WO2014103003A1 - Assembled battery system - Google Patents

Assembled battery system Download PDF

Info

Publication number
WO2014103003A1
WO2014103003A1 PCT/JP2012/084028 JP2012084028W WO2014103003A1 WO 2014103003 A1 WO2014103003 A1 WO 2014103003A1 JP 2012084028 W JP2012084028 W JP 2012084028W WO 2014103003 A1 WO2014103003 A1 WO 2014103003A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
assembled battery
management device
assembled
Prior art date
Application number
PCT/JP2012/084028
Other languages
French (fr)
Japanese (ja)
Inventor
崇秀 寺田
竹内 隆
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/084028 priority Critical patent/WO2014103003A1/en
Publication of WO2014103003A1 publication Critical patent/WO2014103003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for performing monitoring control and maintenance management of an assembled battery system composed of a plurality of battery cells wirelessly.
  • Patent Document 1 shown below discloses a technique for wirelessly acquiring battery information of battery cells in an assembled battery system configured by connecting a plurality of battery cells in series. Patent Document 1 describes that a radio signal is prevented from leaking outside the shield case by housing the assembled battery system in the shield case.
  • Patent Document 1 describes collecting battery information of battery cells by wireless communication in a state where the assembled battery system is housed in a shield case.
  • an abnormality failure, deterioration
  • the battery cell in which the abnormality has occurred is replaced while the battery information of the battery cell is acquired with the shield case opened. become.
  • the shield case is in an open state, the propagation environment of the radio signal is caused by interference from external radio waves, or new standing waves are generated by electromagnetic waves reflected from maintenance personnel or walls performing maintenance. May cause drastic changes.
  • the battery pack system is operated by closing the shield case without grasping the variation between the battery cell to be replaced and the battery cell not to be replaced, immediately after starting the operation, There is a possibility of falling into a state where the performance is deteriorated or significantly limiting the performance of the assembled battery system.
  • an object of the present invention is to provide an assembled battery system that can acquire battery information of battery cells both in a state where a shield case (housing) is opened and in a closed state.
  • an assembled battery system is housed in a shielded casing, and includes a battery module having a wireless communication unit that wirelessly transmits battery information of battery cells;
  • An assembled battery management device that is housed in the housing together with the battery module, and acquires the battery information by changing a communication mode corresponding to a wireless propagation environment between the battery module; It is characterized by providing.
  • an assembled battery system capable of acquiring battery information of battery cells both in a state where the shield case (housing) is opened and in a closed state.
  • FIG. 1st Embodiment It is a figure which shows the function example of the assembled battery system in 1st Embodiment. It is a figure which shows the example of a shape of an assembled battery system, (a) represents the external appearance perspective view of the state which opened the housing
  • FIG. 1 It is a figure which shows the example of an antenna shape in 2nd Embodiment, (a) represents the external appearance perspective view of an assembled battery system, (b) represents another antenna shape of a battery module. It is a figure which shows the example of a process of the communication mode when a housing
  • the assembled battery system 50 includes one or more battery modules 10 including battery cells (BC) 1 and the assembled battery management device 20.
  • the assembled battery system 50 is assumed to be housed in a shielded casing 41 as shown in FIG.
  • the housing opening / closing part 40 is opened as shown in FIG.
  • the casing opening / closing unit 40 is closed.
  • the assembled battery management device 20 includes a control unit (CTRL) 21, an open / close detection unit (O / C detector) 22, a storage unit (Memory) 23, a communication unit (COMM) 24, and an antenna 25.
  • the electric power for driving the assembled battery management device 20 is obtained from the battery cell 1, obtained by stepping down the potential difference when the battery modules 10 are connected in series, obtained via the external communication interface terminal 32, or obtained from a commercial power source. be able to.
  • the control unit (CTRL) 21 includes a CPU (Central Processing Unit) (not shown) and a main memory or a microcomputer, and controls the operation of each unit in the assembled battery management device 20 and also controls the flow of information between the units.
  • Have The open / close detection unit (O / C detector) 22 has a function of detecting the open / closed state of the housing open / close unit 40 of the housing 41 and transmitting the detection result to the control unit 21.
  • the storage unit (Memory) 23 stores battery information collected by the control unit 21, monitoring control instruction information for instructing measurement of the battery cell 1, a communication mode, an open / close state of the housing 41, and the like.
  • the battery information is information relating to, for example, the cell voltage and temperature, the internal resistance value, the remaining charge amount, the charge / discharge status, the ID (identification information), the presence / absence of a defect, and the degree of deterioration of the battery cell 1.
  • the communication unit (COMM) 24 has a function of transmitting monitoring control instruction information to the battery module 10 and receiving battery information corresponding to the monitoring control instruction information from the battery module 10.
  • the antenna 25 transmits and receives a signal for performing wireless communication with the antenna 5 of the battery module 10.
  • wireless communication here refers to communication in which communication lines are not connected to each other, and is communication that emits electromagnetic waves or communication that uses near-field coupling such as magnetic field coupling or electric field coupling. May be.
  • the antennas 5 and 25 may be rod-shaped, coil-shaped, plate-shaped, or printed circuit board conductor patterns.
  • communication using light such as LED (Light Emitting Diode) infrared light may be used.
  • the detection means of the opening / closing detection unit 22 can be classified into means for detecting that the casing opening / closing part 40 is opened and means for detecting that the casing opening / closing part 40 is unlocked.
  • a magnetic sensor using a permanent magnet, an infrared sensor, an acceleration sensor, or the like is used as a means for detecting that the housing opening / closing unit 40 is opened.
  • the magnetic sensor When the magnetic sensor is installed in the casing 41 and the casing opening / closing section 40, it is measured that the distance between the casing opening / closing section 40 and the casing 41 increases or the angle changes. Thus, it can be detected that the casing opening / closing part 40 is opened.
  • the infrared sensor it can be detected that the housing opening / closing section 40 is opened by measuring a change in the distance between the housing opening / closing section 40 and the housing 41 or a change in angle.
  • the opening / closing of the casing opening / closing unit 40 can be detected by measuring the difference in acceleration detected by the casing 41 and the casing opening / closing unit 40.
  • a detecting means it may be detected that the received signal strength of the radio signal is changed by opening the casing opening / closing unit 40.
  • the other detection means may transmit notification information for notifying the opening / closing state of the casing opening / closing unit 40 from an external system by image monitoring or the like.
  • the opening / closing detection unit 22 may be turned on using the detection of unlocking as a trigger to detect the open / closed state of the housing opening / closing unit 40.
  • the assembled battery management device 20 collects battery information from each battery module 10 and monitors and controls each battery module 10 so as to perform a desired function as the assembled battery system 50.
  • the assembled battery management device 20 collects battery information such as the cell voltage and temperature of each battery cell 1 and monitors whether the battery cell 1 is being used at an appropriate voltage or temperature. For example, the variation in the residual charge amount (cell voltage) is controlled to be small.
  • the monitoring control by the assembled battery management device 20 is executed at a predetermined cycle (including a fixed cycle), is executed when a predetermined condition is met, or is provided from a request from an external system or from an external system. Information is executed as a trigger.
  • the battery modules 10 are connected in series as shown in FIG.
  • the connection relationship of the battery module 10 may be parallel or series-parallel other than series.
  • the battery module 10 is described as having one battery cell 1, but two or more battery cells 1 are connected in series, parallel, or series-parallel. It does not matter.
  • the electrode having the highest potential and the electrode having the lowest potential are taken out from the electrode terminal 31. Between the electrode terminals 31, the voltage is high or a large current flows. Therefore, when the battery module 10 is replaced, the assembled battery management device 20 switches the switch 30 when the state of the assembled battery system 50 satisfies a predetermined condition so that a high voltage or a large current is not erroneously output. Turn on (connected). In FIG. 1, description of control lines connecting the assembled battery management device 20 and the switch 30 is omitted.
  • the predetermined condition is, for example, a case where the cell voltage difference of the battery cell 1 falls within a predetermined range with respect to another assembled battery system 50 (not shown) that connects the electrode terminals 31 to each other. .
  • the electric current which flows into the assembled battery system 50 with a low voltage from the assembled battery system 50 with a high voltage can be made small, and it can prevent that an excessive charging current and discharge current flow into the battery cell 1.
  • the assembled battery management device 20 includes an external communication interface terminal 32, and may transfer battery information to an external system (not shown) or receive a monitoring control request or monitoring control information from the external system. Good.
  • the battery module 10 includes a battery cell (BC) 1, a battery information acquisition unit (BIA) 2, a storage unit (Memory) 3, a communication unit (COMM) (wireless communication unit) 4, and an antenna 5.
  • a battery cell (BC) 1 is a secondary battery such as a lithium ion battery, for example.
  • the battery information acquisition unit (BIA) 2 includes a microcomputer, and has a function of measuring battery voltage, temperature, and the like of the battery cell 1 based on the monitoring control instruction information and acquiring battery information.
  • the storage unit (Memory) 3 stores battery information acquired by the battery information acquisition unit (BIA) 2, monitoring control instruction information, a communication mode, and the like.
  • the communication unit (COMM) 4 has a function of transmitting the acquired battery information to the assembled battery management device 20 and receiving monitoring control instruction information from the assembled battery management device 20.
  • the antenna 5 transmits and receives a signal for performing wireless communication with the antenna 25 of the assembled battery management device 2.
  • FIG. 2A is an external perspective view of the housing 41 with the housing opening / closing portion 40 opened
  • FIG. 2B is an external perspective view of the housing 41 with the housing opening / closing portion 40 closed
  • (C) is an external perspective view when the assembled battery system 50 is connected in parallel
  • (d) is a cross-sectional view taken along line AA of (c).
  • FIG. 2 shows an example in which eight battery modules 10 are housed in the housing 41 and the assembled battery management device 20 is installed in the upper part inside the housing 41.
  • the battery module 10 and the assembled battery management device 20 are stored and taken out with the casing opening / closing part 40 opened.
  • the casing 41 is formed of a conductor such as metal.
  • casing 41 may be formed with the grid
  • FIG. 2B in the state where the casing opening / closing part 40 is closed, the radio signal does not leak to the outside and the radio signal interference of an external system (not shown) is not received. Good communication quality is realized.
  • the electrode terminal 31 is disposed outside the housing 41 as shown in FIG. If the gap between the housing 41 and the electrode is made sufficiently smaller than the wavelength used for wireless communication, a wireless signal leaks to the outside in the state where the housing opening / closing section 40 is closed, or an external system (not shown) No longer receive radio signal interference.
  • the assembled battery system 50 housed in the housing 41 may be operated by two or more units as shown in FIG. Note that the number of battery modules 10 stored in the housing 41 is not limited to eight, and may be smaller or larger than eight depending on the application to be applied.
  • the assembled battery system 50 is formed by connecting the battery modules 10 in series, and includes an electrode terminal 31 on the highest potential electrode and the lowest potential electrode.
  • the assembled battery management device 20 of the assembled battery system 50 controls the on / off of the switch 30 installed at the highest potential electrode position and the lowest potential electrode position inside the housing 41.
  • the casing 41 may be provided with a display unit (not shown) such as an LED for notifying the failure of the assembled battery system 50.
  • a display unit such as an LED for notifying the failure of the assembled battery system 50.
  • the display unit is turned off or turned on at the time of failure, and the assembled battery system 50 including the failed battery module 10 can be easily found during maintenance.
  • you may provide display parts (not shown), such as LED which notifies the failure of the battery module 10. FIG. By doing so, the display unit is turned off at the time of failure, so that the failed battery module 10 can be easily found from among the many battery modules 10 during maintenance.
  • FIG. 3A represents a flowchart
  • FIG. 3B represents the type of communication mode.
  • the case opening / closing unit 40 is opened for replacement, addition, or reduction of the battery module 10 when maintaining the assembled battery system 50.
  • confirmation of the external appearance of the battery module 10 and the assembled battery management device 20 acquisition of information related to the battery cell 1 other than the battery information acquired during operation, and a state in which the assembled battery system 50 is in a desired environment
  • the battery information is acquired and the operation is confirmed.
  • a predetermined load is connected to the assembled battery system 50 to check whether the discharge current is within a predetermined range, or a predetermined voltage source is connected to check whether the charging current is within the predetermined range.
  • a predetermined load is connected to the assembled battery system 50 to check whether the discharge current is within a predetermined range
  • a predetermined voltage source is connected to check whether the charging current is within the predetermined range.
  • step S301 of FIG. 3A when the casing opening / closing unit 40 changes from a closed state during operation to an opened state during maintenance, the opening / closing detection unit 22 indicates that the casing opening / closing unit 40 has been opened.
  • the notification information indicating that the casing opening / closing unit 40 is “open (open state)” is transmitted to the control unit 21.
  • the battery module 10 does not directly detect that the casing opening / closing unit 40 is “open”, but is notified from the assembled battery management device 20.
  • step S ⁇ b> 302 the control unit 21 receives the “open” notification information, turns off (cuts) the switch 30, and disconnects the connection between the electrode terminal 31 and the battery module 10.
  • maintenance work can be appropriately performed without worrying about connection with an external system (not shown) connected to the electrode terminal 31.
  • step S303 the control unit 21 performs a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the operation mode to the maintenance mode using the normal sequence of the operation mode. Specifically, since the battery module 10 does not directly detect that the housing opening / closing unit 40 is “open”, the control unit 21 switches the communication mode from the operation mode to the battery module 10 using the operation mode. Transfer instruction information for shifting to the maintenance mode is transmitted.
  • the operation mode (second communication mode) is a communication mode used during an operation in which the casing opening / closing unit 40 is “closed”.
  • the maintenance mode (first communication mode) is a communication mode used during maintenance when the casing opening / closing unit 40 is “open”.
  • the operation mode uses only the preset first frequency channel in the normal sequence.
  • the second frequency channel is used in addition to the first frequency channel.
  • the maintenance mode in the normal sequence, wireless communication is performed while sequentially changing predetermined frequency channels.
  • the same data is transmitted a plurality of times in the communication period T at a frequency higher than that of the normal sequence. Details of the operation mode and the maintenance mode will be described later.
  • step S304 the control unit 21 determines whether or not the process of step S303 is successful.
  • success is a case where the control unit 21 receives response information from the battery module 10 within a predetermined period. If it is determined that the process has succeeded (Yes in step S304), the process proceeds to step S308. If it is determined that the process has not been successful for a predetermined period (No in step S304), the process proceeds to step S305. Note that the battery module 10 shifts to the operation mode retransmission sequence if the wireless communication remains interrupted for a predetermined period in the normal sequence of the operation mode.
  • step S305 the control unit 21 executes the operation mode retransmission sequence and continues the process of shifting the communication mode between the assembled battery management apparatus 20 and the battery module 10 from the operation mode to the maintenance mode.
  • step S306 the control unit 21 determines whether or not the process of step S305 is successful. If it is determined that the process has succeeded (Yes in step S306), the process proceeds to step S308. If it is determined that the process has not been successful for a predetermined period (No in step S306), the process proceeds to step S307. Note that the battery module 10 shifts to the maintenance mode retransmission sequence if the wireless communication remains interrupted for a predetermined period in the operation mode retransmission sequence.
  • step S307 the control unit 21 executes a maintenance mode retransmission sequence, and executes a process of shifting the communication mode between the assembled battery management apparatus 20 and the battery module 10 from the operation mode to the maintenance mode.
  • step S308 since the battery module 10 has already shifted to the maintenance mode, the control unit 21 performs wireless communication in the maintenance mode and collects battery information from the battery module 10.
  • the reason why the operation mode and the maintenance mode are set as shown in FIG. 3B will be described.
  • the casing opening / closing part 40 is “closed”, the fluctuation of the standing wave due to the signal interference from the outside and the fluctuation of the reflection condition of the electromagnetic wave is small. That is, when the casing opening / closing unit 40 is in the “closed” state, the standing wave generated inside the casing 41 is fixed, and thus the influence on the frequency channel is fixed. Therefore, in the operation mode, even if wireless communication is performed with the frequency channel fixed, the probability that wireless communication will fail is low. Therefore, as shown in FIG. 3B, in the normal sequence of the operation mode, wireless communication is performed using only the first frequency channel set in advance. Further, in the operation mode retransmission sequence, the first frequency channel and the second frequency channel are used.
  • the propagation environment in the maintenance mode is that the case opening / closing unit 40 is in the “open” state, and therefore, it receives interference from external radio waves or is reflected by electromagnetic waves reflected by a maintenance person who performs maintenance or a wall. It is less stable than the propagation environment of the operation mode by generating a new standing wave. Therefore, as shown in FIG. 3B, in the normal sequence of the maintenance mode, wireless communication is performed while changing a predetermined frequency channel in order. In the retransmission sequence in the maintenance mode, the same data is transmitted a plurality of times during the communication period T at a frequency higher than that in the normal sequence.
  • the communication cycle T is shortened at a high data rate, redundancy and Ack reply are omitted, the amount of battery information to be collected is increased, and the function of the assembled battery system 50 is maximized.
  • the communication cycle T is lengthened at a data rate relatively lower than that in the operation mode, redundancy is provided, an Ack reply is executed, and the amount of battery information to be collected is minimized.
  • the success rate of communication is increased and maintenance work is performed efficiently.
  • the operation mode since there is no interference from the outside, carrier sense is not performed before transmission, communication is performed in a time-sharing manner at a preset timing, and the battery cell 1 is measured with respect to a plurality of battery modules 10.
  • the effective communication speed is increased by broadcasting the instructed supervisory control instruction information.
  • the measurement times of the cell voltages, temperatures, and the like of each battery cell 1 are made substantially the same by broadcast communication of the monitoring control instruction information. The reason is that it is easy to grasp the variation (individual difference) of the battery cells 1 by acquiring the cell voltage and temperature under the same charge / discharge state.
  • the failure determination period until it is determined that the communication unit 4 of the battery module 10 is failed may be varied depending on the communication mode.
  • the failure determination period in the operation mode is set shorter than the failure determination period in the maintenance mode. This is because the probability of communication failure is lower in the operation mode (the case where the casing opening / closing unit 40 is “closed”).
  • the failure may be notified to the external system through the external communication interface terminal 32 before the influence on the other assembled battery systems 50 connected to each other expands.
  • step S301 in FIG. 3 There are two types of detection means for the opening / closing detection unit 22: when detecting that the casing opening / closing unit 40 is unlocked, and when detecting “open” of the casing opening / closing unit 40.
  • the battery pack management device 20 detects the battery module 10 before the casing opening / closing unit 40 opens and the propagation environment changes.
  • the transition instruction information from the operation mode to the maintenance mode can be output. Therefore, wireless communication in the operation mode is almost successful. Therefore, it is determined as “success” in step S304, and the degree (possibility) that the process proceeds to step S308 is high.
  • the assembled battery management device 20 When the open / close detection unit 22 detects “open” of the case opening / closing unit 40, the assembled battery management device 20 operates on the battery module 10 after the case opening / closing unit 40 opens and the propagation environment changes. Transition instruction information from the mode to the maintenance mode is issued. For this reason, there is a possibility that the degree (possibility) of failure in wireless communication may be higher than in the case of unlocking due to external interference or standing wave fluctuation. Therefore, if it is not determined as “success” in step S304, first, a retransmission sequence of the operation mode is executed as in step S305.
  • step S307 by executing the maintenance mode retransmission sequence, it is possible to cope with the influence of external interference and fluctuating standing waves. Therefore, if the communication unit 4 of the battery module 10 is not faulty, it is predetermined. The wireless communication succeeds before the period elapses.
  • the battery module 10 can also detect the opening / closing of the housing opening / closing unit 40 (when it includes an opening / closing detection unit), it is necessary to instruct the battery module 10 to switch the communication mode from the assembled battery management device 20. Absent. In this case, the battery module 10 may be shifted similarly to the communication mode of the assembled battery management device 20.
  • the battery module 10 includes, for example, a function of observing the received signal strength, so that when the received signal strength is changed, it can be detected that the housing opening / closing unit 40 is opened.
  • FIG. 4A shows an example of a normal sequence
  • FIG. 4B shows an example of a retransmission sequence
  • FIG. 4C shows an example of frequency channel setting.
  • FIG. 4 illustrates a case where communication is performed between the assembled battery management device 20 and two battery modules 10 (hereinafter referred to as A and B).
  • FIG. 4A shows a case where the wireless communication in the operation mode is successful.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information to the battery modules A and B using the first frequency channel (indicated as A ch.).
  • the monitoring control instruction information is, for example, information that instructs measurement of the cell voltage, temperature, etc. of the battery cell 1.
  • Each of the battery modules A and B that have received the monitoring control instruction information performs measurement to acquire battery information, and transmits the result to the assembled battery management device 20 using the first frequency channel. If these transmission timings are set in advance, communication between the battery modules A and B will not collide.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information at the communication cycle T, and collects battery information at a predetermined cycle (including a fixed cycle). Depending on the driving situation, the battery control information may be collected by transmitting the monitoring control instruction information to the event driven.
  • FIG. 4B shows a case where the wireless communication using the normal sequence fails and shifts to the retransmission sequence.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information to all the battery modules A and B using the first frequency channel (indicated as A ch.) In the communication cycle T1.
  • the battery module B cannot receive the supervisory control instruction information (in FIG. 4 (b), x mark and broken line display). Therefore, the assembled battery management device 20 cannot receive battery information (response information) from the battery module B, and thus recognizes that wireless communication has failed. Further, the battery module B also recognizes that the wireless communication has failed because the monitoring control instruction information cannot be received from the assembled battery management device 20 during the communication cycle T1.
  • the second frequency channel (for the battery module B that has failed in wireless communication of the first frequency channel)
  • the monitoring control instruction information is individually transmitted using C ⁇ ⁇ ch. (Refer to FIG. 4C).
  • the communication sequence of this communication cycle T2 is the operation mode retransmission sequence.
  • the battery module B that has received the monitoring control instruction information using the second frequency channel transmits the battery information to the assembled battery management device 20 using the second frequency channel. In this way, the success probability of wireless communication can be increased.
  • the battery module B can receive the broadcast using the first frequency channel
  • the propagation environment changes before the battery information is returned
  • the assembled battery management device 20 cannot receive the battery information of the battery module B. is assumed. This case is the same as the state of the communication cycle T1 in FIG. 4B in that the assembled battery management device 20 cannot receive the battery information of the battery module B. Therefore, the assembled battery management device 20 starts communication using the second frequency channel in addition to the first frequency channel from the next communication cycle T2.
  • the battery module B can receive not only the second frequency channel but also the broadcast of the first frequency channel in the communication cycle T2, the battery module B sends the battery information to the assembled battery management device 20 using the first frequency channel. Send it.
  • the assembled battery management apparatus 20 can recognize that the battery module B can receive the broadcast of the first frequency channel again, and can return the communication mode to the normal sequence.
  • the second frequency channel is also added to the first frequency channel. To perform the receiving operation. However, when the battery module 10 loses sight of the communication cycle T, the battery module 10 may continue the reception operation on the second frequency channel and wait for the assembled battery management device 20 to transmit on the second frequency channel.
  • FIG. 4C shows an example of frequency channel setting.
  • the same frequency channel is used for all battery modules 10, and therefore the first frequency channel is a common A ch.
  • the frequency channel with the optimum communication quality is different for each battery module 10. Therefore, the first frequency channel is determined by selecting a frequency channel that does not have an insufficient received signal strength for any battery module 10.
  • the second frequency channel is used for each battery module 10, it is determined by selecting a frequency channel that provides optimum communication quality for each battery module 10. For example, when a frequency channel defined in IEEE 802.15.4 is used, the first frequency channel is set to a frequency channel having a center frequency of 2405 MHz (A ch.) Common to all battery modules 10. .
  • the second frequency channel may be set to 2450 MHz (B (ch.) For the battery module A, 2470 MHz (C ch.) For the battery module B, or the like.
  • FIG. 5A shows a normal sequence example
  • FIG. 5B shows a retransmission sequence example
  • FIG. 5C shows a frequency channel setting example.
  • FIG. 5 shows a case where communication is performed between the assembled battery management device 20 and two battery modules 10 (hereinafter referred to as A and B).
  • FIG. 5A shows a case where the wireless communication in the maintenance mode is successful.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information to the battery modules A and B using the first frequency channel (denoted as C ch.) In the predetermined order of the frequency channels.
  • Each of the battery modules A and B that have received the monitoring control instruction information performs measurement to acquire battery information, and transmits the battery information to the assembled battery management device 20 using the received frequency channel. If these transmission timings are set in advance, communication between the battery modules A and B will not collide.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information at the communication cycle T, and collects battery information at a predetermined cycle (including a fixed cycle).
  • the assembled battery management device 20 performs wireless communication using the second frequency channel (denoted E ch.). In this way, the assembled battery management device 20 performs wireless communication while changing the frequency channel for each communication cycle T.
  • the battery control information may be collected by transmitting the monitoring control instruction information to the event driven.
  • FIG. 5B shows a case where the wireless communication by the normal sequence fails and shifts to the retransmission sequence. Note that the length of the communication periods T1 and T2 in FIG.
  • the assembled battery management device 20 broadcasts the monitoring control instruction information to all the battery modules A and B using the first frequency channel (denoted as C ch.) In the communication cycle T1.
  • the battery module B cannot receive the supervisory control instruction information (in FIG. 5 (b), x mark and broken line display). Therefore, the assembled battery management device 20 cannot receive battery information (response information) from the battery module B, and thus recognizes that wireless communication has failed. Further, the battery module B also recognizes that the wireless communication has failed because the monitoring control instruction information cannot be received from the assembled battery management device 20 during the communication cycle T1.
  • the battery module B In the next communication cycle T2, in addition to broadcasting using the third frequency channel (denoted E ch.) Of a preset retransmission sequence (see FIG. 5C), the battery module B The monitoring control instruction information is individually transmitted using the fourth frequency channel (denoted as F ch.) Of the retransmission sequence.
  • the communication sequence of this communication cycle T2 is a maintenance mode retransmission sequence.
  • the battery module B transmits battery information to the assembled battery management device 20 using the frequency channel (denoted as F ch.) That has been successfully received. In this way, the success probability of wireless communication can be increased.
  • the fourth frequency channel F ch. Is the second frequency in the operation mode when the third frequency channel E ch. Is regarded as the first frequency channel in the operation mode, as shown in FIG. It corresponds to a channel.
  • the frequency channel with a high probability of failing in wireless communication changes. Therefore, in the retransmission sequence, the success probability of wireless communication can be increased by transmitting the same data a plurality of times within the communication period T while changing the frequency channel.
  • the frequencies of the frequency channels may be used in a sufficiently separated order. For example, in an environment in which a wireless LAN (Local Area Network) system exists outside, frequency channels separated from the wireless LAN signal band of about 20 MHz are set in order. For example, as shown in FIG.
  • frequency channels C ch., D ch., E ch., F ch., G ch., H ch., ... are respectively set to 2405MHz, 2445MHz, 2470MHz, 2430MHz. , 2435MHz, 2475MHz, and so on.
  • the battery module 10 In the retransmission sequence in the maintenance mode, when the battery module 10 can receive a part of the radio signal from the assembled battery management apparatus 20 and can maintain the communication cycle T, the battery module 10 receives the frequency channel in order according to the communication cycle T. Perform the action. However, when the battery module 10 loses sight of the communication cycle T, the battery module 10 continues the reception operation on the predetermined frequency channel and waits for the radio signal of the frequency channel to be transmitted from the assembled battery management device 20.
  • the case opening / closing unit 40 is closed after maintenance of the assembled battery system 50, replacement, addition, removal of the battery module 10, and initial assembly of the assembled battery system 50. At that time, there is a possibility that the propagation environment inside the housing 41 has changed due to maintenance, replacement of the battery module 10, or the like. Therefore, it is necessary to update the frequency channel in the operation mode. Further, when the assembled battery system 50 is initially assembled, a frequency channel for the operation mode is newly set.
  • the frequency channel in the operation mode it is preferable to update the frequency channel in the operation mode even when the probability of failure in wireless communication in the operation mode increases due to deformation of the casing 41 or the like.
  • the propagation environment periodically changes with time, it is preferable to update the frequency channel in the operation mode in this cycle. Note that the maintenance mode does not need to be changed in particular because the frequency channel is determined so as to be able to cope with a large variation in the propagation environment.
  • step S ⁇ b> 601 the open / close detection unit 22 detects that the casing opening / closing unit 40 is “closed (closed state)”, and the casing opening / closing unit 40 is “closed”. Notification information indicating this is transmitted to the control unit 21. However, the battery module 10 does not directly detect that the casing opening / closing unit 40 is “closed”, but is notified from the assembled battery management device 20. In step S602, the control unit 21 transmits instruction information for measuring the received signal strength in the maintenance mode in order to reset the frequency channel of the operation mode in the battery module 10.
  • step S603 the control unit 21 transmits a test signal while changing a predetermined frequency channel. Then, the battery module 10 measures the received signal strength of the received test signal. The frequency channels of the test signal are used in a predetermined order. In step S604, the control unit 21 completes transmission of all test signals.
  • step S605 the control unit 21 collects the measurement results of the received signal strength from the battery module 10 using the maintenance mode. And the control part 21 determines the 1st frequency channel and 2nd frequency channel of the battery module 10 based on the measurement result of the received signal strength collected from each battery module 10.
  • step S ⁇ b> 606 the control unit 21 executes a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the maintenance mode to the operation mode.
  • step S607 the control unit 21 collects battery information from each battery module 10 using the operation mode.
  • step S608 the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. Then, the assembled battery system 50 starts.
  • the assembled battery system 50 acquires the battery information of the battery cell 1 in both the opened state and the closed state of the casing opening / closing unit 40 of the casing 41 that houses the assembled battery system 50. can do. Moreover, since the battery module 10 suitable for a maintenance site can be selected while acquiring battery information at the time of maintenance or replacement of the battery module 10, man-hours for maintenance and replacement can be reduced. In addition, since the battery information can be obtained while the battery module 10 is being maintained or replaced, the cell voltage of the replaced battery module 10 is substantially equal to the cell voltage of the other battery modules 10 in the assembled battery system 50. In addition, it can be adjusted during replacement work.
  • the battery module 10 can be operated while acquiring battery information during maintenance or replacement, the battery information is confirmed before connecting the assembled battery systems 50 to each other, and the battery module 10 is in a connectable state (as described above). It is possible to prevent the excessive charging current or discharging current from flowing into the battery module 10 by turning on the switch 30 only in the case of the condition).
  • battery information for management and shipment inspection of the battery module 10 stored for maintenance, replacement, and assembly can be acquired wirelessly, storage, management, and shipment inspection of the battery module 10 are facilitated.
  • the reply of Ack is omitted in order to increase the number of times of collecting battery information.
  • the communication cycle T becomes long. Therefore, the assembled battery management device 20 may return Ack when the battery information is received so that the retransmission sequence can be quickly performed.
  • the battery module 10 cannot receive the Ack reply, it can recognize that the communication has failed during the communication period T, and can immediately execute the retransmission sequence from the next communication period T.
  • step S605 of FIG. 6 it has been described that the reception signal strength measurement results corresponding to all the test signals are collected together. However, the received signal strength measurement results may be collected every time the test signal is transmitted. In this case, the order of the frequency channels of the test signal used in step S603 may be used first from the one used in the previous operation mode. By doing so, when the change in the propagation environment is small, the first frequency channel and the second frequency channel may be determined by a small number of test signals. In the operation mode retransmission sequence, the first frequency channel and the second frequency channel are used. However, three or more frequency channels may be used.
  • the assembled battery system 50a of the second embodiment has an antenna 6 added to the battery module 10a as shown in FIG. The difference is that an antenna 26 is added to 20a.
  • symbol is attached
  • the battery module 10 a includes an antenna 5 and an antenna 6.
  • the assembled battery management device 20 a includes an antenna 25 and an antenna 26.
  • the antennas 5, 6, 25, and 26 may have various configurations.
  • the antennas may be rod-shaped, coil-shaped, plate-shaped, or printed circuit board conductor patterns.
  • the antenna 5 (25) and the antenna 16 (26) are used differently depending on the operation mode and the maintenance mode.
  • the antenna 5 (25) is used in the operation mode
  • the antenna 6 (26) is used in the maintenance mode.
  • the battery module 10 may use the antenna 5 in the operation mode, use the antenna 6 in the maintenance mode, and the assembled battery management device 20 may use both the antennas 25 and 26 in the operation mode and the maintenance mode.
  • the battery module 10 may use both the antennas 5 and 6 in the operation mode and the maintenance mode, and the assembled battery management apparatus 20 may use the antenna 25 in the operation mode and the antenna 26 in the maintenance mode.
  • the influence of the standing wave depends on the position in the housing 41.
  • the usage of the antennas 5 and 6 is stored in the storage unit 3 of the battery module 10.
  • the usage of the antennas 25 and 26 is stored in the storage unit 23 of the assembled battery management device 20.
  • FIG. 8A shows an external perspective view of the assembled battery system 50
  • FIG. 8B shows another antenna shape of the battery module 10a.
  • eight battery modules 10 a are housed inside the housing 41.
  • the assembled battery management device 20 a is installed on the inner upper side of the housing 41.
  • the assembled battery management device 20 a includes an antenna 25 and an antenna 26.
  • the battery module 10 a includes an antenna 5 and an antenna 6.
  • the positions of the antenna 5 (25) and the antenna 6 (26) are preferably separated by a half wavelength or more so as to easily reduce the influence of standing waves.
  • the antenna 5 (25) and the antenna 6 (26) may have different shapes.
  • an LED may be used instead of the antennas 5 (25) and 6 (26). In that case, the range which light reaches can be adjusted by changing direction of LED and installing.
  • the antennas 25 and 26 of the assembled battery management device 20a may be installed on the inner wall of the housing 41 in order to expand the communication range. Further, the antennas 5 and 6 of the battery module 10a may be installed on different side surfaces of the casing of the battery module 10a in order to expand the communication range.
  • FIG. 8B shows a state in which the antenna 5 and the antenna 6 are provided on the same surface of the battery module 10a.
  • FIG. 9A shows a flowchart
  • FIG. 9B shows a communication mode type and channel setting example.
  • the flowchart in FIG. 9A is different from the flowchart in FIG. 6 in that a combination of a frequency channel and an antenna is used.
  • the combinations of frequency channels and antennas for example, as shown in the lower table of FIG. 9B, the first combination and the second combination are preset for each battery module 10 in the operation mode. .
  • the communication mode is shown in the upper table of FIG.
  • the first combination is used.
  • the second combination is used in addition to the first combination.
  • both antennas are used while sequentially changing a predetermined frequency channel.
  • the same data is transmitted a plurality of times during the communication period T at a communication frequency higher than that of the normal sequence using both antennas.
  • step S ⁇ b> 901 the opening / closing detection unit 22 detects that the housing opening / closing unit 40 is in a “closed” state, and notifies the control unit 21 that the housing opening / closing unit 40 is “closed”. Send.
  • the battery module 10 does not directly detect that the casing opening / closing unit 40 is “closed”, but is notified from the assembled battery management device 20.
  • step S902 the control unit 21 transmits instruction information for measuring the received signal strength in the maintenance mode in order to reset the combination of the frequency channel and the antenna in the operation mode in the battery module 10.
  • step S903 the control unit 21 transmits the test signal while changing the combination of the frequency channel and the antenna. Then, the battery module 10 measures the received signal strength of the received test signal. The frequency channels of the test signal are used in a predetermined order. In step S904, the control unit 21 completes transmission of all test signals.
  • step S905 the control unit 21 collects the measurement results of the received signal strength from the battery module 10 using the maintenance mode. Then, based on the measurement result of the received signal strength collected from each battery module 10, the control unit 21 combines the first frequency channel and antenna combination (first combination), the second frequency channel and the antenna of the battery module 10. A combination (second combination) is determined.
  • step S ⁇ b> 906 the control unit 21 performs a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the maintenance mode to the operation mode.
  • step S907 the control unit 21 collects battery information from each battery module 10 using the operation mode.
  • step S908 the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. Then, the assembled battery system 50 starts.
  • a common frequency channel and antennas 5 and 6 are used for all battery modules 10.
  • the combination of the optimal frequency channel for each battery module 10 and the antennas 5 and 6 is different, the combination of the frequency channel and the antennas 5 and 6 that does not provide an insufficient received signal strength for any battery module 10 is selected.
  • the second combination is used for performing wireless communication for each battery module 10. Therefore, the optimal combination of the frequency channel and the antennas 5 and 6 for each battery module 10 is set as the second combination.
  • the antennas 25 and 26 of the battery pack management apparatus 20 may be used when sufficient received signal strength is given to the battery module 10.
  • either one of the antenna 5 and the antenna 6 of the battery module 10 may be used, or the received signal may be added using both. At that time, weighting may be performed according to the received signal strength, or the phase difference of the signals received by the antenna 5 and the antenna 6 may be compensated and added.
  • the assembled battery system 50 acquires the battery information of the battery cell 1 in both the opened state and the closed state of the casing opening / closing unit 40 of the casing 41 that houses the assembled battery system 50. can do. Also, by properly using two antennas, the wireless communication quality can be improved and the success rate of communication can be increased as compared with the case of one antenna.
  • the maintenance system 51 includes an assembled battery system 50, a maintenance terminal 60 operated by a maintenance person, and a replacement battery module 10b.
  • the assembled battery system 50, the maintenance terminal 60, and the replacement battery module 10b will be described with respect to a case in which exchange work is performed to replace the replacement battery module 10b with a failed battery module 10 while performing wireless communication with each other.
  • the assembled battery system 50 included in the maintenance system 51 of the third embodiment is the same as the assembled battery system 50 of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the replacement battery module 10b is the same as the battery module 10 incorporated in the assembled battery system 50, and thus the description thereof is omitted.
  • the maintenance terminal 60 includes a control unit (CTRL) 61, an input / output interface (I / F) 62, a storage unit (Memory) 63, a communication unit (COMM) 64, and an antenna 65.
  • the control unit 61 includes a CPU and a main memory or a microcomputer, and has a function of controlling the communication unit 64, the storage unit 63, and the input / output interface 62, and controlling the flow of information between the units 62 to 64.
  • the input / output interface 62 is a battery module ID list (battery module ID information) 131 in which battery information of the battery module 10 and ID information (identification information) of the battery module 10 stored in the assembled battery system 50 are described (see FIG. 13).
  • the ID information of the replacement battery module 10b is input / output from / to an external device (not shown).
  • the storage unit 63 stores battery information of the battery module 10, a battery module ID list 131, and the like.
  • the communication unit 64 has a function of generating a wireless signal for wireless communication.
  • the antenna 65 has a function of transmitting and receiving radio signals to and from the assembled battery management device 20 and the replacement battery module 10b.
  • the input / output interface 62 transmits instruction information to the assembled battery management device 20 in accordance with the replacement work in order to specify the battery module 10 or replacement battery module 10b to be removed by a maintenance person who performs maintenance or replacement of the battery module 10. Or a function for inputting / outputting information when checking the exchange result.
  • an input / output device such as a liquid crystal display, a keyboard, operation buttons, and a touch panel display is connected to the input / output interface 62.
  • information other than the battery information collected during operation may be collected using the maintenance terminal 60.
  • usage history information such as the transition of the remaining charge amount of the battery cell 1, the number of charge / discharge cycles, and time is accumulated in the storage unit 3 of the battery module 10. Then, during maintenance, the maintenance terminal 60 transmits instruction information for instructing collection of usage history information to the assembled battery management device 20, and the usage history information is acquired via the assembled battery management device 20. Since the usage history information can clarify the characteristics and the like of the battery module 10, it is referred to when the battery module 10 is used in the assembled battery system 50.
  • the maintenance terminal 60 can easily acquire information on the battery cell 1 that is necessary in various scenes such as manufacture, distribution, use, and disposal of the battery module 10. Thereby, the maintenance terminal 60 can be used for inventory management of the battery module 10 or for shipping inspection.
  • FIG. 11 shows a perspective view of the maintenance system 51 in the third embodiment.
  • the maintenance terminal 60 is, for example, a terminal having a cross key, operation buttons, a display unit, or a tablet terminal having a touch panel display, like a mobile phone.
  • FIG. 12 shows an example of a replacement process flow of the battery module 10 in the third embodiment (see FIG. 10 as appropriate).
  • the maintenance terminal 60 performs wireless communication with the replacement battery module 10b and the assembled battery management device 20, and collects battery information. At this time, wireless communication is performed by polling. In addition, it is preferable that the maintenance terminal 60 performs carrier sense before transmission so as not to prevent wireless communication between the assembled battery management device 20 and the battery module 10.
  • step S1202 the maintenance terminal 60 identifies the battery module 10 to be removed based on the battery information collected from the assembled battery management device 20, and updates the battery module ID list 131 stored in the assembled battery management device 20.
  • the update of the battery module ID list 131 is to delete the ID information of the battery module 10 to be removed and add the ID information of the replacement battery module 10b to be attached instead.
  • the assembled battery management apparatus 20 recognizes that it is necessary to newly communicate with the replacement battery module 10b and acquire battery information.
  • step S1203 the maintenance terminal 60 transmits instruction information with the assembled battery management device 20 as a communication destination to the replacement battery module 10b. Then, the replacement battery module 10b waits for information transmitted from the assembled battery management device 20.
  • step S1204 the assembled battery management device 20 transmits instruction information for stopping communication with the assembled battery management device 20 to the battery module 10 to be removed based on the stored battery module ID list 131. .
  • step S1205 the assembled battery management device 20 transmits instruction information for starting communication to the replacement battery module 10b.
  • the replacement battery module 10b returns the response information
  • communication can be performed between the assembled battery management device 20 and the replacement battery module 10b.
  • the assembled battery management device 20 may acquire the battery information of the replacement battery module 10b as response information.
  • the maintenance terminal 60 may wirelessly communicate with the removed battery module 10 and confirm whether or not the battery module 10 is definitely removed.
  • step S1206 the maintenance work is completed, and the opening / closing detection unit 22 detects that the housing opening / closing unit 40 changes from the “open” state to the “closed” state.
  • step S1207 the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. And the assembled battery system 50 starts an operation
  • FIG. 13 shows an example of the battery module ID list 131.
  • the battery module ID list 131 stores a battery module name 132, an ID 133, and a flag 134 in association with each other.
  • the battery module name 132 is the name of the battery module 10.
  • ID 133 is ID information (identification information) for identifying the battery module.
  • the flag 134 indicates information indicating whether or not the wireless communication target. For example, since the battery module A is continuously used, the flag 134 column is set to “0”. Since the battery module B is removed, the flag 134 column is set to “1 (removed)”. Since the battery module C is newly installed, the flag 134 column is set to “2 (newly installed)”.
  • the assembled battery management apparatus 20 stops communication with the battery module B when the flag 134 is “1 (removal)”. And the assembled battery management apparatus 20 deletes the line of the battery module B of the battery module ID list
  • FIG. 14 shows a communication sequence example in the third embodiment.
  • the same reference numerals are used for the same processing portions as those in the processing flow shown in FIG. 12.
  • the battery module 10 to be removed is described as the battery module B.
  • the communication periods T1, T2, T3, and T4 are all equal to the communication period T.
  • the replacement battery module 10b is described as a battery module C.
  • the assembled battery management device 20 wirelessly communicates with the battery module A and the battery module B, and collects battery information at the communication cycle T1.
  • the maintenance terminal 60 performs wireless communication with the assembled battery management device 20 and the battery module C (replacement battery module 10b) while the assembled battery management device 20 is not performing wireless communication, and collects battery information. (S1201). Note that either the communication between the maintenance terminal 60 and the assembled battery management device 20 or the communication between the maintenance terminal 60 and the battery module C (replacement battery module 10b) may be performed first.
  • the maintenance terminal 60 updates the battery module ID list 131 stored in the assembled battery management device 20 (S1202). And the maintenance terminal 60 transmits the instruction information which makes the assembled battery management apparatus 20 a communication destination with respect to the battery module C (replacement battery module 10b). (S1203). Note that either of the processes of S1202 and S1203 may be performed first.
  • the assembled battery management device 20 transmits instruction information for stopping communication with the assembled battery management device 20 to the battery module B to be removed (S1204).
  • the battery module B to be removed returns response information together with the battery information (S1301).
  • the assembled battery management device 20 transmits instruction information for starting communication to the battery module C (replacement battery module 10b), and the battery module C returns response information (S1205).
  • the maintenance terminal 60 may wirelessly communicate with the removed battery module B and confirm whether or not the battery module B is definitely removed (S1302).
  • the assembled battery management device 2 collects battery information from the battery module A and the battery module C.
  • the battery module 10 can be replaced while collecting battery information by wireless communication. That is, the maintenance system 51 can select a replacement battery module 10b that is close to the cell voltage of another battery module 10 in the assembled battery system 50. Further, since the battery system can acquire the battery information during the replacement work, the maintenance system 51 allows the cell voltage of the replacement battery module 10b to be almost equal to the cell voltage of the other battery modules 10 in the assembled battery system 50. Can be adjusted. In addition, since the battery information of the battery module 10 removed from the assembled battery system 50 and the battery information of the replacement battery module 10b before being attached can be acquired on the spot, the maintenance system 51 can reduce maintenance and replacement man-hours.
  • the maintenance system 51 confirms the battery information before connecting the assembled battery systems 50 and is in a connectable state. Only the switch 30 connected to the electrode terminal 31 can be turned on to prevent an excessive charging current or discharging current from flowing into the battery module 10. Further, since the maintenance system 51 can acquire battery information for management and shipment inspection of the battery module 10 stored for maintenance, replacement, and assembly by wireless communication, the storage, management, and shipment inspection of the battery module 10 can be performed. It becomes easy.
  • the communication cycle T of wireless communication may be the same every time or may be a different length every time. Moreover, when the time after the assembled battery management apparatus 20 finishes collecting battery information is long, a plurality of step processes shown in FIGS. At this time, the frequency channel used for wireless communication may be changed in the order of arrangement set in advance in the maintenance mode.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • each configuration and function of the assembled battery management device 20, the control units 21 and 61, the battery information acquisition unit 2, and the like are realized by hardware by designing a part or all of them, for example, with an integrated circuit. Also good.
  • control parts 21 and 61 and the battery information acquisition part 2 may be implement
  • Information such as programs, tables, and files for realizing each function is stored in a memory, a recording device such as a hard disk or SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD (Digital Versatile Disc). be able to.
  • the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An assembled battery system (50) is provided with: a battery module (10), which is housed in a shielded housing, and which has a wireless communication section (2) that wirelessly transmits battery information of a battery cell (1); an assembled battery managing apparatus (20), which is housed in the housing with the battery module, and which acquires the battery information by changing communication mode corresponding to wireless propagation environment between the battery module (10) and the assembled battery managing apparatus; and the shielded housing (41) having the battery module (10) and the assembled battery managing apparatus (20) housed therein. The assembled battery managing apparatus (50) is provided with an open/close detecting section (22) that detects cases where the housing is open, and cases where the housing is closed, and in the cases where the housing is open, the assembled battery managing apparatus performs wireless communication with the battery module (10) in first communication mode, and in the cases where the housing is closed, the assembled battery managing apparatus performs wireless communication with the battery module (10) in second communication mode.

Description

組電池システムAssembled battery system
 本発明は、複数の電池セルで構成された組電池システムの監視制御と保守管理を無線により行う技術に関するものである。 The present invention relates to a technique for performing monitoring control and maintenance management of an assembled battery system composed of a plurality of battery cells wirelessly.
 近年、比較的小さい起電力の電池セル同士を直列に接続して、所要の高い電圧を得るように構成された組電池システムがいろいろな分野で使用されている。組電池システムを構成する電池セルの容量、充電状態および劣化状態は、使用している間にばらつきを生じる。そのばらつきは、電池セルの電圧を、充電時に過充電状態にさせたり、放電時に過放電状態にさせたりして、電池セル自身の性能を劣化させ、組電池システム全体の性能を著しく制限したりする。そのため、組電池システムでは、各電池セルの容量、充電状態および劣化状態等に関する電池情報を監視する必要がある。 In recent years, assembled battery systems configured to obtain a required high voltage by connecting battery cells with relatively small electromotive forces in series have been used in various fields. The capacity, charge state and deterioration state of the battery cells constituting the assembled battery system vary during use. The variation may cause the battery cell voltage to be overcharged during charging or overdischarged during discharge, thereby degrading the performance of the battery cell itself and significantly limiting the overall performance of the assembled battery system. To do. Therefore, in the assembled battery system, it is necessary to monitor battery information regarding the capacity, charge state, deterioration state, and the like of each battery cell.
 電池セルの電池情報を有線により取得する場合、電池セルに有線通信用のインタフェースを装備し、通信線を配する必要がある。そのため、組電池システムのコストが大きくなる。また、電池セルの交換や保守の際に、通信線を再接続する等の保守の工数が増加する。 When acquiring battery information of a battery cell by wire, it is necessary to equip the battery cell with an interface for wired communication and to arrange a communication line. Therefore, the cost of the assembled battery system increases. In addition, the maintenance man-hours such as reconnecting the communication line increase when the battery cell is replaced or maintained.
 下記に示す特許文献1には、複数の電池セルを直列接続して構成した組電池システムにおいて、電池セルの電池情報を無線により取得する技術が開示されている。また、特許文献1には、組電池システムをシールドケースに収容することによって、無線信号がシールドケース外部に漏れ出ないように抑制することが記載されている。 Patent Document 1 shown below discloses a technique for wirelessly acquiring battery information of battery cells in an assembled battery system configured by connecting a plurality of battery cells in series. Patent Document 1 describes that a radio signal is prevented from leaking outside the shield case by housing the assembled battery system in the shield case.
特開2010―142083号公報JP 2010-142083 A
 特許文献1では、組電池システムをシールドケースに収容した状態で、無線通信により電池セルの電池情報を収集することが記載されている。しかしながら、組電池システムの電池セルに異常(故障、劣化)が生じた場合には、シールドケースを開けた状態で、電池セルの電池情報を取得しつつ、異常となった電池セルを交換することになる。このとき、シールドケースが開いた状態となるため、無線信号の伝搬環境は、外部の電波から干渉を受けたり、保守を行う保守者や壁等から反射する電磁波により新たな定在波を発生させたりすることによって、激変する虞がある。 Patent Document 1 describes collecting battery information of battery cells by wireless communication in a state where the assembled battery system is housed in a shield case. However, when an abnormality (failure, deterioration) occurs in the battery cell of the assembled battery system, the battery cell in which the abnormality has occurred is replaced while the battery information of the battery cell is acquired with the shield case opened. become. At this time, since the shield case is in an open state, the propagation environment of the radio signal is caused by interference from external radio waves, or new standing waves are generated by electromagnetic waves reflected from maintenance personnel or walls performing maintenance. May cause drastic changes.
 また、交換する電池セルと交換しない電池セルとの間のばらつきを把握しないまま、シールドケースを閉じて組電池システムを作動させてしまった場合、作動を開始した直後に、いずれかの電池セルの性能を劣化させてしまう状態に陥ったり、組電池システムの性能を著しく制限したりする虞がある。 In addition, if the battery pack system is operated by closing the shield case without grasping the variation between the battery cell to be replaced and the battery cell not to be replaced, immediately after starting the operation, There is a possibility of falling into a state where the performance is deteriorated or significantly limiting the performance of the assembled battery system.
 そこで、本発明は、シールドケース(筐体)を開けた状態および閉じた状態の双方で、電池セルの電池情報を取得可能な組電池システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an assembled battery system that can acquire battery information of battery cells both in a state where a shield case (housing) is opened and in a closed state.
 前記した課題を解決するため、本発明に係る組電池システムは、シールドされた筐体に収納され、電池セルの電池情報を無線で送信する無線通信部を有する電池モジュールと、
 前記電池モジュールとともに前記筐体に収納され、前記電池モジュールとの間の無線の伝搬環境に対応して通信モードを変更して前記電池情報を取得する組電池管理装置と、
を備えることを特徴とする。
In order to solve the above-described problem, an assembled battery system according to the present invention is housed in a shielded casing, and includes a battery module having a wireless communication unit that wirelessly transmits battery information of battery cells;
An assembled battery management device that is housed in the housing together with the battery module, and acquires the battery information by changing a communication mode corresponding to a wireless propagation environment between the battery module;
It is characterized by providing.
 本発明によれば、シールドケース(筐体)を開けた状態および閉じた状態の双方で、電池セルの電池情報を取得可能な組電池システムを提供することができる。 According to the present invention, it is possible to provide an assembled battery system capable of acquiring battery information of battery cells both in a state where the shield case (housing) is opened and in a closed state.
第1実施形態における組電池システムの機能例を示す図である。It is a figure which shows the function example of the assembled battery system in 1st Embodiment. 組電池システムの形状例を示す図であり、(a)は筐体を開けた状態の外観斜視図を表し、(b)は筐体を閉めた状態の外観斜視図を表し、(c)は組電池システムを並列接続した場合の外観斜視図を表し、(d)は(c)のA-A線断面図を表す。It is a figure which shows the example of a shape of an assembled battery system, (a) represents the external appearance perspective view of the state which opened the housing | casing, (b) represents the external appearance perspective view of the state which closed the housing | casing, (c) is a figure. An external perspective view when the assembled battery systems are connected in parallel is shown, and (d) is a cross-sectional view taken along line AA in (c). 筐体の筐体開閉部を開けた時の通信モードの変更処理フロー例を示す図であり、(a)はフローチャートを表し、(b)は通信モードの種類を表す。It is a figure which shows the example of a communication mode change process flow when the housing | casing opening / closing part of a housing | casing is opened, (a) represents a flowchart and (b) represents the kind of communication mode. 運転モードの通信シーケンス例を示す図であり、(a)は通常シーケンス例を表し、(b)は再送シーケンス例を表し、(c)は周波数チャネル設定例を表す。It is a figure which shows the example of a communication sequence of an operation mode, (a) represents a normal sequence example, (b) represents a resending sequence example, (c) represents a frequency channel setting example. 保守モードの通信シーケンス例を示す図であり、(a)は通常シーケンス例を表し、(b)は再送シーケンス例を表し、(c)は周波数チャネル設定例を表す。It is a figure which shows the example of a communication sequence of a maintenance mode, (a) represents a normal sequence example, (b) represents a resending sequence example, (c) represents a frequency channel setting example. 筐体の筐体開閉部を閉じた時の通信モードの変更処理フロー例を示す図である。It is a figure which shows the example of a change process flow of a communication mode when the housing | casing opening / closing part of a housing | casing is closed. 第2実施形態における組電池システムの機能例を示す図である。It is a figure which shows the function example of the assembled battery system in 2nd Embodiment. 第2実施形態におけるアンテナ形状例を示す図であり、(a)は組電池システムの外観斜視図を表し、(b)は電池モジュールの別のアンテナ形状を表す。It is a figure which shows the example of an antenna shape in 2nd Embodiment, (a) represents the external appearance perspective view of an assembled battery system, (b) represents another antenna shape of a battery module. 第2実施形態において筐体を閉じた時の通信モードの処理例を示す図であり、(a)はフローチャートを表し、(b)は通信モードの種類およびチャネル設定例を表す。It is a figure which shows the example of a process of the communication mode when a housing | casing is closed in 2nd Embodiment, (a) represents a flowchart, (b) represents the kind of communication mode, and the example of a channel setting. 第3実施形態における電池セルの保守システムの機能例を示す図である。It is a figure which shows the function example of the maintenance system of the battery cell in 3rd Embodiment. 第3実施形態における保守システムの斜視図を示す図である。It is a figure which shows the perspective view of the maintenance system in 3rd Embodiment. 第3実施形態における電池モジュールの交換処理フロー例を示す図である。It is a figure which shows the example of a replacement process flow of the battery module in 3rd Embodiment. 電池モジュールIDリストの一例を示す図である。It is a figure which shows an example of a battery module ID list. 第3実施形態における通信シーケンス例を示す図である。It is a figure which shows the example of a communication sequence in 3rd Embodiment.
 次に、本発明を実施するための形態(以降、「実施形態」と称す。)について、適宜図面を参照しながら詳細に説明する。 Next, a mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate.
<第1実施形態>
 まず、第1実施形態における組電池システム50の機能例について、図1を用いて説明する。
 組電池システム50は、電池セル(BC)1を備えた1以上の電池モジュール10と組電池管理装置20とで構成される。なお、組電池システム50は、図2(a)に示すように、シールドされた筐体41に収納されるものとする。そして、電池モジュール10を交換する時には、図2(a)に示すように、筐体開閉部40は開けた状態にされる。また、電池モジュール10を使用(運転)する時には、図2(b)に示すように、筐体開閉部40は、閉めた状態にされる。
<First Embodiment>
First, a function example of the assembled battery system 50 in the first embodiment will be described with reference to FIG.
The assembled battery system 50 includes one or more battery modules 10 including battery cells (BC) 1 and the assembled battery management device 20. The assembled battery system 50 is assumed to be housed in a shielded casing 41 as shown in FIG. When the battery module 10 is replaced, the housing opening / closing part 40 is opened as shown in FIG. Further, when the battery module 10 is used (operated), as shown in FIG. 2B, the casing opening / closing unit 40 is closed.
 組電池管理装置20は、図1に示すように、制御部(CTRL)21、開閉検知部(O/C detector)22、記憶部(Memory)23、通信部(COMM)24およびアンテナ25を備える。なお、組電池管理装置20を駆動する電力は、電池セル1から得る、電池モジュール10を直列接続した時の電位差を降圧して得る、外部通信インタフェース端子32を介して得る、または商用電源から得ることができる。
 制御部(CTRL)21は、図示しないCPU(Central Processing Unit)およびメインメモリまたはマイコンで構成され、組電池管理装置20内の各部の動作を制御するとともに、各部間の情報の流れを制御する機能を有する。
 開閉検知部(O/C detector)22は、筐体41の筐体開閉部40の開閉状態を検知し、その検知結果を制御部21に送信する機能を有する。
As shown in FIG. 1, the assembled battery management device 20 includes a control unit (CTRL) 21, an open / close detection unit (O / C detector) 22, a storage unit (Memory) 23, a communication unit (COMM) 24, and an antenna 25. . The electric power for driving the assembled battery management device 20 is obtained from the battery cell 1, obtained by stepping down the potential difference when the battery modules 10 are connected in series, obtained via the external communication interface terminal 32, or obtained from a commercial power source. be able to.
The control unit (CTRL) 21 includes a CPU (Central Processing Unit) (not shown) and a main memory or a microcomputer, and controls the operation of each unit in the assembled battery management device 20 and also controls the flow of information between the units. Have
The open / close detection unit (O / C detector) 22 has a function of detecting the open / closed state of the housing open / close unit 40 of the housing 41 and transmitting the detection result to the control unit 21.
 記憶部(Memory)23には、制御部21によって収集された電池情報や、電池セル1の測定を指示する監視制御指示情報、通信モード、筐体41の開閉状況等が記憶される。電池情報は、例えば、電池セル1のセル電圧や温度、内部抵抗値、残存電荷量、充放電状況、ID(識別情報)、不具合の有無、劣化度合等に関する情報である。
 通信部(COMM)24は、監視制御指示情報を電池モジュール10に送信したり、電池モジュール10から監視制御指示情報に対応する電池情報を受信したりする機能を有する。
 アンテナ25は、電池モジュール10のアンテナ5との間で、無線通信を行うための信号を送受信する。
The storage unit (Memory) 23 stores battery information collected by the control unit 21, monitoring control instruction information for instructing measurement of the battery cell 1, a communication mode, an open / close state of the housing 41, and the like. The battery information is information relating to, for example, the cell voltage and temperature, the internal resistance value, the remaining charge amount, the charge / discharge status, the ID (identification information), the presence / absence of a defect, and the degree of deterioration of the battery cell 1.
The communication unit (COMM) 24 has a function of transmitting monitoring control instruction information to the battery module 10 and receiving battery information corresponding to the monitoring control instruction information from the battery module 10.
The antenna 25 transmits and receives a signal for performing wireless communication with the antenna 5 of the battery module 10.
 なお、ここでいう無線通信とは、通信線を通信対象同士で互いに接続しない通信のことであり、電磁波を放射する通信や、磁界結合や電界結合等の近接場の結合を利用した通信であってもよい。アンテナ5,25は、様々な構成が考えられ、例えば、棒状のもの、コイル状のもの、板状のもの、プリント回路基板の導線パターンで形成したものであってもよい。また、無線通信の代わりに、LED(Light Emitting Diode)赤外線等の光を利用した通信が用いられてもよい。 Note that wireless communication here refers to communication in which communication lines are not connected to each other, and is communication that emits electromagnetic waves or communication that uses near-field coupling such as magnetic field coupling or electric field coupling. May be. Various configurations of the antennas 5 and 25 are conceivable. For example, the antennas 5 and 25 may be rod-shaped, coil-shaped, plate-shaped, or printed circuit board conductor patterns. Further, instead of wireless communication, communication using light such as LED (Light Emitting Diode) infrared light may be used.
 開閉検知部22の検知手段は、筐体開閉部40が開いたことを検知する手段と、筐体開閉部40のロックが解除されたことを検知する手段とに分類できる。 The detection means of the opening / closing detection unit 22 can be classified into means for detecting that the casing opening / closing part 40 is opened and means for detecting that the casing opening / closing part 40 is unlocked.
 筐体開閉部40が開いたことを検知する手段には、例えば、永久磁石を用いた磁気センサ、赤外線センサ、加速度センサ等が用いられる。磁気センサを筐体41と筐体開閉部40に設置した場合には、筐体開閉部40と筐体41との間の距離が拡がったり角度が変わったりすることを測定する。このことによって、筐体開閉部40が開いたことが検知できる。また、赤外線センサを用いた場合も、筐体開閉部40と筐体41との間の距離の変化や角度の変化を測定することによって、筐体開閉部40が開いたことが検知できる。加速度センサを用いた場合も、筐体41と筐体開閉部40で検知される加速度の差を測定することによって、筐体開閉部40の開閉を検知することができる。他にも、検知する手段としては、筐体開閉部40を開けることにより無線信号の受信信号強度が変化することを検知してもよい。また、他の検知手段は、外部システムから画像監視等によって筐体開閉部40の開閉状態を通知する通知情報を伝達してもらってもよい。 For example, a magnetic sensor using a permanent magnet, an infrared sensor, an acceleration sensor, or the like is used as a means for detecting that the housing opening / closing unit 40 is opened. When the magnetic sensor is installed in the casing 41 and the casing opening / closing section 40, it is measured that the distance between the casing opening / closing section 40 and the casing 41 increases or the angle changes. Thus, it can be detected that the casing opening / closing part 40 is opened. In addition, when the infrared sensor is used, it can be detected that the housing opening / closing section 40 is opened by measuring a change in the distance between the housing opening / closing section 40 and the housing 41 or a change in angle. Even when an acceleration sensor is used, the opening / closing of the casing opening / closing unit 40 can be detected by measuring the difference in acceleration detected by the casing 41 and the casing opening / closing unit 40. In addition, as a detecting means, it may be detected that the received signal strength of the radio signal is changed by opening the casing opening / closing unit 40. Further, the other detection means may transmit notification information for notifying the opening / closing state of the casing opening / closing unit 40 from an external system by image monitoring or the like.
 また、ロックが解除されたことを検知する手段として、例えば、筐体開閉部40のロックを解除する振動や、リモコンによるロック解除の通信信号を受信したことが用いられる。また、ロック解除を検知したことをトリガとして、開閉検知部22の電源がオンにされ、筐体開閉部40の開閉状態が検知されるようにしてもよい。 Also, as means for detecting that the lock has been released, for example, receiving vibrations for unlocking the casing opening / closing unit 40 or receiving a communication signal for unlocking by the remote control is used. Alternatively, the opening / closing detection unit 22 may be turned on using the detection of unlocking as a trigger to detect the open / closed state of the housing opening / closing unit 40.
 組電池管理装置20は、各電池モジュール10から電池情報を収集し、組電池システム50として所望の機能を果たすように各電池モジュール10を監視制御する。例えば、組電池管理装置20は、各電池セル1のセル電圧、温度等の電池情報を収集し、適切な電圧や温度で電池セル1が使用されているかを監視したり、電池セル1間の残存電荷量(セル電圧)のばらつきが小さくなるように制御したりする。組電池管理装置20による監視制御は、所定の周期(一定周期を含む)で実行されたり、予め決められた条件に合致した場合に実行されたり、外部システムからの要求や外部システムから提供される情報をトリガとして実行されたりする。 The assembled battery management device 20 collects battery information from each battery module 10 and monitors and controls each battery module 10 so as to perform a desired function as the assembled battery system 50. For example, the assembled battery management device 20 collects battery information such as the cell voltage and temperature of each battery cell 1 and monitors whether the battery cell 1 is being used at an appropriate voltage or temperature. For example, the variation in the residual charge amount (cell voltage) is controlled to be small. The monitoring control by the assembled battery management device 20 is executed at a predetermined cycle (including a fixed cycle), is executed when a predetermined condition is met, or is provided from a request from an external system or from an external system. Information is executed as a trigger.
 組電池システム50内では、電池モジュール10は、図1に示すように、直列に接続されている。なお、電池モジュール10の接続関係は、直列以外に、並列または直並列であっても構わない。また、図1では、1つの電池モジュール10に対して1つの電池セル1を備えているように記載しているが、2以上の電池セル1を直列、並列または直並列の接続状態にしたものであっても構わない。そして、最上位電位の電極と最下位電位の電極が電極端子31から取り出される。電極端子31間は、高電圧になっていたり、大電流が流れる状態になっていたりする。そのため、組電池管理装置20は、電池モジュール10が交換されるような場合には、誤って高電圧や大電流を出力しないように、組電池システム50の状態が所定の条件を満たす時にスイッチ30をオン(接続状態)にする。なお、図1では、組電池管理装置20とスイッチ30とを接続する制御線の記載は省略している。 In the assembled battery system 50, the battery modules 10 are connected in series as shown in FIG. In addition, the connection relationship of the battery module 10 may be parallel or series-parallel other than series. In FIG. 1, the battery module 10 is described as having one battery cell 1, but two or more battery cells 1 are connected in series, parallel, or series-parallel. It does not matter. Then, the electrode having the highest potential and the electrode having the lowest potential are taken out from the electrode terminal 31. Between the electrode terminals 31, the voltage is high or a large current flows. Therefore, when the battery module 10 is replaced, the assembled battery management device 20 switches the switch 30 when the state of the assembled battery system 50 satisfies a predetermined condition so that a high voltage or a large current is not erroneously output. Turn on (connected). In FIG. 1, description of control lines connecting the assembled battery management device 20 and the switch 30 is omitted.
 ここで、所定の条件は、例えば、電極端子31を互いに接続している不図示の他の組電池システム50に対して、電池セル1のセル電圧の差が所定の範囲に収まった場合である。このようにすることで、電圧の高い組電池システム50から電圧の低い組電池システム50に流れる電流を小さくし、過大な充電電流や放電電流が電池セル1に流れることを防ぐことができる。 Here, the predetermined condition is, for example, a case where the cell voltage difference of the battery cell 1 falls within a predetermined range with respect to another assembled battery system 50 (not shown) that connects the electrode terminals 31 to each other. . By doing in this way, the electric current which flows into the assembled battery system 50 with a low voltage from the assembled battery system 50 with a high voltage can be made small, and it can prevent that an excessive charging current and discharge current flow into the battery cell 1. FIG.
 また、組電池管理装置20は、外部通信インタフェース端子32を備え、不図示の外部システムに電池情報を転送したり、外部システムから監視制御の要求や監視制御のための情報を受け付けたりしてもよい。 Further, the assembled battery management device 20 includes an external communication interface terminal 32, and may transfer battery information to an external system (not shown) or receive a monitoring control request or monitoring control information from the external system. Good.
 電池モジュール10は、図1に示すように、電池セル(BC)1、電池情報取得部(BIA)2、記憶部(Memory)3、通信部(COMM)(無線通信部)4およびアンテナ5を備える。なお、電池モジュール10の各部2~4は、電池セル1を電源として動作するものとする。
 電池セル(BC)1は、例えば、リチウムイオン電池等の二次電池である。
 電池情報取得部(BIA)2は、マイコンを備え、前記した監視制御指示情報に基づいて、電池セル1のセル電圧や温度等を測定し電池情報を取得する機能を有する。
 記憶部(Memory)3には、電池情報取得部(BIA)2によって取得された電池情報や、監視制御指示情報や通信モード等が記憶される。
 通信部(COMM)4は、取得した電池情報を組電池管理装置20に送信したり、組電池管理装置20から監視制御指示情報を受信したりする機能を有する。
 アンテナ5は、組電池管理装置2のアンテナ25との間で、無線通信を行うための信号を送受信する。
As shown in FIG. 1, the battery module 10 includes a battery cell (BC) 1, a battery information acquisition unit (BIA) 2, a storage unit (Memory) 3, a communication unit (COMM) (wireless communication unit) 4, and an antenna 5. Prepare. Note that each of the units 2 to 4 of the battery module 10 operates using the battery cell 1 as a power source.
The battery cell (BC) 1 is a secondary battery such as a lithium ion battery, for example.
The battery information acquisition unit (BIA) 2 includes a microcomputer, and has a function of measuring battery voltage, temperature, and the like of the battery cell 1 based on the monitoring control instruction information and acquiring battery information.
The storage unit (Memory) 3 stores battery information acquired by the battery information acquisition unit (BIA) 2, monitoring control instruction information, a communication mode, and the like.
The communication unit (COMM) 4 has a function of transmitting the acquired battery information to the assembled battery management device 20 and receiving monitoring control instruction information from the assembled battery management device 20.
The antenna 5 transmits and receives a signal for performing wireless communication with the antenna 25 of the assembled battery management device 2.
 次に、組電池システム50の形状例について、図2を用いて説明する(適宜、図1参照)。ここで、図2(a)は筐体41の筐体開閉部40を開けた状態の外観斜視図を表し、(b)は筐体41の筐体開閉部40を閉めた状態の外観斜視図を表し、(c)は組電池システム50を並列接続した場合の外観斜視図を表し、(d)は(c)のA-A線断面図を表している。なお、図2は、筐体41の内部に8個の電池モジュール10を収納し、筐体41の内側上部に組電池管理装置20を設置した例を表している。 Next, an example of the shape of the assembled battery system 50 will be described with reference to FIG. 2 (see FIG. 1 as appropriate). 2A is an external perspective view of the housing 41 with the housing opening / closing portion 40 opened, and FIG. 2B is an external perspective view of the housing 41 with the housing opening / closing portion 40 closed. (C) is an external perspective view when the assembled battery system 50 is connected in parallel, and (d) is a cross-sectional view taken along line AA of (c). FIG. 2 shows an example in which eight battery modules 10 are housed in the housing 41 and the assembled battery management device 20 is installed in the upper part inside the housing 41.
 電池モジュール10および組電池管理装置20は、図2(a)に示すように、筐体開閉部40を開けた状態で、格納されたり取り出されたりする。なお、筐体41は、金属等の導体で形成されている。また、筐体41は、波長よりも十分小さい格子状の導体で形成されていてもよい。そして、図2(b)に示すように筐体開閉部40を閉めた状態では、外部に無線信号が漏れず、不図示の外部システムの無線信号の干渉を受けないため、筐体41内部では良好な通信品質が実現される。 As shown in FIG. 2A, the battery module 10 and the assembled battery management device 20 are stored and taken out with the casing opening / closing part 40 opened. The casing 41 is formed of a conductor such as metal. Moreover, the housing | casing 41 may be formed with the grid | lattice-like conductor sufficiently smaller than a wavelength. As shown in FIG. 2B, in the state where the casing opening / closing part 40 is closed, the radio signal does not leak to the outside and the radio signal interference of an external system (not shown) is not received. Good communication quality is realized.
 電極端子31は、図2(b)に示すように、筐体41の外部に配置される。筐体41と電極との間の隙間を無線通信で用いる波長よりも十分に小さくしておくと、筐体開閉部40を閉めた状態では、外部に無線信号が漏れたり、不図示の外部システムの無線信号の干渉を受けたりしなくなる。 The electrode terminal 31 is disposed outside the housing 41 as shown in FIG. If the gap between the housing 41 and the electrode is made sufficiently smaller than the wavelength used for wireless communication, a wireless signal leaks to the outside in the state where the housing opening / closing section 40 is closed, or an external system (not shown) No longer receive radio signal interference.
 筐体41に収納された組電池システム50は、図2(c)に示すように、2台以上で運用してもよい。なお、筐体41に収納する電池モジュール10の数は8個に限らず、適用するアプリケーションに依存して、8個より少なくても多くても構わない。 The assembled battery system 50 housed in the housing 41 may be operated by two or more units as shown in FIG. Note that the number of battery modules 10 stored in the housing 41 is not limited to eight, and may be smaller or larger than eight depending on the application to be applied.
 また、組電池システム50は、図2(d)に示すように、電池モジュール10を直列に接続して形成され、最上位電位の電極および最下位電位の電極に電極端子31を備えている。また、組電池システム50の組電池管理装置20は、筐体41内部の最上位電位の電極位置および最下位電位の電極位置に設置されるスイッチ30のオンまたはオフを制御している。 Further, as shown in FIG. 2 (d), the assembled battery system 50 is formed by connecting the battery modules 10 in series, and includes an electrode terminal 31 on the highest potential electrode and the lowest potential electrode. The assembled battery management device 20 of the assembled battery system 50 controls the on / off of the switch 30 installed at the highest potential electrode position and the lowest potential electrode position inside the housing 41.
 また、筐体41に組電池システム50の故障を知らせるLED等の表示部(不図示)を備えてもよい。このようにすることによって、故障時に表示部を消灯または点灯させて、故障した電池モジュール10を含む組電池システム50を、保守の際に容易に見つけることができる。また、電池モジュール10の故障を知らせるLED等の表示部(不図示)を備えてもよい。このようにすることによって、故障時に表示部が消灯するので、多数の電池モジュール10の中から、故障した電池モジュール10を保守の際に容易に見つけることができる。 Further, the casing 41 may be provided with a display unit (not shown) such as an LED for notifying the failure of the assembled battery system 50. In this way, the display unit is turned off or turned on at the time of failure, and the assembled battery system 50 including the failed battery module 10 can be easily found during maintenance. Moreover, you may provide display parts (not shown), such as LED which notifies the failure of the battery module 10. FIG. By doing so, the display unit is turned off at the time of failure, so that the failed battery module 10 can be easily found from among the many battery modules 10 during maintenance.
 次に、筐体41の筐体開閉部40を開けた時の通信モードの変更処理フロー例について、図3を用いて説明する(適宜、図1,2参照)。ここで、図3(a)はフローチャートを表し、(b)は通信モードの種類を表している。 Next, an example of a communication mode change processing flow when the casing opening / closing part 40 of the casing 41 is opened will be described with reference to FIG. 3 (see FIGS. 1 and 2 as appropriate). Here, FIG. 3A represents a flowchart, and FIG. 3B represents the type of communication mode.
 筐体開閉部40は、組電池システム50を保守する際に、電池モジュール10の交換、追加、削減のために開けられる。保守作業では、電池モジュール10と組電池管理装置20の外観の確認や、運転時に取得している電池情報以外の電池セル1に関する情報の取得や、組電池システム50を所望の環境下においた状態での電池情報の取得と動作確認が行われる。例えば、組電池システム50に所定の負荷を接続して放電電流が所定の範囲に収まっているかを確認したり、所定の電圧源を接続して充電電流が所定の範囲に収まっているかを確認したりする。 The case opening / closing unit 40 is opened for replacement, addition, or reduction of the battery module 10 when maintaining the assembled battery system 50. In maintenance work, confirmation of the external appearance of the battery module 10 and the assembled battery management device 20, acquisition of information related to the battery cell 1 other than the battery information acquired during operation, and a state in which the assembled battery system 50 is in a desired environment The battery information is acquired and the operation is confirmed. For example, a predetermined load is connected to the assembled battery system 50 to check whether the discharge current is within a predetermined range, or a predetermined voltage source is connected to check whether the charging current is within the predetermined range. Or
 図3(a)のステップS301では、筐体開閉部40が運転時の閉じた状態から保守時の開いた状態に変化した時、開閉検知部22は、筐体開閉部40が開いたことを検知し、筐体開閉部40が「開(開いた状態)」であることを示す通知情報を制御部21に送信する。ただし、電池モジュール10は、筐体開閉部40が「開」であることを直接検知せず、組電池管理装置20から知らされるものとする。
 ステップS302では、制御部21は、「開」の通知情報を受信してスイッチ30をオフ(切断)し、電極端子31と電池モジュール10との接続を切断する。このことにより、電極端子31に接続されている外部システム(不図示)との接続を気にせず、適切に保守作業を行うことができる。
In step S301 of FIG. 3A, when the casing opening / closing unit 40 changes from a closed state during operation to an opened state during maintenance, the opening / closing detection unit 22 indicates that the casing opening / closing unit 40 has been opened. The notification information indicating that the casing opening / closing unit 40 is “open (open state)” is transmitted to the control unit 21. However, the battery module 10 does not directly detect that the casing opening / closing unit 40 is “open”, but is notified from the assembled battery management device 20.
In step S <b> 302, the control unit 21 receives the “open” notification information, turns off (cuts) the switch 30, and disconnects the connection between the electrode terminal 31 and the battery module 10. Thus, maintenance work can be appropriately performed without worrying about connection with an external system (not shown) connected to the electrode terminal 31.
 ステップS303では、制御部21は、運転モードの通常シーケンスを用いて、組電池管理装置20と電池モジュール10との間の通信モードを運転モードから保守モードに移行させる処理を実行する。具体的には、電池モジュール10は筐体開閉部40が「開」であることを直接検知しないため、制御部21は、運転モードを用いて、電池モジュール10に対して通信モードを運転モードから保守モードに移行させるための移行指示情報を送信する。ここで、運転モード(第2の通信モード)は、筐体開閉部40が「閉」である運転時に用いる通信モードである。また、保守モード(第1の通信モード)は、筐体開閉部40が「開」である保守時に用いる通信モードである。 In step S303, the control unit 21 performs a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the operation mode to the maintenance mode using the normal sequence of the operation mode. Specifically, since the battery module 10 does not directly detect that the housing opening / closing unit 40 is “open”, the control unit 21 switches the communication mode from the operation mode to the battery module 10 using the operation mode. Transfer instruction information for shifting to the maintenance mode is transmitted. Here, the operation mode (second communication mode) is a communication mode used during an operation in which the casing opening / closing unit 40 is “closed”. The maintenance mode (first communication mode) is a communication mode used during maintenance when the casing opening / closing unit 40 is “open”.
 例えば、運転モードは、図3(b)に示すように、通常シーケンスでは、予め設定しておいた第1周波数チャネルのみを使用する。また、運転モードの再送シーケンスでは、第1周波数チャネルに加えて第2周波数チャネルも使用される。また、保守モードは、通常シーケンスでは、予め決められた周波数チャネルを順に変更しながら無線通信を行う。また、保守モードの再送シーケンスでは、通信周期Tの中で、通常シーケンスより高い頻度で、同一データを複数回送信する。なお、運転モードおよび保守モードの詳細については、後記する。 For example, as shown in FIG. 3B, the operation mode uses only the preset first frequency channel in the normal sequence. In the retransmission sequence in the operation mode, the second frequency channel is used in addition to the first frequency channel. In the maintenance mode, in the normal sequence, wireless communication is performed while sequentially changing predetermined frequency channels. In the maintenance mode retransmission sequence, the same data is transmitted a plurality of times in the communication period T at a frequency higher than that of the normal sequence. Details of the operation mode and the maintenance mode will be described later.
 ステップS304では、制御部21は、ステップS303の処理が成功したか否かを判定する。ここで、成功とは、所定の期間内で、制御部21が電池モジュール10から応答情報を受信した場合のことである。成功したと判定した場合(ステップS304でYes)、処理はステップS308へ進み、所定の期間にわたって成功しなかったと判定した場合(ステップS304でNo)、処理はステップS305へ進む。なお、電池モジュール10は、運転モードの通常シーケンスにおいて所定の期間にわたって無線通信が途絶えたままであったら、運転モードの再送シーケンスに移行する。 In step S304, the control unit 21 determines whether or not the process of step S303 is successful. Here, success is a case where the control unit 21 receives response information from the battery module 10 within a predetermined period. If it is determined that the process has succeeded (Yes in step S304), the process proceeds to step S308. If it is determined that the process has not been successful for a predetermined period (No in step S304), the process proceeds to step S305. Note that the battery module 10 shifts to the operation mode retransmission sequence if the wireless communication remains interrupted for a predetermined period in the normal sequence of the operation mode.
 ステップS305では、制御部21は、運転モードの再送シーケンスを実行し、組電池管理装置20と電池モジュール10との間の通信モードを運転モードから保守モードに移行させる処理を継続する。 In step S305, the control unit 21 executes the operation mode retransmission sequence and continues the process of shifting the communication mode between the assembled battery management apparatus 20 and the battery module 10 from the operation mode to the maintenance mode.
 ステップS306では、制御部21は、ステップS305の処理が成功したか否かを判定する。成功したと判定した場合(ステップS306でYes)、処理はステップS308へ進み、所定の期間にわたって成功しなかったと判定した場合(ステップS306でNo)、処理はステップS307へ進む。なお、電池モジュール10は、運転モードの再送シーケンスにおいて所定の期間にわたって無線通信が途絶えたままであったら、保守モードの再送シーケンスに移行する。 In step S306, the control unit 21 determines whether or not the process of step S305 is successful. If it is determined that the process has succeeded (Yes in step S306), the process proceeds to step S308. If it is determined that the process has not been successful for a predetermined period (No in step S306), the process proceeds to step S307. Note that the battery module 10 shifts to the maintenance mode retransmission sequence if the wireless communication remains interrupted for a predetermined period in the operation mode retransmission sequence.
 ステップS307では、制御部21は、保守モードの再送シーケンスを実行し、組電池管理装置20と電池モジュール10との間の通信モードを運転モードから保守モードに移行させる処理を実行する。
 ステップS308では、電池モジュール10は既に保守モードへ移行しているため、制御部21は、保守モードにより無線通信を実行し、電池モジュール10から電池情報を収集する。
In step S307, the control unit 21 executes a maintenance mode retransmission sequence, and executes a process of shifting the communication mode between the assembled battery management apparatus 20 and the battery module 10 from the operation mode to the maintenance mode.
In step S308, since the battery module 10 has already shifted to the maintenance mode, the control unit 21 performs wireless communication in the maintenance mode and collects battery information from the battery module 10.
 ここで、運転モードおよび保守モードを図3(b)のように設定した理由について説明する。
 運転モードの伝搬環境は、筐体開閉部40が「閉」となっているため、外部からの信号干渉や、電磁波の反射条件の変動による定在波の変動が小さい。つまり、筐体開閉部40が「閉」の状態では、筐体41の内部に発生する定在波が固定されるため、周波数チャネルに対する影響が固定化される。したがって、運転モードでは周波数チャネルを固定して無線通信しても、無線通信を失敗する確率が低い。
 そこで、図3(b)に示すように、運転モードの通常シーケンスでは、予め設定しておいた第1周波数チャネルのみを用いて無線通信を行う。また、運転モードの再送シーケンスでは、第1周波数チャネルおよび第2周波数チャネルを使用する。
Here, the reason why the operation mode and the maintenance mode are set as shown in FIG. 3B will be described.
In the propagation environment of the operation mode, since the casing opening / closing part 40 is “closed”, the fluctuation of the standing wave due to the signal interference from the outside and the fluctuation of the reflection condition of the electromagnetic wave is small. That is, when the casing opening / closing unit 40 is in the “closed” state, the standing wave generated inside the casing 41 is fixed, and thus the influence on the frequency channel is fixed. Therefore, in the operation mode, even if wireless communication is performed with the frequency channel fixed, the probability that wireless communication will fail is low.
Therefore, as shown in FIG. 3B, in the normal sequence of the operation mode, wireless communication is performed using only the first frequency channel set in advance. Further, in the operation mode retransmission sequence, the first frequency channel and the second frequency channel are used.
 それに対して、保守モードの伝搬環境は、筐体開閉部40が「開」の状態となっているため、外部の電波から干渉を受けたり、保守を行う保守者や壁等で反射する電磁波により新たな定在波を発生させたりして、運転モードの伝搬環境よりも安定していない。
 したがって、図3(b)に示すように、保守モードの通常シーケンスでは、予め決められた周波数チャネルを順に変更しながら無線通信を行う。また、保守モードの再送シーケンスでは、通常シーケンスより高い頻度で、通信周期Tの間に同一データを複数回送信する。
On the other hand, the propagation environment in the maintenance mode is that the case opening / closing unit 40 is in the “open” state, and therefore, it receives interference from external radio waves or is reflected by electromagnetic waves reflected by a maintenance person who performs maintenance or a wall. It is less stable than the propagation environment of the operation mode by generating a new standing wave.
Therefore, as shown in FIG. 3B, in the normal sequence of the maintenance mode, wireless communication is performed while changing a predetermined frequency channel in order. In the retransmission sequence in the maintenance mode, the same data is transmitted a plurality of times during the communication period T at a frequency higher than that in the normal sequence.
 また、運転モードと保守モードとでは、周波数チャネル以外にも、データレートや通信周期、変調方式、多重接続方式、Ack返信の有無等、様々なパラメータを異ならせることが好ましい。
 例えば、運転モードでは、高いデータレートで通信周期Tを短くするとともに、冗長性やAck返信を省略し、収集する電池情報の量を増やして組電池システム50の機能を最大限に発揮させるようにする。
 それに対して、保守モードでは、運転モードより相対的に低いデータレートで通信周期Tを長くするとともに、冗長性を持たせるとともにAck返信を実行し、収集する電池情報の量を必要最小限に抑えて、通信の成功率を高めて保守作業を効率的に実行するようにする。
In addition to the frequency channel, it is preferable that various parameters such as a data rate, a communication period, a modulation method, a multiple connection method, and whether or not to return an Ack are different between the operation mode and the maintenance mode.
For example, in the operation mode, the communication cycle T is shortened at a high data rate, redundancy and Ack reply are omitted, the amount of battery information to be collected is increased, and the function of the assembled battery system 50 is maximized. To do.
In contrast, in the maintenance mode, the communication cycle T is lengthened at a data rate relatively lower than that in the operation mode, redundancy is provided, an Ack reply is executed, and the amount of battery information to be collected is minimized. Thus, the success rate of communication is increased and maintenance work is performed efficiently.
 また、運転モードでは、外部からの干渉が無いので、送信前にキャリアセンスを行わずに、予め設定したタイミングで時分割して通信し、複数の電池モジュール10に対して電池セル1の測定を指示する監視制御指示情報をブロードキャストすることで実効的な通信速度を上げる。特に、運転時は充放電状態が時々刻々と変化するため、監視制御指示情報をブロードキャスト通信することによって各電池セル1のセル電圧や温度等の測定時刻をほぼ同じにすることが好ましい。その理由は、同じ充放電状態の下で、セル電圧や温度を取得することによって電池セル1のばらつき(個体差)を把握しやすいためである。 In the operation mode, since there is no interference from the outside, carrier sense is not performed before transmission, communication is performed in a time-sharing manner at a preset timing, and the battery cell 1 is measured with respect to a plurality of battery modules 10. The effective communication speed is increased by broadcasting the instructed supervisory control instruction information. In particular, since the charge / discharge state changes from moment to moment during operation, it is preferable that the measurement times of the cell voltages, temperatures, and the like of each battery cell 1 are made substantially the same by broadcast communication of the monitoring control instruction information. The reason is that it is easy to grasp the variation (individual difference) of the battery cells 1 by acquiring the cell voltage and temperature under the same charge / discharge state.
 それに対して、保守モードでは、外部からの干渉を回避するため、送信前にキャリアセンスを行い、外部システムの信号を柔軟に回避するために自由なタイミングで通信したり、組電池管理装置20のポーリングにより各電池モジュール10と個別に通信したりして高い通信品質を維持するように通信する。つまり、保守時には急激に充放電状態を変化させないことが可能であるため、ポーリング等によるユニキャスト通信により1つ1つの電池セル1のセル電圧や温度等を測定しても構わない。 On the other hand, in the maintenance mode, in order to avoid interference from the outside, carrier sense is performed before transmission, and communication at an arbitrary timing is performed in order to flexibly avoid external system signals. Communication is performed so as to maintain high communication quality by individually communicating with each battery module 10 by polling. That is, since it is possible not to change the charge / discharge state suddenly during maintenance, the cell voltage, temperature, etc. of each battery cell 1 may be measured by unicast communication such as polling.
 また、電池モジュール10の通信部4の故障と判定するまでの故障判定期間は、通信モードに応じて異ならせるとよい。例えば、運転モードの故障判定期間は、保守モードの故障判定期間よりも短く設定する。この理由は、運転モード(筐体開閉部40が「閉」の状態)の方が、通信を失敗する確率は低いためである。また、運転時には、互いに接続した他の組電池システム50への影響が拡大する前に、故障を外部通信インタフェース端子32により外部システムに通知するとよい。 In addition, the failure determination period until it is determined that the communication unit 4 of the battery module 10 is failed may be varied depending on the communication mode. For example, the failure determination period in the operation mode is set shorter than the failure determination period in the maintenance mode. This is because the probability of communication failure is lower in the operation mode (the case where the casing opening / closing unit 40 is “closed”). Further, during operation, the failure may be notified to the external system through the external communication interface terminal 32 before the influence on the other assembled battery systems 50 connected to each other expands.
 次に、図3のステップS301で用いる開閉検知部22の検知手段の違いと、ステップS304における「成功」と判定される度合との関係について説明する。
 開閉検知部22の検知手段としては、筐体開閉部40のロックを解除したことを検知する場合、および筐体開閉部40の「開」を検知する場合、の2種類がある。
Next, the relationship between the difference in the detection means of the open / close detection unit 22 used in step S301 in FIG. 3 and the degree of determination as “success” in step S304 will be described.
There are two types of detection means for the opening / closing detection unit 22: when detecting that the casing opening / closing unit 40 is unlocked, and when detecting “open” of the casing opening / closing unit 40.
 開閉検知部22が筐体開閉部40のロックを解除したことを検知する場合は、筐体開閉部40が開いて伝搬環境が変化する前に、組電池管理装置20は、電池モジュール10に対して運転モードから保守モードへの移行指示情報を出せる。そのため、運転モードによる無線通信はほぼ成功する。したがって、ステップS304で「成功」と判定され、処理はステップS308へ進む度合(可能性)が高い。 When the opening / closing detection unit 22 detects that the casing opening / closing unit 40 has been unlocked, the battery pack management device 20 detects the battery module 10 before the casing opening / closing unit 40 opens and the propagation environment changes. The transition instruction information from the operation mode to the maintenance mode can be output. Therefore, wireless communication in the operation mode is almost successful. Therefore, it is determined as “success” in step S304, and the degree (possibility) that the process proceeds to step S308 is high.
 開閉検知部22が筐体開閉部40の「開」を検知する場合には、筐体開閉部40が開いて伝搬環境が変化した後に、組電池管理装置20は、電池モジュール10に対して運転モードから保守モードへの移行指示情報を出すことになる。そのため、外部からの干渉や定在波の変動によって、無線通信を失敗する度合(可能性)が、ロック解除の場合より高くなる虞がある。そこで、ステップS304で「成功」と判定されなかった場合、まず、ステップS305のように運転モードの再送シーケンスを実行する。この理由は、電池モジュール10が筐体開閉部40の「開」を直接検知しないので、筐体開閉部40が「閉」の状態で運転を継続している状況の下で通信を失敗したケースと、区別するためである。
 そして、ステップS307において、保守モードの再送シーケンスを実行することによって、外部からの干渉や変動する定在波の影響に対応可能であるため、電池モジュール10の通信部4が故障していなければ所定の期間を経過する前に無線通信は成功する。
When the open / close detection unit 22 detects “open” of the case opening / closing unit 40, the assembled battery management device 20 operates on the battery module 10 after the case opening / closing unit 40 opens and the propagation environment changes. Transition instruction information from the mode to the maintenance mode is issued. For this reason, there is a possibility that the degree (possibility) of failure in wireless communication may be higher than in the case of unlocking due to external interference or standing wave fluctuation. Therefore, if it is not determined as “success” in step S304, first, a retransmission sequence of the operation mode is executed as in step S305. This is because the battery module 10 does not directly detect “open” of the case opening / closing unit 40, and therefore communication fails under the situation where the case opening / closing unit 40 continues to operate in the “closed” state. This is to distinguish them.
In step S307, by executing the maintenance mode retransmission sequence, it is possible to cope with the influence of external interference and fluctuating standing waves. Therefore, if the communication unit 4 of the battery module 10 is not faulty, it is predetermined. The wireless communication succeeds before the period elapses.
 なお、電池モジュール10も筐体開閉部40の開閉を検知可能な場合(開閉検知部を備える場合)には、組電池管理装置20から電池モジュール10に対して通信モードの切り替えを指示する必要はない。この場合には、電池モジュール10は、組電池管理装置20の通信モードと同様に、移行すればよい。電池モジュール10は、例えば、受信信号強度を観測する機能を備えることによって、その受信信号強度に変化があった場合に、筐体開閉部40が開いたと検知することができる。 When the battery module 10 can also detect the opening / closing of the housing opening / closing unit 40 (when it includes an opening / closing detection unit), it is necessary to instruct the battery module 10 to switch the communication mode from the assembled battery management device 20. Absent. In this case, the battery module 10 may be shifted similarly to the communication mode of the assembled battery management device 20. The battery module 10 includes, for example, a function of observing the received signal strength, so that when the received signal strength is changed, it can be detected that the housing opening / closing unit 40 is opened.
 次に、運転モードの通信シーケンス例について、図4を用いて説明する。図4(a)は通常シーケンス例を表し、(b)は再送シーケンス例を表し、(c)は周波数チャネル設定例を表している。なお、図4では、組電池管理装置20と2つの電池モジュール10(以降、A,Bと表記)との間で通信を行う場合を表している。 Next, a communication sequence example in the operation mode will be described with reference to FIG. 4A shows an example of a normal sequence, FIG. 4B shows an example of a retransmission sequence, and FIG. 4C shows an example of frequency channel setting. FIG. 4 illustrates a case where communication is performed between the assembled battery management device 20 and two battery modules 10 (hereinafter referred to as A and B).
 図4(a)は、運転モードの無線通信が成功している場合を表している。組電池管理装置20は、電池モジュールA,Bに対して監視制御指示情報を第1周波数チャネル(A ch.と表記)を用いてブロードキャストする。監視制御指示情報は、例えば、電池セル1のセル電圧や温度等の測定を指示する情報のことである。監視制御指示情報を受信した電池モジュールA,Bそれぞれは、測定を行って電池情報を取得し、その結果を第1周波数チャネルを用いて組電池管理装置20に送信する。これらの送信タイミングは予め設定しておけば、電池モジュールA,B同士の通信が衝突することはない。組電池管理装置20は、通信周期Tで監視制御指示情報をブロードキャストし、所定の周期(一定周期を含む)で電池情報を収集する。運転状況によっては、イベントドリブンに監視制御指示情報を送信して電池情報を収集してもよい。 FIG. 4A shows a case where the wireless communication in the operation mode is successful. The assembled battery management device 20 broadcasts the monitoring control instruction information to the battery modules A and B using the first frequency channel (indicated as A ch.). The monitoring control instruction information is, for example, information that instructs measurement of the cell voltage, temperature, etc. of the battery cell 1. Each of the battery modules A and B that have received the monitoring control instruction information performs measurement to acquire battery information, and transmits the result to the assembled battery management device 20 using the first frequency channel. If these transmission timings are set in advance, communication between the battery modules A and B will not collide. The assembled battery management device 20 broadcasts the monitoring control instruction information at the communication cycle T, and collects battery information at a predetermined cycle (including a fixed cycle). Depending on the driving situation, the battery control information may be collected by transmitting the monitoring control instruction information to the event driven.
 図4(b)は、通常シーケンスによる無線通信が失敗して、再送シーケンスに移行する場合を表している。なお、図4(b)中の通信周期T1,T2の長さは、通信周期Tに等しいものとする。組電池管理装置20は、通信周期T1では、全電池モジュールA,Bに対して監視制御指示情報を第1周波数チャネル(A ch.と表記)を用いてブロードキャストする。しかし、電池モジュールBは監視制御指示情報を受信できない(図4(b)では、×印および破線表示)。そのため、組電池管理装置20は、電池モジュールBから電池情報(応答情報)を受信できないので、無線通信が失敗したことを認識する。また、電池モジュールBも、通信周期T1の間に組電池管理装置20から監視制御指示情報を受信できなかったことから無線通信が失敗したことを認識する。 FIG. 4B shows a case where the wireless communication using the normal sequence fails and shifts to the retransmission sequence. Note that the length of the communication cycles T1 and T2 in FIG. The assembled battery management device 20 broadcasts the monitoring control instruction information to all the battery modules A and B using the first frequency channel (indicated as A ch.) In the communication cycle T1. However, the battery module B cannot receive the supervisory control instruction information (in FIG. 4 (b), x mark and broken line display). Therefore, the assembled battery management device 20 cannot receive battery information (response information) from the battery module B, and thus recognizes that wireless communication has failed. Further, the battery module B also recognizes that the wireless communication has failed because the monitoring control instruction information cannot be received from the assembled battery management device 20 during the communication cycle T1.
 次の通信周期T2においては、第1周波数チャネル(A ch.と表記)を用いてブロードキャストすることに加えて、第1周波数チャネルの無線通信に失敗した電池モジュールBに対して第2周波数チャネル(C ch.と表記、図4(c)参照)を用いて個別に監視制御指示情報を送信する。この通信周期T2の通信シーケンスが、運転モードの再送シーケンスである。第2周波数チャネルによる監視制御指示情報を受信した電池モジュールBは、第2周波数チャネルを用いて電池情報を組電池管理装置20に送信する。このようにして、無線通信の成功確率を上げることができる。 In the next communication cycle T2, in addition to broadcasting using the first frequency channel (denoted as A ch.), The second frequency channel (for the battery module B that has failed in wireless communication of the first frequency channel) The monitoring control instruction information is individually transmitted using C 表 記 ch. (Refer to FIG. 4C). The communication sequence of this communication cycle T2 is the operation mode retransmission sequence. The battery module B that has received the monitoring control instruction information using the second frequency channel transmits the battery information to the assembled battery management device 20 using the second frequency channel. In this way, the success probability of wireless communication can be increased.
 また、電池モジュールBが第1周波数チャネルを用いてブロードキャストを受信できたものの、電池情報の返信前に伝搬環境が変化して、組電池管理装置20が電池モジュールBの電池情報を受信できないケースが想定される。このケースは、組電池管理装置20が電池モジュールBの電池情報を受信できないという点で、図4(b)の通信周期T1の状態と同じになる。そのため、組電池管理装置20は、次の通信周期T2から第1周波数チャネルに加えて第2周波数チャネルを用いた通信を開始することになる。 In addition, although the battery module B can receive the broadcast using the first frequency channel, the propagation environment changes before the battery information is returned, and the assembled battery management device 20 cannot receive the battery information of the battery module B. is assumed. This case is the same as the state of the communication cycle T1 in FIG. 4B in that the assembled battery management device 20 cannot receive the battery information of the battery module B. Therefore, the assembled battery management device 20 starts communication using the second frequency channel in addition to the first frequency channel from the next communication cycle T2.
 なお、通信周期T2において、仮に電池モジュールBが第2周波数チャネルだけでなく第1周波数チャネルのブロードキャストも受信できた場合、電池モジュールBは、第1周波数チャネルで電池情報を組電池管理装置20に送信するとよい。このようにすることで、組電池管理装置20は、電池モジュールBが、再び第1周波数チャネルのブロードキャストを受信できることを認識でき、通信モードを通常シーケンスに戻すことができる。 If the battery module B can receive not only the second frequency channel but also the broadcast of the first frequency channel in the communication cycle T2, the battery module B sends the battery information to the assembled battery management device 20 using the first frequency channel. Send it. By doing in this way, the assembled battery management apparatus 20 can recognize that the battery module B can receive the broadcast of the first frequency channel again, and can return the communication mode to the normal sequence.
 運転モードにおける再送シーケンスでは、電池モジュール10は、組電池管理装置20から無線信号の一部を受信できて、通信周期Tを保持できている場合、第1周波数チャネルに加えて第2周波数チャネルも用いて受信動作を行う。しかし、電池モジュール10は、通信周期Tを見失った場合、第2周波数チャネルで受信動作を継続し、組電池管理装置20が第2周波数チャネルで送信するのを待つようにすればよい。 In the retransmission sequence in the operation mode, when the battery module 10 can receive a part of the radio signal from the assembled battery management device 20 and can maintain the communication cycle T, the second frequency channel is also added to the first frequency channel. To perform the receiving operation. However, when the battery module 10 loses sight of the communication cycle T, the battery module 10 may continue the reception operation on the second frequency channel and wait for the assembled battery management device 20 to transmit on the second frequency channel.
 図4(c)は、周波数チャネル設定例を表している。
 運転モードにおいて、監視制御指示情報をブロードキャストする場合は、全電池モジュール10に対して同じ周波数チャネルを用いるため、第1周波数チャネルは共通のA ch.とする。ただし、電池モジュール10ごとに最適な通信品質となる周波数チャネルは異なる。そのため、第1周波数チャネルは、どの電池モジュール10に対しても不十分な受信信号強度とならない周波数チャネルを選択することによって決められる。
FIG. 4C shows an example of frequency channel setting.
When the monitoring control instruction information is broadcast in the operation mode, the same frequency channel is used for all battery modules 10, and therefore the first frequency channel is a common A ch. However, the frequency channel with the optimum communication quality is different for each battery module 10. Therefore, the first frequency channel is determined by selecting a frequency channel that does not have an insufficient received signal strength for any battery module 10.
 また、第2周波数チャネルは、電池モジュール10ごとに用いられるので、電池モジュール10ごとに最適な通信品質となる周波数チャネルを選択とすることによって決められる。例えば、IEEE802.15.4に規定されている周波数チャネルを用いる場合には、第1周波数チャネルは、全電池モジュール10に共通して2405MHz(A ch.)を中心周波数とする周波数チャネルを設定する。また、第2周波数チャネルは、電池モジュールAに対して2450MHz(B ch.)、電池モジュールBに対して2470MHz(C ch.)等と設定すればよい。 In addition, since the second frequency channel is used for each battery module 10, it is determined by selecting a frequency channel that provides optimum communication quality for each battery module 10. For example, when a frequency channel defined in IEEE 802.15.4 is used, the first frequency channel is set to a frequency channel having a center frequency of 2405 MHz (A ch.) Common to all battery modules 10. . The second frequency channel may be set to 2450 MHz (B (ch.) For the battery module A, 2470 MHz (C ch.) For the battery module B, or the like.
 次に、保守モードの通信シーケンス例について、図5を用いて説明する。図5(a)は通常シーケンス例を表し、(b)は再送シーケンス例を表し、(c)は周波数チャネル設定例を表している。なお、図5では、組電池管理装置20と2つの電池モジュール10(以降、A,Bと表記)との間で通信を行う場合を表している。 Next, a communication sequence example in the maintenance mode will be described with reference to FIG. FIG. 5A shows a normal sequence example, FIG. 5B shows a retransmission sequence example, and FIG. 5C shows a frequency channel setting example. FIG. 5 shows a case where communication is performed between the assembled battery management device 20 and two battery modules 10 (hereinafter referred to as A and B).
 図5(a)は、保守モードの無線通信が成功している場合を表している。組電池管理装置20は、電池モジュールA,Bに対して監視制御指示情報を、予め決めておいた周波数チャネルの並び順の最初の周波数チャネル(C ch.と表記)を用いてブロードキャストする。監視制御指示情報を受信した電池モジュールA,Bそれぞれは、測定を行って電池情報を取得し、その電池情報を、受信した周波数チャネルを用いて組電池管理装置20に送信する。これらの送信タイミングは予め設定しておけば、電池モジュールA,B同士の通信が衝突することはない。組電池管理装置20は、通信周期Tで監視制御指示情報をブロードキャストし、所定の周期(一定周期を含む)で電池情報を収集する。次の通信周期Tでは、組電池管理装置20は、2番目の周波数チャネル(E ch.と表記)を用いて無線通信を行う。このようにして、組電池管理装置20は、通信周期Tごとに周波数チャネルを変更しながら無線通信を行う。運転状況によっては、イベントドリブンに監視制御指示情報を送信して電池情報を収集してもよい。 FIG. 5A shows a case where the wireless communication in the maintenance mode is successful. The assembled battery management device 20 broadcasts the monitoring control instruction information to the battery modules A and B using the first frequency channel (denoted as C ch.) In the predetermined order of the frequency channels. Each of the battery modules A and B that have received the monitoring control instruction information performs measurement to acquire battery information, and transmits the battery information to the assembled battery management device 20 using the received frequency channel. If these transmission timings are set in advance, communication between the battery modules A and B will not collide. The assembled battery management device 20 broadcasts the monitoring control instruction information at the communication cycle T, and collects battery information at a predetermined cycle (including a fixed cycle). In the next communication cycle T, the assembled battery management device 20 performs wireless communication using the second frequency channel (denoted E ch.). In this way, the assembled battery management device 20 performs wireless communication while changing the frequency channel for each communication cycle T. Depending on the driving situation, the battery control information may be collected by transmitting the monitoring control instruction information to the event driven.
 図5(b)は、通常シーケンスによる無線通信が失敗して、再送シーケンスに移行する場合を表している。なお、図5(b)中の通信周期T1,T2の長さは、通信周期Tに等しいものとする。組電池管理装置20は、通信周期T1では、全電池モジュールA,Bに対して監視制御指示情報を最初の周波数チャネル(C ch.と表記)を用いてブロードキャストする。しかし、電池モジュールBは監視制御指示情報を受信できない(図5(b)では、×印および破線表示)。そのため、組電池管理装置20は、電池モジュールBから電池情報(応答情報)を受信できないので、無線通信が失敗したことを認識する。また、電池モジュールBも、通信周期T1の間に組電池管理装置20から監視制御指示情報を受信できなかったことから無線通信が失敗したことを認識する。 FIG. 5B shows a case where the wireless communication by the normal sequence fails and shifts to the retransmission sequence. Note that the length of the communication periods T1 and T2 in FIG. The assembled battery management device 20 broadcasts the monitoring control instruction information to all the battery modules A and B using the first frequency channel (denoted as C ch.) In the communication cycle T1. However, the battery module B cannot receive the supervisory control instruction information (in FIG. 5 (b), x mark and broken line display). Therefore, the assembled battery management device 20 cannot receive battery information (response information) from the battery module B, and thus recognizes that wireless communication has failed. Further, the battery module B also recognizes that the wireless communication has failed because the monitoring control instruction information cannot be received from the assembled battery management device 20 during the communication cycle T1.
 次の通信周期T2においては、予め設定した再送シーケンス(図5(c)参照)の3番目の周波数チャネル(E ch.と表記)を用いてブロードキャストすることに加えて、電池モジュールBに対して再送シーケンスの4番目の周波数チャネル(F ch.と表記)を用いて個別に監視制御指示情報を送信する。この通信周期T2の通信シーケンスが、保守モードの再送シーケンスである。電池モジュールBは、受信に成功した周波数チャネル(F ch.と表記)を用いて、電池情報を組電池管理装置20に送信する。このようにして、無線通信の成功確率を上げることができる。ここで、4番目の周波数チャネルF ch.は、図5(c)に示すように、3番目の周波数チャネルE ch.を運転モードの第1周波数チャネルとみなした時に、運転モードの第2周波数チャネルに相当するものである。 In the next communication cycle T2, in addition to broadcasting using the third frequency channel (denoted E ch.) Of a preset retransmission sequence (see FIG. 5C), the battery module B The monitoring control instruction information is individually transmitted using the fourth frequency channel (denoted as F ch.) Of the retransmission sequence. The communication sequence of this communication cycle T2 is a maintenance mode retransmission sequence. The battery module B transmits battery information to the assembled battery management device 20 using the frequency channel (denoted as F ch.) That has been successfully received. In this way, the success probability of wireless communication can be increased. Here, the fourth frequency channel F ch. Is the second frequency in the operation mode when the third frequency channel E ch. Is regarded as the first frequency channel in the operation mode, as shown in FIG. It corresponds to a channel.
 筐体開閉部40が「開」の状態では時々刻々と伝搬環境が変化するため、無線通信を失敗する確率の高い周波数チャネルが変化する。そこで、再送シーケンスでは、周波数チャネルを変更しつつ、通信周期Tの中で同一データを複数回送信することによって、無線通信の成功確率を上げることができる。また、周波数チャネルの選択指標として、外部の無線通信システムの干渉を避けるため、周波数チャネルの周波数を十分に離した並び順で用いるようにするとよい。例えば、無線LAN(Local Area Network)システムが外部に存在するような環境では、無線LANの信号帯域約20MHzよりも離れた周波数チャネルを並び順に設定する。例えば、図5(c)に示すように、周波数チャネルC ch.,D ch.,E ch.,F ch.,G ch.,H ch.,・・を、それぞれ2405MHz,2445MHz,2470MHz,2430MHz,2435MHz,2475MHz,・・のように設定する。 Since the propagation environment changes from moment to moment when the casing opening / closing section 40 is in the “open” state, the frequency channel with a high probability of failing in wireless communication changes. Therefore, in the retransmission sequence, the success probability of wireless communication can be increased by transmitting the same data a plurality of times within the communication period T while changing the frequency channel. In addition, as a frequency channel selection index, in order to avoid interference of an external wireless communication system, the frequencies of the frequency channels may be used in a sufficiently separated order. For example, in an environment in which a wireless LAN (Local Area Network) system exists outside, frequency channels separated from the wireless LAN signal band of about 20 MHz are set in order. For example, as shown in FIG. 5 (c), frequency channels C ch., D ch., E ch., F ch., G ch., H ch., ... are respectively set to 2405MHz, 2445MHz, 2470MHz, 2430MHz. , 2435MHz, 2475MHz, and so on.
 保守モードの再送シーケンスでは、電池モジュール10は、組電池管理装置20から無線信号の一部を受信できて、通信周期Tを保持できている場合、通信周期Tに従って周波数チャネルを順に変更しながら受信動作を行う。しかし、電池モジュール10は、通信周期Tを見失った場合、予め決めておいた周波数チャネルで受信動作を継続し、組電池管理装置20から当該周波数チャネルの無線信号が送信されてくるのを待つ。 In the retransmission sequence in the maintenance mode, when the battery module 10 can receive a part of the radio signal from the assembled battery management apparatus 20 and can maintain the communication cycle T, the battery module 10 receives the frequency channel in order according to the communication cycle T. Perform the action. However, when the battery module 10 loses sight of the communication cycle T, the battery module 10 continues the reception operation on the predetermined frequency channel and waits for the radio signal of the frequency channel to be transmitted from the assembled battery management device 20.
 次に、筐体41の筐体開閉部40を閉じた時の通信モードの変更処理フロー例について、図6を用いて説明する(適宜、図1参照)。筐体開閉部40は、組電池システム50の保守や電池モジュール10の交換、追加、撤去、組電池システム50の初期組み立て後に閉じられる。その際、保守や電池モジュール10の交換等によって、筐体41内部の伝搬環境が変化している可能性がある。そのため、運転モードの周波数チャネルを更新する必要がある。また、組電池システム50の初期組み立て時には、運転モードの周波数チャネルを新規に設定する。また、筐体41の変形等により、運転モードでの無線通信を失敗する確率が上昇した場合にも運転モードの周波数チャネルを更新することが好ましい。また、伝搬環境が周期的に時間変化する場合には、当該周期で、運転モードの周波数チャネルを更新することが好ましい。なお、保守モードは、伝搬環境の変動が大きい場合に対応できるように周波数チャネルを決めているため、特に変更する必要はない。 Next, an example of a communication mode change processing flow when the case opening / closing unit 40 of the case 41 is closed will be described with reference to FIG. 6 (see FIG. 1 as appropriate). The case opening / closing unit 40 is closed after maintenance of the assembled battery system 50, replacement, addition, removal of the battery module 10, and initial assembly of the assembled battery system 50. At that time, there is a possibility that the propagation environment inside the housing 41 has changed due to maintenance, replacement of the battery module 10, or the like. Therefore, it is necessary to update the frequency channel in the operation mode. Further, when the assembled battery system 50 is initially assembled, a frequency channel for the operation mode is newly set. In addition, it is preferable to update the frequency channel in the operation mode even when the probability of failure in wireless communication in the operation mode increases due to deformation of the casing 41 or the like. In addition, when the propagation environment periodically changes with time, it is preferable to update the frequency channel in the operation mode in this cycle. Note that the maintenance mode does not need to be changed in particular because the frequency channel is determined so as to be able to cope with a large variation in the propagation environment.
 図6に示すように、ステップS601では、開閉検知部22は、筐体開閉部40が「閉(閉じた状態)」になったことを検知し、筐体開閉部40が「閉」になったことを示す通知情報を制御部21に送信する。ただし、電池モジュール10は、筐体開閉部40が「閉」であることを直接検知せず、組電池管理装置20から知らされるものとする。
 ステップS602では、制御部21は、電池モジュール10に運転モードの周波数チャネルを再設定するために、受信信号強度を測定する指示情報を、保守モードで送信する。
As shown in FIG. 6, in step S <b> 601, the open / close detection unit 22 detects that the casing opening / closing unit 40 is “closed (closed state)”, and the casing opening / closing unit 40 is “closed”. Notification information indicating this is transmitted to the control unit 21. However, the battery module 10 does not directly detect that the casing opening / closing unit 40 is “closed”, but is notified from the assembled battery management device 20.
In step S602, the control unit 21 transmits instruction information for measuring the received signal strength in the maintenance mode in order to reset the frequency channel of the operation mode in the battery module 10.
 ステップS603では、制御部21は、予め決めてある周波数チャネルを変更しつつ、テスト信号を送信する。そして、電池モジュール10は、受信したテスト信号の受信信号強度を測定する。テスト信号の周波数チャネルは、予め決められた順に使用される。
 ステップS604では、制御部21は、すべてのテスト信号の送信を完了する。
In step S603, the control unit 21 transmits a test signal while changing a predetermined frequency channel. Then, the battery module 10 measures the received signal strength of the received test signal. The frequency channels of the test signal are used in a predetermined order.
In step S604, the control unit 21 completes transmission of all test signals.
 ステップS605では、制御部21は、電池モジュール10から受信信号強度の測定結果を、保守モードを用いて収集する。そして、制御部21は、各電池モジュール10から収集した受信信号強度の測定結果に基づいて、電池モジュール10の第1周波数チャネルと第2周波数チャネルとを決定する。
 ステップS606では、制御部21は、組電池管理装置20と電池モジュール10との間の通信モードを保守モードから運転モードに移行させる処理を実行する。
In step S605, the control unit 21 collects the measurement results of the received signal strength from the battery module 10 using the maintenance mode. And the control part 21 determines the 1st frequency channel and 2nd frequency channel of the battery module 10 based on the measurement result of the received signal strength collected from each battery module 10.
In step S <b> 606, the control unit 21 executes a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the maintenance mode to the operation mode.
 ステップS607では、制御部21は、運転モードを用いて各電池モジュール10から電池情報を収集する。
 ステップS608では、制御部21は、前記した所定の条件が満たされた場合にスイッチ30をオン(接続)する。そして、組電池システム50は始動する。
In step S607, the control unit 21 collects battery information from each battery module 10 using the operation mode.
In step S608, the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. Then, the assembled battery system 50 starts.
 以上、第1実施形態に係る組電池システム50は、組電池システム50を収納する筐体41の筐体開閉部40を開けた状態および閉じた状態の双方で、電池セル1の電池情報を取得することができる。
 また、電池モジュール10の保守時や交換時に、電池情報を取得しながら保守現場で適した電池モジュール10を取捨選択することができるので、保守や交換の工数を低減できる。
 また、電池モジュール10の保守時や交換時に、電池情報を取得しながら作業できるため、交換した電池モジュール10のセル電圧が組電池システム50内の他の電池モジュール10のセル電圧とほぼ等しくなるように、交換作業中に調整することができる。
 また、電池モジュール10の保守時や交換時に、電池情報を取得しながら作業できるため、組電池システム50同士を接続する前に電池情報を確認し、接続可能な状態である場合(前記した所定の条件の場合)にのみスイッチ30をオンにして、過剰な充電電流や放電電流が電池モジュール10に流れることを防ぐことができる。
 また、保守、交換、組立用に保管している電池モジュール10の管理や出荷検査のための電池情報を無線により取得できるため、電池モジュール10の保管、管理、出荷検査が容易になる。
As described above, the assembled battery system 50 according to the first embodiment acquires the battery information of the battery cell 1 in both the opened state and the closed state of the casing opening / closing unit 40 of the casing 41 that houses the assembled battery system 50. can do.
Moreover, since the battery module 10 suitable for a maintenance site can be selected while acquiring battery information at the time of maintenance or replacement of the battery module 10, man-hours for maintenance and replacement can be reduced.
In addition, since the battery information can be obtained while the battery module 10 is being maintained or replaced, the cell voltage of the replaced battery module 10 is substantially equal to the cell voltage of the other battery modules 10 in the assembled battery system 50. In addition, it can be adjusted during replacement work.
Further, since the battery module 10 can be operated while acquiring battery information during maintenance or replacement, the battery information is confirmed before connecting the assembled battery systems 50 to each other, and the battery module 10 is in a connectable state (as described above). It is possible to prevent the excessive charging current or discharging current from flowing into the battery module 10 by turning on the switch 30 only in the case of the condition).
In addition, since battery information for management and shipment inspection of the battery module 10 stored for maintenance, replacement, and assembly can be acquired wirelessly, storage, management, and shipment inspection of the battery module 10 are facilitated.
 なお、第1実施形態では、運転モードの通常シーケンスでは、電池情報を収集する回数を増加するために、Ackの返信を省略すると説明した。しかし、電池モジュール10の数が大きい場合には、通信周期Tが長くなる。そこで、早く再送シーケンスに移行できるようにするために、組電池管理装置20は、電池情報を受信した時にAckを返信するとよい。電池モジュール10はAckの返信を受信できない場合に、通信周期Tの間に通信を失敗したことを認識でき、次の通信周期Tから直ちに再送シーケンスを実行することができる。 In the first embodiment, in the normal sequence of the operation mode, it has been described that the reply of Ack is omitted in order to increase the number of times of collecting battery information. However, when the number of battery modules 10 is large, the communication cycle T becomes long. Therefore, the assembled battery management device 20 may return Ack when the battery information is received so that the retransmission sequence can be quickly performed. When the battery module 10 cannot receive the Ack reply, it can recognize that the communication has failed during the communication period T, and can immediately execute the retransmission sequence from the next communication period T.
 また、図6の処理は、保守者が指示をした時にだけ実行するようにしてもよい。
 また、図6のステップS605において、すべてのテスト信号に対応する受信信号強度測定結果をまとめて収集するように説明した。しかし、テスト信号の送信ごとに受信信号強度測定結果を収集するようにしても構わない。この場合、ステップS603で用いるテスト信号の周波数チャネルの順番を、前回の運転モードで用いたものから先に使用してもよい。このようにすることによって、伝搬環境の変化が小さい場合には、第1周波数チャネルと第2周波数チャネルとを、少ない数のテスト信号によって決定することができる場合がある。
 また、運転モードの再送シーケンスでは、第1周波数チャネルおよび第2周波数チャネルを使用すると説明したが、3以上の周波数チャネルを使用しても構わない。
Further, the process of FIG. 6 may be executed only when the maintenance person gives an instruction.
Further, in step S605 of FIG. 6, it has been described that the reception signal strength measurement results corresponding to all the test signals are collected together. However, the received signal strength measurement results may be collected every time the test signal is transmitted. In this case, the order of the frequency channels of the test signal used in step S603 may be used first from the one used in the previous operation mode. By doing so, when the change in the propagation environment is small, the first frequency channel and the second frequency channel may be determined by a small number of test signals.
In the operation mode retransmission sequence, the first frequency channel and the second frequency channel are used. However, three or more frequency channels may be used.
<第2実施形態>
 第2実施形態の組電池システム50aは、第1実施形態の組電池システム50(図1参照)に比べて、図7に示すように、電池モジュール10aにアンテナ6が追加され、組電池管理装置20aにアンテナ26が追加されている点において異なる。なお、図1と同じ構成には、同じ符号を付して説明を省略する。
Second Embodiment
Compared to the assembled battery system 50 (see FIG. 1) of the first embodiment, the assembled battery system 50a of the second embodiment has an antenna 6 added to the battery module 10a as shown in FIG. The difference is that an antenna 26 is added to 20a. In addition, the same code | symbol is attached | subjected to the same structure as FIG. 1, and description is abbreviate | omitted.
 電池モジュール10aは、アンテナ5とアンテナ6を備える。また、組電池管理装置20aは、アンテナ25とアンテナ26を備える。アンテナ5,6,25,26は様々な構成が考えられ、例えば、棒状のもの、コイル状のもの、板状のもの、プリント回路基板の導線パターンで形成したものであってもよい。 The battery module 10 a includes an antenna 5 and an antenna 6. The assembled battery management device 20 a includes an antenna 25 and an antenna 26. The antennas 5, 6, 25, and 26 may have various configurations. For example, the antennas may be rod-shaped, coil-shaped, plate-shaped, or printed circuit board conductor patterns.
 第2実施形態では、アンテナ5(25)およびアンテナ16(26)は、運転モードと保守モードとによって、使い方が異なる。例えば、運転モードではアンテナ5(25)を用い、保守モードではアンテナ6(26)を用いる。または、その逆であっても構わない。さらに、電池モジュール10は、運転モードではアンテナ5を用い、保守モードではアンテナ6を用い、組電池管理装置20は、運転モードでも保守モードでもアンテナ25,26の両方を用いてもよい。その逆に、電池モジュール10は、運転モードでも保守モードでもアンテナ5,6の両方を用い、組電池管理装置20は、運転モードではアンテナ25を用い、保守モードではアンテナ26を用いてもよい。定在波の影響は、筐体41内の位置に依存する。そのため、アンテナ5,6を位置が異なるように設置することで、無線信号を受信できなくなることを回避しやすくする。なお、アンテナ5,6の使い方は、電池モジュール10の記憶部3に記憶させる。また、アンテナ25,26の使い方は、組電池管理装置20の記憶部23に記憶させる。 In the second embodiment, the antenna 5 (25) and the antenna 16 (26) are used differently depending on the operation mode and the maintenance mode. For example, the antenna 5 (25) is used in the operation mode, and the antenna 6 (26) is used in the maintenance mode. Or the reverse may be sufficient. Further, the battery module 10 may use the antenna 5 in the operation mode, use the antenna 6 in the maintenance mode, and the assembled battery management device 20 may use both the antennas 25 and 26 in the operation mode and the maintenance mode. Conversely, the battery module 10 may use both the antennas 5 and 6 in the operation mode and the maintenance mode, and the assembled battery management apparatus 20 may use the antenna 25 in the operation mode and the antenna 26 in the maintenance mode. The influence of the standing wave depends on the position in the housing 41. For this reason, by installing the antennas 5 and 6 so that the positions thereof are different, it is easy to avoid the situation where the wireless signal cannot be received. The usage of the antennas 5 and 6 is stored in the storage unit 3 of the battery module 10. The usage of the antennas 25 and 26 is stored in the storage unit 23 of the assembled battery management device 20.
 次に、第2実施形態におけるアンテナ形状例について、図8を用いて説明する(適宜、図7参照)。図8(a)は組電池システム50の外観斜視図を表し、(b)は電池モジュール10aの別のアンテナ形状を表している。
 図8(a)に示すように、8個の電池モジュール10aが、筐体41の内部に収納されている。また、組電池管理装置20aは、筐体41の内側上部に設置されている。組電池管理装置20aは、アンテナ25およびアンテナ26を備える。また、電池モジュール10aは、アンテナ5およびアンテナ6を備える。アンテナ5(25)とアンテナ6(26)との位置は、定在波の影響を軽減しやすいように半波長以上離すことが好ましい。また、アンテナ5(25)およびアンテナ6(26)が放射する無線信号の性質を異ならせるため、アンテナ5(25)とアンテナ6(26)とは異なる形状にするとよい。また、光を用いた通信の場合は、アンテナ5(25),6(26)の代わりにLEDを用いてもよい。その際、LEDの向きを変えて設置することによって、光の届く範囲を調整することができる。
Next, an antenna shape example in the second embodiment will be described with reference to FIG. 8 (see FIG. 7 as appropriate). 8A shows an external perspective view of the assembled battery system 50, and FIG. 8B shows another antenna shape of the battery module 10a.
As shown in FIG. 8A, eight battery modules 10 a are housed inside the housing 41. Further, the assembled battery management device 20 a is installed on the inner upper side of the housing 41. The assembled battery management device 20 a includes an antenna 25 and an antenna 26. Further, the battery module 10 a includes an antenna 5 and an antenna 6. The positions of the antenna 5 (25) and the antenna 6 (26) are preferably separated by a half wavelength or more so as to easily reduce the influence of standing waves. Further, in order to make the properties of the radio signals radiated from the antenna 5 (25) and the antenna 6 (26) different, the antenna 5 (25) and the antenna 6 (26) may have different shapes. In the case of communication using light, an LED may be used instead of the antennas 5 (25) and 6 (26). In that case, the range which light reaches can be adjusted by changing direction of LED and installing.
 組電池管理装置20aのアンテナ25,26は、通信範囲を拡げるために、筐体41の内壁に設置してもよい。また、電池モジュール10aのアンテナ5,6は、通信範囲を拡げるために、電池モジュール10aの筐体の異なる側面に設置してもよい。 The antennas 25 and 26 of the assembled battery management device 20a may be installed on the inner wall of the housing 41 in order to expand the communication range. Further, the antennas 5 and 6 of the battery module 10a may be installed on different side surfaces of the casing of the battery module 10a in order to expand the communication range.
 また、図8(b)は、アンテナ5およびアンテナ6を、電池モジュール10aの同一面上に備えた状態を表している。この構成によって、1枚のプリント回路基板上に導線パターンでアンテナ5およびアンテナ6の双方を形成することができる。 FIG. 8B shows a state in which the antenna 5 and the antenna 6 are provided on the same surface of the battery module 10a. With this configuration, it is possible to form both the antenna 5 and the antenna 6 with a conductor pattern on a single printed circuit board.
 次に、第2実施形態において筐体41を閉じた時の通信モードの処理例について、図9を用いて説明する(適宜、図7,8参照)。図9(a)はフローチャートを表し、(b)は通信モードの種類およびチャネル設定例を表している。
 図9(a)のフローチャートは、図6のフローチャートと比較すると、周波数チャネルとアンテナとの組み合わせを用いる点において異なっている。
 周波数チャネルとアンテナとの組み合わせは、例えば、図9(b)の下段の表に示すように、運転モードでは、電池モジュール10ごとに、第1の組み合わせおよび第2の組み合わせが予め設定されている。
Next, an example of processing in the communication mode when the housing 41 is closed in the second embodiment will be described with reference to FIG. 9 (see FIGS. 7 and 8 as appropriate). FIG. 9A shows a flowchart, and FIG. 9B shows a communication mode type and channel setting example.
The flowchart in FIG. 9A is different from the flowchart in FIG. 6 in that a combination of a frequency channel and an antenna is used.
As the combinations of frequency channels and antennas, for example, as shown in the lower table of FIG. 9B, the first combination and the second combination are preset for each battery module 10 in the operation mode. .
 図9(b)の上段の表には、通信モードが示されている。運転モードの通常シーケンスでは、第1の組み合わせを使用する。また、運転モードの再送シーケンスでは、第1の組み合わせに加えて、第2の組み合わせを使用する。保守モードの通常シーケンスでは、予め決められた周波数チャネルを順に変更しながら、双方のアンテナを使用する。また、保守モードの再送シーケンスでは、双方のアンテナを用いて、通常シーケンスより高い通信頻度で、通信周期Tの間に同一データを複数回送信する。 The communication mode is shown in the upper table of FIG. In the normal sequence of the operation mode, the first combination is used. In the retransmission sequence in the operation mode, the second combination is used in addition to the first combination. In the normal sequence of the maintenance mode, both antennas are used while sequentially changing a predetermined frequency channel. In the retransmission sequence in the maintenance mode, the same data is transmitted a plurality of times during the communication period T at a communication frequency higher than that of the normal sequence using both antennas.
 次に、図9(a)に示すフローチャートについて説明する。
 ステップS901では、開閉検知部22は、筐体開閉部40が「閉」の状態になったことを検知し、制御部21に筐体開閉部40が「閉」になったことを示す通知情報を送信する。ただし、電池モジュール10は、筐体開閉部40が「閉」であることを直接検知せず、組電池管理装置20から知らされるものとする。
 ステップS902では、制御部21は、電池モジュール10に運転モードの周波数チャネルおよびアンテナの組み合わせを再設定するために、受信信号強度を測定する指示情報を、保守モードで送信する。
Next, the flowchart shown in FIG. 9A will be described.
In step S <b> 901, the opening / closing detection unit 22 detects that the housing opening / closing unit 40 is in a “closed” state, and notifies the control unit 21 that the housing opening / closing unit 40 is “closed”. Send. However, the battery module 10 does not directly detect that the casing opening / closing unit 40 is “closed”, but is notified from the assembled battery management device 20.
In step S902, the control unit 21 transmits instruction information for measuring the received signal strength in the maintenance mode in order to reset the combination of the frequency channel and the antenna in the operation mode in the battery module 10.
 ステップS903では、制御部21は、周波数チャネルおよびアンテナの組み合わせを変更しつつ、テスト信号を送信する。そして、電池モジュール10は、受信したテスト信号の受信信号強度を測定する。テスト信号の周波数チャネルは、予め決められた順に使われる。
 ステップS904では、制御部21は、すべてのテスト信号の送信を完了する。
In step S903, the control unit 21 transmits the test signal while changing the combination of the frequency channel and the antenna. Then, the battery module 10 measures the received signal strength of the received test signal. The frequency channels of the test signal are used in a predetermined order.
In step S904, the control unit 21 completes transmission of all test signals.
 ステップS905では、制御部21は、電池モジュール10から受信信号強度の測定結果を、保守モードを用いて収集する。そして、制御部21は、各電池モジュール10から収集した受信信号強度の測定結果に基づいて、電池モジュール10の第1周波数チャネルおよびアンテナの組み合わせ(第1の組み合わせ)と第2周波数チャネルおよびアンテナの組み合わせ(第2の組み合わせ)とを決定する。
 ステップS906では、制御部21は、組電池管理装置20と電池モジュール10との間の通信モードを保守モードから運転モードに移行させる処理を実行する。
In step S905, the control unit 21 collects the measurement results of the received signal strength from the battery module 10 using the maintenance mode. Then, based on the measurement result of the received signal strength collected from each battery module 10, the control unit 21 combines the first frequency channel and antenna combination (first combination), the second frequency channel and the antenna of the battery module 10. A combination (second combination) is determined.
In step S <b> 906, the control unit 21 performs a process of shifting the communication mode between the assembled battery management device 20 and the battery module 10 from the maintenance mode to the operation mode.
 ステップS907では、制御部21は、運転モードを用いて各電池モジュール10から電池情報を収集する。
 ステップS908では、制御部21は、前記した所定の条件が満たされた場合にスイッチ30をオン(接続)する。そして、組電池システム50は始動する。
In step S907, the control unit 21 collects battery information from each battery module 10 using the operation mode.
In step S908, the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. Then, the assembled battery system 50 starts.
 運転モードにおいて、監視制御指示情報をブロードキャストする場合は、全電池モジュール10に対して共通の周波数チャネルおよびアンテナ5,6(第1の組み合わせ)を用いる。ただし、各電池モジュール10に対する最適な周波数チャネルとアンテナ5,6の組み合わせは異なるため、どの電池モジュール10に対しても不十分な受信信号強度とならない周波数チャネルとアンテナ5,6の組み合わせが選択される。それに対して、第2の組み合わせは、電池モジュール10ごとに無線通信を行うために使用される。そのため、第2の組み合わせには、各電池モジュール10に最適な周波数チャネルおよびアンテナ5,6の組み合わせが設定される。 In the operation mode, when monitoring control instruction information is broadcast, a common frequency channel and antennas 5 and 6 (first combination) are used for all battery modules 10. However, since the combination of the optimal frequency channel for each battery module 10 and the antennas 5 and 6 is different, the combination of the frequency channel and the antennas 5 and 6 that does not provide an insufficient received signal strength for any battery module 10 is selected. The On the other hand, the second combination is used for performing wireless communication for each battery module 10. Therefore, the optimal combination of the frequency channel and the antennas 5 and 6 for each battery module 10 is set as the second combination.
 なお、組電池管理装置20のアンテナ25,26は、どちらか片方のみで電池モジュール10に十分な受信信号強度を与えられる場合は、片方のみを使用するようにしてもよい。
 また、電池モジュール10のアンテナ5およびアンテナ6は、いずれか一方を用いるのではなく、両方を用いて、受信信号を足し合わせたりしてもよい。その際、受信信号強度に応じて重み付けをしたり、アンテナ5およびアンテナ6で受信した信号の位相差を補償して足し合わせたりするとよい。
It should be noted that only one of the antennas 25 and 26 of the battery pack management apparatus 20 may be used when sufficient received signal strength is given to the battery module 10.
In addition, either one of the antenna 5 and the antenna 6 of the battery module 10 may be used, or the received signal may be added using both. At that time, weighting may be performed according to the received signal strength, or the phase difference of the signals received by the antenna 5 and the antenna 6 may be compensated and added.
 以上、第2実施形態に係る組電池システム50は、組電池システム50を収納する筐体41の筐体開閉部40を開けた状態および閉じた状態の双方で、電池セル1の電池情報を取得することができる。
 また、2本のアンテナを使い分けることによって、1本のアンテナの場合より無線の通信品質を向上させ、通信の成功率を高めることができる。
As described above, the assembled battery system 50 according to the second embodiment acquires the battery information of the battery cell 1 in both the opened state and the closed state of the casing opening / closing unit 40 of the casing 41 that houses the assembled battery system 50. can do.
Also, by properly using two antennas, the wireless communication quality can be improved and the success rate of communication can be increased as compared with the case of one antenna.
(第3実施形態)
 第3実施形態では、図10に示すように、保守システム51は、組電池システム50、保守者が操作する保守端末60および交換用電池モジュール10bを備える。組電池システム50、保守端末60および交換用電池モジュール10bは、相互に無線通信を行いつつ、交換用電池モジュール10bを故障した電池モジュール10と交換する交換作業を実行するケースについて説明する。
(Third embodiment)
In the third embodiment, as shown in FIG. 10, the maintenance system 51 includes an assembled battery system 50, a maintenance terminal 60 operated by a maintenance person, and a replacement battery module 10b. The assembled battery system 50, the maintenance terminal 60, and the replacement battery module 10b will be described with respect to a case in which exchange work is performed to replace the replacement battery module 10b with a failed battery module 10 while performing wireless communication with each other.
 まず、第3実施形態における保守システム51の機能例について、図10を用いて説明する。
 第3実施形態の保守システム51に含まれる組電池システム50は、第1実施形態の組電池システム50と同様であり、同じ構成には同じ符号を付し、その説明は省略する。また、交換用電池モジュール10bは、組電池システム50に組み込まれた電池モジュール10と同様であるので、その説明は省略する。
First, a function example of the maintenance system 51 in the third embodiment will be described with reference to FIG.
The assembled battery system 50 included in the maintenance system 51 of the third embodiment is the same as the assembled battery system 50 of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. Further, the replacement battery module 10b is the same as the battery module 10 incorporated in the assembled battery system 50, and thus the description thereof is omitted.
 保守端末60は、制御部(CTRL)61、入出力インタフェース(I/F)62、記憶部(Memory)63、通信部(COMM)64およびアンテナ65を備える。
 制御部61は、CPUおよびメインメモリまたはマイコンで構成され、通信部64、記憶部63および入出力インタフェース62を制御するとともに、各部62~64間の情報の流れを制御する機能を有する。
 入出力インタフェース62は、電池モジュール10の電池情報、組電池システム50に収納される電池モジュール10のID情報(識別情報)を記載した電池モジュールIDリスト(電池モジュールID情報)131(図13参照)、交換用電池モジュール10bのID情報を外部装置(不図示)と入出力する機能を有する。
 記憶部63には、電池モジュール10の電池情報や電池モジュールIDリスト131等が記憶される。
 通信部64は、無線通信のための無線信号を生成する機能を有する。
 アンテナ65は、組電池管理装置20や交換用電池モジュール10bとの間で、無線信号を送受信する機能を有する。
The maintenance terminal 60 includes a control unit (CTRL) 61, an input / output interface (I / F) 62, a storage unit (Memory) 63, a communication unit (COMM) 64, and an antenna 65.
The control unit 61 includes a CPU and a main memory or a microcomputer, and has a function of controlling the communication unit 64, the storage unit 63, and the input / output interface 62, and controlling the flow of information between the units 62 to 64.
The input / output interface 62 is a battery module ID list (battery module ID information) 131 in which battery information of the battery module 10 and ID information (identification information) of the battery module 10 stored in the assembled battery system 50 are described (see FIG. 13). The ID information of the replacement battery module 10b is input / output from / to an external device (not shown).
The storage unit 63 stores battery information of the battery module 10, a battery module ID list 131, and the like.
The communication unit 64 has a function of generating a wireless signal for wireless communication.
The antenna 65 has a function of transmitting and receiving radio signals to and from the assembled battery management device 20 and the replacement battery module 10b.
 入出力インタフェース62は、保守や電池モジュール10の交換を行う保守者が取り外す電池モジュール10や交換用電池モジュール10bを特定するために、交換作業に伴って組電池管理装置20に指示情報を送信したり、交換結果を確認したりする際に情報を入出力する機能を有する。例えば、入出力インタフェース62には、液晶ディスプレイやキーボード、操作ボタン、タッチパネルディスプレイ等の入出力装置(不図示)が接続される。 The input / output interface 62 transmits instruction information to the assembled battery management device 20 in accordance with the replacement work in order to specify the battery module 10 or replacement battery module 10b to be removed by a maintenance person who performs maintenance or replacement of the battery module 10. Or a function for inputting / outputting information when checking the exchange result. For example, an input / output device (not shown) such as a liquid crystal display, a keyboard, operation buttons, and a touch panel display is connected to the input / output interface 62.
 また、運転時に収集している電池情報以外の情報を、保守端末60を用いて収集してもよい。例えば、電池セル1の残存電荷量の推移、充放電回数、時間等の使用履歴情報を電池モジュール10の記憶部3に蓄積しておく。そして、保守時に保守端末60が使用履歴情報の収集を指示する指示情報を組電池管理装置20に送信し、組電池管理装置20を介して、その使用履歴情報を取得する。使用履歴情報は、電池モジュール10の特性等を明確にできるため、中古の電池モジュール10として組電池システム50に使う場合に参照される。 Further, information other than the battery information collected during operation may be collected using the maintenance terminal 60. For example, usage history information such as the transition of the remaining charge amount of the battery cell 1, the number of charge / discharge cycles, and time is accumulated in the storage unit 3 of the battery module 10. Then, during maintenance, the maintenance terminal 60 transmits instruction information for instructing collection of usage history information to the assembled battery management device 20, and the usage history information is acquired via the assembled battery management device 20. Since the usage history information can clarify the characteristics and the like of the battery module 10, it is referred to when the battery module 10 is used in the assembled battery system 50.
 また、保守端末60は、電池モジュール10の製造、流通、使用、廃棄等の様々な場面において必要となる電池セル1に関する情報を容易に取得することができる。これにより、保守端末60は、電池モジュール10の在庫管理に用いたり、出荷検査に用いたりすることができる。 Further, the maintenance terminal 60 can easily acquire information on the battery cell 1 that is necessary in various scenes such as manufacture, distribution, use, and disposal of the battery module 10. Thereby, the maintenance terminal 60 can be used for inventory management of the battery module 10 or for shipping inspection.
 図11は、第3実施形態における保守システム51の斜視図を示している。保守端末60は、例えば、携帯電話機のように十字キー、操作ボタン、表示部を有する端末、またはタッチパネルディスプレイを備えたタブレット端末等である。 FIG. 11 shows a perspective view of the maintenance system 51 in the third embodiment. The maintenance terminal 60 is, for example, a terminal having a cross key, operation buttons, a display unit, or a tablet terminal having a touch panel display, like a mobile phone.
 図12は、第3実施形態における電池モジュール10の交換処理フロー例を示している(適宜、図10参照)。
 ステップS1201では、保守端末60は、交換用電池モジュール10bおよび組電池管理装置20と無線通信を行い、電池情報を収集する。このとき、無線通信はポーリングによって行われる。なお、組電池管理装置20と電池モジュール10との間の無線通信を妨げないように、保守端末60は送信前にキャリアセンスを行うことが好ましい。
FIG. 12 shows an example of a replacement process flow of the battery module 10 in the third embodiment (see FIG. 10 as appropriate).
In step S1201, the maintenance terminal 60 performs wireless communication with the replacement battery module 10b and the assembled battery management device 20, and collects battery information. At this time, wireless communication is performed by polling. In addition, it is preferable that the maintenance terminal 60 performs carrier sense before transmission so as not to prevent wireless communication between the assembled battery management device 20 and the battery module 10.
 ステップS1202では、保守端末60は、組電池管理装置20から収集した電池情報に基づいて、取り外す電池モジュール10を特定し、組電池管理装置20の記憶している電池モジュールIDリスト131を更新する。電池モジュールIDリスト131の更新は、取り外す電池モジュール10のID情報を削除し、その代わりに取り付ける交換用電池モジュール10bのID情報を追加することである。このことにより、組電池管理装置20は、新たに交換用電池モジュール10bと無線通信し、電池情報を取得する必要があることを認識する。 In step S1202, the maintenance terminal 60 identifies the battery module 10 to be removed based on the battery information collected from the assembled battery management device 20, and updates the battery module ID list 131 stored in the assembled battery management device 20. The update of the battery module ID list 131 is to delete the ID information of the battery module 10 to be removed and add the ID information of the replacement battery module 10b to be attached instead. Thereby, the assembled battery management apparatus 20 recognizes that it is necessary to newly communicate with the replacement battery module 10b and acquire battery information.
 ステップS1203では、保守端末60は、交換用電池モジュール10bに対して、組電池管理装置20を通信先とする指示情報を送信する。そして、交換用電池モジュール10bは、組電池管理装置20から送信される情報を待ち受ける状態になる。 In step S1203, the maintenance terminal 60 transmits instruction information with the assembled battery management device 20 as a communication destination to the replacement battery module 10b. Then, the replacement battery module 10b waits for information transmitted from the assembled battery management device 20.
 ステップS1204では、組電池管理装置20は、記憶している電池モジュールIDリスト131に基づいて、取り外す電池モジュール10に対して、組電池管理装置20との通信を停止するための指示情報を送信する。 In step S1204, the assembled battery management device 20 transmits instruction information for stopping communication with the assembled battery management device 20 to the battery module 10 to be removed based on the stored battery module ID list 131. .
 ステップS1205では、組電池管理装置20は、交換用電池モジュール10bに対して、通信を開始するための指示情報を送信する。これに対し、交換用電池モジュール10bが応答情報を返信することで、組電池管理装置20と交換用電池モジュール10bとの間で通信が行えるようになる。この際、組電池管理装置20は、応答情報として、交換用電池モジュール10bの電池情報を含めて取得するとよい。
このようにして、通信に関して、取り外す電池モジュール10と交換用電池モジュール10bの交換設定が完了する。なお、保守端末60は、取り外した電池モジュール10と無線通信し、間違いなく取り外されたかどうかを確認するようにしてもよい。
In step S1205, the assembled battery management device 20 transmits instruction information for starting communication to the replacement battery module 10b. In contrast, when the replacement battery module 10b returns the response information, communication can be performed between the assembled battery management device 20 and the replacement battery module 10b. At this time, the assembled battery management device 20 may acquire the battery information of the replacement battery module 10b as response information.
In this way, with respect to communication, the replacement setting of the battery module 10 to be removed and the replacement battery module 10b is completed. The maintenance terminal 60 may wirelessly communicate with the removed battery module 10 and confirm whether or not the battery module 10 is definitely removed.
 ステップS1206では、保守作業が終了し、開閉検知部22は、筐体開閉部40が「開」の状態から「閉」の状態に変化しことを検知する。
 ステップS1207では、制御部21は、前記した所定の条件が満たされた場合にスイッチ30をオン(接続)する。そして、組電池システム50は、図6の処理フロー例で説明したように、運転モードで運転を開始する。
In step S1206, the maintenance work is completed, and the opening / closing detection unit 22 detects that the housing opening / closing unit 40 changes from the “open” state to the “closed” state.
In step S1207, the control unit 21 turns on (connects) the switch 30 when the above-described predetermined condition is satisfied. And the assembled battery system 50 starts an operation | movement with an operation mode, as demonstrated in the example of the processing flow of FIG.
 図13は、電池モジュールIDリスト131の一例を表している。
 電池モジュールIDリスト131は、電池モジュール名称132、ID133およびフラグ134を関連付けて格納している。
 電池モジュール名称132は、電池モジュール10の名称である。
 ID133は、電池モジュールを識別するID情報(識別情報)である。
 フラグ134は、無線通信を行う対象か否かを示す情報を示す。例えば、電池モジュールAは、継続して使用されるので、フラグ134欄は「0」とされる。電池モジュールBは、撤去されるので、フラグ134欄は「1(撤去)」とされる。電池モジュールCは、新設されるので、フラグ134欄は「2(新設)」とされる。
FIG. 13 shows an example of the battery module ID list 131.
The battery module ID list 131 stores a battery module name 132, an ID 133, and a flag 134 in association with each other.
The battery module name 132 is the name of the battery module 10.
ID 133 is ID information (identification information) for identifying the battery module.
The flag 134 indicates information indicating whether or not the wireless communication target. For example, since the battery module A is continuously used, the flag 134 column is set to “0”. Since the battery module B is removed, the flag 134 column is set to “1 (removed)”. Since the battery module C is newly installed, the flag 134 column is set to “2 (newly installed)”.
 組電池管理装置20は、フラグ134が「1(撤去)」の場合には、その電池モジュールBとの通信を停止する。そして、組電池管理装置20は、通信が停止されたことを確認した後、電池モジュールIDリスト131の電池モジュールBの行を削除する。また、組電池管理装置20は、フラグ134が「2(新設)」の場合には、その電池モジュールCとの通信を開始する。そして、組電池管理装置20は、電池モジュールCから応答を受信した後、電池モジュールIDリスト131の電池モジュールCのフラグ134欄を「0」に更新する。 The assembled battery management apparatus 20 stops communication with the battery module B when the flag 134 is “1 (removal)”. And the assembled battery management apparatus 20 deletes the line of the battery module B of the battery module ID list | wrist 131, after confirming that communication was stopped. Further, the assembled battery management device 20 starts communication with the battery module C when the flag 134 is “2 (newly installed)”. Then, after receiving the response from the battery module C, the assembled battery management device 20 updates the flag 134 column of the battery module C in the battery module ID list 131 to “0”.
 図14は、第3実施形態における通信シーケンス例を表している。なお、図14の通信シーケンス例において、図12に示した処理フローと同じ処理の箇所には、同じ符号を用いて示す。また、取り外す電池モジュール10は電池モジュールBとして説明される。また、通信周期T1,T2,T3,T4は、いずれも通信周期Tに等しいものとする。また、交換用電池モジュール10bは電池モジュールCとして記載されている。 FIG. 14 shows a communication sequence example in the third embodiment. In the communication sequence example of FIG. 14, the same reference numerals are used for the same processing portions as those in the processing flow shown in FIG. 12. Further, the battery module 10 to be removed is described as the battery module B. Further, the communication periods T1, T2, T3, and T4 are all equal to the communication period T. Further, the replacement battery module 10b is described as a battery module C.
 図14で、組電池管理装置20は、電池モジュールAおよび電池モジュールBと無線通信しており、通信周期T1で電池情報を収集している。保守端末60は、組電池管理装置20が無線通信を行っていない間を利用して、組電池管理装置20と電池モジュールC(交換用電池モジュール10b)と無線通信を行い、電池情報を収集する(S1201)。なお、保守端末60と組電池管理装置20との通信と、保守端末60と電池モジュールC(交換用電池モジュール10b)との通信とは、いずれが先でも構わない。 In FIG. 14, the assembled battery management device 20 wirelessly communicates with the battery module A and the battery module B, and collects battery information at the communication cycle T1. The maintenance terminal 60 performs wireless communication with the assembled battery management device 20 and the battery module C (replacement battery module 10b) while the assembled battery management device 20 is not performing wireless communication, and collects battery information. (S1201). Note that either the communication between the maintenance terminal 60 and the assembled battery management device 20 or the communication between the maintenance terminal 60 and the battery module C (replacement battery module 10b) may be performed first.
 通信周期T2では、保守端末60は、組電池管理装置20に記憶されている電池モジュールIDリスト131を更新する(S1202)。そして、保守端末60は、電池モジュールC(交換用電池モジュール10b)に対して、組電池管理装置20を通信先とする指示情報を送信する。(S1203)。なお、S1202およびS1203の処理は、どちらが先でも構わない。 In the communication cycle T2, the maintenance terminal 60 updates the battery module ID list 131 stored in the assembled battery management device 20 (S1202). And the maintenance terminal 60 transmits the instruction information which makes the assembled battery management apparatus 20 a communication destination with respect to the battery module C (replacement battery module 10b). (S1203). Note that either of the processes of S1202 and S1203 may be performed first.
 次の通信周期T3では、組電池管理装置20は、取り外す電池モジュールBに対して、組電池管理装置20との通信を停止するための指示情報を送信する(S1204)。取り外す電池モジュールBは電池情報と併せて、応答情報を返信する(S1301)。
 そして、組電池管理装置20は、電池モジュールC(交換用電池モジュール10b)に対して、通信を開始するための指示情報を送信し、電池モジュールCが応答情報を返信する(S1205)。なお、保守端末60は、取り外した電池モジュールBと無線通信し、間違いなく取り外されたかどうかを確認するようにしてもよい(S1302)。
In the next communication cycle T3, the assembled battery management device 20 transmits instruction information for stopping communication with the assembled battery management device 20 to the battery module B to be removed (S1204). The battery module B to be removed returns response information together with the battery information (S1301).
Then, the assembled battery management device 20 transmits instruction information for starting communication to the battery module C (replacement battery module 10b), and the battery module C returns response information (S1205). Note that the maintenance terminal 60 may wirelessly communicate with the removed battery module B and confirm whether or not the battery module B is definitely removed (S1302).
 通信周期T4では、組電池管理装置2は、電池モジュールAおよび電池モジュールCから電池情報を収集する。 In the communication cycle T4, the assembled battery management device 2 collects battery information from the battery module A and the battery module C.
 以上、第3実施形態に係る保守システム51の構成を適用すれば、無線通信により電池情報を収集しながら電池モジュール10を交換することができる。つまり、保守システム51は、組電池システム50内の他の電池モジュール10のセル電圧に近いものを交換用電池モジュール10bとして選ぶことができる。
 また、交換作業中に電池情報を取得しながら作業できるため、保守システム51は、交換用電池モジュール10bのセル電圧が組電池システム50内の他の電池モジュール10のセル電圧とほぼ等しくなるように調整することができる。
 また、組電池システム50から取り外した電池モジュール10の電池情報や取り付ける前の交換用電池モジュール10bの電池情報をその場で取得できるため、保守システム51は、保守や交換の工数を低減できる。
 また、電池モジュール10の保守時や交換時に、電池情報を取得しながら作業できるため、保守システム51は、組電池システム50同士を接続する前に電池情報を確認し、接続可能な状態である場合のみ電極端子31につながるスイッチ30をオンにして、過剰な充電電流や放電電流が電池モジュール10に流れることを防ぐことができる。
 また、保守システム51は、保守、交換、組立用に保管している電池モジュール10の管理や出荷検査のための電池情報を無線通信により取得できるため、電池モジュール10の保管、管理、出荷検査が容易になる。
As described above, when the configuration of the maintenance system 51 according to the third embodiment is applied, the battery module 10 can be replaced while collecting battery information by wireless communication. That is, the maintenance system 51 can select a replacement battery module 10b that is close to the cell voltage of another battery module 10 in the assembled battery system 50.
Further, since the battery system can acquire the battery information during the replacement work, the maintenance system 51 allows the cell voltage of the replacement battery module 10b to be almost equal to the cell voltage of the other battery modules 10 in the assembled battery system 50. Can be adjusted.
In addition, since the battery information of the battery module 10 removed from the assembled battery system 50 and the battery information of the replacement battery module 10b before being attached can be acquired on the spot, the maintenance system 51 can reduce maintenance and replacement man-hours.
In addition, since the battery module 10 can be operated while acquiring battery information during maintenance or replacement, the maintenance system 51 confirms the battery information before connecting the assembled battery systems 50 and is in a connectable state. Only the switch 30 connected to the electrode terminal 31 can be turned on to prevent an excessive charging current or discharging current from flowing into the battery module 10.
Further, since the maintenance system 51 can acquire battery information for management and shipment inspection of the battery module 10 stored for maintenance, replacement, and assembly by wireless communication, the storage, management, and shipment inspection of the battery module 10 can be performed. It becomes easy.
 なお、無線通信の通信周期Tは、毎回同一であっても、毎回異なる長さであってもよい。また、組電池管理装置20が電池情報を収集し終えた後の時間が長い場合は、通信周期T内に図3,6,9,12に示す複数のステップ処理を行っても構わない。この際、無線通信に用いる周波数チャネルは、保守モードで予め設定した並びの順に変更すればよい。 Note that the communication cycle T of wireless communication may be the same every time or may be a different length every time. Moreover, when the time after the assembled battery management apparatus 20 finishes collecting battery information is long, a plurality of step processes shown in FIGS. At this time, the frequency channel used for wireless communication may be changed in the order of arrangement set in advance in the maintenance mode.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも、説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、組電池管理装置20の各構成や機能、制御部21,61および電池情報取得部2等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、制御部21,61および電池情報取得部2の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD(Digital Versatile Disc)等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてもよい。
In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
In addition, each configuration and function of the assembled battery management device 20, the control units 21 and 61, the battery information acquisition unit 2, and the like are realized by hardware by designing a part or all of them, for example, with an integrated circuit. Also good. Moreover, each structure, function, etc. of the control parts 21 and 61 and the battery information acquisition part 2 may be implement | achieved by software, when a processor interprets and executes the program which implement | achieves each function. Information such as programs, tables, and files for realizing each function is stored in a memory, a recording device such as a hard disk or SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD (Digital Versatile Disc). be able to.
In addition, the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all configurations are connected to each other.
 1 電池セル
 2 電池情報取得部
 3,23,63 記憶部
 4,24,64 通信部(無線通信部)
 5,6,25,26,65 アンテナ
 10,10a 電池モジュール
 10b 交換用電池モジュール
 20,20a 組電池管理装置
 21,61 制御部
 22 開閉検知部
 30 スイッチ
 31 電極端子
 32 外部通信インタフェース端子
 40 筐体開閉部
 41 筐体
 50,50a 組電池システム
 51 保守システム
 60 保守端末
 62 入出力インタフェース
 131 電池モジュールIDリスト(電池モジュールID情報)
DESCRIPTION OF SYMBOLS 1 Battery cell 2 Battery information acquisition part 3,23,63 Storage part 4,24,64 Communication part (wireless communication part)
5, 6, 25, 26, 65 Antenna 10, 10a Battery module 10b Replacement battery module 20, 20a Battery pack management device 21, 61 Control unit 22 Open / close detection unit 30 Switch 31 Electrode terminal 32 External communication interface terminal 40 Case open / close Unit 41 Case 50, 50a Battery pack system 51 Maintenance system 60 Maintenance terminal 62 Input / output interface 131 Battery module ID list (battery module ID information)

Claims (15)

  1.  シールドされた筐体に収納され、電池セルの電池情報を無線で送信する無線通信部を有する電池モジュールと、
     前記電池モジュールとともに前記筐体に収納され、前記電池モジュールとの間の無線の伝搬環境に対応して通信モードを変更して前記電池情報を取得する組電池管理装置と、
    を備えることを特徴とする組電池システム。
    A battery module that is housed in a shielded housing and has a wireless communication unit that wirelessly transmits battery information of battery cells;
    An assembled battery management device that is housed in the housing together with the battery module, and acquires the battery information by changing a communication mode corresponding to a wireless propagation environment between the battery module;
    An assembled battery system comprising:
  2.  前記組電池管理装置は、
     前記筐体が開いている場合と閉じている場合とを検知する開閉検知部を備え、
     前記筐体が開いている場合、前記電池モジュールと第1の通信モードで無線通信を実行し、
     前記筐体が閉じている場合、前記電池モジュールと第2の通信モードで無線通信を実行する
    ことを特徴とする請求の範囲第1項に記載の組電池システム。
    The assembled battery management device includes:
    An open / close detection unit for detecting when the housing is open and when the housing is closed;
    When the casing is open, wireless communication is performed in the first communication mode with the battery module,
    2. The assembled battery system according to claim 1, wherein when the casing is closed, wireless communication is performed with the battery module in a second communication mode.
  3.  前記組電池管理装置は、
     前記第1の通信モードでは、通信周期ごとに使用する周波数チャネルを変化させ、
     前記第2の通信モードでは、使用する周波数チャネルを固定する
    ことを特徴とする請求の範囲第2項に記載の組電池システム。
    The assembled battery management device includes:
    In the first communication mode, the frequency channel used for each communication cycle is changed,
    The assembled battery system according to claim 2, wherein a frequency channel to be used is fixed in the second communication mode.
  4.  前記組電池管理装置は、
     前記電池モジュールを複数備え、
     前記周波数チャネルの中で、1つを前記複数の前記電池モジュールに共通に使用する
    ことを特徴とする請求の範囲第3項に記載の組電池システム。
    The assembled battery management device includes:
    A plurality of the battery modules are provided,
    4. The assembled battery system according to claim 3, wherein one of the frequency channels is commonly used for the plurality of battery modules.
  5.  前記組電池管理装置は、前記第1の通信モードと前記第2の通信モードとの切り替えを指示する指示情報を、前記電池モジュールに送信する
    ことを特徴とする請求の範囲第2項に記載の組電池システム。
    The said assembled battery management apparatus transmits the instruction information which instruct | indicates switching to the said 1st communication mode and the said 2nd communication mode to the said battery module, The Claim 2 characterized by the above-mentioned. Battery pack system.
  6.  前記電池モジュールは前記筐体の開閉を検知する開閉検知部を備え、
     前記組電池管理装置および前記電池モジュールは、前記第1の通信モードと前記第2の通信モードとの切り替えを、それぞれの前記開閉検知部の検知結果に基づいて行う
    ことを特徴とする請求の範囲第2項に記載の組電池システム。
    The battery module includes an opening / closing detection unit that detects opening / closing of the housing,
    The assembled battery management device and the battery module perform switching between the first communication mode and the second communication mode based on a detection result of each open / close detection unit. The assembled battery system according to Item 2.
  7.  前記電池セルを備える前記電池モジュールを直列、並列または直並列に接続したときの両端にスイッチを備え、
     前記組電池管理装置は、前記スイッチの接続または切断を制御する
    ことを特徴とする請求の範囲第1項に記載の組電池システム。
    A switch is provided at both ends when the battery module including the battery cell is connected in series, parallel or in series,
    The assembled battery system according to claim 1, wherein the assembled battery management device controls connection or disconnection of the switch.
  8.  前記組電池管理装置は、前記筐体が開いている場合に前記スイッチを切断状態にし、前記筐体が閉じている場合に前記スイッチを接続状態にする
    ことを特徴とする請求の範囲第7項に記載の組電池システム。
    8. The battery pack management device according to claim 7, wherein the switch is disconnected when the casing is open, and the switch is connected when the casing is closed. The assembled battery system described in 1.
  9.  前記組電池管理装置は、前記スイッチを前記電池モジュールの電池情報に基づいて制御する
    ことを特徴とする請求の範囲第7項に記載の組電池システム。
    The assembled battery system according to claim 7, wherein the assembled battery management device controls the switch based on battery information of the battery module.
  10.  前記組電池管理装置は、外部から前記筐体の開閉状態を通知する通知情報を受信する
    ことを特徴とする請求の範囲第1項に記載の組電池システム。
    The assembled battery system according to claim 1, wherein the assembled battery management device receives notification information for notifying an open / closed state of the casing from the outside.
  11.  前記組電池管理装置は、前記電池モジュールから送信される無線信号の受信信号強度に基づいて前記筐体の開閉状態を判定する
    ことを特徴とする請求の範囲第1項に記載の組電池システム。
    2. The assembled battery system according to claim 1, wherein the assembled battery management device determines an open / closed state of the housing based on a received signal strength of a radio signal transmitted from the battery module.
  12.  前記組電池管理装置および前記電池モジュールそれぞれは、複数のアンテナを備え、
     前記第1の通信モードと前記第2の通信モードとで異なる前記アンテナを使用する
    ことを特徴とする請求の範囲第2項に記載の組電池システム。
    Each of the assembled battery management device and the battery module includes a plurality of antennas,
    The assembled battery system according to claim 2, wherein the antennas different in the first communication mode and the second communication mode are used.
  13.  前記第2の通信モードで使用する前記周波数チャネルは、前記筐体が開いている状態から閉じた状態に変化した際に、前記組電池管理装置から前記電池モジュールにテスト信号を送信して決定する
    ことを特徴とする請求の範囲第2項に記載の組電池システム。
    The frequency channel used in the second communication mode is determined by transmitting a test signal from the assembled battery management device to the battery module when the casing is changed from an open state to a closed state. The assembled battery system according to claim 2, wherein:
  14.  前記組電池管理装置は、
     前記筐体が閉じている場合、前記電池モジュールとのみ無線通信し、
     前記筐体が開いている場合、前記電池モジュールおよび前記電池モジュール以外の保守端末と無線通信する
    ことを特徴とする請求の範囲第1項に記載の組電池システム。
    The assembled battery management device includes:
    When the case is closed, wireless communication only with the battery module,
    The assembled battery system according to claim 1, wherein when the casing is open, wireless communication is performed with the battery module and a maintenance terminal other than the battery module.
  15.  前記電池モジュールは、
     受信した周波数チャネルで前記電池情報を返信する
    ことを特徴とする請求の範囲第3項に記載の組電池システム。
    The battery module is
    The assembled battery system according to claim 3, wherein the battery information is returned using the received frequency channel.
PCT/JP2012/084028 2012-12-28 2012-12-28 Assembled battery system WO2014103003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084028 WO2014103003A1 (en) 2012-12-28 2012-12-28 Assembled battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084028 WO2014103003A1 (en) 2012-12-28 2012-12-28 Assembled battery system

Publications (1)

Publication Number Publication Date
WO2014103003A1 true WO2014103003A1 (en) 2014-07-03

Family

ID=51020154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084028 WO2014103003A1 (en) 2012-12-28 2012-12-28 Assembled battery system

Country Status (1)

Country Link
WO (1) WO2014103003A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088871A (en) * 2013-10-30 2015-05-07 日立オートモティブシステムズ株式会社 Communication system
JPWO2015121979A1 (en) * 2014-02-14 2017-03-30 株式会社日立製作所 Battery control system, battery system
WO2019059568A1 (en) * 2017-09-25 2019-03-28 주식회사 엘지화학 Apparatus for allocating identification information to plurality of slave battery management units
WO2019203340A1 (en) * 2018-04-20 2019-10-24 ノバルス株式会社 Sensor device and battery device
CN112534838A (en) * 2018-09-13 2021-03-19 Lg 电子株式会社 Wireless battery management system for vehicle
CN113131057A (en) * 2020-01-15 2021-07-16 株式会社电装 Battery pack
WO2021153276A1 (en) * 2020-01-28 2021-08-05 株式会社デンソー Battery pack
WO2023021744A1 (en) * 2021-08-18 2023-02-23 日立Astemo株式会社 Management device, battery data transmission device, and transmission system
WO2023112371A1 (en) * 2021-12-15 2023-06-22 日立Astemo株式会社 Battery data transmission device, battery management device, battery data transmission method, and battery data transmission system
CN115004464B (en) * 2020-01-28 2024-05-31 株式会社电装 Battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223810A (en) * 1995-02-07 1996-08-30 Matsushita Electric Ind Co Ltd Cordless device
JP2005080046A (en) * 2003-09-02 2005-03-24 Sony Ericsson Mobilecommunications Japan Inc Radio communications system and its apparatus
JP2006319520A (en) * 2005-05-11 2006-11-24 Hitachi Ltd Radio communication device, control method for radio communication device, and program
JP2008072842A (en) * 2006-09-14 2008-03-27 Ntt Facilities Inc Rechargeable battery pack system and control method for charging of battery pack
JP2010142083A (en) * 2008-12-15 2010-06-24 Toshiba Corp Battery pack system
JP2011068448A (en) * 2009-09-25 2011-04-07 Kyocera Mita Corp Paper carrying device and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223810A (en) * 1995-02-07 1996-08-30 Matsushita Electric Ind Co Ltd Cordless device
JP2005080046A (en) * 2003-09-02 2005-03-24 Sony Ericsson Mobilecommunications Japan Inc Radio communications system and its apparatus
JP2006319520A (en) * 2005-05-11 2006-11-24 Hitachi Ltd Radio communication device, control method for radio communication device, and program
JP2008072842A (en) * 2006-09-14 2008-03-27 Ntt Facilities Inc Rechargeable battery pack system and control method for charging of battery pack
JP2010142083A (en) * 2008-12-15 2010-06-24 Toshiba Corp Battery pack system
JP2011068448A (en) * 2009-09-25 2011-04-07 Kyocera Mita Corp Paper carrying device and image forming device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088871A (en) * 2013-10-30 2015-05-07 日立オートモティブシステムズ株式会社 Communication system
JPWO2015121979A1 (en) * 2014-02-14 2017-03-30 株式会社日立製作所 Battery control system, battery system
WO2019059568A1 (en) * 2017-09-25 2019-03-28 주식회사 엘지화학 Apparatus for allocating identification information to plurality of slave battery management units
US11223072B2 (en) 2017-09-25 2022-01-11 Lg Chem, Ltd. Apparatus for assigning identification information to slave battery management units
WO2019203340A1 (en) * 2018-04-20 2019-10-24 ノバルス株式会社 Sensor device and battery device
JPWO2019203340A1 (en) * 2018-04-20 2021-05-20 ノバルス株式会社 Sensor device and battery device
CN112534838A (en) * 2018-09-13 2021-03-19 Lg 电子株式会社 Wireless battery management system for vehicle
CN112534838B (en) * 2018-09-13 2023-12-12 Lg 电子株式会社 Wireless battery management system for vehicle
CN113131057B (en) * 2020-01-15 2023-10-20 株式会社电装 Battery pack
CN113131057A (en) * 2020-01-15 2021-07-16 株式会社电装 Battery pack
JP2021118136A (en) * 2020-01-28 2021-08-10 株式会社デンソー Battery pack
CN115004464A (en) * 2020-01-28 2022-09-02 株式会社电装 Battery pack
JP7375581B2 (en) 2020-01-28 2023-11-08 株式会社デンソー battery pack
WO2021153276A1 (en) * 2020-01-28 2021-08-05 株式会社デンソー Battery pack
CN115004464B (en) * 2020-01-28 2024-05-31 株式会社电装 Battery pack
WO2023021744A1 (en) * 2021-08-18 2023-02-23 日立Astemo株式会社 Management device, battery data transmission device, and transmission system
WO2023112371A1 (en) * 2021-12-15 2023-06-22 日立Astemo株式会社 Battery data transmission device, battery management device, battery data transmission method, and battery data transmission system

Similar Documents

Publication Publication Date Title
WO2014103003A1 (en) Assembled battery system
JP6421625B2 (en) Wireless battery system and wireless system
KR101966302B1 (en) Communication method and apparatus in wireless charge system
US10199849B1 (en) Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9838083B2 (en) Systems and methods for communication with remote management systems
EP2573950B1 (en) Wireless power transmitting apparatus and method thereof
CN104137331B (en) For adaptive antenna performance improvement as the antenna element of capacitive proximity/touch sensor
EP2634927B1 (en) Apparatus and method for wireless power transmission
JP5518221B2 (en) Power transmitter
KR102202615B1 (en) Apparatus for assigning identification information to a plurality of slave battery management units
JP6181211B2 (en) Power supply control system and power supply control apparatus
JP6747401B2 (en) Wireless battery system and wireless system
JP5426510B2 (en) Wireless power transmission device
JP2017221106A (en) Information providing method, information providing device, and battery pack
KR102454958B1 (en) Battery monitor system and method
JP5885570B2 (en) Wireless power transmission system, wireless power transmission device, wireless power transmission method, wireless power transmission device control method, and program.
CN109196753A (en) Wireless power transmission method and its equipment
KR20110103297A (en) Wireless power charging method and apparatus
JP5704016B2 (en) Wireless communication apparatus and electronic device
JP2014206499A (en) Secondary battery life prediction system, secondary battery characteristic evaluation device, secondary battery mounting device, and secondary battery life prediction method
US20150084438A1 (en) Techniques for Optimizing Wireless Power Transmission
US10542129B2 (en) Wireless communication device
US11146119B2 (en) System for monetizing and incentivizing wireless power sharing
CA3199464A1 (en) Portable charging system with network capabilities
KR100971701B1 (en) Wireless charging system using piled type dual core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP