WO2014103434A1 - Wireless parameter control device, wireless parameter control device system, wireless parameter control method, and program thereof - Google Patents

Wireless parameter control device, wireless parameter control device system, wireless parameter control method, and program thereof Download PDF

Info

Publication number
WO2014103434A1
WO2014103434A1 PCT/JP2013/073868 JP2013073868W WO2014103434A1 WO 2014103434 A1 WO2014103434 A1 WO 2014103434A1 JP 2013073868 W JP2013073868 W JP 2013073868W WO 2014103434 A1 WO2014103434 A1 WO 2014103434A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
cell
prediction
cells
change
Prior art date
Application number
PCT/JP2013/073868
Other languages
French (fr)
Japanese (ja)
Inventor
高道 井上
弘人 菅原
航生 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014554184A priority Critical patent/JPWO2014103434A1/en
Publication of WO2014103434A1 publication Critical patent/WO2014103434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a radio parameter control device, a radio parameter control system, a radio parameter control method, and a program thereof for controlling radio parameters in a radio communication network.
  • a wireless communication network compliant with a cellular communication system represented by a cellular phone network constitutes a wide service area by distributing a plurality of base stations.
  • Each of the plurality of base stations forms and manages a “cell” that is a range in which the base station itself and a wireless terminal such as a mobile phone can communicate. In general, about one to six cells are formed and managed by one base station.
  • a radio terminal (UE: User Equipment, hereinafter, the radio terminal is appropriately referred to as “UE”)
  • the wireless parameters of the cell are optimized for the purpose of improving the wireless quality and communication quality.
  • specific indexes representing the radio quality include, for example, throughput, abnormal call disconnection rate, handover failure rate, and the like.
  • specific indexes representing communication quality for example, received power, a signal-to-interference ratio, and the like can be given.
  • radio parameter optimization When radio parameter optimization is performed, a running test using a dedicated measuring instrument is generally performed in the field, radio wave reception power and interference status, whether call disconnection or handover failure occurs, throughput Etc. are actually measured.
  • radio parameters to be adjusted for example, cell antenna tilt angle, antenna azimuth angle, transmission power, handover parameter, and the like are common. Also, adjustment of these radio parameters is usually performed manually.
  • Optimized cell radio parameters based on the above-described driving test involves manual measurement and tuning work, which contributes to an increase in the operation cost of the radio communication network.
  • SON Self Organizing Network
  • 3GPP 3rd Generation Partnership Project
  • Patent Document 1 One specific example of such a technique is described in Patent Document 1 as “base station apparatus, user apparatus and method used in a mobile communication system”.
  • the user apparatus and the base station cooperate to adjust the radio parameters of the base station without performing on-site measurement manually.
  • Patent Document 2 Another specific example of the technique for autonomously adjusting the radio parameters is disclosed in Patent Document 2 as “a method for optimizing cell radio parameters for load distribution”.
  • the traffic load of a certain cell (referred to as cell A) is measured.
  • cell A the traffic load of a certain cell
  • cell B a cell having a large overlapping range with the cell A is selected from the cells having a low traffic load around the cell A.
  • the coverage of the cell B is expanded and the coverage of the cell A is reduced.
  • the coverage of the cell B is reduced and the coverage of the cell A is expanded.
  • the radio parameter is determined independently for each cell without considering the change of the communication environment caused by the change of the radio parameter of another cell, the radio parameter of the cell becomes an inappropriate value. As a result, there is a problem that communication quality is deteriorated due to a change in radio parameters.
  • the wireless parameter is determined using the measurement information including the measurement information before the change of the communication environment.
  • the radio parameter of the cell is determined to be an inappropriate value, and there is a possibility that the communication characteristics are deteriorated by changing the radio parameter.
  • a cell having a relatively wide call area that provides a call area with a radius of several hundred meters to a few dozen kilometers is called a “macro cell”.
  • a cell having a relatively narrow communication area compared to a macro cell is called a “pico cell”.
  • the picocell is provided in a place where the radio wave intensity that cannot be covered by the macrocell alone, such as the basement or the back of a building, tends to be weak.
  • the wireless communication network in this example includes a base station 1000, a small base station 2000, and a small base station 3000. Further, in this example, the macro cell 1001, the pico cell 2001, and the pico cell 3001 are included as cells managed by each base station.
  • the macro cell 1001 has a low traffic load and the pico cell 2001 and the pico cell 3001 have a high traffic load and the like.
  • the pico cell 2001 and the pico cell 3001 execute load distribution without considering the change of the communication environment caused by the change of the mutual radio parameter.
  • the small base station 2000 and the small base station 3000 reduce the transmission power of the pico cell 2001 and the pico cell 3001, thereby reducing the coverage of each cell.
  • the reduced cells are represented as a pico cell 2002 and a pico cell 3002.
  • the radio parameter of a certain cell in a plurality of cells when the radio parameter of a certain cell in a plurality of cells is changed, the radio parameter after the change of the certain cell is inappropriate due to the change of the radio parameter in another cell. It is an object of the present invention to provide a wireless parameter control device, a wireless parameter control device system, a wireless parameter control method, and a program thereof that can avoid the situation.
  • a radio parameter control apparatus for controlling radio parameters for a cell group, wherein each target cell included in one or more control target cells in the cell group Predicting means for predicting a change in communication characteristics in the cell group due to a change in the radio parameter of the cell of interest, while taking into account the effect of control on the value of radio parameters of other cells in the cell group;
  • a radio parameter control device comprising: control means for controlling radio parameter values of one or more of the control target cells in the cell group based on prediction by a prediction means.
  • a radio parameter control method for controlling radio parameters for a cell group, wherein for each target cell included in one or more control target cells in the cell group, A prediction step for predicting a change in communication characteristics in the cell group due to a change in the radio parameter of the cell of interest while considering the influence of control on the value of the radio parameter of another cell in the cell group;
  • a radio parameter control method comprising: a control step of controlling radio parameter values of one or more of the cells to be controlled in the cell group based on prediction by a prediction step.
  • a radio parameter control program for causing a computer to function as a radio parameter control device that controls radio parameters for a cell group, wherein the computer is connected to one of the cell groups.
  • the effect of the control on the radio parameter value of another cell in the cell group is considered, and the cell
  • a prediction unit that predicts a change in communication characteristics in a group
  • a control unit that controls a value of a radio parameter of one or more of the control target cells in the cell group based on the prediction by the prediction unit.
  • a wireless parameter control program that functions as a wireless parameter control device is provided. It is.
  • a radio parameter control system comprising a base station that performs radio communication with a terminal, and a radio parameter control device connected to the base station, the base station comprising: Report means for reporting to the base station the quality related to the radio communication measured based on the communication with the terminal, and changing the radio parameters for the cells under the base station according to the change value instruction of the radio parameter control device
  • the wireless parameter control device according to any one of claims 1 to 9, wherein the wireless parameter control device is a wireless parameter control device according to any one of claims 1 to 9, wherein the prediction unit and the control unit are based on a report content by the reporting unit. And instructing the base station to change the radio parameter based on the change value of the radio parameter determined by the control means.
  • Radio parameter control system is provided, wherein.
  • a radio parameter control method performed by a system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station. 19.
  • a reporting step in which a station reports quality related to wireless communication measured based on communication with the terminal to the base station, and the wireless parameter control device according to any one of claims 10 to 18
  • An apparatus for performing a method wherein the prediction step and the control step are performed based on a report content of the report step, and a radio parameter is changed based on a change value of the radio parameter determined by the control step. Issuing an instruction to the base station, and the base station is subordinate to the base station in response to an instruction of a change value of the radio parameter control device.
  • Radio parameter control method characterized by comprising a changing step of changing the wireless parameters for the cell, it is provided.
  • the radio parameter after the change of the certain cell is inappropriate due to the change of the radio parameter in another cell. It becomes possible to avoid becoming.
  • the present invention can be realized by at least two embodiments, the first embodiment and the second embodiment.
  • the constituent elements of the first and second embodiments have many common parts, in this explanation, the common parts will be described first, and then each of the first and second embodiments is unique. The operation will be described individually.
  • the wireless communication system includes a wireless parameter control device 10 and a plurality of base stations 20.
  • Each of the plurality of base stations 20 forms and manages a subordinate cell 30.
  • a plurality of UEs 40 exist in the cell 30, and the base station 20 performs bidirectional wireless communication with the UEs 40 included in the range of the subordinate cell 30.
  • what kind of wireless communication system is compliant is not the gist of the present embodiment, and wireless communication can be realized based on a predetermined wireless communication system.
  • Each base station 20 is connected to an upper network (not shown). Each base station 20 relays traffic between the UE 40 and the upper network.
  • the upper network includes a radio access network and a core network.
  • the base station 20 includes a relay base station that relays the radio signal of the cell 30.
  • each base station 20 may manage two or more cells 30.
  • each base station 20 has only one managed cell 30 in order to simplify the description. Note that this is merely for the purpose of simplifying the description, and is not intended to limit the number of cells under management of the base station in this embodiment to one.
  • the UE 40 is a terminal that performs radio communication with the host network via the base station 20, and is normally carried by the user and used, but the UE 40 that is used stationary may be included.
  • the UE 40 is realized by, for example, a mobile phone or a portable personal computer or a tablet personal computer that performs data communication using a mobile phone network.
  • the radio parameter control device 10 acquires radio quality information and communication quality information from a plurality of base stations 20, and determines radio parameters for a plurality of cells 30.
  • the communication quality information acquired from each of the plurality of base stations 20 is information including at least communication quality information measured and stored in each base station 20.
  • the radio quality information acquired from each of the plurality of base stations 20 is information measured by one or more UEs 40 under the base station 20 and reported from the one or more UEs 40 to the base station 20.
  • the information includes at least the radio quality information (UE measurement information) of the UE 40 that has been received.
  • radio link abnormal disconnection rate Radio Link Failure
  • Call abnormal disconnection rate Call Drop Rate
  • handover failure rate Handover Failure Rate
  • traffic load average user Examples
  • throughput and cell throughput.
  • radio quality information examples include radio quality for each cell 30 measured by the UE 40, for example, received power of a downlink pilot signal or a reference signal, SINR (Signal toInterference plus Noise Ratio), etc. Signal to noise interference ratio.
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the radio quality information includes the throughput for each UE 40, communication quality such as BLER (Block Error Rate), event information such as the occurrence of abnormal disconnection or handover failure, the time when the UE measured the radio quality, the measured cell 30 Information such as an identifier and an identifier of the UE 40 may be included.
  • BLER Block Error Rate
  • the radio parameters determined by the radio parameter control device 10 include handover parameters such as an antenna tilt angle, an antenna azimuth angle, transmission power, and CIO (Cell Individual Offset) for each cell.
  • handover parameters such as an antenna tilt angle, an antenna azimuth angle, transmission power, and CIO (Cell Individual Offset) for each cell.
  • the specific examples of the communication quality information, the radio quality information, and the radio parameters are merely examples, and the communication quality information, the radio quality information, and the radio parameters may further include items other than those exemplified. Items other than those exemplified may be substituted for the communication quality information, the radio quality information, and the radio parameters.
  • the radio parameter control device 10 the base station 20, and the UE 40 that are common to the first and second embodiments of the present invention will be described with reference to the block diagram of FIG.
  • the base station 20 includes components for causing the base station 20 to function as a base station.
  • the UE 40 includes components for causing the UE 40 to function as the UE 40.
  • the UE 40 includes a communication unit 41 and a radio quality measurement unit 42.
  • the communication unit 41 receives a pilot signal (pilot signal) and / or a reference signal (reference signal) transmitted from the base station.
  • the signal received by the communication unit 41 is input to the radio quality measurement unit 42.
  • the radio quality measurement unit 42 measures information defined as a measurement target as radio quality information based on the pilot signal and / or the reference signal.
  • the measured wireless quality information is transmitted to the base station 20 via the communication unit 41.
  • the timing of measurement and transmission of radio quality information can be arbitrarily set, and may be executed, for example, in response to a request from the base station, and automatically at a predetermined cycle or a predetermined time. It may be executed at a later time, or may be executed when a handover or power-on is performed.
  • the base station 20 includes a communication unit 21, a communication quality measurement unit 22, a quality management unit 23, and a radio parameter adjustment unit 24.
  • the communication unit 21 receives the radio quality information transmitted from the UE 40 and inputs it to the quality management unit 23. Further, the communication unit 21 inputs information related to the communication status to the communication quality measurement unit 22 as information for measuring the communication quality.
  • the information on the communication status varies depending on the communication quality information defined as the measurement target, but includes information indicating the presence / absence of abnormal disconnection of a radio link or call and information for calculating a traffic load, for example.
  • the communication quality measuring unit 22 measures the communication quality based on the information regarding the communication status input from the communication unit 21, and generates communication quality information indicating the communication quality. Then, the communication quality information is input to the quality management unit 23.
  • the measurement timing of the communication quality measuring unit 22 can be arbitrarily set similarly to the wireless quality measuring unit 42.
  • the quality management unit 23 manages at least the wireless quality information input from the communication unit 21 and the communication quality information input from the communication quality measurement unit 22.
  • the wireless quality information and the communication quality information are input to the quality information storage unit 11 of the wireless parameter control device 10.
  • the radio parameter control device 10 includes a quality information storage unit 11, an affected cell determination unit 12, a communication characteristic prediction unit 13, and a radio parameter determination unit 14.
  • the quality information storage unit 11 collectively stores the wireless quality information and communication quality information acquired from the plurality of base stations 20.
  • the stored radio quality information and communication quality information are appropriately referred to and used by each unit included in the radio parameter control apparatus 10. Specific usage methods of the wireless quality information and communication quality information in each unit will be described later together with the description of each unit.
  • the affected cell determination unit 12 determines an “affected cell” based on the wireless quality information and the communication quality information stored in the quality information storage unit 11.
  • an affected cell is defined as a cell that is affected by a certain level or more of the communication characteristics by changing a radio parameter of a certain cell.
  • the affected cell determination unit 12 inputs the affected cell identification information indicating the determined affected cell to the communication characteristic prediction unit 13.
  • the communication characteristic prediction unit 13 first determines the “cooperation group” by using the wireless quality information and communication quality information stored in the quality information storage unit 11 and the affected cell identification information input from the affected cell determination unit 12. To do. Further, the “cooperation group” is composed of one or more cells, and is also referred to as a “cell group”.
  • the “cooperation group” is defined as a group of a plurality of cells to be subjected to “cooperation control”.
  • Coordinating control refers to determination and change of radio parameters for a certain cell in a cooperation group in consideration of changes in communication characteristics due to changes in radio parameters of one or more other cells belonging to this cooperation group. Say, to do.
  • cooperation control when changing radio parameters of a plurality of cells in a cooperation group at the same time (or within a certain period), change of radio parameters of other cells in the cooperation group is considered for each cell. Then, there is control (hereinafter referred to as “other cell consideration control”) that determines the radio parameter of the target cell in the cooperation group.
  • control when a wireless parameter of a certain cell in the cooperation group is changed, other cells in the cooperation group do not change the wireless parameter for a certain period of time (hereinafter, referred to as “control”). Will be referred to as exclusive control).
  • the communication characteristic prediction unit 13 predicts the communication characteristic of the cell after changing the radio parameter of the cell. Specifically, the communication characteristic predicting unit 13 determines each of the radio parameters after changing the radio parameters in the cooperation group based on the wireless quality information and the communication quality information stored in the quality information storage unit 11 and the determined identification information of the cooperation group. Predict cell communication characteristics.
  • a method for predicting communication characteristics will be described using one specific example.
  • the reception power (RSRP) for each radio cell measured by the UE 40 is used as the radio quality information stored in the quality information storage unit 11. Then, the transmission power of the control target radio cell is used as the radio parameter. That is, the throughput for each candidate value of the transmission power of the control target radio cell is predicted for each UE 40 based on the received power (RSRP).
  • RSRPs represents RSRP of a “control target radio cell” that is a cell for determining radio parameters.
  • RSRPn1, RSRPn2,..., RSRPni represent the RSRP of each affected cell from the affected cell 1 to the affected cell i.
  • the prediction results are rearranged in descending order, and the RSRP unit is converted from a decibel value (dBm) to a real value (mW).
  • dBm decibel value
  • mW real value
  • S1, I1, I2, ..., Ini decibel value
  • the “prediction target UE” of the case where the transmission power is changed It can be regarded as a connected radio cell.
  • S1 is not necessarily the same cell as the cell to which the “prediction target UE” currently belongs. That is, the “prediction target UE” may remain belonging to the same cell when the transmission power of the control target radio cell is changed, or when switching the destination to another cell, that is, when performing handover There is also a possibility.
  • SINR ′ the result of converting the above SINR into a decibel value (dB) is set as SINR ′.
  • TP B ⁇ log2 (1 + SINR ′) ⁇ ⁇
  • B is the system bandwidth [Hz]
  • is a constant representing the amount of deterioration from the theoretical limit that occurs depending on the implementation of the receiver.
  • the communication characteristics of the affected cell for each transmission power candidate value of the control target radio cell can be predicted for each “prediction target UE” based on the received power (RSRP).
  • all the UEs 40 included in the affected cell are calculated as “prediction target UEs”, and the throughput of each UE 40 when the transmission power of the control target radio cell is changed is predicted. Can do.
  • indexes can be calculated based on this prediction. For example, 5% throughput in the UE 40 connected to the affected cell (when the user throughputs of all UEs 40 connected to the affected cell are arranged in descending order, the throughput of the user corresponding to the lower 5% (for example, the position of the rank of the lower 5%) For example, the average throughput of all users included in the lower 5%)).
  • 5% throughput in the UE 40 connected to the affected cell when the user throughputs of all UEs 40 connected to the affected cell are arranged in descending order, the throughput of the user corresponding to the lower 5% (for example, the position of the rank of the lower 5%) For example, the average throughput of all users included in the lower 5%).
  • each UE 40 belongs to a radio cell having the highest RSRP.
  • the number of UEs 40 that can be connected simultaneously is imposed on each radio cell.
  • the communication characteristic prediction unit 13 inputs the communication characteristic prediction result to the wireless parameter determination unit 14.
  • the communication characteristic prediction unit 13 predicts the communication characteristic, it may be necessary to distinguish whether each cell belonging to the cooperation group is a macro cell or a pico cell. When such distinction is necessary, for example, a method that enables distinction is used as described below.
  • a PCI Physical Cell ID
  • a pico cell for example, a PCI (Physical Cell ID) area is divided into a macro cell and a pico cell in advance.
  • the communication characteristic prediction unit 13 can distinguish whether each cell is a macro cell or a pico cell by referring to the PCI.
  • the macro cell and the pico cell are called, but this is only an example, and for example, the pico cell may be called a nano cell. Further, the cell may be divided into more cells instead of being divided into two like the macro cell and the pico cell.
  • the wireless parameter determination unit 14 uses the wireless quality information and the communication quality information stored in the quality information storage unit 11 and the communication characteristic prediction result input from the communication characteristic prediction unit 13, and uses each of the cooperation groups. Determine the radio parameters for each cell. A wireless parameter determination method will be described later.
  • step S100 to step S103 a cell to be subjected to cooperation control, that is, a cell included in the cooperation group is determined.
  • N N is an integer of 2 or more cells 30 exist as candidate cells included in the cooperation group.
  • These candidate cells 30 may be all or some of the cells 30 managed by the radio parameter control apparatus 10. That is, all or some of the plurality of cells 30 managed by the radio parameter control apparatus 10 are candidates, and then a cooperation group is determined by narrowing down those candidates.
  • communication quality information of the cell 30 is used. Specifically, the average throughput, traffic load, abnormal call disconnection rate, etc. of each cell 30 are used. Then, when the communication quality in each cell 30 is worse than a predetermined standard, it is determined that the wireless parameter control condition is satisfied. For example, among these exemplified standards, the standard such as traffic load and abnormal call disconnection rate indicates that the higher the value is, the worse it is. Therefore, if such a criterion is employed, it is determined that the wireless parameter control condition is satisfied when the value is equal to or greater than the threshold value. On the contrary, among these exemplified criteria, the average throughput indicates that the value decreases as the value decreases. Therefore, if such a criterion is employed, it is determined that the wireless parameter control condition is satisfied when the value is equal to or less than the threshold value.
  • step S101-1 to S101-N For the cells 30 that satisfy the determinations in steps S100-1 to S100-N (Yes in steps S100-1 to S100-N), the process proceeds from step S101-1 to S101-N, respectively.
  • the process is terminated without changing the radio parameters. That is, cells 30 that do not satisfy the determinations of steps S100-1 to S100-N are not included in the cooperation group and are excluded from the current cooperation control targets.
  • M N is set for convenience.
  • the UE 40 connected to the cells 30-1 to 30-M measures the radio quality in order to obtain information for controlling the radio parameters (steps S101-1 to S101-M).
  • the measured radio quality information is reported to the radio parameter control apparatus 10 via the base stations 20-1 to 20-M that manage the cells 30 that satisfy the radio parameter control conditions.
  • the affected cells of each cell 30-i 1 to M) are targeted for the cells 30-1 to 30-M that satisfy the radio parameter control conditions.
  • the cell affected by the cell 30-i is a cell affected by the cell 30-i.
  • any setting method can be used.
  • the following methods can be considered.
  • the cell 30-j When setting an influence cell of a certain cell 30-j (j is an integer not less than 1 and not more than M), the cell 30-j itself is always included.
  • the transmission power value of the cell 30-j becomes a predetermined transmission power value (for example, a lower limit value of a range changeable by setting or zero).
  • a cell 30-k (k is an integer of 1 or more and M or less, j ⁇ k) expected to be selected as a handover destination by the UE 40 connected to the cell 30-j is set as an affected cell of the cell 30-j.
  • the UE 40 connected to the cell 30-j has a predetermined number (or a predetermined ratio) or more.
  • the cell 30-j that is expected to be selected as the handover destination by the UE 40 may be set as an affected cell of the cell 30-j.
  • a report is made to the base station 20 that manages the cell 30-j in S101-j.
  • a method of using the radio quality information of the UE 40 that has been used can be considered. Specifically, it is assumed that each UE 40 connects another cell 30-k with the highest received power of the downlink pilot signal and / or reference signal as a handover destination according to the measurement result from each UE 40.
  • the cell 30-k to be connected as the handover destination can be determined from the estimation result of the reception power at the UE 40 when the transmission power value of the cell 30-j is changed.
  • an example of setting based on the distance between the base station antennas of the base station 20 can be considered. That is, when an affected cell 30-k corresponding to a certain cell 30-j is set, the cell managed by the base station 20 within a predetermined range from the antenna installation position of the base station 20 managing the cell 30-j 30 may be set as the influence cell 30-k of the cell 30-j.
  • an example of setting based on the number of handover attempts of each UE 40 can be considered. That is, when an affected cell of a certain cell 30-j is set, the number of handover attempts counted in a predetermined period is used, and the cell 30 in which the number of handover attempts from the cell 30-j exceeds a predetermined threshold It may be set as the influence cell 30-k of -j.
  • an example of setting based on a preset neighboring cell list can be considered. That is, when an affected cell of a certain cell 30-j is set, the neighbor cell list set as a handover destination candidate from the cell 30-j is used, and all of the cells 30 registered in the neighbor cell list or A part may be set as the influence cell 30-k of the cell 30-j.
  • step S103 a cooperation group is set based on the cells 30-1 to 30-M that satisfy the wireless parameter control conditions.
  • the following method can be considered as a method for setting a cooperation group.
  • one or more affected cells that are affected by an arbitrary cell and a method in which the arbitrary cell is set as an affected cell of the own cell, and a set of one or more cells that affect the arbitrary cell is used as a cooperation group Is mentioned. In that case, for example, as described above, it is repeated until the affected cell of the own cell and the cell having the own cell as the affected cell are not added to the linked group, and the linked group at that time is finally determined as the linked group To do.
  • a certain cell 30-A is selected, a cell 30-B that is an affected cell of the cell 30-A is searched from the cell 30-A as a base point, and the cell 30-A is selected as an affected cell.
  • the cell 30-C is searched.
  • the cell 30-B and the cell 30-C thus searched are added to the members of the cooperation group.
  • an additional linkage group is formed starting from a cell that is not included in those linkage groups.
  • Another example of a method for setting a cooperation group is a technique of forming a cooperation group in units of macro cells in a network configuration in which macro cells and pico cells are mixed as the cells 30.
  • the one or more pico cells are Shall belong to the cooperation group.
  • the macro cell having the greatest influence is selected from the plurality of macro cells. Then, it is assumed that one or more pico cells sharing the selected macro cell and the common macro cell belong to one cooperation group.
  • each of one or more macro cells if the only pico cell included in the one or more affected cells of the macro cell is a certain pico cell, these one or more macro cells are the certain pico cell. Shall belong to the cooperation group.
  • the pico cell having the greatest influence is selected from among the plurality of pico cells. It is assumed that one or more macro cells sharing the selected pico cell and the common pico cell belong to one cooperation group.
  • k-NN k-nearest neighbor algorithm
  • the cooperation group may be a range of the cells 30 limited by the above method, or may be all of the cells 30 managed by the wireless parameter control device 10. That is, step S100 to step S103 may be omitted, and all the cells 30 managed by the radio parameter control apparatus 10 may be handled as one cooperation group.
  • g linked groups (g is an integer of 1 or more) are set by the linked group settings. That is, it is assumed that cooperation group 1 to cooperation group g are set.
  • the communication characteristics referred to here are, for example, traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, reception quality (RSRP, RSRQ, SINR) and the like.
  • the communication characteristics may be calculated using only one of the radio quality information and the communication quality information.
  • FIG. 4 illustrates processing in “cooperation group h” (h is an integer of 1 to g), which is one of the cooperation groups 1 to g.
  • step S104-h-1 the communication characteristics when the radio parameters of each cell 30 in the cooperation group h are changed are predicted.
  • the radio parameters of other cells 30 other than the certain cell 30 included in the cooperation group h are changed. It is also taken into account.
  • step S104-h-2 the radio parameter determination unit 14 determines the radio parameters of each cell so that the communication characteristics after changing the radio parameters are optimized based on the communication characteristics predicted in step S104-h-1. Determine the change value of. Then, the radio parameter determination unit 14 collectively changes the radio parameters of each cell to the determined change value. Thereby, the operation of the present embodiment ends.
  • the change of communication characteristics caused by the change of the radio parameters of other cells is also taken into consideration, and the plurality of cells It is possible to control the wireless parameters in cooperation with each other.
  • FIG. 10 illustrates processing in one set cooperation group h (h is an integer of 1 to g).
  • n in FIG. 10 represents the number of cells included in the cooperation group h.
  • step S104-h-1 similarly to the first embodiment, the communication characteristics when the radio parameters of each cell in the cooperation group h are changed are predicted.
  • step S104-h-3 based on the communication characteristics predicted in step S104-h-1, a cell for changing the radio parameter and a change value of the radio parameter are determined.
  • the number of cells whose radio parameters are changed at one time is only one in the cooperation group g.
  • step S104-h-4 the radio parameter of the single cell determined in step S104-h-3 is changed to the changed value determined in step S104-h-3.
  • the change is not a calculation change but an actual setting of the changed radio parameter in the base station related to the cell.
  • step S104-h-5 it is determined whether the wireless parameter change completion condition is satisfied. If the completion condition is satisfied (Yes in step S104-h-5), the wireless parameter control is completed.
  • step S104-h-5 if the completion condition is not yet satisfied (No in step S104-h-5), the process proceeds to steps S104-h-6-1 to S104-h-6-n.
  • steps S104-h-6-1 to S104-h-6-n in order to control radio parameters at the next control timing, UEs 40 connected to cells 1 to n perform radio quality measurements, respectively.
  • the wireless quality information is reported to the wireless parameter control apparatus 10 via the base station 20 related to .about.n.
  • the base station 20 that manages the cells 1 to n measures communication quality information and reports the same to the radio parameter control apparatus 10 in the same manner.
  • Steps S104-h-1 to S104-h-6 are repeated until Yes is obtained in Step S104-h-5. Thereby, the process of step S104-h ends.
  • step S104-h-1 to step S104-h-6 are repeated in step S104-h, the radio parameter change is performed for the cell in which the radio parameter has been changed at the previous control timing or the cell that has been determined not to be changed. You may make it exclude from this candidate.
  • the control timing is a timing for updating the radio quality information and communication quality information after changing the radio parameter, and changing the radio parameter again based on the updated radio quality information and communication quality information. That is, it is the timing at which a series of processing from step S104-h-1 to step S104-h-6 is performed once in step S104-h.
  • the control timing may be provided periodically at a predetermined cycle, may be provided at a predetermined time, or may be provided when the wireless parameter control device 10 receives a user instruction.
  • the wireless parameter control device 10 receives a user instruction.
  • completion condition used in step S104-h-5 for example, the following completion condition may be used.
  • the completion of changing the radio parameters of all cells in the cooperation group can be exemplified as the first completion condition. If this first completion condition is adopted, when repeating step S104-h-1 to step S104-h-6 in step S104-h, the cell whose radio parameter has been changed at the previous control timing is used. In addition, a cell that has been determined not to be changed needs to be excluded from radio parameter change candidates.
  • the number of cells that control radio parameters in the cooperation group (or the ratio of cells to be controlled among all the cells in the cooperation group) is determined in advance, and the number of cells that control the wireless parameters (or all cells in the cooperation group)
  • the third completion condition can be exemplified by the fact that the ratio of cells to be controlled to the number of cells) has reached a predetermined number of cells (or the ratio of cells to be controlled to all cells in the cooperation group).
  • the actual communication characteristic corresponding to the transmission power after the change is changed. Since the value and the predicted value of the communication characteristic corresponding to the transmission power around the transmission power after the change can be calculated, the transmission power can be controlled more accurately.
  • Example 1 to Example 4 which are examples of step S104-h according to the first embodiment, will be described.
  • the method for predicting communication characteristics in step S104-h-1 is different, but the contents of step S104-h-2 are common. Therefore, in order to avoid redundant description, description of step S104-h-2 is omitted in the description of each embodiment below.
  • FIG. 5 shows an arrangement example of cells for explaining the first embodiment.
  • the macro cell 31 there are one macro cell (macro cell 31) and two pico cells (pico cell 32 and pico cell 33).
  • the macro cell 31 is under the control of the base station 20-1
  • the pico cell 32 is under the control of the base station 20-2
  • the pico cell 33 is under the control of the base station 20-3.
  • the cells included in the current cooperation group h are only two pico cells (the pico cell 32 and the pico cell 33).
  • the wireless parameter to be changed is transmission power and the predicted communication characteristic is user throughput will be described as an example. Further, although the transmission power can be changed, in the present explanation, it is assumed that each pico cell can be changed in increments of 1 dBm from 36 to 30 dBm.
  • the first embodiment there are 49 combinations of radio parameter candidate values of pico cells (pico cell 32 and pico cell 33) (pico cell 32: seven types of transmission power ⁇ pico cell 33: seven types of transmission power).
  • pico cell 32 seven types of transmission power
  • pico cell 33 seven types of transmission power.
  • 5% throughput in the UE 40 connected to the affected cell of the pico cell when the user throughputs of all the UEs 40 connected to the affected cell of both pico cells are arranged in descending order, the throughput of the user corresponding to the lower 5% (for example, the lower 5% The throughput of the users in the ranking position, the average throughput of all the users included in the lower 5%, etc.).
  • the combination when the transmission power of the pico cell 32 is set to 36 dBm and the transmission power of the pico cell 33 is set to 35 dBm is expressed as “36/35”. To do. Further, when the transmission power of the pico cell 32 is set to 36 dBm and the transmission power of the pico cell 33 is set to 35 dBm, the 5% throughput in the UE 40 connected to the affected cells of both pico cells seems to be 3.5 Mbps. Such a case is expressed as “36/35: 3.5 Mbps”.
  • the 5% throughput in each transmission power combination is 36/36: 3.3 Mbps, 35/36: 3.1 Mbps,... 30/36: 3.0 Mbps, 36/35: 3.5 Mbps, 35/35: 3.8 Mbps, ... 30/35: 3.9 Mbps, ..., 36/30: 4.0 Mbps, 35/30: 4.2 Mbps, ..., 30/30 : 4.4 Mbps.
  • the current transmission power of the pico cell 32 is 36 dBm
  • the transmission power of the pico cell 33 is 36 dBm
  • the corresponding 5% throughput value of 3.3 Mbps is the currently measured communication quality information and the current actual measurement. It is a value calculated based on the radio quality information. Therefore, this 5% throughput value is an actual value.
  • the 5% throughput value corresponding to another combination of the transmission power value of the pico cell 32 and the transmission power value of the pico cell 33 is calculated based on the currently measured communication quality information and the currently measured radio quality information. Estimated value.
  • This relative value represents the amount of change that will occur if the transmission power is changed.
  • the transmission power of the pico cell 32 and the pico cell 33 is determined to be 30/30 (pico cell 32:30 dBm, pico cell 33:30 dBm) at which the predicted 5% throughput is maximized.
  • the wireless parameter can be similarly determined even when the number of cells is 3 or more.
  • a similar method can be used using an a-dimensional table.
  • the radio parameter to be controlled is transmission power
  • other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used.
  • transmission power one type of wireless parameter called transmission power
  • the wireless parameter to be changed may be a combination of two or more types.
  • the throughput is predicted as the prediction of the communication characteristics
  • other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted.
  • the evaluation amount is a predicted value of the communication characteristic.
  • the evaluation amount is set to the plurality of evaluation values. It is a function of the predicted value of communication characteristics.
  • 5% is merely an example, and other values may be used.
  • the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
  • a similar method can be used using an a-dimensional table. This is the case when all combinations from the minimum value to the maximum value of the radio parameter adjustment range for each cell are made.
  • a combination of all radio parameters in a range where the sum of absolute differences from the current radio parameters for each cell is equal to or less than a predetermined value may be set as a change candidate, Any combination of distributions may be used as a change candidate.
  • the range of change candidates includes the current set of wireless parameter values, which is normal, but need not be included. The same applies to the following embodiments.
  • the communication characteristics in all combinations of wireless parameter candidate values of cells are predicted, it is possible to increase the effect of improving the communication characteristics when a plurality of cells cooperate to change the wireless parameters.
  • Example 2 the number of combinations for predicting communication characteristics is limited by sequentially determining wireless parameters for each of a plurality of cells in the cooperation group.
  • the second embodiment is different from the first embodiment in that the prediction is not performed for all the combinations but only for the limited combinations.
  • the description will be made using the cell arrangement example shown in FIG. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
  • the wireless parameter to be changed is transmission power
  • the predicted communication characteristic is user throughput
  • the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell.
  • transmission power is determined for each cell in order from a plurality of cells in the cooperation group. Therefore, in Example 2, it determines from the order of the cell which determines transmission power.
  • the cell order determination method include, for example, a method of determining transmission power from a cell with a high traffic load, a method of determining from a cell with a high abnormal call disconnection rate, and a cell with a large number of effective scheduling users.
  • the method of determining can be considered. That is, a cell having a large influence due to a change in radio parameters, a cell having poor communication characteristics, or the like is regarded as a cell having a high rank.
  • the transmission power of the pico cell 32 which is a cell that is not the pico cell 33 is fixed to the initial value of 36 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the transmission power of the pico cell 33 is increased by 1 dBm up to 30 dBm.
  • the transmission power of the pico cell 33 is increased by 1 dBm up to 30 dBm.
  • 5% throughput in all UEs 40 connected to both affected cells is predicted.
  • the initial value of the transmission power of the pico cell 32 is fixed as 36 dBm. This is because the current transmission power value of the pico cell 32 is 36 dBm in this example. That is, in this example, the current value is used as it is as the initial value.
  • the transmission power of the pico cell 33 is fixed to the determined 35 dBm
  • the transmission power of the pico cell 32 having the second rank is kept at 36 dBm
  • the transmission power of the pico cell 32 is increased to 30 dBm in 1 dBm increments.
  • 5% throughput in the UE 40 connected to both affected cells is predicted.
  • the transmission power of the pico cell 32 has the maximum predicted 5% throughput. It is determined to be 35 dBm.
  • the transmission power of the pico cell 32 is changed from 36 dBm to 35 dBm, and the transmission power of the pico cell 33 is changed from 36 dBm to 35 dBm.
  • the transmission power of one cell is uniquely determined from the prediction result of the communication characteristics when the transmission power of one cell is changed. That is, in the above-described example, the transmission power of the pico cell 33 is uniquely determined to be 35 dBm that maximizes the predicted 5% throughput.
  • a method in which a plurality of transmission powers are candidates may be employed. In this case, not only the transmission power with the maximum 5% throughput but also the second and third transmission powers are left as candidates, and the communication characteristics for the combination with the transmission power of the other cell are predicted. Even if this is the case, it is possible to reduce the pattern to be throughput predicted compared to the first embodiment.
  • the transmission power adjustment range is 30 dBm to 36 dBm, but this adjustment range may be changed.
  • the adjustment range may be expanded, shifted, or the upper limit value and the lower limit value may be changed separately.
  • the wireless parameter can be similarly determined even when the number of cells is 3 or more.
  • the priority is determined from 1 to 3, and then the transmission power of the cell with the priority 2 and the transmission power of the cell with the priority 3 Are fixed to the current values, and the transmission power of the cell having the priority of 1 is determined so that the communication characteristics are best within a predetermined range. Then, the transmission power of the cell with priority 1 is fixed to the value after determination, the transmission power of the cell with priority 3 is fixed to the current value, and the transmission power of the cell with priority 2 is in a predetermined range. The communication characteristics are determined to be the best. Finally, with the transmission power of the cell with priority 1 and the transmission power of the cell with priority 2 fixed to the determined values, the transmission power of the cell with priority 3 is within a predetermined range. The communication characteristics are determined to be the best. This is the same even when the number of cells included in the cooperation group is four or more.
  • the radio parameter to be controlled is transmission power
  • other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter
  • transmission power is changed as the wireless parameter to be changed
  • the wireless parameter to be changed may be a combination of two or more types.
  • the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted.
  • SINR signal-to-noise interference ratio
  • the lower 5% throughput is illustrated this time, other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
  • the communication characteristics in all combinations of the wireless parameter candidate values of each cell are predicted, so that the effect of improving the communication characteristics by changing the wireless parameters in cooperation with a plurality of cells can be increased.
  • wireless parameters are sequentially determined one cell at a time, thereby reducing the amount of calculation associated with prediction of communication characteristics while maintaining the effect of changing wireless parameters. Can do.
  • the radio parameters of each cell are determined at one time by a single determination.
  • a change width to be changed by a single determination is determined in advance, and a plurality of parameters are determined.
  • the radio parameters are determined while repeating the radio parameters of the cells one after another.
  • Example 3 will also be described using the cell arrangement example shown in FIG. 5, as in Examples 1 and 2. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
  • the wireless parameter to be changed is transmission power
  • the predicted communication characteristic is user throughput
  • the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell. To do.
  • transmission power is determined for each cell in order from a plurality of cells in the cooperation group. Therefore, also in Example 3, it determines from the order of the cell which determines transmission power.
  • the cell order determination method include, for example, a method of determining transmission power from a cell with a high traffic load, a method of determining from a cell with a high abnormal call disconnection rate, and a cell with a large number of effective scheduling users.
  • the method of determining can be considered. That is, a cell having a large influence due to a change in radio parameters, a cell having poor communication characteristics, or the like is regarded as a cell having a high rank.
  • the traffic load of the pico cell 32 is 60% and the traffic load of the pico cell 33 is 70%, the traffic load The determination of transmission power is started from the pico cell 33 which is a high cell.
  • Example 3 the change width for changing the transmission power at a time is 1 dBm.
  • the UE 40 that is connected to both affected cells when the transmission power of the pico cell 33 remains 36 dBm and when the transmission power of the pico cell 33 is changed to 35 dBm. Predict 5% throughput. In this case, since 36/36: 3.3 Mbps and 36/35: 3.5 dBm, the transmission power of the pico cell 33 is provisionally determined to be 35 dBm.
  • the transmission power of the pico cell 33 is fixed to 35 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm, and the transmission power of the pico cell 32 is changed to 35 dBm, and both the affected cells are connected. Predict 5% throughput at UE40. In this case, since 36/35: 3.5 Mbps and 35/35: 3.6 dBm, the transmission power of the pico cell 32 is provisionally determined to be 35 dBm.
  • the wireless parameter to be determined is searched by repeatedly making a temporary determination within the range of the predetermined change width while changing the cell to be changed. A search by repeating such provisional determination is performed until a predetermined end condition is satisfied. Then, for a cell that satisfies a predetermined termination condition, the radio parameter is determined by performing this determination based on a value provisionally determined before the termination condition is satisfied, and the search is terminated. The cell in which this determination has been made is excluded from the subsequent search targets.
  • a condition such as the following first end condition example can be set as the predetermined end condition.
  • the communication characteristics after the change are not improved at all. It is determined that a certain cell satisfies the termination condition.
  • the termination condition is set for this certain cell. It is judged that For this certain cell, the transmission power is finally determined to a value provisionally determined before the termination condition is satisfied, and this certain cell is excluded from future search targets.
  • the search is continued in a cell other than the certain cell excluded from the search target in a state where the transmission power of the excluded certain cell is fixed at the determined transmission power. And finally, even if the transmission power is changed within a predetermined range of change for all the cells, if no improvement can be obtained for the indicator of 5% throughput, the end condition for all the cells It is judged that Then, the transmission power is finally determined to a value provisionally determined before the termination condition is satisfied, and the search is terminated.
  • the communication throughput when the transmission power of the pico cell 32 is changed after the transmission power of the pico cell 33 is provisionally determined to 34 dBm is predicted. That is, since the transmission power of the pico cell 32 is provisionally determined up to 35 dBm, the communication throughput when the pico cell 32 transmission power is reduced to 34 dBm is predicted. As a result, 35/34: 3.8 Mbps and 34/34: 3.7 dBm are obtained, so even if 1 dBm, which is within the predetermined range of change, is lowered, an improvement is obtained for the 5% throughput index. Disappear.
  • the transmission power is determined to 35 dBm temporarily determined before the termination condition is satisfied for the pico cell 32. Then, the pico cell 32 is excluded from the target of the subsequent search.
  • the transmission power of the pico cell 32 is determined to 35 dBm and then the search for the pico cell 33 is continued, the transmission power of the pico cell 33 is provisionally determined to 34 dBm, and therefore the pico cell 33 transmission power is reduced to 33 dBm.
  • Predict communication throughput As a result, 35/34: 3.8 Mbps and 35/33: 3.6 dBm are obtained, so even if the dBm is reduced within the predetermined range of change, an improvement on the 5% throughput index is obtained. It becomes impossible. Therefore, it can be determined that the termination condition is also satisfied for the pico cell 33, and the transmission power is determined to 34 dBm temporarily determined for the pico cell 33 before the termination condition is satisfied.
  • the communication characteristics after the change are not improved at all.
  • the termination condition was satisfied.
  • the end condition is not satisfied because the improvement is 0.2 Mbps or more.
  • the end condition is satisfied because it has not improved by 0.2 Mbps or more.
  • the termination condition is satisfied when the communication characteristic after the change does not improve more than a predetermined ratio compared to the communication characteristic before the change. That is, a predetermined improvement rate may be set, and when the improvement does not improve more than this improvement rate, it may be determined that the end condition is satisfied.
  • a predetermined improvement rate may be set, and when the improvement does not improve more than this improvement rate, it may be determined that the end condition is satisfied.
  • the improvement rate of the 5% throughput index does not increase by 5% or more even if the dBm is reduced within the predetermined range of change. You may make it do. For example, if the 5% throughput before the change is 3.5 mMbps, the improvement rate is 5.7% if the 5% throughput after the change is 3.7 mMbps, so the termination condition is not satisfied. On the other hand, if the 5% throughput after the change is 3.6 mM bps, the improvement rate is 2.8%, which satisfies the termination condition.
  • a second end condition example may be considered in which it is determined that the end condition is satisfied for all cells when improvement in the index of 5% throughput is not obtained for at least one cell with respect to transmission power change. It is done.
  • the main transmission power before the termination condition is determined for all the cells, The search for the cell is terminated.
  • the transmission power of the certain cell is changed to the transmission power before the change.
  • the above-mentioned certain amount is based on the transmission power condition in which the improvement is obtained in the at least one cell.
  • the search is continued in all the cells including the cell, and it is determined that the termination condition is satisfied when no improvement is finally obtained for all the cells.
  • a method of finally determining the transmission power immediately before the end condition in all cells and ending the search is given as a third example of the end condition.
  • the wireless parameter can be similarly determined when the number of cells is 3 or more.
  • the priority is determined from 1 to 3, and then the transmission power of the cell with the priority 2 and the transmission power of the cell with the priority 3 Are fixed at the current values, and the transmission power of the cell having the priority of 1 is provisionally determined so that the communication characteristics are best within a predetermined range. Then, the transmission power of the cell with priority 1 is fixed to the value after provisional determination, the transmission power of the cell with priority 3 is fixed to the current value, and the transmission power of the cell with priority 2 is set to a predetermined value. Temporary determination is made so that the communication characteristics become the best within the range. Next, with the transmission power of the cell with priority 1 and the transmission power of the cell with priority 2 fixed to the values after provisional determination, the transmission power of the cell with priority 3 is within a predetermined range. The provisional determination is made so that the communication characteristics are the best.
  • the above operation is generally repeated several times.
  • the repetition end condition is as described above.
  • the said predetermined range is usually made narrower than the predetermined range of Example 2, it does not necessarily need to do so.
  • the radio parameter to be controlled is transmission power
  • other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter
  • transmission power is changed as the wireless parameter to be changed
  • the wireless parameter to be changed may be a combination of two or more types.
  • the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted.
  • SINR signal-to-noise interference ratio
  • the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
  • the change width to be changed at a time is 1 dBm, other change widths can be similarly applied.
  • the transmission power is set in a direction in which improvement in the index of 5% throughput is obtained by comparing the throughput in the three cases of the case where the transmission power is not changed, the case where the transmission power is lowered by 1 dBm, and the case where the transmission power is increased by 1 dBm. change.
  • a change width to be changed at a time is determined in advance, and transmission power is determined while gradually changing radio parameters of a plurality of cells.
  • Such a determination method is particularly effective when the difference between the upper limit value and the lower limit value of the radio parameter is large.
  • the number of combinations for predicting the communication characteristics is limited by sequentially predicting the radio parameters one cell at a time for a plurality of cells in the cooperation group.
  • the fourth embodiment considers the order of cells for determining radio parameters from a plurality of viewpoints.
  • the cell for which the radio parameters are determined first is determined based on the traffic load of the cell. That is, one order is determined, and communication characteristics are predicted based on only this one order.
  • the fourth embodiment is different in that communication characteristics are predicted in a plurality of determination orders.
  • a wireless parameter that provides the greatest improvement in communication characteristics is determined.
  • the description will be made using the cell arrangement example shown in FIG. 5 as in the first to third embodiments. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
  • the wireless parameter to be changed is transmission power
  • the predicted communication characteristic is user throughput
  • the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell. To do.
  • the transmission power is determined in the order of the pico cell 32 ⁇ the pico cell 33 and the transmission power is determined in the order of the pico cell 33 ⁇ the pico cell 32, respectively, as in the second embodiment.
  • a process of determining the transmission power of a cell at a time is performed. That is, in the fourth embodiment, communication characteristics are predicted in a plurality of determination orders, and transmission power is determined based on the communication characteristics. A plurality of transmission powers respectively corresponding to a plurality of determination orders are obtained. The plurality of predicted communication characteristics respectively corresponding to the obtained plurality of transmission powers are compared, and the transmission power corresponding to the communication characteristic that is superior is selected.
  • the transmission power of the pico cell 33 is fixed at 36 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm.
  • the change is made in increments of 1 dBm up to 30 dBm, 5% throughput in all UEs 40 connected to the affected cell is predicted.
  • 35/36: 3.5 Mbps is obtained.
  • the transmission power of the pico cell 32 is fixed at 35 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the case where the transmission power of the pico cell 33 is changed to 30 dBm in 1 dBm increments is connected to the affected cell.
  • 35/30: 4.2 Mbps is obtained as the maximum predicted throughput.
  • the transmission power of the pico cell 32 is fixed at 36 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the transmission power of the pico cell 33 is increased by 1 dBm to 30 dBm.
  • 5% throughput is predicted for all UEs 40 connected to both affected cells.
  • 36/35: 3.8 Mbps is obtained.
  • the transmission power of the pico cell 33 is fixed at 35 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm, and the case where the transmission power of the pico cell 32 is changed to 30 dBm in 1 dBm increments is connected to the affected cell.
  • 35/35: 3.9 Mbps is obtained as the maximum predicted throughput.
  • the wireless parameter can be similarly determined when the number of cells is 3 or more.
  • the cooperation group includes three cells, a first pico cell, a second pico cell, and a third pico cell
  • the first pico cell ⁇ the second pico cell ⁇ the third pico cell
  • the comparison six predicted value and the predicted value of the communication characteristic of the case, to determine and select the ones improvement in most communication characteristics is
  • the radio parameter to be controlled is transmission power
  • other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter
  • transmission power is changed as the wireless parameter to be changed
  • the wireless parameter to be changed may be a combination of two or more types.
  • the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted.
  • SINR signal-to-noise interference ratio
  • the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
  • the fourth embodiment is realized as a modification of the second embodiment (method for determining the radio parameters of each cell at a time), but the third embodiment (the radio parameters of a plurality of cells are changed little by little).
  • the fourth embodiment may be realized as a modification of the method of determining the wireless parameter.
  • the change width to be changed at a time may be set to an arbitrary value.
  • Example 2 and Example 3 may be mixed, and the improvement about the parameter
  • Example 4 since the order of cells for determining radio parameters can be considered from a plurality of viewpoints, the amount of calculation is larger than in Examples 2 and 3, but the effect of changing radio parameters can be increased. In particular, the effect can be increased in an environment where there is a great influence, such as when cells in a cooperation group are close to each other.
  • the radio parameters of the plurality of cells are collectively controlled. As a result, the time required for control of the entire wireless communication system can be shortened.
  • Example 1 to Example 4 described above correspond to the first embodiment.
  • Example 5 which is an example corresponding to the second embodiment will be described.
  • Example 1 the radio parameters of a plurality of cells are collectively controlled at one control timing.
  • Example 5 only one cell in the cooperation group h is changed at a time at one control timing. Then, after actually changing the radio parameter of only one cell, the radio quality information and the communication quality information are acquired, and then the process of actually changing the radio parameter of one cell at the next control timing is repeated.
  • the wireless power to be changed is transmission power
  • the predicted communication characteristic is user throughput
  • the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell as in the first to fourth embodiments. To do.
  • a communication characteristic prediction method according to the fifth embodiment will be described with reference to FIG.
  • a method in which a cell whose radio parameter has been changed at a previous control timing or a cell that has been decided not to be changed is excluded from candidates for radio parameter change.
  • the transmission power of two pico cells is changed one cell at a time.
  • the completion condition it is used to complete the change of radio parameters of all cells in the control group. That is, in this example, since two pico cells are targeted, the radio parameter of one of the pico cells is changed at the first control timing. Then, at the second control timing, the pico cell whose radio parameter has been changed at the first control timing is excluded from the candidates, and the radio parameter of the other pico cell that has not been changed is changed. Then, the change of the radio parameters of all cells in the control group is completed at the second control timing, and the completion condition is satisfied, so that the next time, the process is performed again as the first control timing. Become.
  • 5% throughput is predicted for all UEs 40 connected to the affected cell corresponding to each case where the transmission power of the pico cells 32 and 33 is changed within a range of 36 to 30 dBm with a change width of 1 dBm.
  • the control target is a cell 33. Therefore, the transmission power of the cell 32 is fixed at 36 dBm. In this case, when the pico cell 33 is set to 35 dBm, the 5% throughput is maximum at 3.7 Mbps. Therefore, at the first control timing, the transmission power of the pico cell 33 is changed to 35 dBm.
  • the UE 40 connected to the pico cell 32 and the pico cell 33 performs radio quality measurement, and the pico cell 32 and the pico cell 33 perform communication quality measurement.
  • the radio parameters of the pico cell 32 are controlled using the measured radio quality measurement and communication quality measurement. Similar to the above, 5% throughput in all UEs 40 connected to the affected cell is predicted. At this time, the radio quality information and communication quality information used for 5% throughput prediction are information after being measured and updated under the transmission power changed at the initial control timing as described above. That is, the wireless quality information and the communication quality information when the transmission power of the cell 32 is 36 dBm and the transmission power of the cell 33 is 35 dBm are used.
  • the transmission power of the pico cell 33 is 35 dBm at the second control timing, a 5% throughput is predicted based on this.
  • the transmission power of the pico cell 32 is changed to 35 dBm because the transmission power of the pico cell 32 is 3.8 Mbps, which is a maximum value of 5% throughput corresponding to 35 dBm. Therefore, in the fifth embodiment, the transmission power of the pico cell 32 is changed from 36 dBm to 35 dBm, and the transmission power of the pico cell 33 is changed from 36 dBm to 35 dBm.
  • the wireless parameter can be similarly determined even when the number of cells is 3 or more.
  • the wireless parameter to be controlled is transmission power
  • other wireless parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter
  • transmission power is changed as the wireless parameter to be changed
  • the wireless parameter to be changed may be a combination of two or more types.
  • the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted.
  • SINR signal-to-noise interference ratio
  • the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
  • the cell to be controlled first is determined based on the prediction of the communication characteristics. For example, the cell with the highest traffic load, the cell with the high abnormal disconnection rate of the call, A cell having a high effective number of scheduling users may be selected.
  • step S103 the form in which the cooperation group determined in step S103 is used over a plurality of control timings is shown, but this is not intended to limit the operation of the present embodiment.
  • the cooperation group may be set again based on the changed communication quality information. Specifically, after the parameters of one cell in the cooperation group are finished, based on the changed communication quality information, the cell to be controlled is updated (equivalent to returning to step S100 in FIG. 3), The cooperation group may be updated after the setting of the affected cell of each cell is updated based on the radio quality information of the UE 40 (corresponding to returning to step S101 in FIG. 3).
  • the overall time required for control is longer than that in the first embodiment, but control based on the measurement result after changing the radio parameter is possible, and thus more accurate radio parameter control is possible. Has the advantageous effect of becoming
  • radio parameter control device and the radio parameter control system described above can be realized by hardware, software, or a combination thereof.
  • radio parameter control method performed by the radio parameter control device and the radio parameter control system described above can be realized by hardware, software, or a combination thereof.
  • realized by software means realized by a computer reading and executing a program.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer readable media include magnetic recording media (eg, flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg, magneto-optical disc), CD-ROM (Read Only Memory), CD- R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory).
  • the computer may be supplied by a computer readable medium (transitory ⁇ computer ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ readable medium) Examples of temporary computer readable media include electrical signals, optical signals, and electromagnetic waves. And the program can be supplied to the computer via a wired communication path such as an optical fiber or a wireless communication path. wear.
  • a radio parameter control apparatus for controlling radio parameters for a cell group, For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group.
  • Predicting means for predicting a change in communication characteristics in the cell group due to the change of Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
  • a wireless parameter control device comprising:
  • the radio parameter control device according to appendix 1 or 2
  • the prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
  • the control means determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value.
  • the wireless parameter control device (Appendix 4) The wireless parameter control device according to attachment 1, wherein The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially, The control means determines the value of the radio parameter of the target cell focused on in order based on the prediction, When the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest, the prediction means is determined for a cell whose radio parameters have already been determined by the control means. A radio parameter control apparatus using a radio parameter value.
  • the wireless parameter control device (Appendix 5) The wireless parameter control device according to attachment 1, wherein The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially, The control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction, When the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means. Using the value of the wireless parameter A radio parameter control apparatus that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the radio parameter that is tentatively determined at the end of the repetition as a radio parameter after change .
  • the radio parameter control device (Appendix 6) The radio parameter control device according to appendix 1 or 2,
  • the prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods,
  • the radio parameter control apparatus wherein the control unit controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction unit.
  • a radio parameter control apparatus further comprising means for simultaneously setting radio parameters determined by control in corresponding radio base stations.
  • the wireless parameter control device (Appendix 8) The wireless parameter control device according to attachment 1, wherein The prediction means performs the prediction for one of the cells of interest, The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means, The radio parameter control device Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station; Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means; Further comprising The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition.
  • a radio parameter control apparatus that predicts a change in the communication characteristics using a wireless communication device.
  • the wireless parameter control device according to any one of supplementary notes 1 to 8,
  • the radio parameter control apparatus characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
  • a radio parameter control method for controlling radio parameters for a cell group For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group.
  • a prediction step for predicting a change in communication characteristics in the cell group due to a change in A control step of controlling a value of a radio parameter of one or more of the control target cells in the cell group based on the prediction by the prediction step;
  • a wireless parameter control method comprising:
  • the radio parameter control method according to supplementary note 10 or 11, In the prediction step, for all combinations of a predetermined range of radio parameter value change candidates for the plurality of cells of interest, a change in communication characteristics in the cell group is predicted, In the control step, a radio parameter value change candidate that optimizes the communication characteristics is determined as a radio parameter value after the change.
  • the wireless parameter control method according to supplementary note 10, wherein In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another, In the control step, the value of the radio parameter of the cell of interest focused sequentially is determined based on the prediction, In the predicting step, when predicting a change in communication characteristics due to a change in radio parameters of a target cell of interest, the cell in which the radio parameters have already been determined in the control step is determined. A radio parameter control method using a radio parameter value.
  • the radio parameter control method according to supplementary note 10, wherein In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another, In the control step, the radio parameter value of the cell of interest focused on in order is provisionally determined based on the prediction, In the prediction step, when predicting a change in communication characteristics due to a change in the radio parameter of the cell of interest that is currently focused on, the cell in which the radio parameter has already been provisionally determined in the control step is determined. Using the value of the wireless parameter A radio parameter control method characterized by repeating the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determining a radio parameter temporarily determined at the end of the repetition as a radio parameter after change .
  • the radio parameter control method according to supplementary note 10 or 11, In the predicting step, a plurality of methods are focused on the plurality of cells of interest, and a plurality of communication characteristics corresponding to the plurality of methods are predicted,
  • the radio parameter control method characterized in that, in the control step, radio parameter values of the plurality of cells of interest are controlled based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods in the prediction step.
  • a radio parameter control method further comprising the step of simultaneously setting radio parameters determined by control in corresponding radio base stations.
  • the radio parameter control method according to supplementary note 10, wherein In the prediction step, the prediction for one of the cells of interest is performed, In the control step, based on the prediction in the prediction step, the wireless parameter value of the one target cell is provisionally determined,
  • the radio parameter control method is: A setting step of setting the radio parameter whose value is provisionally determined in the control step in a corresponding radio base station; A measurement step of measuring radio quality information and / or communication quality information after radio parameters are set by the setting step; Further comprising The prediction step, the control step, the setting step, and the measurement step are repeated. In each iteration, the prediction step includes the radio quality information and / or communication quality information measured by the measurement step in the previous iteration.
  • a radio parameter control method characterized in that a change in the communication characteristics is predicted using the method.
  • the wireless parameter control method according to any one of supplementary notes 10 to 17, The radio parameter control method characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
  • the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
  • a radio parameter control program for causing a computer to function as a radio parameter control device for controlling radio parameters for a cell group, The computer, For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group.
  • Predicting means for predicting a change in communication characteristics in the cell group due to the change of Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
  • a wireless parameter control program that functions as a wireless parameter control device.
  • the wireless parameter control program according to supplementary note 19, The prediction means performs the prediction for a plurality of the cells of interest, The control means further causes the computer to function as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on the prediction of the plurality of cells of interest by the prediction unit. Wireless parameter control program.
  • the wireless parameter control program according to supplementary note 19 or 20,
  • the prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
  • the control means further causes the computer to function as a wireless parameter control device that determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value. .
  • the wireless parameter control program according to supplementary note 19,
  • the predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
  • the control means determines the value of the radio parameter of the target cell focused on in order based on the prediction,
  • the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest
  • the prediction means is determined for a cell whose radio parameters have already been determined by the control means.
  • a wireless parameter control program that further causes the computer to function as a wireless parameter control device that uses wireless parameter values.
  • the wireless parameter control program according to supplementary note 19,
  • the predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
  • the control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction,
  • the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means.
  • the computer is further used as a wireless parameter control device that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the wireless parameter temporarily determined at the end of the repetition as a wireless parameter after change.
  • a wireless parameter control program which is made to function.
  • the radio parameter control program according to supplementary note 19 or 20,
  • the prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods
  • the control means further functions the computer as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction means.
  • a wireless parameter control program characterized in that
  • the wireless parameter control program performs the prediction for one of the cells of interest, The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means,
  • the wireless parameter control device includes: Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station; Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means; Further comprising The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition.
  • a wireless parameter control program that further causes the computer to function as a wireless parameter control device that predicts a change in the communication characteristics using a computer.
  • the wireless parameter control program according to any one of supplementary notes 19 to 26,
  • the communication characteristics include at least one of traffic load, resource utilization rate, effective number of scheduling users, user throughput, cell throughput, reception quality (RSRP, RSRQ, SINR), and further functions the computer as a radio parameter control device
  • RSRP, RSRQ, SINR reception quality
  • a radio parameter control system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station, The base station Reporting means for reporting to the base station quality related to wireless communication measured based on communication with the terminal; Changing means for changing a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device,
  • the wireless parameter control device is the wireless parameter control device according to any one of appendices 1 to 9, wherein the prediction unit and the control unit are operated based on a report content by the reporting unit, and the control unit Instructing the base station to change the radio parameter based on the determined change value of the radio parameter;
  • a wireless parameter control system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station, The base station Reporting means for reporting to the base station quality related to wireless communication measured based on communication with the terminal; Changing means for changing a radio parameter for a cell under the base station according to an instruction of
  • a radio parameter control method performed by a system including a base station that performs radio communication with a terminal and a radio parameter control device connected to the base station, A reporting step in which the base station reports to the base station the quality related to wireless communication measured based on communication with the terminal;
  • the wireless parameter control device performs the wireless parameter control method according to any one of appendices 10 to 18, and performs the prediction step and the control step based on a report content of the reporting step, and the control Instructing the base station to change a radio parameter based on a change value of the radio parameter determined in the step;
  • the base station changes a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device; and
  • a wireless parameter control method comprising:
  • the present invention can be applied to any wireless communication network conforming to the cellular system regardless of its use or the contents of parameters to be changed.

Abstract

In the present invention, when altering wireless parameters of a cell among a plurality of cells, the situation is avoided in which the post-alteration wireless parameters of the cell become inappropriate as a result of the wireless parameters being changed in another cell. A wireless parameter control device that controls the wireless parameters of a cell group takes into consideration the effect of controlling the values of the wireless parameters of another cell in the cell group for each cell of interest among at least one cell to be controlled in the cell group, and predicts the changes in the communication characteristics of the cell group resulting from altering the wireless parameters of the cell of interest. On the basis of the prediction, the values of the wireless parameters of the at least one cell to be controlled in the cell group are controlled.

Description

無線パラメータ制御装置、無線パラメータ制御装置システム、無線パラメータ制御方法及びそのプログラムWireless parameter control device, wireless parameter control device system, wireless parameter control method and program thereof
 本発明は、無線通信網における無線パラメータを制御する為の、無線パラメータ制御装置、無線パラメータ制御システム、無線パラメータ制御方法及びそのプログラムに関する。 The present invention relates to a radio parameter control device, a radio parameter control system, a radio parameter control method, and a program thereof for controlling radio parameters in a radio communication network.
 携帯電話網に代表されるようなセルラ方式(cellular communication system)に準拠した無線通信網は、複数の基地局を分散して配置することによって、広域なサービスエリアを構成する。そして、これら複数の基地局のそれぞれは、基地局自身と携帯電話機等の無線端末とが通信可能な範囲である「セル」を形成及び管理する。また、通常は1つの基地局によって、1つ~6つ程度のセルが形成及び管理される。 A wireless communication network compliant with a cellular communication system represented by a cellular phone network constitutes a wide service area by distributing a plurality of base stations. Each of the plurality of base stations forms and manages a “cell” that is a range in which the base station itself and a wireless terminal such as a mobile phone can communicate. In general, about one to six cells are formed and managed by one base station.
 また、これらの基地局の設置時や運用中には、通信不能なエリア(Coverage hole)を削減し、更には無線端末(UE:User Equipment、以下、無線端末のことを適宜「UE」と呼ぶ。)の無線品質や通信品質を改善することを目的として、セルの無線パラメータの最適化が行われる。なお、ここで、無線品質を表す具体的な指標としては、例えばスループット、呼の異常切断率及びハンドオーバ失敗率等が挙げられる。また、通信品質を表す具体的な指標としては、例えば、受信電力や、信号対干渉比等が挙げられる。 In addition, during the installation and operation of these base stations, the area incapable of communication (Coverage hole) is reduced, and further, a radio terminal (UE: User Equipment, hereinafter, the radio terminal is appropriately referred to as “UE”) The wireless parameters of the cell are optimized for the purpose of improving the wireless quality and communication quality. Here, specific indexes representing the radio quality include, for example, throughput, abnormal call disconnection rate, handover failure rate, and the like. In addition, as specific indexes representing communication quality, for example, received power, a signal-to-interference ratio, and the like can be given.
 そして、無線パラメータ最適化を行う場合、一般的には現地にて専用の測定器を用いた走行試験を実施し、電波の受信電力や干渉状況、呼の異常切断やハンドオーバ失敗の発生有無、スループット等を実際に測定する。 When radio parameter optimization is performed, a running test using a dedicated measuring instrument is generally performed in the field, radio wave reception power and interference status, whether call disconnection or handover failure occurs, throughput Etc. are actually measured.
 次に、測定結果に基づいて受信電力が不十分な場所(Weak coverage)や、強い干渉を受けている場所(Pilot pollution)などを特定すると共に、これらの場所での問題を解消するための無線パラメータの調整を行う。ここで、調整対象とされる無線パラメータとしては、例えば、セルのアンテナチルト角、アンテナ方位角、送信電力、ハンドオーバパラメータ等が一般的である。また、これらの無線パラメータの調整は、通常は人手により実行される。 Next, based on the measurement results, identify places where the received power is insufficient (Weak coverage), places where there is strong interference (Pilot pollution), etc., and wireless to solve the problems at these locations Adjust the parameters. Here, as radio parameters to be adjusted, for example, cell antenna tilt angle, antenna azimuth angle, transmission power, handover parameter, and the like are common. Also, adjustment of these radio parameters is usually performed manually.
 上述したような走行試験に基づくセルの無線パラメータの最適化は、人手による測定ならびにチューニング作業を伴うため、無線通信網の運用コストの増加の一因となっている。 Optimized cell radio parameters based on the above-described driving test involves manual measurement and tuning work, which contributes to an increase in the operation cost of the radio communication network.
 そこで、こうした無線パラメータの最適化にかかるコストを削減するために、セルの無線パラメータを基地局等が自律的に最適化する技術の開発及び標準化が進められている。例えば、3GPP(3rd Generation Partnership Project)において標準化が進められているSON(Self Organizing Network)などがその一例である。 Therefore, in order to reduce the cost for optimization of such radio parameters, development and standardization of a technology for autonomously optimizing the radio parameters of a cell by a base station or the like are being advanced. For example, SON (Self Organizing Network), which is being standardized in 3GPP (3rd Generation Partnership Project), is one example.
 このような技術の具体例の1つが「移動通信システムで使用される基地局装置、ユーザ装置及び方法」として特許文献1に記載されている。 One specific example of such a technique is described in Patent Document 1 as “base station apparatus, user apparatus and method used in a mobile communication system”.
 特許文献1に記載の技術では、既設の又は新設予定の基地局の無線パラメータの適正化を図るために、特定地域における電波伝搬状況を簡易に測定することを課題としている。そして、特許文献1ではこの課題を解決するために1以上のユーザ装置(例えば携帯電話機)から受信したレポート信号の報告内容を解析することで、基地局の無線パラメータを調整する。なお、報告内容の解析は、基地局装置で行われてもよいし、基地局よりも上位のノード(例えば、MME/UPE(Mobile Management Entity/User Plane Entity)等)で行われてもよい。 In the technique described in Patent Document 1, an object is to easily measure the radio wave propagation state in a specific area in order to optimize the radio parameters of an existing or planned base station. And in patent document 1, in order to solve this subject, the radio | wireless parameter of a base station is adjusted by analyzing the report content of the report signal received from one or more user apparatuses (for example, mobile telephones). The analysis of the report content may be performed by the base station device or may be performed by a node higher than the base station (for example, MME / UPE (Mobile Management Entity / User Plane Entity)).
 このようにして特許文献1に記載の技術では、ユーザ装置及び基地局等が連携することにより、人手による現地での測定をすることなく、基地局の無線パラメータを調整している。 As described above, in the technique described in Patent Document 1, the user apparatus and the base station cooperate to adjust the radio parameters of the base station without performing on-site measurement manually.
 また、このように自律的に無線パラメータを調整する為の技術の具体例のもう1つが、「負荷分散のためのセルの無線パラメータの最適化方法」として特許文献2に開示されている。 In addition, another specific example of the technique for autonomously adjusting the radio parameters is disclosed in Patent Document 2 as “a method for optimizing cell radio parameters for load distribution”.
 特許文献2に開示された方法では、まず或るセル(セルAとする)のトラフィック負荷を測定する。そして、このセルAのトラフィック負荷が所定の値よりも高い時には、セルAの周辺に存在するトラフィック負荷の低いセルのうち、セルAとの重なりの範囲が大きいセル(セルBとする)を選択する。 In the method disclosed in Patent Document 2, first, the traffic load of a certain cell (referred to as cell A) is measured. When the traffic load of the cell A is higher than a predetermined value, a cell (referred to as cell B) having a large overlapping range with the cell A is selected from the cells having a low traffic load around the cell A. To do.
 そして、セルBのカバレッジを拡大するとともに、セルAのカバレッジを縮小する。他方、セルAのトラフィック負荷が低い時には、セルBのカバレッジを縮小するとともに、セルAのカバレッジを拡大する。以上の制御を、全てのセル間について順次実行する。 Then, the coverage of the cell B is expanded and the coverage of the cell A is reduced. On the other hand, when the traffic load of the cell A is low, the coverage of the cell B is reduced and the coverage of the cell A is expanded. The above control is sequentially executed between all the cells.
 特許文献2にて開示されている技術では、このような動作を行うことにより、各セルの無線パラメータを調整し、各セル間において負荷分散を図ることとしている。 In the technique disclosed in Patent Document 2, by performing such an operation, radio parameters of each cell are adjusted, and load distribution is achieved among the cells.
特開2008-172380号公報JP 2008-172380 A 国際公開第2000/072618号パンフレットInternational Publication No. 2000/072618 Pamphlet
 上述したような特許文献1及び特許文献2等に記載の技術を用いることにより、人手を要さない、システム内での自律的な無線パラメータの調整について一定程度の効果が望める。 By using the techniques described in Patent Document 1 and Patent Document 2 as described above, a certain degree of effect can be expected for autonomous wireless parameter adjustment in the system that does not require manual labor.
 しかしながら、特許文献1及び特許文献2に記載の技術をはじめとした一般的な方法では、或るセルに関しての無線パラメータを決定する際に、この或るセル以外の他のセルの無線パラメータの変更によって生じる通信環境の変化を考慮していない、という問題があった。例えば、特許文献2に記載の技術であればセルAの無線パラメータの調整の際にセルBとの関係を考慮はしているが、その後セルBの無線パラメータも調整されるということは一切考慮していない。つまり、セルAにおいて調整を行う時点で考慮したセルBの無線パラメータは、後にセルBにおいて調整を行う時点で変更されるものであるということを考慮していない。 However, in a general method including the techniques described in Patent Document 1 and Patent Document 2, when determining the radio parameters for a certain cell, the radio parameters of other cells other than the certain cell are changed. There was a problem of not considering the change in the communication environment caused by. For example, in the technique described in Patent Document 2, the relationship with the cell B is taken into account when adjusting the radio parameter of the cell A, but the radio parameter of the cell B is also adjusted thereafter. Not done. That is, it is not considered that the radio parameter of cell B considered at the time of adjustment in cell A is changed at the time of adjustment in cell B later.
 そしてこのように、他のセルの無線パラメータの変更によって生じる通信環境の変化を考慮せずに、それぞれのセル毎に独立に無線パラメータが決定されていたため、セルの無線パラメータが不適切な値に決定され、無線パラメータの変更によって通信品質の劣化が生じるという問題が生じていた。 As described above, since the radio parameter is determined independently for each cell without considering the change of the communication environment caused by the change of the radio parameter of another cell, the radio parameter of the cell becomes an inappropriate value. As a result, there is a problem that communication quality is deteriorated due to a change in radio parameters.
 より具体的に説明すると、これらの一般的な方法では他のセルの無線パラメータの変更によって通信環境が変化した後であっても、或いは、近い将来に無線パラメータの変更によって通信環境が変化することが確実である場合であっても、通信環境の変化前の測定情報を含む測定情報を用いて無線パラメータが決定される。その結果、セルの無線パラメータが不適切な値に決定され、無線パラメータの変更によって通信特性の劣化が生じる可能性がある。 More specifically, in these general methods, even after the communication environment changes due to the change of radio parameters of other cells, or the communication environment changes due to the change of radio parameters in the near future. Even in the case of reliable, the wireless parameter is determined using the measurement information including the measurement information before the change of the communication environment. As a result, the radio parameter of the cell is determined to be an inappropriate value, and there is a possibility that the communication characteristics are deteriorated by changing the radio parameter.
 上述した問題について図12及び図13に表される具体例を参照して説明する。 The above-described problem will be described with reference to specific examples shown in FIGS.
 なお、以下の説明では、例えば半径数百mから十数kmの通話エリアを提供する比較的通話エリアの広いセルのことを「マクロセル」と呼ぶ。一方で、マクロセルと比較すると比較的通話エリアの狭いセルのことを「ピコセル」と呼ぶ。なお、一般的にピコセルは、地下やビルの奥等のマクロセルだけではカバーしきれない電波強度が微弱となりやすい場所に設けられる。 In the following description, a cell having a relatively wide call area that provides a call area with a radius of several hundred meters to a few dozen kilometers is called a “macro cell”. On the other hand, a cell having a relatively narrow communication area compared to a macro cell is called a “pico cell”. In general, the picocell is provided in a place where the radio wave intensity that cannot be covered by the macrocell alone, such as the basement or the back of a building, tends to be weak.
 図12に表されるように、本説明例における無線通信網は、基地局1000、小型基地局2000及び小型基地局3000を含んでいる。更に本説明例では各基地局が管理するセルとして、マクロセル1001、ピコセル2001及びピコセル3001を含んでいる。 As shown in FIG. 12, the wireless communication network in this example includes a base station 1000, a small base station 2000, and a small base station 3000. Further, in this example, the macro cell 1001, the pico cell 2001, and the pico cell 3001 are included as cells managed by each base station.
 ここでは、マクロセル1001はトラフィック負荷等が低負荷な状況であり、ピコセル2001とピコセル3001とは、ともにトラフィック負荷等が高負荷な状況であると仮定する。 Here, it is assumed that the macro cell 1001 has a low traffic load and the pico cell 2001 and the pico cell 3001 have a high traffic load and the like.
 このような状況下で特許文献2に開示された方法を適用した場合、ピコセル2001とピコセル3001は、お互いの無線パラメータの変更によって生じる通信環境の変化を考慮せずに負荷分散を実行する。例えば、図13に表されるように、小型基地局2000及び小型基地局3000は、ピコセル2001やピコセル3001に関して送信電力を減少させることにより、それぞれのセルのカバレッジを縮小する。縮小後のセルはピコセル2002とピコセル3002として表されている。 In such a situation, when the method disclosed in Patent Document 2 is applied, the pico cell 2001 and the pico cell 3001 execute load distribution without considering the change of the communication environment caused by the change of the mutual radio parameter. For example, as illustrated in FIG. 13, the small base station 2000 and the small base station 3000 reduce the transmission power of the pico cell 2001 and the pico cell 3001, thereby reducing the coverage of each cell. The reduced cells are represented as a pico cell 2002 and a pico cell 3002.
 このように2つのピコセルが同時に負荷分散を実行した結果、マクロセル1001の負荷が急増し、マクロセル1001内の通信特性が劣化してしまう。 As a result of the load distribution being simultaneously performed by the two pico cells in this way, the load on the macro cell 1001 increases rapidly, and the communication characteristics in the macro cell 1001 deteriorate.
 もっとも、上述したように、一般的な技術では負荷分散実行後のマクロセル1001の負荷に関しては一切考慮しておらず、考慮するとしても負荷分散実行前のマクロセル1001の負荷のみであった。そのため、このような問題の発生を未然に防ぐことはできなかった。 However, as described above, in general technology, no consideration is given to the load of the macro cell 1001 after execution of load distribution, and even if it is considered, only the load of the macro cell 1001 before execution of load distribution is considered. Therefore, it has not been possible to prevent such problems from occurring.
 そこで、本発明は、複数のセル内の或るセルの無線パラメータを変更する際に、他のセルにおいて無線パラメータが変更されることによりこの或るセルの変更後の無線パラメータが不適切なものとなってしまうことを避けることが可能な、無線パラメータ制御装置、無線パラメータ制御装置システム、無線パラメータ制御方法及びそのプログラムを提供することを目的とする。 Therefore, in the present invention, when the radio parameter of a certain cell in a plurality of cells is changed, the radio parameter after the change of the certain cell is inappropriate due to the change of the radio parameter in another cell. It is an object of the present invention to provide a wireless parameter control device, a wireless parameter control device system, a wireless parameter control method, and a program thereof that can avoid the situation.
 本発明の第1の観点によれば、セル・グループに対する無線パラメータを制御する無線パラメータ制御装置であって、前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、を備えることを特徴とする無線パラメータ制御装置が提供される。 According to a first aspect of the present invention, there is provided a radio parameter control apparatus for controlling radio parameters for a cell group, wherein each target cell included in one or more control target cells in the cell group Predicting means for predicting a change in communication characteristics in the cell group due to a change in the radio parameter of the cell of interest, while taking into account the effect of control on the value of radio parameters of other cells in the cell group; There is provided a radio parameter control device comprising: control means for controlling radio parameter values of one or more of the control target cells in the cell group based on prediction by a prediction means.
 本発明の第2の観点によれば、セル・グループに対する無線パラメータを制御する無線パラメータ制御方法であって、前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測ステップと、前記予測ステップによる予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御ステップと、を備えることを特徴とする無線パラメータ制御方法が提供される。 According to a second aspect of the present invention, there is provided a radio parameter control method for controlling radio parameters for a cell group, wherein for each target cell included in one or more control target cells in the cell group, A prediction step for predicting a change in communication characteristics in the cell group due to a change in the radio parameter of the cell of interest while considering the influence of control on the value of the radio parameter of another cell in the cell group; A radio parameter control method comprising: a control step of controlling radio parameter values of one or more of the cells to be controlled in the cell group based on prediction by a prediction step.
 本発明の第3の観点によれば、セル・グループに対する無線パラメータを制御する無線パラメータ制御装置としてコンピュータを機能させるための無線パラメータ制御プログラムであって、前記コンピュータを、前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、を備える無線パラメータ制御装置として機能させることを特徴とする無線パラメータ制御プログラムが提供される。 According to a third aspect of the present invention, there is provided a radio parameter control program for causing a computer to function as a radio parameter control device that controls radio parameters for a cell group, wherein the computer is connected to one of the cell groups. With respect to each target cell included in one or more control target cells, the effect of the control on the radio parameter value of another cell in the cell group is considered, and the cell A prediction unit that predicts a change in communication characteristics in a group; and a control unit that controls a value of a radio parameter of one or more of the control target cells in the cell group based on the prediction by the prediction unit. A wireless parameter control program that functions as a wireless parameter control device is provided. It is.
 本発明の第4の観点によれば、端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えた無線パラメータ制御システムであって、前記基地局は、前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告手段と、前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更手段と、を備え、前記無線パラメータ制御装置は請求項1乃至9の何れか1項に記載の無線パラメータ制御装置であって、前記報告手段による報告内容に基づいて前記予測手段及び前記制御手段を動作させると共に、前記制御手段により決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出す、ことを特徴とする無線パラメータ制御システムが提供される。 According to a fourth aspect of the present invention, there is provided a radio parameter control system comprising a base station that performs radio communication with a terminal, and a radio parameter control device connected to the base station, the base station comprising: Report means for reporting to the base station the quality related to the radio communication measured based on the communication with the terminal, and changing the radio parameters for the cells under the base station according to the change value instruction of the radio parameter control device The wireless parameter control device according to any one of claims 1 to 9, wherein the wireless parameter control device is a wireless parameter control device according to any one of claims 1 to 9, wherein the prediction unit and the control unit are based on a report content by the reporting unit. And instructing the base station to change the radio parameter based on the change value of the radio parameter determined by the control means. Radio parameter control system is provided, wherein.
 本発明の第5の観点によれば、端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えたシステムが行う無線パラメータ制御方法であって、前記基地局が、前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告ステップと、前記無線パラメータ制御装置が請求項10乃至18の何れか1項に記載の無線パラメータ制御方法を行う装置であって、前記報告ステップによる報告内容に基づいて前記予測ステップ及び前記制御ステップを行うと共に、前記制御ステップにより決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出すステップと、前記基地局が、前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更ステップと、を有することを特徴とする無線パラメータ制御方法が提供される。 According to a fifth aspect of the present invention, there is provided a radio parameter control method performed by a system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station. 19. A reporting step in which a station reports quality related to wireless communication measured based on communication with the terminal to the base station, and the wireless parameter control device according to any one of claims 10 to 18 An apparatus for performing a method, wherein the prediction step and the control step are performed based on a report content of the report step, and a radio parameter is changed based on a change value of the radio parameter determined by the control step. Issuing an instruction to the base station, and the base station is subordinate to the base station in response to an instruction of a change value of the radio parameter control device. Radio parameter control method characterized by comprising a changing step of changing the wireless parameters for the cell, it is provided.
 本発明によれば、複数のセル内の或るセルの無線パラメータを変更する際に、他のセルにおいて無線パラメータが変更されることによりこの或るセルの変更後の無線パラメータが不適切なものとなってしまうことを避けることが可能となる。 According to the present invention, when the radio parameter of a certain cell in a plurality of cells is changed, the radio parameter after the change of the certain cell is inappropriate due to the change of the radio parameter in another cell. It becomes possible to avoid becoming.
本発明の実施形態1及び実施形態2にかかる無線通信システムの基本的構成を表すブロック図である。It is a block diagram showing the fundamental structure of the radio | wireless communications system concerning Embodiment 1 and Embodiment 2 of this invention. 本発明の実施形態1及び実施形態2を適用した無線パラメータ制御装置、基地局及びUEの基本的構成を表すブロック図である。It is a block diagram showing the fundamental structure of the radio | wireless parameter control apparatus, base station, and UE to which Embodiment 1 and Embodiment 2 of this invention are applied. 本発明の実施形態1及び実施形態2を適用した無線パラメータの制御を行うフローを表すフローチャートである。It is a flowchart showing the flow which performs control of the radio | wireless parameter to which Embodiment 1 and Embodiment 2 of this invention are applied. 本発明の実施形態1を適用した無線パラメータの制御を行うフローを表すフローチャートである。It is a flowchart showing the flow which performs control of the radio | wireless parameter to which Embodiment 1 of this invention is applied. 本発明の実施形態1における実施例1のセル構成を表すブロック図である。It is a block diagram showing the cell structure of Example 1 in Embodiment 1 of this invention. 本発明の実施形態1における実施例1の通信特性予測方法を表すマトリックス図である。It is a matrix figure showing the communication characteristic prediction method of Example 1 in Embodiment 1 of the present invention. 本発明の実施形態1における実施例2の通信特性予測方法を表すマトリックス図である。It is a matrix figure showing the communication characteristic prediction method of Example 2 in Embodiment 1 of the present invention. 本発明の実施形態1における実施例3の通信特性予測方法を表すマトリックス図である。It is a matrix figure showing the communication characteristic prediction method of Example 3 in Embodiment 1 of the present invention. 本発明の実施形態1における実施例4の通信特性予測方法を表すマトリックス図である。It is a matrix figure showing the communication characteristic prediction method of Example 4 in Embodiment 1 of this invention. 本発明の実施形態2を適用した無線パラメータの制御を行うフローを表すフローチャートである。It is a flowchart showing the flow which performs control of the radio | wireless parameter to which Embodiment 2 of this invention is applied. 本発明の実施形態2における実施例5の通信特性予測方法を表すマトリックス図である。It is a matrix figure showing the communication characteristic prediction method of Example 5 in Embodiment 2 of the present invention. 本発明が解決しようとする課題を説明する図(1/2)である。It is a figure (1/2) explaining the subject which this invention tends to solve. 本発明が解決しようとする課題を説明する図(2/2)である。It is a figure (2/2) explaining the subject which this invention tends to solve.
 次に、図面を参照して本発明の実施形態について詳細に説明する。本発明は少なくとも実施形態1及び実施形態2の2つの実施形態により実現可能である。この点、実施形態1及び実施形態2の構成要素等は共通する部分が多いので今回の説明においては、これら共通する部分に関しての説明をまず行い、その後、実施形態1及び実施形態2それぞれの特有の動作について個別に説明を行う。 Next, an embodiment of the present invention will be described in detail with reference to the drawings. The present invention can be realized by at least two embodiments, the first embodiment and the second embodiment. In this respect, since the constituent elements of the first and second embodiments have many common parts, in this explanation, the common parts will be described first, and then each of the first and second embodiments is unique. The operation will be described individually.
 また、以下で参照される各図面において、同一の要素、実質的に同一の要素及び対応する要素には同一の符号が付される。また、以下の説明においては必要に応じて重複する説明は省略される。更に、下述する実施形態は、本発明の好適な実施形態ではあるが、下述する実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。 Also, in each drawing referred to below, the same reference numerals are given to the same elements, substantially the same elements, and corresponding elements. In the following description, overlapping descriptions are omitted as necessary. Furthermore, although the embodiment described below is a preferred embodiment of the present invention, the scope of the present invention is not limited only to the embodiment described below, and various modifications can be made without departing from the gist of the present invention. It is possible to implement in the form that has been subjected to.
 まず、図1を参照すると本発明の実施形態1及び実施形態2に共通する構成である、無線通信システムの構成例が表されている。そして、本無線通信システムは、無線パラメータ制御装置10と、複数の基地局20とを含んでいる。 First, referring to FIG. 1, a configuration example of a wireless communication system, which is a configuration common to Embodiments 1 and 2 of the present invention, is shown. The wireless communication system includes a wireless parameter control device 10 and a plurality of base stations 20.
 複数の基地局20は、各々が配下のセル30を形成及び管理している。また、セル30内には複数のUE40が存在し、基地局20は配下のセル30の範囲内に含まれるUE40との間で双方向の無線通信を行う。ここで、どのような無線通信方式に準拠するかということは本実施形態の要旨ではなく、所定の無線通信方式に準拠して無線通信を実現することが可能である。 Each of the plurality of base stations 20 forms and manages a subordinate cell 30. In addition, a plurality of UEs 40 exist in the cell 30, and the base station 20 performs bidirectional wireless communication with the UEs 40 included in the range of the subordinate cell 30. Here, what kind of wireless communication system is compliant is not the gist of the present embodiment, and wireless communication can be realized based on a predetermined wireless communication system.
 各基地局20は、上位ネットワーク(図示を省略する)に接続されている。そして、各基地局20は、UE40と上位ネットワークとの間でトラフィックを中継する。 Each base station 20 is connected to an upper network (not shown). Each base station 20 relays traffic between the UE 40 and the upper network.
 上位ネットワークは、無線アクセスネットワーク及び、コアネットワークを含む。なお、基地局20には、セル30の無線信号を中継するリレー基地局を含む。 The upper network includes a radio access network and a core network. Note that the base station 20 includes a relay base station that relays the radio signal of the cell 30.
 更に、背景技術の欄において述べたように、各基地局20はそれぞれが2つ以上のセル30を管理することもあり得る。もっとも、本実施形態の説明においては、説明を簡略化するために各基地局20がそれぞれ管理下セル30を1つのみ有しているものとする。なお、これは説明を簡略化するためのものに過ぎず本実施形態における基地局の管理下のセル数を1つに限定する趣旨ではない。 Furthermore, as described in the background art section, each base station 20 may manage two or more cells 30. However, in the description of the present embodiment, it is assumed that each base station 20 has only one managed cell 30 in order to simplify the description. Note that this is merely for the purpose of simplifying the description, and is not intended to limit the number of cells under management of the base station in this embodiment to one.
 UE40は基地局20を介して上位ネットワークと無線通信を行う端末であり、通常はユーザに携帯されて利用されるが、据え置きで利用されるUE40が含まれていても良い。具体的にはUE40は、例えば携帯電話機や、携帯電話機網を利用してデータ通信を実行する携帯型のパーソナルコンピュータやタブレット型のパーソナルコンピュータにより実現される。 The UE 40 is a terminal that performs radio communication with the host network via the base station 20, and is normally carried by the user and used, but the UE 40 that is used stationary may be included. Specifically, the UE 40 is realized by, for example, a mobile phone or a portable personal computer or a tablet personal computer that performs data communication using a mobile phone network.
 無線パラメータ制御装置10は、複数の基地局20から無線品質情報及び通信品質情報を取得し、複数のセル30についての無線パラメータを決定する。 The radio parameter control device 10 acquires radio quality information and communication quality information from a plurality of base stations 20, and determines radio parameters for a plurality of cells 30.
 ここで、複数の基地局20のそれぞれから取得する通信品質情報とは、それぞれの基地局20にて測定及び記憶される通信品質情報を少なくとも含む情報である。一方、複数の基地局20のそれぞれから取得する無線品質情報とは、その基地局20の配下にある1以上のUE40が測定した情報であってその1以上のUE40からその基地局20へと報告されたUE40の無線品質情報(UE測定情報)を少なくとも含む情報である。 Here, the communication quality information acquired from each of the plurality of base stations 20 is information including at least communication quality information measured and stored in each base station 20. On the other hand, the radio quality information acquired from each of the plurality of base stations 20 is information measured by one or more UEs 40 under the base station 20 and reported from the one or more UEs 40 to the base station 20. The information includes at least the radio quality information (UE measurement information) of the UE 40 that has been received.
 ここで、通信品質情報の具体例としては、無線リンクの異常切断率(Radio Link Failure Rate)、呼の異常切断率(Call Drop Rate)、ハンドオーバ失敗率(Handover Failure Rate)、トラフィック負荷、平均ユーザスループット、セルスループットなどが挙げられる。 Here, specific examples of communication quality information include radio link abnormal disconnection rate (Radio Link Failure) Rate), call abnormal disconnection rate (Call Drop Rate), handover failure rate (Handover Failure Rate), traffic load, average user Examples include throughput and cell throughput.
 また、無線品質情報(UE測定情報)の具体例としては、UE40によって測定されたセル30毎の無線品質、例えば、下りパイロット信号またはリファレンス信号の受信電力、SINR(Signal to Interference plus Noise Ratio)などの信号対雑音干渉比が挙げられる。 Specific examples of the radio quality information (UE measurement information) include radio quality for each cell 30 measured by the UE 40, for example, received power of a downlink pilot signal or a reference signal, SINR (Signal toInterference plus Noise Ratio), etc. Signal to noise interference ratio.
 例えばLTE(Long Term Evolution)に準拠した無線通信を行う場合を例にとると、RSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)などが無線品質情報の例として挙げられる。 For example, taking wireless communication conforming to LTE (Long Term Evolution) as an example, RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) are examples of radio quality information.
 更に、無線品質情報には、UE40毎のスループットやBLER(Block Error Rate)などの通信品質、異常切断やハンドオーバ失敗の発生有無といったイベント情報、UEが無線品質を測定した時刻、測定したセル30の識別子、UE40の識別子などの情報を含んでも良い。 Further, the radio quality information includes the throughput for each UE 40, communication quality such as BLER (Block Error Rate), event information such as the occurrence of abnormal disconnection or handover failure, the time when the UE measured the radio quality, the measured cell 30 Information such as an identifier and an identifier of the UE 40 may be included.
 他方、無線パラメータ制御装置10が決定する無線パラメータとしては、セル毎のアンテナチルト角、アンテナ方位角、送信電力、CIO(Cell Individual Offset)などのハンドオーバパラメータなどが含まれる。 On the other hand, the radio parameters determined by the radio parameter control device 10 include handover parameters such as an antenna tilt angle, an antenna azimuth angle, transmission power, and CIO (Cell Individual Offset) for each cell.
 なお、これら、通信品質情報、無線品質情報及び無線パラメータの具体例はあくまで例示に過ぎず、これら例示したもの以外のものを通信品質情報、無線品質情報及び無線パラメータに更に含むようにしても良く、これら例示したもの以外のものを通信品質情報、無線品質情報及び無線パラメータとして代替して用いても良い。 The specific examples of the communication quality information, the radio quality information, and the radio parameters are merely examples, and the communication quality information, the radio quality information, and the radio parameters may further include items other than those exemplified. Items other than those exemplified may be substituted for the communication quality information, the radio quality information, and the radio parameters.
 続いて、図2のブロック図を参照して本発明の実施形態1及び実施形態2に共通する、無線パラメータ制御装置10、基地局20及びUE40の構成例について説明する。なお、図2に示す基地局20及びUE40の本実施形態に関連する構成要素のみを示している。基地局20は、図示していないが、基地局20を基地局として機能させるための構成要素を含んでいる。同様に、UE40は、図示していないが、UE40をUE40として機能させるための構成要素を含んでいる。 Next, configuration examples of the radio parameter control device 10, the base station 20, and the UE 40 that are common to the first and second embodiments of the present invention will be described with reference to the block diagram of FIG. In addition, only the component relevant to this embodiment of the base station 20 and UE40 shown in FIG. 2 is shown. Although not shown, the base station 20 includes components for causing the base station 20 to function as a base station. Similarly, although not shown, the UE 40 includes components for causing the UE 40 to function as the UE 40.
 UE40は、通信部41及び無線品質測定部42を含む。 The UE 40 includes a communication unit 41 and a radio quality measurement unit 42.
 通信部41では、基地局が送信するパイロット信号(pilot signal)及び/又はリファレンス信号(reference signal)を受信する。通信部41で受信した信号は、無線品質測定部42に入力される。そして、無線品質測定部42では、パイロット信号及び/又はリファレンス信号に基づいて、測定対象として規定された情報を無線品質情報として測定する。測定された無線品質情報は通信部41を介して、基地局20に送信される。なお、無線品質情報の測定及び送信のタイミングは任意に設定することが可能であり、例えば基地局からの求めに応じて実行されるようにしても良く、所定の周期や所定の時刻に自動的に実行されるようにしても良く、ハンドオーバや電源の投入等を契機として実行されるようにしても良い。 The communication unit 41 receives a pilot signal (pilot signal) and / or a reference signal (reference signal) transmitted from the base station. The signal received by the communication unit 41 is input to the radio quality measurement unit 42. Then, the radio quality measurement unit 42 measures information defined as a measurement target as radio quality information based on the pilot signal and / or the reference signal. The measured wireless quality information is transmitted to the base station 20 via the communication unit 41. Note that the timing of measurement and transmission of radio quality information can be arbitrarily set, and may be executed, for example, in response to a request from the base station, and automatically at a predetermined cycle or a predetermined time. It may be executed at a later time, or may be executed when a handover or power-on is performed.
 基地局20は、通信部21、通信品質測定部22、品質管理部23及び無線パラメータ調整部24を含んでいる。 The base station 20 includes a communication unit 21, a communication quality measurement unit 22, a quality management unit 23, and a radio parameter adjustment unit 24.
 通信部21では、UE40から送信された無線品質情報を受信し、品質管理部23に入力する。また、通信部21は通信品質を測定する為の情報として、通信状況に関する情報を通信品質測定部22に入力する。通信状況に関する情報は測定対象として規定された通信品質情報によって異なるが、例えば無線リンクや呼の異常切断の有無を示す情報やトラフィック負荷を算出するための情報が含まれる。 The communication unit 21 receives the radio quality information transmitted from the UE 40 and inputs it to the quality management unit 23. Further, the communication unit 21 inputs information related to the communication status to the communication quality measurement unit 22 as information for measuring the communication quality. The information on the communication status varies depending on the communication quality information defined as the measurement target, but includes information indicating the presence / absence of abnormal disconnection of a radio link or call and information for calculating a traffic load, for example.
 通信品質測定部22は、通信部21より入力された、通信状況に関する情報に基づいて通信品質を測定し、通信品質を示す通信品質情報を生成する。そして、通信品質情報は品質管理部23に入力される。通信品質測定部22の測定タイミングも、無線品質測定部42同様に任意に設定することが可能である。 The communication quality measuring unit 22 measures the communication quality based on the information regarding the communication status input from the communication unit 21, and generates communication quality information indicating the communication quality. Then, the communication quality information is input to the quality management unit 23. The measurement timing of the communication quality measuring unit 22 can be arbitrarily set similarly to the wireless quality measuring unit 42.
 品質管理部23では少なくとも、通信部21から入力された無線品質情報と、通信品質測定部22から入力された通信品質情報とが管理されている。無線品質情報及び通信品質情報は、無線パラメータ制御装置10の品質情報記憶部11に入力する。 The quality management unit 23 manages at least the wireless quality information input from the communication unit 21 and the communication quality information input from the communication quality measurement unit 22. The wireless quality information and the communication quality information are input to the quality information storage unit 11 of the wireless parameter control device 10.
 無線パラメータ制御装置10は、品質情報記憶部11と、影響セル決定部12と、通信特性予測部13と、無線パラメータ決定部14とを含んでいる。 The radio parameter control device 10 includes a quality information storage unit 11, an affected cell determination unit 12, a communication characteristic prediction unit 13, and a radio parameter determination unit 14.
 品質情報記憶部11は、複数の基地局20から取得した無線品質情報及び通信品質情報をまとめて記憶する。記憶された無線品質情報及び通信品質情報は、無線パラメータ制御装置10に含まれる各部より適宜参照され、使用される。各部におけるこれら無線品質情報及び通信品質情報の具体的な使用方法に関しては、各部の説明と共に後述する。 The quality information storage unit 11 collectively stores the wireless quality information and communication quality information acquired from the plurality of base stations 20. The stored radio quality information and communication quality information are appropriately referred to and used by each unit included in the radio parameter control apparatus 10. Specific usage methods of the wireless quality information and communication quality information in each unit will be described later together with the description of each unit.
 影響セル決定部12は、品質情報記憶部11に記憶された無線品質情報及び通信品質情報に基づいて、「影響セル」を決定する。 The affected cell determination unit 12 determines an “affected cell” based on the wireless quality information and the communication quality information stored in the quality information storage unit 11.
 ここで、影響セルとは、或るセルの無線パラメータを変更することによって、通信特性に一定レベル以上の影響を受けるセルとして定義される。 Here, an affected cell is defined as a cell that is affected by a certain level or more of the communication characteristics by changing a radio parameter of a certain cell.
 例えば、或るセルAの無線パラメータを変更することによって、或るセルA以外のセルであるセルBの通信特性が一定レベル以上の影響を受ける場合、「セルBはセルAの影響セル」である。影響セルの決定方法については後述する。また、例えばセルAの無線パラメータを変更する場合には、当然のことながらセルA自身の通信特性は一定レベル以上の影響を受ける。そのため「セルAはセルAの影響セル」である。そのため、連携制御時に行う、無線パラメータの変更に伴う通信特性の変化の予測においては、セルA自身の通信特性の変化も考慮の対象となる。 For example, when the communication characteristics of a cell B that is a cell other than a certain cell A are affected by a certain level or more by changing a radio parameter of a certain cell A, “cell B is an affected cell of cell A” is there. A method for determining the influence cell will be described later. For example, when changing the radio parameter of the cell A, the communication characteristics of the cell A itself are naturally affected by a certain level or more. Therefore, “cell A is an affected cell of cell A”. For this reason, in the prediction of the change in the communication characteristics accompanying the change of the radio parameter performed at the time of the cooperation control, the change in the communication characteristics of the cell A itself is also taken into consideration.
 更に、影響セル決定部12は、決定した影響セルを示す影響セル識別情報を通信特性予測部13に入力する。 Furthermore, the affected cell determination unit 12 inputs the affected cell identification information indicating the determined affected cell to the communication characteristic prediction unit 13.
 通信特性予測部13では、まず、品質情報記憶部11に記憶されている無線品質情報及び通信品質情報並びに影響セル決定部12から入力された影響セル識別情報を使用し、「連携グループ」を決定する。また、「連携グループ」は、1以上のセルより構成されるので、「セル・グループ」ともいう。 The communication characteristic prediction unit 13 first determines the “cooperation group” by using the wireless quality information and communication quality information stored in the quality information storage unit 11 and the affected cell identification information input from the affected cell determination unit 12. To do. Further, the “cooperation group” is composed of one or more cells, and is also referred to as a “cell group”.
 ここで、「連携グループ」とは、「連携制御」を行う対象となる複数のセルをグループとしたものとして定義される。 Here, the “cooperation group” is defined as a group of a plurality of cells to be subjected to “cooperation control”.
 また、「連携制御」とは、連携グループ内の或るセルについての無線パラメータの決定並びに変更を、この連携グループに属する他の1以上のセルの無線パラメータ変更による通信特性の変化を考慮して、行うことを言う。 “Coordination control” refers to determination and change of radio parameters for a certain cell in a cooperation group in consideration of changes in communication characteristics due to changes in radio parameters of one or more other cells belonging to this cooperation group. Say, to do.
 連携制御の具体例としては、連携グループ内の複数のセルの無線パラメータを同時に(或いは一定期間内に)変更する際に、それぞれのセルについて、連携グループ内の他のセルの無線パラメータ変更を考慮して、連携グループ内の対象セルの無線パラメータを決定するような制御(以降では、「他セル考慮制御」と呼ぶ)が挙げられる。 As a specific example of cooperation control, when changing radio parameters of a plurality of cells in a cooperation group at the same time (or within a certain period), change of radio parameters of other cells in the cooperation group is considered for each cell. Then, there is control (hereinafter referred to as “other cell consideration control”) that determines the radio parameter of the target cell in the cooperation group.
 また、連携制御の他の具体例としては、連携グループ内の或るセルの無線パラメータを変更する(した)際、連携グループ内のその他のセルは一定期間無線パラメータを変更しないような制御(以降では、排他制御と呼ぶ)が挙げられる。 Further, as another specific example of the cooperation control, when a wireless parameter of a certain cell in the cooperation group is changed, other cells in the cooperation group do not change the wireless parameter for a certain period of time (hereinafter, referred to as “control”). Will be referred to as exclusive control).
 連携グループに属するセルを対象として、上述のような連携制御を行うことによって、無線パラメータの制御による改善効果を大きくすることが可能となる。連携グループの決定方法の一例については後述する。 By performing cooperative control as described above for cells belonging to the cooperative group, it is possible to increase the improvement effect by controlling the radio parameters. An example of a method for determining a cooperation group will be described later.
 次に、通信特性予測部13は、セルの無線パラメータ変更後のセルの通信特性を予測する。具体的には通信特性予測部13は、品質情報記憶部11に記憶された無線品質情報及び通信品質情報並びに決定した連携グループの識別情報に基づいて、連携グループ内で、無線パラメータ変更後の各セルの通信特性を予測する。ここで、通信特性の予測方法について1つの具体例を用いて説明する。 Next, the communication characteristic prediction unit 13 predicts the communication characteristic of the cell after changing the radio parameter of the cell. Specifically, the communication characteristic predicting unit 13 determines each of the radio parameters after changing the radio parameters in the cooperation group based on the wireless quality information and the communication quality information stored in the quality information storage unit 11 and the determined identification information of the cooperation group. Predict cell communication characteristics. Here, a method for predicting communication characteristics will be described using one specific example.
 本具体例では、品質情報記憶部11に記憶された無線品質情報として、UE40にて測定された無線セル毎の受信電力(RSRP)を用いる。そして、無線パラメータとして制御対象無線セルの送信電力を用いる。すなわち、受信電力(RSRP)に基づいて制御対象無線セルの送信電力の候補値毎のスループットを各UE40毎に予測する。 In this specific example, the reception power (RSRP) for each radio cell measured by the UE 40 is used as the radio quality information stored in the quality information storage unit 11. Then, the transmission power of the control target radio cell is used as the radio parameter. That is, the throughput for each candidate value of the transmission power of the control target radio cell is predicted for each UE 40 based on the received power (RSRP).
 まず、今回スループットの予測対象とするUE40である「予測対象UE」が測定した無線品質情報に含まれる、各無線セル毎の受信電力(RSRP[dBm])を、
 (RSRPs、RSRPn1、RSRPn2、・・・、RSRPni)
とおく。ここで、RSRPsは、無線パラメータを決定するセルである「制御対象無線セル」のRSRPを表す。また、RSRPn1、RSRPn2、・・・、RSRPniは、影響セル1から影響セルiまでの各影響セルのRSRPを表す。
First, the received power (RSRP [dBm]) for each radio cell included in the radio quality information measured by the “prediction target UE” that is the UE 40 that is the target of throughput prediction this time,
(RSRPs, RSRPn1, RSRPn2, ..., RSRPni)
far. Here, RSRPs represents RSRP of a “control target radio cell” that is a cell for determining radio parameters. RSRPn1, RSRPn2,..., RSRPni represent the RSRP of each affected cell from the affected cell 1 to the affected cell i.
 まず、制御対象無線セルの送信電力を、現状のPr[dBm]から候補値Pc[dBm]に変更したと仮定した場合の無線セル毎のRSRPを予測する。例えば、制御対象無線セルのRSRP(RSRPs)のみが送信電力の変更量分だけ変化すると仮定して、
 (RSRPs-(Pr-Pc)、RSRPn1、RSRPn2、・・・、RSRPni)
として予測することができる。なお、他セル考慮制御を行う場合には制御対象無線セルが複数存在することとなるので、これら複数の制御対象無線セル全てについてそれぞれの送信電力の変更量分だけ変化する。
First, the RSRP for each radio cell is predicted when it is assumed that the transmission power of the control target radio cell is changed from the current Pr [dBm] to the candidate value Pc [dBm]. For example, assuming that only the RSRP (RSRPs) of the control target radio cell changes by the change amount of the transmission power,
(RSRPs- (Pr-Pc), RSRPn1, RSRPn2,..., RSRPni)
Can be predicted as Note that when other cell consideration control is performed, there are a plurality of control target radio cells, and therefore, all the plurality of control target radio cells change by the amount of change in the respective transmission power.
 次に、上記予測結果を降順に並べ替え、RSRPの単位をデシベル値(dBm)から実数値(mW)に変換した結果を、
 (S1、I1、I2、・・・、Ini)
とおく。このとき、S1に対応する無線セルは、制御対象無線セルの送信電力を変更したと仮定した場合に最もRSRPが高くなる無線セルであるため、送信電力を変更した場合の「予測対象UE」の接続先無線セルとみなすことができる。なお、S1は現在「予測対象UE」が帰属しているセルと同一のセルになるとは必ずしも限らない。すなわち、「予測対象UE」は制御対象無線セルの送信電力を変更した場合に同一のセルに帰属したまま留まる場合もあり得るし、他のセルへと帰属先を切り替える場合、すなわちハンドオーバを行う場合もあり得る。
Next, the prediction results are rearranged in descending order, and the RSRP unit is converted from a decibel value (dBm) to a real value (mW).
(S1, I1, I2, ..., Ini)
far. At this time, since the radio cell corresponding to S1 is the radio cell having the highest RSRP when it is assumed that the transmission power of the control target radio cell is changed, the “prediction target UE” of the case where the transmission power is changed It can be regarded as a connected radio cell. Note that S1 is not necessarily the same cell as the cell to which the “prediction target UE” currently belongs. That is, the “prediction target UE” may remain belonging to the same cell when the transmission power of the control target radio cell is changed, or when switching the destination to another cell, that is, when performing handover There is also a possibility.
 制御対象無線セルの送信電力を候補値Pc[dBm]に変更したと仮定した場合のSINRは、
 SINR=S1/(I1+I2+・・・+Ini+NOISE)
として予測することができる。なお、NOISEは熱雑音[mW]を表す。以降の説明のために、上記のSINRをデシベル値(dB)に変換した結果をSINR’とおく。
SINR when assuming that the transmission power of the control target radio cell is changed to the candidate value Pc [dBm] is
SINR = S1 / (I1 + I2 +... + Ini + NOISE)
Can be predicted as Note that NOISE represents thermal noise [mW]. For the following explanation, the result of converting the above SINR into a decibel value (dB) is set as SINR ′.
 制御対象無線セルの送信電力を候補値Pc[dBm]に変更したと仮定した場合に予測される「予測対象UE」の通信品質であるスループット(TP)は、当業者に良く知られたシャノン式を用いて、
 TP=B×log2(1+SINR’)×α
として予測することができる。ここで、Bはシステム帯域幅[Hz]、αは受信機の実装等に依存して生じる理論限界からの劣化量を表す定数である。
The throughput (TP), which is the communication quality of the “prediction target UE” predicted when the transmission power of the control target radio cell is changed to the candidate value Pc [dBm], is well known to those skilled in the art. Using,
TP = B × log2 (1 + SINR ′) × α
Can be predicted as Here, B is the system bandwidth [Hz], and α is a constant representing the amount of deterioration from the theoretical limit that occurs depending on the implementation of the receiver.
 このようにして、受信電力(RSRP)に基づいて制御対象無線セルの送信電力の候補値毎の影響セルの通信特性を「予測対象UE」毎に予測することができる。 In this way, the communication characteristics of the affected cell for each transmission power candidate value of the control target radio cell can be predicted for each “prediction target UE” based on the received power (RSRP).
 そして、本実施形態では影響セルに含まれる全てのUE40それぞれを「予測対象UE」として上述のような計算を行い、制御対象無線セルの送信電力を変更した場合の各UE40のスループットを予測することができる。 In this embodiment, all the UEs 40 included in the affected cell are calculated as “prediction target UEs”, and the throughput of each UE 40 when the transmission power of the control target radio cell is changed is predicted. Can do.
 そして、この予測に基づいて様々な指標を算出することが可能となる。例えば影響セルに接続するUE40における5%スループット(影響セルに接続する全UE40のユーザスループットを大きい順に並べた場合に、下位5%に相当するユーザのスループット(例えば、下位5%の順位の位置にいるユーザのスループット、下位5%に含まれる全ユーザの平均のスループットなど))を指標として算出することができる。算出した指標の具体的な利用方法については後述する。 And various indexes can be calculated based on this prediction. For example, 5% throughput in the UE 40 connected to the affected cell (when the user throughputs of all UEs 40 connected to the affected cell are arranged in descending order, the throughput of the user corresponding to the lower 5% (for example, the position of the rank of the lower 5%) For example, the average throughput of all users included in the lower 5%)). A specific method of using the calculated index will be described later.
 なお、上述の説明においては各UE40が最もRSRPが高くなる無線セルに帰属する場合を想定している。もっとも、各無線セルには同時に接続可能なUE40の台数制限が課せられていることも考えられる。このような場合には、台数制限を満たすUE40に関しては上述の方法で算出を行い、台数制限から超過してしまうUE40については、例えば2番目にRSRPが高くなる無線セルに帰属するものと想定する。つまり、上述のように「SINR=S1/(I1+I2+・・・+Ini+NOISE)」として予測するのではなく、「SINR=I1/(S1+I2+・・・+Ini+NOISE)」として予測する。なお、どのUE40から優先的に最もRSRPが高くなる無線セルに帰属できるかということは実装環境に応じて所定の条件を定めるようにすれば良い。 In the above description, it is assumed that each UE 40 belongs to a radio cell having the highest RSRP. However, it is also conceivable that the number of UEs 40 that can be connected simultaneously is imposed on each radio cell. In such a case, the UE 40 that satisfies the number restriction is calculated by the above-described method, and the UE 40 that exceeds the number restriction is assumed to belong to, for example, the second radio cell with the highest RSRP. . That is, it is not predicted as “SINR = S1 / (I1 + I2 +... + Ini + NOISE)” as described above, but is predicted as “SINR = I1 / (S1 + I2 +... + Ini + NOISE)”. It should be noted that which UE 40 can be preferentially attributed to the radio cell with the highest RSRP may be determined according to the mounting environment.
 更に、通信特性予測部13は、通信特性の予測結果を、無線パラメータ決定部14に入力する。 Furthermore, the communication characteristic prediction unit 13 inputs the communication characteristic prediction result to the wireless parameter determination unit 14.
 なお、通信特性予測部13において通信特性の予測を行うに際しては、連携グループに属する各セルが、それぞれマクロセルであるのか、それともピコセルであるのかを区別する必要が生じる場合もある。このような区別が必要となる場合には、例えば、次に説明するように、区別が可能となるような方法を用いる。 Note that when the communication characteristic prediction unit 13 predicts the communication characteristic, it may be necessary to distinguish whether each cell belonging to the cooperation group is a macro cell or a pico cell. When such distinction is necessary, for example, a method that enables distinction is used as described below.
 例えば、PCI(Physical Cell ID)の領域をマクロセルとピコセルで予め分けておく。こうすることにより、通信特性予測部13はPCIを参照することで、各セルが、マクロセルであるのか、それともピコセルであるのかを区別することが可能となる。 For example, a PCI (Physical Cell ID) area is divided into a macro cell and a pico cell in advance. By doing so, the communication characteristic prediction unit 13 can distinguish whether each cell is a macro cell or a pico cell by referring to the PCI.
 または、無線局のデータとしてセルタイプであるLarge、Medium及びSmallを表す情報があるため、その情報を使用することにより、各セルが、マクロセルであるのか、それともピコセルであるのかを区別することが可能となる。 Or, since there is information representing the cell types Large, Medium, and Small as data of the radio station, it is possible to distinguish whether each cell is a macro cell or a pico cell by using the information. It becomes possible.
 なお、本実施形態においてはマクロセルやピコセルと呼んでいるがこれは例示に過ぎず、例えばピコセルをナノセルと呼んでも良い。更に、マクロセル及びピコセルのように2つに区分するのではなく更に多くのセルに区分するようにしても良い。 In this embodiment, the macro cell and the pico cell are called, but this is only an example, and for example, the pico cell may be called a nano cell. Further, the cell may be divided into more cells instead of being divided into two like the macro cell and the pico cell.
 無線パラメータ決定部14は、品質情報記憶部11に記憶されている無線品質情報及び通信品質情報並びに通信特性予測部13から入力された通信特性の予測結果を使用して、それぞれの連携グループ内で、各セルの無線パラメータを決定する。無線パラメータの決定方法については後述する。 The wireless parameter determination unit 14 uses the wireless quality information and the communication quality information stored in the quality information storage unit 11 and the communication characteristic prediction result input from the communication characteristic prediction unit 13, and uses each of the cooperation groups. Determine the radio parameters for each cell. A wireless parameter determination method will be described later.
 続いて、図3のフローチャートを参照して本発明の実施形態1及び実施形態2に係る無線パラメータ制御装置10による無線パラメータの制御方法について説明する。 Next, a radio parameter control method by the radio parameter control apparatus 10 according to the first and second embodiments of the present invention will be described with reference to the flowchart of FIG.
 まず、ステップS100~ステップS103において連携制御の対象となるセル、すなわち連携グループに含まれるセルを決定する。 First, in step S100 to step S103, a cell to be subjected to cooperation control, that is, a cell included in the cooperation group is determined.
 この例では、連携グループに含まれる候補のセルとして、N個(Nは2以上の整数)のセル30が存在する。これらの候補セル30は、無線パラメータ制御装置10が管理するセル30の全部であっても良いが一部であっても良い。すなわち、無線パラメータ制御装置10が管理する複数のセル30の全部又は一部を候補とし、それから、それらの候補の中から絞り込みを行うことによって連携グループを決定する。 In this example, N (N is an integer of 2 or more) cells 30 exist as candidate cells included in the cooperation group. These candidate cells 30 may be all or some of the cells 30 managed by the radio parameter control apparatus 10. That is, all or some of the plurality of cells 30 managed by the radio parameter control apparatus 10 are candidates, and then a cooperation group is determined by narrowing down those candidates.
 まず、セル30-1~セル30-Nについて、各セル30自身が無線パラメータ制御条件を満たすかを判定する(ステップS100-1~S100-N)。 First, for the cells 30-1 to 30-N, it is determined whether each cell 30 itself satisfies the radio parameter control conditions (steps S100-1 to S100-N).
 この判定には、例えば、セル30の通信品質情報が用いられる。具体的には、各セル30の平均スループットやトラフィック負荷、呼の異常切断率などが用いられる。そして、各セル30における通信品質が予め定められた基準よりも悪化した場合に無線パラメータの制御条件を満たしたと判定する。例えば例示したこれらの基準のうちのトラフィック負荷や呼の異常切断率といった基準であれば値が上がれば上がるほど悪化していることを表す。そのため、このような基準を採用するのであれば値が閾値以上となった場合に、無線パラメータの制御条件を満たしたと判定する。逆に、例示したこれらの基準のうち、平均スループットに関しては値が下がれば下がるほど悪化していることを表す。そのため、このような基準を採用するのであれば値が閾値以下となった場合に、無線パラメータの制御条件を満たしたと判定する。 For this determination, for example, communication quality information of the cell 30 is used. Specifically, the average throughput, traffic load, abnormal call disconnection rate, etc. of each cell 30 are used. Then, when the communication quality in each cell 30 is worse than a predetermined standard, it is determined that the wireless parameter control condition is satisfied. For example, among these exemplified standards, the standard such as traffic load and abnormal call disconnection rate indicates that the higher the value is, the worse it is. Therefore, if such a criterion is employed, it is determined that the wireless parameter control condition is satisfied when the value is equal to or greater than the threshold value. On the contrary, among these exemplified criteria, the average throughput indicates that the value decreases as the value decreases. Therefore, if such a criterion is employed, it is determined that the wireless parameter control condition is satisfied when the value is equal to or less than the threshold value.
 ステップS100-1~S100-Nにおける判定を満たしたセル30に関しては(ステップS100-1~S100-NにおいてYes)、それぞれ、ステップS101-1からS101-Nに移行する。 For the cells 30 that satisfy the determinations in steps S100-1 to S100-N (Yes in steps S100-1 to S100-N), the process proceeds from step S101-1 to S101-N, respectively.
 一方、ステップS100-1~S100-Nの判定を満たさないセル30に関しては(ステップS100-1~S100-NにおいてNo)、無線パラメータを変更することなく処理を終了する。すなわち、ステップS100-1~S100-Nの判定を満たさないセル30に関しては連携グループには含めず、今回の連携制御の対象からは除外する。 On the other hand, for the cell 30 that does not satisfy the determinations of steps S100-1 to S100-N (No in steps S100-1 to S100-N), the process is terminated without changing the radio parameters. That is, cells 30 that do not satisfy the determinations of steps S100-1 to S100-N are not included in the cooperation group and are excluded from the current cooperation control targets.
 以下では、セル30-1~30-M(Mは1以上N以下の整数)が上記の条件を満たすとして説明をする。なお、図3では、便宜のために、M=Nとしている。 Hereinafter, description will be made assuming that the cells 30-1 to 30-M (M is an integer of 1 to N) satisfy the above conditions. In FIG. 3, M = N is set for convenience.
 次に、セル30-1~セル30-Mに接続しているUE40が、無線パラメータを制御するための情報を得るために、無線品質の測定を行う(ステップS101-1~S101-M)。測定された無線品質情報は、無線パラメータの制御条件を満たしたセル30を管理している基地局20-1~基地局20-Mを経由して、無線パラメータ制御装置10に報告される。 Next, the UE 40 connected to the cells 30-1 to 30-M measures the radio quality in order to obtain information for controlling the radio parameters (steps S101-1 to S101-M). The measured radio quality information is reported to the radio parameter control apparatus 10 via the base stations 20-1 to 20-M that manage the cells 30 that satisfy the radio parameter control conditions.
 次に、ステップS102-1~S102-Mでは、無線パラメータの制御条件を満たしたセル30-1~セル30-Mを対象として、それぞれのセル30-i(i=1~M)の影響セルを設定する。ここで、セル30-iの影響セルとは、セル30-iからの影響を受けるセルのことである。 Next, in steps S102-1 to S102-M, the affected cells of each cell 30-i (i = 1 to M) are targeted for the cells 30-1 to 30-M that satisfy the radio parameter control conditions. Set. Here, the cell affected by the cell 30-i is a cell affected by the cell 30-i.
 影響セルの設定方法としては、任意の設定方法を用いることが可能であり、例えば以下の方法が考えられる。 As an influence cell setting method, any setting method can be used. For example, the following methods can be considered.
 或るセル30-j(jは1以上M以下の整数)の影響セルを設定する場合、まずセル30-j自身は必ず含むようにする。 When setting an influence cell of a certain cell 30-j (j is an integer not less than 1 and not more than M), the cell 30-j itself is always included.
 更に、セル30-j以外のセル30についてであるが、セル30-jの送信電力値が予め定められた送信電力値(例えば、設定により変更可能な範囲の下限値又はゼロなど)となった場合に、セル30-jに接続するUE40がハンドオーバ先として選択すると見込まれるセル30-k(kは1以上M以下の整数、j≠k)を、セル30-jの影響セルとして設定する。 Further, regarding the cells 30 other than the cell 30-j, the transmission power value of the cell 30-j becomes a predetermined transmission power value (for example, a lower limit value of a range changeable by setting or zero). In this case, a cell 30-k (k is an integer of 1 or more and M or less, j ≠ k) expected to be selected as a handover destination by the UE 40 connected to the cell 30-j is set as an affected cell of the cell 30-j.
 或いは、セル30-jの送信電力値が予め定められた送信電力値となった場合に、セル30-jに接続するUE40であって、予め定められた数(或いは予め定められた割合)以上のUE40がハンドオーバ先として選択すると見込まれるセル30―jを、セル30-jの影響セルと設定してもよい。 Alternatively, when the transmission power value of the cell 30-j becomes a predetermined transmission power value, the UE 40 connected to the cell 30-j has a predetermined number (or a predetermined ratio) or more. The cell 30-j that is expected to be selected as the handover destination by the UE 40 may be set as an affected cell of the cell 30-j.
 なお、セル30-jの送信電力値を変更した際にハンドオーバ先として選択される見込まれるセル30―kを決定するためには、S101-jでセル30-jを管理する基地局20に報告されたUE40の無線品質情報を活用する方法が考えられる。具体的には、各UE40からの測定結果に応じて、各UE40は下りパイロット信号及び/又はリファレンス信号の受信電力が最も高くなる他のセル30-kをハンドオーバ先として接続するものと仮定する。 In order to determine an expected cell 30-k to be selected as a handover destination when the transmission power value of the cell 30-j is changed, a report is made to the base station 20 that manages the cell 30-j in S101-j. A method of using the radio quality information of the UE 40 that has been used can be considered. Specifically, it is assumed that each UE 40 connects another cell 30-k with the highest received power of the downlink pilot signal and / or reference signal as a handover destination according to the measurement result from each UE 40.
 これにより、セル30-jの送信電力値を変更したときのUE40における受信電力の推定結果から、ハンドオーバ先として接続するセル30-kを決定することが出来る。 Thus, the cell 30-k to be connected as the handover destination can be determined from the estimation result of the reception power at the UE 40 when the transmission power value of the cell 30-j is changed.
 影響セルの設定方法の別の例としては、基地局20の基地局アンテナ間の距離に基づいて設定する例が考えられる。すなわち、或るセル30-jに対応した影響セル30-kを設定する場合、セル30-jを管理する基地局20のアンテナの設置位置から所定の範囲内にある基地局20が管理するセル30を、セル30-jの影響セル30―kとして設定しても良い。 As another example of the setting method of the affected cell, an example of setting based on the distance between the base station antennas of the base station 20 can be considered. That is, when an affected cell 30-k corresponding to a certain cell 30-j is set, the cell managed by the base station 20 within a predetermined range from the antenna installation position of the base station 20 managing the cell 30-j 30 may be set as the influence cell 30-k of the cell 30-j.
 影響セルの設定方法のさらに別の例としては、各UE40のハンドオーバ試行数に基づいて設定する例が考えられる。すなわち、或るセル30-jの影響セルを設定する場合、所定の期間で集計されたハンドオーバ試行数を用い、セル30-jからのハンドオーバ試行数が所定の閾値を超えるセル30を、セル30-jの影響セル30―kとして設定しても良い。 As another example of the setting method of the affected cell, an example of setting based on the number of handover attempts of each UE 40 can be considered. That is, when an affected cell of a certain cell 30-j is set, the number of handover attempts counted in a predetermined period is used, and the cell 30 in which the number of handover attempts from the cell 30-j exceeds a predetermined threshold It may be set as the influence cell 30-k of -j.
 影響セルの設定方法の更に別の例としては、予め設定されている隣接セルリストに基づいて設定する例が考えられる。すなわち、或るセル30-jの影響セルを設定する場合、セル30-jからのハンドオーバ先の候補として設定されている隣接セルリストを用い、隣接セルリストに登録されているセル30の全部または一部を、セル30-jの影響セル30-kとして設定しても良い。 As another example of the setting method of the affected cell, an example of setting based on a preset neighboring cell list can be considered. That is, when an affected cell of a certain cell 30-j is set, the neighbor cell list set as a handover destination candidate from the cell 30-j is used, and all of the cells 30 registered in the neighbor cell list or A part may be set as the influence cell 30-k of the cell 30-j.
 次に、ステップS103では、無線パラメータの制御条件を満たしたセル30-1~セル30-Mに基づいて、連携グループを設定する。 Next, in step S103, a cooperation group is set based on the cells 30-1 to 30-M that satisfy the wireless parameter control conditions.
 連携グループの設定方法としては、例えば以下の方法が考えられる。 For example, the following method can be considered as a method for setting a cooperation group.
 例えば、任意のセルからの影響を受ける1以上の影響セルと、その任意のセルを自セルの影響セルとして、その任意のセルに影響を与える1以上のセルの集合を、連携グループとする方法が挙げられる。その場合、例えば、上記のように自セルの影響セルと自セルを影響セルとするセルを連携グループに追加することがなくなるまで繰り返し、その時点での連携グループを最終的に求まった連携グループとする。 For example, one or more affected cells that are affected by an arbitrary cell, and a method in which the arbitrary cell is set as an affected cell of the own cell, and a set of one or more cells that affect the arbitrary cell is used as a cooperation group Is mentioned. In that case, for example, as described above, it is repeated until the affected cell of the own cell and the cell having the own cell as the affected cell are not added to the linked group, and the linked group at that time is finally determined as the linked group To do.
 具体的には、まず、或るセル30-Aを選択し、セル30-Aを基点として、セル30-Aの影響セルであるセル30-Bを探索すると共に、セル30-Aを影響セルとするセル30-Cを探索する。こうして探索されたセル30-Bやセル30-Cを、連携グループのメンバに追加する。 Specifically, first, a certain cell 30-A is selected, a cell 30-B that is an affected cell of the cell 30-A is searched from the cell 30-A as a base point, and the cell 30-A is selected as an affected cell. The cell 30-C is searched. The cell 30-B and the cell 30-C thus searched are added to the members of the cooperation group.
 次に、追加されたセル30-Bやセル30-Cを基点として、同様の探索を行う。これらの処理を該当するセル30が無くなるまで繰り返し、最終的にメンバとなったセル30全てで連携グループを形成する。 Next, the same search is performed using the added cell 30-B or cell 30-C as a base point. These processes are repeated until there is no corresponding cell 30, and a cooperation group is formed by all the cells 30 that finally become members.
 そして、例えば、1つ以上の連携グループが形成されたら、それらの連携グループに含まれないセルを起点として、追加の連携グループを形成する。 For example, when one or more linkage groups are formed, an additional linkage group is formed starting from a cell that is not included in those linkage groups.
 連携グループの設定方法の別の例としては、セル30としてマクロセルとピコセルが混在するネットワーク構成において、マクロセル単位で連携グループを形成するという手法が挙げられる。具体的には、1以上のピコセルのそれぞれについて、そのピコセルの1以上の影響セルに含まれる唯一のマクロセルが或る1つのマクロセルである場合は、これらの1以上のピコセルは、この或るマクロセルの連携グループに属するものとする。他方で、1以上のピコセルのそれぞれについて、そのピコセルの1以上の影響セルに含まれるマクロセルが複数ある場合は、それらの複数のマクロセルのうち最も影響度が大きいマクロセルを選択する。そして、選択したマクロセルを共通とする1以上のピコセルとその共通のマクロセルとが1つの連携グループに属するものとする。 Another example of a method for setting a cooperation group is a technique of forming a cooperation group in units of macro cells in a network configuration in which macro cells and pico cells are mixed as the cells 30. Specifically, for each of one or more pico cells, if the only macro cell included in one or more affected cells of the pico cell is a macro cell, the one or more pico cells are Shall belong to the cooperation group. On the other hand, for each of the one or more pico cells, when there are a plurality of macro cells included in the one or more affected cells of the pico cell, the macro cell having the greatest influence is selected from the plurality of macro cells. Then, it is assumed that one or more pico cells sharing the selected macro cell and the common macro cell belong to one cooperation group.
 また、連携グループの設定方法の更に別の例としては、セル30としてマクロセルとピコセルが混在するネットワーク構成において、上記の例とは逆に、ピコセル単位で連携グループを形成するという手法も挙げられる。 Further, as another example of the method for setting the cooperation group, in the network configuration in which the macro cell and the pico cell are mixed as the cell 30, a technique of forming a cooperation group in units of pico cells is also provided, contrary to the above example.
 具体的には、1以上のマクロセルのそれぞれについて、そのマクロセルの1以上の影響セルに含まれる唯一のピコセルが或る1つのピコセルである場合は、これらの1以上のマクロセルは、この或るピコセルの連携グループに属するものとする。他方で、1以上のマクロセルのそれぞれについて、そのマクロセルの1以上の影響セルに含まれるピコセルが複数ある場合は、それらの複数のピコセルのうち最も影響度が大きいピコセルを選択する。そして、選択したピコセルを共通とする1以上のマクロセルとその共通のピコセルとが1つの連携グループに属するものとする。 Specifically, for each of one or more macro cells, if the only pico cell included in the one or more affected cells of the macro cell is a certain pico cell, these one or more macro cells are the certain pico cell. Shall belong to the cooperation group. On the other hand, for each of one or more macro cells, when there are a plurality of pico cells included in one or more affected cells of the macro cell, the pico cell having the greatest influence is selected from among the plurality of pico cells. It is assumed that one or more macro cells sharing the selected pico cell and the common pico cell belong to one cooperation group.
 連携グループの設定方法のさらに別の例としては、無線局のデータとして運用管理装置(図示せず)などに格納されているセルの設置位置の情報を用いて、近接するセル同士を連携グループとする手法が挙げられる。具体的には、k-近傍法(k-NN:k-nearest neighbor algorithm)などのクラスタリング手法が利用可能である。 As still another example of the method for setting a cooperation group, information on the installation position of a cell stored in an operation management device (not shown) or the like as wireless station data is used to connect adjacent cells with a cooperation group. The technique to do is mentioned. Specifically, a clustering method such as a k-nearest neighbor method (k-NN: k-nearest neighbor algorithm) can be used.
 なお、連携グループは上記の方法で限定されたセル30の範囲であっても良いし、無線パラメータ制御装置10が管理するセル30の全てであってもよい。すなわち、ステップS100~ステップS103を省略し、無線パラメータ制御装置10が管理するセル30全てを1つの連携グループとして取り扱っても良い。 Note that the cooperation group may be a range of the cells 30 limited by the above method, or may be all of the cells 30 managed by the wireless parameter control device 10. That is, step S100 to step S103 may be omitted, and all the cells 30 managed by the radio parameter control apparatus 10 may be handled as one cooperation group.
 連携グループの設定により、g個(gは1以上の整数)の連携グループが設定されたとする。すなわち、連携グループ1~連携グループgが設定されたとする。 Suppose that g linked groups (g is an integer of 1 or more) are set by the linked group settings. That is, it is assumed that cooperation group 1 to cooperation group g are set.
 以降の処理は、各連携グループ毎の処理となる。なお、図3においてはステップS104-1、・・・、ステップS104-gが図示されているが、これは連携グループが複数存在する場合を想定したものである。本実施形態では連携グループが1つのみ存在する場合もあり得る。もしも、連携グループが1つのみ存在する場合(すなわち、g=1の場合)には、ステップS104-1のみが行われることとなる。 The subsequent processing is processing for each cooperation group. In FIG. 3, steps S104-1,..., Step S104-g are illustrated, but this assumes that there are a plurality of linkage groups. In the present embodiment, there may be only one cooperation group. If there is only one cooperation group (that is, when g = 1), only step S104-1 is performed.
 続いて、ステップS104-h(h=1~g)では、ステップS103で設定したh番目の連携グループ内のセル30それぞれの無線パラメータを変更した場合における通信特性を予測する。そして、h番目の連携グループ内の通信特性が最適になると予測された値にそれぞれのセル30の無線パラメータを設定する。 Subsequently, in step S104-h (h = 1 to g), the communication characteristics when the radio parameters of each cell 30 in the h-th cooperation group set in step S103 are changed are predicted. Then, the radio parameter of each cell 30 is set to a value predicted that the communication characteristics in the h-th cooperation group are optimized.
 なお、ここで言う通信特性とは、例えば、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)などである。 The communication characteristics referred to here are, for example, traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, reception quality (RSRP, RSRQ, SINR) and the like.
 また、無線品質情報及び通信品質情報の双方を用いて、通信特性を算出する代わりに、無線品質情報及び通信品質情報の何れか一方のみを用いて、通信特性を算出してもよい。 Further, instead of calculating the communication characteristics using both the radio quality information and the communication quality information, the communication characteristics may be calculated using only one of the radio quality information and the communication quality information.
 以上説明した内容が実施形態1及び実施形態2において共通する内容である。続いては実施形態1及び実施形態2についてそれぞれ個別に説明する。また、ステップS104-1~S104-hにおける具体的な通信特性の予測動作は各実施形態により異なるため、以下の実施形態1及び実施形態2の説明において詳述する。 The contents described above are common contents in the first and second embodiments. Subsequently, Embodiment 1 and Embodiment 2 will be described individually. In addition, since the specific operation for predicting communication characteristics in steps S104-1 to S104-h varies depending on each embodiment, it will be described in detail in the following description of the first and second embodiments.
 <実施形態1>
 実施形態1では、連携グループ内の他のセルの無線パラメータ変更による通信特性の変化を考慮した上で無線パラメータの決定並びに変更を行うために、他セル考慮制御を行う方法について説明する。
<Embodiment 1>
In the first embodiment, a method for performing other cell consideration control in order to determine and change a radio parameter after considering a change in communication characteristics due to a radio parameter change of another cell in the cooperation group will be described.
 実施形態1における連携グループ内にある各無線パラメータの制御方法について、図4を参照して説明する。 A method of controlling each wireless parameter in the cooperation group in the first embodiment will be described with reference to FIG.
 図4は、連携グループ1~gのうちの1つの連携グループである、「連携グループh」(hは1以上g以下の整数)における処理を説明している。 FIG. 4 illustrates processing in “cooperation group h” (h is an integer of 1 to g), which is one of the cooperation groups 1 to g.
 ステップS104-h-1では、連携グループh内にある各セル30の無線パラメータをそれぞれ変更した場合における通信特性を予測する。 In step S104-h-1, the communication characteristics when the radio parameters of each cell 30 in the cooperation group h are changed are predicted.
 連携グループh内に含まれる或るセル30の無線パラメータを変更した場合における通信特性を予測する際には、連携グループh内に含まれる或るセル30以外の他のセル30の無線パラメータが変更されることも考慮する。 When predicting the communication characteristics when the radio parameter of a certain cell 30 included in the cooperation group h is changed, the radio parameters of other cells 30 other than the certain cell 30 included in the cooperation group h are changed. It is also taken into account.
 具体的な通信特性の予測方法は後述の実施例で説明する。 A specific method for predicting communication characteristics will be described in an embodiment described later.
 次に、ステップS104-h-2では無線パラメータ決定部14が、ステップS104-h-1で予測された通信特性に基づき、無線パラメータ変更後の通信特性が最適となるような各セルの無線パラメータの変更値を決定する。そして、無線パラメータ決定部14が、決定した変更値へと各セルの無線パラメータを一括して変更する。これにより、本実施形態の動作は終了する。 Next, in step S104-h-2, the radio parameter determination unit 14 determines the radio parameters of each cell so that the communication characteristics after changing the radio parameters are optimized based on the communication characteristics predicted in step S104-h-1. Determine the change value of. Then, the radio parameter determination unit 14 collectively changes the radio parameters of each cell to the determined change value. Thereby, the operation of the present embodiment ends.
 以上説明した第1の実施形態によれば、複数のセル内の各セルの無線パラメータを決定する際に、他のセルの無線パラメータの変更によって生じる通信特性の変化をも考慮し、複数のセルの無線パラメータを連携して制御することが可能となる。 According to the first embodiment described above, when determining the radio parameters of each cell in a plurality of cells, the change of communication characteristics caused by the change of the radio parameters of other cells is also taken into consideration, and the plurality of cells It is possible to control the wireless parameters in cooperation with each other.
 <実施形態2>
 実施形態1では他セル考慮制御を行うための方法について説明したが、実施形態2では、連携グループ内の他のセルの無線パラメータ変更による、影響セルでの通信特性の変化を考慮して、無線パラメータの決定並びに変更を行うために、排他制御を行うための方法について説明する。
<Embodiment 2>
In the first embodiment, the method for performing other cell consideration control has been described. However, in the second embodiment, wireless communication is considered in consideration of a change in communication characteristics in an affected cell due to a radio parameter change of another cell in the cooperation group. A method for performing exclusive control in order to determine and change parameters will be described.
 実施形態2にかかる連携グループ内にある各無線パラメータの制御方法を図10を参照して説明する。図3を参照して説明したステップS103までの処理でg個の連携グループが設定される。図10は、設定された1つの連携グループh(hは1以上g以下の整数)内の処理を説明している。ここで、図10内の値nは、連携グループhに含まれるセル数を表す。 A method for controlling each wireless parameter in the cooperation group according to the second embodiment will be described with reference to FIG. G linkage groups are set by the processing up to step S103 described with reference to FIG. FIG. 10 illustrates processing in one set cooperation group h (h is an integer of 1 to g). Here, the value n in FIG. 10 represents the number of cells included in the cooperation group h.
 ステップS104-h-1では、実施形態1と同様に、連携グループh内にある各セルの無線パラメータをそれぞれ変更した場合における通信特性を予測する。 In step S104-h-1, similarly to the first embodiment, the communication characteristics when the radio parameters of each cell in the cooperation group h are changed are predicted.
 次に、ステップS104-h-3では、ステップS104-h-1で予測された通信特性を基に、無線パラメータを変更するセルと、無線パラメータの変更値を決定する。実施形態2では、無線パラメータを一度に変更するセルは連携グループg内で1つのみとする。 Next, in step S104-h-3, based on the communication characteristics predicted in step S104-h-1, a cell for changing the radio parameter and a change value of the radio parameter are determined. In the second embodiment, it is assumed that the number of cells whose radio parameters are changed at one time is only one in the cooperation group g.
 次に、ステップS104-h-4では、ステップS104-h-3で決定された唯一つのセルの無線パラメータをステップS104-h-3で決定された変更値に変更する。ここでの変更とは、計算上の変更ではなく、そのセルに係る基地局に実際にその変更された無線パラメータを設定することである。 Next, in step S104-h-4, the radio parameter of the single cell determined in step S104-h-3 is changed to the changed value determined in step S104-h-3. The change here is not a calculation change but an actual setting of the changed radio parameter in the base station related to the cell.
 次に、ステップS104-h-5では、無線パラメータ変更の完了条件を満たすかを判断する。完了条件を満たしていれば(ステップS104-h-5においてYes)、無線パラメータの制御は完了となる。 Next, in step S104-h-5, it is determined whether the wireless parameter change completion condition is satisfied. If the completion condition is satisfied (Yes in step S104-h-5), the wireless parameter control is completed.
 一方、未だ完了条件を満たさない場合は(ステップS104-h-5においてNo)、ステップS104-h-6-1~S104-h-6-nに移行する。 On the other hand, if the completion condition is not yet satisfied (No in step S104-h-5), the process proceeds to steps S104-h-6-1 to S104-h-6-n.
 ステップS104-h-6-1~S104-h-6-nでは、次の制御タイミングで無線パラメータの制御を行うために、セル1~nに接続するUE40がそれぞれ無線品質測定を行い、セル1~nに係る基地局20を経由して、無線品質情報を無線パラメータ制御装置10に報告する。加えて、セル1~nを管理する基地局20は、それぞれ通信品質情報を測定し、同様に無線パラメータ制御装置10に報告する。 In steps S104-h-6-1 to S104-h-6-n, in order to control radio parameters at the next control timing, UEs 40 connected to cells 1 to n perform radio quality measurements, respectively. The wireless quality information is reported to the wireless parameter control apparatus 10 via the base station 20 related to .about.n. In addition, the base station 20 that manages the cells 1 to n measures communication quality information and reports the same to the radio parameter control apparatus 10 in the same manner.
 そして、無線品質情報及び通信品質情報の報告が完了すると、無線パラメータ制御装置10は品質情報記憶部11に記憶された無線品質情報及び通信品質情報を報告内容に基づいて更新する。これにより、ステップS104-h-6-1~S104-h-6-nの処理は終了する。 When the reporting of the radio quality information and the communication quality information is completed, the radio parameter control device 10 updates the radio quality information and the communication quality information stored in the quality information storage unit 11 based on the report contents. As a result, the processing of steps S104-h-6-1 to S104-h-6-n ends.
 次に、ステップS104-h-1に戻る。そして、無線パラメータ制御装置10は、連携グループh内にある各セルの無線パラメータをそれぞれ変更した場合における影響セルでの通信特性を予測する。この通信特性の予測は、ステップS104-h-6-1~S104-h-6-nにおいて更新された無線品質情報及び通信品質情報に基づいて行われる。 Next, the process returns to step S104-h-1. And the radio | wireless parameter control apparatus 10 estimates the communication characteristic in an influence cell at the time of changing the radio | wireless parameter of each cell in the cooperation group h, respectively. The prediction of the communication characteristics is performed based on the radio quality information and communication quality information updated in steps S104-h-6-1 to S104-h-6-n.
 その後は、ステップS104-h-5においてYesとなるまで、ステップS104-h-1~ステップS104-h-6を繰り返す。これにより、ステップS104-hの処理は終了する。 Thereafter, Steps S104-h-1 to S104-h-6 are repeated until Yes is obtained in Step S104-h-5. Thereby, the process of step S104-h ends.
 ステップS104-hにおいてステップS104-h-1~ステップS104-h-6を繰り返す際には、以前の制御タイミングで無線パラメータを変更したセルや、変更しないことを決定したセルについては、無線パラメータ変更の候補から除外するようにしても良い。なお、制御タイミングとは、無線パラメータを変更後に、無線品質情報や通信品質情報を更新し、更新された無線品質情報や通信品質情報に基づいて再度無線パラメータを変更するタイミングである。すなわち、ステップS104-hにおいてステップS104-h-1~ステップS104-h-6という一連の処理を一度行うタイミングである。なお、制御タイミングは所定の周期で定期的に設けられても良いし、所定の時間に必ず設けるようにしても良いし、無線パラメータ制御装置10がユーザの指示を受け付けたこと契機として設けられるようにしても良い。無線パラメータを変更したセルを除外することにより、他のセルの無線パラメータの変更をする前に、同じセルの無線パラメータを繰り返し変更することを避けることができる。 When step S104-h-1 to step S104-h-6 are repeated in step S104-h, the radio parameter change is performed for the cell in which the radio parameter has been changed at the previous control timing or the cell that has been determined not to be changed. You may make it exclude from this candidate. The control timing is a timing for updating the radio quality information and communication quality information after changing the radio parameter, and changing the radio parameter again based on the updated radio quality information and communication quality information. That is, it is the timing at which a series of processing from step S104-h-1 to step S104-h-6 is performed once in step S104-h. The control timing may be provided periodically at a predetermined cycle, may be provided at a predetermined time, or may be provided when the wireless parameter control device 10 receives a user instruction. Anyway. By excluding the cell whose radio parameter has been changed, it is possible to avoid repeatedly changing the radio parameter of the same cell before changing the radio parameter of another cell.
 なお、ステップS104-h-5にて用いる完了条件としては、例えば、以下のような完了条件を用いるようにしても良い。 As the completion condition used in step S104-h-5, for example, the following completion condition may be used.
 例えば、連携グループ内にある全てのセルの無線パラメータの変更を完了すること、を第1の完了条件として例示できる。もしも、この第1の完了条件を採用するのであれば、ステップS104-hにおいてステップS104-h-1~ステップS104-h-6を繰り返す際には、以前の制御タイミングで無線パラメータを変更したセルや、変更しないことを決定したセルについては、無線パラメータ変更の候補から除外する必要がある。 For example, the completion of changing the radio parameters of all cells in the cooperation group can be exemplified as the first completion condition. If this first completion condition is adopted, when repeating step S104-h-1 to step S104-h-6 in step S104-h, the cell whose radio parameter has been changed at the previous control timing is used. In addition, a cell that has been determined not to be changed needs to be excluded from radio parameter change candidates.
 また、ステップ104-h-4において、無線パラメータを変更したとしても通信特性が改善するセルがない状態となったこと、を第2の完了条件として例示できる。 Further, in step 104-h-4, it can be exemplified as the second completion condition that there is no cell whose communication characteristics improve even if the radio parameter is changed.
 更に、予め連携グループ内で無線パラメータを制御するセル数(又は連携グループ内の全てのセルに占める制御するセルの割合)を決めておき、無線パラメータを制御したセル数(又は連携グループ内の全てのセルに占める制御するセルの割合)が予め決められたセル数(又は連携グループ内の全てのセルに占める制御するセルの割合)になったこと、を第3の完了条件として例示できる。 In addition, the number of cells that control radio parameters in the cooperation group (or the ratio of cells to be controlled among all the cells in the cooperation group) is determined in advance, and the number of cells that control the wireless parameters (or all cells in the cooperation group) The third completion condition can be exemplified by the fact that the ratio of cells to be controlled to the number of cells) has reached a predetermined number of cells (or the ratio of cells to be controlled to all cells in the cooperation group).
 以上説明した実施形態2によれば、送信電力を実際に変更した後に測定された実際の通信品質特性及び実際の無線品質特性に基づいて、その変更後の送信電力に対応する通信特性の実際の値と、その変更後の送信電力の周辺の送信電力に対応する通信特性の予測値とを算出することができるので、送信電力の制御をより正確にすることができる。 According to the second embodiment described above, based on the actual communication quality characteristic and the actual radio quality characteristic measured after actually changing the transmission power, the actual communication characteristic corresponding to the transmission power after the change is changed. Since the value and the predicted value of the communication characteristic corresponding to the transmission power around the transmission power after the change can be calculated, the transmission power can be controlled more accurately.
 続いて、第1の実施形態におけるステップS104-hをより具体化した実施例である実施例1~実施例4について説明する。なお、以下の各実施例では、ステップS104-h-1における通信特性の予測方法はそれぞれ異なるが、ステップS104-h-2の内容については共通している。そこで、重複した説明を避けるべく、以下の各実施例の説明においてステップS104-h-2について説明することは省略する。 Subsequently, Example 1 to Example 4, which are examples of step S104-h according to the first embodiment, will be described. In the following embodiments, the method for predicting communication characteristics in step S104-h-1 is different, but the contents of step S104-h-2 are common. Therefore, in order to avoid redundant description, description of step S104-h-2 is omitted in the description of each embodiment below.
 実施例1では、連携グループ内の複数のセルに対する無線パラメータの変更候補の組み合わせ全てに対して、通信特性の予測を行う。 In the first embodiment, communication characteristics are predicted for all combinations of wireless parameter change candidates for a plurality of cells in a cooperation group.
 今回実施例1について説明するための、セルの一配置例が図5に表されている。 FIG. 5 shows an arrangement example of cells for explaining the first embodiment.
 図5を参照すると、今回のセルの配置例では、1つのマクロセル(マクロセル31)と2つのピコセル(ピコセル32及びピコセル33)が存在する。そして、マクロセル31は基地局20-1の管理下にあり、ピコセル32は基地局20-2の管理下にあり、ピコセル33は基地局20-3の管理下にあるものとする。また、今回連携グループhに含まれるセルは、2つのピコセル(ピコセル32及びピコセル33)のみであると仮定する。 Referring to FIG. 5, in this cell arrangement example, there are one macro cell (macro cell 31) and two pico cells (pico cell 32 and pico cell 33). The macro cell 31 is under the control of the base station 20-1, the pico cell 32 is under the control of the base station 20-2, and the pico cell 33 is under the control of the base station 20-3. In addition, it is assumed that the cells included in the current cooperation group h are only two pico cells (the pico cell 32 and the pico cell 33).
 また、今回の実施例1の説明では、変更する無線パラメータを送信電力、予測する通信特性をユーザスループットとした場合を例に取って説明する。また、送信電力の変更可能な範囲であるが、今回の説明ではそれぞれのピコセルにおいて36~30dBmまで1dBm刻みで変更できるものと仮定している。 In the description of the first embodiment, the case where the wireless parameter to be changed is transmission power and the predicted communication characteristic is user throughput will be described as an example. Further, although the transmission power can be changed, in the present explanation, it is assumed that each pico cell can be changed in increments of 1 dBm from 36 to 30 dBm.
 次に、実施例1における通信特性の予測方法について、図6を参照して説明する。実施例1では、ピコセル(ピコセル32及びピコセル33)の無線パラメータ候補値の組み合わせ49パターン(ピコセル32:7種類の送信電力×ピコセル33:7種類の送信電力)あり、49パターンそれぞれで、双方のピコセルの影響セルに接続するUE40における5%スループット(双方のピコセルの影響セルに接続する全UE40のユーザスループットを大きい順に並べた場合に、下位5%に相当するユーザのスループット(例えば、下位5%の順位の位置にいるユーザのスループット、下位5%に含まれる全ユーザの平均のスループットなど))を予測する。 Next, a method for predicting communication characteristics in the first embodiment will be described with reference to FIG. In the first embodiment, there are 49 combinations of radio parameter candidate values of pico cells (pico cell 32 and pico cell 33) (pico cell 32: seven types of transmission power × pico cell 33: seven types of transmission power). 5% throughput in the UE 40 connected to the affected cell of the pico cell (when the user throughputs of all the UEs 40 connected to the affected cell of both pico cells are arranged in descending order, the throughput of the user corresponding to the lower 5% (for example, the lower 5% The throughput of the users in the ranking position, the average throughput of all the users included in the lower 5%, etc.)).
 ここで、以下の説明においては、ピコセル32の送信電力を36dBmとした場合であって、且つ、ピコセル33の送信電力を35dBmとした場合の組み合わせを「36/35」というように表記することとする。また、ピコセル32の送信電力を36dBmとした場合であって、且つ、ピコセル33の送信電力を35dBmとした場合の双方のピコセルの影響セルに接続するUE40における5%スループットが3.5Mbpsであるような場合を「36/35:3.5Mbps」というように表記することとする。 Here, in the following description, the combination when the transmission power of the pico cell 32 is set to 36 dBm and the transmission power of the pico cell 33 is set to 35 dBm is expressed as “36/35”. To do. Further, when the transmission power of the pico cell 32 is set to 36 dBm and the transmission power of the pico cell 33 is set to 35 dBm, the 5% throughput in the UE 40 connected to the affected cells of both pico cells seems to be 3.5 Mbps. Such a case is expressed as “36/35: 3.5 Mbps”.
 そして今回の例においては、それぞれの送信電力の組み合わせにおける5%スループットは、36/36:3.3Mbps、35/36:3.1Mbps、・・・30/36:3.0Mbps、36/35:3.5Mbps、35/35:3.8Mbps、・・・30/35:3.9Mbps、・・・、36/30:4.0Mbps、35/30:4.2Mbps、・・・、30/30:4.4Mbpsとなる。 In this example, the 5% throughput in each transmission power combination is 36/36: 3.3 Mbps, 35/36: 3.1 Mbps,... 30/36: 3.0 Mbps, 36/35: 3.5 Mbps, 35/35: 3.8 Mbps, ... 30/35: 3.9 Mbps, ..., 36/30: 4.0 Mbps, 35/30: 4.2 Mbps, ..., 30/30 : 4.4 Mbps.
 なお、現在のピコセル32の送信電力は36dBmであり、ピコセル33の送信電力は36dBmであり、これに対応する5%スループットの値である3.3Mbpsは、現在実測された通信品質情報及び現在実測された無線品質情報に基づいて計算された値である。従って、この5%スループットの値は、実際の値である。また、ピコセル32の送信電力の値とピコセル33の送信電力の値の他の組合せに対応する5%スループットの値は、現在実測された通信品質情報及び現在実測された無線品質情報に基づいて計算された推定値である。これは、現在のピコセル32の送信電力である36dBmと、ピコセル33の送信電力である36dBmとの組合せに対応する5%スループットの値である3.3Mbpsを基準とした相対値で表しても良い。この相対値は、送信電力を変えるならばこうなるであろうという変化量を表す。 The current transmission power of the pico cell 32 is 36 dBm, the transmission power of the pico cell 33 is 36 dBm, and the corresponding 5% throughput value of 3.3 Mbps is the currently measured communication quality information and the current actual measurement. It is a value calculated based on the radio quality information. Therefore, this 5% throughput value is an actual value. Also, the 5% throughput value corresponding to another combination of the transmission power value of the pico cell 32 and the transmission power value of the pico cell 33 is calculated based on the currently measured communication quality information and the currently measured radio quality information. Estimated value. This may be expressed as a relative value based on 3.3 Mbps, which is a 5% throughput value corresponding to a combination of 36 dBm, which is the transmission power of the current pico cell 32, and 36 dBm, which is the transmission power of the pico cell 33. . This relative value represents the amount of change that will occur if the transmission power is changed.
 したがって、実施例1では、ピコセル32及びピコセル33の送信電力は、予測した5%スループットが最大となる30/30(ピコセル32:30dBm、ピコセル33:30dBm)と決定される。 Therefore, in Example 1, the transmission power of the pico cell 32 and the pico cell 33 is determined to be 30/30 (pico cell 32:30 dBm, pico cell 33:30 dBm) at which the predicted 5% throughput is maximized.
 なお、実施例1では、連携グループ内のセル数が2の場合で説明したが、3以上の場合においても同様に無線パラメータの決定ができる。例えば、連携グループ内のセル数がaであれば、a次元のテーブルを用いて同様な方法を用いることができる。 In the first embodiment, the case where the number of cells in the cooperation group is 2 has been described. However, the wireless parameter can be similarly determined even when the number of cells is 3 or more. For example, if the number of cells in the cooperation group is a, a similar method can be used using an a-dimensional table.
 また、制御する無線パラメータが送信電力であったが、アンテナチルト角やアンテナ方位角、ハンドオーバパラメータなど、他の無線パラメータであってもよい。さらに、変更する無線パラメータとして、送信電力という1種類の無線パラメータを変更する例であったが、変更対象となる無線パラメータが2種類以上の組み合せであってもよい。 Further, although the radio parameter to be controlled is transmission power, other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used. Furthermore, although one type of wireless parameter called transmission power is changed as the wireless parameter to be changed, the wireless parameter to be changed may be a combination of two or more types.
 例えば、連携グループ内のセル数がaであり、変更対象となる無線パラメータの数がbであれば、a×b次元のテーブルを用いて同様な方法を用いることができる。 For example, if the number of cells in the cooperation group is a and the number of wireless parameters to be changed is b, a similar method can be used using an a × b dimensional table.
 また、通信特性の予測としてスループットの予測を行ったが、トラフィック負荷、SINRなどの信号対雑音干渉比など、他の通信特性を予測するようにしても良い。予測する通信特性を1つのみ見る場合には、評価量はその通信特性の予測値であるが、このように複数の通信特性の予測値を評価する場合には、評価量をこれらの複数の通信特性の予測値の関数とする。 Further, although the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted. When only one communication characteristic to be predicted is viewed, the evaluation amount is a predicted value of the communication characteristic. However, when evaluating predicted values of a plurality of communication characteristics in this way, the evaluation amount is set to the plurality of evaluation values. It is a function of the predicted value of communication characteristics.
 更に、今回は下位5%のスループットを検討したが、5%はあくまで例示に過ぎず、他の値とするようにしても良い。例えば下位3%等としても良いし、影響セルに接続する全てのUE40の平均値や中央値を用いるようにしても良い。 Furthermore, although the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
 上記では、連携グループ内のセル数がaであれば、a次元のテーブルを用いて同様な方法を用いることができる、という説明をした。これは、各セル毎の無線パラメータの調整範囲の最小値から最大値までの全ての組合せを作る場合に限った場合のことである。この他に、例えば、各セル毎の現在の無線パラメータからの差分絶対値の合計などが所定値以下である範囲内にある全ての無線パラメータの組合せを変更候補としてもよいし、a次元空間に分布する任意の組合せを変更候補としてもよい。 In the above description, if the number of cells in the cooperation group is a, a similar method can be used using an a-dimensional table. This is the case when all combinations from the minimum value to the maximum value of the radio parameter adjustment range for each cell are made. In addition to this, for example, a combination of all radio parameters in a range where the sum of absolute differences from the current radio parameters for each cell is equal to or less than a predetermined value may be set as a change candidate, Any combination of distributions may be used as a change candidate.
 また、上記の説明では、変更候補の範囲は、現在の無線パラメータの値の組を含むこととしていて、これが通常であるが、必ずしも含む必要はない。これは、以下の実施例においても同様である。 In the above description, the range of change candidates includes the current set of wireless parameter values, which is normal, but need not be included. The same applies to the following embodiments.
 実施例1では、それぞれセルの無線パラメータ候補値の組み合わせ全てにおける通信特性を予測するため、複数のセルが連携して無線パラメータ変更を行うことによる通信特性の改善効果を大きくすることができる。 In the first embodiment, since the communication characteristics in all combinations of wireless parameter candidate values of cells are predicted, it is possible to increase the effect of improving the communication characteristics when a plurality of cells cooperate to change the wireless parameters.
 実施例2では、連携グループ内の複数のセルに対して、無線パラメータを1セルずつ順番に決定することにより、通信特性を予測する組み合わせ数を限定する。すなわち、実施例2は、組み合せ全てについて予測を行うのではなく、限定した組み合せについてのみ予測を行う点で実施例1とは相違する。 In Example 2, the number of combinations for predicting communication characteristics is limited by sequentially determining wireless parameters for each of a plurality of cells in the cooperation group. In other words, the second embodiment is different from the first embodiment in that the prediction is not performed for all the combinations but only for the limited combinations.
 以下の実施例2の説明においても、実施例1と同様に図5に表されているセルの配置例を用いて説明を行う。すなわち、実施例1と同様に、1つのマクロセル(31)と2つのピコセル(ピコセル32及びピコセル33)が存在し、連携グループに含まれるセルは、2つのピコセル(ピコセル32及びピコセル33)のみである場合を例に取る。 In the following description of the second embodiment, the description will be made using the cell arrangement example shown in FIG. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
 また、変更する無線パラメータを送信電力、予測する通信特性をユーザスループットとする点、及び、送信電力はそれぞれのピコセルにおいて36~30dBmまで1dBm刻みで変更できる点についても実施例1と同様とする。 Also, it is the same as in the first embodiment in that the wireless parameter to be changed is transmission power, the predicted communication characteristic is user throughput, and the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell.
 次に、実施例2における通信特性の予測方法について、図7を参照して説明する。実施例2では、連携グループ内の複数のセルの中から、1セルずつ順番に送信電力を決定する。そのため、実施例2では送信電力を決定するセルの順番から決定する。 Next, a method for predicting communication characteristics in the second embodiment will be described with reference to FIG. In the second embodiment, transmission power is determined for each cell in order from a plurality of cells in the cooperation group. Therefore, in Example 2, it determines from the order of the cell which determines transmission power.
 セルの順番の決定方法の具体例としては、例えば、トラフィック負荷が高いセルから送信電力を決定する方法、呼の異常切断率が高いセルから決定する方法、実効的なスケジューリングユーザ数が大きいセルから決定する方法などが考えられる。つまり、無線パラメータを変更することによる影響度が大きいセルや、通信特性が悪いセルなどを順位の早いセルとする。 Specific examples of the cell order determination method include, for example, a method of determining transmission power from a cell with a high traffic load, a method of determining from a cell with a high abnormal call disconnection rate, and a cell with a large number of effective scheduling users. The method of determining can be considered. That is, a cell having a large influence due to a change in radio parameters, a cell having poor communication characteristics, or the like is regarded as a cell having a high rank.
 例えば、トラフィック負荷の高低で送信電力決定の順序を判断する方法を採用するとする、この場合には、ピコセル32のトラフィック負荷が60%、ピコセル33のトラフィック負荷が70%であるとすると、トラフィック負荷が高いセルであるピコセル33から送信電力を決定することとなる。 For example, it is assumed that a method of determining the order of transmission power determination based on the level of traffic load is adopted. In this case, assuming that the traffic load of the pico cell 32 is 60% and the traffic load of the pico cell 33 is 70%, the traffic load The transmission power is determined from the pico cell 33, which is a high cell.
 そこで、まず、ピコセル33でないセルであるピコセル32の送信電力を初期値の36dBmに固定する一方で、ピコセル33の送信電力を36dBmのままにした場合と、ピコセル33の送信電力を30dBmまで1dBm刻みで変更した各場合で、双方の影響セルに接続する全てのUE40における5%スループットを予測する。 Therefore, first, the transmission power of the pico cell 32 which is a cell that is not the pico cell 33 is fixed to the initial value of 36 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the transmission power of the pico cell 33 is increased by 1 dBm up to 30 dBm. In each case changed in (5), 5% throughput in all UEs 40 connected to both affected cells is predicted.
 この場合、36/36:3.3Mbps、36/35:3.8dBm、・・・、36/30:3.6dBmとなるので、ピコセル33の送信電力は、予測した5%スループットが最大となる35dBmと決定される。 In this case, 36/36: 3.3 Mbps, 36/35: 3.8 dBm,..., 36/30: 3.6 dBm, so that the transmission power of the picocell 33 has the maximum predicted 5% throughput. It is determined to be 35 dBm.
 なお、上述の説明では、ピコセル32の送信電力の初期値を36dBmとして固定しているが、これは、本例ではピコセル32の現在の送信電力の値が36dBmだからである。つまり、本例では現在値をそのまま初期値として用いるようにしている。 In the above description, the initial value of the transmission power of the pico cell 32 is fixed as 36 dBm. This is because the current transmission power value of the pico cell 32 is 36 dBm in this example. That is, in this example, the current value is used as it is as the initial value.
 次に、ピコセル33の送信電力を決定された35dBmに固定する一方で、順位が2番であるピコセル32の送信電力を36dBmのままにした場合と、ピコセル32の送信電力を30dBmまで1dBm刻みで変更した各場合で、双方の影響セルに接続するUE40における5%スループットを予測する。 Next, while the transmission power of the pico cell 33 is fixed to the determined 35 dBm, the transmission power of the pico cell 32 having the second rank is kept at 36 dBm, and the transmission power of the pico cell 32 is increased to 30 dBm in 1 dBm increments. In each changed case, 5% throughput in the UE 40 connected to both affected cells is predicted.
 この場合、36/35:3.8Mbps、35/35:3.9dBm、・・・、30/35:3.6dBmとなるので、ピコセル32の送信電力は、予測した5%スループットが最大となる35dBmと決定される。 In this case, 36/35: 3.8 Mbps, 35/35: 3.9 dBm,..., 30/35: 3.6 dBm, so the transmission power of the pico cell 32 has the maximum predicted 5% throughput. It is determined to be 35 dBm.
 従って、実施例2では、ピコセル32の送信電力が36dBmから35dBmに変更され、ピコセル33の送信電力が36dBmから35dBmに変更されることになる。 Therefore, in the second embodiment, the transmission power of the pico cell 32 is changed from 36 dBm to 35 dBm, and the transmission power of the pico cell 33 is changed from 36 dBm to 35 dBm.
 実施例2では、(ピコセル32:1種類の送信電力×ピコセル33:7種類の送信電力+ピコセル33:1種類の送信電力×ピコセル32:7種類の送信電力(1×7+1×7))の14パターンで5%スループット予測を行うことになり、実施例1(49パターン)よりもスループット予測対象とするパターンを減少させることが可能となる。そのため、スループット予測に伴う演算の量を減少させることが可能となる。 In the second embodiment, (picocell 32: 1 type of transmission power × picocell 33: 7 types of transmission power + picocell 33: 1 type of transmission power × picocell 32: 7 types of transmission power (1 × 7 + 1 × 7)) Throughout 14 patterns, 5% throughput prediction is performed, and it is possible to reduce the number of patterns targeted for throughput prediction compared to the first embodiment (49 patterns). For this reason, it is possible to reduce the amount of calculation associated with throughput prediction.
 なお、実施例2では、一方のセルの送信電力を変更した場合の通信特性の予測結果から、この一方のセルの送信電力を一意に決定した。つまり、上述の例で言えばピコセル33の送信電力を予測した5%スループットが最大となる35dBmに一意に決定した。もっともこのように一意に決定するのではなく、複数の送信電力を候補とする方法を採用しても良い。この場合、5%スループットが最大となる送信電力だけではなく、2番目や3番目となる送信電力を候補として残し、他方のセルの送信電力との組み合わせに対する通信特性を予測する。仮にこのようにした場合であっても実施例1に比べスループット予測対象とするパターンを減少させることが可能となる。例えば、3番目になる送信電力までを候補としたとしても(ピコセル32:1種類の送信電力×ピコセル33:7種類の送信電力+ピコセル33:3種類の送信電力×ピコセル32:7種類の送信電力力(1×7+1×7×3))の28パターンで5%スループット予測を行うことになり、実施例1(49パターン)よりもスループット予測対象とするパターンを減少させることが可能となる。 In Example 2, the transmission power of one cell is uniquely determined from the prediction result of the communication characteristics when the transmission power of one cell is changed. That is, in the above-described example, the transmission power of the pico cell 33 is uniquely determined to be 35 dBm that maximizes the predicted 5% throughput. However, instead of uniquely determining in this way, a method in which a plurality of transmission powers are candidates may be employed. In this case, not only the transmission power with the maximum 5% throughput but also the second and third transmission powers are left as candidates, and the communication characteristics for the combination with the transmission power of the other cell are predicted. Even if this is the case, it is possible to reduce the pattern to be throughput predicted compared to the first embodiment. For example, even if the third transmission power is selected as a candidate (pico cell 32: 1 type of transmission power x pico cell 33: 7 types of transmission power + pico cell 33: 3 types of transmission power x pico cell 32: 7 types of transmission) Throughout 28 patterns of power (1 × 7 + 1 × 7 × 3)), 5% throughput prediction is performed, and it is possible to reduce the number of patterns to be subjected to throughput prediction compared to the first embodiment (49 patterns).
 また、上記の例では、送信電力の調整範囲を30dBmから36dBmの範囲としたが、この調整範囲を変更してもよい。例えば、調整範囲を広げたり、シフトしたり、上限値と下限値とを別々に変更してもよい。 In the above example, the transmission power adjustment range is 30 dBm to 36 dBm, but this adjustment range may be changed. For example, the adjustment range may be expanded, shifted, or the upper limit value and the lower limit value may be changed separately.
 なお、実施例2では、連携グループ内のセル数が2の場合で説明したが、3以上の場合においても同様に無線パラメータの決定ができる。 In the second embodiment, the case where the number of cells in the cooperation group is 2 has been described. However, the wireless parameter can be similarly determined even when the number of cells is 3 or more.
 例えば、連携グループに含まれるセルの数が3である場合には、まず、優先順位を1から3まで決定し、それから優先順位が2のセルの送信電力と優先順位が3のセルの送信電力とをそれぞれ現在値に固定した状態で、優先順位が1のセルの送信電力を所定の範囲内で通信特性が最も良くなるように決定する。それから優先順位が1のセルの送信電力を決定後の値に固定し、優先順位が3のセルの送信電力を現在値に固定した状態で、優先順位が2のセルの送信電力を所定の範囲内で通信特性が最も良くなるように決定する。最後に、優先順位が1のセルの送信電力と優先順位が2のセルの送信電力とをそれぞれ決定後の値に固定した状態で、優先順位が3のセルの送信電力を所定の範囲内で通信特性が最も良くなるように決定する。これは、連携グループに含まれるセル数が4以上になった場合でも同様である。 For example, when the number of cells included in the cooperation group is 3, first, the priority is determined from 1 to 3, and then the transmission power of the cell with the priority 2 and the transmission power of the cell with the priority 3 Are fixed to the current values, and the transmission power of the cell having the priority of 1 is determined so that the communication characteristics are best within a predetermined range. Then, the transmission power of the cell with priority 1 is fixed to the value after determination, the transmission power of the cell with priority 3 is fixed to the current value, and the transmission power of the cell with priority 2 is in a predetermined range. The communication characteristics are determined to be the best. Finally, with the transmission power of the cell with priority 1 and the transmission power of the cell with priority 2 fixed to the determined values, the transmission power of the cell with priority 3 is within a predetermined range. The communication characteristics are determined to be the best. This is the same even when the number of cells included in the cooperation group is four or more.
 また、制御する無線パラメータが送信電力であったが、アンテナチルト角やアンテナ方位角、ハンドオーバパラメータなど、他の無線パラメータであってもよい。さらに、変更する無線パラメータとして、送信電力という1種類の無線パラメータを変更する例であったが、変更対象となる無線パラメータが2種類以上の組み合せであってもよい。また、通信特性の予測としてスループットの予測を行ったが、トラフィック負荷、SINRなどの信号対雑音干渉比など、他の通信特性を予測するようにしても良い。更に、今回は下位5%のスループットを例示したが、他の値とするようにしても良い。例えば下位3%等としても良いし、影響セルに接続する全てのUE40の平均値や中央値を用いるようにしても良い。 Further, although the radio parameter to be controlled is transmission power, other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used. Furthermore, although one type of wireless parameter called transmission power is changed as the wireless parameter to be changed, the wireless parameter to be changed may be a combination of two or more types. Further, although the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted. Furthermore, although the lower 5% throughput is illustrated this time, other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
 実施例2では、それぞれセルの無線パラメータ候補値の組み合わせ全てにおける通信特性を予測するため、複数のセルが連携して無線パラメータ変更を行うことによる通信特性の改善効果を大きくすることができる。 In the second embodiment, the communication characteristics in all combinations of the wireless parameter candidate values of each cell are predicted, so that the effect of improving the communication characteristics by changing the wireless parameters in cooperation with a plurality of cells can be increased.
 実施例2では、連携グループ内の複数のセルに対して、無線パラメータを1セルずつ順番に決定することにより、無線パラメータの変更効果を保ちつつ、通信特性の予測に伴う計算量を削減することができる。 In the second embodiment, for a plurality of cells in a cooperation group, wireless parameters are sequentially determined one cell at a time, thereby reducing the amount of calculation associated with prediction of communication characteristics while maintaining the effect of changing wireless parameters. Can do.
 実施例1、2では各セルの無線パラメータを一回の判断で一度に決定したが、実施例3では、これらとは異なり、一回の判断で変更する変更幅を予め決定しておき、複数のセルの無線パラメータを順々に少しずつ変えることを繰り返しながら無線パラメータを決定する。 In the first and second embodiments, the radio parameters of each cell are determined at one time by a single determination. However, in the third embodiment, unlike these, a change width to be changed by a single determination is determined in advance, and a plurality of parameters are determined. The radio parameters are determined while repeating the radio parameters of the cells one after another.
 実施例3でも、実施例1及び2と同様に、図5に表されているセルの配置例を用いて説明を行う。すなわち、実施例1と同様に、1つのマクロセル(31)と2つのピコセル(ピコセル32及びピコセル33)が存在し、連携グループに含まれるセルは、2つのピコセル(ピコセル32及びピコセル33)のみである場合を例に取る。 Example 3 will also be described using the cell arrangement example shown in FIG. 5, as in Examples 1 and 2. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
 また、変更する無線パラメータを送信電力、予測する通信特性をユーザスループットとする点、及び、送信電力はそれぞれのピコセルにおいて36~30dBmまで1dBm刻みで変更できる点についても実施例1及び2と同様とする。 The same as in the first and second embodiments, in that the wireless parameter to be changed is transmission power, the predicted communication characteristic is user throughput, and the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell. To do.
 次に、実施例3における通信特性の予測方法について、図8を参照して説明する。実施例3では、実施例2と同様に、連携グループ内の複数のセルの中から、1セルずつ順番に送信電力を決定する。そのため、実施例3においても、送信電力を決定するセルの順番から決定する。 Next, a method for predicting communication characteristics in the third embodiment will be described with reference to FIG. In the third embodiment, similarly to the second embodiment, transmission power is determined for each cell in order from a plurality of cells in the cooperation group. Therefore, also in Example 3, it determines from the order of the cell which determines transmission power.
 セルの順番の決定方法の具体例としては、例えば、トラフィック負荷が高いセルから送信電力を決定する方法、呼の異常切断率が高いセルから決定する方法、実効的なスケジューリングユーザ数が大きいセルから決定する方法などが考えられる。つまり、無線パラメータを変更することによる影響度が大きいセルや、通信特性が悪いセルなどを順位の早いセルとする。 Specific examples of the cell order determination method include, for example, a method of determining transmission power from a cell with a high traffic load, a method of determining from a cell with a high abnormal call disconnection rate, and a cell with a large number of effective scheduling users. The method of determining can be considered. That is, a cell having a large influence due to a change in radio parameters, a cell having poor communication characteristics, or the like is regarded as a cell having a high rank.
 例えば、トラフィック負荷の高低で送信電力決定の順序を判断する方法を採用するとする、この場合には、ピコセル32のトラフィック負荷が60%、ピコセル33のトラフィック負荷が70%であるとすると、トラフィック負荷が高いセルであるピコセル33から送信電力の決定を開始する。 For example, it is assumed that a method of determining the order of transmission power determination based on the level of traffic load is adopted. In this case, assuming that the traffic load of the pico cell 32 is 60% and the traffic load of the pico cell 33 is 70%, the traffic load The determination of transmission power is started from the pico cell 33 which is a high cell.
 実施例3では、送信電力を一度に変更する変更幅を1dBmとする。まず、ピコセル32の送信電力を36dBmに固定する一方で、ピコセル33の送信電力を36dBmのままにした場合と、ピコセル33の送信電力を35dBmに変更した場合で、双方の影響セルに接続するUE40における5%スループットを予測する。この場合、36/36:3.3Mbps、36/35:3.5dBmとなるので、ピコセル33の送信電力を35dBmに仮決定する。 In Example 3, the change width for changing the transmission power at a time is 1 dBm. First, while the transmission power of the pico cell 32 is fixed to 36 dBm, the UE 40 that is connected to both affected cells when the transmission power of the pico cell 33 remains 36 dBm and when the transmission power of the pico cell 33 is changed to 35 dBm. Predict 5% throughput. In this case, since 36/36: 3.3 Mbps and 36/35: 3.5 dBm, the transmission power of the pico cell 33 is provisionally determined to be 35 dBm.
 次に、ピコセル33の送信電力を35dBmに固定する一方で、ピコセル32の送信電力を36dBmのままにした場合と、ピコセル32の送信電力を35dBmに変更した場合で、双方の影響セルに接続するUE40における5%スループットを予測する。この場合、36/35:3.5Mbps、35/35:3.6dBmとなるので、ピコセル32の送信電力を35dBmに仮決定する。 Next, the transmission power of the pico cell 33 is fixed to 35 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm, and the transmission power of the pico cell 32 is changed to 35 dBm, and both the affected cells are connected. Predict 5% throughput at UE40. In this case, since 36/35: 3.5 Mbps and 35/35: 3.6 dBm, the transmission power of the pico cell 32 is provisionally determined to be 35 dBm.
 このように、本実施例においては予め決定しておいた変更幅の範囲内での仮決定を、変更対象のセルを変えながら繰り返し行うことにより、決定する無線パラメータの探索を行う。そして、このような仮決定の繰り返しによる探索を、所定の終了条件を満たすまで行う。そして、所定の終了条件を満たしたセルについては終了条件を満たす前に仮決定した値により本決定を行うことにより無線パラメータを確定させ、探索を終了する。本決定が行われたセルはその後の探索の対象から除外する。 In this way, in this embodiment, the wireless parameter to be determined is searched by repeatedly making a temporary determination within the range of the predetermined change width while changing the cell to be changed. A search by repeating such provisional determination is performed until a predetermined end condition is satisfied. Then, for a cell that satisfies a predetermined termination condition, the radio parameter is determined by performing this determination based on a value provisionally determined before the termination condition is satisfied, and the search is terminated. The cell in which this determination has been made is excluded from the subsequent search targets.
 ここで、例えば、以下のような第1の終了条件例のような条件を所定の終了条件とすることができる。 Here, for example, a condition such as the following first end condition example can be set as the predetermined end condition.
 ここで、第1の終了条件例では、或るセルにおいて予め決定しておいた変更幅の範囲内で送信電力を変更したとしても、変更後の通信特性が全く改善しなくなった場合に、この或るセルについては終了条件を満たしたものと判断する。本例においては通信特性として5%スループットという指標を用いているので、変更後の5%スループットが変更前の5%スループットに対して全く改善しなくなった場合に、この或るセルについては終了条件を満たしたものと判断する。そして、この或るセルについては終了条件を満たす前に仮決定した値に送信電力を本決定し、今後の探索の対象からこの或るセルを除外する。除外されたこの或るセルの送信電力を本決定した送信電力で固定した状態で、探索の対象から除外されたこの或るセル以外のセルで探索を続行する。そして最終的に、全てのセルについて、予め決定しておいた変更幅の範囲内で送信電力を変更したとしても、5%スループットという指標について改善が得られなくなった場合に全てのセルについて終了条件を満たしたものと判断する。そして、終了条件を満たす前に仮決定した値に送信電力を本決定し、探索を終了する。 Here, in the first end condition example, even when the transmission power is changed within the range of the change width determined in advance in a certain cell, the communication characteristics after the change are not improved at all. It is determined that a certain cell satisfies the termination condition. In this example, since the index of 5% throughput is used as the communication characteristic, if the 5% throughput after the change is not improved at all with respect to the 5% throughput before the change, the termination condition is set for this certain cell. It is judged that For this certain cell, the transmission power is finally determined to a value provisionally determined before the termination condition is satisfied, and this certain cell is excluded from future search targets. The search is continued in a cell other than the certain cell excluded from the search target in a state where the transmission power of the excluded certain cell is fixed at the determined transmission power. And finally, even if the transmission power is changed within a predetermined range of change for all the cells, if no improvement can be obtained for the indicator of 5% throughput, the end condition for all the cells It is judged that Then, the transmission power is finally determined to a value provisionally determined before the termination condition is satisfied, and the search is terminated.
 上記の終了条件を今回の例にあてはめると、ピコセル33の送信電力を34dBmまで仮決定した後に、ピコセル32の送信電力を変更した場合の通信スループットを予測する。すなわち、ピコセル32の送信電力は35dBmまで仮決定されているので、ピコセル32送信電力を34dBmまで下げた場合の通信スループットを予測する。すると、35/34:3.8Mbps、34/34:3.7dBmとなることから予め決定しておいた変更幅の範囲内である1dBm下げたとしても5%スループットという指標についての改善が得られなくなる。そこで、ピコセル32に関しては終了条件を満たしたと判断でき、ピコセル32に関しては終了条件を満たす前に仮決定した35dBmに送信電力を本決定する。そして、ピコセル32は以後の探索の対象から除外される。 When the above termination condition is applied to this example, the communication throughput when the transmission power of the pico cell 32 is changed after the transmission power of the pico cell 33 is provisionally determined to 34 dBm is predicted. That is, since the transmission power of the pico cell 32 is provisionally determined up to 35 dBm, the communication throughput when the pico cell 32 transmission power is reduced to 34 dBm is predicted. As a result, 35/34: 3.8 Mbps and 34/34: 3.7 dBm are obtained, so even if 1 dBm, which is within the predetermined range of change, is lowered, an improvement is obtained for the 5% throughput index. Disappear. Therefore, it can be determined that the termination condition is satisfied for the pico cell 32, and the transmission power is determined to 35 dBm temporarily determined before the termination condition is satisfied for the pico cell 32. Then, the pico cell 32 is excluded from the target of the subsequent search.
 続いて、ピコセル32の送信電力を35dBmに決定してから、ピコセル33について探索を継続すると、ピコセル33の送信電力は34dBmまで仮決定されているので、ピコセル33送信電力を33dBmまで下げた場合の通信スループットを予測する。すると、35/34:3.8Mbps、35/33:3.6dBmとなることから予め決定しておいた変更幅の範囲内である1dBm下げたとしても、5%スループットという指標についての改善が得られなくなる。そこで、ピコセル33に関しても終了条件を満たしたと判断でき、ピコセル33に関しては終了条件を満たす前に仮決定した34dBmに送信電力を本決定する。 Subsequently, if the transmission power of the pico cell 32 is determined to 35 dBm and then the search for the pico cell 33 is continued, the transmission power of the pico cell 33 is provisionally determined to 34 dBm, and therefore the pico cell 33 transmission power is reduced to 33 dBm. Predict communication throughput. As a result, 35/34: 3.8 Mbps and 35/33: 3.6 dBm are obtained, so even if the dBm is reduced within the predetermined range of change, an improvement on the 5% throughput index is obtained. It becomes impossible. Therefore, it can be determined that the termination condition is also satisfied for the pico cell 33, and the transmission power is determined to 34 dBm temporarily determined for the pico cell 33 before the termination condition is satisfied.
 なお、仮にピコセル33送信電力を33dBmまで下げた場合に5%スループットという指標についての改善が得られるような場合を考える。この場合にはピコセル32は既に探索の対象から除外されているので、再度ピコセル33を対象として探索が行われる。すなわち、ピコセル33の送信電力を32dBmまで下げた場合に5%スループットという指標についての改善が得られるか否かが判断される。そして、ピコセル33が終了条件を満たすまで探索が継続される。 Note that a case is considered in which an improvement of the 5% throughput index is obtained if the picocell 33 transmission power is reduced to 33 dBm. In this case, since the pico cell 32 has already been excluded from the search target, the search is performed again for the pico cell 33. That is, it is determined whether or not an improvement of the 5% throughput index can be obtained when the transmission power of the pico cell 33 is reduced to 32 dBm. The search is continued until the picocell 33 satisfies the end condition.
 また、上述の説明では、或るセルにおいて予め決定しておいた変更幅の範囲内で送信電力を変更したとしても、変更後の通信特性が全く改善しなくなった場合に、この或るセルについては終了条件を満たしたものと判断していた。これを変形して、変更後の通信特性が変更前の通信特性に比べて所定の値以上改善しなくなった場合に、終了条件を満たしたものと判断するようにしても良い。本例でいえば予め決定しておいた変更幅の範囲内である1dBm下げたとしても、5%スループットという指標が、例えば0.2Mbps以上向上しないのであれば終了条件を満たしたものと判断するようにしても良い。例えば、変更前の5%スループットが3.5mMbpsであったとすると、変更後の5%スループットが3.7mMbpsであれば、0.2Mbps以上向上しているので終了条件を満たさない。一方で、変更後の5%スループットが3.6mMbpsであれば、0.2Mbps以上向上していないので終了条件を満たすこととなる。 Further, in the above description, even if the transmission power is changed within the range of the change width determined in advance in a certain cell, the communication characteristics after the change are not improved at all. Judged that the termination condition was satisfied. By modifying this, it may be determined that the end condition is satisfied when the communication characteristic after the change is no longer improved by a predetermined value or more compared to the communication characteristic before the change. In this example, if the 5% throughput index does not improve by, for example, 0.2 Mbps or more even if the dBm is reduced within the predetermined change range, it is determined that the termination condition is satisfied. You may do it. For example, if the 5% throughput before the change is 3.5 mMbps, if the 5% throughput after the change is 3.7 mMbps, the end condition is not satisfied because the improvement is 0.2 Mbps or more. On the other hand, if the 5% throughput after the change is 3.6 mM bps, the end condition is satisfied because it has not improved by 0.2 Mbps or more.
 また、他の変形として、変更後の通信特性が変更前の通信特性に比べて所定の割合以上改善しなくなった場合に、終了条件を満たしたものと判断するようにしても良い。すなわち所定の改善率を設定しておきこの改善率以上改善しなくなった場合に、終了条件を満たしたものと判断するようにしても良い。本例でいえば予め決定しておいた変更幅の範囲内である1dBm下げたとしても、5%スループットという指標の改善率が、5%以上向上しないのであれば終了条件を満たしたものと判断するようにしても良い。例えば、変更前の5%スループットが3.5mMbpsであったとすると、変更後の5%スループットが3.7mMbpsであれば、改善率は5.7%なので終了条件を満たさない。一方で、変更後の5%スループットが3.6mMbpsであれば、改善率は2.8%なので終了条件を満たすこととなる。 As another modification, it may be determined that the termination condition is satisfied when the communication characteristic after the change does not improve more than a predetermined ratio compared to the communication characteristic before the change. That is, a predetermined improvement rate may be set, and when the improvement does not improve more than this improvement rate, it may be determined that the end condition is satisfied. In this example, if the improvement rate of the 5% throughput index does not increase by 5% or more even if the dBm is reduced within the predetermined range of change, it is determined that the termination condition is satisfied. You may make it do. For example, if the 5% throughput before the change is 3.5 mMbps, the improvement rate is 5.7% if the 5% throughput after the change is 3.7 mMbps, so the termination condition is not satisfied. On the other hand, if the 5% throughput after the change is 3.6 mM bps, the improvement rate is 2.8%, which satisfies the termination condition.
 なお、終了条件としては、上述した第1の終了条件例の他にも多くの終了条件例が考えられる。例えば、少なくとも1つのセルにおいて送信電力変更に対して5%スループットという指標についての改善が得られなくなった時点で、全てのセルに関して終了条件を満たしたと判断するような第2の終了条件例が考えられる。本例では、少なくとも1つのセルにおいて送信電力変更に対して5%スループットという指標についての改善が得られなくなった時点で、全てのセルについて終了条件を満たす前の送信電力に本決定し、全てのセルについての探索を終了する。 In addition to the first end condition example described above, many end condition examples can be considered as the end condition. For example, a second end condition example may be considered in which it is determined that the end condition is satisfied for all cells when improvement in the index of 5% throughput is not obtained for at least one cell with respect to transmission power change. It is done. In this example, at the time when improvement in the index of 5% throughput cannot be obtained for at least one cell with respect to the transmission power change, the main transmission power before the termination condition is determined for all the cells, The search for the cell is terminated.
 また他の終了条件例としては、或るセルの送信電力の変更に対して5%スループットという指標についての改善が得られなくなった場合、この或るセルの送信電力を当該変更前の送信電力に固定した状態で探索を続行する。そして、この或るセル以外の少なくとも一つのセルにおいて5%スループットという指標についての改善が得られるのであれば、この少なくとも一つのセルにおいて改善が得られた送信電力条件を基点として、上記の或るセルを含めた全てのセルで探索を続行し、最終的に全てのセルに対して改善が得られなくなった場合に終了条件を満たしたと判断する。最後に、全てのセルにおいて終了条件を満たす直前の送信電力に本決定し、探索を終了する方法が第3の終了条件例として挙げられる。 As another example of the end condition, when the improvement of the index of 5% throughput cannot be obtained with respect to the change of the transmission power of a certain cell, the transmission power of the certain cell is changed to the transmission power before the change. Continue the search in a fixed state. Then, if an improvement in the index of 5% throughput can be obtained in at least one cell other than the certain cell, the above-mentioned certain amount is based on the transmission power condition in which the improvement is obtained in the at least one cell. The search is continued in all the cells including the cell, and it is determined that the termination condition is satisfied when no improvement is finally obtained for all the cells. Finally, a method of finally determining the transmission power immediately before the end condition in all cells and ending the search is given as a third example of the end condition.
 更には、5%スループットという指標についての改善が得られなくなるか否かにかかわらず、全てのピコセルの送信電力の下限値まで探索を続け、その中で5%スループットという指標が最も高くなる組み合わせに送信電力に決定する、という第4の終了条件例も例示できる。これを、セルを循環的に切り替えながら繰り返す。 Furthermore, regardless of whether or not improvement about the 5% throughput index can no longer be obtained, the search continues to the lower limit value of the transmission power of all picocells, and among them, the combination with the highest 5% throughput index A fourth end condition example in which transmission power is determined can also be exemplified. This is repeated while switching the cells cyclically.
 なお、実施例3では、連携グループ内のセル数が2の場合で説明したが、3以上場合においても同様に無線パラメータの決定ができる。 In the third embodiment, the case where the number of cells in the cooperation group is 2 has been described. However, the wireless parameter can be similarly determined when the number of cells is 3 or more.
 例えば、連携グループに含まれるセルの数が3である場合には、まず、優先順位を1から3まで決定し、それから優先順位が2のセルの送信電力と優先順位が3のセルの送信電力とをそれぞれ現在値に固定した状態で、優先順位が1のセルの送信電力を所定の範囲内で通信特性が最も良くなるように仮決定する。それから優先順位が1のセルの送信電力を仮決定後の値に固定し、優先順位が3のセルの送信電力を現在値に固定した状態で、優先順位が2のセルの送信電力を所定の範囲内で通信特性が最も良くなるように仮決定する。次に、優先順位が1のセルの送信電力と優先順位が2のセルの送信電力とをそれぞれ仮決定後の値に固定した状態で、優先順位が3のセルの送信電力を所定の範囲内で通信特性が最も良くなるように仮決定する。 For example, when the number of cells included in the cooperation group is 3, first, the priority is determined from 1 to 3, and then the transmission power of the cell with the priority 2 and the transmission power of the cell with the priority 3 Are fixed at the current values, and the transmission power of the cell having the priority of 1 is provisionally determined so that the communication characteristics are best within a predetermined range. Then, the transmission power of the cell with priority 1 is fixed to the value after provisional determination, the transmission power of the cell with priority 3 is fixed to the current value, and the transmission power of the cell with priority 2 is set to a predetermined value. Temporary determination is made so that the communication characteristics become the best within the range. Next, with the transmission power of the cell with priority 1 and the transmission power of the cell with priority 2 fixed to the values after provisional determination, the transmission power of the cell with priority 3 is within a predetermined range. The provisional determination is made so that the communication characteristics are the best.
 上記の動作を一般には、複数回繰り返す。繰り返しの終了条件は、上述したとおりである。また、上記の所定の範囲を、通常は、実施例2の所定の範囲よりも狭くするが、必ずしもそうする必要はない。 The above operation is generally repeated several times. The repetition end condition is as described above. Moreover, although the said predetermined range is usually made narrower than the predetermined range of Example 2, it does not necessarily need to do so.
 これは、連携グループに含まれるセル数が4以上になった場合でも同様である。 This is the same even when the number of cells included in the cooperation group becomes 4 or more.
 また、制御する無線パラメータが送信電力であったが、アンテナチルト角やアンテナ方位角、ハンドオーバパラメータなど、他の無線パラメータであってもよい。さらに、変更する無線パラメータとして、送信電力という1種類の無線パラメータを変更する例であったが、変更対象となる無線パラメータが2種類以上の組み合せであってもよい。また、通信特性の予測としてスループットの予測を行ったが、トラフィック負荷、SINRなどの信号対雑音干渉比など、他の通信特性を予測するようにしても良い。更に、今回は下位5%のスループットを検討したが、5%はあくまで例示に過ぎず、他の値とするようにしても良い。例えば下位3%等としても良いし、影響セルに接続する全てのUE40の平均値や中央値を用いるようにしても良い。また、一度に変更する変更幅を1dBmとしたが、他の変更幅でも同様に適用可能である。 Further, although the radio parameter to be controlled is transmission power, other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used. Furthermore, although one type of wireless parameter called transmission power is changed as the wireless parameter to be changed, the wireless parameter to be changed may be a combination of two or more types. Further, although the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted. Furthermore, although the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used. Further, although the change width to be changed at a time is 1 dBm, other change widths can be similarly applied.
 また、上記の例では、送信電力を下げると改善効果が見込めるという前提のもとに、送信電力を1dBm下げた場合のスループットという指標についての改善を見ている。しかし、送信電力を上げた場合に改善効果が出る可能性があるのであれば、送信電力を1dBm下げた場合のスループットという指標についての改善効果の他に、送信電力を1dBm上げた場合の改善効果も見る。このような場合には、送信電力を変えない場合と1dBm下げた場合と1dBm上げた場合の3つの場合のスループットを比較して、5%スループットという指標についての改善が得られる方向に送信電力を変更する。 Also, in the above example, on the premise that an improvement effect can be expected when the transmission power is lowered, an improvement in the index of throughput when the transmission power is lowered by 1 dBm is observed. However, if there is a possibility of an improvement effect when the transmission power is increased, an improvement effect when the transmission power is increased by 1 dBm in addition to the improvement effect regarding the throughput when the transmission power is reduced by 1 dBm. See also. In such a case, the transmission power is set in a direction in which improvement in the index of 5% throughput is obtained by comparing the throughput in the three cases of the case where the transmission power is not changed, the case where the transmission power is lowered by 1 dBm, and the case where the transmission power is increased by 1 dBm. change.
 実施例3では、一度に変更する変更幅を予め決定しておき、複数のセルの無線パラメータを少しずつ変えながら送信電力を決定する。このような決定方法は、特に無線パラメータの上限値と下限値の差が大きいような場合に有効である。 In the third embodiment, a change width to be changed at a time is determined in advance, and transmission power is determined while gradually changing radio parameters of a plurality of cells. Such a determination method is particularly effective when the difference between the upper limit value and the lower limit value of the radio parameter is large.
 実施例4では、実施例2及び実施例3と同様に、連携グループ内の複数のセルに対して、無線パラメータを1セルずつ順番に予測することにより、通信特性を予測する組み合わせ数を限定する。もっとも、実施例4は実施例2及び3と比べて、無線パラメータを決定するセルの順序を複数の観点から考慮する。 In the fourth embodiment, as in the second and third embodiments, the number of combinations for predicting the communication characteristics is limited by sequentially predicting the radio parameters one cell at a time for a plurality of cells in the cooperation group. . However, compared to the second and third embodiments, the fourth embodiment considers the order of cells for determining radio parameters from a plurality of viewpoints.
 実施例2及び3では、連携グループ内のセルの無線パラメータを決定する際、例えばセルのトラフィック負荷を基に最初に無線パラメータを決定するセルを決定していた。つまり、ひとつの順序を決定し、このひとつの順序のみに基づいて通信特性を予測していた。 In the second and third embodiments, when determining the radio parameters of the cells in the cooperation group, for example, the cell for which the radio parameters are determined first is determined based on the traffic load of the cell. That is, one order is determined, and communication characteristics are predicted based on only this one order.
 しかし、実施例4では、複数の決定順序において通信特性を予測する点で相違する。そして、実施例4ではこの複数の決定順序による複数の予測結果に基づいて、通信特性の改善が最も大きくなる無線パラメータに決定する。 However, the fourth embodiment is different in that communication characteristics are predicted in a plurality of determination orders. In the fourth embodiment, based on a plurality of prediction results based on the plurality of determination orders, a wireless parameter that provides the greatest improvement in communication characteristics is determined.
 なお、実施例4でも、実施例1~3と同様に、図5に示すセルの配置例を用いて説明を行う。すなわち、実施例1と同様に、1つのマクロセル(31)と2つのピコセル(ピコセル32及びピコセル33)が存在し、連携グループに含まれるセルは、2つのピコセル(ピコセル32及びピコセル33)のみである場合を例に取る。 In the fourth embodiment, the description will be made using the cell arrangement example shown in FIG. 5 as in the first to third embodiments. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and the cells included in the cooperation group are only two pico cells (pico cell 32 and pico cell 33). Take a case as an example.
 また、変更する無線パラメータを送信電力、予測する通信特性をユーザスループットとする点、及び、送信電力はそれぞれのピコセルにおいて36~30dBmまで1dBm刻みで変更できる点についても実施例1~3と同様とする。 The same as in the first to third embodiments, in that the wireless parameter to be changed is transmission power, the predicted communication characteristic is user throughput, and the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell. To do.
 次に、実施例4における通信特性の予測方法について、図9を参照して説明する。 Next, a communication characteristic prediction method according to the fourth embodiment will be described with reference to FIG.
 実施例4では、ピコセル32→ピコセル33の順番で送信電力を決定した場合と、ピコセル33→ピコセル32の順番で送信電力を決定した場合との、それぞれに対して、実施例2と同様に各セルの送信電力を一度に決定するという処理を行う。すなわち、実施例4では、複数の決定順序において、それぞれ通信特性を予測し、その通信特性に基づいて送信電力を決定する。複数の決定順序にそれぞれ対応する複数の送信電力が得られる。得られた複数の送信電力にそれぞれ対応する、予測された複数の通信特性を比較し、優れている方の通信特性に対応する送信電力を選択する。 In the fourth embodiment, the transmission power is determined in the order of the pico cell 32 → the pico cell 33 and the transmission power is determined in the order of the pico cell 33 → the pico cell 32, respectively, as in the second embodiment. A process of determining the transmission power of a cell at a time is performed. That is, in the fourth embodiment, communication characteristics are predicted in a plurality of determination orders, and transmission power is determined based on the communication characteristics. A plurality of transmission powers respectively corresponding to a plurality of determination orders are obtained. The plurality of predicted communication characteristics respectively corresponding to the obtained plurality of transmission powers are compared, and the transmission power corresponding to the communication characteristic that is superior is selected.
 この例では、ピコセル32→ピコセル33の順番の場合では、まず、ピコセル33の送信電力を36dBmで固定する一方で、ピコセル32の送信電力を36dBmのままにした場合と、ピコセル32の送信電力を30dBmまで1dBm刻みで変更した各場合で、影響セルに接続する全てのUE40における5%スループットを予測する。その結果、35/36:3.5Mbpsが得られる。その後、ピコセル32の送信電力を35dBmで固定する一方で、ピコセル33の送信電力を36dBmのままにした場合と、ピコセル33の送信電力を30dBmまで1dBm刻みで変更した各場合で、影響セルに接続する全てのUE40における5%スループットを予測する。その結果、35/30:4.2Mbpsが最大の予測スループットとして得られる。 In this example, in the case of the order of the pico cell 32 → the pico cell 33, first, the transmission power of the pico cell 33 is fixed at 36 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm. In each case where the change is made in increments of 1 dBm up to 30 dBm, 5% throughput in all UEs 40 connected to the affected cell is predicted. As a result, 35/36: 3.5 Mbps is obtained. After that, the transmission power of the pico cell 32 is fixed at 35 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the case where the transmission power of the pico cell 33 is changed to 30 dBm in 1 dBm increments is connected to the affected cell. Predict 5% throughput for all UEs 40 that do. As a result, 35/30: 4.2 Mbps is obtained as the maximum predicted throughput.
 一方で、ピコセル33→ピコセル32の順番では、ピコセル32の送信電力を36dBmで固定する一方で、ピコセル33の送信電力を36dBmのままにした場合と、ピコセル33の送信電力を30dBmまで1dBm刻みで変更した各場合で、双方の影響セルに接続する全てのUE40における5%スループットを予測する。その結果、36/35:3.8Mbpsが得られる。その後、ピコセル33の送信電力を35dBmで固定する一方で、ピコセル32の送信電力を36dBmのままにした場合と、ピコセル32の送信電力を30dBmまで1dBm刻みで変更した各場合で、影響セルに接続する全てのUE40における5%スループットを予測する。その結果、35/35:3.9Mbpsが最大の予測スループットとして得られる。 On the other hand, in the order of the pico cell 33 → the pico cell 32, the transmission power of the pico cell 32 is fixed at 36 dBm, while the transmission power of the pico cell 33 is kept at 36 dBm, and the transmission power of the pico cell 33 is increased by 1 dBm to 30 dBm. In each changed case, 5% throughput is predicted for all UEs 40 connected to both affected cells. As a result, 36/35: 3.8 Mbps is obtained. After that, the transmission power of the pico cell 33 is fixed at 35 dBm, while the transmission power of the pico cell 32 is kept at 36 dBm, and the case where the transmission power of the pico cell 32 is changed to 30 dBm in 1 dBm increments is connected to the affected cell. Predict 5% throughput for all UEs 40 that do. As a result, 35/35: 3.9 Mbps is obtained as the maximum predicted throughput.
 従って、ピコセル32→ピコセル33の順番で変更した場合の35/30:4.2Mbpsと、ピコセル33→ピコセル32の順番で変更した場合の35/35:3.9Mbpsとの比較より明らかなように、ピコセル32→ピコセル33の順番で変更した場合のほうが、ピコセル33→ピコセル32の順番で変更した場合よりも、5%スループットという指標についての改善が大きい。そのため、ピコセル32及びピコセル33の送信電力は、35/30(ピコセル32:35dBm、ピコセル33:30dBm)と決定される。 Therefore, it is clear from the comparison between 35/30: 4.2 Mbps when changing in the order of picocell 32 → picocell 33 and 35/35: 3.9 Mbps when changing in order of picocell 33 → picocell 32. When the change is made in the order of the pico cell 32 → the pico cell 33, the improvement of the index of 5% throughput is larger than when the change is made in the order of the pico cell 33 → the pico cell 32. Therefore, the transmission power of the pico cell 32 and the pico cell 33 is determined to be 35/30 (pico cell 32: 35 dBm, pico cell 33:30 dBm).
 なお、実施例4では、連携グループ内のセル数が2の場合で説明したが、3以上場合においても同様に無線パラメータの決定ができる。 In the fourth embodiment, the case where the number of cells in the cooperation group is 2 has been described. However, the wireless parameter can be similarly determined when the number of cells is 3 or more.
 例えば、連携グループに第1のピコセル、第2のピコセル及び第3のピコセルという3つのセルが含まれている場合には、第1のピコセル→第2のピコセル→第3のピコセルという第1の順番で変更した場合の通信特性の予測値と、第1のピコセル→第3のピコセル→第2のピコセルという第2の順番で変更した場合の通信特性の予測値と、第2のピコセル→第1のピコセル→第3のピコセルという第3の順番で変更した場合の通信特性の予測値と、第2のピコセル→第3のピコセル→第1のピコセルという第4の順番で変更した場合の通信特性の予測値と、第3のピコセル→第1のピコセル→第2のピコセルという第5の順番で変更した場合の通信特性の予測値と、第3のピコセル→第2のピコセル→第1のピコセルという第6の順番で変更した場合の通信特性の予測値との6つの予測値を比較し、もっとも通信特性の改善が大きいものを選択して決定する。 For example, if the cooperation group includes three cells, a first pico cell, a second pico cell, and a third pico cell, the first pico cell → the second pico cell → the third pico cell The predicted value of the communication characteristics when changed in order, the predicted value of the communication characteristics when changed in the second order of the first picocell → the third picocell → the second picocell, and the second picocell → the second Predicted value of communication characteristics when changed in the third order of 1 picocell → third picocell, and communication when changed in the fourth order of second picocell → third picocell → first picocell The predicted value of the characteristics, the predicted value of the communication characteristics when the third picocell → the first picocell → the second picocell is changed in the fifth order, and the third picocell → the second picocell → the first In the sixth order called Picocell Further the comparison six predicted value and the predicted value of the communication characteristic of the case, to determine and select the ones improvement in most communication characteristics is large.
 これは、連携グループに含まれるセル数が4以上になった場合でも同様である。 This is the same even when the number of cells included in the cooperation group becomes 4 or more.
 また、制御する無線パラメータが送信電力であったが、アンテナチルト角やアンテナ方位角、ハンドオーバパラメータなど、他の無線パラメータであってもよい。さらに、変更する無線パラメータとして、送信電力という1種類の無線パラメータを変更する例であったが、変更対象となる無線パラメータが2種類以上の組み合せであってもよい。また、通信特性の予測としてスループットの予測を行ったが、トラフィック負荷、SINRなどの信号対雑音干渉比など、他の通信特性を予測するようにしても良い。更に、今回は下位5%のスループットを検討したが、5%はあくまで例示に過ぎず、他の値とするようにしても良い。例えば下位3%等としても良いし、影響セルに接続する全てのUE40の平均値や中央値を用いるようにしても良い。 Further, although the radio parameter to be controlled is transmission power, other radio parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used. Furthermore, although one type of wireless parameter called transmission power is changed as the wireless parameter to be changed, the wireless parameter to be changed may be a combination of two or more types. Further, although the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted. Furthermore, although the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used.
 加えて、今回の説明では実施例4を、実施例2(各セルの無線パラメータを一度に決定する方法)の変形例として実現したが、実施例3(複数のセルの無線パラメータを少しずつ変えながら無線パラメータを決定する方法)の変形例として実施例4を実現しても良い。また、仮に実施例3の変形例として実現する場合には、一度に変更する変更幅を任意の値に定めて良い。また、実施例2と実施例3を混在させ、これらにより得られる5%スループットという指標についての改善を比較してもよい。 In addition, in this explanation, the fourth embodiment is realized as a modification of the second embodiment (method for determining the radio parameters of each cell at a time), but the third embodiment (the radio parameters of a plurality of cells are changed little by little). However, the fourth embodiment may be realized as a modification of the method of determining the wireless parameter. Further, if it is realized as a modification of the third embodiment, the change width to be changed at a time may be set to an arbitrary value. Moreover, Example 2 and Example 3 may be mixed, and the improvement about the parameter | index of 5% throughput obtained by these may be compared.
 実施例4では、無線パラメータを決定するセルの順序を複数の観点から考慮できるため、実施例2及び3よりも計算量は多くなるが、無線パラメータの変更効果を大きくすることができる。特に、連携グループ内のセル同士が近接している場合など、大きく影響しあう環境においては効果が大きくできる。 In Example 4, since the order of cells for determining radio parameters can be considered from a plurality of viewpoints, the amount of calculation is larger than in Examples 2 and 3, but the effect of changing radio parameters can be increased. In particular, the effect can be increased in an environment where there is a great influence, such as when cells in a cooperation group are close to each other.
 以上より、実施形態1では、特性改善効果及び計算量が異なる様々な無線パラメータ変更方法が存在するため、状況に応じて最適な方法を選択することが可能である。 As described above, in the first embodiment, there are various wireless parameter changing methods having different characteristics improvement effects and different calculation amounts. Therefore, it is possible to select an optimal method according to the situation.
 また、実施形態1では、複数のセルの無線パラメータを通信特性の予測を基に求めた後、これら複数のセルの無線パラメータを一括して制御する。そのため、無線通信システム全体の制御に要する時間を短縮することができる。 Further, in the first embodiment, after obtaining the radio parameters of a plurality of cells based on the prediction of the communication characteristics, the radio parameters of the plurality of cells are collectively controlled. As a result, the time required for control of the entire wireless communication system can be shortened.
 上述の実施例1~実施例4は第1の実施形態に対応したものである。次に、第2の実施形態に対応した実施例である実施例5について説明する。 Example 1 to Example 4 described above correspond to the first embodiment. Next, Example 5 which is an example corresponding to the second embodiment will be described.
 実施形態1に対応する実施例1~4では、1つの制御タイミングで複数セルの無線パラメータを一括に制御していた。これに対し、実施形態2に対応する実施例5では、1つの制御タイミングで一度に変更するセルは連携グループh内で1つのみとする。そして、唯一つのセルの無線パラメータを実際に変更した後に無線品質情報及び通信品質情報を取得してから、次の制御タイミングで一つのセルの無線パラメータを実際に変更するといった処理を繰り返す。 In Examples 1 to 4 corresponding to Embodiment 1, the radio parameters of a plurality of cells are collectively controlled at one control timing. On the other hand, in Example 5 corresponding to Embodiment 2, only one cell in the cooperation group h is changed at a time at one control timing. Then, after actually changing the radio parameter of only one cell, the radio quality information and the communication quality information are acquired, and then the process of actually changing the radio parameter of one cell at the next control timing is repeated.
 実施例5でも、実施例1~4と同様に、図5に表されているセルの配置例を用いて説明を行う。すなわち、実施例1と同様に、1つのマクロセル(31)と2つのピコセル(ピコセル32及びピコセル33)が存在し、連携グループに含まれるセルは2つのピコセル(ピコセル32及びピコセル33)のみである場合を例に取る。 In the fifth embodiment, as in the first to fourth embodiments, description will be made using the cell arrangement example shown in FIG. That is, as in the first embodiment, there is one macro cell (31) and two pico cells (pico cell 32 and pico cell 33), and only two pico cells (pico cell 32 and pico cell 33) are included in the cooperation group. Take the case as an example.
 また、変更する無線パラメータを送信電力、予測する通信特性をユーザスループットとする点、及び、送信電力はそれぞれのピコセルにおいて36~30dBmまで1dBm刻みで変更できる点についても実施例1~4と同様とする。 In addition, the wireless power to be changed is transmission power, the predicted communication characteristic is user throughput, and the transmission power can be changed in increments of 1 dBm from 36 to 30 dBm in each picocell as in the first to fourth embodiments. To do.
 次に、実施例5における通信特性の予測方法について、図11を参照して説明する。実施例5では、以前の制御タイミングで無線パラメータを変更したセルや、変更しないことを決定したセルについては、無線パラメータ変更の候補から除外する方法を用いることとする。 Next, a communication characteristic prediction method according to the fifth embodiment will be described with reference to FIG. In the fifth embodiment, a method in which a cell whose radio parameter has been changed at a previous control timing or a cell that has been decided not to be changed is excluded from candidates for radio parameter change.
 つまり、2つのピコセルの送信電力を1セルずつ変更する。また、完了条件としては、制御グループ内にある全てのセルの無線パラメータの変更を完了することを用いるものとする。つまり、今回の例では2つのピコセルを対象としているので、最初の制御タイミングで何れか一方のピコセルの無線パラメータを変更する。そして、2回目の制御タイミングでは一回目の制御タイミングで無線パラメータを変更したピコセルを候補から除外し、変更を行っていない他方のピコセルの無線パラメータを変更する。そして、2回目の制御タイミングにて制御グループ内にある全てのセルの無線パラメータの変更を完了したこととなり、完了条件は満たされるので、次回は、再度最初の制御タイミングとして処理が行われることとなる。 That is, the transmission power of two pico cells is changed one cell at a time. Further, as the completion condition, it is used to complete the change of radio parameters of all cells in the control group. That is, in this example, since two pico cells are targeted, the radio parameter of one of the pico cells is changed at the first control timing. Then, at the second control timing, the pico cell whose radio parameter has been changed at the first control timing is excluded from the candidates, and the radio parameter of the other pico cell that has not been changed is changed. Then, the change of the radio parameters of all cells in the control group is completed at the second control timing, and the completion condition is satisfied, so that the next time, the process is performed again as the first control timing. Become.
 まず、ピコセル32及び33の送信電力をそれぞれ36~30dBmの範囲で1dBmの変更幅で変更したそれぞれの場合に対応する、影響セルに接続する全てのUE40における5%スループットを予測する。実施例5では、セルを1つずつ制御することが前提のため、送信電力の変更を想定するセル以外は、送信電力の変更はないものとする。まず、制御対象をセル33とする。従って、セル32の送信電力を36dBmに固定する。この場合、ピコセル33を35dBmとしたときに、5%スループットが3.7Mbpsで最大となる。従って、最初の制御タイミングでは、ピコセル33の送信電力を35dBmに変更する。 First, 5% throughput is predicted for all UEs 40 connected to the affected cell corresponding to each case where the transmission power of the pico cells 32 and 33 is changed within a range of 36 to 30 dBm with a change width of 1 dBm. In the fifth embodiment, since it is assumed that the cells are controlled one by one, it is assumed that there is no change in the transmission power except for the cell in which the transmission power is assumed to be changed. First, the control target is a cell 33. Therefore, the transmission power of the cell 32 is fixed at 36 dBm. In this case, when the pico cell 33 is set to 35 dBm, the 5% throughput is maximum at 3.7 Mbps. Therefore, at the first control timing, the transmission power of the pico cell 33 is changed to 35 dBm.
 次に、完了条件を満たすか否かを判定する。この場合、ピコセル32の送信電力の変更が行われていないため、次の制御タイミングでの無線パラメータ制御のために無線品質測定及び通信品質の測定及び無線パラメータ制御装置10への報告を行う。ここで、ピコセル32及びピコセル33に接続するUE40は無線品質測定を行い、ピコセル32及びピコセル33では、通信品質測定を行う。 Next, it is determined whether or not the completion condition is satisfied. In this case, since the transmission power of the pico cell 32 is not changed, radio quality measurement, communication quality measurement, and report to the radio parameter control apparatus 10 are performed for radio parameter control at the next control timing. Here, the UE 40 connected to the pico cell 32 and the pico cell 33 performs radio quality measurement, and the pico cell 32 and the pico cell 33 perform communication quality measurement.
 次に、測定した無線品質測定及び通信品質測定を使って、ピコセル32の無線パラメータの制御を行う。上記と同様に、影響セルに接続する全てのUE40における5%スループットを予測する。このとき、5%スループット予測に用いる無線品質情報及び通信品質情報は、上述のように、最初の制御タイミングで変更された送信電力の下で測定、更新された後の情報である。すなわち、セル32の送信電力が36dBmであり、セル33の送信電力が35dBmである時の無線品質情報及び通信品質情報を利用する。 Next, the radio parameters of the pico cell 32 are controlled using the measured radio quality measurement and communication quality measurement. Similar to the above, 5% throughput in all UEs 40 connected to the affected cell is predicted. At this time, the radio quality information and communication quality information used for 5% throughput prediction are information after being measured and updated under the transmission power changed at the initial control timing as described above. That is, the wireless quality information and the communication quality information when the transmission power of the cell 32 is 36 dBm and the transmission power of the cell 33 is 35 dBm are used.
 この例においては、2番目の制御タイミングで、ピコセル33の送信電力は35dBmとなっているため、これを基に5%スループットを予測する。このとき、ピコセル32の送信電力を35dBmに対応する5%スループットが最大値である3.8Mbpsを示すので、ピコセル32の送信電力を35dBmに変更する。従って、実施例5では、ピコセル32の送信電力が36dBmから35dBmに変更され、ピコセル33の送信電力が36dBmから35dBmに変更されることになる。 In this example, since the transmission power of the pico cell 33 is 35 dBm at the second control timing, a 5% throughput is predicted based on this. At this time, the transmission power of the pico cell 32 is changed to 35 dBm because the transmission power of the pico cell 32 is 3.8 Mbps, which is a maximum value of 5% throughput corresponding to 35 dBm. Therefore, in the fifth embodiment, the transmission power of the pico cell 32 is changed from 36 dBm to 35 dBm, and the transmission power of the pico cell 33 is changed from 36 dBm to 35 dBm.
 なお、実施例5では、連携グループ内のセル数が2の場合を例にとって説明をしたが、3以上場合においても同様に無線パラメータの決定ができる。 In the fifth embodiment, the case where the number of cells in the cooperation group is 2 has been described as an example. However, the wireless parameter can be similarly determined even when the number of cells is 3 or more.
 また、制御する無線パラメータが送信電力であったが、アンテナチルト角やアンテナ方位角、ハンドオーバパラメータなど、他の無線パラメータであってもよい。さらに、変更する無線パラメータとして、送信電力という1種類の無線パラメータを変更する例であったが、変更対象となる無線パラメータが2種類以上の組み合せであってもよい。また、通信特性の予測としてスループットの予測を行ったが、トラフィック負荷、SINRなどの信号対雑音干渉比など、他の通信特性を予測するようにしても良い。更に、今回は下位5%のスループットを検討したが、5%はあくまで例示に過ぎず、他の値とするようにしても良い。例えば下位3%等としても良いし、影響セルに接続する全てのUE40の平均値や中央値を用いるようにしても良い。また、上記では、連携グループ内の全てのセルに対して、通信特性の予測に基づいて最初に制御するセルを決定したが、例えばトラフィック負荷が最も高いセル、呼の異常切断率が高いセル、実効的なスケジューリングユーザ数が高いセルなどを選択してもよい。 Further, although the wireless parameter to be controlled is transmission power, other wireless parameters such as an antenna tilt angle, an antenna azimuth angle, and a handover parameter may be used. Furthermore, although one type of wireless parameter called transmission power is changed as the wireless parameter to be changed, the wireless parameter to be changed may be a combination of two or more types. Further, although the throughput is predicted as the prediction of the communication characteristics, other communication characteristics such as the traffic load and the signal-to-noise interference ratio such as SINR may be predicted. Furthermore, although the lower 5% throughput was examined this time, 5% is merely an example, and other values may be used. For example, the lower 3% may be used, or the average value or median value of all UEs 40 connected to the affected cell may be used. In the above, for all the cells in the cooperation group, the cell to be controlled first is determined based on the prediction of the communication characteristics. For example, the cell with the highest traffic load, the cell with the high abnormal disconnection rate of the call, A cell having a high effective number of scheduling users may be selected.
 なお、実施形態2では、ステップS103で決定した連携グループを複数の制御タイミングにわたって用いる形態を示したが、これは本実施形態の動作を限定する趣旨ではない。 In the second embodiment, the form in which the cooperation group determined in step S103 is used over a plurality of control timings is shown, but this is not intended to limit the operation of the present embodiment.
 例えば、連携グループ内にある1つのセルのパラメータが終了した後、変更後の通信品質情報に基づいて、再度連携グループを設定するようにしても良い。具体的には、連携グループ内にある1つのセルのパラメータが終了した後、変更後の通信品質情報を基に、制御するセルを更新(図3のステップS100に戻ることに相当)したり、UE40の無線品質情報を基に各セルの影響セルの設定を更新(図3のステップS101に戻ることに相当)した後に、連携グループを更新してもよい。 For example, after the parameter of one cell in the cooperation group is completed, the cooperation group may be set again based on the changed communication quality information. Specifically, after the parameters of one cell in the cooperation group are finished, based on the changed communication quality information, the cell to be controlled is updated (equivalent to returning to step S100 in FIG. 3), The cooperation group may be updated after the setting of the affected cell of each cell is updated based on the radio quality information of the UE 40 (corresponding to returning to step S101 in FIG. 3).
 実施形態2では、実施形態1と比較して制御に要する全体の時間が長くはなるが、無線パラメータ変更後の測定結果に基づいた制御が可能となるため、より的確な無線パラメータ制御が可能となる、という有利な効果を奏する、 In the second embodiment, the overall time required for control is longer than that in the first embodiment, but control based on the measurement result after changing the radio parameter is possible, and thus more accurate radio parameter control is possible. Has the advantageous effect of becoming
 なお、上述した各実施形態では、ピコセルの無線パラメータのみを変更する場合について説明したが、マクロセルの無線パラメータを変更する場合についても同様に適用できる。 In each of the above-described embodiments, the case where only the radio parameter of the pico cell is changed has been described, but the present invention can be similarly applied to the case where the radio parameter of the macro cell is changed.
 また、上記各実施例においては具体的な数値を例示して説明したが、これはあくまで例示であり、これら具体的な数値は本実施形態の適用範囲を限定する趣旨ではない。 In the above embodiments, specific numerical values are exemplified and described. However, these are merely examples, and these specific numerical values are not intended to limit the application range of the present embodiment.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 また、上記の無線パラメータ制御装置及び無線パラメータ制御システムは、それぞれハードウェア、ソフトウェア又はこれらの組合わせにより実現することができる。また、上記の無線パラメータ制御装置及び無線パラメータ制御システムによりそれぞれ行なわれる無線パラメータ制御方法も、ハードウェア、ソフトウェア又はこれらの組合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 Also, the radio parameter control device and the radio parameter control system described above can be realized by hardware, software, or a combination thereof. Also, the radio parameter control method performed by the radio parameter control device and the radio parameter control system described above can be realized by hardware, software, or a combination thereof. Here, “realized by software” means realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 The program can be stored using various types of non-transitory computer readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer readable media include magnetic recording media (eg, flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg, magneto-optical disc), CD-ROM (Read Only Memory), CD- R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory). The computer may be supplied by a computer readable medium (transitory 一時 computer コ ン ピ ュ ー タ readable medium) Examples of temporary computer readable media include electrical signals, optical signals, and electromagnetic waves. And the program can be supplied to the computer via a wired communication path such as an optical fiber or a wireless communication path. wear.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can be described as in the following supplementary notes, but are not limited thereto.
 (付記1) セル・グループに対する無線パラメータを制御する無線パラメータ制御装置であって、
 前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、
 前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、
 を備えることを特徴とする無線パラメータ制御装置。
(Supplementary note 1) A radio parameter control apparatus for controlling radio parameters for a cell group,
For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. Predicting means for predicting a change in communication characteristics in the cell group due to the change of
Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
A wireless parameter control device comprising:
 (付記2)
 付記1に記載の無線パラメータ制御装置であって、
 前記予測手段は、複数の前記着目セルについての前記予測をし、
 前記制御手段は、前記予測手段による複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御装置。
(Appendix 2)
The wireless parameter control device according to attachment 1, wherein
The prediction means performs the prediction for a plurality of the cells of interest,
The said control means controls the value of the radio | wireless parameter of these some attention cell based on the said prediction about the said some attention cell by the said prediction means, The radio | wireless parameter control apparatus characterized by the above-mentioned.
 (付記3)
 付記1又は2に記載の無線パラメータ制御装置であって、
 前記予測手段は、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定することを特徴とする無線パラメータ制御装置。
(Appendix 3)
The radio parameter control device according to appendix 1 or 2,
The prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
The control means determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value.
 (付記4)
 付記1に記載の無線パラメータ制御装置であって、
 前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
 前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いることを特徴とする無線パラメータ制御装置。
(Appendix 4)
The wireless parameter control device according to attachment 1, wherein
The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
The control means determines the value of the radio parameter of the target cell focused on in order based on the prediction,
When the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest, the prediction means is determined for a cell whose radio parameters have already been determined by the control means. A radio parameter control apparatus using a radio parameter value.
 (付記5)
 付記1に記載の無線パラメータ制御装置であって、
 前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
 前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
 所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定することを特徴とする無線パラメータ制御装置。
(Appendix 5)
The wireless parameter control device according to attachment 1, wherein
The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
The control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction,
When the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means. Using the value of the wireless parameter
A radio parameter control apparatus that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the radio parameter that is tentatively determined at the end of the repetition as a radio parameter after change .
 (付記6)
 付記1又は2に記載の無線パラメータ制御装置であって、
 前記予測手段は、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
 前記制御手段は、前記予測手段による、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御装置。
(Appendix 6)
The radio parameter control device according to appendix 1 or 2,
The prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods,
The radio parameter control apparatus, wherein the control unit controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction unit.
 (付記7) 付記1乃至6の何れか1に記載の無線パラメータ制御装置であって、
 制御により決定された無線パラメータを、対応する無線基地局に同時に設定する手段を更に備えることを特徴とする無線パラメータ制御装置。
(Supplementary note 7) The wireless parameter control device according to any one of supplementary notes 1 to 6,
A radio parameter control apparatus, further comprising means for simultaneously setting radio parameters determined by control in corresponding radio base stations.
 (付記8)
 付記1に記載の無線パラメータ制御装置であって、
 前記予測手段は、1つの前記着目セルについての前記予測をし、
 前記制御手段は、前記予測手段による予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
 当該無線パラメータ制御装置は、
 前記制御手段により値が仮決定された無線パラメータを、対応する無線基地局に設定する設定手段と、
 前記設定手段により無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定手段と、
 を更に備え、
 前記予測手段と前記制御手段と前記設定手段と前記測定手段とは繰り返し動作し、各繰り返しにおいて、前記予測手段は、前回の繰り返しで前記測定手段により測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測することを特徴とする無線パラメータ制御装置。
(Appendix 8)
The wireless parameter control device according to attachment 1, wherein
The prediction means performs the prediction for one of the cells of interest,
The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means,
The radio parameter control device
Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station;
Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means;
Further comprising
The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition. A radio parameter control apparatus that predicts a change in the communication characteristics using a wireless communication device.
 (付記9) 付記1乃至8の何れか1に記載の無線パラメータ制御装置であって、
 前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含むことを特徴とする無線パラメータ制御装置。
(Supplementary note 9) The wireless parameter control device according to any one of supplementary notes 1 to 8,
The radio parameter control apparatus characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
 (付記10) セル・グループに対する無線パラメータを制御する無線パラメータ制御方法であって、
 前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測ステップと、
 前記予測ステップによる予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御ステップと、
 を備えることを特徴とする無線パラメータ制御方法。
(Supplementary Note 10) A radio parameter control method for controlling radio parameters for a cell group,
For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. A prediction step for predicting a change in communication characteristics in the cell group due to a change in
A control step of controlling a value of a radio parameter of one or more of the control target cells in the cell group based on the prediction by the prediction step;
A wireless parameter control method comprising:
 (付記11) 付記10に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、複数の前記着目セルについての前記予測をし、
 前記制御ステップでは、前記予測ステップによる複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御方法。
(Additional remark 11) It is a radio | wireless parameter control method of Additional remark 10, Comprising:
In the prediction step, the prediction for a plurality of the cells of interest is performed,
In the control step, a radio parameter control method for controlling radio parameter values of the plurality of cells of interest based on the prediction of the plurality of cells of interest in the prediction step.
 (付記12) 付記10又は11に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
 前記制御ステップでは、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定することを特徴とする無線パラメータ制御方法。
(Supplementary note 12) The radio parameter control method according to supplementary note 10 or 11,
In the prediction step, for all combinations of a predetermined range of radio parameter value change candidates for the plurality of cells of interest, a change in communication characteristics in the cell group is predicted,
In the control step, a radio parameter value change candidate that optimizes the communication characteristics is determined as a radio parameter value after the change.
 (付記13) 付記10に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御ステップでは、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
 前記予測ステップでは、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御ステップにより無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いることを特徴とする無線パラメータ制御方法。
(Supplementary note 13) The wireless parameter control method according to supplementary note 10, wherein
In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another,
In the control step, the value of the radio parameter of the cell of interest focused sequentially is determined based on the prediction,
In the predicting step, when predicting a change in communication characteristics due to a change in radio parameters of a target cell of interest, the cell in which the radio parameters have already been determined in the control step is determined. A radio parameter control method using a radio parameter value.
 (付記14) 付記10に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御ステップでは、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
 前記予測ステップでは、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御ステップにより無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
 所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定することを特徴とする無線パラメータ制御方法。
(Supplementary note 14) The radio parameter control method according to supplementary note 10, wherein
In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another,
In the control step, the radio parameter value of the cell of interest focused on in order is provisionally determined based on the prediction,
In the prediction step, when predicting a change in communication characteristics due to a change in the radio parameter of the cell of interest that is currently focused on, the cell in which the radio parameter has already been provisionally determined in the control step is determined. Using the value of the wireless parameter
A radio parameter control method characterized by repeating the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determining a radio parameter temporarily determined at the end of the repetition as a radio parameter after change .
 (付記15) 付記10又は11に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
 前記制御ステップでは、前記予測ステップによる、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御方法。
(Supplementary note 15) The radio parameter control method according to supplementary note 10 or 11,
In the predicting step, a plurality of methods are focused on the plurality of cells of interest, and a plurality of communication characteristics corresponding to the plurality of methods are predicted,
The radio parameter control method characterized in that, in the control step, radio parameter values of the plurality of cells of interest are controlled based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods in the prediction step.
 (付記16) 付記10乃至15の何れか1に記載の無線パラメータ制御方法であって、
 制御により決定された無線パラメータを、対応する無線基地局に同時に設定するステップを更に備えることを特徴とする無線パラメータ制御方法。
(Supplementary note 16) The wireless parameter control method according to any one of supplementary notes 10 to 15,
A radio parameter control method further comprising the step of simultaneously setting radio parameters determined by control in corresponding radio base stations.
 (付記17) 付記10に記載の無線パラメータ制御方法であって、
 前記予測ステップでは、1つの前記着目セルについての前記予測をし、
 前記制御ステップでは、前記予測ステップによる予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
 当該無線パラメータ制御方法は、
 前記制御ステップにより値が仮決定された無線パラメータを、対応する無線基地局に設定する設定ステップと、
 前記設定ステップにより無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定ステップと、
 を更に備え、
 前記予測ステップと前記制御ステップと前記設定ステップと前記測定ステップとを繰り返し行い、各繰り返しにおいて、前記予測ステップでは、前回の繰り返しで前記測定ステップにより測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測することを特徴とする無線パラメータ制御方法。
(Supplementary note 17) The radio parameter control method according to supplementary note 10, wherein
In the prediction step, the prediction for one of the cells of interest is performed,
In the control step, based on the prediction in the prediction step, the wireless parameter value of the one target cell is provisionally determined,
The radio parameter control method is:
A setting step of setting the radio parameter whose value is provisionally determined in the control step in a corresponding radio base station;
A measurement step of measuring radio quality information and / or communication quality information after radio parameters are set by the setting step;
Further comprising
The prediction step, the control step, the setting step, and the measurement step are repeated. In each iteration, the prediction step includes the radio quality information and / or communication quality information measured by the measurement step in the previous iteration. A radio parameter control method characterized in that a change in the communication characteristics is predicted using the method.
 (付記18) 付記10乃至17の何れか1に記載の無線パラメータ制御方法であって、
 前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含むことを特徴とする無線パラメータ制御方法。
(Supplementary note 18) The wireless parameter control method according to any one of supplementary notes 10 to 17,
The radio parameter control method characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
 (付記19) セル・グループに対する無線パラメータを制御する無線パラメータ制御装置としてコンピュータを機能させるための無線パラメータ制御プログラムであって、
 前記コンピュータを、
 前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、
 前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、
 を備える無線パラメータ制御装置として機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 19) A radio parameter control program for causing a computer to function as a radio parameter control device for controlling radio parameters for a cell group,
The computer,
For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. Predicting means for predicting a change in communication characteristics in the cell group due to the change of
Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
A wireless parameter control program that functions as a wireless parameter control device.
 (付記20) 付記19に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、複数の前記着目セルについての前記予測をし、
 前記制御手段は、前記予測手段による複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 20) The wireless parameter control program according to supplementary note 19,
The prediction means performs the prediction for a plurality of the cells of interest,
The control means further causes the computer to function as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on the prediction of the plurality of cells of interest by the prediction unit. Wireless parameter control program.
 (付記21) 付記19又は20に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 21) The wireless parameter control program according to supplementary note 19 or 20,
The prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
The control means further causes the computer to function as a wireless parameter control device that determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value. .
 (付記22) 付記19に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
 前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いる無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 22) The wireless parameter control program according to supplementary note 19,
The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
The control means determines the value of the radio parameter of the target cell focused on in order based on the prediction,
When the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest, the prediction means is determined for a cell whose radio parameters have already been determined by the control means. A wireless parameter control program that further causes the computer to function as a wireless parameter control device that uses wireless parameter values.
 (付記23) 付記19に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
 前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
 前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
 所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 23) The wireless parameter control program according to supplementary note 19,
The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
The control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction,
When the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means. Using the value of the wireless parameter
The computer is further used as a wireless parameter control device that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the wireless parameter temporarily determined at the end of the repetition as a wireless parameter after change. A wireless parameter control program which is made to function.
 (付記24) 付記19又は20に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
 前記制御手段は、前記予測手段による、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 24) The radio parameter control program according to supplementary note 19 or 20,
The prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods,
The control means further functions the computer as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction means. A wireless parameter control program characterized in that
 (付記25) 付記19乃至24の何れか1に記載の無線パラメータ制御プログラムであって、
 制御により決定された無線パラメータを、対応する無線基地局に同時に設定する手段を更に備える無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 25) The wireless parameter control program according to any one of supplementary notes 19 to 24,
A wireless parameter control program that further causes the computer to function as a wireless parameter control device further comprising means for simultaneously setting wireless parameters determined by control in corresponding wireless base stations.
 (付記26) 付記19に記載の無線パラメータ制御プログラムであって、
 前記予測手段は、1つの前記着目セルについての前記予測をし、
 前記制御手段は、前記予測手段による予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
 前記無線パラメータ制御装置は、
 前記制御手段により値が仮決定された無線パラメータを、対応する無線基地局に設定する設定手段と、
 前記設定手段により無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定手段と、
 を更に備え、
 前記予測手段と前記制御手段と前記設定手段と前記測定手段とは繰り返し動作し、各繰り返しにおいて、前記予測手段は、前回の繰り返しで前記測定手段により測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 26) The wireless parameter control program according to supplementary note 19,
The prediction means performs the prediction for one of the cells of interest,
The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means,
The wireless parameter control device includes:
Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station;
Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means;
Further comprising
The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition. A wireless parameter control program that further causes the computer to function as a wireless parameter control device that predicts a change in the communication characteristics using a computer.
 (付記27) 付記19乃至26の何れか1に記載の無線パラメータ制御プログラムであって、
 前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含む無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
(Supplementary note 27) The wireless parameter control program according to any one of supplementary notes 19 to 26,
The communication characteristics include at least one of traffic load, resource utilization rate, effective number of scheduling users, user throughput, cell throughput, reception quality (RSRP, RSRQ, SINR), and further functions the computer as a radio parameter control device A wireless parameter control program characterized in that
 (付記28) 端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えた無線パラメータ制御システムであって、
 前記基地局は、
 前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告手段と、
 前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更手段と、を備え、
 前記無線パラメータ制御装置は付記1乃至9の何れか1に記載の無線パラメータ制御装置であって、前記報告手段による報告内容に基づいて前記予測手段及び前記制御手段を動作させると共に、前記制御手段により決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出す、
 ことを特徴とする無線パラメータ制御システム。
(Supplementary note 28) A radio parameter control system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station,
The base station
Reporting means for reporting to the base station quality related to wireless communication measured based on communication with the terminal;
Changing means for changing a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device,
The wireless parameter control device is the wireless parameter control device according to any one of appendices 1 to 9, wherein the prediction unit and the control unit are operated based on a report content by the reporting unit, and the control unit Instructing the base station to change the radio parameter based on the determined change value of the radio parameter;
A wireless parameter control system.
 (付記29) 端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えたシステムが行う無線パラメータ制御方法であって、
 前記基地局が、前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告ステップと、
 前記無線パラメータ制御装置が付記10乃至18の何れか1に記載の無線パラメータ制御方法を行う装置であって、前記報告ステップによる報告内容に基づいて前記予測ステップ及び前記制御ステップを行うと共に、前記制御ステップにより決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出すステップと、
 前記基地局が、前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更ステップと、
 を有することを特徴とする無線パラメータ制御方法。
(Supplementary note 29) A radio parameter control method performed by a system including a base station that performs radio communication with a terminal and a radio parameter control device connected to the base station,
A reporting step in which the base station reports to the base station the quality related to wireless communication measured based on communication with the terminal;
The wireless parameter control device performs the wireless parameter control method according to any one of appendices 10 to 18, and performs the prediction step and the control step based on a report content of the reporting step, and the control Instructing the base station to change a radio parameter based on a change value of the radio parameter determined in the step;
The base station changes a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device; and
A wireless parameter control method comprising:
 この出願は、2012年12月27日に出願された日本出願特願2012-284818を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-284818 filed on December 27, 2012, the entire disclosure of which is incorporated herein.
 本発明はセルラ方式に準拠した無線通信網であれば、その用途や、変更するパラメータの内容等を問わずに適用することが可能である。 The present invention can be applied to any wireless communication network conforming to the cellular system regardless of its use or the contents of parameters to be changed.
10 無線パラメータ制御装置
11 品質情報記憶部
12 影響セル決定部
13 通信特性予測部
14 無線パラメータ決定部
20、20-1、20-2、20-3、1000 基地局
21 通信部
22 通信品質測定部
23 品質管理部
24 無線パラメータ調整部
30、31、32、33、1001、2001、2002、3001、3002 セル
40 UE
41 通信部
42 無線品質測定部
2000、3000 小型基地局
 
DESCRIPTION OF SYMBOLS 10 Radio parameter control apparatus 11 Quality information storage part 12 Influence cell determination part 13 Communication characteristic prediction part 14 Radio parameter determination part 20, 20-1, 20-2, 20-3, 1000 Base station 21 Communication part 22 Communication quality measurement part 23 Quality management unit 24 Radio parameter adjustment unit 30, 31, 32, 33, 1001, 2001, 2002, 3001, 3002 Cell 40 UE
41 Communication unit 42 Wireless quality measurement unit 2000, 3000 Small base station

Claims (29)

  1.  セル・グループに対する無線パラメータを制御する無線パラメータ制御装置であって、
     前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、
     前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、
     を備えることを特徴とする無線パラメータ制御装置。
    A radio parameter control device for controlling radio parameters for a cell group,
    For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. Predicting means for predicting a change in communication characteristics in the cell group due to the change of
    Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
    A wireless parameter control device comprising:
  2.  請求項1に記載の無線パラメータ制御装置であって、
     前記予測手段は、複数の前記着目セルについての前記予測をし、
     前記制御手段は、前記予測手段による複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1,
    The prediction means performs the prediction for a plurality of the cells of interest,
    The said control means controls the value of the radio | wireless parameter of these some attention cell based on the said prediction about the said some attention cell by the said prediction means, The radio | wireless parameter control apparatus characterized by the above-mentioned.
  3.  請求項1又は2に記載の無線パラメータ制御装置であって、
     前記予測手段は、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定することを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1 or 2,
    The prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
    The control means determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value.
  4.  請求項1に記載の無線パラメータ制御装置であって、
     前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
     前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いることを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1,
    The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
    The control means determines the value of the radio parameter of the target cell focused on in order based on the prediction,
    When the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest, the prediction means is determined for a cell whose radio parameters have already been determined by the control means. A radio parameter control apparatus using a radio parameter value.
  5.  請求項1に記載の無線パラメータ制御装置であって、
     前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
     前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
     所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定することを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1,
    The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
    The control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction,
    When the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means. Using the value of the wireless parameter
    A radio parameter control apparatus that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the radio parameter that is tentatively determined at the end of the repetition as a radio parameter after change .
  6.  請求項1又は2に記載の無線パラメータ制御装置であって、
     前記予測手段は、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
     前記制御手段は、前記予測手段による、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1 or 2,
    The prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods,
    The radio parameter control apparatus, wherein the control unit controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction unit.
  7.  請求項1乃至6の何れか1項に記載の無線パラメータ制御装置であって、
     制御により決定された無線パラメータを、対応する無線基地局に同時に設定する手段を更に備えることを特徴とする無線パラメータ制御装置。
    The wireless parameter control device according to any one of claims 1 to 6,
    A radio parameter control apparatus, further comprising means for simultaneously setting radio parameters determined by control in corresponding radio base stations.
  8.  請求項1に記載の無線パラメータ制御装置であって、
     前記予測手段は、1つの前記着目セルについての前記予測をし、
     前記制御手段は、前記予測手段による予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
     当該無線パラメータ制御装置は、
     前記制御手段により値が仮決定された無線パラメータを、対応する無線基地局に設定する設定手段と、
     前記設定手段により無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定手段と、
     を更に備え、
     前記予測手段と前記制御手段と前記設定手段と前記測定手段とは繰り返し動作し、各繰り返しにおいて、前記予測手段は、前回の繰り返しで前記測定手段により測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測することを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to claim 1,
    The prediction means performs the prediction for one of the cells of interest,
    The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means,
    The radio parameter control device
    Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station;
    Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means;
    Further comprising
    The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition. A radio parameter control apparatus that predicts a change in the communication characteristics using a wireless communication device.
  9.  請求項1乃至8の何れか1項に記載の無線パラメータ制御装置であって、
     前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含むことを特徴とする無線パラメータ制御装置。
    The radio parameter control device according to any one of claims 1 to 8,
    The radio parameter control apparatus characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
  10.  セル・グループに対する無線パラメータを制御する無線パラメータ制御方法であって、
     前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測ステップと、
     前記予測ステップによる予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御ステップと、
     を備えることを特徴とする無線パラメータ制御方法。
    A radio parameter control method for controlling radio parameters for a cell group, comprising:
    For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. A prediction step for predicting a change in communication characteristics in the cell group due to a change in
    A control step of controlling a value of a radio parameter of one or more of the control target cells in the cell group based on the prediction by the prediction step;
    A wireless parameter control method comprising:
  11.  請求項10に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、複数の前記着目セルについての前記予測をし、
     前記制御ステップでは、前記予測ステップによる複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10, comprising:
    In the prediction step, the prediction for a plurality of the cells of interest is performed,
    In the control step, a radio parameter control method for controlling radio parameter values of the plurality of cells of interest based on the prediction of the plurality of cells of interest in the prediction step.
  12.  請求項10又は11に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
     前記制御ステップでは、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定することを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10 or 11,
    In the prediction step, for all combinations of a predetermined range of radio parameter value change candidates for the plurality of cells of interest, a change in communication characteristics in the cell group is predicted,
    In the control step, a radio parameter value change candidate that optimizes the communication characteristics is determined as a radio parameter value after the change.
  13.  請求項10に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御ステップでは、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
     前記予測ステップでは、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御ステップにより無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いることを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10, comprising:
    In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another,
    In the control step, the value of the radio parameter of the cell of interest focused sequentially is determined based on the prediction,
    In the predicting step, when predicting a change in communication characteristics due to a change in radio parameters of a target cell of interest, the cell in which the radio parameters have already been determined in the control step is determined. A radio parameter control method using a radio parameter value.
  14.  請求項10に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御ステップでは、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
     前記予測ステップでは、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御ステップにより無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
     所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定することを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10, comprising:
    In the prediction step, pay attention to the plurality of cells of interest one by one in order, and predict a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused one after another,
    In the control step, the radio parameter value of the cell of interest focused on in order is provisionally determined based on the prediction,
    In the prediction step, when predicting a change in communication characteristics due to a change in the radio parameter of the cell of interest that is currently focused on, the cell in which the radio parameter has already been provisionally determined in the control step is determined. Using the value of the wireless parameter
    A radio parameter control method characterized by repeating the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determining a radio parameter temporarily determined at the end of the repetition as a radio parameter after change .
  15.  請求項10又は11に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
     前記制御ステップでは、前記予測ステップによる、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御することを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10 or 11,
    In the prediction step, a plurality of methods are focused on the plurality of cells of interest, and a plurality of communication characteristic changes corresponding to the plurality of methods are predicted,
    The radio parameter control method characterized in that, in the control step, radio parameter values of the plurality of cells of interest are controlled based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods in the prediction step.
  16.  請求項10乃至15の何れか1項に記載の無線パラメータ制御方法であって、
     制御により決定された無線パラメータを、対応する無線基地局に同時に設定するステップを更に備えることを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to any one of claims 10 to 15,
    A radio parameter control method further comprising the step of simultaneously setting radio parameters determined by control in corresponding radio base stations.
  17.  請求項10に記載の無線パラメータ制御方法であって、
     前記予測ステップでは、1つの前記着目セルについての前記予測をし、
     前記制御ステップでは、前記予測ステップによる予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
     当該無線パラメータ制御方法は、
     前記制御ステップにより値が仮決定された無線パラメータを、対応する無線基地局に設定する設定ステップと、
     前記設定ステップにより無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定ステップと、
     を更に備え、
     前記予測ステップと前記制御ステップと前記設定ステップと前記測定ステップとを繰り返し行い、各繰り返しにおいて、前記予測ステップでは、前回の繰り返しで前記測定ステップにより測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測することを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to claim 10, comprising:
    In the prediction step, the prediction for one of the cells of interest is performed,
    In the control step, based on the prediction in the prediction step, the wireless parameter value of the one target cell is provisionally determined,
    The radio parameter control method is:
    A setting step of setting the radio parameter whose value is provisionally determined in the control step in a corresponding radio base station;
    A measurement step of measuring radio quality information and / or communication quality information after radio parameters are set by the setting step;
    Further comprising
    The prediction step, the control step, the setting step, and the measurement step are repeated. In each iteration, the prediction step includes the radio quality information and / or communication quality information measured by the measurement step in the previous iteration. A radio parameter control method characterized in that a change in the communication characteristics is predicted.
  18.  請求項10乃至17の何れか1項に記載の無線パラメータ制御方法であって、
     前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含むことを特徴とする無線パラメータ制御方法。
    The radio parameter control method according to any one of claims 10 to 17,
    The radio parameter control method characterized in that the communication characteristics include at least one of traffic load, resource utilization, effective number of scheduling users, user throughput, cell throughput, and reception quality (RSRP, RSRQ, SINR).
  19.  セル・グループに対する無線パラメータを制御する無線パラメータ制御装置としてコンピュータを機能させるための無線パラメータ制御プログラムであって、
     前記コンピュータを、
     前記セル・グループ内の1つ以上の制御対象セルに含まれる各着目セルについて、前記セル・グループ内の他のセルの無線パラメータの値に対する制御による影響を考慮しつつ、該着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測する予測手段と、
     前記予測手段による予測に基づき、前記セル・グループ内の1つ以上の前記制御対象セルの無線パラメータの値を制御する制御手段と、
     を備える無線パラメータ制御装置として機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program for causing a computer to function as a radio parameter control device for controlling radio parameters for a cell group,
    The computer,
    For each target cell included in one or more control target cells in the cell group, the radio parameters of the target cell are considered while taking into account the influence of the control on the radio parameter values of other cells in the cell group. Predicting means for predicting a change in communication characteristics in the cell group due to the change of
    Control means for controlling radio parameter values of one or more of the control target cells in the cell group based on the prediction by the prediction means;
    A wireless parameter control program that functions as a wireless parameter control device.
  20.  請求項19に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、複数の前記着目セルについての前記予測をし、
     前記制御手段は、前記予測手段による複数の前記着目セルについての前記予測に基づき、前記複数の着目セルの無線パラメータの値を制御する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program according to claim 19,
    The prediction means performs the prediction for a plurality of the cells of interest,
    The control means further causes the computer to function as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on the prediction of the plurality of cells of interest by the prediction unit. Wireless parameter control program.
  21.  請求項19又は20に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、複数の前記着目セルに対する無線パラメータの値の変更候補の所定の範囲の全ての組み合わせに対して、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、前記通信特性を最良とする無線パラメータの値の変更候補を変更後の無線パラメータの値として決定する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    The radio parameter control program according to claim 19 or 20,
    The prediction means predicts a change in communication characteristics in the cell group for all combinations of predetermined ranges of radio parameter value change candidates for the plurality of cells of interest,
    The control means further causes the computer to function as a wireless parameter control device that determines a wireless parameter value change candidate that optimizes the communication characteristics as a changed wireless parameter value. .
  22.  請求項19に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて決定し、
     前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に決定されているセルについては、その決定されている無線パラメータの値を用いる無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program according to claim 19,
    The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
    The control means determines the value of the radio parameter of the target cell focused on in order based on the prediction,
    When the prediction means predicts a change in communication characteristics due to a change in radio parameters of a target cell of interest, the prediction means is determined for a cell whose radio parameters have already been determined by the control means. A wireless parameter control program that further causes the computer to function as a wireless parameter control device that uses wireless parameter values.
  23.  請求項19に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、複数の前記着目セルを1つずつ順々に着目し、順々に着目した着目セルの無線パラメータの変更による、前記セル・グループでの通信特性の変化を予測し、
     前記制御手段は、順々に着目した着目セルの無線パラメータの値を前記予測に基づいて仮決定し、
     前記予測手段は、現在着目している着目セルの無線パラメータの変化による通信特性の変化を予測する際には、前記制御手段により無線パラメータが既に仮決定されているセルについては、その決定されている無線パラメータの値を用い、
     所定の条件が満たされるまで、前記予測と該予測に基づく前記仮決定とを繰り返し、繰り返し終了時に仮決定されている無線パラメータを変更後の無線パラメータとして決定する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program according to claim 19,
    The predicting unit focuses on the plurality of cells of interest one by one, predicts a change in communication characteristics in the cell group due to a change in radio parameters of the cells of interest focused on sequentially,
    The control means tentatively determines the value of the radio parameter of the cell of interest focused on sequentially based on the prediction,
    When the prediction means predicts a change in communication characteristics due to a change in the radio parameter of the target cell of interest, the prediction means is determined for a cell whose radio parameter has already been provisionally determined by the control means. Using the value of the wireless parameter
    The computer is further used as a wireless parameter control device that repeats the prediction and the tentative determination based on the prediction until a predetermined condition is satisfied, and determines the wireless parameter temporarily determined at the end of the repetition as a wireless parameter after change. A wireless parameter control program which is made to function.
  24.  請求項19又は20に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、複数の方法で、複数の前記着目セルに着目し、前記複数の方法にそれぞれ対応する複数の通信特性の変化を予測し、
     前記制御手段は、前記予測手段による、前記複数の方法にそれぞれ対応する複数の通信特性の変化に基づき、前記複数の着目セルの無線パラメータの値を制御する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    The radio parameter control program according to claim 19 or 20,
    The prediction means focuses on the plurality of cells of interest by a plurality of methods, predicts changes in a plurality of communication characteristics respectively corresponding to the plurality of methods,
    The control means further functions the computer as a radio parameter control apparatus that controls radio parameter values of the plurality of cells of interest based on changes in a plurality of communication characteristics respectively corresponding to the plurality of methods by the prediction means. A wireless parameter control program characterized in that
  25.  請求項19乃至24の何れか1項に記載の無線パラメータ制御プログラムであって、
     制御により決定された無線パラメータを、対応する無線基地局に同時に設定する手段を更に備える無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A wireless parameter control program according to any one of claims 19 to 24,
    A wireless parameter control program that further causes the computer to function as a wireless parameter control device further comprising means for simultaneously setting wireless parameters determined by control in corresponding wireless base stations.
  26.  請求項19に記載の無線パラメータ制御プログラムであって、
     前記予測手段は、1つの前記着目セルについての前記予測をし、
     前記制御手段は、前記予測手段による予測に基づき、前記1つの着目セルの無線パラメータの値を仮決定し、
     前記無線パラメータ制御装置は、
     前記制御手段により値が仮決定された無線パラメータを、対応する無線基地局に設定する設定手段と、
     前記設定手段により無線パラメータが設定された後の無線品質情報及び/又は通信品質情報を測定する測定手段と、
     を更に備え、
     前記予測手段と前記制御手段と前記設定手段と前記測定手段とは繰り返し動作し、各繰り返しにおいて、前記予測手段は、前回の繰り返しで前記測定手段により測定された無線品質情報及び/又は通信品質情報を用いて前記通信特性の変化を予測する無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program according to claim 19,
    The prediction means performs the prediction for one of the cells of interest,
    The control means tentatively determines a radio parameter value of the one target cell based on the prediction by the prediction means,
    The wireless parameter control device includes:
    Setting means for setting a radio parameter whose value is provisionally determined by the control means to a corresponding radio base station;
    Measuring means for measuring radio quality information and / or communication quality information after radio parameters are set by the setting means;
    Further comprising
    The prediction means, the control means, the setting means, and the measurement means are repeatedly operated, and in each repetition, the prediction means performs radio quality information and / or communication quality information measured by the measurement means in the previous repetition. A wireless parameter control program that further causes the computer to function as a wireless parameter control device that predicts a change in the communication characteristics using a computer.
  27.  請求項19乃至26の何れか1項に記載の無線パラメータ制御プログラムであって、
     前記通信特性は、トラフィック負荷、リソース利用率、実効的なスケジューリングユーザ数、ユーザスループット、セルスループット、受信品質(RSRP,RSRQ,SINR)の少なくとも1つを含む無線パラメータ制御装置として更に前記コンピュータを機能させることを特徴とする無線パラメータ制御プログラム。
    A radio parameter control program according to any one of claims 19 to 26,
    The communication characteristics include at least one of traffic load, resource utilization rate, effective number of scheduling users, user throughput, cell throughput, reception quality (RSRP, RSRQ, SINR), and further functions the computer as a radio parameter control device A wireless parameter control program characterized in that
  28.  端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えた無線パラメータ制御システムであって、
     前記基地局は、
     前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告手段と、
     前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更手段と、を備え、
     前記無線パラメータ制御装置は請求項1乃至9の何れか1項に記載の無線パラメータ制御装置であって、前記報告手段による報告内容に基づいて前記予測手段及び前記制御手段を動作させると共に、前記制御手段により決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出す、
     ことを特徴とする無線パラメータ制御システム。
    A radio parameter control system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station,
    The base station
    Reporting means for reporting to the base station quality related to wireless communication measured based on communication with the terminal;
    Changing means for changing a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device,
    The radio parameter control device according to any one of claims 1 to 9, wherein the radio parameter control device operates the prediction unit and the control unit based on a report content by the report unit, and performs the control. Instructing the base station to change a radio parameter based on a change value of the radio parameter determined by the means;
    A wireless parameter control system.
  29.  端末と無線通信を行う基地局と、前記基地局と接続された無線パラメータ制御装置と、を備えたシステムが行う無線パラメータ制御方法であって、
     前記基地局が、前記端末との通信に基づいて測定した無線通信に関する品質を前記基地局に報告する報告ステップと、
     前記無線パラメータ制御装置が請求項10乃至18の何れか1項に記載の無線パラメータ制御方法を行う装置であって、前記報告ステップによる報告内容に基づいて前記予測ステップ及び前記制御ステップを行うと共に、前記制御ステップにより決定された無線パラメータの変更値に基づいて無線パラメータを変更するように前記基地局に指示を出すステップと、
     前記基地局が、前記無線パラメータ制御装置の変更値の指示に応じて基地局配下のセルについての無線パラメータを変更する変更ステップと、
     を有することを特徴とする無線パラメータ制御方法。
     
     
    A radio parameter control method performed by a system comprising: a base station that performs radio communication with a terminal; and a radio parameter control device connected to the base station,
    A reporting step in which the base station reports to the base station the quality related to wireless communication measured based on communication with the terminal;
    The wireless parameter control device is a device that performs the wireless parameter control method according to any one of claims 10 to 18, wherein the prediction step and the control step are performed based on a report content by the reporting step, Instructing the base station to change a radio parameter based on a change value of the radio parameter determined by the control step;
    The base station changes a radio parameter for a cell under the base station according to an instruction of a change value of the radio parameter control device; and
    A wireless parameter control method comprising:

PCT/JP2013/073868 2012-12-27 2013-09-05 Wireless parameter control device, wireless parameter control device system, wireless parameter control method, and program thereof WO2014103434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554184A JPWO2014103434A1 (en) 2012-12-27 2013-09-05 Wireless parameter control device, wireless parameter control device system, wireless parameter control method and program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012284818 2012-12-27
JP2012-284818 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103434A1 true WO2014103434A1 (en) 2014-07-03

Family

ID=51020538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073868 WO2014103434A1 (en) 2012-12-27 2013-09-05 Wireless parameter control device, wireless parameter control device system, wireless parameter control method, and program thereof

Country Status (2)

Country Link
JP (1) JPWO2014103434A1 (en)
WO (1) WO2014103434A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104577A1 (en) * 2014-12-25 2016-06-30 日本電気株式会社 Network management device, wireless communication system, communication control method, wireless base station, and program
JP2016225788A (en) * 2015-05-29 2016-12-28 日本電気株式会社 Communication optimizing device, communication system, communication optimization control method and communication optimizing program
JP7468549B2 (en) 2020-01-28 2024-04-16 日本電信電話株式会社 Wireless communication system, base station control device, communication control method, and communication control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104143A1 (en) * 2009-03-13 2010-09-16 日本電気株式会社 Wireless communication system, method, wireless base station, and control station
WO2011114430A1 (en) * 2010-03-15 2011-09-22 富士通株式会社 Radio base station and radio parameter adjusting method
WO2011157621A1 (en) * 2010-06-16 2011-12-22 Alcatel Lucent Method of setting a plurality of parameters in a wireless telecommunication network
JP2012016015A (en) * 2010-06-30 2012-01-19 Fujitsu Ltd Method of coverage hole compensation, wireless communication network, base station, and network optimization apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104143A1 (en) * 2009-03-13 2010-09-16 日本電気株式会社 Wireless communication system, method, wireless base station, and control station
WO2011114430A1 (en) * 2010-03-15 2011-09-22 富士通株式会社 Radio base station and radio parameter adjusting method
WO2011157621A1 (en) * 2010-06-16 2011-12-22 Alcatel Lucent Method of setting a plurality of parameters in a wireless telecommunication network
JP2012016015A (en) * 2010-06-30 2012-01-19 Fujitsu Ltd Method of coverage hole compensation, wireless communication network, base station, and network optimization apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104577A1 (en) * 2014-12-25 2016-06-30 日本電気株式会社 Network management device, wireless communication system, communication control method, wireless base station, and program
JP2016225788A (en) * 2015-05-29 2016-12-28 日本電気株式会社 Communication optimizing device, communication system, communication optimization control method and communication optimizing program
JP7468549B2 (en) 2020-01-28 2024-04-16 日本電信電話株式会社 Wireless communication system, base station control device, communication control method, and communication control program

Also Published As

Publication number Publication date
JPWO2014103434A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US9438393B2 (en) Radio parameter control apparatus, radio base station, radio parameter control method, and non-transitory computer readable medium
CN103237355B (en) The auto-allocation method of radio communication channel and system
US9867108B2 (en) Wireless parameter control apparatus, wireless base station, wireless communication system, wireless parameter control method, and program
JP6465032B2 (en) Radio parameter control apparatus, radio parameter control method, radio base station, and radio parameter control program
US9706490B2 (en) Method for energy saving in a cellular communication system
JP4730532B2 (en) Wireless access system, network management device, program, and quality management method
US9426675B2 (en) System and method for adaptation in a wireless communications system
RU2576245C1 (en) Radio parameter control system, radio parameter control device, radio base station, method and radio parameter control programme
WO2014103434A1 (en) Wireless parameter control device, wireless parameter control device system, wireless parameter control method, and program thereof
CN103546929A (en) Method for improving heterogeneous network switching performance
US9635622B2 (en) Energy saving method and apparatus therefor in communication system
EP2485516A1 (en) Radio coverage in mobile telecommunications systems
JP5928687B2 (en) Radio parameter control system, radio parameter control apparatus, radio base station, radio parameter control method, and program
WO2013161793A1 (en) Wireless parameter control device, wireless base station, wireless parameter control method, and program
KR101616759B1 (en) Method and apparatus for selecting frequency allocation in wireless communication system
WO2014136742A1 (en) Wireless communication system, wireless-parameter control method, network management device, and wireless base station
WO2014104185A1 (en) Device for controlling wireless parameters, system of device for controlling wireless parameters, method for controlling wireless parameters, and program thereof
JP6413487B2 (en) Communication control apparatus, radio base station, communication control method, and program
Yuhanef et al. Analysis of Base Station Replacement Using the Cost-231 Propagation Model and Stanford University Interim (SUI) on the LTE Network in Pauh District, Padang

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867893

Country of ref document: EP

Kind code of ref document: A1