performed in the above embodiment, a plurality of different effective trajectories stored in the effective trajectory DB 185 (that is, a plurality of effective trajectories acquired at different times) You may generate a map by fusing. As a specific example of a method of generating a map by fusing a plurality of valid trajectories, there is a method of obtaining an average trajectory of a plurality of valid trajectories described in the above steps 1340 and 1345. There is no particular limitation on the intervals at which the traveling according to each traveling cycle is performed in the above embodiment. That is, N cycles may be run continuously, or N runs may be run at an arbitrary interval. However, there is a merit that the shorter the interval, the higher the tendency to generate the latest and accurate map.
 次に本発明の第2の実施の形態について説明する。本実施の形態は、第1の実施の形態で説明した軌跡収集端末100を搭載した航測車両を複数走行させ、各航測車両が収集した走行軌を利用して地図生成サーバで地図を生成する点に特徴がある。このように軌跡収集端末を搭載した複数の航測車両を同時に走行させ、各航測車両が取得した有効軌跡を融合することで、即時に地図を作成することが可能となる。 Next, a second embodiment of the present invention will be described. In this embodiment, a plurality of navigation vehicles equipped with the trajectory collection terminal 100 described in the first embodiment are made to travel, and a map is generated by the map generation server using the traveling tracks collected by each navigation vehicle. It is characterized by A plurality of navigation vehicles equipped with the trajectory collection terminal can be simultaneously traveled in this way, and the effective trajectory acquired by each navigation vehicle can be merged to create a map immediately.
 図16は本発明の第2の実施の形態に係る地図作成支援システムの構成図である。この図に示したシステムは、複数の軌跡収集端末100A,100B,100Cと、地図生成サーバ150を備えている。 FIG. 16 is a block diagram of a map creation support system according to the second embodiment of the present invention. The system shown in this figure includes a plurality of trajectory collection terminals 100A, 100B, 100C, and a map generation server 150.
 複数の軌跡収集端末100A,100B,100Cは、それぞれ第1の実施の形態に係る軌跡収集端末100と同じ構成で設けられており、それぞれ鉱山ダンプ(航測車両)に搭載されている。複数の軌跡収集端末100A,100B,100Cは、第1の実施の形態の場合と同様に、無線通信機器などを介して地図生成サーバ150とデータ通信可能に構成されている。各軌跡収集端末100A,100B,100Cで実行される処理は図3に示したものと同じなので説明は省略する。なお、図16の例では軌跡収集端末を3つのみ表示しているがこれは一例に過ぎない。 The plurality of trajectory collection terminals 100A, 100B, and 100C are provided in the same configuration as the trajectory collection terminal 100 according to the first embodiment, and are mounted on a mine dump (navigation vehicle). The plurality of trajectory collection terminals 100A, 100B, and 100C are configured to be capable of data communication with the map generation server 150 via a wireless communication device or the like, as in the case of the first embodiment. The processes executed by the trajectory collection terminals 100A, 100B, and 100C are the same as those shown in FIG. Although only three trajectory collection terminals are displayed in the example of FIG. 16, this is merely an example.
 地図生成サーバ150側の自車位置DB193(自車位置テーブル)、迂回検知DB195(迂回検知テーブル)及び有効軌跡DB185(有効軌跡テーブル)には、各軌跡収集端末100A,100B,100Cから送信されたデータが記憶されるが、当該データはどの端末100A,100B,100Cから送信されたデータかが判別可能なように記憶されている。その具体例としては、各軌跡収集端末100A,100B,100CのIDを示すレコードを各テーブルに付したり、各テーブルに共通する走行回次データに端末固有の文字列を付して記憶したりする方法がある。後者の方法を更に詳述すれば、軌跡収集端末100Aの1回目の走行を示すデータとして「1001」、軌跡収集端末100Bの1回目の走行を示すデータとして「2001」、軌跡収集端末100Cの1回目の走行を示すデータとして「3001」と入力し、各データの千の位を軌跡収集端末の番号とし、それ以下を走行回次とするものがある。 The vehicle position DB 193 (vehicle position table), the detour detection DB 195 (detour detection table), and the valid trajectory DB 185 (valid trajectory table) on the map generation server 150 side are transmitted from the trajectory collection terminals 100A, 100B, 100C. Although data is stored, the data is stored so that it can be determined from which terminal 100A, 100B, 100C the data is transmitted. As a specific example, a record indicating the ID of each of the trajectory collection terminals 100A, 100B, and 100C may be attached to each table, or a character string unique to the terminal may be attached to traveling routine data common to each table and stored. There is a way to More specifically, the latter method is “1001” as data indicating the first travel of the trajectory collection terminal 100A, “2001” as data indicating the first travel of the trajectory collection terminal 100B, and 1 of the trajectory collection terminal 100C. There is a system in which "3001" is input as data indicating the second run, the thousands place of each data is set as the number of the trajectory collection terminal, and the lower one is set as the run cycle.
 地図生成サーバ150は、各端末100A,100B,100Cで収集され、有効軌跡DB185に記憶された有効軌跡を第1の実施の形態と同様に融合することで地図を作成する処理を実行する。これにより各端末100A,100B,100Cが収集した有効軌跡から地図を作成することができる。 The map generation server 150 executes a process of creating a map by merging the valid trajectories collected by the terminals 100A, 100B and 100C and stored in the valid trajectory DB 185 in the same manner as in the first embodiment. Thereby, a map can be created from the effective trajectory which each terminal 100A, 100B, 100C collected.
 このように構成した地図作成支援システムによれば、同時に走行する複数の航測車両から走行軌跡(有効軌跡)を取得することができるので、第1の実施の形態よりも更に容易に地図を作成することができる。 According to the mapping support system configured in this way, the traveling locus (effective locus) can be acquired from a plurality of navigation vehicles traveling simultaneously, so that a map can be created more easily than in the first embodiment. be able to.
 次に本発明の第3の実施の形態について説明する。本実施の形態は、第1の実施の形態で説明した軌跡収集端末100及び地図作成サーバ150を同一の航測車両に搭載したものに相当し、当該航測車両は、軌跡収集端末100及び地図作成サーバ150に係る各構成を備えている。これにより、航測車両の走行軌跡を収集しながら地図を素早く生成することができる。 Next, a third embodiment of the present invention will be described. The present embodiment corresponds to one in which the trajectory collection terminal 100 and the mapping server 150 described in the first embodiment are mounted on the same navigation vehicle, and the navigation vehicle corresponds to the trajectory collection terminal 100 and the mapping server Each configuration according to 150 is provided. Thereby, the map can be generated quickly while collecting the traveling track of the navigation vehicle.
 図17は本発明の第3の実施の形態に係る地図作成支援システムの構成図である。この図に示す軌跡収集端末1700は、第1の実施の形態に係る軌跡収集端末100が有する構成(障害物検知部105、自車位置測位部110、迂回検知部115、端末側入力部120、端末側表示部125、端末側制御部130、自車位置DB135、及び障害物検知DB140)と、第1の実施の形態に係る地図生成サーバ150が有する構成(軌跡融合部155、有効軌跡抽出部160、有効軌跡DB185、及び地図DB190)を備えている。軌跡収集端末1700では、第1の実施の形態におけるデータ送受信に関する機能を省き、端末内で逐次処理する構成となっている。走行軌跡取得および地図作成に係る処理は第1の実施の形態で説明したものと同じなので省略する。 FIG. 17 is a block diagram of a map creation support system according to a third embodiment of the present invention. The locus collection terminal 1700 shown in this figure has the configuration of the locus collection terminal 100 according to the first embodiment (the obstacle detection unit 105, the vehicle position measurement unit 110, the detour detection unit 115, the terminal side input unit 120, Configurations of the terminal side display unit 125, the terminal side control unit 130, the vehicle position DB 135, and the obstacle detection DB 140) and the map generation server 150 according to the first embodiment (trajectory fusion unit 155, effective trajectory extraction unit 160, an effective trajectory DB 185, and a map DB 190). The locus collection terminal 1700 is configured to omit the function related to data transmission and reception in the first embodiment and to sequentially process in the terminal. The processes relating to travel locus acquisition and map creation are the same as those described in the first embodiment, and thus will not be described.
 このように構成した地図作成支援システムによれば、軌跡収集端末1700側の処理負荷は第1の実施の形態に比べて大きくなるものの、サーバ150を介す必要がなくなるので、航測車両単独で素早く地図を生成できる。 According to the mapping support system configured in this way, although the processing load on the side of the trajectory collection terminal 1700 is larger than that in the first embodiment, there is no need to go through the server 150. You can generate a map.
 次に本発明の第4の実施の形態について説明する。本実施の形態のシステム構成は第1の実施の形態と同じであるが、第1の実施の形態と比較して軌跡収集端末100における路肩距離算出処理及び迂回区間判定処理が異なっている。すなわち、本実施の形態では、左右の路肩までの距離を算出し、当該左右の路肩距離に基づいて航測車両が道路の中央を越えたか否かを判定することで迂回区間の判定を行っている。 Next, a fourth embodiment of the present invention will be described. The system configuration of the present embodiment is the same as that of the first embodiment, but road shoulder distance calculation processing and detour segment determination processing in the trajectory collection terminal 100 are different from those of the first embodiment. That is, in the present embodiment, the distance to the left and right road shoulders is calculated, and based on the left and right road shoulder distances, determination of the detour section is performed by determining whether the navigation vehicle has exceeded the center of the road. .
 図18は、本発明の第4の実施の形態に係る軌跡収集端末100による走行軌跡の収集処理に関するフローチャートである。この図に示すフローチャートは、ステップ910に後続する2つのステップ(ステップ1815,1820)に係る処理が図3のものと異なる。 FIG. 18 is a flowchart relating to travel locus collection processing by the locus collection terminal 100 according to the fourth embodiment of the present invention. The flowchart shown in this figure is different from that of FIG. 3 in the processing according to the two steps (steps 1815 and 1820) following step 910.
 ステップ1815では、自車が迂回走行をしているか否かを判断するために、路肩距離計測部143により、左側路肩から自車までの距離(左側路肩距離)Dlと右側路肩から自車までの距離(右側路肩距離)Drを同時に計測する。 In step 1815, in order to determine whether or not the host vehicle is detouring, the road shoulder distance measuring unit 143 determines the distance from the left side shoulder to the host vehicle (left side shoulder distance) Dl and the distance from the right side shoulder to the host vehicle. Measure the distance (right side shoulder distance) Dr simultaneously.
 ステップ1820では、迂回検知部115によって、ステップ1815で測定した左側路肩距離Dlと右側路肩距離Drを使って、道路中心線を超えたか否かを判別する処理を実行する。すなわち、DlとDrの大小関係を比較する。ここでは、通常走行時の自車は道路の左側を走行するので、Dl<Drのとき(すなわち、左側の路肩の方が近いとき)は自車が道路中心を超えていないと判定され、ステップ940に進む。一方、この場合とは両路肩距離Dl,Drの大小関係が逆転したとき(Dl≧Drのとき(右側の路肩の方が近いとき))は自車が道路中心(中心線)を越えたと判定され、ステップ925に進む。 In step 1820, the detour detection unit 115 executes processing for determining whether the road center line has been exceeded using the left road shoulder distance D1 and the right road shoulder distance Dr measured in step 1815. That is, the magnitude relationship between Dl and Dr is compared. Here, since the host vehicle during normal driving travels on the left side of the road, it is determined that the host vehicle does not exceed the road center when Dl <Dr (that is, when the left shoulder is closer), step Proceed to 940. On the other hand, it is determined that the vehicle has exceeded the road center (center line) when the magnitude relationship between the road shoulder distances Dl and Dr reverses in this case (when Dl 近 い Dr (when the road shoulder on the right side is closer)). And go to step 925.
 ここで図19を用いて本実施の形態における路肩距離と迂回について説明する。図19は、自車210の進行方向に対して左側の路肩1950の近くに障害物1930が存在し、当該障害物1930を避けるために、道路幅方向における道路中心1940を越えて自車が迂回する場合を示している。 Here, the road shoulder distance and the detour in the present embodiment will be described with reference to FIG. In FIG. 19, an obstacle 1930 is present near the road shoulder 1950 on the left side with respect to the traveling direction of the vehicle 210, and in order to avoid the obstacle 1930, the vehicle detours beyond the road center 1940 in the road width direction. The case is shown.
 図19において、目標経路に沿って走行する通常走行時には、自車はその進行方向に対して道路中心1940よりも左側を走行する。このとき、迂回検知部115によって、左側路肩距離Dl(1960)が右側路肩距離Dr(1965)以下であることが確認され、自車が道路中心1940を超えていない(迂回無し)と判定される。一方、自車が障害物1930を避けるために迂回走行を行う場合には、道路中心1940を超えて右側を走行することになる。このとき、迂回検知部115によって、左側路肩距離Dl(1970)が右側路肩距離Dr(1975)を超えたこと(Dl>Dr)が確認され、自車が道路中心1940を超えている(迂回あり)と判定される。 In FIG. 19, at the time of normal traveling traveling along the target route, the vehicle travels on the left side of the road center 1940 with respect to the traveling direction. At this time, it is confirmed by the detour detection unit 115 that the left road shoulder distance Dl (1960) is equal to or less than the right road shoulder distance Dr (1965), and it is determined that the vehicle does not exceed the road center 1940 (no detour). . On the other hand, when the host vehicle detours to avoid the obstacle 1930, the vehicle travels on the right side beyond the road center 1940. At this time, it is confirmed by the detour detection unit 115 that the left road shoulder distance Dl (1970) exceeds the right road shoulder distance Dr (1975) (Dl> Dr), and the own vehicle exceeds the road center 1940 (with detour) It is determined that
 上記のように、本実施の形態では道路中心を超えているか否かを、左右の路肩距離Dl,Drの大小関係に基づいて判定することで迂回区間が発生したか否かを判定している。この方法は、左右両方の路肩距離Dl,Drを測定することが容易な比較的狭い道路を走行する場合に有効であり、道路中心を越えたか否かを正確に判定することができる。また、道路の道幅の大きさに応じて、第1の実施の形態に係る迂回判定と第4の実施の形態に係る迂回判定とを使い分けることでより正確な迂回判定を行うことも可能である。なお、第1の実施の形態では、左側の路肩までの距離を測定するので、右側の路肩までの距離測定が困難な場合(例えば、道路幅が比較的広い場合)に有効である。 As described above, in the present embodiment, it is determined whether or not the detour section has occurred by determining whether or not the road center is exceeded based on the magnitude relationship between the left and right road shoulder distances Dl and Dr. . This method is effective when traveling on a relatively narrow road where it is easy to measure both left and right road shoulder distances Dl and Dr, and it can be accurately determined whether or not the road center has been crossed. Further, it is possible to perform more accurate detour determination by properly using detour determination according to the first embodiment and detour determination according to the fourth embodiment according to the size of the road width of the road. . In the first embodiment, since the distance to the left side shoulder is measured, it is effective when it is difficult to measure the distance to the right side shoulder (for example, when the road width is relatively wide).
 なお、上記の説明では、道路中心を越えた場合に迂回が発生したと判定する場合について説明したが、左側路肩距離と右側路肩距離の比を基準にして迂回の判定を行っても良い。 In the above description, although the case where it is determined that a detour has occurred when the road center is crossed, the detour determination may be performed based on the ratio of the left side shoulder distance and the right side shoulder distance.
 なお、上記の説明では、鉱山ダンプの地図を作成するために航測車両を走行させる場合について説明したが、軌跡収集端末100が搭載可能なものであればその他の移動体の移動軌跡に基づいて地図を作成しても良い。また、一般の乗用車と比較して、所定の期間内で同一の走行経路を通行することが多い鉱山ダンプ用の地図を作成する場合について説明したが、他の移動体用の地図作成システムとして上記のシステムを利用しても構わない。さらに、当該移動体が、自律移動可能か否かも限られない。すなわち、本発明に係る地図作成支援システムは、作成された地図に基づいて移動する移動体が有人か無人かに関わらず適用可能である。 In the above description, although the navigation vehicle is run to create a map of a mine dump, if the trajectory collection terminal 100 can be mounted, the map is based on the movement trajectories of other moving objects. You may create Moreover, although the case where the map for mine dumps which often travels the same driving | running route in a predetermined period compared with a general passenger car was created was demonstrated, the above-mentioned as a map creation system for other moving bodies You may use the system of Furthermore, the mobile unit may or may not be autonomously movable. That is, the mapping support system according to the present invention can be applied regardless of whether the moving object moving based on the created map is manned or unmanned.
 また、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。 Further, the present invention is not limited to the above embodiment, and includes various modifications within the scope not departing from the gist of the present invention. For example, the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted. In addition, a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
 また、上記の軌跡収集端末および地図作成サーバに係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の軌跡収集端末および地図作成サーバに係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。 In addition, with respect to each component related to the trajectory collection terminal and the mapping server, functions of each component, execution processing, etc., part or all of them are designed with hardware (for example, logic for executing each function is integrated circuit) Etc.). In addition, the configurations relating to the trajectory collection terminal and the map creation server described above are also read as programs (software) in which each function relating to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU). Good. The information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
 また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 Moreover, although the control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.
 100…軌跡収集端末、105…障害物検知部、110…自車位置測位部、115…迂回検知部、120…端末側入力部、125…端末側表示部、130…端末制御部、135…自車位置DB、140…迂回検知DB、143…路肩距離計測部、145…データ送信部、150…地図生成サーバ、155…軌跡融合部、160…有効軌跡抽出部、165…サーバ入力部、170…サーバ側表示部、175…データ受信部、180…サーバ側制御部、185…有効軌跡DB、190…地図DB、193…サーバ自車位置DB、195…サーバ迂回検知DB、1000…自車位置テーブル、1100…迂回検知テーブル、1400…有効軌跡テーブル、1500…地図生成テーブル、1700…軌跡収集端末(第3の実施の形態) 100 ... locus collection terminal, 105 ... obstacle detection unit, 110 ... vehicle position positioning unit, 115 ... detour detection unit, 120 ... terminal side input unit, 125 ... terminal side display unit, 130 ... terminal control unit, 135 ... self Car position DB 140 Detour detection DB 143 Road shoulder distance measurement unit 145 Data transmission unit 150 Map generation server 155 Trajectory fusion unit 160 Effective trajectory extraction unit 165 Server input unit 170 Server side display part, 175: Data reception part, 180: Server side control part, 185: Effective locus DB, 190: Map DB, 193: Server own car position DB, 195: server detour detection DB, 1000: own car position table 1100 ... detour detection table, 1400 ... valid trajectory table, 1500 ... map generation table, 1700 ... trajectory collection terminal (third embodiment)

Claims (7)

  1.  目標経路に沿って移動体を移動させた際の軌跡に基づいて地図を作成する地図作成支援システムにおいて、
     前記移動体の位置を測定するための測位部と、
     前記移動体の移動軌跡が記憶される軌跡記憶部と、
     前記軌跡記憶部に記憶された前記移動体の移動軌跡に基づいて、前記移動体が前記目標経路から外れたと推定される迂回区間を当該移動軌跡の中から特定する迂回検知部とを備えることを特徴とする地図作成支援システム。
    In a map creation support system that creates a map based on a locus when moving a moving object along a target route,
    A positioning unit for measuring the position of the mobile body;
    A locus storage unit in which a movement locus of the moving object is stored;
    Providing a detour detection unit which specifies a detour section in which the mobile unit is estimated to be deviated from the target route based on the movement trajectory of the mobile unit stored in the trajectory storage unit; Map making support system to be characterized.
  2.  請求項1に記載の地図作成支援システムおいて、
     前記軌跡記憶部に記憶された前記移動軌跡の中から前記迂回区間を除外したものが記憶される有効軌跡記憶部をさらに備えることを特徴とする地図作成支援システム。
    In the mapping support system according to claim 1,
    The map making support system according to claim 1, further comprising an effective trajectory storage unit that stores the detour section excluded from the movement trajectories stored in the trajectory storage unit.
  3.  請求項2に記載の地図作成支援システムにおいて、
     前記有効軌跡記憶部に記憶された同一の目標経路に係る有効軌跡のうち異なる時刻に取得された複数の有効軌跡を融合することで地図を生成する軌跡融合部をさらに備えることを特徴とする地図作成支援システム。
    In the mapping support system according to claim 2,
    A map characterized by further comprising a locus fusion unit for generating a map by fusing a plurality of effective loci acquired at different times among effective loci relating to the same target route stored in the effective locus storage unit. Creation support system.
  4.  請求項3に記載の地図作成支援システムにおいて、
     前記移動体から左右の路肩までの距離を計測する距離計測部をさらに備え、
     前記迂回検知部は、前記左右の路肩のうち一方の路肩までの距離と他方の路肩までの距離の大小関係が通常移動時と逆転した区間を前記迂回区間とすることを特徴とする地図作成支援システム。
    In the mapping support system according to claim 3,
    It further comprises a distance measurement unit that measures the distance from the moving object to the left and right road shoulders,
    The detour detection unit is characterized in that the detour section is a section in which the magnitude relation between the distance to one of the left and right road shoulders and the distance to the other of the left and right road shoulders is reverse to that during normal movement. system.
  5.  請求項3に記載の地図作成支援システムにおいて、
     前記移動体から当該移動体に近い方の路肩までの距離を計測する距離計測部をさらに備え、
     前記迂回検知部は、前記路肩までの距離が設定値を超える区間を前記迂回区間とすることを特徴とする地図作成支援システム。
    In the mapping support system according to claim 3,
    The mobile device further includes a distance measurement unit that measures the distance from the mobile unit to the road shoulder closer to the mobile unit,
    The said bypass detection part sets the area where the distance to the said road shoulder exceeds a setting value as the said bypass area, The cartographic assistance system characterized by the above-mentioned.
  6.  請求項4又は5に記載の地図作成支援システムにおいて、
     前記移動体の前方の状況を検知するための前方検知部をさらに備え、
     前記迂回検知部は、前記移動体の前方の状況及び前記距離計測部による計測距離に基づいて、前記迂回区間を特定することを特徴とする地図作成支援システム。
    In the map creation support system according to claim 4 or 5,
    It further comprises a front detection unit for detecting a situation in front of the moving body,
    The detour detection unit identifies the detour section based on a condition in front of the moving object and a distance measured by the distance measurement unit.
  7.  請求項6に記載の地図作成支援システムにおいて、
     前記前方検知部は、前方にある障害物を検知し、
     前記迂回検知部は、前記距離計測部による計測距離に基づいて特定された区間であって、かつ、前記前方検知部が前記障害物を検知した区間を前記迂回区間として特定することを特徴とする地図作成支援システム。
    In the mapping support system according to claim 6,
    The front detection unit detects an obstacle in front of the front of the vehicle.
    The bypass detection unit is a section specified based on the measurement distance by the distance measurement unit, and a section in which the front detection unit detects the obstacle is specified as the bypass section. Mapping support system.
PCT/JP2013/084427 2012-12-25 2013-12-24 Map making assist system WO2014103989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-281246 2012-12-25
JP2012281246A JP5919186B2 (en) 2012-12-25 2012-12-25 Map creation support system

Publications (1)

Publication Number Publication Date
WO2014103989A1 true WO2014103989A1 (en) 2014-07-03

Family

ID=51021071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084427 WO2014103989A1 (en) 2012-12-25 2013-12-24 Map making assist system

Country Status (2)

Country Link
JP (1) JP5919186B2 (en)
WO (1) WO2014103989A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511742A (en) * 2016-01-07 2016-04-20 美国西北仪器公司 Intelligent interaction interface
WO2017149628A1 (en) * 2016-02-29 2017-09-08 株式会社小松製作所 Work machine management system and work machine
US11243309B2 (en) 2015-02-16 2022-02-08 Northwest Instrument Inc. Ranging system and ranging method
WO2022179270A1 (en) * 2021-02-23 2022-09-01 京东科技信息技术有限公司 Robot traveling method and apparatus, and electronic device, storage medium and program product
US11556170B2 (en) 2016-01-07 2023-01-17 Northwest Instrument Inc. Intelligent interface based on augmented reality

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4248726A3 (en) * 2016-03-09 2023-10-25 Yanmar Power Technology Co., Ltd. Work vehicle
JP6499605B2 (en) * 2016-03-17 2019-04-10 ヤンマー株式会社 Traveling area identification device
JP6760876B2 (en) * 2017-03-27 2020-09-23 Kddi株式会社 Control devices, programs, and control methods
JP6978566B2 (en) * 2017-03-27 2021-12-08 Kddi株式会社 Controls, programs, and control methods
JP6684254B2 (en) * 2017-09-06 2020-04-22 日立建機株式会社 Road condition calculator and mine road management system
WO2019103156A1 (en) * 2017-11-27 2019-05-31 株式会社Trac Time measurement system
JP7352331B2 (en) * 2018-05-11 2023-09-28 ジオテクノロジーズ株式会社 Information processing device, information processing method, and information processing program
JP7087708B2 (en) 2018-06-15 2022-06-21 トヨタ自動車株式会社 Autonomous mobiles and control programs for autonomous mobiles
CN111238520B (en) * 2020-02-06 2022-10-14 阿波罗智能技术(北京)有限公司 Automatic driving lane change path planning method and device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109519A (en) * 1999-10-05 2001-04-20 Komatsu Ltd Travel control unit for vehicle
JP2004157935A (en) * 2002-11-08 2004-06-03 Komatsu Ltd Travel controller for vehicle
JP2008241478A (en) * 2007-03-27 2008-10-09 Aisin Aw Co Ltd Apparatus and system for creating detour
JP2009122838A (en) * 2007-11-13 2009-06-04 Denso Corp Traveling support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109519A (en) * 1999-10-05 2001-04-20 Komatsu Ltd Travel control unit for vehicle
JP2004157935A (en) * 2002-11-08 2004-06-03 Komatsu Ltd Travel controller for vehicle
JP2008241478A (en) * 2007-03-27 2008-10-09 Aisin Aw Co Ltd Apparatus and system for creating detour
JP2009122838A (en) * 2007-11-13 2009-06-04 Denso Corp Traveling support device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243309B2 (en) 2015-02-16 2022-02-08 Northwest Instrument Inc. Ranging system and ranging method
CN105511742A (en) * 2016-01-07 2016-04-20 美国西北仪器公司 Intelligent interaction interface
WO2017117796A1 (en) * 2016-01-07 2017-07-13 美国西北仪器公司 Intelligent interaction interface
US11069100B2 (en) 2016-01-07 2021-07-20 Northwest Instrument Inc. Intelligent interactive interface
CN105511742B (en) * 2016-01-07 2021-10-01 美国西北仪器公司 Intelligent interactive interface
US11556170B2 (en) 2016-01-07 2023-01-17 Northwest Instrument Inc. Intelligent interface based on augmented reality
WO2017149628A1 (en) * 2016-02-29 2017-09-08 株式会社小松製作所 Work machine management system and work machine
JPWO2017149628A1 (en) * 2016-02-29 2018-12-20 株式会社小松製作所 Work machine management system and work machine
AU2016395616B2 (en) * 2016-02-29 2019-07-25 Komatsu Ltd. Work machine management system and work machine
US11231279B2 (en) 2016-02-29 2022-01-25 Komatsu Ltd. Work machine management system and work machine
WO2022179270A1 (en) * 2021-02-23 2022-09-01 京东科技信息技术有限公司 Robot traveling method and apparatus, and electronic device, storage medium and program product

Also Published As

Publication number Publication date
JP5919186B2 (en) 2016-05-18
JP2014126919A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2014103989A1 (en) Map making assist system
US20220011130A1 (en) Selective retrieval of navigational information from a host vehicle
EP4253913A2 (en) Systems and methods for anonymizing navigation information
US10553114B2 (en) Method, apparatus, and computer program product for parking availability estimation based on probe data collection
WO2018175441A1 (en) Navigation by augmented path prediction
US20210381849A1 (en) Map management using an electronic horizon
JP6252252B2 (en) Automatic driving device
JP7179866B2 (en) Systems and methods for determining traffic flow using observations of surrounding vehicles
CN101246010A (en) Lane determining device, method, and program
CN103026396A (en) Driving assistance device
JP2012078226A (en) Driving support device for vehicle
JP2014130529A (en) New road determination method, new road determination device, display device, computer program and recording medium
EP2726818A2 (en) Providing routes through information collection and retrieval
CN113631885A (en) Navigation method and device
CN109425350A (en) Road positioning, road switching deciding method, device, equipment and storage medium
JP6349740B2 (en) Map data evaluation device
EP4204768A1 (en) Systems and methods for map-based real-world modeling
CN112836003A (en) Map processing method and device
CN112767740B (en) Parking lot selection method and device
JP5666401B2 (en) Navigation system, navigation device, and operation method of navigation system
JP5012642B2 (en) NAVIGATION DEVICE AND NAVIGATION DEVICE PROGRAM
JP6119459B2 (en) Intersection information identification device
JP5071737B2 (en) Lane determination device, lane determination program, and navigation device using the same
JP6507717B2 (en) Encountered vehicle judgment device
Blazquez et al. Performance of a new enhanced topological decision-rule map-matching algorithm for transportation applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867112

Country of ref document: EP

Kind code of ref document: A1