WO2014097489A1 - Spectral sensor - Google Patents

Spectral sensor Download PDF

Info

Publication number
WO2014097489A1
WO2014097489A1 PCT/JP2012/083347 JP2012083347W WO2014097489A1 WO 2014097489 A1 WO2014097489 A1 WO 2014097489A1 JP 2012083347 W JP2012083347 W JP 2012083347W WO 2014097489 A1 WO2014097489 A1 WO 2014097489A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
filter
composite filter
region
Prior art date
Application number
PCT/JP2012/083347
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 剛
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2012/083347 priority Critical patent/WO2014097489A1/en
Publication of WO2014097489A1 publication Critical patent/WO2014097489A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0235Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for replacing an element by another, for replacing a filter or a grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/14Generating the spectrum; Monochromators using refracting elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3174Filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/8609Optical head specially adapted

Definitions

  • the present invention relates to a spectrum sensor for measuring optical characteristics of paper sheets and the like, and more particularly to a spectrum sensor for measuring a spectrum using a plurality of lights in different wavelength ranges as measurement targets.
  • ink in which anti-Stokes light emission having a higher frequency of light than irradiation light is observed has been used.
  • the ink that emits anti-Stokes light is irradiated with excitation light having a predetermined wavelength, a light emission phenomenon is observed even during irradiation and after the irradiation is stopped.
  • anti-Stokes light emission which is visible light emission
  • Stokes light emission which is infrared light emission
  • the mark or the like can be made to emit visible light by irradiating the paper sheet with excitation light. Since phosphorescence is observed even after the excitation light irradiation is stopped, the authenticity of the paper sheet can be identified from the relationship between the excitation light irradiation timing and the light emission state.
  • Patent Document 1 discloses an apparatus for measuring both fluorescence emission and phosphorescence emission.
  • This apparatus distinguishes and detects fluorescence and phosphorescence from the relationship between the irradiation timing of excitation light and the timing at which emitted light is measured. Further, it is possible to detect each of fluorescence and phosphorescence having different wavelength ranges by using two sensors. Specifically, while measuring light in the entire wavelength range with one sensor, the other sensor measures only fluorescence in a predetermined wavelength range using a filter. And phosphorescence is detected from the difference of the result of having measured the light of all the wavelength ranges, and the result of having measured only fluorescence.
  • a spectrum sensor that measures a spectrum as an optical characteristic of a paper sheet is affected by the chromatic aberration of the optical system if the wavelength range of light to be measured is different.
  • the spectrum sensor generates interference light due to polarized light using an optical system including a Wollaston prism and a polarizing plate. After generating interference fringes of two polarization components obtained from paper sheets and imaging the interference fringes with an image sensor such as a CCD, a spectrum can be obtained by Fourier transform. At this time, if the wavelength range of the light to be measured is different, the focal length shifts due to chromatic aberration. For example, if a lens for focus adjustment is placed between the Wollaston prism and the image sensor, and the lens position is adjusted so that the image sensor is focused in the wavelength range when fluorescent light is emitted, in a wavelength range different from that of fluorescence. When phosphorescent light is emitted, focusing is not possible due to chromatic aberration. For this reason, the image is captured with the interference fringes on the CCD blurred, and an accurate spectrum cannot be obtained.
  • Defocus due to chromatic aberration can be corrected, for example, by combining multiple lenses of different materials, but the use of multiple lenses increases the complexity of the structure and increases manufacturing costs, and increases the size of the spectrum sensor. End up.
  • a method of adjusting the focal length of each image sensor to each wavelength region by using a plurality of image sensors as in the apparatus disclosed in Patent Document 1 can be considered. It is preferable to use one image sensor.
  • the present invention has been made to solve the above-described problems caused by the prior art, and an object of the present invention is to provide an inexpensive and small-sized spectrum sensor capable of accurately measuring a plurality of light spectra having different wavelength ranges.
  • the present invention irradiates light from a light source toward a transported paper sheet and generates a spectrum from the light obtained from the paper sheet and measures it.
  • a lens arranged by adjusting a focal length so that an interference fringe generated from light of a predetermined wavelength is focused on the sensor unit, and a focus caused by filtering of light in a predetermined wavelength region and a wavelength difference
  • it has a shape formed by combining a plurality of filter regions formed by adjusting at least one of material (refractive index depending on material) and thickness. , Characterized in that it comprises a composite filter that is controlling the position so as to transmit the corresponding filter regions according to the wavelength of the light to be measured.
  • the present invention is the above invention, wherein the composite filter has a rotating disk shape in which a plurality of filter regions are arranged in a circumferential direction around a rotation axis, and the composite filter has a shape corresponding to the wavelength of light to be measured.
  • the rotational position of the rotary shaft is controlled.
  • the timing of irradiation of light from the light source, position control of the composite filter, and measurement of the interference fringes by the sensor unit is controlled in accordance with the conveyance timing of the paper sheet. It is characterized by that.
  • the composite filter may include a first filter region for first wavelength light and a second filter region for second wavelength light having a wavelength different from that of the first wavelength light.
  • the lens When measuring the first wavelength light, the lens focuses the first wavelength light transmitted through the first filter region on the sensor unit and measures the second wavelength light. The second wavelength light is focused on the sensor by transmitting the second filter region that absorbs the defocus generated between the first wavelength light and the second wavelength light.
  • the present invention is characterized in that, in the above invention, at least one of the first filter region and the second filter region has a filtering function of cutting light in a predetermined wavelength region.
  • the present invention is the above invention, wherein the first wavelength light is visible light emission observed while irradiating the anti-Stokes ink used in the paper sheet with infrared light, and the second light The wavelength light is infrared light emission observed after the irradiation of the infrared light to the anti-Stokes ink is stopped.
  • the measurement by the sensor unit is interrupted while the light to be measured passes through a predetermined region including the boundary of the filter region. It is characterized by that.
  • the present invention by controlling the position of the composite filter composed of a plurality of filter regions and selecting the filter region according to the wavelength of the light to be measured, light in unnecessary wavelength regions can be cut or chromatic aberration Therefore, it is not necessary to use a plurality of lenses for exchanging a plurality of filters or correcting a defocus due to chromatic aberration. Further, it is not necessary to change the lens position for focus adjustment in order to correct the defocus. Therefore, it is possible to easily and accurately measure a plurality of lights having different wavelengths while using an inexpensive and small sensor.
  • the composite filter is formed by arranging a plurality of filter regions in the circumferential direction around the rotation axis. Therefore, by rotating the composite filter, the filter region to be used can be quickly and easily made. Can be changed.
  • the irradiation of light to the conveyed paper sheet, the change of the filter area, and the measurement of light are controlled in accordance with the conveyance timing of the paper sheet.
  • the measurement can be performed accurately in accordance with the timing of passing through. Further, by controlling the light irradiation from the light source, not only reflected light and fluorescence but also phosphorescence can be measured.
  • the second wavelength light having a wavelength different from the first wavelength causes a defocus due to chromatic aberration.
  • the second wavelength light can also be measured in a focused state. it can.
  • extra light can be provided by providing a filtering function in the filter region. Can be cut.
  • the light emitted from the anti-Stokes ink is used as a measurement object, and the infrared light is irradiated to measure the anti-Stokes light emission obtained as visible light by focusing on the sensor unit with the focus adjustment lens. can do. Moreover, it can avoid that a sensor part is saturated by cut
  • the measurement by the sensor unit is interrupted, so that only the light transmitted through the corresponding filter area can be measured and an accurate measurement result can be obtained.
  • FIG. 1 is a schematic diagram for explaining an outline of the configuration of the spectrum sensor according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating a schematic configuration of the optical system unit according to the present embodiment.
  • FIG. 3 is a schematic diagram for explaining the operation of the composite filter according to the present embodiment.
  • FIG. 4 is a schematic diagram for explaining defocus due to chromatic aberration.
  • FIG. 5 is a schematic cross-sectional view illustrating filtering and defocus correction performed by the composite filter according to the present embodiment.
  • FIG. 6 is a diagram for explaining the light emission phenomenon observed with the anti-Stokes ink.
  • FIG. 7 is a diagram illustrating an example of a measurement method performed using the composite filter according to the present embodiment.
  • FIG. 8 is a timing chart for explaining the control timing of each part in the measurement performed using the composite filter according to the present embodiment.
  • FIG. 9 is a diagram for explaining the relationship between the rotational position of the composite filter according to the present embodiment and the measurement timing.
  • FIG. 10 is a diagram illustrating an example of a method for detecting and controlling the rotational position of the composite filter according to the present embodiment.
  • FIG. 11 is a diagram for explaining an example of light to be measured by the spectrum sensor according to the present embodiment, a wavelength range filtered by a composite filter to measure this light, and excitation light.
  • FIG. 12 is a diagram for explaining an example of a different structure of the composite filter according to the present embodiment.
  • the spectrum sensor 100 generates interference fringes from light obtained from a measurement object by a prism or the like, and Fourier transforms the interference fringes to measure light intensity with respect to frequency.
  • the spectrum sensor 100 includes a light guide 10, an optical coupling device 1, an optical system unit 20, and a sensor unit 30, and converts light indicating the optical characteristics of the paper sheet 3 into an electrical signal. It has a function of outputting to an external signal processing unit. As shown in FIG. 1C, the spectrum sensor 100 irradiates light on the paper sheet 3 from the light source 2 and reflects the light reflected from the paper sheet 3 into 16 light receiving sections 212a to 212a of the light guide 10. Light is received at 212p.
  • the light guide 10 is formed of four light guide plates 10a to 10d formed of a transparent member such as acrylic resin.
  • the light guide plate 10a has four light receiving portions 212a to 212d provided so as to face the paper sheet 3, and each of the light receiving portions 212a to 212d has an X height so that the height from the paper sheet 3 is the same. They are arranged at equal intervals in one row in the axial direction.
  • the light received by the four light receiving portions 212a to 212d is guided in the X-axis direction while being totally reflected inside and is emitted from the emitting portion 212q toward the optical system portion 20.
  • the other light guide plates 10b to 10d have the same function. As shown in FIG.
  • each of the sixteen light receiving portions 212a to 212p are arranged at equal intervals in the X-axis direction.
  • FIG. 1B by transporting the paper sheet 3 in the Y-axis direction on the transport path 4, the entire surface of the paper sheet 3 is received by the light receiving portions 212a to 212p arranged in a line in the X-axis direction. Can be measured. Light emitted from the four light guide plates 10a to 10d becomes incident light to the optical coupling device 1.
  • the optical coupling device 1 has a function of optically coupling between the light guide 10 and the optical system unit 20. Specifically, the light emitted from the four light guide plates 10a to 10d is received by the incident surface, and the light is condensed while being uniformed and emitted from the emission surface having a smaller area than the incident surface. The light emitted from the optical coupling device 1 becomes incident light to the optical system unit 20.
  • the optical system unit 20 has a function of generating an interference fringe indicating the optical characteristics of the paper sheet 3 from incident light and focusing the image to capture the interference fringe with the sensor unit 30.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the optical system unit 20.
  • the optical system unit 20 includes a diffusion plate 21 for diffusing the light 101 incident from the optical coupling device 1, polarizing plates 22a and 22b and a prism 23 for generating interference fringes, light filtering and defocusing.
  • a composite filter 24 for realizing at least one of the corrections and a lens 25 for focusing the generated interference fringes on the sensor unit 30 are provided.
  • the prism 23 for example, a Wollaston prism is used.
  • the sensor unit 30 has a function of imaging the interference fringes generated by the optical system unit 20.
  • the sensor unit 30 includes an image sensor such as a CCD, and a substrate for performing a process of generating a spectrum by performing Fourier transform on the control of the image sensor and the measurement result of interference fringes obtained by the image sensor.
  • the spectrum sensor 100 is used in, for example, a paper sheet identification device that identifies the paper sheet 3. In the paper sheet identification device, for example, a process of identifying the type, authenticity, and the like of the paper sheet 3 from the features appearing in the spectrum generated by the sensor unit 30 is performed.
  • the composite filter 24 according to the present embodiment has one feature in that the defocus due to chromatic aberration can be corrected by adjusting the optical path length.
  • functions and operations of the composite filter 24 will be described in detail.
  • FIG. 3 is a schematic diagram for explaining the operation of the composite filter 24.
  • the composite filter 24 has a disk shape formed by a plurality of filter regions 24a and 24b, and is rotatably supported by a rotation shaft 24f.
  • the rotation of the composite filter 24 can be controlled in accordance with the incident timing of the incident light 102 so that the incident light 102 passes through a region selected from the plurality of filter regions 24a and 24b.
  • the light 102 that has passed through the composite filter 24 passes through the lens 25 for adjusting the focal length and is imaged by the image sensor of the sensor unit 30. Note that, in the optical system unit 20, the distance L1 between the lens 25 and the sensor unit 30 is adjusted and fixed in advance so that the light is focused on the sensor unit 30 when light in a predetermined wavelength region is incident. ing.
  • FIG. 4 is a diagram for explaining the relationship between the distance L1 from the lens 25 to the sensor unit 30 and the optical path lengths of a plurality of lights having different wavelengths.
  • the distance L1 from the lens 25 to the sensor unit 30 is adjusted so that the sensor unit 30 is focused when the light 102 having the wavelength ⁇ is irradiated.
  • difference arises by a chromatic aberration, and a sensor part 30 becomes unable to focus.
  • a defocus due to chromatic aberration occurs according to the wavelength, but the defocus due to this chromatic aberration can be corrected by the composite filter 24.
  • FIG. 5 is a schematic cross-sectional view for explaining the function of the composite filter 24.
  • the in-focus position shifts between light of wavelength ⁇ , light of wavelength ⁇ , and light of wavelength ⁇ .
  • the distance L ⁇ b> 1 from the lens 25 to the sensor unit 30 is adjusted and fixed so as to be focused on the sensor unit 30 with light of wavelength ⁇ . That is, in the state of FIG. 5A, the sensor unit 30 cannot measure the light with the wavelength ⁇ and the light with the wavelength ⁇ in focus.
  • light 102 including light of wavelength ⁇ , light of wavelength ⁇ , and light of wavelength ⁇ is incident.
  • the rotational position of the composite filter 24 shown in FIG. 3 is controlled so as to pass through the filter region 24a for cutting light of wavelength ⁇ and light of wavelength ⁇ .
  • the focal distance L1 is adjusted according to the wavelength (alpha)
  • region 24a can be measured in a focused state.
  • an image pickup device such as a CCD may be saturated and accurate measurement may not be performed.
  • a part of the composite filter 24 as a filter region 24a that cuts light of a predetermined wavelength, only light in a desired wavelength region can be measured.
  • the light 102 when light 102 having a wavelength ⁇ is incident but accurate measurement cannot be performed due to defocusing, the light 102 is used for adjusting the optical path length as shown in FIG.
  • the rotational position of the composite filter 24 is controlled so as to pass through the filter region 24b.
  • the filter region 24b is formed by calculating the material and thickness so that the optical path length is changed by the light having the wavelength ⁇ refracted therein and the sensor unit 30 is focused. As a result, it becomes possible to measure the light of wavelength ⁇ in a focused state. A method for determining the material and thickness for correcting defocus will be described later.
  • the filter region 24c cuts light in the predetermined wavelength region as in the case of FIG. 5B, and adjusts the optical path length of the light of wavelength ⁇ as in the case of FIG. 5C. It is molded by calculating its material and thickness. As a result, it is possible to measure in a state where only the light of wavelength ⁇ is transmitted and in focus.
  • the composite filter 24 realizes at least one of a filtering function that cuts light in a predetermined wavelength region and a defocus correction function that adjusts the optical path length of light having a predetermined wavelength to correct defocus. It is formed including filter regions 24a to 24c. By selecting any one of the filter regions 24a to 24c according to the type of incident light and the purpose of measurement, a plurality of lights having different wavelengths can be accurately measured at the same sensor position. Further, since the composite filter 24 has a rotatable disk shape, the rotational position can be easily controlled so that the composite filter 24 is rotated and light is transmitted through the selected filter regions 24a to 24c. Can do.
  • FIG. 6 is a diagram for explaining the light emission phenomenon of the anti-Stokes ink.
  • infrared light is used as excitation light.
  • this excitation light is emitted from the light source 2 toward the paper sheet 3.
  • infrared light irradiation from the light source 2 is started at time t1, and infrared light irradiation is stopped at time t2.
  • infrared light irradiation is stopped at time t2.
  • FIG. 7 is a diagram for explaining a method of measuring emitted light by irradiating infrared light from the light source 2 toward the paper sheet 3 as shown in FIG. 6A.
  • 7A and 7B are diagrams illustrating the wavelength distribution of the observed light
  • the right diagram is a diagram illustrating the function of the composite filter 24 when measuring this light.
  • FIG. 7C is a diagram for explaining the structure of the composite filter 24. 2
  • the interference fringes generated by the prism 23 and the polarizing plates 22a and 22b are imaged by the sensor unit 30 via the composite filter 24 and the lens 25, as shown in FIG.
  • the interference fringes are simply referred to as “light”.
  • excitation light (infrared light) 43 is observed in addition to the visible light emission 41 and the infrared light emission 42 during the time t1 to t2 after the light emission by the anti-Stokes ink starts. Is done. If all the light is received by the sensor unit 30 in this state, the image sensor becomes saturated and accurate measurement cannot be performed. In addition, since both the infrared light emission 42 and the excitation light 43 are in the infrared light region, there is a possibility that even if the infrared light is measured in this state, the infrared light emission 42 cannot be accurately measured due to the influence of the excitation light. is there.
  • the infrared light emission 42 and the excitation light 43 indicated by the broken line in the left diagram of FIG. 7A are cut, and only the visible light emission 41 indicated by the solid line is measured.
  • the focal length L1 from the lens 25 to the sensor unit 30 is adjusted in advance so that the visible light emission 41 can be measured in a state where the sensor unit 30 is focused.
  • region 24a of the composite filter 24 shown to Fig.7 (a) right figure and the same figure (c) be an infrared-light cut filter. Then, during the time t1 to t2 when the visible light emission 41 is observed, the rotational position of the composite filter 24 is controlled so that the light received from the paper sheet 3 passes through the filter region 24a and reaches the sensor unit 30. .
  • the infrared light emission 42 and the excitation light 43 indicated by broken lines in the left diagram of FIG. 7A are cut by the filter region 24a of the composite filter 24, and only the visible light emission 41 indicated by the solid line is detected by the sensor unit 30. It can measure in the state focused on. Thereby, it is possible to accurately measure the visible light emission 41 while avoiding that the sensor unit 30 is saturated.
  • the infrared light emission 42 is measured.
  • infrared light emission 42 is observed as phosphorescence emission during a period of time t2 to t3 after irradiation of excitation light from the light source 2 is stopped.
  • the excitation light 43 disappears, the visible light emission 41 disappears, and the infrared light emission 42 is observed.
  • the infrared emission 42 can be measured during the time t2 to t3.
  • the visible light 41 of anti-Stokes light emission is visible light in the wavelength range of green to red with a wavelength of 550 to 650 nm, whereas the infrared light emission 42 is infrared light with a wavelength range of 950 to 1100 nm.
  • the focal length L1 is adjusted and fixed in advance so that the visible light emission 41 is focused on the sensor unit 30 as shown in the right diagram of FIG. For this reason, simply removing the filter region 24a and allowing the light emitted from the infrared light emission 42 to reach the sensor unit 30 causes a distance ⁇ P due to chromatic aberration as indicated by a dashed line 44 in the right diagram of FIG. Therefore, the sensor unit 30 cannot be focused.
  • this defocus is corrected by the composite filter 24.
  • the filter region 24b of the composite filter 24 is an infrared light focus adjustment filter.
  • the filter region 24a is formed of a material having a refractive index n1 and having a thickness D1
  • the thickness D2 is determined according to the previous equation based on the refractive index n1 and the thickness D1 of the filter region 24a and the defocus amount ⁇ P. Defocus due to chromatic aberration can be corrected.
  • the light received from the paper sheet 3 and passing through the prism 23 and the like passes through the filter region 24b and reaches the sensor unit 30.
  • the rotational position of the composite filter 24 is controlled.
  • the defocus is corrected by the filter region 24b, and infrared light is emitted in the focused state without changing the distance L1 from the lens 25 to the sensor unit 30 as shown by the solid line in FIG. 42 can be measured.
  • the change from the filter region 24a to the filter region 24b is performed by reading the interference fringes of the light in the target wavelength region by synchronizing the filter position with the measurement of the composite filter 24 that is rotatably provided in the optical system unit 20. By rotating in this manner, it can be performed easily and at high speed.
  • FIG. 7 for example, a method of measuring the visible light emission 41 and the infrared light emission 42 by irradiating the excitation light 43 from the light source 2 to a mark or the like printed using anti-Stokes ink has been described. For example, as shown in FIG. 1, it is performed in accordance with the conveyance timing of the paper sheet 3 conveyed on the conveyance path 4.
  • FIG. 8 is a timing chart showing the relationship between the transport timing of the paper sheet 3 and the measurement timing of visible light emission and infrared light emission.
  • the mechanical clock of the transport mechanism that drives the transport path 4 that transports the paper sheet 3 is used as the transport timing of the paper sheet 3.
  • This mechanical clock is a signal output according to the transport distance of the paper sheet 3 by the transport path 4. Based on this signal and a signal from a passage sensor provided to detect the passage of the paper sheet 3 on the conveyance path 4, the position of the paper sheet 3 can be specified.
  • the rotation position of the composite filter 24 is adjusted to the rotation position A shown in FIG. 9A so that this light passes through the prism 23 and passes through the filter region 24a which is an infrared light cut filter.
  • the rotation position A of the composite filter 24 shown in FIG. 8 is a position where light passes through the filter region 24a on the front side in the rotation direction in the filter region 24a, as shown in FIG. 9A.
  • a rectangular area 45 indicated by a broken line in FIG. 9 indicates an optical path area through which light passes in the optical system unit 20.
  • the composite filter 24 rotates counterclockwise around the rotation shaft 24f from the rotation position A. As shown in FIG. 9A, while the areas E to F of the composite filter 24 pass through a rectangular area 45 (light path area) through which light passes, that is, the composite filter 24 moves from the rotation position A to the rotation position B.
  • the visible light emission 41 is measured by cutting the excitation light, which is infrared light, as shown in FIG. This measurement is a measurement performed in the region of the infrared light cut filter at the composite filter rotation position shown in FIG. 8, and corresponds to the visible light emission measurement of the sensor unit measurement shown in FIG.
  • the measurement by the sensor unit 30 is interrupted while rotating counterclockwise from the rotational position B shown in FIG. 9A to the rotational position C shown in FIG. That is, the measurement is interrupted in the boundary region (time t5 to t6 in FIG. 8) indicated at the composite filter rotation position shown in FIG. In the vicinity of the boundary between the two filter regions 24a and 24b forming the composite filter 24, there is a possibility that the transmitted light cannot be measured accurately, so the measurement is interrupted.
  • the filter region 24b which is an infrared light focus adjustment filter, and red.
  • the rotational position of the composite filter 24 is adjusted so that the external light emission 42 can be measured.
  • the infrared light emission 42 is measured.
  • FIG. 9 (b) while the regions G to H of the composite filter 24 pass through the optical path region 45, that is, while the composite filter 24 rotates counterclockwise from the rotation position C to the rotation position D, Infrared emission 42 is measured.
  • the measurement is performed after adjusting the optical path length of the infrared light emission 42 to correct the defocus. This measurement is performed in the region of the infrared light focus adjustment filter at the composite filter rotation position shown in FIG. 8, and corresponds to the infrared emission (phosphorescence) measurement of the sensor unit measurement shown in FIG.
  • the measurement by the sensor unit 30 is interrupted while rotating counterclockwise from the rotational position D shown in FIG. 9B to the rotational position A shown in FIG. That is, the measurement is interrupted in the boundary region (time t7 to t9 in FIG. 8) indicated at the composite filter rotation position shown in FIG. Then, while the measurement is interrupted, the light source 2 is turned on again and irradiation of excitation light is started (time t8 in FIG. 8). After the irradiation of the excitation light is started and the boundary region of the composite filter 24 passes through the optical path region 45 (time t9 in FIG. 8), the light incident on the optical system unit 20 is a filter region 24a that is an infrared light cut filter. Then, the visible light emission 41 can be measured again.
  • the visible light emission measurement in the filter region 24a which is an infrared light cut filter and the infrared light emission in the filter region 24b which is an infrared light focus adjustment filter.
  • the composite filter 24 rotates so that the rotation positions become A, B, C, and D, and then the rotation position returns to A again.
  • the visible light emission measurement and the infrared light emission measurement are continuously repeated by continuously rotating the composite filter 24 in synchronization with the conveyance of the paper sheet 3 and the excitation light irradiation timing from the light source 2. Can be done.
  • the measurement controls the irradiation of excitation light, the rotational position of the composite filter 24, and the timing of measurement by the sensor unit 30 in accordance with the passage of the paper sheet 3 below the light guide 10.
  • the positional relationship between the paper sheet 3 transported on the transport path 4 and the light guide 10 and the irradiation timing of the excitation light to the paper sheet 3 are conventionally performed on the paper sheet on the transport path 4. 3 and a mechanical clock of the transport mechanism that is output in accordance with the driving of the transport path 4 can be controlled.
  • the light source 2 and the sensor unit 30 are controlled using position information of the paper sheet 3 obtained based on the detection result of the paper sheet 3 by the passage sensor and the mechanical clock of the transport mechanism.
  • the rotational position of the composite filter 24 in the optical system unit 20 is detected, and the rotational position of the composite filter 24 is controlled by rotating the rotary shaft 24f based on the detection result. Is done.
  • FIG. 10 is a schematic diagram for explaining an example of a method for detecting and controlling the rotational position of the composite filter 24.
  • the rotational position of the rotary shaft 24f of the composite filter 24 is detected using a rotary encoder 51 connected to the rotary shaft 24f.
  • the composite filter position detection unit 52 detects the rotational position of the composite filter 24 based on a signal output from the rotary encoder 51.
  • the composite filter position control unit 53 rotates the rotational position and rotational speed of the composite filter 24.
  • the rotational position and rotational speed of the composite filter 24 are performed by controlling a composite filter drive unit 54 such as a motor connected to the rotary shaft 24f.
  • a light projecting unit 55a and a light receiving unit 55b installed to detect light transmitted through the composite filter 24 are used. Since the filter regions 24a and 24b forming the composite filter 24 are different in material and thickness, the rotational position of the composite filter 24 can be detected by detecting a change in light transmitted through the composite filter 24. For example, when the filter region 24a is made of a material that cuts infrared light and the filter region 24b is made of a material that transmits infrared light, the light projecting unit 55a emits infrared light, and this is received by the light receiving unit. By detecting at 55b, the rotational position of the composite filter 24 can be detected.
  • the composite filter position control unit is the same as in FIG. 53 and the composite filter drive unit 54 can control the rotational position of the composite filter 24.
  • the light source 2 provided in the spectrum sensor 100 is turned on, and light incident on the optical system unit 20 through the light guide 10 and the optical coupling device 1 is projected.
  • the aspect utilized as a partial light source may be sufficient.
  • the rotation shaft 24 f of the composite filter 24 and the rotation shaft 59 of the drive mechanism of the conveyance path 4 that conveys the paper sheet 3 are configured by a plurality of gears.
  • the transmission mechanism 58 may be connected by hardware. If the composite filter 24 and the transport path 4 are connected in hardware, the positional relationship between the rotational position of the composite filter 24 and the transport path 4 is fixed. Thereby, the drive of the drive part 57 is controlled by the control part 56, and the rotational position of the composite filter 24 can be recognized from the positional information of the paper sheet 3 on the conveyance path 4, and measurement can be performed.
  • the position information of the sheet 3 is input from the control unit 56 to the signal reading unit 60, and the signal reading unit 60 detects a sensor such as a CCD based on the signal input from the control unit 56. Signal reading from the unit 30 (light measurement) is performed.
  • each filter region forming the composite filter 24 are not limited to the example of this embodiment.
  • each filter region may have a mode in which only the thickness is changed as the same material, or may be a mode in which only the material is changed as the same thickness. It is possible to change both thicknesses.
  • a plurality of paper sheets 3 and paper sheets It may be an aspect in which measurement is performed by changing the rotational position of the composite filter 24 every time.
  • the composite filter 24 is disposed between the polarizing plate 22b disposed on the rear stage side of the prism 23 and the focus adjustment lens 25 .
  • the present embodiment is not limited to this.
  • the arrangement position of the composite filter 24 is not particularly limited as long as it is between the prism 23 where the interference fringes are generated and the sensor unit 30.
  • infrared light is emitted from the light source 2 as excitation light.
  • the excitation light is determined according to light to be measured or light emitted from the paper sheet 3. Is.
  • FIG. 11 shows an example of the light to be measured, the filtering performance required for the composite filter 24 for measuring this light, and the wavelength of the light emitted from the light source 2 at the time of measurement.
  • the material of the filter region 24b is not particularly limited as long as it is a material that transmits infrared light to be measured. Is used.
  • the light source 2 is used only for excitation light irradiation that excites visible light emission.
  • the visible light is irradiated to measure the visible light ((c) in the figure), and the infrared light is
  • the light source 2 capable of irradiating a plurality of visible light and infrared light is used.
  • the material of the composite filter 24 is used.
  • each filter region 24a and 24b are determined according to the light to be measured and the wavelength range to be filtered, one composite filter 24 can be accurately measured in a state where each light exemplified as the measurement object in FIG. 11 is focused.
  • the number of filter regions forming the composite filter 24 is not particularly limited. For example, as shown in FIG. 12A, it may be formed of four filter regions 24a to 24d, or may be formed of five or more filter regions. It does not matter even if it is a mode. Further, as shown in FIG. 12B, a shape in which a part of the region 24e forming the composite filter 24 is cut away may be used so that a glass material, a filter material, or the like is not used in this region. Absent. The number, material, and shape of the filter regions are appropriately determined according to the type of light obtained from the paper sheet 3 and the light to be measured.
  • the rotational position of the composite filter 24 is controlled even when defocusing occurs due to the measurement of a plurality of lights having different wavelengths as the optical characteristics of the paper sheet 3.
  • the positions of the filter regions 24a to 24e through which light is transmitted at least one of a filtering function for cutting light in a predetermined wavelength region and a defocus correction function for correcting and eliminating defocus is realized.
  • Each light to be measured can be accurately measured in a focused state.
  • the composite filter 24 has a structure in which a plurality of plate-like filter regions 24a to 24e are arranged around the rotation axis, and the composite filter 24 is rotated and arranged in the optical path region 45 through which the light to be measured is transmitted.
  • the filter regions 24a to 24e to be changed can be changed easily and at high speed.
  • the present invention is a spectrum sensor that measures the optical characteristics of paper sheets, and is a useful technique for accurately measuring the spectra of a plurality of lights having different wavelength ranges.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

In the present invention, a spectral sensor for irradiating light from a light source toward a conveyed paper sheet and measuring a spectrum generated from light obtained from the paper sheet is configured from: a prism for generating interference fringes from light received from the paper sheet; a sensor unit for measuring the interference fringes generated by the prism; a lens arranged by adjusting the focal distance thereof so that focal points of interference fringes generated from light of a predetermined wavelength on the sensor unit coincide between the prism and the sensor unit; and a composite filter having a shape formed by combining a plurality of filter regions molded by adjusting the material and/or the thickness thereof, in which the position of a corresponding filter region is controlled so that light is transmitted in accordance with the wavelength of light that is to be measured, in order to realize filtering of light in a predetermined wavelength region and/or adjustment of focal point misalignment caused by a wavelength difference.

Description

スペクトルセンサSpectrum sensor
 この発明は、紙葉類等の光学特性を測定するスペクトルセンサに関し、特に、異なる波長域の複数の光を測定対象としてスペクトルを測定するスペクトルセンサに関する。 The present invention relates to a spectrum sensor for measuring optical characteristics of paper sheets and the like, and more particularly to a spectrum sensor for measuring a spectrum using a plurality of lights in different wavelength ranges as measurement targets.
 近年、紙幣等の紙葉類で真偽識別を行うために、照射光よりも光の振動数が高いアンチストークス発光が観察されるインクが利用されている。アンチストークス発光するインクに所定波長の励起光を照射すると照射中も照射を停止してからも発光現象が観察される。具体的には、励起光が照射されている間は可視発光であるアンチストークス発光及び赤外発光であるストークス発光が観察され、励起光の照射を停止してもその後しばらくの間は赤外発光であるりん光発光が観察される。このようなインクを利用して紙葉類上にマーク等を印刷すれば、紙葉類に励起光を照射してマーク等を可視発光させることができる。そして、励起光の照射を停止した後も、りん光発光が観察されるので、励起光の照射タイミングと発光状態との関係から紙葉類の真偽識別を行うことが可能となる。 In recent years, in order to identify authenticity with paper sheets such as banknotes, ink in which anti-Stokes light emission having a higher frequency of light than irradiation light is observed has been used. When the ink that emits anti-Stokes light is irradiated with excitation light having a predetermined wavelength, a light emission phenomenon is observed even during irradiation and after the irradiation is stopped. Specifically, anti-Stokes light emission, which is visible light emission, and Stokes light emission, which is infrared light emission, are observed during excitation light irradiation, and infrared light emission is continued for a while after the excitation light irradiation is stopped. A phosphorescence emission is observed. If a mark or the like is printed on a paper sheet using such ink, the mark or the like can be made to emit visible light by irradiating the paper sheet with excitation light. Since phosphorescence is observed even after the excitation light irradiation is stopped, the authenticity of the paper sheet can be identified from the relationship between the excitation light irradiation timing and the light emission state.
 例えば、特許文献1には、蛍光発光及びりん光発光の両方を測定する装置が開示されている。この装置では、励起光の照射タイミングと発光した光が測定されたタイミングとの関係から蛍光とりん光とを区別して検出する。また、2つのセンサを利用して波長域の異なる蛍光及びりん光の各々を検出することもできる。具体的には、一方のセンサで全波長域の光を測定しながら、他方のセンサではフィルタを利用して所定波長域の蛍光のみを測定する。そして、全波長域の光を測定した結果と蛍光のみを測定した結果の差分からりん光を検出する。 For example, Patent Document 1 discloses an apparatus for measuring both fluorescence emission and phosphorescence emission. This apparatus distinguishes and detects fluorescence and phosphorescence from the relationship between the irradiation timing of excitation light and the timing at which emitted light is measured. Further, it is possible to detect each of fluorescence and phosphorescence having different wavelength ranges by using two sensors. Specifically, while measuring light in the entire wavelength range with one sensor, the other sensor measures only fluorescence in a predetermined wavelength range using a filter. And phosphorescence is detected from the difference of the result of having measured the light of all the wavelength ranges, and the result of having measured only fluorescence.
特表2001-506001号公報JP-T-2001-506001
 しかしながら、上記従来技術によれば、蛍光発光及びりん光発光があったか否かを検出することはできるが、各発光に係るスペクトルを正確に測定することが困難であるという問題がある。具体的には、紙葉類の光学特性としてスペクトルを測定するスペクトルセンサでは、測定対象とする光の波長域が異なると光学系の色収差による影響を受ける。 However, according to the above-described conventional technology, it is possible to detect whether there is fluorescence emission or phosphorescence emission, but there is a problem that it is difficult to accurately measure a spectrum related to each emission. Specifically, a spectrum sensor that measures a spectrum as an optical characteristic of a paper sheet is affected by the chromatic aberration of the optical system if the wavelength range of light to be measured is different.
 スペクトルセンサでは、ウォラストンプリズムや偏光板等を含む光学系を利用して偏光による干渉光を生じさせる。紙葉類から得られた2つの偏光成分による干渉縞を生成して、この干渉縞をCCD等の撮像素子によって撮像した後、フーリエ変換によりスペクトルを得ることができる。このとき、測定対象とする光の波長域が異なると色収差により焦点距離のずれが生ずる。例えば、ウォラストンプリズムから撮像素子までの間に焦点調節用のレンズを配置して、蛍光発光時の波長域で撮像素子に焦点を合わせるようにレンズ位置を調整すると、蛍光とは異なる波長域で発光するりん光発光時には色収差により焦点が合わない。このため、CCD上の干渉縞がぼけた状態で撮像されて正確なスペクトルを得ることができない。 The spectrum sensor generates interference light due to polarized light using an optical system including a Wollaston prism and a polarizing plate. After generating interference fringes of two polarization components obtained from paper sheets and imaging the interference fringes with an image sensor such as a CCD, a spectrum can be obtained by Fourier transform. At this time, if the wavelength range of the light to be measured is different, the focal length shifts due to chromatic aberration. For example, if a lens for focus adjustment is placed between the Wollaston prism and the image sensor, and the lens position is adjusted so that the image sensor is focused in the wavelength range when fluorescent light is emitted, in a wavelength range different from that of fluorescence. When phosphorescent light is emitted, focusing is not possible due to chromatic aberration. For this reason, the image is captured with the interference fringes on the CCD blurred, and an accurate spectrum cannot be obtained.
 色収差による焦点ずれは、例えば、異なる材質のレンズを複数組み合わせることにより補正することができるが、複数のレンズを利用すると構造が複雑化して製造コストが高くなる上に、スペクトルセンサのサイズが大型化してしまう。特許文献1にある装置のように複数の撮像素子を利用して、各撮像素子の焦点距離を各波長域に合わせる方法も考えられるが、低コストかつ小型のセンササイズを実現するためには単一の撮像素子を利用することが好ましい。 Defocus due to chromatic aberration can be corrected, for example, by combining multiple lenses of different materials, but the use of multiple lenses increases the complexity of the structure and increases manufacturing costs, and increases the size of the spectrum sensor. End up. A method of adjusting the focal length of each image sensor to each wavelength region by using a plurality of image sensors as in the apparatus disclosed in Patent Document 1 can be considered. It is preferable to use one image sensor.
 単一の撮像素子を利用する場合には、色収差による影響に加えて、フィルタに係る問題も生ずる。例えば、測定対象とする光の波長域に応じて、測定対象外の光をカットするフィルタを複数種類準備しなければならない場合がある。また、この場合、測定対象とする光に応じて複数のフィルタを交換する作業が必要となり測定に手間がかかる。 When using a single image sensor, in addition to the effects of chromatic aberration, there are problems with filters. For example, depending on the wavelength range of light to be measured, it may be necessary to prepare a plurality of types of filters that cut off light that is not to be measured. Further, in this case, it is necessary to replace a plurality of filters according to the light to be measured, and it takes time for measurement.
 本発明は、上述した従来技術による問題点を解消するためになされたもので、波長域の異なる複数の光のスペクトルを正確に測定することができる安価かつ小型のスペクトルセンサを提供することを目的とする。 The present invention has been made to solve the above-described problems caused by the prior art, and an object of the present invention is to provide an inexpensive and small-sized spectrum sensor capable of accurately measuring a plurality of light spectra having different wavelength ranges. And
 上述した課題を解決し、目的を達成するために、本発明は、搬送される紙葉類に向けて光源から光を照射して該紙葉類から得られた光からスペクトルを生成して測定するスペクトルセンサであって、紙葉類から受光した光から干渉縞を生成するためのプリズムと、前記プリズムで生成した前記干渉縞を測定するためのセンサ部と、前記プリズムと前記センサ部との間で、前記センサ部上で所定波長の光から生成される干渉縞の焦点が合うように焦点距離を調整して配置されるレンズと、所定波長域の光のフィルタリング及び波長差に起因する焦点ずれの調整の少なくともいずれか一方を実現するために、材質(材質に依存する屈折率)及び厚みの少なくともいずれか一方を調整して成形されたフィルタ領域を複数組み合わせて成る形状を有し、測定対象とする光の波長に応じて対応するフィルタ領域を透過するように位置を制御される複合フィルタとを備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention irradiates light from a light source toward a transported paper sheet and generates a spectrum from the light obtained from the paper sheet and measures it. A prism for generating an interference fringe from light received from a paper sheet, a sensor unit for measuring the interference fringe generated by the prism, and the prism and the sensor unit. And a lens arranged by adjusting a focal length so that an interference fringe generated from light of a predetermined wavelength is focused on the sensor unit, and a focus caused by filtering of light in a predetermined wavelength region and a wavelength difference In order to realize at least one of the adjustment of displacement, it has a shape formed by combining a plurality of filter regions formed by adjusting at least one of material (refractive index depending on material) and thickness. , Characterized in that it comprises a composite filter that is controlling the position so as to transmit the corresponding filter regions according to the wavelength of the light to be measured.
 また、本発明は、上記発明において、前記複合フィルタは、回転軸周りに複数のフィルタ領域を周方向に配置して成る回転円板形状を有し、測定対象とする光の波長に応じて前記回転軸の回転位置が制御されることを特徴とする。 Further, the present invention is the above invention, wherein the composite filter has a rotating disk shape in which a plurality of filter regions are arranged in a circumferential direction around a rotation axis, and the composite filter has a shape corresponding to the wavelength of light to be measured. The rotational position of the rotary shaft is controlled.
 また、本発明は、上記発明において、前記光源から光の照射、前記複合フィルタの位置制御及び前記センサ部による前記干渉縞の測定のタイミングが、前記紙葉類の搬送タイミングに合わせて制御されることを特徴とする。 Further, in the present invention, in the above invention, the timing of irradiation of light from the light source, position control of the composite filter, and measurement of the interference fringes by the sensor unit is controlled in accordance with the conveyance timing of the paper sheet. It is characterized by that.
 また、本発明は、上記発明において、前記複合フィルタが、第1波長光用の第1フィルタ領域及び前記第1波長光とは波長が異なる第2波長光用の第2フィルタ領域を含んで形成され、前記第1波長光を測定する際には、前記レンズにより、前記第1フィルタ領域を透過した前記第1波長光の焦点を前記センサ部に合わせると共に、前記第2波長光を測定する際には、前記第1波長光と前記第2波長光との間で生ずる焦点ずれを吸収する前記第2フィルタ領域を透過させることにより、前記第2波長光の焦点を前記センサに合わせることを特徴とする。 In the invention described above, the composite filter may include a first filter region for first wavelength light and a second filter region for second wavelength light having a wavelength different from that of the first wavelength light. When measuring the first wavelength light, the lens focuses the first wavelength light transmitted through the first filter region on the sensor unit and measures the second wavelength light. The second wavelength light is focused on the sensor by transmitting the second filter region that absorbs the defocus generated between the first wavelength light and the second wavelength light. And
 また、本発明は、上記発明において、前記第1フィルタ領域又は前記第2フィルタ領域の少なくともいずれか一方が、所定波長域の光をカットするフィルタリング機能を有することを特徴とする。 Further, the present invention is characterized in that, in the above invention, at least one of the first filter region and the second filter region has a filtering function of cutting light in a predetermined wavelength region.
 また、本発明は、上記発明において、前記第1波長光は前記紙葉類で利用されるアンチストークスインクに赤外光を照射している間に観察される可視光発光であり、前記第2波長光は前記アンチストークスインクへの赤外光の照射を停止してから観察される赤外光発光であることを特徴とする。 Further, the present invention is the above invention, wherein the first wavelength light is visible light emission observed while irradiating the anti-Stokes ink used in the paper sheet with infrared light, and the second light The wavelength light is infrared light emission observed after the irradiation of the infrared light to the anti-Stokes ink is stopped.
 また、本発明は、上記発明において、前記複合フィルタの位置を制御する際に、測定対象とする光が前記フィルタ領域の境界を含む所定領域を透過する間、前記センサ部による測定が中断されることを特徴とする。 In the present invention, in the above invention, when controlling the position of the composite filter, the measurement by the sensor unit is interrupted while the light to be measured passes through a predetermined region including the boundary of the filter region. It is characterized by that.
 本発明によれば、複数のフィルタ領域から成る複合フィルタの位置を制御して、測定対象とする光の波長に応じてフィルタ領域を選択することにより、不要な波長域の光をカットしたり色収差による焦点ずれを補正したりすることができるので、複数のフィルタを交換したり、色収差による焦点ずれを補正するために複数のレンズを利用する必要がない。また、焦点ずれを補正するために、焦点調整用のレンズ位置を変更する必要もない。このため安価かつ小型のセンサとしながら、波長の異なる複数の光を容易かつ正確に測定することができる。 According to the present invention, by controlling the position of the composite filter composed of a plurality of filter regions and selecting the filter region according to the wavelength of the light to be measured, light in unnecessary wavelength regions can be cut or chromatic aberration Therefore, it is not necessary to use a plurality of lenses for exchanging a plurality of filters or correcting a defocus due to chromatic aberration. Further, it is not necessary to change the lens position for focus adjustment in order to correct the defocus. Therefore, it is possible to easily and accurately measure a plurality of lights having different wavelengths while using an inexpensive and small sensor.
 また、本発明によれば、複合フィルタは、複数のフィルタ領域を回転軸周りに周方向に配置して形成されているので、複合フィルタを回転させることによって、利用するフィルタ領域を高速かつ容易に変更することができる。 Further, according to the present invention, the composite filter is formed by arranging a plurality of filter regions in the circumferential direction around the rotation axis. Therefore, by rotating the composite filter, the filter region to be used can be quickly and easily made. Can be changed.
 また、本発明によれば、搬送される紙葉類への光の照射、フィルタ領域の変更及び光の測定が、紙葉類の搬送タイミングに合わせて制御されるので、測定対象領域がセンサ位置を通過するタイミングに合わせて正確に測定を行うことができる。また、光源からの光の照射を制御することにより反射光や蛍光だけでなく、りん光を測定することもできる。 In addition, according to the present invention, the irradiation of light to the conveyed paper sheet, the change of the filter area, and the measurement of light are controlled in accordance with the conveyance timing of the paper sheet. The measurement can be performed accurately in accordance with the timing of passing through. Further, by controlling the light irradiation from the light source, not only reflected light and fluorescence but also phosphorescence can be measured.
 また、本発明によれば、第1波長光に合わせて焦点調整用のレンズの位置を固定した状態で、このままでは第1波長と波長の異なる第2波長光では色収差による焦点ずれが生ずる所、複合フィルタの位置を制御して、第2波長光の測定に利用する第2フィルタ領域の光学特性によって焦点ずれを補正することにより、第2波長光についても焦点を合わせた状態で測定することができる。 Further, according to the present invention, in a state where the position of the focus adjustment lens is fixed in accordance with the first wavelength light, the second wavelength light having a wavelength different from the first wavelength causes a defocus due to chromatic aberration. By controlling the position of the composite filter and correcting the defocus by the optical characteristics of the second filter region used for the measurement of the second wavelength light, the second wavelength light can also be measured in a focused state. it can.
 また、本発明によれば、例えば、光源からの光等、測定対象外の光の影響を受けて正確な測定ができないような場合に、フィルタ領域にフィルタリング機能を持たせることにより余計な光をカットすることができる。 In addition, according to the present invention, for example, in the case where accurate measurement cannot be performed due to the influence of light not measured, such as light from a light source, extra light can be provided by providing a filtering function in the filter region. Can be cut.
 また、本発明によれば、アンチストークスインクからの発光を測定対象として、赤外光を照射して、可視発光として得られるアンチストークス発光を焦点調節用のレンズによってセンサ部に焦点を合わせて測定することができる。また、第1フィルタ領域によって赤外光をカットすることによりセンサ部が飽和状態となることを回避することができる。また、励起光の照射を停止した後、色収差による焦点ずれを補正する第2フィルタ領域を利用して、赤外発光であるりん光発光についてもセンサ部に焦点を合わせて測定することができる。 In addition, according to the present invention, the light emitted from the anti-Stokes ink is used as a measurement object, and the infrared light is irradiated to measure the anti-Stokes light emission obtained as visible light by focusing on the sensor unit with the focus adjustment lens. can do. Moreover, it can avoid that a sensor part is saturated by cut | disconnecting infrared light by a 1st filter area | region. In addition, after the irradiation of excitation light is stopped, the second filter region that corrects the defocus due to chromatic aberration can be used to measure phosphorescence emission, which is infrared emission, while focusing on the sensor unit.
 また、本発明によれば、フィルタ領域の境界を含む所定領域ではセンサ部による測定を中断することにより、対応するフィルタ領域を透過した光のみを測定して、正確な測定結果を得ることができる。 Further, according to the present invention, in the predetermined area including the boundary of the filter area, the measurement by the sensor unit is interrupted, so that only the light transmitted through the corresponding filter area can be measured and an accurate measurement result can be obtained. .
図1は、本実施形態に係るスペクトルセンサの構成概要を説明する模式図である。FIG. 1 is a schematic diagram for explaining an outline of the configuration of the spectrum sensor according to the present embodiment. 図2は、本実施形態に係る光学系部の構成概略を説明する断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating a schematic configuration of the optical system unit according to the present embodiment. 図3は、本実施形態に係る複合フィルタの動作を説明する模式図である。FIG. 3 is a schematic diagram for explaining the operation of the composite filter according to the present embodiment. 図4は、色収差による焦点ずれを説明する模式図である。FIG. 4 is a schematic diagram for explaining defocus due to chromatic aberration. 図5は、本実施形態に係る複合フィルタにより行われるフィルタリング及び焦点ずれの補正を説明する断面模式図である。FIG. 5 is a schematic cross-sectional view illustrating filtering and defocus correction performed by the composite filter according to the present embodiment. 図6は、アンチストークスインクで観察される発光現象について説明する図である。FIG. 6 is a diagram for explaining the light emission phenomenon observed with the anti-Stokes ink. 図7は、本実施形態に係る複合フィルタを利用して行われる測定方法の一例を説明する図である。FIG. 7 is a diagram illustrating an example of a measurement method performed using the composite filter according to the present embodiment. 図8は、本実施形態に係る複合フィルタを利用して行われる測定での各部の制御タイミングを説明するタイミングチャートである。FIG. 8 is a timing chart for explaining the control timing of each part in the measurement performed using the composite filter according to the present embodiment. 図9は、本実施形態に係る複合フィルタの回転位置と測定タイミングとの関係を説明する図である。FIG. 9 is a diagram for explaining the relationship between the rotational position of the composite filter according to the present embodiment and the measurement timing. 図10は、本実施形態に係る複合フィルタの回転位置の検出及び制御の方法の例を説明する図である。FIG. 10 is a diagram illustrating an example of a method for detecting and controlling the rotational position of the composite filter according to the present embodiment. 図11は、本実施形態に係るスペクトルセンサで測定対象とする光と、この光を測定するために複合フィルタでフィルタリングする波長域及び励起光の例を説明する図である。FIG. 11 is a diagram for explaining an example of light to be measured by the spectrum sensor according to the present embodiment, a wavelength range filtered by a composite filter to measure this light, and excitation light. 図12は、本実施形態に係る複合フィルタの異なる構造の例を説明する図である。FIG. 12 is a diagram for explaining an example of a different structure of the composite filter according to the present embodiment.
 以下に添付図面を参照して、この発明に係るスペクトルセンサの好適な実施例を詳細に説明する。まず、図1を参照しながらスペクトルセンサ100の概要について説明する。なお、スペクトルセンサ100は、測定対象物から得られた光からプリズム等により干渉縞を生成して、該干渉縞をフーリエ変換して周波数に対する光の強度を測定するものである。 Hereinafter, preferred embodiments of a spectrum sensor according to the present invention will be described in detail with reference to the accompanying drawings. First, an outline of the spectrum sensor 100 will be described with reference to FIG. The spectrum sensor 100 generates interference fringes from light obtained from a measurement object by a prism or the like, and Fourier transforms the interference fringes to measure light intensity with respect to frequency.
 スペクトルセンサ100は、光ガイド10と、光カップリング装置1と、光学系部20と、センサ部30とを有しており、紙葉類3の光学特性を示す光を電気信号に変換して外部の信号処理部へ出力する機能を有している。図1(c)に示すように、スペクトルセンサ100では、光源2から紙葉類3に光を照射して、紙葉類3から反射された光を光ガイド10の16個の受光部212a~212pで受光する。 The spectrum sensor 100 includes a light guide 10, an optical coupling device 1, an optical system unit 20, and a sensor unit 30, and converts light indicating the optical characteristics of the paper sheet 3 into an electrical signal. It has a function of outputting to an external signal processing unit. As shown in FIG. 1C, the spectrum sensor 100 irradiates light on the paper sheet 3 from the light source 2 and reflects the light reflected from the paper sheet 3 into 16 light receiving sections 212a to 212a of the light guide 10. Light is received at 212p.
 光ガイド10は、図1(a)及び(b)に示すように、アクリル樹脂等の透明部材によって成形された4枚の導光板10a~10dから形成される。導光板10aは紙葉類3に対向するように設けられた4つの受光部212a~212dを有し、各受光部212a~212dは、紙葉類3からの高さが同一となるようにX軸方向に1列等間隔に配置されている。4つの受光部212a~212dで受光された光は、内部で全反射されながらX軸方向へ導かれて、出射部212qから光学系部20へ向けて出射される。他の導光板10b~10dも同様の機能を有している。図1(b)に示すように、4枚の導光板10a~10dを光カップリング装置1側の端部がY軸方向に揃うように配置した状態で、16個の各受光部212a~212pがX軸方向に等間隔に配置される。図1(b)に示すように、搬送路4上で紙葉類3をY軸方向に搬送することにより、X軸方向に1列に配置された受光部212a~212pで紙葉類3全面の光学特性を測定することができる。4枚の導光板10a~10dから出射した光は、光カップリング装置1への入射光となる。 As shown in FIGS. 1A and 1B, the light guide 10 is formed of four light guide plates 10a to 10d formed of a transparent member such as acrylic resin. The light guide plate 10a has four light receiving portions 212a to 212d provided so as to face the paper sheet 3, and each of the light receiving portions 212a to 212d has an X height so that the height from the paper sheet 3 is the same. They are arranged at equal intervals in one row in the axial direction. The light received by the four light receiving portions 212a to 212d is guided in the X-axis direction while being totally reflected inside and is emitted from the emitting portion 212q toward the optical system portion 20. The other light guide plates 10b to 10d have the same function. As shown in FIG. 1B, in the state where the four light guide plates 10a to 10d are arranged so that the end portions on the optical coupling device 1 side are aligned in the Y-axis direction, each of the sixteen light receiving portions 212a to 212p. Are arranged at equal intervals in the X-axis direction. As shown in FIG. 1B, by transporting the paper sheet 3 in the Y-axis direction on the transport path 4, the entire surface of the paper sheet 3 is received by the light receiving portions 212a to 212p arranged in a line in the X-axis direction. Can be measured. Light emitted from the four light guide plates 10a to 10d becomes incident light to the optical coupling device 1.
 光カップリング装置1は、光ガイド10と光学系部20との間を光学的に結合する機能を有する。具体的には、4枚の導光板10a~10dから出射された光を入射面に受けて、この光を均一化しながら集光して入射面より面積の小さい出射面から出射する。光カップリング装置1から出射した光は、光学系部20への入射光となる。 The optical coupling device 1 has a function of optically coupling between the light guide 10 and the optical system unit 20. Specifically, the light emitted from the four light guide plates 10a to 10d is received by the incident surface, and the light is condensed while being uniformed and emitted from the emission surface having a smaller area than the incident surface. The light emitted from the optical coupling device 1 becomes incident light to the optical system unit 20.
 光学系部20は、入射した光から紙葉類3の光学特性を示す干渉縞を生成して、該干渉縞をセンサ部30で撮像するために焦点を合わせる機能を有する。図2は、光学系部20の構成概略を説明する模式図である。光学系部20は、光カップリング装置1から入射された光101を拡散するための拡散板21と、干渉縞を生成するための偏光板22a、22b及びプリズム23と、光のフィルタリング及び焦点ずれ補正の少なくともいずれかを実現するための複合フィルタ24と、生成した干渉縞の焦点をセンサ部30に合わせるためのレンズ25とを有している。プリズム23としては、例えば、ウォラストンプリズムを利用する。 The optical system unit 20 has a function of generating an interference fringe indicating the optical characteristics of the paper sheet 3 from incident light and focusing the image to capture the interference fringe with the sensor unit 30. FIG. 2 is a schematic diagram illustrating a schematic configuration of the optical system unit 20. The optical system unit 20 includes a diffusion plate 21 for diffusing the light 101 incident from the optical coupling device 1, polarizing plates 22a and 22b and a prism 23 for generating interference fringes, light filtering and defocusing. A composite filter 24 for realizing at least one of the corrections and a lens 25 for focusing the generated interference fringes on the sensor unit 30 are provided. As the prism 23, for example, a Wollaston prism is used.
 センサ部30は、光学系部20によって生成された干渉縞を撮像する機能を有する。センサ部30は、CCD等の撮像素子と、この撮像素子の制御や撮像素子で得られた干渉縞の測定結果をフーリエ変換してスペクトルを生成する処理等を行うための基板とを有している。スペクトルセンサ100は、例えば、紙葉類3を識別する紙葉類識別装置で利用される。紙葉類識別装置では、例えば、センサ部30で生成されたスペクトルに表れる特徴から紙葉類3の種類や真偽等を識別する処理が行われる。 The sensor unit 30 has a function of imaging the interference fringes generated by the optical system unit 20. The sensor unit 30 includes an image sensor such as a CCD, and a substrate for performing a process of generating a spectrum by performing Fourier transform on the control of the image sensor and the measurement result of interference fringes obtained by the image sensor. Yes. The spectrum sensor 100 is used in, for example, a paper sheet identification device that identifies the paper sheet 3. In the paper sheet identification device, for example, a process of identifying the type, authenticity, and the like of the paper sheet 3 from the features appearing in the spectrum generated by the sensor unit 30 is performed.
 従来の光学フィルタは、主に、所定波長域の光をカットするために利用されている。しかし、本実施形態に係る複合フィルタ24では、光路長を調整することによって色収差による焦点ずれを補正できる点を1つの特徴としている。以下では、この複合フィルタ24の機能及び動作の詳細について説明する。 Conventional optical filters are mainly used for cutting light in a predetermined wavelength range. However, the composite filter 24 according to the present embodiment has one feature in that the defocus due to chromatic aberration can be corrected by adjusting the optical path length. Hereinafter, functions and operations of the composite filter 24 will be described in detail.
 図3は、複合フィルタ24の動作を説明する模式図である。複合フィルタ24は、複数のフィルタ領域24a及び24bによって形成された円板形状を有し、回転軸24fにより回転可能に軸支されている。入射した光102が、複数のフィルタ領域24a及び24bの中から選択した領域を透過するように、入射する光102の入射タイミングに応じて複合フィルタ24の回転を制御することができる。複合フィルタ24を透過した光102は、焦点距離を調整するためのレンズ25を経て、センサ部30の撮像素子で撮像される。なお、光学系部20の内部では、所定波長域の光が入射したときにセンサ部30上で焦点が合うように、レンズ25とセンサ部30との間の距離L1が予め調整して固定されている。 FIG. 3 is a schematic diagram for explaining the operation of the composite filter 24. The composite filter 24 has a disk shape formed by a plurality of filter regions 24a and 24b, and is rotatably supported by a rotation shaft 24f. The rotation of the composite filter 24 can be controlled in accordance with the incident timing of the incident light 102 so that the incident light 102 passes through a region selected from the plurality of filter regions 24a and 24b. The light 102 that has passed through the composite filter 24 passes through the lens 25 for adjusting the focal length and is imaged by the image sensor of the sensor unit 30. Note that, in the optical system unit 20, the distance L1 between the lens 25 and the sensor unit 30 is adjusted and fixed in advance so that the light is focused on the sensor unit 30 when light in a predetermined wavelength region is incident. ing.
 図4は、レンズ25からセンサ部30までの距離L1と、波長の異なる複数の光の光路長との関係を説明する図である。図4(a)に示すように、レンズ25からセンサ部30までの距離L1は、波長αの光102が照射された場合にセンサ部30で焦点が合うように調整されている。このため、波長の異なる波長βの光や波長γの光では、色収差により焦点ずれが生じてセンサ部30で焦点が合わなくなる。例えば、図4(b)に示すように、波長に応じて色収差による焦点ずれが生ずるが、複合フィルタ24によって、この色収差による焦点ずれを補正することができる。 FIG. 4 is a diagram for explaining the relationship between the distance L1 from the lens 25 to the sensor unit 30 and the optical path lengths of a plurality of lights having different wavelengths. As shown in FIG. 4A, the distance L1 from the lens 25 to the sensor unit 30 is adjusted so that the sensor unit 30 is focused when the light 102 having the wavelength α is irradiated. For this reason, in the light of the wavelength (beta) and the light of the wavelength (gamma) from which a wavelength differs, a focus shift | offset | difference arises by a chromatic aberration, and a sensor part 30 becomes unable to focus. For example, as shown in FIG. 4B, a defocus due to chromatic aberration occurs according to the wavelength, but the defocus due to this chromatic aberration can be corrected by the composite filter 24.
 次に、複合フィルタ24による焦点ずれの補正機能及びフィルタリング機能について説明する。図5は、複合フィルタ24の機能を説明するための断面模式図である。光の波長が異なるために色収差による焦点ずれが生ずると、例えば、図5(a)に示すように、波長αの光、波長βの光及び波長γの光の間で合焦する位置がずれる。図5(a)では、レンズ25からセンサ部30までの距離L1が、波長αの光で、センサ部30に焦点が合うように調整して固定されている。すなわち、図5(a)の状態では、センサ部30により、波長βの光及び波長γの光を、焦点を合わせて測定することはできない。 Next, the defocus correction function and the filtering function by the composite filter 24 will be described. FIG. 5 is a schematic cross-sectional view for explaining the function of the composite filter 24. When defocusing occurs due to chromatic aberration due to different wavelengths of light, for example, as shown in FIG. 5 (a), the in-focus position shifts between light of wavelength α, light of wavelength β, and light of wavelength γ. . In FIG. 5A, the distance L <b> 1 from the lens 25 to the sensor unit 30 is adjusted and fixed so as to be focused on the sensor unit 30 with light of wavelength α. That is, in the state of FIG. 5A, the sensor unit 30 cannot measure the light with the wavelength β and the light with the wavelength γ in focus.
 例えば、波長αの光、波長βの光及び波長γの光を含む光102が入射するが、波長αの光のみを測定したい場合には、図5(b)に示すように、この光102が、波長βの光及び波長γの光をカットするためのフィルタ領域24aを透過するように、図3に示す複合フィルタ24の回転位置を制御する。これにより、焦点距離L1は波長αに合わせて調整されているので、フィルタ領域24aを透過した波長αの光を、焦点を合わせた状態で測定することができる。 For example, light 102 including light of wavelength α, light of wavelength β, and light of wavelength γ is incident. However, when it is desired to measure only light of wavelength α, as shown in FIG. However, the rotational position of the composite filter 24 shown in FIG. 3 is controlled so as to pass through the filter region 24a for cutting light of wavelength β and light of wavelength γ. Thereby, since the focal distance L1 is adjusted according to the wavelength (alpha), the light of the wavelength (alpha) which permeate | transmitted the filter area | region 24a can be measured in a focused state.
 例えば、光102が強く、全ての光を測定しようとするとCCD等の撮像素子が飽和状態となって正確な測定を行えない場合がある。このような場合には、複合フィルタ24の一部を、所定波長の光をカットするフィルタ領域24aとすることで、所望の波長域の光のみを測定することができる。 For example, when the light 102 is strong and an attempt is made to measure all the light, an image pickup device such as a CCD may be saturated and accurate measurement may not be performed. In such a case, by setting a part of the composite filter 24 as a filter region 24a that cuts light of a predetermined wavelength, only light in a desired wavelength region can be measured.
 また、例えば、波長βの光102が入射するが、焦点ずれが生じて正確な測定ができない場合には、図5(c)に示すように、この光102が、光路長を調整するためのフィルタ領域24bを透過するように、複合フィルタ24の回転位置を制御する。このフィルタ領域24bは、波長βの光が内部で屈折することにより光路長が変化してセンサ部30で焦点が合うように、その材質や厚みを計算して成形されている。この結果、波長βの光を、焦点を合わせた状態で測定することが可能となる。なお、焦点ずれを補正するための材質及び厚みの決定方法については後述する。 In addition, for example, when light 102 having a wavelength β is incident but accurate measurement cannot be performed due to defocusing, the light 102 is used for adjusting the optical path length as shown in FIG. The rotational position of the composite filter 24 is controlled so as to pass through the filter region 24b. The filter region 24b is formed by calculating the material and thickness so that the optical path length is changed by the light having the wavelength β refracted therein and the sensor unit 30 is focused. As a result, it becomes possible to measure the light of wavelength β in a focused state. A method for determining the material and thickness for correcting defocus will be described later.
 また、例えば、波長αの光及び波長γの光を含む光102が入射するが、波長γの光のみを測定したい場合には、図5(d)に示すように、この光102が、波長αの光をカットするためのフィルタ領域24cを透過するように、複合フィルタ24の回転位置を制御する。このとき、単に波長αの光をカットするだけでは、色収差による焦点ずれが生じて正確な測定を行うことができない。このため、フィルタ領域24cは、図5(b)の場合と同様に所定波長域の光をカットすると共に、同図(c)の場合と同様に波長γの光の光路長を調整するように、その材質や厚みを計算して成形される。この結果、波長γの光のみを透過させてかつ焦点を合わせた状態で測定することが可能となる。 In addition, for example, when light 102 including light having wavelength α and light having wavelength γ is incident, when only light having wavelength γ is to be measured, as shown in FIG. The rotational position of the composite filter 24 is controlled so as to pass through the filter region 24c for cutting α light. At this time, if the light of wavelength α is simply cut, defocus due to chromatic aberration occurs and accurate measurement cannot be performed. For this reason, the filter region 24c cuts light in the predetermined wavelength region as in the case of FIG. 5B, and adjusts the optical path length of the light of wavelength γ as in the case of FIG. 5C. It is molded by calculating its material and thickness. As a result, it is possible to measure in a state where only the light of wavelength γ is transmitted and in focus.
 このように、複合フィルタ24は、所定波長域の光をカットするフィルタリング機能及び所定波長の光の光路長を調整して焦点ずれを補正する焦点ずれ補正機能の少なくともいずれか一方を実現する複数のフィルタ領域24a~24cを含んで形成される。入射する光の種類や測定の目的に応じて、いずれか1つのフィルタ領域24a~24cを選択することにより、波長の異なる複数の光を、同じセンサ位置で正確に測定することができる。また、複合フィルタ24は回転可能な円板形状を有しているので、複合フィルタ24を回転させて、選択したフィルタ領域24a~24cを光が透過するように、回転位置を容易に制御することができる。 As described above, the composite filter 24 realizes at least one of a filtering function that cuts light in a predetermined wavelength region and a defocus correction function that adjusts the optical path length of light having a predetermined wavelength to correct defocus. It is formed including filter regions 24a to 24c. By selecting any one of the filter regions 24a to 24c according to the type of incident light and the purpose of measurement, a plurality of lights having different wavelengths can be accurately measured at the same sensor position. Further, since the composite filter 24 has a rotatable disk shape, the rotational position can be easily controlled so that the composite filter 24 is rotated and light is transmitted through the selected filter regions 24a to 24c. Can do.
 次に、複合フィルタ24を利用する光の測定例として、紙葉類3で利用されるアンチストークスインクからの発光を測定する方法を具体的に説明する。図6は、アンチストークスインクの発光現象について説明する図である。アンチストークスインクでは、励起光として赤外光が利用される。この励起光を、図1(c)に示すように、光源2から紙葉類3に向けて照射する。具体的には、図6(a)に示すように、時間t1で光源2からの赤外光の照射を開始して、時間t2で赤外光の照射を停止する。紙葉類3では、図6(b)に示すように、光源2からの励起光の照射が開始された時間t1からアンチストークスインクによる発光が始まって徐々に明るくなり、やがて飽和状態に達する。そして、時間t2で光源2からの励起光の照射が停止されると、その後は、残光として、りん光発光が観察される状態となる。りん光発光は、徐々に暗くなりやがて時間t3で消失する。 Next, as a measurement example of light using the composite filter 24, a method for measuring light emission from the anti-Stokes ink used in the paper sheet 3 will be specifically described. FIG. 6 is a diagram for explaining the light emission phenomenon of the anti-Stokes ink. In anti-Stokes ink, infrared light is used as excitation light. As shown in FIG. 1C, this excitation light is emitted from the light source 2 toward the paper sheet 3. Specifically, as shown in FIG. 6A, infrared light irradiation from the light source 2 is started at time t1, and infrared light irradiation is stopped at time t2. In the paper sheet 3, as shown in FIG. 6B, light emission by the anti-Stokes ink starts from the time t1 when the irradiation of the excitation light from the light source 2 is started, and gradually becomes brighter, and eventually reaches a saturated state. And when irradiation of the excitation light from the light source 2 is stopped at time t2, phosphorescence emission is observed as afterglow thereafter. The phosphorescence emission gradually becomes dark and disappears at time t3.
 図7は、光源2から紙葉類3に向けて、図6(a)に示すように赤外光を照射して、発光した光を測定する方法について説明する図である。図7(a)及び(b)の左図は観察される光の波長分布を説明する図であり、右図はこの光を測定する際の複合フィルタ24の機能を説明する図である。また、図7(c)は、複合フィルタ24の構造を説明する図である。なお、正確には、図2に示すように、プリズム23及び偏光板22a、22bによって生成された干渉縞が、複合フィルタ24及びレンズ25を経て、センサ部30により撮像されるものであるが、以下では、干渉縞を単に「光」と記載する。 FIG. 7 is a diagram for explaining a method of measuring emitted light by irradiating infrared light from the light source 2 toward the paper sheet 3 as shown in FIG. 6A. 7A and 7B are diagrams illustrating the wavelength distribution of the observed light, and the right diagram is a diagram illustrating the function of the composite filter 24 when measuring this light. FIG. 7C is a diagram for explaining the structure of the composite filter 24. 2, the interference fringes generated by the prism 23 and the polarizing plates 22a and 22b are imaged by the sensor unit 30 via the composite filter 24 and the lens 25, as shown in FIG. Hereinafter, the interference fringes are simply referred to as “light”.
 図6(b)に示すように、アンチストークスインクによる発光が始まってからの時間t1~t2の間は、可視発光41及び赤外発光42に加えて、励起光(赤外光)43が観察される。この状態で、全ての光をセンサ部30に受光すると、撮像素子が飽和状態となって正確な測定を行うことができない。また、赤外発光42及び励起光43が共に赤外光領域にあるため、この状態で赤外光を測定しても励起光による影響を受けて赤外発光42を正確に測定できない可能性がある。 As shown in FIG. 6B, excitation light (infrared light) 43 is observed in addition to the visible light emission 41 and the infrared light emission 42 during the time t1 to t2 after the light emission by the anti-Stokes ink starts. Is done. If all the light is received by the sensor unit 30 in this state, the image sensor becomes saturated and accurate measurement cannot be performed. In addition, since both the infrared light emission 42 and the excitation light 43 are in the infrared light region, there is a possibility that even if the infrared light is measured in this state, the infrared light emission 42 cannot be accurately measured due to the influence of the excitation light. is there.
 このため、時間t1~t2では、図7(a)左図に破線で示した赤外発光42及び励起光43をカットして、同図に実線で示した可視発光41のみを測定する。具体的には、センサ部30によって焦点を合わせた状態で可視発光41を測定できるように、レンズ25からセンサ部30までの焦点距離L1を予め調整しておく。また、図7(a)右図及び同図(c)に示す複合フィルタ24のフィルタ領域24aを、赤外光カットフィルタとする。そして、可視発光41が観察される時間t1~t2の間、紙葉類3から受光した光がフィルタ領域24aを透過してセンサ部30へ到達するように、複合フィルタ24の回転位置を制御する。 Therefore, from time t1 to t2, the infrared light emission 42 and the excitation light 43 indicated by the broken line in the left diagram of FIG. 7A are cut, and only the visible light emission 41 indicated by the solid line is measured. Specifically, the focal length L1 from the lens 25 to the sensor unit 30 is adjusted in advance so that the visible light emission 41 can be measured in a state where the sensor unit 30 is focused. Moreover, let the filter area | region 24a of the composite filter 24 shown to Fig.7 (a) right figure and the same figure (c) be an infrared-light cut filter. Then, during the time t1 to t2 when the visible light emission 41 is observed, the rotational position of the composite filter 24 is controlled so that the light received from the paper sheet 3 passes through the filter region 24a and reaches the sensor unit 30. .
 この結果、測定時には、図7(a)左図に破線で示す赤外発光42及び励起光43が複合フィルタ24のフィルタ領域24aによってカットされて、実線で示す可視発光41のみを、センサ部30に合焦した状態で測定することができる。これにより、センサ部30が飽和状態となることを回避しながら可視発光41を正確に測定することができる。 As a result, at the time of measurement, the infrared light emission 42 and the excitation light 43 indicated by broken lines in the left diagram of FIG. 7A are cut by the filter region 24a of the composite filter 24, and only the visible light emission 41 indicated by the solid line is detected by the sensor unit 30. It can measure in the state focused on. Thereby, it is possible to accurately measure the visible light emission 41 while avoiding that the sensor unit 30 is saturated.
 こうして可視発光41を測定した後、赤外発光42の測定を行う。図6(b)に残光として示したように、光源2からの励起光の照射を停止してからの時間t2~t3の間は、りん光発光として赤外発光42が観察される。具体的には、図7(b)左図に示すように励起光43が消失すると共に可視発光41が消失して、赤外発光42が観察される状態となる。これにより、時間t2~t3の間に、赤外発光42を測定することができる。 Thus, after measuring the visible light emission 41, the infrared light emission 42 is measured. As shown as afterglow in FIG. 6B, infrared light emission 42 is observed as phosphorescence emission during a period of time t2 to t3 after irradiation of excitation light from the light source 2 is stopped. Specifically, as shown in the left diagram of FIG. 7B, the excitation light 43 disappears, the visible light emission 41 disappears, and the infrared light emission 42 is observed. Thereby, the infrared emission 42 can be measured during the time t2 to t3.
 アンチストークス発光の可視発光41が波長550~650nmの緑から赤の波長域の可視光であるのに対して、赤外発光42は波長950~1100nmの波長域の赤外光である。スペクトルセンサ100の光学系部20では、図7(a)右図に示すように、可視発光41でセンサ部30に焦点が合うように予め焦点距離L1が調整され固定されている。このため、単にフィルタ領域24aを取り除いて赤外発光42による光がセンサ部30に到達するようにしただけでは、図7(b)右図に一点鎖線44で示したように色収差による距離ΔP分の焦点ずれが生じ、センサ部30に焦点を合わせることができない。本実施形態に係るスペクトルセンサ100では、この焦点ずれを、複合フィルタ24によって補正する。 The visible light 41 of anti-Stokes light emission is visible light in the wavelength range of green to red with a wavelength of 550 to 650 nm, whereas the infrared light emission 42 is infrared light with a wavelength range of 950 to 1100 nm. In the optical system unit 20 of the spectrum sensor 100, the focal length L1 is adjusted and fixed in advance so that the visible light emission 41 is focused on the sensor unit 30 as shown in the right diagram of FIG. For this reason, simply removing the filter region 24a and allowing the light emitted from the infrared light emission 42 to reach the sensor unit 30 causes a distance ΔP due to chromatic aberration as indicated by a dashed line 44 in the right diagram of FIG. Therefore, the sensor unit 30 cannot be focused. In the spectrum sensor 100 according to this embodiment, this defocus is corrected by the composite filter 24.
 具体的には、図7(b)右図及び同図(c)に示すように、複合フィルタ24のフィルタ領域24bを赤外光焦点調整フィルタとする。フィルタ領域24aが屈折率n1の材質により厚みD1で形成されている場合に、ずれ量ΔPの焦点ずれを補正して解消するため、屈折率n2の材質で厚みD2のフィルタ領域24bが、D1×n1=D2×n2-ΔPの関係式を満たすように成形される。すなわち、フィルタ領域24bを赤外光が透過する屈折率n2の材質として、フィルタ領域24aの屈折率n1及び厚みD1と焦点ずれのずれ量ΔPとに基づいて前式により厚みD2を決定すれば、色収差による焦点ずれを補正することができる。 Specifically, as shown in the right diagram and FIG. 7C of FIG. 7B, the filter region 24b of the composite filter 24 is an infrared light focus adjustment filter. When the filter region 24a is formed of a material having a refractive index n1 and having a thickness D1, the filter region 24b having a material having a refractive index n2 and a thickness D2 is corrected by D1 × It is molded so as to satisfy the relational expression of n1 = D2 × n2-ΔP. That is, if the filter region 24b is made of a material having a refractive index n2 through which infrared light is transmitted, the thickness D2 is determined according to the previous equation based on the refractive index n1 and the thickness D1 of the filter region 24a and the defocus amount ΔP. Defocus due to chromatic aberration can be corrected.
 赤外発光42のみが観察される図6(b)の時間t2~t3の間、紙葉類3から受光してプリズム23等を経た光が、フィルタ領域24bを透過してセンサ部30へ到達するように、複合フィルタ24の回転位置を制御する。フィルタ領域24bにより焦点ずれが補正され、図7(b)右図に実線で示したように、レンズ25からセンサ部30までの距離L1を変更することなく、焦点を合わせた状態で赤外発光42を測定することができる。また、フィルタ領域24aからフィルタ領域24bへの変更は、光学系部20内部に回転可能に備えられた複合フィルタ24を、フィルタ位置を測定と同期させて目的の波長領域の光の干渉縞を読み取るように回転させることにより、容易かつ高速に行うことができる。 During the time t2 to t3 in FIG. 6B where only the infrared light emission 42 is observed, the light received from the paper sheet 3 and passing through the prism 23 and the like passes through the filter region 24b and reaches the sensor unit 30. Thus, the rotational position of the composite filter 24 is controlled. The defocus is corrected by the filter region 24b, and infrared light is emitted in the focused state without changing the distance L1 from the lens 25 to the sensor unit 30 as shown by the solid line in FIG. 42 can be measured. Further, the change from the filter region 24a to the filter region 24b is performed by reading the interference fringes of the light in the target wavelength region by synchronizing the filter position with the measurement of the composite filter 24 that is rotatably provided in the optical system unit 20. By rotating in this manner, it can be performed easily and at high speed.
 図7では、例えばアンチストークスインクを用いて印刷されたマーク等に、光源2から励起光43を照射して、可視発光41及び赤外発光42を測定する方法を説明したが、この測定は、例えば、図1に示すように搬送路4上を搬送される紙葉類3の搬送タイミングに合わせて行われる。 In FIG. 7, for example, a method of measuring the visible light emission 41 and the infrared light emission 42 by irradiating the excitation light 43 from the light source 2 to a mark or the like printed using anti-Stokes ink has been described. For example, as shown in FIG. 1, it is performed in accordance with the conveyance timing of the paper sheet 3 conveyed on the conveyance path 4.
 図8は、紙葉類3の搬送タイミングと、可視発光及び赤外発光の測定タイミングとの関係を示すタイミングチャートである。図8に示すように、紙葉類3の搬送タイミングとして、紙葉類3を搬送する搬送路4を駆動する搬送機構のメカクロックが利用される。このメカクロックは、搬送路4による紙葉類3の搬送距離に応じて出力される信号である。この信号と、搬送路4上で紙葉類3の通過を検知するために設けられた通過センサからの信号とに基づいて、紙葉類3の位置を特定することができる。 FIG. 8 is a timing chart showing the relationship between the transport timing of the paper sheet 3 and the measurement timing of visible light emission and infrared light emission. As shown in FIG. 8, the mechanical clock of the transport mechanism that drives the transport path 4 that transports the paper sheet 3 is used as the transport timing of the paper sheet 3. This mechanical clock is a signal output according to the transport distance of the paper sheet 3 by the transport path 4. Based on this signal and a signal from a passage sensor provided to detect the passage of the paper sheet 3 on the conveyance path 4, the position of the paper sheet 3 can be specified.
 図1(b)に示すように搬送路4を搬送される紙葉類3が、光ガイド10の手前の所定位置に設置された通過センサによって検出されると(図8の時間t3)、その後、所定時間経過したタイミング(図8の時間t4)で、光源2から紙葉類3に向けて励起光の照射が開始される。通過センサによる検知の後、メカクロックをカウントして光ガイド10の下方を通過するタイミングで測定を開始するものである。励起光の照射が開始されると、紙葉類3上では、アンチストークスインクによる可視発光及び赤外発光が始まる。 As shown in FIG. 1B, when the paper sheet 3 conveyed through the conveyance path 4 is detected by a passage sensor installed at a predetermined position in front of the light guide 10 (time t3 in FIG. 8), thereafter The irradiation of the excitation light from the light source 2 toward the paper sheet 3 is started at a timing when a predetermined time has elapsed (time t4 in FIG. 8). After the detection by the passage sensor, the mechanical clock is counted and the measurement is started at the timing when it passes under the light guide 10. When the irradiation of excitation light is started, visible light emission and infrared light emission by the anti-Stokes ink start on the paper sheet 3.
 励起光の照射が開始されると、アンチストークスインクからの発光が光ガイド10によって受光されて、光カップリング装置1を経て光学系部20へ入射される。この光がプリズム23を経て赤外光カットフィルタであるフィルタ領域24aを透過するように、複合フィルタ24の回転位置が図9(a)に示す回転位置Aとなるように調整される。図8に示した複合フィルタ24の回転位置Aは、具体的には、図9(a)に示すように、フィルタ領域24a内の回転方向前方側で、光がフィルタ領域24aを透過する位置となる。なお、図9に破線で示した矩形領域45が、光学系部20内で、光が透過する光路領域を示している。 When the irradiation of the excitation light is started, the light emitted from the anti-Stokes ink is received by the light guide 10 and enters the optical system unit 20 through the optical coupling device 1. The rotation position of the composite filter 24 is adjusted to the rotation position A shown in FIG. 9A so that this light passes through the prism 23 and passes through the filter region 24a which is an infrared light cut filter. Specifically, the rotation position A of the composite filter 24 shown in FIG. 8 is a position where light passes through the filter region 24a on the front side in the rotation direction in the filter region 24a, as shown in FIG. 9A. Become. A rectangular area 45 indicated by a broken line in FIG. 9 indicates an optical path area through which light passes in the optical system unit 20.
 複合フィルタ24は、この回転位置Aから回転軸24f周りに反時計回りに回転する。図9(a)に示すように、複合フィルタ24のE~Fの領域が、光の透過する矩形領域45(光路領域)を通過する間、すなわち複合フィルタ24が回転位置Aから回転位置Bまで回転する間に、図7(a)に示すように赤外光である励起光をカットして可視発光41を測定する。この測定が、図8に示す複合フィルタ回転位置の赤外光カットフィルタの領域で行われる測定であり、同図に示すセンサ部測定の可視発光測定に該当する。 The composite filter 24 rotates counterclockwise around the rotation shaft 24f from the rotation position A. As shown in FIG. 9A, while the areas E to F of the composite filter 24 pass through a rectangular area 45 (light path area) through which light passes, that is, the composite filter 24 moves from the rotation position A to the rotation position B. During the rotation, the visible light emission 41 is measured by cutting the excitation light, which is infrared light, as shown in FIG. This measurement is a measurement performed in the region of the infrared light cut filter at the composite filter rotation position shown in FIG. 8, and corresponds to the visible light emission measurement of the sensor unit measurement shown in FIG.
 可視発光41の測定を終えた後、図9(a)に示す回転位置Bから同図(b)に示す回転位置Cへ反時計回りに回転する間は、センサ部30による測定を中断する。すなわち、図8に示す複合フィルタ回転位置に示した境界領域(図8の時間t5~t6)で、測定が中断される。複合フィルタ24を形成する2つのフィルタ領域24a及び24bの境界付近では透過する光を正確に測定できない可能性があるため、測定を中断するものである。 After the measurement of the visible light emission 41 is completed, the measurement by the sensor unit 30 is interrupted while rotating counterclockwise from the rotational position B shown in FIG. 9A to the rotational position C shown in FIG. That is, the measurement is interrupted in the boundary region (time t5 to t6 in FIG. 8) indicated at the composite filter rotation position shown in FIG. In the vicinity of the boundary between the two filter regions 24a and 24b forming the composite filter 24, there is a possibility that the transmitted light cannot be measured accurately, so the measurement is interrupted.
 図8に示すように、励起光の照射を停止するタイミング(図8の時間t6)で、光学系部20へ入射した光が赤外光焦点調整フィルタであるフィルタ領域24bを透過して、赤外発光42を測定できるように、複合フィルタ24の回転位置が調整される。 As shown in FIG. 8, at the timing of stopping the irradiation of the excitation light (time t6 in FIG. 8), the light incident on the optical system unit 20 is transmitted through the filter region 24b, which is an infrared light focus adjustment filter, and red. The rotational position of the composite filter 24 is adjusted so that the external light emission 42 can be measured.
 励起光の照射が停止されて、可視発光41が減少して、赤外発光42が観察される状態になると(図8の時間t6)、赤外発光42の測定が行われる。図9(b)に示すように、複合フィルタ24のG~Hの領域が光路領域45を通過する間、すなわち複合フィルタ24が回転位置Cから回転位置Dまで反時計回りに回転する間に、赤外発光42が測定される。具体的には、図7(b)に示すように、赤外発光42の光路長を調整して焦点ずれを補正した上で測定が行われる。この測定が、図8に示す複合フィルタ回転位置の赤外光焦点調整フィルタの領域で行われる測定であり、同図に示すセンサ部測定の赤外発光(りん光)測定に該当する。 When the irradiation of excitation light is stopped, the visible light emission 41 is reduced, and the infrared light emission 42 is observed (time t6 in FIG. 8), the infrared light emission 42 is measured. As shown in FIG. 9 (b), while the regions G to H of the composite filter 24 pass through the optical path region 45, that is, while the composite filter 24 rotates counterclockwise from the rotation position C to the rotation position D, Infrared emission 42 is measured. Specifically, as shown in FIG. 7B, the measurement is performed after adjusting the optical path length of the infrared light emission 42 to correct the defocus. This measurement is performed in the region of the infrared light focus adjustment filter at the composite filter rotation position shown in FIG. 8, and corresponds to the infrared emission (phosphorescence) measurement of the sensor unit measurement shown in FIG.
 赤外発光42の測定を終えると、図9(b)に示す回転位置Dから同図(a)に示す回転位置Aへ反時計回りに回転する間は、センサ部30による測定を中断する。すなわち、図8に示す複合フィルタ回転位置に示した境界領域(図8の時間t7~t9)で、測定が中断される。そして、測定を中断している間に、再び光源2を点灯して励起光の照射を開始する(図8の時間t8)。励起光の照射が開始されて、複合フィルタ24の境界領域が光路領域45を通過した後(図8の時間t9)、光学系部20へ入射した光が赤外光カットフィルタであるフィルタ領域24aを透過して、再び、可視発光41を測定可能な状態となる。 When the measurement of the infrared light emission 42 is completed, the measurement by the sensor unit 30 is interrupted while rotating counterclockwise from the rotational position D shown in FIG. 9B to the rotational position A shown in FIG. That is, the measurement is interrupted in the boundary region (time t7 to t9 in FIG. 8) indicated at the composite filter rotation position shown in FIG. Then, while the measurement is interrupted, the light source 2 is turned on again and irradiation of excitation light is started (time t8 in FIG. 8). After the irradiation of the excitation light is started and the boundary region of the composite filter 24 passes through the optical path region 45 (time t9 in FIG. 8), the light incident on the optical system unit 20 is a filter region 24a that is an infrared light cut filter. Then, the visible light emission 41 can be measured again.
 こうして、搬送路4により紙葉類3が搬送される間に、赤外光カットフィルタであるフィルタ領域24aでの可視発光測定と、赤外光焦点調整フィルタであるフィルタ領域24bでの赤外発光測定とを繰り返して行う。具体的には、図9に示すように、複合フィルタ24は、回転位置がA、B、C、Dとなるように回転した後、再び回転位置がAに戻る。このため、紙葉類3の搬送及び光源2からの励起光照射のタイミングと同期させた状態で、複合フィルタ24を連続して回転させることにより、可視発光測定及び赤外発光測定を繰り返し連続して行うことができる。 Thus, while the paper sheet 3 is conveyed by the conveyance path 4, the visible light emission measurement in the filter region 24a which is an infrared light cut filter and the infrared light emission in the filter region 24b which is an infrared light focus adjustment filter. Repeat the measurement. Specifically, as illustrated in FIG. 9, the composite filter 24 rotates so that the rotation positions become A, B, C, and D, and then the rotation position returns to A again. For this reason, the visible light emission measurement and the infrared light emission measurement are continuously repeated by continuously rotating the composite filter 24 in synchronization with the conveyance of the paper sheet 3 and the excitation light irradiation timing from the light source 2. Can be done.
 測定は、図8及び図9に示すように、光ガイド10下方での紙葉類3の通過に合わせて、励起光照射、複合フィルタ24の回転位置及びセンサ部30による測定のタイミングを制御して行われる。搬送路4を搬送される紙葉類3と光ガイド10との位置関係、及び紙葉類3への励起光の照射タイミングは、従来行われているように、搬送路4上の紙葉類3を検知する通過センサ及び搬送路4の駆動に合わせて出力される搬送機構のメカクロックによって制御することができる。具体的には、通過センサによる紙葉類3の検出結果と搬送機構のメカクロックとに基づいて得られる紙葉類3の位置情報を利用して、光源2及びセンサ部30の制御が行われる。スペクトルセンサ100では、これに加えて、光学系部20内部の複合フィルタ24の回転位置を検出して、この検出結果に基づいて回転軸24fを回転させることにより、複合フィルタ24の回転位置が制御される。 As shown in FIGS. 8 and 9, the measurement controls the irradiation of excitation light, the rotational position of the composite filter 24, and the timing of measurement by the sensor unit 30 in accordance with the passage of the paper sheet 3 below the light guide 10. Done. The positional relationship between the paper sheet 3 transported on the transport path 4 and the light guide 10 and the irradiation timing of the excitation light to the paper sheet 3 are conventionally performed on the paper sheet on the transport path 4. 3 and a mechanical clock of the transport mechanism that is output in accordance with the driving of the transport path 4 can be controlled. Specifically, the light source 2 and the sensor unit 30 are controlled using position information of the paper sheet 3 obtained based on the detection result of the paper sheet 3 by the passage sensor and the mechanical clock of the transport mechanism. . In addition to this, in the spectrum sensor 100, the rotational position of the composite filter 24 in the optical system unit 20 is detected, and the rotational position of the composite filter 24 is controlled by rotating the rotary shaft 24f based on the detection result. Is done.
 図10は、複合フィルタ24の回転位置の検出及び制御の方法の例を説明する模式図である。例えば、図10(a)に示すように、複合フィルタ24の回転軸24fの回転位置を、回転軸24fに接続されたロータリーエンコーダ51を利用して検出する。具体的には、複合フィルタ位置検出部52が、ロータリーエンコーダ51から出力される信号に基づいて複合フィルタ24の回転位置を検出する。そして、検出された回転位置情報と、外部から入力される紙葉類3の搬送路4上での位置情報とに基づいて、複合フィルタ位置制御部53が、複合フィルタ24の回転位置及び回転速度を制御する。複合フィルタ24の回転位置及び回転速度は、回転軸24fに接続されたモータ等の複合フィルタ駆動部54を制御することによって行われる。 FIG. 10 is a schematic diagram for explaining an example of a method for detecting and controlling the rotational position of the composite filter 24. For example, as shown in FIG. 10A, the rotational position of the rotary shaft 24f of the composite filter 24 is detected using a rotary encoder 51 connected to the rotary shaft 24f. Specifically, the composite filter position detection unit 52 detects the rotational position of the composite filter 24 based on a signal output from the rotary encoder 51. Based on the detected rotational position information and the positional information on the transport path 4 of the paper sheet 3 input from the outside, the composite filter position control unit 53 rotates the rotational position and rotational speed of the composite filter 24. To control. The rotational position and rotational speed of the composite filter 24 are performed by controlling a composite filter drive unit 54 such as a motor connected to the rotary shaft 24f.
 また、例えば、図10(b)に示すように、複合フィルタ24を透過した光を検出するように設置した投光部55a及び受光部55bを利用する。複合フィルタ24を形成する各フィルタ領域24a及び24bは材質や厚みが異なるため、複合フィルタ24を透過する光の変化を検出することにより、複合フィルタ24の回転位置を検出することができる。例えば、フィルタ領域24aが赤外光をカットする材質であり、フィルタ領域24bが赤外光を透過させる材質である場合には、投光部55aから赤外光を照射して、これを受光部55bで検出することにより複合フィルタ24の回転位置を検出することができる。複合フィルタ位置検出部52が、受光部55bで受光する光の波長や光量の変化から、複合フィルタ24の回転位置を検出すれば、図10(a)の場合と同様に、複合フィルタ位置制御部53及び複合フィルタ駆動部54が、複合フィルタ24の回転位置を制御することができる。なお、投光部55aとして専用の光源を設けることなく、スペクトルセンサ100の備える光源2を点灯して、光ガイド10及び光カップリング装置1を経て光学系部20に入射される光を投光部光源として利用する態様であってもよい。 Further, for example, as shown in FIG. 10B, a light projecting unit 55a and a light receiving unit 55b installed to detect light transmitted through the composite filter 24 are used. Since the filter regions 24a and 24b forming the composite filter 24 are different in material and thickness, the rotational position of the composite filter 24 can be detected by detecting a change in light transmitted through the composite filter 24. For example, when the filter region 24a is made of a material that cuts infrared light and the filter region 24b is made of a material that transmits infrared light, the light projecting unit 55a emits infrared light, and this is received by the light receiving unit. By detecting at 55b, the rotational position of the composite filter 24 can be detected. If the composite filter position detection unit 52 detects the rotational position of the composite filter 24 from the change in the wavelength or light quantity of the light received by the light receiving unit 55b, the composite filter position control unit is the same as in FIG. 53 and the composite filter drive unit 54 can control the rotational position of the composite filter 24. In addition, without providing a dedicated light source as the light projecting unit 55a, the light source 2 provided in the spectrum sensor 100 is turned on, and light incident on the optical system unit 20 through the light guide 10 and the optical coupling device 1 is projected. The aspect utilized as a partial light source may be sufficient.
 また、例えば、図10(c)に示すように、複合フィルタ24の回転軸24fと、紙葉類3を搬送する搬送路4の駆動機構の回転軸59とを、複数のギア等から構成される変速機構58を利用してハードウェア的に接続してもよい。複合フィルタ24と搬送路4をハードウェア的に接続すれば、複合フィルタ24の回転位置と搬送路4の位置関係が固定された状態となる。これにより、制御部56によって駆動部57の駆動を制御して、搬送路4上での紙葉類3の位置情報から複合フィルタ24の回転位置を認識して、測定を行うことができる。なお、この場合には、制御部56から信号読取部60に紙葉類3の位置情報が入力されて、信号読取部60が、制御部56から入力された信号に基づいて、CCD等のセンサ部30からの信号読取(光の測定)を行うことになる。 Further, for example, as shown in FIG. 10C, the rotation shaft 24 f of the composite filter 24 and the rotation shaft 59 of the drive mechanism of the conveyance path 4 that conveys the paper sheet 3 are configured by a plurality of gears. The transmission mechanism 58 may be connected by hardware. If the composite filter 24 and the transport path 4 are connected in hardware, the positional relationship between the rotational position of the composite filter 24 and the transport path 4 is fixed. Thereby, the drive of the drive part 57 is controlled by the control part 56, and the rotational position of the composite filter 24 can be recognized from the positional information of the paper sheet 3 on the conveyance path 4, and measurement can be performed. In this case, the position information of the sheet 3 is input from the control unit 56 to the signal reading unit 60, and the signal reading unit 60 detects a sensor such as a CCD based on the signal input from the control unit 56. Signal reading from the unit 30 (light measurement) is performed.
 なお、複合フィルタ24を形成する各フィルタ領域の材質及び形状は、本実施形態の例に限定されるものではない。測定対象とする光に応じて、各フィルタ領域で、同一の材質として厚みのみを変更する態様であってもよいし、同一の厚みとして材質のみを変更する態様であってもよいし、材質及び厚みの両方を変更する態様であっても構わない。 In addition, the material and shape of each filter region forming the composite filter 24 are not limited to the example of this embodiment. Depending on the light to be measured, each filter region may have a mode in which only the thickness is changed as the same material, or may be a mode in which only the material is changed as the same thickness. It is possible to change both thicknesses.
 また、本実施形態では、1枚の紙葉類3上で異なる発光を測定する例を説明したが、本実施形態がこれに限定されるものではなく、複数の紙葉類3で紙葉類毎に複合フィルタ24の回転位置を変更して測定を行う態様であっても構わない。 Moreover, although this embodiment demonstrated the example which measures different light emission on the sheet | seat 3 of 1 sheet, this embodiment is not limited to this, A plurality of paper sheets 3 and paper sheets It may be an aspect in which measurement is performed by changing the rotational position of the composite filter 24 every time.
 また、本実施形態では、図2に示すように、複合フィルタ24を、プリズム23の後段側に配置された偏光板22bと焦点調整用のレンズ25との間に配置する例を説明したが、本実施形態がこれに限定されるものではない。複合フィルタ24は、干渉縞が生成されるプリズム23からセンサ部30までの間であれば、その配置位置は特に限定されない。 In the present embodiment, as illustrated in FIG. 2, the example in which the composite filter 24 is disposed between the polarizing plate 22b disposed on the rear stage side of the prism 23 and the focus adjustment lens 25 has been described. The present embodiment is not limited to this. The arrangement position of the composite filter 24 is not particularly limited as long as it is between the prism 23 where the interference fringes are generated and the sensor unit 30.
 また、本実施形態では、光源2から励起光として赤外光を照射する例を説明したが、励起光は、測定対象とする光や紙葉類3から励起される発光に応じて決定されるものである。図11は、測定対象とする光と、この光を測定するために複合フィルタ24に求められるフィルタリング性能と、測定時に光源2から照射する光の波長との例を示している。 In the present embodiment, an example in which infrared light is emitted from the light source 2 as excitation light has been described. However, the excitation light is determined according to light to be measured or light emitted from the paper sheet 3. Is. FIG. 11 shows an example of the light to be measured, the filtering performance required for the composite filter 24 for measuring this light, and the wavelength of the light emitted from the light source 2 at the time of measurement.
 本実施形態では、図11に示す、アンチストークスインクによって観察される(a)の可視発光及び(b)の赤外発光(りん光)を測定する例を説明した。図11(b)に示したように、赤外発光を測定する場合には、測定対象とする赤外光を透過させる材質であればフィルタ領域24bの材質は特に限定されず、例えば、透明ガラスを利用する。また、赤外発光の測定時には励起光が不要であるため、光源2は可視発光を励起する励起光照射のためだけに利用される。 In the present embodiment, the example of measuring the visible light emission (a) and the infrared light emission (phosphorescence) (b) observed with the anti-Stokes ink shown in FIG. 11 has been described. As shown in FIG. 11B, when measuring infrared light emission, the material of the filter region 24b is not particularly limited as long as it is a material that transmits infrared light to be measured. Is used. In addition, since no excitation light is required when measuring infrared emission, the light source 2 is used only for excitation light irradiation that excites visible light emission.
 しかし、例えば、図11(c)及び(d)に示す反射光を測定対象とする場合には、可視光を照射して可視光を測定して(図中(c))、赤外光を照射して赤外光を測定するため(図中(d)、可視光及び赤外光の複数の光を照射可能な光源2を利用する。この場合には、例えば、複合フィルタ24の材質を透明ガラスとして、図11(c)の可視光を測定するフィルタ領域24aと、同図(d)の赤外光を測定するフィルタ領域24bとの厚みを変更することにより、波長の違いによる焦点ずれを調整する。 However, for example, when the reflected light shown in FIGS. 11 (c) and 11 (d) is to be measured, the visible light is irradiated to measure the visible light ((c) in the figure), and the infrared light is In order to measure infrared light by irradiation ((d) in the figure, the light source 2 capable of irradiating a plurality of visible light and infrared light is used. In this case, for example, the material of the composite filter 24 is used. By changing the thickness of the filter region 24a for measuring visible light in FIG. 11 (c) and the filter region 24b for measuring infrared light in FIG. 11 (d) as transparent glass, defocus due to the difference in wavelength. Adjust.
 この他にも、測定対象とする光とフィルタリングする波長域とに応じて、光源2から照射する光の波長域や各フィルタ領域24a及び24bの材質及び厚みを決定すれば、1枚の複合フィルタ24を利用して、図11に測定対象として例示した各光を合焦した状態で正確に測定することができる。 In addition to this, if the wavelength range of light emitted from the light source 2 and the material and thickness of each filter region 24a and 24b are determined according to the light to be measured and the wavelength range to be filtered, one composite filter 24 can be accurately measured in a state where each light exemplified as the measurement object in FIG. 11 is focused.
 複合フィルタ24を形成するフィルタ領域の数は特に限定されず、例えば、図12(a)に示すように4つのフィルタ領域24a~24dで形成されてもよいし、5つ以上のフィルタ領域から形成される態様であっても構わない。また、図12(b)に示すように、複合フィルタ24を形成する一部の領域24eを切り欠いたような形状として、この領域ではガラス材やフィルタ材等を利用しない態様であっても構わない。フィルタ領域の数、材質及び形状は、紙葉類3から得られる光と測定対象とする光の種類に応じて適宜決定されるものである。 The number of filter regions forming the composite filter 24 is not particularly limited. For example, as shown in FIG. 12A, it may be formed of four filter regions 24a to 24d, or may be formed of five or more filter regions. It does not matter even if it is a mode. Further, as shown in FIG. 12B, a shape in which a part of the region 24e forming the composite filter 24 is cut away may be used so that a glass material, a filter material, or the like is not used in this region. Absent. The number, material, and shape of the filter regions are appropriately determined according to the type of light obtained from the paper sheet 3 and the light to be measured.
 上述してきたように、本実施形態によれば、紙葉類3の光学特性として波長の異なる複数の光を測定するために焦点ずれが生ずるような場合でも、複合フィルタ24の回転位置を制御して光の透過するフィルタ領域24a~24eの位置を変更することにより、所定波長域の光をカットするフィルタリング機能及び焦点ずれを補正して解消する焦点ずれ補正機能の少なくともいずれか一方を実現して、測定対象とする各光を、焦点を合わせた状態で正確に測定することができる。 As described above, according to the present embodiment, the rotational position of the composite filter 24 is controlled even when defocusing occurs due to the measurement of a plurality of lights having different wavelengths as the optical characteristics of the paper sheet 3. By changing the positions of the filter regions 24a to 24e through which light is transmitted, at least one of a filtering function for cutting light in a predetermined wavelength region and a defocus correction function for correcting and eliminating defocus is realized. Each light to be measured can be accurately measured in a focused state.
 このとき、複合フィルタ24を複数の板状のフィルタ領域24a~24eを回転軸周りに配置した構造として、この複合フィルタ24を回転させることにより、測定対象となる光が透過する光路領域45に配置するフィルタ領域24a~24eを容易かつ高速に変更することができる。複合フィルタ24の回転位置を制御して利用することにより、複数の光学レンズを組み合わせて色収差による焦点ずれを補正したり、測定対象となる光に合わせてフィルタを交換したりする必要がない。また、焦点調整用のレンズ25の位置を変更する必要もない。これにより、スペクトルセンサ100の構造が複雑化することがなく、製造コストを抑制して小型化することができる。 At this time, the composite filter 24 has a structure in which a plurality of plate-like filter regions 24a to 24e are arranged around the rotation axis, and the composite filter 24 is rotated and arranged in the optical path region 45 through which the light to be measured is transmitted. The filter regions 24a to 24e to be changed can be changed easily and at high speed. By controlling and using the rotational position of the composite filter 24, it is not necessary to correct a defocus due to chromatic aberration by combining a plurality of optical lenses, or to replace the filter in accordance with the light to be measured. Further, it is not necessary to change the position of the lens 25 for focus adjustment. Thereby, the structure of the spectrum sensor 100 is not complicated, and the manufacturing cost can be suppressed and the size can be reduced.
 以上のように、本発明は、紙葉類の光学特性を測定するスペクトルセンサで、波長域の異なる複数の光のスペクトルを正確に測定するために有用な技術である。 As described above, the present invention is a spectrum sensor that measures the optical characteristics of paper sheets, and is a useful technique for accurately measuring the spectra of a plurality of lights having different wavelength ranges.
1 光カップリング装置
2 光源
3 紙葉類
4 搬送路
10 光ガイド
10a~10d 導光板
20 光学系部
21 拡散板
22a、22b 偏光板
23 プリズム
24 複合フィルタ
24a~24d フィルタ領域
24f 回転軸
25 レンズ
30 センサ部
51 ロータリーエンコーダ
52 複合フィルタ位置検出部
53 複合フィルタ位置制御部
54 複合フィルタ駆動部
55a 投光部
55b 受光部
56 制御部
57 駆動部
58 変速機構
59 回転軸
60 信号読取部
100 スペクトルセンサ
DESCRIPTION OF SYMBOLS 1 Optical coupling device 2 Light source 3 Paper sheet 4 Conveyance path 10 Light guide 10a-10d Light guide plate 20 Optical system part 21 Diffusing plate 22a, 22b Polarizing plate 23 Prism 24 Composite filter 24a-24d Filter area | region 24f Rotating shaft 25 Lens 30 Sensor unit 51 Rotary encoder 52 Composite filter position detection unit 53 Composite filter position control unit 54 Composite filter drive unit 55a Light projection unit 55b Light reception unit 56 Control unit 57 Drive unit 58 Transmission mechanism 59 Rotating shaft 60 Signal reading unit 100 Spectrum sensor

Claims (7)

  1.  搬送される紙葉類に向けて光源から光を照射して該紙葉類から得られた光からスペクトルを生成して測定するスペクトルセンサであって、
     紙葉類から受光した光から干渉縞を生成するためのプリズムと、
     前記プリズムで生成した前記干渉縞を測定するためのセンサ部と、
     前記プリズムと前記センサ部との間で、前記センサ部上で所定波長の光から生成される干渉縞の焦点が合うように焦点距離を調整して配置されるレンズと、
     所定波長域の光のフィルタリング及び波長差に起因する焦点ずれの調整の少なくともいずれか一方を実現するために、材質及び厚みの少なくともいずれか一方を調整して成形されたフィルタ領域を複数組み合わせて成る形状を有し、測定対象とする光の波長に応じて対応するフィルタ領域を透過するように位置を制御される複合フィルタと
    を備えることを特徴とするスペクトルセンサ。
    A spectrum sensor that irradiates light from a light source toward a conveyed paper sheet and generates a spectrum from the light obtained from the paper sheet, and measures the spectrum.
    A prism for generating interference fringes from light received from paper sheets;
    A sensor unit for measuring the interference fringes generated by the prism;
    Between the prism and the sensor unit, a lens arranged by adjusting a focal length so that an interference fringe generated from light of a predetermined wavelength is focused on the sensor unit;
    In order to realize at least one of filtering of light in a predetermined wavelength range and adjustment of defocus due to wavelength difference, a plurality of filter regions formed by adjusting at least one of material and thickness are combined. A spectrum sensor comprising: a composite filter having a shape and whose position is controlled so as to transmit a corresponding filter region in accordance with a wavelength of light to be measured.
  2.  前記複合フィルタは、回転軸周りに複数のフィルタ領域を周方向に配置して成る回転円板形状を有し、測定対象とする光の波長に応じて前記回転軸の回転位置が制御されることを特徴とする請求項1に記載のスペクトルセンサ。 The composite filter has a rotating disk shape in which a plurality of filter regions are arranged in the circumferential direction around the rotation axis, and the rotation position of the rotation axis is controlled according to the wavelength of light to be measured. The spectrum sensor according to claim 1.
  3.  前記光源から光の照射、前記複合フィルタの位置制御及び前記センサ部による前記干渉縞の測定のタイミングが、前記紙葉類の搬送タイミングに合わせて制御されることを特徴とする請求項1又は2に記載のスペクトルセンサ。 The timing of irradiation of light from the light source, position control of the composite filter, and measurement of the interference fringes by the sensor unit is controlled in accordance with the conveyance timing of the paper sheet. The spectrum sensor described in 1.
  4.  前記複合フィルタが、第1波長光用の第1フィルタ領域及び前記第1波長光とは波長が異なる第2波長光用の第2フィルタ領域を含んで形成され、
     前記第1波長光を測定する際には、前記レンズにより、前記第1フィルタ領域を透過した前記第1波長光の焦点を前記センサ部に合わせると共に、
     前記第2波長光を測定する際には、前記第1波長光と前記第2波長光との間で生ずる焦点ずれを吸収する前記第2フィルタ領域を透過させることにより、前記第2波長光の焦点を前記センサに合わせる
    ことを特徴とする請求項1、2又は3に記載のスペクトルセンサ。
    The composite filter is formed including a first filter region for first wavelength light and a second filter region for second wavelength light having a wavelength different from that of the first wavelength light,
    When measuring the first wavelength light, the lens focuses the first wavelength light transmitted through the first filter region with the lens, and
    When measuring the second wavelength light, the second wavelength light is transmitted by passing through the second filter region that absorbs the defocus generated between the first wavelength light and the second wavelength light. 4. A spectral sensor according to claim 1, 2 or 3, characterized in that it focuses on the sensor.
  5.  前記第1フィルタ領域又は前記第2フィルタ領域の少なくともいずれか一方が、所定波長域の光をカットするフィルタリング機能を有することを特徴とする請求項4に記載のスペクトルセンサ。 The spectrum sensor according to claim 4, wherein at least one of the first filter region and the second filter region has a filtering function of cutting light in a predetermined wavelength region.
  6.  前記第1波長光は前記紙葉類で利用されるアンチストークスインクに赤外光を照射している間に観察される可視光発光であり、前記第2波長光は前記アンチストークスインクへの赤外光の照射を停止してから観察される赤外光発光であることを特徴とする請求項5に記載のスペクトルセンサ。 The first wavelength light is visible light emission observed while irradiating the anti-Stokes ink used in the paper sheet with infrared light, and the second wavelength light is red to the anti-Stokes ink. 6. The spectrum sensor according to claim 5, wherein the spectrum sensor is an infrared light emission observed after the external light irradiation is stopped.
  7.  前記複合フィルタの位置を制御する際に、測定対象とする光が前記フィルタ領域の境界を含む所定領域を透過する間、前記センサ部による測定が中断されることを特徴とする請求項1~6のいずれか1項に記載のスペクトルセンサ。 The measurement by the sensor unit is interrupted while the light to be measured passes through a predetermined region including the boundary of the filter region when controlling the position of the composite filter. The spectrum sensor according to any one of the above.
PCT/JP2012/083347 2012-12-21 2012-12-21 Spectral sensor WO2014097489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083347 WO2014097489A1 (en) 2012-12-21 2012-12-21 Spectral sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083347 WO2014097489A1 (en) 2012-12-21 2012-12-21 Spectral sensor

Publications (1)

Publication Number Publication Date
WO2014097489A1 true WO2014097489A1 (en) 2014-06-26

Family

ID=50977865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083347 WO2014097489A1 (en) 2012-12-21 2012-12-21 Spectral sensor

Country Status (1)

Country Link
WO (1) WO2014097489A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092450A1 (en) * 2014-12-09 2016-06-16 Basf Se Detector for an optical detection of at least one object
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830785A (en) * 1994-07-19 1996-02-02 Nec Corp Stamp detector
JP2001506001A (en) * 1996-12-09 2001-05-08 ギーゼッケ ウント デフリエント ゲーエムベーハー Fluorescence and phosphorescence detection device and method
JP2001281056A (en) * 2000-03-30 2001-10-10 Yokogawa Electric Corp Interferometer and spectroscope
JP2005214993A (en) * 2002-01-21 2005-08-11 Nisca Corp Enlarged imaging unit
US20050260764A1 (en) * 2004-05-24 2005-11-24 Grigsby John M Jr Method and apparatus for monitoring liquid for the presence of an additive
JP2007101910A (en) * 2005-10-05 2007-04-19 Yokogawa Electric Corp Confocal microscope
JP2008518218A (en) * 2004-10-28 2008-05-29 グレターク−マクベス・アーゲー Measuring device and scanning device for photoelectrically measuring a measurement object based on pixels
JP2008241658A (en) * 2007-03-29 2008-10-09 Toshiba Corp Monitoring device of structure and monitoring method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830785A (en) * 1994-07-19 1996-02-02 Nec Corp Stamp detector
JP2001506001A (en) * 1996-12-09 2001-05-08 ギーゼッケ ウント デフリエント ゲーエムベーハー Fluorescence and phosphorescence detection device and method
JP2001281056A (en) * 2000-03-30 2001-10-10 Yokogawa Electric Corp Interferometer and spectroscope
JP2005214993A (en) * 2002-01-21 2005-08-11 Nisca Corp Enlarged imaging unit
US20050260764A1 (en) * 2004-05-24 2005-11-24 Grigsby John M Jr Method and apparatus for monitoring liquid for the presence of an additive
JP2008518218A (en) * 2004-10-28 2008-05-29 グレターク−マクベス・アーゲー Measuring device and scanning device for photoelectrically measuring a measurement object based on pixels
JP2007101910A (en) * 2005-10-05 2007-04-19 Yokogawa Electric Corp Confocal microscope
JP2008241658A (en) * 2007-03-29 2008-10-09 Toshiba Corp Monitoring device of structure and monitoring method therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BALUSCHEV S ET AL.: "Blue-Green Up-Conversion: Noncoherent Excitation by NIR Light", ANGEWANDTE CHEMIE (INTERNATIONAL ED., vol. 46, no. 40, October 2007 (2007-10-01), pages 7693 - 7696 *
MARTINDILL M: "The Coming of the 'Up-Converters", PPCJ, vol. 186, September 1996 (1996-09-01), pages 30,32 *
MERUGA J M ET AL.: "Security printing of convert qyuick response codes using upconverting nanoparticle inks", NANOTECHNOLOGY, vol. 23, no. 39, pages 395201 - 1 - 95201- 9 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
WO2016092450A1 (en) * 2014-12-09 2016-06-16 Basf Se Detector for an optical detection of at least one object
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Similar Documents

Publication Publication Date Title
WO2014097489A1 (en) Spectral sensor
EP3147873B1 (en) Fluorescence/phosphorescence detection device
JP6628753B2 (en) Lighting device and image sensor device
JP5536150B2 (en) Image sensor unit and image reading apparatus
JP6242570B2 (en) Image reading apparatus and paper sheet processing apparatus
JP4945500B2 (en) Paper sheet thickness measuring apparatus and image forming apparatus
JP5880053B2 (en) Spectral characteristic acquisition apparatus and image forming apparatus
WO2014178129A1 (en) Image acquisition device and image acquisition method
JP2013020540A (en) Paper sheet identification device and paper sheet identification method
CN105258799A (en) Spectrometer with Monochromator and Order Sorting Filter
WO2014010719A1 (en) Magneto-optic hybrid image sensor
WO2016052749A1 (en) Paper sheet identification device and paper sheet identification method
WO2019194152A1 (en) Light detection sensor, light detection device, sheets processing device, and light detection method
US20180059407A1 (en) Optical apparatus, machining apparatus, and article manufacturing method
JP2018169725A (en) Coin identification device and coin identification method
JP2011193404A (en) Light detection apparatus, light detection method, and light reflecting member
JP2008299639A (en) Paper sheet discriminating device
JP2008032401A (en) Method and device for inspecting infrared cut-off filter
JP2016005130A (en) Image sensor unit, image reading device, and paper sheet identification device
JP6273996B2 (en) Polychromator and analyzer equipped with the same
WO2019082251A1 (en) Optical sensor, optical sensor module, and paper processing device
JPH06309546A (en) Fluorescence detector
JP2018125770A (en) Imaging apparatus, imaging method, program, and recording medium
WO2016021294A1 (en) Paper sheet processing device
JP2005122392A (en) Paper sheet fluorescence detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP