WO2014091527A1 - Wireless communication device, wireless communication system, and wireless communication method - Google Patents

Wireless communication device, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2014091527A1
WO2014091527A1 PCT/JP2012/008005 JP2012008005W WO2014091527A1 WO 2014091527 A1 WO2014091527 A1 WO 2014091527A1 JP 2012008005 W JP2012008005 W JP 2012008005W WO 2014091527 A1 WO2014091527 A1 WO 2014091527A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
wireless communication
transmission
radio
wireless
Prior art date
Application number
PCT/JP2012/008005
Other languages
French (fr)
Japanese (ja)
Inventor
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/008005 priority Critical patent/WO2014091527A1/en
Publication of WO2014091527A1 publication Critical patent/WO2014091527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a wireless communication method.
  • next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as cellular phone systems (cellular systems).
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • a plurality of wireless communications may be simultaneously executed by one wireless terminal.
  • the plurality of wireless communications are, for example, different types of wireless communications, such as LTE communication and wireless LAN (Local Area Network).
  • LTE communication and wireless LAN (Local Area Network).
  • a circuit corresponding to each of a plurality of wireless communications is provided in one wireless terminal.
  • IDC In-device coexistence
  • each wireless communication communicates simultaneously using the same or close frequency band.
  • the wireless terminal if each wireless communication is simultaneously executed by a corresponding circuit, mutual interference may occur in the wireless terminal and communication performance may be deteriorated.
  • the disclosed technology has been made in view of the above, and is a wireless communication device that performs a plurality of wireless communications, and controls wireless interference in the wireless communication device and improves communication performance.
  • An object is to provide a communication system and a wireless communication method.
  • the disclosed wireless communication apparatus repeatedly receives a first control signal instructing to change or maintain transmission power from another wireless communication apparatus, and the other wireless communication
  • a wireless communication device that determines a transmission power of a first wireless transmission to a device based on the first control signal received before the first wireless transmission, and a second smaller than the first transmission power based on the determination
  • a first wireless communication unit that performs the first wireless transmission with transmission power is provided.
  • the wireless communication device disclosed in the present case it is possible to control the interference in the wireless terminal and improve the communication performance with a wireless device that performs a plurality of wireless communications.
  • FIG. 1 is a diagram illustrating an example of frequency band allocation in a wireless communication system.
  • FIGS. 2A and 2B are diagrams illustrating the correspondence between the TPC command value and the change in transmission power in the LTE system.
  • FIG. 3 is a diagram illustrating an example of a processing sequence of transmission power control for PUSCH in a conventional LTE system.
  • FIG. 4 is a diagram illustrating an example of a processing sequence of transmission power control for PUCCH in a conventional LTE system.
  • FIG. 5 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the reference technique.
  • FIG. 6 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of frequency band allocation in a wireless communication system.
  • FIGS. 2A and 2B are diagrams illustrating the correspondence between the TPC command value and the change in transmission power in the LTE system.
  • FIG. 7 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the second embodiment.
  • FIG. 8 is a diagram illustrating deterioration in communication characteristics due to deterioration in transmission power.
  • FIG. 9 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the third embodiment.
  • FIG. 10 is a diagram for explaining a modification example of the second embodiment.
  • FIG. 11 is a diagram illustrating a configuration of a wireless communication system according to each embodiment.
  • FIG. 12 is a functional block diagram showing the configuration of the radio base station according to each embodiment.
  • FIG. 13 is a functional block diagram showing the configuration of the wireless terminal according to each embodiment.
  • FIG. 14 is a diagram illustrating a hardware configuration of the radio base station according to each embodiment.
  • FIG. 15 is a diagram illustrating a hardware configuration of the wireless terminal according to each embodiment.
  • a plurality of wireless communications are simultaneously performed in a wireless communication device (for example, a wireless terminal) (for example, a situation like the IDC described above).
  • the plurality of wireless communications includes a first wireless communication and a second wireless communication.
  • the first wireless communication is performed using the first antenna
  • the second wireless communication is performed using the second antenna.
  • the plurality of wireless communications may be composed of three or more wireless communications.
  • FIG. 1 shows an example of frequency bands prepared for the first wireless communication and the second wireless communication.
  • the first wireless communication is wireless communication based on a mobile phone system such as LTE-A (hereinafter referred to as “wireless communication based on LTE-A”).
  • the second wireless communication is a wireless communication method other than a cellular phone system such as LTE-A, for example, wireless communication based on a wireless LAN such as WiFi (registered trademark) or Bluetooth (registered trademark) (hereinafter referred to as “other than LTE-A etc.”). It is referred to as “wireless communication based on the wireless communication method”).
  • the first wireless communication and the second wireless communication are performed using the same or close frequency band.
  • the frequency band group prepared for the first wireless communication and the frequency band group prepared for the second wireless communication are adjacent to each other, or when the first wireless communication and the second wireless communication are the same frequency band group Is assumed to be shared.
  • ISM Industry Science Band
  • Band 40 (2300-2400MHz) prepared in LTE-A TDD Mode and BandB7 (2500-2570MHz) prepared in LTE A's UL FDD Mode are the frequency bands adjacent to ISM Band. Become.
  • ISM Band is also used for LTE-A
  • the same frequency band can be used for LTE-A and Bluetooth or WiFi.
  • first wireless communication using a first antenna wireless communication based on LTE-A or the like
  • second wireless communication using a second antenna In a wireless terminal that simultaneously performs (wireless communication based on a wireless communication method other than LTE-A or the like), interference may occur between the first wireless communication and the second wireless communication.
  • a transmission signal of the first wireless communication (a transmission signal at the first antenna) interferes with a reception signal of the second wireless communication (a reception signal at the second antenna).
  • the transmission signal of the second wireless communication transmission signal at the second antenna
  • interference control it is desirable to perform some kind of interference control in order to remove or reduce such interference with IDC.
  • Various schemes are considered as interference control for IDC related to LTE-A, and these can be used in any combination.
  • interference control for IDC related to LTE-A there are mainly four FDM (Frequency Division Multiplexing) method, TDM (Time Division Multiplexing) method, Autonomous Denial (autonomous stop) method, and transmission power reduction method. It is done. Below, these are demonstrated in order.
  • the frequency band currently used in the first wireless communication (wireless communication based on LTE-A, etc.) is changed to a different frequency band (different frequency band).
  • the FDM method By executing the FDM method, the first wireless communication and the second wireless communication are separated on the frequency axis, so that interference between them can be greatly reduced.
  • the FDM system cannot be executed unless there is a handover destination to a different frequency band.
  • the first wireless communication wireless communication based on LTE-A or the like
  • the second wireless communication wireless other than LTE-A or the like
  • Control is performed so that one is not executed simultaneously with the other.
  • the first wireless communication and the second wireless communication are separated on the time axis, and thus the interference between them can be greatly reduced.
  • the first wireless communication performs intermittent communication
  • the second wireless communication performs communication during a period in which the first wireless communication pauses communication.
  • the TDM method cannot always be executed.
  • the wireless terminal autonomously transmits the first wireless communication (wireless communication based on LTE-A or the like) or the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like). Stop.
  • the wireless terminal does not stop all the first wireless communication for a predetermined period, for example, and adjusts the frequency and level of autonomous stop in advance.
  • interference with the second wireless communication does not occur while the transmission of the first wireless communication is stopped.
  • the Autonomous Denial method has a problem that communication efficiency is greatly reduced because transmission is stopped.
  • the transmission power reduction method will be described. Specifically, for example, by reducing the transmission power of the first wireless communication (wireless communication based on LTE-A or the like) in the wireless terminal, the second wireless communication (wireless communication method other than LTE-A or the like) in the wireless terminal. Interference with a received signal in the wireless communication based on the above can be reduced.
  • the transmission power reduction method the communication efficiency is slightly reduced by reducing the transmission power, but the range of the decrease in communication efficiency is considered to be small compared to the Autonomous Denial method that stops transmission.
  • the transmission power reduction method cannot be executed unless a certain condition is satisfied as in the FDM method and the TDM method, and thus it can be said that there are few execution restrictions. For these reasons, it is considered that the transmission power reduction method is often a realistic solution as means for realizing interference control.
  • uplink transmission power control in an existing LTE system will be described.
  • the situation of IDC is assumed because it is a wireless terminal, and it is necessary to perform transmission power control for uplink (UL: UpLink) transmission, which is transmission from the wireless terminal to the wireless base station.
  • uplink (UL: UpLink) transmission which is transmission from the wireless terminal to the wireless base station.
  • UL: UpLink uplink
  • DL: DownLink downlink
  • the magnitude of uplink transmission power in the LTE system is specified for each uplink signal (channel) to be transmitted.
  • transmission power control for a physical uplink shared channel PUSCH (PhysicalPhysUplink Shared CHannel) for transmitting an uplink data signal will be described first.
  • the PUSCH transmission power P PUSCH, c (i) of the i-th subframe from the wireless terminal to the serving cell (radio base station managing the wireless terminal) c is determined by the following equation (1). .
  • P CMAX, c (i) corresponds to the maximum power that the wireless terminal can transmit in the i-th subframe for the serving cell c.
  • the transmission power of PUSCH is determined by the following equation (2). For this reason, Equation (2) will be examined hereinafter.
  • M PUSCH, c (i) is a bandwidth (number of resource blocks) allocated to the PUSCH of the i-th subframe from the serving cell c.
  • P O_PUSCH, c (j) is a value determined based on a parameter included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell c. Note that j takes a value of 0, 1, or 2.
  • ⁇ c (j) is a parameter included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell c, and takes a value of 0 to 1.
  • PL c is a downlink path loss for the serving cell c.
  • PL c is obtained from the difference between the received power measured at the wireless terminal and the transmission power notified from the wireless base station by broadcast information (SIB2: System Information Block 2).
  • SIB2 System Information Block 2
  • ⁇ TF, c (i) is the amount of information (data amount, control information amount, etc.) transmitted from the serving cell c to the serving cell c using the PUSCH of the i-th subframe, and higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) is a value determined based on the parameters included.
  • RRC Connection Setup or RRC Connection Reconfiguration RRC Connection Setup or RRC Connection Reconfiguration
  • f c (i) is a value determined based on a TPC (Transmission Power Control) command notified from lower serving layer control information (DCI: Downlink Control Information) from serving cell c.
  • TPC Transmission Power Control
  • Equation (2) The PUSCH transmission power defined by Equation (2) can be briefly described as follows. Each term constituting Equation (2) can be divided into three groups. Each term in the first group is P O_PUSCH, c (j) and ⁇ c (j) ⁇ PL c , and each term in the second group is 10 log 10 (M PUSCH, c (i)) and ⁇ TF, c (i), and each term in the third group is f c (i).
  • each item of the first group is determined by parameters included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) and does not depend on the subframe number (not a function of i). It has become.
  • RRC Connection Setup or RRC Connection Reconfiguration is normally received from a wireless base station when a wireless terminal is connected, and then received as long as the wireless terminal is connected to the wireless base station. It is something that does not. Therefore, each term of the first group is usually set as long as the wireless terminal is connected to the wireless base station once it is connected to the wireless base station (when power is turned on or moved between wireless base stations). The value does not change.
  • each item of the second group includes parameters included in broadcast information (SIB2) and higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) and parameters related to transmission scale for each subframe (bandwidth and transmission information). Quantity).
  • broadcast information (SIB2) and higher layer signaling are normally received from the radio base station when the radio terminal is connected, and then connected to the radio base station. As long as it is, it will not receive. Therefore, when the transmission scale for each subframe is constant, the values of the terms in the second group usually do not change while connected to the radio base station.
  • the transmission power of the PUSCH is increased (or decreased) based on the deterioration (or improvement) of the wireless environment due to movement within the area of the wireless base station.
  • the terms of the first and second groups in Equation (2) described above are for adjusting the transmission power of the PUSCH when the radio environment changes for the radio terminal connected to the radio base station. It can be said that the component of is not contained.
  • the third group fc (i), that is, the TPC command corresponds to the component for adjusting the PUSCH transmission power.
  • the TPC command is the only means for the radio base station to adjust the PUSCH transmission power of the radio terminal according to changes in the radio environment.
  • the radio base station can transmit a TPC command to the radio terminal for each subframe as necessary. As a result, the radio base station can adjust the transmission power of the PUSCH of the radio terminal for each subframe.
  • the uplink transmission scale (bandwidth and amount of transmission information) is constant.
  • the PUSCH transmission power of the radio terminal connected to the radio base station changes based only on the TPC command received from the radio base station.
  • the TPC command is included in DCI (Downlink Control Information) that is downlink control information.
  • DCI Downlink Control Information
  • L1 Layer 1
  • Several formats are defined for DCI, and they are used properly according to the uplink signal (uplink channel) that is the object of transmission power control.
  • the TPC and DCI will be described by taking as an example the case where the transmission power control target is PUSCH, which is an uplink data channel.
  • the TPC command for PUSCH is stored in one of DCI formats 0, 3, 3A, or 4, and transmitted from the radio base station to the radio terminal.
  • DCI formats 0 and 4 are downlink control information used when the radio base station transmits uplink data to the radio terminal.
  • DCI format 0 is used when uplink data is transmitted with a single antenna
  • DCI format 4 is used when uplink data is transmitted with a plurality of antennas.
  • a parameter indicating radio resource allocation for transmitting uplink data, and a parameter for specifying an encoding method and a modulation method for transmitting uplink data are MCS (Modulation Coding Scheme). Since DCI formats 0 and 4 are transmitted when the radio base station permits uplink data transmission to the radio terminal, they are sometimes called UL Grant.
  • Fig. 2A shows the correspondence between TPC command values in DCI format 0 or 4 and changes in transmission power.
  • DCI format 0 and 4 TPC commands are 2-bit information and take four values. The four types of values correspond to transmission power changes of ⁇ 1, 0, +1, and +3, respectively.
  • the wireless terminal determines transmission power based on Equation (2) according to the values of these TPC commands. For example, when the value of the TPC command is ⁇ 1, the wireless terminal reduces the transmission power by 1 dB based on Equation (2). On the other hand, when the value of the TPC command is +1 or +3, the wireless terminal increases the transmission power by 1 dB or 3 dB based on Equation (2). When the value of the TPC command is 0, the wireless terminal does not change the transmission power based on Equation (2).
  • DCI formats 3 and 3A are mainly TPC commands used for transmission power control of uplink data that is semi-persistent scheduled or transmission power control of uplink ACK / NACK response signal for downlink data that is persistent scheduled. It is used for transmission.
  • Semi-persistent scheduling is mainly applied to transmission of data that is transmitted at a fixed period such as a voice packet and has a certain size, and the data is transmitted using radio resources and radio parameters assigned in advance.
  • a downlink control signal is not used for an instruction to transmit uplink data that is semi-persistent-scheduled except when it is transmitted using a resource different from the radio resource allocated in advance or at the time of retransmission. Therefore, the TPC command cannot be transmitted to the terminal.
  • DCI format 3 or 3A dedicated to TPC command transmission is used.
  • the uplink signal (uplink channel) whose transmission power is adjusted in DCI formats 3 and 3A includes the uplink control channel PUCCH in addition to the uplink data channel PUSCH.
  • the TPC command of DCI format 3 is 2-bit information and is the same as FIG. 2A.
  • the DCI format 3A TPC command is 1-bit information, as shown in FIG. 2B.
  • the wireless terminal reduces the transmission power by 1 dB based on Equation (2).
  • the wireless terminal increases the transmission power by 1 dB based on Equation (2).
  • DCI format 0 may be referred to as DCI0, for example, in the drawings and the descriptions related to the drawings. The same applies to other DCI formats.
  • FIG. 3 shows an example of a processing sequence of transmission power control for PUSCH.
  • the radio terminal 20 transmits uplink data based on the DCI0 in a subframe four frames after the DCI0 received subframe. Send.
  • the uplink data corresponding to DCI0 of S101 is transmitted from the wireless terminal 20 to the wireless base station 10 using the transmission power P PUSCH [dBm] defined by Equation 2 as PUSCH.
  • P PUSCH [dBm] defined by Equation 2 as PUSCH.
  • the radio terminal 20 reduces the transmission power of the PUSCH by 1 dB from the previous value P PUSCH +3 [dBm] to P PUSCH +2 [dBm].
  • DCI3 is not control information that prompts the radio terminal 20 to transmit PUSCH, so the radio terminal 20 does not transmit PUSCH according to DCI3.
  • the radio terminal 20 transmits the uplink data corresponding to DCI0 in S106 to the radio base station 10 via the PUSCH with the transmission power P PUSCH +3 [dBm]. become.
  • the radio terminal 20 increases the transmission power of PUSCH by 1 dB from the previous value P PUSCH +2 [dBm].
  • the radio base station 10 can adjust the transmission power of the PUSCH by the radio terminal 20 by transmitting the TPC command.
  • PUCCH Physical Uplink Control Control CHannel
  • the PUCCH transmission power control has a lot in common with the PUSCH transmission power control described in detail above, and will be briefly described below.
  • the transmission power P PUCCH (i) of the PUCCH of the i-th subframe from the radio terminal 20 to the serving cell (the radio base station 10 managing the radio terminal 20) c is determined by the following equation (3).
  • Equation (4) Equation (4) will be examined hereinafter.
  • PO_PUCCH is a value determined based on parameters included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell.
  • PL c is a downlink path loss for the serving cell c.
  • h (n CQI , n HARQ , n SR ) is a parameter related to the PUCCH format.
  • n CQI , n HARQ , n SR are CQI (Channel Quality Indicator) which is uplink control information in the subframe, ACK (ACKnowledge) or NACK (Negative ACKnowledge), SRACK in HARQ (Hybrid Automatic Repeat reQuest), respectively.
  • ⁇ F_PUCCH (F) is notified by higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) from the serving cell, and is related to PUCCH format F.
  • ⁇ TxD (F ′) is reported from the serving cell through higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) when PUCCH is transmitted through two antenna ports, and is related to PUCCH format F ′.
  • g (i) is a value determined based on the TPC command notified from the serving cell by the lower layer control information DCI.
  • Each term constituting the expression (4) will be described in the same manner as the expression (2).
  • Each term of the first group corresponds to P O_PUCCH and PL c .
  • Each second term corresponds to h (n CQI , n HARQ , n SR ), ⁇ F_PUCCH (F), and ⁇ TxD (F ′).
  • Each term in the third group corresponds to g (i). Therefore, the TPC command is the only means for the PUCCH for the radio base station 10 to adjust the transmission power of the radio terminal 20 in accordance with changes in the radio environment, similarly to the PUSCH described above.
  • the radio base station 10 can transmit a TPC command to the radio terminal 20 for each subframe as necessary. As a result, the radio base station 10 can adjust the transmission power of the PUCCH of the radio terminal 20 for each subframe.
  • the uplink transmission scale (transmission information amount, etc.) is constant.
  • the transmission power of the PUCCH of the radio terminal 20 connected to the radio base station 10 changes based only on the TPC command received from the radio base station 10.
  • the TPC command for PUCCH is stored in one of DCI formats 1, 1A, 1B, 1C, 2, 2A, 2B, 2C, 3 or 3A and transmitted from the radio base station 10 to the radio terminal 20.
  • DCI formats 3 and 3A have already been described, and a description thereof will be omitted here.
  • DCI formats 1, 1A, 1B, 1C, 2, 2A, 2B, and 2C are downlink control information used when the radio base station 10 transmits downlink data to the radio terminal 20.
  • DCI formats 1, 1A, 1B and 1C are used when PDSCH codeword transmits one downlink data
  • DCI formats 2, 2A, 2B and 2C transmit two downlink data with PDSCH codeword. Used when.
  • These DCI formats include a TPC command, parameters indicating radio resource allocation for transmitting downlink data, MCS that is a parameter for specifying a coding scheme and a modulation scheme for transmitting downlink data, and the like. It is.
  • DCI formats 1, 1A, 1B, and 1C are 2-bit information and are the same as in FIG. 2A.
  • FIG. 4 shows an example of a processing sequence of transmission power control for PUCCH.
  • the radio terminal 20 transmits an uplink response signal corresponding to the downlink data in a subframe that is four frames after the DCI1 and the subframe that received the downlink data based on the DCI1. (ACK or NACK) is transmitted via PUCCH.
  • ACK or NACK is transmitted via PUCCH.
  • the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S201 to the transmission power P PUCCH defined by Equation 4 for the wireless base station 10. Assume that transmission is performed via PUCCH at [dBm]. As described above, for the sake of simplicity, it is assumed that the uplink transmission scale (transmission information amount) is constant.
  • the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S203 to the wireless base station 10 with the transmission power P PUCCH +3 [dBm].
  • the radio terminal 20 increases the transmission power of PUCCH by 3 dB from the previous value P PUCCH [dBm].
  • the radio terminal 20 reduces the PUCCH transmission power by 1 dB from the previous value P PUCCH +3 [dBm] to P PUCCH +2 [dBm].
  • DCI3 is not control information that prompts radio terminal 20 to transmit a PUCCH (response signal), so radio terminal 20 does not transmit PUCCH according to DCI3.
  • the radio terminal 20 transmits the CQI to the radio base station 10 via the PUCCH with the transmission power P PUCCH +2 [dBm].
  • the transmission timing of periodic CQI (periodic CQI) is notified to the radio terminal 20 in advance by signaling from the radio base station 10, and S206 corresponds to the transmission timing.
  • the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S207 to the wireless base station 10 with the transmission power P PUCCH +3 [dBm].
  • the radio terminal 20 increases the transmission power of PUCCH by 1 dB from the previous value P PUCCH +2 [dBm].
  • the radio base station 10 can adjust the transmission power of the PUCCH by the radio terminal 20 by transmitting the TPC command.
  • the wireless terminal 20 reduces the transmission power of the first wireless communication (wireless communication based on LTE-A or the like), thereby reducing the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like).
  • the radio terminal 20 requests the radio base station 10 to reduce the transmission power of the first radio communication by some means. For example, this request may be made by diverting an existing MAC control parameter such as PHR (Power HeadRoom).
  • PHR Power HeadRoom
  • the radio base station 10 Upon receiving this request, the radio base station 10 transmits a TPC command (including DCI) to reduce the transmission power of the radio terminal 20.
  • the radio terminal 20 reduces the transmission power of the first radio communication based on Equations 2 and 4 according to the received TPC command.
  • this reference technique since the interference generated by the first wireless communication with the second wireless communication in the wireless terminal 20 is reduced, it seems that the desired purpose has been achieved.
  • this reference technique has several problems as follows.
  • the first radio communication radio communication based on LTE-A or the like
  • the wireless terminal 20 can make this request with a PHR indicating the difference between the current transmission power of the wireless terminal 20 and the maximum transmission power of the wireless terminal 20.
  • simple control such as controlling the direction in which the transmission power of the first wireless communication is not reduced if the value of PHR is large, and controlling in the direction of decreasing the transmission power of the first wireless communication if the value of PHR is small is insufficient. It is clear that there is. This is because the amount of decrease in the first wireless communication depends on the magnitude of interference received by the second wireless communication.
  • the PHR is mainly used for the base station to know how much the transmission power of the terminal can be increased.
  • a second problem in the reference technology is that interference control is delayed because it takes time to greatly reduce the transmission power with the TPC command.
  • the increase width can be increased by 3 dB.
  • the reduction amount must be 1 dB.
  • FIG. 5 is a processing sequence showing a second problem in the reference technology.
  • the radio terminal 20 wants to reduce the transmission power after detecting interference, the transmission power can be reduced by only 1 dB with one TPC transmission (for example, included in DCI0) by the radio base station 10. For this reason, if it is desired to lower the transmission power by 10 dB, the radio base station 10 needs to transmit a TPC command for instructing a reduction of 1 dB 10 times. Therefore, in the above procedure, since it takes time to reduce the transmission power to a desired level after the occurrence of interference, it is considered that this leads to a delay in interference suppression.
  • the TPC command can also be interpreted as not good at greatly reducing the transmission power.
  • the TPC command is originally unsuitable for use in adjusting the transmission power of an arbitrary wireless terminal 20 at an arbitrary timing.
  • the TPC command is included in each DCI format.
  • DCI0, DCI1, DCI2, and DCI4 cannot be transmitted at any timing because they cannot be transmitted inherently unless uplink data or downlink data is generated.
  • DCI3 and DCI3A are for all the radio terminals 20 under the radio base station 10, they cannot be transmitted to any radio terminal 20. Therefore, there is no DCI (including a TPC command) that can be transmitted to an arbitrary wireless terminal 20 at an arbitrary timing.
  • the radio base station 10 transmits, for example, DCI1 (including a TPC command) to a specific radio terminal 20 for the purpose of adjusting the transmission power of an arbitrary radio terminal 20.
  • DCI1 including a TPC command
  • the radio base station 10 transmits empty data as downlink data.
  • the radio terminal 20 needs to perform demodulation and decoding of downlink data (empty data) and transmission of a response signal (ACK / NACK). Therefore, such DCI transmission is considered undesirable from the viewpoint of wasting computer resources and radio resources.
  • IDC interference control based on transmission power control using a TPC command has a plurality of problems, and thus interference control cannot be performed effectively.
  • this problem was newly found as a result of careful study of the prior art by the inventor, and has not been known so far.
  • each embodiment of the present application for solving this problem will be described in order.
  • the radio terminal 20 autonomously lowers transmission power from a value determined based on a TPC command.
  • the wireless communication device (wireless terminal 20) in the first embodiment repeatedly receives the first control signal instructing to change or maintain the transmission power from the other wireless communication device, and receives the first control signal for the other wireless communication device.
  • a wireless communication apparatus that determines transmission power of one wireless transmission based on the first control signal received before the first wireless transmission, with a second transmission power smaller than the first transmission power based on the determination
  • a transmission unit that performs the first wireless transmission is provided.
  • the wireless terminal 20 supports IDC. More specifically, the wireless terminal 20 simultaneously performs the first wireless communication (wireless communication based on LTE-A or the like) and the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like). Suppose you can. Also in this embodiment, it is assumed that the uplink transmission scale (bandwidth and amount of transmission information) is constant for the sake of simplicity.
  • FIG. 6 shows an example of a processing sequence of the wireless communication system according to the first embodiment.
  • the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control.
  • the uplink data corresponding to DCI0 received in S401 is transmitted to the radio base station 10 by the radio terminal 20 using the transmission power P PUSCH [dBm] defined by Equation 2.
  • Send. 6 are processes corresponding to S101 to S102 in FIG.
  • the wireless terminal 20 performs wireless communication based on a wireless communication method other than LTE-A or the like using a transmission signal of IDC first wireless communication (wireless communication based on LTE-A or the like).
  • the occurrence of interference with the received signal is detected.
  • the detection method of interference generation shall not be ask
  • the wireless terminal 20 can detect the occurrence of interference by determining whether the reception error rate of the second wireless communication is equal to or greater than a predetermined value when transmitting the first wireless communication.
  • the transmission of the first wireless communication may be transmission of an SRS (Sounding Reference Signal) that is an uplink reference signal for scheduling, or transmission of a data signal (PUSCH) or a control signal (PUCCH). .
  • SRS Sounding Reference Signal
  • PUSCH data signal
  • PUCCH control signal
  • the magnitude of the generated interference may be measured (detected) as well as the presence or absence of the occurrence of interference.
  • the radio terminal 20 can set the difference value between the reception error rate of the second radio communication at the time of transmission of the first radio communication and a predetermined value as the magnitude of the generated interference.
  • the wireless terminal 20 determines the transmission power reduction amount ⁇ P [dB] of the first wireless communication.
  • the transmission power reduction amount determination method is not limited.
  • the radio terminal 20 can determine the transmission power reduction amount based on the magnitude of interference detected in S403.
  • the radio terminal 20 transmits the uplink data corresponding to DCI0 received in S405 to the radio base station 10 with the transmission power P PUSCH - ⁇ P [dBm]. .
  • the radio terminal 20 uses the TPC command (S305) to transmit the transmission power P PUSCH [dBm] for the PUSCH so far.
  • the PUSCH transmission power P PUSCH -1 [dBm] is determined by adjusting based on the value of -1 [dBm].
  • S406 corresponding to the uplink data transmission of the radio terminal 20 after interference detection in FIG.
  • the radio terminal 20 detects the detected interference with respect to the transmission power P PUSCH [dBm] so far with respect to the PUSCH (S403).
  • the PUSCH transmission power P PUSCH ⁇ P [dBm] To decide. That is, the transmission power in S406 of FIG. 6 according to the first embodiment is lower by the transmission power reduction amount ⁇ P determined based on the interference than in S104 of FIG.
  • the transmission power reduction amount ⁇ P determined in S404 is 10 [dB].
  • the radio terminal 20 may increase the transmission power based on the TPC command, or may ignore the TPC command and maintain the transmission power.
  • the period may be a predetermined period or may be a period that satisfies a predetermined condition.
  • the predetermined condition can be, for example, whether reception of the second wireless communication is ongoing.
  • the radio terminal 20 may autonomously increase the transmission power after a predetermined period has elapsed or when a predetermined condition is satisfied.
  • the predetermined condition may be, for example, whether reception of the second wireless communication is ongoing.
  • interference based on IDC when interference based on IDC occurs, it is possible to quickly and significantly reduce the transmission power of wireless communication that is an interference source. Therefore, according to the first embodiment, interference based on IDC can be quickly and significantly reduced.
  • the radio terminal 20 notifies the radio base station 10 that the transmission power is autonomously reduced.
  • the wireless communication device (wireless terminal 20) in the second embodiment is the wireless communication device in the first embodiment, and the transmission unit further performs the first wireless transmission with the second transmission power. Is transmitted to the other wireless communication device.
  • the second embodiment has many points in common with the first embodiment. In the following, the second embodiment will be described with a focus on differences from the first embodiment.
  • the premise in the second embodiment is the same as that in the first embodiment.
  • the wireless terminal 20 is compatible with IDC, and more specifically, the wireless terminal 20 includes a first wireless communication (wireless communication based on LTE-A or the like) and a second wireless communication (wireless communication other than LTE-A or the like). Wireless communication based on the system) can be performed simultaneously.
  • the uplink transmission scale bandwidth and transmission information amount
  • FIG. 7 shows an example of a processing sequence of the wireless communication system according to the second embodiment.
  • the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control.
  • S501 to S504 in FIG. 7 are the same as S401 to S404 in FIG. 6, the description thereof is omitted here.
  • the wireless terminal 20 notifies the wireless base station 10 of a transmission power reduction notification that is a notification to reduce the transmission power.
  • the transmission power reduction notification may include the transmission power reduction amount determined in S504.
  • the transmission power reduction notification can be performed by, for example, uplink RRC signaling.
  • the wireless terminal 20 receives DCI0 from the wireless base station 10 as an example.
  • the radio base station 10 recognizes that the radio terminal 20 autonomously lowers the transmission power based on the transmission power reduction notification received in S505. Therefore, in step S506, the radio base station 10 can reflect the received transmission power reduction notification on each parameter of DCI0 transmitted to the radio terminal 20.
  • the radio base station 10 can set the value of the TPC command included in DCI0 transmitted to the radio terminal 20 to 0 or less for a predetermined time in response to reception of the transmission power reduction notification. This is because if the transmission power autonomously reduced by the radio terminal 20 is immediately increased due to the convenience of the radio base station 10, the effect of autonomous transmission power reduction is weakened.
  • the radio base station 10 can adjust the value of MCS, which is a parameter indicating the modulation and coding scheme, in response to reception of the transmission power reduction notification. As a result, it is possible to suppress deterioration of communication characteristics due to a reduction in transmission power.
  • the radio base station 10 determines the MCS value so that the uplink reception error rate becomes a constant level.
  • the uplink reception error rate depends on the uplink signal-to-interference noise ratio (SINR: Signal to Interference plus Noise Ratio), and SINR depends on the transmission power of the signal (desired signal).
  • SINR Signal to Interference plus Noise Ratio
  • FIG. 8 is a diagram showing deterioration of communication characteristics due to deterioration of transmission power.
  • the radio base station 10 has a constant reception error rate on the premise that the transmission power on the radio terminal 20 side is at a constant level and that SINR is at a constant level SINR1.
  • the MCS is determined to be level ER1.
  • SINR is reduced to SINR2 accordingly, and the reception error rate is further increased to ER2.
  • the radio base station 10 in S506 is based on the transmission power reduction amount indicated by the transmission power reduction notification as compared with the case where there is no transmission power reduction.
  • An MCS that is resistant to errors can be selected, and a DCI that includes the MCS can be transmitted to the radio terminal 20.
  • an MCS table created in advance may be used in determining the MCS in S506.
  • the MCS table is a table in which the SINR threshold (range) is associated with the MCS.
  • the radio base station 10 can create an MCS table by, for example, a closed-loop method, but a detailed description is omitted here.
  • the radio base station 10 can obtain an assumed value of SINR after transmission power reduction based on the transmission power reduction amount, and can select an MCS based on the assumed value and the MCS table.
  • the radio base station 10 adjusts various parameters that affect the correctness of reception of the uplink signal from the radio terminal 20, or sets the parameters as necessary. Can be notified.
  • the radio base station 10 can notify the radio terminal 20 by increasing the maximum number of HARQ uplink retransmissions in response to the reception of the transmission power reduction notification.
  • the radio base station 10 can lengthen the HARQ uplink timeout period in response to the reception of the transmission power reduction notification.
  • the radio terminal 20 transmits uplink data corresponding to DCI0 received in S506 to the radio base station 10 with transmission power P PUSCH ⁇ P [dBm].
  • the radio terminal 20 may autonomously transmit the PUSCH with a transmission power higher than P PUSCH ⁇ P [dBm] when the predetermined condition is satisfied. This is because even if the wireless terminal 20 transmits the PUSCH with higher transmission power than the wireless base station 10 assumes, the disadvantage is small.
  • the MCS defined by the radio base station 10 becomes excessive quality, and the use efficiency of radio resources is reduced.
  • the effect is considered to be limited.
  • the predetermined condition for autonomously increasing the transmission power can be, for example, that reception of the second wireless communication is not ongoing.
  • the wireless terminal 20 may change the transmission power based on the TPC command, or ignore the TPC command.
  • the transmission power may be maintained.
  • the transmission power of the wireless communication that is the interference source can be quickly and significantly reduced. Therefore, according to the second embodiment, it is possible to quickly and significantly reduce IDC-based interference.
  • an effect that cannot be obtained in the first embodiment can be obtained.
  • the radio base station 10 can adjust various parameters related to the uplink signal according to the transmission power reduction notification, there is an effect of suppressing an increase in reception errors due to the transmission power reduction of the radio terminal 20. can get.
  • the first embodiment and the second embodiment are based on the premise that the wireless terminal 20a supports IDC. However, in the present invention, it is not essential that the wireless terminal 20a supports IDC.
  • the third embodiment is an embodiment corresponding to a case where the present invention is applied to a wireless terminal 20a that does not support IDC.
  • the radio terminal 20a and the radio base station 10a are compatible with downlink multi-point coordinated (CoMP: Coordinated Multiple Point) transmission.
  • CoMP Coordinated Multiple Point
  • the radio terminal 20a can receive downlink signals transmitted in cooperation from the radio base station 10a and the adjacent radio base station 10b.
  • a mode is assumed in which the radio base station 10a and the adjacent radio base station 10b are switched at high speed and signals are received from one side.
  • FIG. 9 shows an example of the processing sequence of the third embodiment.
  • the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control. Since S601 to S602 in FIG. 9 are the same processing as S401 to S402 in FIG. 6, the description thereof is omitted.
  • the adjacent radio base station 10b detects the interference generated based on the uplink signal transmitted from the radio terminal 20a in S602.
  • the detection method of interference generation shall not be ask
  • the adjacent radio base station 10b can detect the occurrence of interference by determining whether the reception error rate from the other radio terminal 20b (not shown) is equal to or higher than a predetermined value at the time of transmission of the radio terminal 20a.
  • the adjacent radio base station 10b can set the difference value between the reception error rate from the other radio terminal 20b and the predetermined value at the time of transmission of the radio terminal 20a as the magnitude of the generated interference.
  • the adjacent radio base station 10b transmits a transmission power reduction request that is a signal requesting the radio terminal 20a to reduce transmission power.
  • the transmission power reduction request may include the interference magnitude measured in S603.
  • the transmission power reduction notification can be performed by downlink RRC signaling, for example.
  • the radio terminal 20a determines the transmission power reduction amount ⁇ P [dBm] in response to the transmission power reduction request received in S604.
  • the transmission power reduction amount determination method is not limited.
  • the radio terminal 20a can determine the transmission power reduction amount based on the magnitude of interference included in the transmission power reduction request received in S604.
  • the radio terminal 20a transmits the uplink data corresponding to DCI0 received in S606 to the radio base station 10a with the transmission power P PUSCH ⁇ P [dBm]. .
  • the adjacent radio base station 10b transmits a transmission power reduction request to the radio terminal 20a.
  • the transmission of the radio terminal 20a is performed.
  • problems such as the delay in implementing interference countermeasures as described above remain. It will be.
  • communication between the radio base stations 10a has a large transmission delay (average of about 20 msec), implementation of interference countermeasures is further delayed, which is not desirable.
  • FIG. 9 by transmitting a transmission power reduction request directly from the adjacent radio base station 10b to the radio terminal 20a (without going through the radio base station 10a), it is possible to minimize the delay until the countermeasure against interference is implemented. It can be done.
  • the radio terminal 20a does not transmit a transmission power reduction notification to the radio base station 10a after determining the power reduction amount (S605). However, also in FIG. 9, similarly to S505 in FIG. 7, the radio terminal 20a may transmit a transmission power reduction notification to the radio base station 10a. In S606, the radio base station 10a may adjust various parameters for the transmission of the radio terminal 20a based on the transmission power reduction notification received from the radio terminal 20a. The details of the processing have been described for S505 to 506 in FIG. 7, and will not be described here.
  • the transmission power of the radio terminal 20a which is an interference source, can be rapidly and greatly reduced. it can. Therefore, according to the third embodiment, it is possible to quickly and significantly reduce interference in the adjacent radio base station 10b based on the transmission of the radio terminal 20a.
  • the magnitude of interference is first measured in S403, and the transmission power reduction amount is determined in S404 based on the magnitude of the interference.
  • the magnitude of the interference is a difference value between the reception error rate of the second wireless communication at the time of transmission of the first wireless communication and a predetermined value.
  • the wireless terminal 20 detects interference and decides to reduce the transmission power, the measurement in which the transmission power is reduced to determine the transmission power reduction amount. Send for use.
  • the radio terminal 20 transmits the transmission power P 0 -5 [dBm], P 0 -10 [dBm], P 0 ⁇ Transmission for measurement is performed at each of 15 [dBm] P 0 -20 [dBm], and the magnitude of each interference is measured. Then, the radio terminal 20 determines a transmission power reduction amount based on the measured magnitude of each interference. For example, the radio terminal 20 can determine the transmission power reduction amount from the transmission power at the time of transmission corresponding to the case where the magnitude of interference is the maximum within a predetermined value.
  • the measurement signal may be transmission of an SRS (Sounding Reference Signal) that is an uplink reference signal for scheduling, or may be transmission of a data signal (PUSCH) or a control signal (PUCCH).
  • SRS Sounding Reference Signal
  • FIG. 10 is a diagram for explaining this modification example with respect to the second embodiment.
  • the processing sequence of FIG. 10 corresponds to the processing of S503 to S504 of the processing sequence of FIG. In S701 of FIG. 10, and it transmits the SRS by the transmission power P 0.
  • S702 it is assumed that interference with the second radio communication is detected in the radio terminal 20, and the radio terminal 20 determines transmission power reduction.
  • the radio terminal 20 transmits a transmission power temporary reduction notification indicating that the transmission power is temporarily reduced to the radio base station 10.
  • the wireless terminal 20 transmits transmissions for measurement at transmission powers P 0 -5 [dBm], P 0 -10 [dBm], and P 0 -15 [dBm] P 0 -20 [dBm]. And measure the magnitude of each interference.
  • the radio terminal 20 determines the transmission power reduction amount ⁇ P based on the measured magnitudes of interference. For example, the radio terminal 20 can determine the transmission power reduction amount from the transmission power at the time of transmission corresponding to the case where the magnitude of interference is the maximum within a predetermined value. In addition, by notifying the radio base station 10 beforehand that the transmission power is temporarily reduced by the transmission power temporary reduction notification in FIG.
  • the measurement signal may be a data signal (PUSCH) or a control signal (PUCCH) transmission in addition to the SRS.
  • the transmission power reduction notification is notified in advance (before transmission power reduction).
  • the radio terminal 20 transmits a transmission power reduction notification to the radio base station 10 in S505 before the PUSCH transmission in S507.
  • the transmission power reduction notification may not be transmitted in advance, but may be notified in communication for reducing transmission power.
  • the wireless terminal 20 can transmit the transmission power reduction notification in the same subframe as the PUSCH transmission in S507 without transmitting the transmission power reduction notification to the wireless base station 10 in S505. Since the value of BSR (Buffer Status Report) is quantized, there is usually some room for radio resources for PUSCH transmission allocated to the radio terminal 20 by the radio base station 10.
  • the radio terminal 20 can transmit a transmission power reduction notification in the same subframe as the PUSCH transmission in this room.
  • the wireless communication system 1 includes a wireless base station 10 and a wireless terminal 20.
  • the radio base station 10 forms a cell C10.
  • the radio terminal 20 exists in the cell C10. Note that in the present application, the radio base station 10 and the radio terminal 20 may be collectively referred to as “radio station”.
  • the wireless base station 10 is connected to the network device 3 via a wired connection, and the network device 3 is connected to the network 2 via a wired connection.
  • the radio base station 10 is provided so as to be able to transmit and receive data and control information to and from other radio base stations via the network device 3 and the network 2.
  • the radio base station 10 may separate the radio communication function with the radio terminal 20 and the digital signal processing and control function to be a separate device.
  • a device having a wireless communication function is called RRH (Remote Radio Head)
  • BBU Base Band Unit
  • the RRH may be installed overhanging from the BBU, and may be wired by an optical fiber between them.
  • the radio base station 10 is a radio base station of various scales besides a small radio base station (including a micro radio base station, a femto radio base station, etc.) such as a macro radio base station and a pico radio base station. Good.
  • the relay station transmission / reception with the wireless terminal 20 and its control
  • the wireless base station 10 of the present application It is good.
  • the wireless terminal 20 communicates with the wireless base station 10 by the first wireless communication.
  • the radio terminal 20 communicates with an access point other than the radio base station 10 and a communication device by the second radio communication.
  • Examples of the first wireless communication include LTE and LTE-A.
  • wireless LAN such as WiFi (registered trademark) and WiMAX (registered trademark), Bluetooth (registered trademark), GPS, Zigbee (registered trademark), GSM (registered trademark, Global System for Mobile Communications) ), UMTS (Universal Mobile Telecommunications System) or the like can also be used.
  • the first wireless communication and the second wireless communication are performed using the same or close frequency band. For example, when the frequency band group prepared for the first wireless communication and the frequency band group prepared for the second wireless communication are adjacent to each other, or when the first wireless communication and the second wireless communication are the same frequency band group Is assumed to be shared.
  • the wireless terminal 20 may be a wireless terminal such as a mobile phone, a smartphone, a PDA (Personal Digital Assistant), a personal computer (Personal Computer), various devices or devices (such as sensor devices) having a wireless communication function.
  • a relay station that relays radio communication between the radio base station 10 and another radio terminal 20 is used, the relay station (transmission / reception with the radio base station 10 and its control) is also included in the radio terminal 20 of this paper. It is also possible that
  • the network device 3 includes, for example, a communication unit and a control unit, and these components are connected so that signals and data can be input and output in one direction or in both directions.
  • the network device 3 is realized by a gateway, for example.
  • the communication unit is realized by an interface circuit
  • the control unit is realized by a processor and a memory.
  • each component of the radio base station 10 and the radio terminal 20 is not limited to the mode of the first embodiment, and all or a part thereof can be used for various loads, usage conditions, and the like. Accordingly, it may be configured to be functionally or physically distributed / integrated in an arbitrary unit.
  • the memory may be connected as an external device of the radio base station 10 and the radio terminal 20 via a network or a cable.
  • FIG. 12 is a functional block diagram showing the configuration of the radio base station 10. As illustrated in FIG. 12, the radio base station 10 includes a transmission unit 11, a reception unit 12, and a control unit 13. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the transmission unit 11 transmits a data signal and a control signal by first wireless communication via an antenna.
  • the antenna may be common for transmission and reception.
  • the transmitter 11 transmits a downlink signal via, for example, a downlink data channel or a control channel.
  • the downlink physical data channel includes, for example, a dedicated data channel PDSCH (Physical Downlink Shared Channel).
  • the downlink physical control channel includes, for example, a dedicated control channel PDCCH (PhysicalPhysDownlink Control Channel).
  • the signal to be transmitted is, for example, an L1 / L2 control signal transmitted to the connected wireless terminal 20 on the dedicated control channel, a user data signal transmitted to the connected wireless terminal 20 on the dedicated data channel, or RRC (Radio). Resource (Control) signaling included.
  • the signal to be transmitted includes, for example, a reference signal used for channel estimation and demodulation.
  • signals transmitted by the transmission unit 11 include signals transmitted by each radio base station in FIGS. 6 to 7 or FIGS. 9 to 10.
  • the transmission unit 11 can transmit various DCI formats including the TPC command in FIGS. 6 to 7 or 9 to 10 via the PDCCH.
  • the transmission part 11 can transmit the transmission power reduction request
  • the receiving unit 12 receives the data signal and the control signal transmitted from the wireless terminal 20 through the first wireless communication via the antenna.
  • the receiving unit 12 receives an uplink signal via, for example, an uplink data channel or a control channel.
  • the uplink physical data channel includes, for example, a dedicated data channel PUSCH (Physical Uplink Shared Channel).
  • the uplink physical control channel includes, for example, a dedicated control channel PUCCH (Physical Uplink Control Channel).
  • the received signal is, for example, an L1 / L2 control signal transmitted from the connected wireless terminal 20 on the dedicated control channel, a user data signal transmitted from the connected wireless terminal 20 on the dedicated data channel, or RRC (Radio). Resource (Control) signaling included.
  • the received signal includes, for example, a reference signal used for channel estimation and demodulation.
  • signals received by the receiving unit 12 include signals received by the respective radio base stations in FIGS. 6 to 7 or FIGS. 9 to 10.
  • the receiving unit 12 can receive the uplink data in FIGS. 6 to 7 or 9 via the PUSCH.
  • the receiving part 12 can receive the transmission power reduction notification in FIG. 7 by RRC signaling via PUSCH, for example.
  • the receiving unit 12 can receive the transmission power temporary reduction notification in FIG. 10 by RRC signaling via PUSCH, for example, and can receive SRS.
  • the control unit 13 outputs data to be transmitted and control information to the transmission unit 11.
  • the control unit 13 inputs received data and control information from the reception unit 12.
  • the control unit 13 acquires data and control information from the network device 3 and other wireless base stations via a wired connection or a wireless connection. In addition to these, the control unit 13 performs various controls related to various transmission signals transmitted by the transmission unit 11 and various reception signals received by the reception unit 12.
  • control unit 13 can control each process of transmission of various formats of DCI including a TPC command and reception of uplink data.
  • the control unit 13 can control the process of receiving the transmission power reduction notification.
  • the control unit 13 can control each process of interference detection and transmission of a transmission power reduction request.
  • the control unit 13 can control the SRS reception process.
  • FIG. 13 is a functional block diagram showing the configuration of the wireless terminal 20.
  • the wireless terminal 20 includes transmission units 21A and 21B, reception units 22A and 22B, and control units 23A and 23B. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the transmission unit 21A of transmission parts transmit a data signal and a control signal by 1st wireless communication via an antenna.
  • the antenna may be common for transmission and reception.
  • the transmission unit 21A transmits an uplink signal via, for example, an uplink data channel or a control channel.
  • the uplink physical data channel includes, for example, a dedicated data channel PUSCH.
  • the uplink physical control channel includes, for example, a dedicated control channel PUCCH.
  • the signal to be transmitted is, for example, an L1 / L2 control signal transmitted on the dedicated control channel to the connected radio base station 10, or a user data signal or RRC transmitted on the dedicated data channel to the connected radio base station 10. (Radio-Resource-Control) signaling included.
  • the signal to be transmitted includes, for example, a reference signal used for channel estimation and demodulation.
  • the transmission unit 21A can perform each transmission performed by each wireless communication in FIGS. 6 to 7 and FIGS. 9 to 10 based on the transmission power controlled by the control unit 23A.
  • signals transmitted by the transmission unit 21A include signals transmitted by the wireless terminals in FIGS. 6 to 7 or FIGS. 9 to 10.
  • the transmission unit 21A can transmit the uplink data in FIGS. 6 to 7 or 9 via the PUSCH.
  • the transmission unit 21A can transmit the transmission power reduction notification in FIG. 7 by RRC signaling via the PUSCH, for example.
  • the transmission unit 21A can transmit the transmission power temporary reduction notification in FIG. 10 by RRC signaling via PUSCH, for example, and can also transmit SRS.
  • the receiving unit 22A receives the data signal and the control signal transmitted from the radio base station 10 through the first radio communication via the antenna.
  • the receiving unit 22A receives a downlink signal via, for example, a downlink data channel or a control channel.
  • the downlink physical data channel includes, for example, a dedicated data channel PDSCH.
  • the downlink physical control channel includes, for example, a dedicated control channel PDCCH.
  • the received signal is, for example, an L1 / L2 control signal transmitted on the dedicated control channel from the connected radio base station 10, or a user data signal or RRC transmitted on the dedicated data channel from the connected radio base station 10. (Radio-Resource-Control) signaling included.
  • the received signal includes, for example, a reference signal used for channel estimation and demodulation.
  • signals received by the receiving unit 22A include the signals received by the wireless terminals in FIGS. 6 to 7 or FIGS. 9 to 10.
  • the receiving unit 22A can receive various DCI formats including the TPC command in FIGS. 6 to 7 or 9 to 10 via the PDCCH.
  • the reception unit 22A can receive the transmission power reduction request in FIG. 9 by RRC signaling via, for example, PDSCH.
  • the control unit 23A outputs data to be transmitted and control information to the transmission unit 21A.
  • the control unit 23A inputs received data and control information from the reception unit 22A.
  • the control unit 23A performs various controls related to various transmission signals transmitted by the transmission unit 21A and various reception signals received by the reception unit 22A.
  • control unit 23A can control the transmission power of each transmission performed by each wireless communication in FIGS. 6 to 7 and FIGS. 9 to 10.
  • control unit 23A can control the power reduction amount determination process in FIGS. 6 to 7 and FIGS. 9 to 10.
  • the control unit 23A can control each process of reception of various formats of DCI including a TPC command and transmission of uplink data.
  • the control unit 23A can control the interference detection process in FIGS. 6 to 7 and FIG.
  • the control unit 23 ⁇ / b> A can control the transmission process of the transmission power reduction notification.
  • the control unit 23 ⁇ / b> A can control processing for receiving a transmission power reduction request.
  • the control unit 23A can control the transmission power temporary reduction notification transmission and the SRS transmission processing.
  • the transmitting unit 21B transmits a data signal and a control signal by second wireless communication via the antenna.
  • the antenna may be common for transmission and reception.
  • the receiving unit 22B receives the data signal and the control signal transmitted from the radio base station by the second radio communication via the antenna.
  • the control unit 23B outputs data to be transmitted and control information to the transmission unit 21.
  • the control unit 23 inputs data and control information received from the receiving unit 22.
  • control unit 23B detects the occurrence of interference in the second wireless communication based on the error characteristics of the received signal on the second wireless communication side when the first wireless communication and the second wireless communication are operating ( Alternatively, the deterioration of the communication performance in the second wireless communication is determined).
  • the control unit 23B notifies the measured reception signal level to the control unit 23A.
  • the control unit 23B may determine deterioration of communication performance in the second wireless communication based on the measured received signal level and notify the determination result to the control unit 23A.
  • FIG. 14 is a diagram illustrating a hardware configuration of the radio base station 10.
  • the radio base station 10 includes, as hardware components, an RF (Radio Frequency) circuit 32 including an antenna 31, a CPU (Central Processing Unit) 33, and a DSP (Digital Signal Processor) 34, for example. And a memory 35 and a network IF (Interface) 36.
  • the CPU is connected via a network IF 36 such as a switch so that various signals and data can be input and output.
  • the memory 35 includes, for example, at least one of a RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), and a flash memory, and stores programs, control information, and data.
  • RAM Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • ROM Read Only Memory
  • flash memory stores programs, control information, and data.
  • the transmission unit 11 and the reception unit 12 are realized by the RF circuit 32 or the antenna 31 and the RF circuit 32, for example.
  • the control unit 13 is realized by, for example, a CPU 33, a DSP 34, a memory 35, a digital electronic circuit (not shown), and the like.
  • Examples of the digital electronic circuit include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
  • FIG. 15 is a diagram illustrating a hardware configuration of the wireless terminal 20.
  • the wireless terminal 20 includes, as hardware components, RF circuits 42A and 42B each including antennas 41A and 41B, CPUs 43A and 43B, and memories 44A and 44B, for example.
  • the wireless terminal 20 may include a display device such as an LCD (Liquid Crystal Display) connected to the CPUs 43A and 43B.
  • the memories 44A and 44B include at least one of RAM such as SDRAM, ROM, and flash memory, for example, and store programs, control information, and data.
  • the transmitting unit 21A and the receiving unit 22A are realized by, for example, the RF circuit 42A, or the antenna 41A and the RF circuit 42A.
  • the control unit 23A is realized by, for example, the CPU 43A, the memory 44A, a digital electronic circuit (not shown), and the like. Examples of digital electronic circuits include ASIC, FPGA, LSI, and the like.
  • the transmission unit 21B and the reception unit 22B are realized by, for example, the RF circuit 42B, or the antenna 41B and the RF circuit 42B.
  • the control unit 23B is realized by a CPU 43B, a memory 44B, a digital electronic circuit (not shown), and the like.
  • wireless communication system 1 wireless communication system 2 network 3 network device 10 wireless base station C10 cell 20 wireless terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the present invention is to provide: a wireless communication device, which performs a plurality of wireless communications, wherein interference is controlled, allowing communication performance to improve; a wireless communication system, and a wireless communication method. This wireless communication device repeatedly receives a first control signal, which indicates that a transmission power is to be altered or maintained, from another wireless communication device, and determines, on the basis of the first control signal received prior to a first wireless transmission, the transmission power of the first wireless transmission with respect to the other wireless communication device. Furthermore, the wireless communication device is provided with a first wireless communication unit that carries out the first wireless transmission at a second transmission power, which is smaller than the first transmission power based on the aforementioned determination.

Description

無線通信装置、無線通信システムおよび無線通信方法Wireless communication apparatus, wireless communication system, and wireless communication method
 本発明は、無線通信装置、無線通信システムおよび無線通信方法に関する。 The present invention relates to a wireless communication device, a wireless communication system, and a wireless communication method.
 近年、携帯電話システム(セルラーシステム)等の無線通信システムにおいて、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-A(LTE - Advanced)と呼ばれる通信規格が提案されている。 In recent years, next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as cellular phone systems (cellular systems). For example, 3GPP (3rd Generation Partnership Project), a standardization organization, proposes a communication standard called LTE (Long Term Evolution) and a communication standard called LTE-A (LTE-Advanced) based on LTE wireless communication technology. Has been.
 このような無線通信システムにおいて、例えば、1つの無線端末で、複数の無線通信が同時に実行される場合がある。複数の無線通信は、例えば異なる方式の無線通信であり、LTE通信と無線LAN(Local Area Network)等が挙げられる。この場合、例えば1つの無線端末内に、複数の無線通信のそれぞれに対応する回路が併設される。このような状況は、例えばIDC(In-device coexistence)と呼ばれる。 In such a wireless communication system, for example, a plurality of wireless communications may be simultaneously executed by one wireless terminal. The plurality of wireless communications are, for example, different types of wireless communications, such as LTE communication and wireless LAN (Local Area Network). In this case, for example, a circuit corresponding to each of a plurality of wireless communications is provided in one wireless terminal. Such a situation is called, for example, IDC (In-device coexistence).
 なお、無線通信の送信電力を削減することにより、他の無線通信に対する干渉を低減する技術が知られている。 A technique for reducing interference with other wireless communications by reducing the transmission power of wireless communications is known.
特開2001-308785号公報Japanese Patent Laid-Open No. 2001-308785 特開平8-167872号公報Japanese Patent Laid-Open No.8-167872
 上述のような無線通信システムにおいて、各無線通信が、同じあるいは近い周波数帯を使って同時に通信を行うことが想定される。このとき、無線端末において、各無線通信がそれぞれに対応する回路で同時に実行されると、無線端末内で相互干渉が発生し、通信性能が劣化する恐れがある。 In the wireless communication system as described above, it is assumed that each wireless communication communicates simultaneously using the same or close frequency band. At this time, in the wireless terminal, if each wireless communication is simultaneously executed by a corresponding circuit, mutual interference may occur in the wireless terminal and communication performance may be deteriorated.
 開示の技術は、上記に鑑みてなされたものであって、複数の無線通信を実行する無線通信装置で、前記無線通信装置内での干渉を制御し、通信性能を向上できる無線通信装置、無線通信システムおよび無線通信方法を提供することを目的とする。 The disclosed technology has been made in view of the above, and is a wireless communication device that performs a plurality of wireless communications, and controls wireless interference in the wireless communication device and improves communication performance. An object is to provide a communication system and a wireless communication method.
 上述した課題を解決し、目的を達成するために、開示の無線通信装置は、送信電力を変化または維持することを指示する第1制御信号を他無線通信装置から繰り返し受信し、該他無線通信装置に対する第1無線送信の送信電力を、該第1無線送信の前に受信した該第1制御信号に基づいて決定する無線通信装置であって、前記決定に基づく第1送信電力より小さい第2送信電力で前記第1無線送信を行う第1無線通信部を備える。 In order to solve the above-described problems and achieve the object, the disclosed wireless communication apparatus repeatedly receives a first control signal instructing to change or maintain transmission power from another wireless communication apparatus, and the other wireless communication A wireless communication device that determines a transmission power of a first wireless transmission to a device based on the first control signal received before the first wireless transmission, and a second smaller than the first transmission power based on the determination A first wireless communication unit that performs the first wireless transmission with transmission power is provided.
 本件の開示する無線通信装置の一つの態様によれば、複数の無線通信を実行する無線装置で、前記無線端末内での干渉を制御し、通信性能を向上できるという効果を奏する。 According to one aspect of the wireless communication device disclosed in the present case, it is possible to control the interference in the wireless terminal and improve the communication performance with a wireless device that performs a plurality of wireless communications.
図1は、無線通信システムの周波数帯の割当て例を説明する図である。FIG. 1 is a diagram illustrating an example of frequency band allocation in a wireless communication system. 図2A~Bは、LTEシステムにおけるTPCコマンドの値と送信電力の変化分の対応を示す図である。FIGS. 2A and 2B are diagrams illustrating the correspondence between the TPC command value and the change in transmission power in the LTE system. 図3は、従来のLTEシステムにおけるPUSCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing sequence of transmission power control for PUSCH in a conventional LTE system. 図4は、従来のLTEシステムにおけるPUCCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 4 is a diagram illustrating an example of a processing sequence of transmission power control for PUCCH in a conventional LTE system. 図5は、参考技術に係るPUSCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 5 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the reference technique. 図6は、第1実施形態に係るPUSCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 6 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the first embodiment. 図7は、第2実施形態に係るPUSCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 7 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the second embodiment. 図8は、送信電力の劣化に起因する通信特性の劣化を示す図である。FIG. 8 is a diagram illustrating deterioration in communication characteristics due to deterioration in transmission power. 図9は、第3実施形態に係るPUSCHに対する送信電力制御の処理シーケンスの一例を示す図である。FIG. 9 is a diagram illustrating an example of a processing sequence of transmission power control for the PUSCH according to the third embodiment. 図10は、第2実施形態に対する変形例を説明する図である。FIG. 10 is a diagram for explaining a modification example of the second embodiment. 図11は、各実施形態に係る無線通信システムの構成を示す図である。FIG. 11 is a diagram illustrating a configuration of a wireless communication system according to each embodiment. 図12は、各実施形態に係る無線基地局の構成を示す機能ブロック図である。FIG. 12 is a functional block diagram showing the configuration of the radio base station according to each embodiment. 図13は、各実施形態に係る無線端末の構成を示す機能ブロック図である。FIG. 13 is a functional block diagram showing the configuration of the wireless terminal according to each embodiment. 図14は、各実施形態に係る無線基地局のハードウェア構成を示す図である。FIG. 14 is a diagram illustrating a hardware configuration of the radio base station according to each embodiment. 図15は、各実施形態に係る無線端末のハードウェア構成を示す図である。FIG. 15 is a diagram illustrating a hardware configuration of the wireless terminal according to each embodiment.
 以下に、本件の開示する無線通信装置、無線通信システムおよび無線通信方法の実施形態を、図面を参照しながら説明する。なお、以下の実施形態により本件の開示する無線通信装置、無線通信システムおよび無線通信方法が限定されるものではない。 Hereinafter, embodiments of a wireless communication device, a wireless communication system, and a wireless communication method disclosed in the present application will be described with reference to the drawings. Note that the wireless communication device, the wireless communication system, and the wireless communication method disclosed in the present application are not limited by the following embodiments.
[問題の所在]
 まず、各実施形態を説明する前に、従来技術における問題の所在を説明する。この問題は、発明者が従来技術を仔細に検討した結果として新たに見出したものであり、従来は知られていなかったものであることに注意されたい。
[Location of problem]
First, before describing each embodiment, the location of problems in the prior art will be described. It should be noted that this problem has been newly found as a result of careful study of the prior art by the inventor and has not been known so far.
 前述したように本願においては、無線通信装置(例えば無線端末)において複数の無線通信が同時に行われる(例えば前述したIDCのような状況)ことが前提となる。以下では、一例として、複数の無線通信が第1無線通信と第2無線通信とから成るものとする。また無線端末において、第1無線通信は第1アンテナを用いて行われ、第2無線通信は第2アンテナを用いて行われるものとする。なお、複数の無線通信は3つ以上の無線通信から成るものであってもよい。 As described above, in the present application, it is assumed that a plurality of wireless communications are simultaneously performed in a wireless communication device (for example, a wireless terminal) (for example, a situation like the IDC described above). Hereinafter, as an example, it is assumed that the plurality of wireless communications includes a first wireless communication and a second wireless communication. In the wireless terminal, the first wireless communication is performed using the first antenna, and the second wireless communication is performed using the second antenna. The plurality of wireless communications may be composed of three or more wireless communications.
 図1に、第1無線通信と第2無線通信とに用意される周波数帯の例を示す。本願では便宜上、第1無線通信をLTE-A等の携帯電話システムに基づく無線通信(以下では「LTE-A等に基づく無線通信」と呼ぶ)とする。一方、第2無線通信をLTE-A等の携帯電話システム以外の無線通信方式、例えばWiFi(登録商標)等の無線LANやBluetooth(登録商標)に基づく無線通信(以下では「LTE-A等以外の無線通信方式に基づく無線通信」と呼ぶ)とする。 FIG. 1 shows an example of frequency bands prepared for the first wireless communication and the second wireless communication. In the present application, for convenience, the first wireless communication is wireless communication based on a mobile phone system such as LTE-A (hereinafter referred to as “wireless communication based on LTE-A”). On the other hand, the second wireless communication is a wireless communication method other than a cellular phone system such as LTE-A, for example, wireless communication based on a wireless LAN such as WiFi (registered trademark) or Bluetooth (registered trademark) (hereinafter referred to as “other than LTE-A etc.”). It is referred to as “wireless communication based on the wireless communication method”).
 図1に示されるように、第1無線通信と第2無線通信とは、同じあるいは近い周波数帯を用いて通信が行われる。例えば、第1無線通信に用意される周波数帯群と、第2無線通信に用意される周波数帯群とが、隣り合う場合や、第1無線通信と第2無線通信とが、同じ周波数帯群を共用する場合が想定される。例えば、ISM(Industry Science Medical)Band(2400~2483.5MHz)はノンライセンスバンドの1つであり、BluetoothやWiFiで使用される。このとき、LTE-A TDD Modeに用意されるBand 40(2300~2400MHz)や、LTE-AのUL FDD Modeに用意されるBand 7(2500~2570MHz)は、ISM Bandと隣り合う周波数帯群となる。さらに、ISM BandをLTE-Aも共用する場合、LTE-AとBluetoothやWiFiに同じ周波数帯が使用され得る。 As shown in FIG. 1, the first wireless communication and the second wireless communication are performed using the same or close frequency band. For example, when the frequency band group prepared for the first wireless communication and the frequency band group prepared for the second wireless communication are adjacent to each other, or when the first wireless communication and the second wireless communication are the same frequency band group Is assumed to be shared. For example, ISM (Industry Science Band) (2400-2483.5MHz) is one of the non-licensed bands and is used for Bluetooth and WiFi. At this time, Band 40 (2300-2400MHz) prepared in LTE-A TDD Mode and BandB7 (2500-2570MHz) prepared in LTE A's UL FDD Mode are the frequency bands adjacent to ISM Band. Become. Furthermore, when ISM Band is also used for LTE-A, the same frequency band can be used for LTE-A and Bluetooth or WiFi.
 IDCに対応する無線通信装置において図1のように周波数帯が使用される場合、第1アンテナを用いる第1無線通信(LTE-A等に基づく無線通信)と第2アンテナを用いる第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)とを同時に行う無線端末において、第1無線通信と第2無線通信の間で干渉が発生しうる。具体的には例えば、第1無線通信の送信信号(第1アンテナにおける送信信号)が、第2無線通信の受信信号(第2アンテナにおける受信信号)に対して干渉を与える。また、第2無線通信の送信信号(第2アンテナにおける送信信号)が、第1無線通信の受信信号(第1アンテナにおける受信信号)に対して干渉を与える。すなわち、IDCに対応する無線通信装置においては、装置内の無線通信間で相互干渉が発生しうることになる。 When a frequency band is used as shown in FIG. 1 in a wireless communication apparatus corresponding to IDC, first wireless communication using a first antenna (wireless communication based on LTE-A or the like) and second wireless communication using a second antenna. In a wireless terminal that simultaneously performs (wireless communication based on a wireless communication method other than LTE-A or the like), interference may occur between the first wireless communication and the second wireless communication. Specifically, for example, a transmission signal of the first wireless communication (a transmission signal at the first antenna) interferes with a reception signal of the second wireless communication (a reception signal at the second antenna). Further, the transmission signal of the second wireless communication (transmission signal at the second antenna) interferes with the reception signal of the first wireless communication (the reception signal at the first antenna). That is, in a wireless communication device corresponding to IDC, mutual interference can occur between wireless communication in the device.
 このようなIDCに対する干渉を除去又は低減するためには、何らかの干渉制御を行うことが望ましい。LTE-Aに係るIDCに対する干渉制御としては様々な方式が考えられており、これらを任意に組み合わせて用いることができる。 It is desirable to perform some kind of interference control in order to remove or reduce such interference with IDC. Various schemes are considered as interference control for IDC related to LTE-A, and these can be used in any combination.
 LTE-Aに係るIDCに対する干渉制御の具体例としては、主にFDM(Frequency Division Multiplexing)方式、TDM(Time Division Multiplexing)方式、Autonomous Denial(自律停止)方式、および送信電力削減方式の4つが挙げられる。以下ではこれらを順に説明する。 As specific examples of interference control for IDC related to LTE-A, there are mainly four FDM (Frequency Division Multiplexing) method, TDM (Time Division Multiplexing) method, Autonomous Denial (autonomous stop) method, and transmission power reduction method. It is done. Below, these are demonstrated in order.
 FDM方式(ネットワークコントロール無線端末アシスト型のFDM方式と称することもある)では、第1無線通信(LTE-A等に基づく無線通信)で現在使用している周波数帯を異なる周波数帯(異周波数帯)にハンドオーバーする。FDM方式を実行することで、第1無線通信と第2無線通信とが周波数軸上で分離されるため、これらの間の干渉を大きく低減することができる。しかしながら、FDM方式は異周波数帯へのハンドオーバー先が存在する場合でなければ実行できないと考えられる。言い換えると、FDM方式を実行するためには、無線端末にとって受信電力が比較的大きいような異周波数帯の無線基地局が存在する必要がある。したがって、FDM方式はいつでも実行できるわけではない。 In the FDM system (sometimes referred to as a network control wireless terminal-assisted FDM system), the frequency band currently used in the first wireless communication (wireless communication based on LTE-A, etc.) is changed to a different frequency band (different frequency band). ). By executing the FDM method, the first wireless communication and the second wireless communication are separated on the frequency axis, so that interference between them can be greatly reduced. However, it can be considered that the FDM system cannot be executed unless there is a handover destination to a different frequency band. In other words, in order to execute the FDM scheme, it is necessary to have a radio base station in a different frequency band that has a relatively large reception power for the radio terminal. Therefore, the FDM method cannot always be executed.
 次に、TDM方式(ネットワークコントロール無線端末アシスト型のTDM方式と称することもある)では、第1無線通信(LTE-A等に基づく無線通信)と第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)とに対して、一方が他方と同時に実行されないように制御を行う。TDM方式を実行することで、第1無線通信と第2無線通信とが時間軸上で分離されるため、これらの間の干渉を大きく低減することができる。TDM方式の一例としては、第1無線通信が間欠通信を行うとともに、第1無線通信が通信を休止する期間において第2無線通信が通信を行うというものがある。しかしながら、TDM方式を採用する場合には、例えば間欠通信のように、第1無線通信または第2無線通信にある程度の規則性が存在する場合でなければ、実行するのが難しい。したがって、TDM方式もいつでも実行できるわけではない。 Next, in the TDM system (also referred to as a network control wireless terminal-assisted TDM system), the first wireless communication (wireless communication based on LTE-A or the like) and the second wireless communication (wireless other than LTE-A or the like) Control is performed so that one is not executed simultaneously with the other. By executing the TDM scheme, the first wireless communication and the second wireless communication are separated on the time axis, and thus the interference between them can be greatly reduced. As an example of the TDM system, the first wireless communication performs intermittent communication, and the second wireless communication performs communication during a period in which the first wireless communication pauses communication. However, when the TDM system is adopted, it is difficult to execute unless a certain degree of regularity exists in the first wireless communication or the second wireless communication, for example, intermittent communication. Therefore, the TDM method cannot always be executed.
 さらに、Autonomous Denial方式では、第1無線通信(LTE-A等に基づく無線通信)または第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)の送信を無線端末が自律的に停止する。Autonomous Denial方式においては、無線端末が例えば所定期間の全ての第1無線通信を停止するわけではなく、予め自律停止の頻度やレベルの調整を行う。Autonomous Denial方式を実行することで、第1無線通信の送信を停止している間には第2無線通信に対する干渉は発生しない。ただし、Autonomous Denial方式では送信の停止を伴うため、通信効率が大きく低下するという問題がある。 Furthermore, in the autonomous Denial method, the wireless terminal autonomously transmits the first wireless communication (wireless communication based on LTE-A or the like) or the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like). Stop. In the Autonomous Denial system, the wireless terminal does not stop all the first wireless communication for a predetermined period, for example, and adjusts the frequency and level of autonomous stop in advance. By executing the Autonomous Denial method, interference with the second wireless communication does not occur while the transmission of the first wireless communication is stopped. However, the Autonomous Denial method has a problem that communication efficiency is greatly reduced because transmission is stopped.
 最後に、送信電力削減方式を説明する。具体的には、例えば無線端末における第1無線通信(LTE-A等に基づく無線通信)の送信電力を削減することより、当該無線端末における第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)の受信信号に対する干渉を低減させることができる。送信電力削減方式によれば、送信電力を削減することで通信効率が多少低下するが、送信を止めてしまうAutonomous Denial方式と比べると通信効率低下の幅は小さいと考えられる。また、送信電力削減方式は、FDM方式やTDM方式のように一定の条件を満たさなければ実行できないものではないため、実行の制約が少ないと言える。これらの理由により、干渉制御の実現手段として送信電力削減方式が現実的な解決策となる場合も多いと考えられる。 Finally, the transmission power reduction method will be described. Specifically, for example, by reducing the transmission power of the first wireless communication (wireless communication based on LTE-A or the like) in the wireless terminal, the second wireless communication (wireless communication method other than LTE-A or the like) in the wireless terminal. Interference with a received signal in the wireless communication based on the above can be reduced. According to the transmission power reduction method, the communication efficiency is slightly reduced by reducing the transmission power, but the range of the decrease in communication efficiency is considered to be small compared to the Autonomous Denial method that stops transmission. In addition, the transmission power reduction method cannot be executed unless a certain condition is satisfied as in the FDM method and the TDM method, and thus it can be said that there are few execution restrictions. For these reasons, it is considered that the transmission power reduction method is often a realistic solution as means for realizing interference control.
 以下では、LTEシステムに係るIDCを対象とする、送信電力削減方式に基づく干渉制御を詳細に説明する。まず、その説明のための準備として、既存のLTEシステムにおける上りの送信電力制御について説明する。IDCの状況が想定されるのは無線端末であるため、無線端末から無線基地局への送信である上り(UL: UpLink)の送信を対象に送信電力制御を行う必要があるためである。ちなみに、無線基地局から無線端末への送信を下り(DL: DownLink)の送信と呼ぶ。 Hereinafter, interference control based on a transmission power reduction method for IDCs related to the LTE system will be described in detail. First, as preparation for the explanation, uplink transmission power control in an existing LTE system will be described. The situation of IDC is assumed because it is a wireless terminal, and it is necessary to perform transmission power control for uplink (UL: UpLink) transmission, which is transmission from the wireless terminal to the wireless base station. Incidentally, transmission from a radio base station to a radio terminal is called downlink (DL: DownLink) transmission.
 LTEシステムにおける上りの送信電力の大きさは、送信される上り信号(チャネル)別に規定されている。以下ではまず、上りのデータ信号を送信するための物理上り共有チャネルPUSCH(Physical Uplink Shared CHannel)を対象とする送信電力制御を説明する。 The magnitude of uplink transmission power in the LTE system is specified for each uplink signal (channel) to be transmitted. Hereinafter, transmission power control for a physical uplink shared channel PUSCH (PhysicalPhysUplink Shared CHannel) for transmitting an uplink data signal will be described first.
 LTEシステムにおいて、無線端末からサービングセル(無線端末を管理している無線基地局)cに対するi番目のサブフレームのPUSCHの送信電力PPUSCH,c(i)は以下の式(1)で決定される。 
Figure JPOXMLDOC01-appb-I000001
In the LTE system, the PUSCH transmission power P PUSCH, c (i) of the i-th subframe from the wireless terminal to the serving cell (radio base station managing the wireless terminal) c is determined by the following equation (1). .
Figure JPOXMLDOC01-appb-I000001
ここで、PCMAX,c(i)は、サービングセルcに対するi番目のサブフレームで無線端末が送信可能な最大電力に相当する。この最大送信電力以外の通常時は、PUSCHの送信電力は以下の式(2)で定められる。そのため、以降は式(2)について検討する。
Figure JPOXMLDOC01-appb-I000002
Here, P CMAX, c (i) corresponds to the maximum power that the wireless terminal can transmit in the i-th subframe for the serving cell c. In normal times other than this maximum transmission power, the transmission power of PUSCH is determined by the following equation (2). For this reason, Equation (2) will be examined hereinafter.
Figure JPOXMLDOC01-appb-I000002
 式(2)を構成する各パラメータを簡単に説明する。MPUSCH,c(i)はサービングセルcからi番目のサブフレームのPUSCHに対して割当てられた帯域幅(リソースブロック数)である。PO_PUSCH,c(j)は、サービングセルcから通知される上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータに基づいて定まる値である。なお、jは0,1,2のいずれかの値を取る。αc(j)は、サービングセルcから通知される上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータであり、0~1の値を取る。PLcはサービングセルcに対する下り(ダウンリンク)のパスロスである。PLcは、無線端末において測定された受信電力と、無線基地局から報知情報(SIB2: System Information Block 2)で通知される送信電力との差分から求められる。ΔTF,c(i)は、サービングセルcへi番目のサブフレームのPUSCHで送信する情報量(データ量や制御情報量等)や、サービングセルcから通知される上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータに基づいて定まる値である。最後に、fc(i)は、サービングセルcから下位レイヤの制御情報(DCI: Downlink Control Information)で通知されるTPC(Transmission Power Control)コマンドに基づいて定まる値である。 Each parameter constituting the expression (2) will be briefly described. M PUSCH, c (i) is a bandwidth (number of resource blocks) allocated to the PUSCH of the i-th subframe from the serving cell c. P O_PUSCH, c (j) is a value determined based on a parameter included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell c. Note that j takes a value of 0, 1, or 2. α c (j) is a parameter included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell c, and takes a value of 0 to 1. PL c is a downlink path loss for the serving cell c. PL c is obtained from the difference between the received power measured at the wireless terminal and the transmission power notified from the wireless base station by broadcast information (SIB2: System Information Block 2). Δ TF, c (i) is the amount of information (data amount, control information amount, etc.) transmitted from the serving cell c to the serving cell c using the PUSCH of the i-th subframe, and higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) is a value determined based on the parameters included. Finally, f c (i) is a value determined based on a TPC (Transmission Power Control) command notified from lower serving layer control information (DCI: Downlink Control Information) from serving cell c.
 式(2)で規定されるPUSCHの送信電力は、端的に次のように説明することができる。式(2)を構成する各項は3つのグループに分けることができる。1番目のグループの各項はPO_PUSCH,c(j)とαc(j)・PLcであり、2番目のグループの各項は10log10(MPUSCH,c(i))とΔTF,c(i)であり、3番目のグループの各項はfc(i)である。ここで、1番目のグループの各項は、上位レイヤシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータ等によって求められ、サブフレーム番号に依存しない(iの関数となっていない)ものとなっている。ここで、上位レイヤシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)は、通常は、無線端末が接続時において無線基地局から受信するものであり、その後は当該無線基地局に接続している限りは受信しないものである。そのため、1番目のグループの各項は、無線端末が無線基地局に一旦接続(電源投入時や無線基地局間の移動時)した後は、当該無線基地局に接続している限りは通常は値が変わらない。 The PUSCH transmission power defined by Equation (2) can be briefly described as follows. Each term constituting Equation (2) can be divided into three groups. Each term in the first group is P O_PUSCH, c (j) and α c (j) · PL c , and each term in the second group is 10 log 10 (M PUSCH, c (i)) and Δ TF, c (i), and each term in the third group is f c (i). Here, each item of the first group is determined by parameters included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) and does not depend on the subframe number (not a function of i). It has become. Here, upper layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) is normally received from a wireless base station when a wireless terminal is connected, and then received as long as the wireless terminal is connected to the wireless base station. It is something that does not. Therefore, each term of the first group is usually set as long as the wireless terminal is connected to the wireless base station once it is connected to the wireless base station (when power is turned on or moved between wireless base stations). The value does not change.
 次に、2番目のグループの各項は、報知情報(SIB2)や上位レイヤシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータと、サブフレーム毎の送信規模に関するパラメータ(帯域幅や送信情報量)とで定まるものとなっている。ここで、報知情報(SIB2)や上位レイヤシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)は、通常は、無線端末が接続時において無線基地局から受信するものであり、その後は当該無線基地局に接続している限りは受信しないものである。したがって、2番目のグループの各項は、サブフレーム毎の送信規模が一定である場合には、無線基地局に接続している間は通常は値が変わらない。 Next, each item of the second group includes parameters included in broadcast information (SIB2) and higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) and parameters related to transmission scale for each subframe (bandwidth and transmission information). Quantity). Here, broadcast information (SIB2) and higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) are normally received from the radio base station when the radio terminal is connected, and then connected to the radio base station. As long as it is, it will not receive. Therefore, when the transmission scale for each subframe is constant, the values of the terms in the second group usually do not change while connected to the radio base station.
 以上から、無線端末が無線基地局に接続後に、当該無線基地局の圏内での移動等により無線環境が悪化(もしくは良化)したことに基づいてPUSCHの送信電力を増加(もしくは減少)させることは、1番目及び2番目のグループの各項では実現できない。すなわち、式(2)における前述した1番目及び2番目のグループの各項には、無線基地局に接続中の無線端末に対して、無線環境が変化した場合にPUSCHの送信電力を調整するための成分は含まれていないと言うことができる。このようなPUSCHの送信電力の調整するための成分に相当するのが3番目のグループであるfc(i)すなわちTPCコマンドである。LTEシステムにおいて、TPCコマンドは、無線基地局が無線端末のPUSCHの送信電力を無線環境の変化に応じて調整するための唯一の手段である。無線基地局は、必要に応じて、TPCコマンドを無線端末に対してサブフレーム毎に送信することができる。これにより、無線基地局は無線端末のPUSCHの送信電力の調整をサブフレーム毎に行うことが可能となる。 From the above, after the wireless terminal is connected to the wireless base station, the transmission power of the PUSCH is increased (or decreased) based on the deterioration (or improvement) of the wireless environment due to movement within the area of the wireless base station. Cannot be realized with terms in the first and second groups. In other words, the terms of the first and second groups in Equation (2) described above are for adjusting the transmission power of the PUSCH when the radio environment changes for the radio terminal connected to the radio base station. It can be said that the component of is not contained. The third group fc (i), that is, the TPC command corresponds to the component for adjusting the PUSCH transmission power. In the LTE system, the TPC command is the only means for the radio base station to adjust the PUSCH transmission power of the radio terminal according to changes in the radio environment. The radio base station can transmit a TPC command to the radio terminal for each subframe as necessary. As a result, the radio base station can adjust the transmission power of the PUSCH of the radio terminal for each subframe.
 以降は説明を単純化するために、上りの送信規模(帯域幅や送信情報量)が一定であるという前提を置く。この前提の下では、無線基地局に接続中の無線端末のPUSCHの送信電力は、当該無線基地局から受信するTPCコマンドのみに基づいて変化することになる。 In the following, in order to simplify the explanation, it is assumed that the uplink transmission scale (bandwidth and amount of transmission information) is constant. Under this premise, the PUSCH transmission power of the radio terminal connected to the radio base station changes based only on the TPC command received from the radio base station.
 次に、LTEシステムのTPCコマンドについて説明する。TPCコマンドは、下りの制御情報であるDCI(Downlink Control Information)に含まれる。DCIは物理レイヤ(L1:Layer 1)における下りの制御情報である。DCIについてはいくつかのフォーマットが規定されており、それらは送信電力の制御対象である上り信号(上りチャネル)に応じて使い分けられる。 Next, the TPC command of the LTE system will be described. The TPC command is included in DCI (Downlink Control Information) that is downlink control information. DCI is downlink control information in the physical layer (L1: Layer 1). Several formats are defined for DCI, and they are used properly according to the uplink signal (uplink channel) that is the object of transmission power control.
 送信電力の制御対象が上りデータチャネルであるPUSCHである場合を例に、TPCおよびDCIを説明する。PUSCHに対するTPCコマンドは、DCIのフォーマット0、3、3Aまたは4のいずれかに格納されて無線基地局から無線端末へ送信される。 The TPC and DCI will be described by taking as an example the case where the transmission power control target is PUSCH, which is an uplink data channel. The TPC command for PUSCH is stored in one of DCI formats 0, 3, 3A, or 4, and transmitted from the radio base station to the radio terminal.
 DCIフォーマット0と4とは、無線基地局が無線端末に上りデータを送信させる場合に使用される下り制御情報である。DCIフォーマット0は上りデータの送信を単一アンテナで行う場合に使用され、DCIフォーマット4は上りデータの送信を複数アンテナで行う場合に使用される。DCIフォーマット0や4には、TPCコマンドの他、上りデータを送信するための無線リソース割当を示すパラメータや、上りデータを送信する際の符号化方式および変調方式を指定するパラメータであるMCS(Modulation Coding Scheme)等が含まれる。DCIフォーマット0や4は、無線基地局が無線端末に上りデータ送信を許可する場合に送信されるため、UL Grantと呼ばれることがある。 DCI formats 0 and 4 are downlink control information used when the radio base station transmits uplink data to the radio terminal. DCI format 0 is used when uplink data is transmitted with a single antenna, and DCI format 4 is used when uplink data is transmitted with a plurality of antennas. In DCI formats 0 and 4, in addition to the TPC command, a parameter indicating radio resource allocation for transmitting uplink data, and a parameter for specifying an encoding method and a modulation method for transmitting uplink data are MCS (Modulation Coding Scheme). Since DCI formats 0 and 4 are transmitted when the radio base station permits uplink data transmission to the radio terminal, they are sometimes called UL Grant.
 図2Aに、DCIフォーマット0または4のTPCコマンドの値と、送信電力の変化分の対応を示す。DCIフォーマット0や4のTPCコマンドは2ビットの情報であり、4種類の値を取る。4種類の値はそれぞれ-1、0、+1、+3の送信電力変化分に対応する。無線端末はこれらのTPCコマンドの値に応じて、式(2)に基づいて送信電力を決定する。例えば、TPCコマンドの値が-1の場合、無線端末は式(2)に基づいて送信電力を1dB減らす。反対に、TPCコマンドの値が+1や+3の場合、無線端末は式(2)に基づいて送信電力を1dBまたは3dB増やす。TPCコマンドの値が0の場合、無線端末は式(2)に基づいて送信電力を変化させない。 Fig. 2A shows the correspondence between TPC command values in DCI format 0 or 4 and changes in transmission power. DCI format 0 and 4 TPC commands are 2-bit information and take four values. The four types of values correspond to transmission power changes of −1, 0, +1, and +3, respectively. The wireless terminal determines transmission power based on Equation (2) according to the values of these TPC commands. For example, when the value of the TPC command is −1, the wireless terminal reduces the transmission power by 1 dB based on Equation (2). On the other hand, when the value of the TPC command is +1 or +3, the wireless terminal increases the transmission power by 1 dB or 3 dB based on Equation (2). When the value of the TPC command is 0, the wireless terminal does not change the transmission power based on Equation (2).
 一方、DCIフォーマット3と3Aとは、主に、semi-persistent schedulingされる上りデータの送信電力制御、あるいは、persistent schedulingされる下りデータに対する上りACK/NACK応答信号の送信電力制御で用いられるTPCコマンドの伝送のために用いられるものである。Semi-persistent schedulingは主に音声パケットのように決まった周期で送信され大きさがある程度一定なデータの送信に適用され、データは事前に割り当てられた無線リソースと無線パラメータを用いて送信される。事前に割り当てられた無線リソースとは異なるリソースを使って送信される時や再送時を除き、semi-persistent schedulingされる上りデータの送信の指示には、下り制御信号が使用されない。そのため、TPCコマンドを端末に送信することができない。そこで、TPCコマンド送信専用のDCIフォーマット3あるいは3Aが用いられる。1個のDCIフォーマット3/3Aを用い、同時に、十数個の端末にTPCコマンドを送信することが可能である。なお、DCIフォーマット3と3Aで送信電力を調整される上り信号(上りチャネル)は、上りデータチャネルであるPUSCHに加えて上り制御チャネルであるPUCCHを含む。 On the other hand, DCI formats 3 and 3A are mainly TPC commands used for transmission power control of uplink data that is semi-persistent scheduled or transmission power control of uplink ACK / NACK response signal for downlink data that is persistent scheduled. It is used for transmission. Semi-persistent scheduling is mainly applied to transmission of data that is transmitted at a fixed period such as a voice packet and has a certain size, and the data is transmitted using radio resources and radio parameters assigned in advance. A downlink control signal is not used for an instruction to transmit uplink data that is semi-persistent-scheduled except when it is transmitted using a resource different from the radio resource allocated in advance or at the time of retransmission. Therefore, the TPC command cannot be transmitted to the terminal. Therefore, DCI format 3 or 3A dedicated to TPC command transmission is used. Using one DCI format 3 / 3A, it is possible to simultaneously transmit TPC commands to more than a dozen terminals. Note that the uplink signal (uplink channel) whose transmission power is adjusted in DCI formats 3 and 3A includes the uplink control channel PUCCH in addition to the uplink data channel PUSCH.
 DCIフォーマット3のTPCコマンドは2ビットの情報であり、図2Aと同様となる。これに対し、DCIフォーマット3AのTPCコマンドは1ビットの情報であり、図2Bのようになる。TPCコマンドの値が-1の場合、無線端末は式(2)に基づいて送信電力を1dB減らす。また、TPCコマンドの値が+1場合、無線端末は式(2)に基づいて送信電力を1dB増やす。 The TPC command of DCI format 3 is 2-bit information and is the same as FIG. 2A. In contrast, the DCI format 3A TPC command is 1-bit information, as shown in FIG. 2B. When the value of the TPC command is −1, the wireless terminal reduces the transmission power by 1 dB based on Equation (2). When the value of the TPC command is +1, the wireless terminal increases the transmission power by 1 dB based on Equation (2).
 なお、以降の説明においては、特に図中や図に関する説明中で、例えばDCIフォーマット0をDCI0と表記することがある。他のDCIフォーマットについても同様である。 In the following description, DCI format 0 may be referred to as DCI0, for example, in the drawings and the descriptions related to the drawings. The same applies to other DCI formats.
 図3に、PUSCHに対する送信電力制御の処理シーケンスの一例を示す。多くの国で採用されている周波数分割複信(FDD: Frequency Division Duplex)方式の場合、無線端末20は、DCI0を受信したサブフレームから4個後のサブフレームにおいて、当該DCI0に基づく上りのデータ送信を行う。今、図3のS101において、TPCコマンドの値が0である(これ以降の文中や図中においてはTPC=0と表記する)DCI0を、無線端末20が無線基地局10から受信したとする。次に、S102(S101の4サブフレーム後)において、S101のDCI0に対応する上りデータを、無線端末20が無線基地局10に対し式2で定義される送信電力PPUSCH[dBm]でPUSCHを介して送信したとする。なお、前述したように、説明の単純化のため、上りの送信規模(帯域幅や送信情報量)は一定であるという前提を置くことにする。 FIG. 3 shows an example of a processing sequence of transmission power control for PUSCH. In the case of the frequency division duplex (FDD) method adopted in many countries, the radio terminal 20 transmits uplink data based on the DCI0 in a subframe four frames after the DCI0 received subframe. Send. Now, in S101 of FIG. 3, it is assumed that the radio terminal 20 receives from the radio base station 10 DCI0 whose value of the TPC command is 0 (denoted as TPC = 0 in the following text and in the figure). Next, in S102 (after 4 subframes of S101), the uplink data corresponding to DCI0 of S101 is transmitted from the wireless terminal 20 to the wireless base station 10 using the transmission power P PUSCH [dBm] defined by Equation 2 as PUSCH. Suppose that it is transmitted via. As described above, for simplification of description, it is assumed that the uplink transmission scale (bandwidth and transmission information amount) is constant.
 次に図3のS103において、TPC=+3であるDCI0を、無線端末20が無線基地局10から受信している。このとき、S104(S103の4サブフレーム後)において、S103のDCI0に対応する上りデータを、無線端末20が無線基地局10に送信電力PPUSCH+3[dBm]でPUSCHを介して送信することになる。すなわち、無線端末20はTPCコマンドに基づいて、PUSCHの送信電力をそれまでの値PPUSCH[dBm]から3dBだけ増加させる。さらにS105において、TPC=-1であるDCI3を、無線端末20が無線基地局10から受信したとする。このとき、無線端末20はPUSCHの送信電力をそれまでの値PPUSCH+3[dBm]から1dBだけ減少させ、PPUSCH+2[dBm]とする。なお、DCI3はDCI0と異なり、無線端末20にPUSCHの送信を促す制御情報ではないため、無線端末20はDCI3に応じたPUSCHの送信は行わない。そして図3のS106において、TPC=+1であるDCI0を、無線端末20が無線基地局10から受信している。このとき、S107(S106の4サブフレーム後)において、S106のDCI0に対応する上りデータを、無線端末20が無線基地局10に送信電力PPUSCH+3[dBm]でPUSCHを介して送信することになる。すなわち、無線端末20はTPCコマンドに基づいて、PUSCHの送信電力をそれまでの値PPUSCH+2[dBm]から1dBだけ増加させる。以上のようにして、無線基地局10は無線端末20によるPUSCHの送信電力を、TPCコマンドを送信することで調整することができる。 Next, in S103 of FIG. 3, the radio terminal 20 receives DCI0 with TPC = + 3 from the radio base station 10. At this time, in S104 (after four subframes of S103), the radio terminal 20 transmits the uplink data corresponding to DCI0 of S103 to the radio base station 10 through the PUSCH with the transmission power P PUSCH +3 [dBm]. become. That is, based on the TPC command, the radio terminal 20 increases the transmission power of the PUSCH by 3 dB from the previous value P PUSCH [dBm]. Further, it is assumed that the radio terminal 20 receives DCI3 with TPC = −1 from the radio base station 10 in S105. At this time, the radio terminal 20 reduces the transmission power of the PUSCH by 1 dB from the previous value P PUSCH +3 [dBm] to P PUSCH +2 [dBm]. Note that, unlike DCI0, DCI3 is not control information that prompts the radio terminal 20 to transmit PUSCH, so the radio terminal 20 does not transmit PUSCH according to DCI3. Then, in S106 of FIG. 3, the radio terminal 20 receives DCI0 with TPC = + 1 from the radio base station 10. At this time, in S107 (after 4 subframes in S106), the radio terminal 20 transmits the uplink data corresponding to DCI0 in S106 to the radio base station 10 via the PUSCH with the transmission power P PUSCH +3 [dBm]. become. That is, based on the TPC command, the radio terminal 20 increases the transmission power of PUSCH by 1 dB from the previous value P PUSCH +2 [dBm]. As described above, the radio base station 10 can adjust the transmission power of the PUSCH by the radio terminal 20 by transmitting the TPC command.
 次に、LTEシステムにおける上りの制御チャネルである物理上り制御チャネルPUCCH(Physical Uplink Control CHannel)の送信電力制御を説明する。PUCCHの送信電力制御は、上記で詳細に説明したPUSCHの送信電力制御と共通点が多いため、以下では簡単に説明する。 Next, transmission power control of the physical uplink control channel PUCCH (Physical Uplink Control Control CHannel), which is an uplink control channel in the LTE system, will be described. The PUCCH transmission power control has a lot in common with the PUSCH transmission power control described in detail above, and will be briefly described below.
 LTEシステムにおいて、無線端末20からサービングセル(無線端末20を管理している無線基地局10)cに対するi番目のサブフレームのPUCCHの送信電力PPUCCH(i)は以下の式(3)で決定される。
Figure JPOXMLDOC01-appb-I000003
In the LTE system, the transmission power P PUCCH (i) of the PUCCH of the i-th subframe from the radio terminal 20 to the serving cell (the radio base station 10 managing the radio terminal 20) c is determined by the following equation (3). The
Figure JPOXMLDOC01-appb-I000003
ここで、最大送信電力PCMAX,c(i)以外の通常時は、PUCCHの送信電力は以下の式(4)で定められる。そのため、以降は式(4)について検討する。
Figure JPOXMLDOC01-appb-I000004
Here, in normal times other than the maximum transmission power P CMAX, c (i), the transmission power of PUCCH is determined by the following equation (4). For this reason, Equation (4) will be examined hereinafter.
Figure JPOXMLDOC01-appb-I000004
 式(4)を構成する各パラメータを簡単に説明する。PO_PUCCHは、サービングセルから通知される上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)に含まれるパラメータに基づいて定まる値である。PLcはサービングセルcに対する下り(ダウンリンク)のパスロスである。h(nCQI,nHARQ,nSR)はPUCCHのフォーマットに関連するパラメータである。ここで、nCQI、nHARQ、nSRはそれぞれ、当該サブフレームにおける上り制御情報であるCQI(Channel Quality Indicator)、HARQ(Hybrid Automatic Repeat reQuest)におけるACK(ACKnowledge)またはNACK(Negative ACKnowledge)、SR(Scheduling Request)のビット数である。ΔF_PUCCH(F)は、サービングセルから上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)で通知され、PUCCHのフォーマットFに関連する。ΔTxD(F')は、PUCCHが2つのアンテナポートで送信される場合にサービングセルから上位レイヤのシグナリング(RRC Connection SetupまたはRRC Connection Reconfiguration)で通知され、PUCCHのフォーマットF'に関連する。最後に、g(i)は、サービングセルから下位レイヤの制御情報DCIで通知されるTPCコマンドに基づいて定まる値である。 Each parameter constituting the equation (4) will be briefly described. PO_PUCCH is a value determined based on parameters included in higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) notified from the serving cell. PL c is a downlink path loss for the serving cell c. h (n CQI , n HARQ , n SR ) is a parameter related to the PUCCH format. Here, n CQI , n HARQ , n SR are CQI (Channel Quality Indicator) which is uplink control information in the subframe, ACK (ACKnowledge) or NACK (Negative ACKnowledge), SRACK in HARQ (Hybrid Automatic Repeat reQuest), respectively. This is the number of bits in (Scheduling Request). Δ F_PUCCH (F) is notified by higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) from the serving cell, and is related to PUCCH format F. Δ TxD (F ′) is reported from the serving cell through higher layer signaling (RRC Connection Setup or RRC Connection Reconfiguration) when PUCCH is transmitted through two antenna ports, and is related to PUCCH format F ′. Finally, g (i) is a value determined based on the TPC command notified from the serving cell by the lower layer control information DCI.
 式(4)を構成する各項を、式(2)と同様に説明すると、1番目のグループの各項はPO_PUCCHとPLcとが対応する。また、2番目の各項は、h(nCQI,nHARQ,nSR)とΔF_PUCCH(F)とΔTxD(F')とが対応する。そして、3番目のグループの各項は、g(i)が対応する。したがって、PUCCHについても先に説明したPUSCHと同様に、TPCコマンドが、無線基地局10が無線端末20の送信電力を無線環境の変化に応じて調整するための唯一の手段である。無線基地局10は、必要に応じて、TPCコマンドを無線端末20に対してサブフレーム毎に送信することができる。これにより、無線基地局10は無線端末20のPUCCHの送信電力の調整をサブフレーム毎に行うことが可能となる。 Each term constituting the expression (4) will be described in the same manner as the expression (2). Each term of the first group corresponds to P O_PUCCH and PL c . Each second term corresponds to h (n CQI , n HARQ , n SR ), Δ F_PUCCH (F), and Δ TxD (F ′). Each term in the third group corresponds to g (i). Therefore, the TPC command is the only means for the PUCCH for the radio base station 10 to adjust the transmission power of the radio terminal 20 in accordance with changes in the radio environment, similarly to the PUSCH described above. The radio base station 10 can transmit a TPC command to the radio terminal 20 for each subframe as necessary. As a result, the radio base station 10 can adjust the transmission power of the PUCCH of the radio terminal 20 for each subframe.
 以降は説明を単純化するために、上りの送信規模(送信情報量等)が一定であるという前提を置く。この前提の下では、無線基地局10に接続中の無線端末20のPUCCHの送信電力は、当該無線基地局10から受信するTPCコマンドのみに基づいて変化することになる。 Hereafter, in order to simplify the explanation, it is assumed that the uplink transmission scale (transmission information amount, etc.) is constant. Under this assumption, the transmission power of the PUCCH of the radio terminal 20 connected to the radio base station 10 changes based only on the TPC command received from the radio base station 10.
 次に、TPCコマンドを含む制御情報であるDCIのうちで、PUCCHに関するものを説明する。
PUCCHに対するTPCコマンドは、DCIのフォーマット1、1A、1B、1C、2、2A、2B、2C、3または3Aのいずれかに格納されて無線基地局10から無線端末20へ送信される。このうちDCIフォーマット3と3Aについては既に説明済みなのでここでは説明を省略する。
Next, the DCI related to the PUCCH among the DCIs that are control information including the TPC command will be described.
The TPC command for PUCCH is stored in one of DCI formats 1, 1A, 1B, 1C, 2, 2A, 2B, 2C, 3 or 3A and transmitted from the radio base station 10 to the radio terminal 20. Of these, the DCI formats 3 and 3A have already been described, and a description thereof will be omitted here.
 DCIフォーマット1、1A、1B、1C、2、2A、2B、2Cとは、無線基地局10が無線端末20に下りデータを送信する場合に使用される下り制御情報である。DCIフォーマット1、1A、1B、1Cは、PDSCH codewordが1個の下りデータの送信を行う場合に使用され、DCIフォーマット2、2A、2B、2CはPDSCH codewordが2個の下りデータの送信を行う場合に使用される。これらのDCIフォーマットには、TPCコマンドの他、下りデータを送信するための無線リソース割当を示すパラメータや、下りデータを送信する際の符号化方式および変調方式を指定するパラメータであるMCS等が含まれる。DCIフォーマット1、1A、1B、1Cの違いの一つは、無線リソース割当の規則が異なることであるが、ここでは説明を割愛する。DCIフォーマット2、2A、2B、2Cの違いについても同様である。DCIフォーマット1、1A、1B、1C、2、2A、2B、2CのTPCコマンドは2ビットの情報であり、図2Aと同様となる。 DCI formats 1, 1A, 1B, 1C, 2, 2A, 2B, and 2C are downlink control information used when the radio base station 10 transmits downlink data to the radio terminal 20. DCI formats 1, 1A, 1B and 1C are used when PDSCH codeword transmits one downlink data, and DCI formats 2, 2A, 2B and 2C transmit two downlink data with PDSCH codeword. Used when. These DCI formats include a TPC command, parameters indicating radio resource allocation for transmitting downlink data, MCS that is a parameter for specifying a coding scheme and a modulation scheme for transmitting downlink data, and the like. It is. One of the differences between the DCI formats 1, 1A, 1B, and 1C is that the radio resource allocation rules are different, but a description thereof is omitted here. The same applies to the difference between DCI formats 2, 2A, 2B, and 2C. The DCI format 1, 1A, 1B, 1C, 2, 2A, 2B, and 2C TPC commands are 2-bit information and are the same as in FIG. 2A.
 図4に、PUCCHに対する送信電力制御の処理シーケンスの一例を示す。多くの国で採用されているFDD方式の場合、無線端末20は、DCI1および当該DCI1に基づく下りデータを受信したサブフレームから4個後のサブフレームにおいて、当該下りデータに対応する上りの応答信号(ACKまたはNACK)の送信をPUCCHを介して行う。今、図4のS201において、TPC=0であるDCI1と当該DCI1に基づく下りデータとを、無線端末20が無線基地局10から受信したとする。次に、S202(S201の4サブフレーム後)において、S201の下りデータに対応する応答信号(ACK/NACK)を、無線端末20が無線基地局10に対し式4で定義される送信電力PPUCCH[dBm]でPUCCHを介して送信したとする。なお、前述したように、説明の単純化のため、上りの送信規模(送信情報量)は一定であるという前提を置くことにする。 FIG. 4 shows an example of a processing sequence of transmission power control for PUCCH. In the case of the FDD scheme adopted in many countries, the radio terminal 20 transmits an uplink response signal corresponding to the downlink data in a subframe that is four frames after the DCI1 and the subframe that received the downlink data based on the DCI1. (ACK or NACK) is transmitted via PUCCH. Now, it is assumed that the radio terminal 20 receives from the radio base station 10 DCI1 with TPC = 0 and downlink data based on the DCI1 in S201 of FIG. Next, in S202 (after four subframes of S201), the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S201 to the transmission power P PUCCH defined by Equation 4 for the wireless base station 10. Assume that transmission is performed via PUCCH at [dBm]. As described above, for the sake of simplicity, it is assumed that the uplink transmission scale (transmission information amount) is constant.
 次に図4のS203において、TPC=+3であるDCI1と当該DCI1に基づく下りデータとを、無線端末20が無線基地局10から受信している。このとき、S204(S203の4サブフレーム後)において、S203の下りデータに対応する応答信号(ACK/NACK)を、無線端末20が無線基地局10に送信電力PPUCCH+3[dBm]でPUCCHを介して送信することになる。すなわち、無線端末20はTPCコマンドに基づいて、PUCCHの送信電力をそれまでの値PPUCCH[dBm]から3dBだけ増加させる。さらにS205において、TPC=-1であるDCI3を、無線端末20が無線基地局10から受信したとする。このとき、無線端末20はPUCCHの送信電力をそれまでの値PPUCCH+3[dBm]から1dBだけ減少させ、PPUCCH+2[dBm]とする。なお、DCI3はDCI1と異なり、無線端末20にPUCCH(応答信号)の送信を促す制御情報ではないため、無線端末20はDCI3に応じたPUCCHの送信は行わない。 Next, in S203 of FIG. 4, the radio terminal 20 receives DCI1 with TPC = + 3 and downlink data based on the DCI1 from the radio base station 10. At this time, in S204 (after 4 subframes of S203), the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S203 to the wireless base station 10 with the transmission power P PUCCH +3 [dBm]. Will be sent through. That is, based on the TPC command, the radio terminal 20 increases the transmission power of PUCCH by 3 dB from the previous value P PUCCH [dBm]. Further, it is assumed that the radio terminal 20 receives DCI3 with TPC = −1 from the radio base station 10 in S205. At this time, the radio terminal 20 reduces the PUCCH transmission power by 1 dB from the previous value P PUCCH +3 [dBm] to P PUCCH +2 [dBm]. Unlike DCI1, DCI3 is not control information that prompts radio terminal 20 to transmit a PUCCH (response signal), so radio terminal 20 does not transmit PUCCH according to DCI3.
 次にS206において、CQIを、無線端末20が無線基地局10に送信電力PPUCCH+2[dBm]でPUCCHを介して送信している。周期的CQI(periodic CQI)の送信タイミングは無線基地局10からのシグナリングにより予め無線端末20に通知されるが、S206はその送信タイミングに対応するものである。そして図4のS207において、TPC=+1であるDCI1と当該DCI1に基づく下りデータとを、無線端末20が無線基地局10から受信している。このとき、S208(S207の4サブフレーム後)において、S207の下りデータに対応する応答信号(ACK/NACK)を、無線端末20が無線基地局10に送信電力PPUCCH+3[dBm]でPUCCHを介して送信することになる。すなわち、無線端末20はTPCコマンドに基づいて、PUCCHの送信電力をそれまでの値PPUCCH+2[dBm]から1dBだけ増加させる。以上のようにして、無線基地局10は無線端末20によるPUCCHの送信電力を、TPCコマンドを送信することで調整することができる。 Next, in S206, the radio terminal 20 transmits the CQI to the radio base station 10 via the PUCCH with the transmission power P PUCCH +2 [dBm]. The transmission timing of periodic CQI (periodic CQI) is notified to the radio terminal 20 in advance by signaling from the radio base station 10, and S206 corresponds to the transmission timing. In S207 of FIG. 4, the radio terminal 20 receives from the radio base station 10 DCI1 with TPC = + 1 and downlink data based on the DCI1. At this time, in S208 (after 4 subframes of S207), the wireless terminal 20 transmits the response signal (ACK / NACK) corresponding to the downlink data of S207 to the wireless base station 10 with the transmission power P PUCCH +3 [dBm]. Will be sent through. That is, based on the TPC command, the radio terminal 20 increases the transmission power of PUCCH by 1 dB from the previous value P PUCCH +2 [dBm]. As described above, the radio base station 10 can adjust the transmission power of the PUCCH by the radio terminal 20 by transmitting the TPC command.
 以上を踏まえ、LTEシステムにおける上りの送信電力制御の枠組みに則って、IDCに対する干渉制御を行うことについて検討する。 Based on the above, consider performing interference control for IDC in accordance with the uplink transmission power control framework in the LTE system.
 LTEシステムにおける上り送信電力制御の枠組みに則って、IDCに対する干渉制御を実現するには、一例として次のような手順(以下では便宜上、参考技術と称する)が考えられる。今、無線端末20は、第1無線通信(LTE-A等に基づく無線通信)の送信電力を低減させることより、第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)に対する干渉を低減させたいとする。このとき、無線端末20は何らかの手段によって、第1無線通信の送信電力の低減を無線基地局10に対して要求する。この要求は、例えば既存のMAC制御パラメータであるPHR(Power HeadRoom)等を流用して行うことが考えられる。無線基地局10はこの要求を受信すると、無線端末20の送信電力を下げるためにTPCコマンド(を含むDCI)を送信する。無線端末20は、受信したTPCコマンドに応じて式2や4に基づいて第1無線通信の送信電力を低減させる。 In order to realize interference control for IDC in accordance with the uplink transmission power control framework in the LTE system, the following procedure (hereinafter referred to as reference technology for convenience) can be considered as an example. Now, the wireless terminal 20 reduces the transmission power of the first wireless communication (wireless communication based on LTE-A or the like), thereby reducing the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like). Suppose you want to reduce interference. At this time, the radio terminal 20 requests the radio base station 10 to reduce the transmission power of the first radio communication by some means. For example, this request may be made by diverting an existing MAC control parameter such as PHR (Power HeadRoom). Upon receiving this request, the radio base station 10 transmits a TPC command (including DCI) to reduce the transmission power of the radio terminal 20. The radio terminal 20 reduces the transmission power of the first radio communication based on Equations 2 and 4 according to the received TPC command.
 この参考技術によれば、無線端末20において第1無線通信が第2無線通信に対して発生させる干渉が低減されるため、所望の目的を達成したようにも思われる。しかしながら、この参考技術には以下のように複数の問題がある。 According to this reference technique, since the interference generated by the first wireless communication with the second wireless communication in the wireless terminal 20 is reduced, it seems that the desired purpose has been achieved. However, this reference technique has several problems as follows.
 参考技術における第1の問題として、無線基地局10は無線端末20からPHR等により送信電力の削減を要求されても、無線端末20における第1無線通信(LTE-A等に基づく無線通信)の送信電力をどの程度下げればよいのかを見積もるのが困難なことが挙げられる。前述したように、例えば無線端末20はこの要求を、無線端末20の現在の送信電力と無線端末20の最大送信電力との差分を示すPHRにより行うことができる。しかし、PHRの値が大きければ第1無線通信の送信電力を下げない方向で制御し、PHRの値が小さければ第1無線通信の送信電力を下げる方向で制御するといった単純な制御では不十分であることは明らかである。第1無線通信の下げ幅は、第2無線通信の受けている干渉の大きさ等にも依存する為である。また、PHRは、主に、端末の送信電力をあとどの程度高くすることができるかを基地局が把握するために用いられる。 As a first problem in the reference technology, even when the radio base station 10 is requested to reduce transmission power by the PHR or the like from the radio terminal 20, the first radio communication (radio communication based on LTE-A or the like) in the radio terminal 20 is performed. It is difficult to estimate how much the transmission power should be reduced. As described above, for example, the wireless terminal 20 can make this request with a PHR indicating the difference between the current transmission power of the wireless terminal 20 and the maximum transmission power of the wireless terminal 20. However, simple control such as controlling the direction in which the transmission power of the first wireless communication is not reduced if the value of PHR is large, and controlling in the direction of decreasing the transmission power of the first wireless communication if the value of PHR is small is insufficient. It is clear that there is. This is because the amount of decrease in the first wireless communication depends on the magnitude of interference received by the second wireless communication. The PHR is mainly used for the base station to know how much the transmission power of the terminal can be increased.
 また参考技術における第2の問題として、TPCコマンドで送信電力を大きく下げるのには時間がかかるため、干渉制御が遅れることが挙げられる。上述したように、TPCで送信電力を上げる場合には、上げ幅を3dBずつとすることができる。これに対し、TPCに基づいて送信電力を下げる場合には、下げ幅を1dBとしなければならない。 Also, a second problem in the reference technology is that interference control is delayed because it takes time to greatly reduce the transmission power with the TPC command. As described above, when the transmission power is increased by TPC, the increase width can be increased by 3 dB. On the other hand, when the transmission power is reduced based on TPC, the reduction amount must be 1 dB.
 図5は、参考技術における第2の問題を示す処理シーケンスである。図5に示されるように、無線端末20が干渉検出後に送信電力を下げたい場合に、無線基地局10による1回のTPC送信(例えばDCI0に含まれる)で1dBしか送信電力を削減できない。そのため、仮に送信電力を10dB下げたい場合、無線基地局10は1dBの低減を指示するTPCコマンドを10回送信する必要がある。そのため、上記の手順においては、干渉が発生してから送信電力を所望のレベルまで下げるのに時間がかかるため、干渉抑制の遅れに繋がると考えられる。TPCコマンドは、送信電力を大きく下げるのは不得手であると解釈することもできる。 FIG. 5 is a processing sequence showing a second problem in the reference technology. As shown in FIG. 5, when the radio terminal 20 wants to reduce the transmission power after detecting interference, the transmission power can be reduced by only 1 dB with one TPC transmission (for example, included in DCI0) by the radio base station 10. For this reason, if it is desired to lower the transmission power by 10 dB, the radio base station 10 needs to transmit a TPC command for instructing a reduction of 1 dB 10 times. Therefore, in the above procedure, since it takes time to reduce the transmission power to a desired level after the occurrence of interference, it is considered that this leads to a delay in interference suppression. The TPC command can also be interpreted as not good at greatly reducing the transmission power.
 さらに参考技術における第3の問題として、TPCコマンドはそもそも任意の無線端末20の送信電力を任意のタイミングで調整する用途には不向きであることが挙げられる。前述したように、TPCコマンドはDCIの各フォーマットに含まれる。ここで、DCI0、DCI1、DCI2、DCI4は、上りデータまたは下りデータが発生しないと本来的には送信できないため、任意のタイミングで送信できない。また、DCI3、DCI3Aは、無線基地局10配下の全ての無線端末20向けなので、任意の無線端末20に向けて送信できない。したがって、任意の無線端末20に対して任意のタイミングで送信できるDCI(TPCコマンドを含む)は無いことになる。 Furthermore, as a third problem in the reference technology, the TPC command is originally unsuitable for use in adjusting the transmission power of an arbitrary wireless terminal 20 at an arbitrary timing. As described above, the TPC command is included in each DCI format. Here, DCI0, DCI1, DCI2, and DCI4 cannot be transmitted at any timing because they cannot be transmitted inherently unless uplink data or downlink data is generated. Further, since DCI3 and DCI3A are for all the radio terminals 20 under the radio base station 10, they cannot be transmitted to any radio terminal 20. Therefore, there is no DCI (including a TPC command) that can be transmitted to an arbitrary wireless terminal 20 at an arbitrary timing.
 また、下りデータが発生していなくても、任意の無線端末20の送信電力の調整を目的として、無線基地局10は特定の無線端末20向けに例えばDCI1(TPCコマンドを含む)を送信することも一応は可能であると考えられる。その場合には、無線基地局10は下りデータとして空データを送信することになる。しかし、そのような場合であっても、無線端末20は下りデータ(空データ)の復調ならびに復号および応答信号(ACK/NACK)の送信を行う必要がある。したがって、そのようなDCIの送信は、計算機資源や無線リソースの浪費の観点で好ましくないと考えられる。 Even if no downlink data is generated, the radio base station 10 transmits, for example, DCI1 (including a TPC command) to a specific radio terminal 20 for the purpose of adjusting the transmission power of an arbitrary radio terminal 20. However, it is considered possible. In that case, the radio base station 10 transmits empty data as downlink data. However, even in such a case, the radio terminal 20 needs to perform demodulation and decoding of downlink data (empty data) and transmission of a response signal (ACK / NACK). Therefore, such DCI transmission is considered undesirable from the viewpoint of wasting computer resources and radio resources.
 以上をまとめると、TPCコマンドを用いた送信電力制御に基づくIDCの干渉制御(上記の参考技術)は、複数の問題があるため、効果的に干渉制御を行うことができない。前述したようにこの問題は、発明者が従来技術を仔細に検討した結果として新たに見出したものであり、従来は知られていなかったものである。以降では、この問題を解決するための本願の各実施形態を順に説明する。 In summary, IDC interference control based on transmission power control using a TPC command (the above-mentioned reference technique) has a plurality of problems, and thus interference control cannot be performed effectively. As described above, this problem was newly found as a result of careful study of the prior art by the inventor, and has not been known so far. Hereinafter, each embodiment of the present application for solving this problem will be described in order.
[第1実施形態]
 第1実施形態は、無線端末20が送信電力を、TPCコマンドに基づいて決定される値から自律的に下げるものである。言い換えると、第1実施形態における無線通信装置(無線端末20)は、送信電力を変化または維持することを指示する第1制御信号を他無線通信装置から繰り返し受信し、該他無線通信装置に対する第1無線送信の送信電力を、該第1無線送信の前に受信した該第1制御信号に基づいて決定する無線通信装置であって、前記決定に基づく第1送信電力より小さい第2送信電力で前記第1無線送信を行う送信部を備えるものである。
[First Embodiment]
In the first embodiment, the radio terminal 20 autonomously lowers transmission power from a value determined based on a TPC command. In other words, the wireless communication device (wireless terminal 20) in the first embodiment repeatedly receives the first control signal instructing to change or maintain the transmission power from the other wireless communication device, and receives the first control signal for the other wireless communication device. A wireless communication apparatus that determines transmission power of one wireless transmission based on the first control signal received before the first wireless transmission, with a second transmission power smaller than the first transmission power based on the determination A transmission unit that performs the first wireless transmission is provided.
 本実施形態の前提を説明する。まず、無線端末20はIDCに対応しているとする。より具体的には、無線端末20は第1無線通信(LTE-A等に基づく無線通信)と、第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)とを同時に行うことができるとする。また、本実施形態においても、説明の単純化のため、上りの送信規模(帯域幅や送信情報量)は一定であるものとする。 The premise of this embodiment will be described. First, it is assumed that the wireless terminal 20 supports IDC. More specifically, the wireless terminal 20 simultaneously performs the first wireless communication (wireless communication based on LTE-A or the like) and the second wireless communication (wireless communication based on a wireless communication method other than LTE-A or the like). Suppose you can. Also in this embodiment, it is assumed that the uplink transmission scale (bandwidth and amount of transmission information) is constant for the sake of simplicity.
 図6に、第1実施形態に係る無線通信システムの処理シーケンスの一例を示す。なお、図6では一例として、送信電力制御対象をPUSCHとしているが、PUCCHやその他の送信電力制御に対しても同様に適用することができる。 FIG. 6 shows an example of a processing sequence of the wireless communication system according to the first embodiment. In FIG. 6, the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control.
 まず、図6のS401において、一例としてTPC=0であるDCI0を、無線端末20が無線基地局10から受信する。次に、S402(S401の4サブフレーム後)において、S401において受信したDCI0に対応する上りデータを、無線端末20が無線基地局10に対し式2で定義される送信電力PPUSCH[dBm]で送信する。なお、図6のS401~S402は、図3のS101~S102等に対応する処理である。 First, in S401 of FIG. 6, the radio terminal 20 receives DCI0 with TPC = 0 as an example from the radio base station 10. Next, in S402 (after four subframes of S401), the uplink data corresponding to DCI0 received in S401 is transmitted to the radio base station 10 by the radio terminal 20 using the transmission power P PUSCH [dBm] defined by Equation 2. Send. 6 are processes corresponding to S101 to S102 in FIG.
 次に、図6のS403において無線端末20は、IDCの第1無線通信(LTE-A等に基づく無線通信)の送信信号による第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)の受信信号に対する干渉の発生を検出する。ここで、干渉発生の検出方法は問わないものとする。例えば無線端末20は、第1無線通信の送信時に、第2無線通信の受信誤り率が所定値以上であるかを判断することにより、干渉発生を検出することができる。ここで第1無線通信の送信としては、スケジューリング用の上りの参照信号であるSRS(Sounding Reference Signal)の送信であっても良いし、データ信号(PUSCH)や制御信号(PUCCH)の送信でも良い。また、S403においては、干渉発生の有無のみならず、発生した干渉の大きさを測定(検出)してもよい。例えば無線端末20は、第1無線通信の送信時の第2無線通信の受信誤り率と所定値との差分値を、発生した干渉の大きさとすることができる。 Next, in S403 of FIG. 6, the wireless terminal 20 performs wireless communication based on a wireless communication method other than LTE-A or the like using a transmission signal of IDC first wireless communication (wireless communication based on LTE-A or the like). The occurrence of interference with the received signal is detected. Here, the detection method of interference generation shall not be ask | required. For example, the wireless terminal 20 can detect the occurrence of interference by determining whether the reception error rate of the second wireless communication is equal to or greater than a predetermined value when transmitting the first wireless communication. Here, the transmission of the first wireless communication may be transmission of an SRS (Sounding Reference Signal) that is an uplink reference signal for scheduling, or transmission of a data signal (PUSCH) or a control signal (PUCCH). . In S403, the magnitude of the generated interference may be measured (detected) as well as the presence or absence of the occurrence of interference. For example, the radio terminal 20 can set the difference value between the reception error rate of the second radio communication at the time of transmission of the first radio communication and a predetermined value as the magnitude of the generated interference.
 図6のS404において無線端末20は、第1無線通信の送信電力削減量ΔP[dB]を決定する。ここで、送信電力削減量の決定方法は問わないものとする。例えば無線端末20は、S403で検出した干渉の大きさに基づいて、送信電力削減量を決定することができる。 In S404 of FIG. 6, the wireless terminal 20 determines the transmission power reduction amount ΔP [dB] of the first wireless communication. Here, the transmission power reduction amount determination method is not limited. For example, the radio terminal 20 can determine the transmission power reduction amount based on the magnitude of interference detected in S403.
 次に図6のS405において無線端末20は、一例としてTPC=0であるDCI0を、無線基地局10から受信する。このときS406(S405の4サブフレーム後)において無線端末20は、S405で受信したDCI0に対応する上りデータを、無線端末20が無線基地局10に送信電力PPUSCH-ΔP[dBm]で送信する。 Next, in S405 of FIG. 6, the radio terminal 20 receives DCI0 with TPC = 0 from the radio base station 10 as an example. At this time, in S406 (after 4 subframes of S405), the radio terminal 20 transmits the uplink data corresponding to DCI0 received in S405 to the radio base station 10 with the transmission power P PUSCH -ΔP [dBm]. .
 ここで、IDCによる干渉発生後の無線端末20の送信電力について、前述した参考技術と本実施形態とを比較検討する。参考技術を示す図5で干渉検出(S303)後の無線端末20の上りデータ送信に対応するS306においては、無線端末20はPUSCHに対するそれまでの送信電力PPUSCH[dBm]をTPCコマンド(S305)の値-1[dBm]に基づいて調整することで、PUSCHの送信電力PPUSCH-1[dBm]を決定していた。これに対し図6で干渉検出後の無線端末20の上りデータ送信に対応するS406においては、無線端末20はPUSCHに対するそれまでの送信電力PPUSCH[dBm]に対し、検出された干渉(S403)に基づいて決定した送信電力削減量ΔP(S404)を減じた上で、さらにTPCコマンド(S405)の値0[dB]に基づいて調整することで、PUSCHの送信電力PPUSCH-ΔP[dBm]を決定する。すなわち、第1実施形態に係る図6のS406の方が図3のS104よりも、干渉に基づいて決定した送信電力削減量ΔPの分だけ送信電力が低くなる。 Here, regarding the transmission power of the wireless terminal 20 after the occurrence of interference due to IDC, the above-described reference technique and this embodiment are compared. In S306 corresponding to uplink data transmission of the radio terminal 20 after interference detection (S303) in FIG. 5 showing the reference technique, the radio terminal 20 uses the TPC command (S305) to transmit the transmission power P PUSCH [dBm] for the PUSCH so far. The PUSCH transmission power P PUSCH -1 [dBm] is determined by adjusting based on the value of -1 [dBm]. On the other hand, in S406 corresponding to the uplink data transmission of the radio terminal 20 after interference detection in FIG. 6, the radio terminal 20 detects the detected interference with respect to the transmission power P PUSCH [dBm] so far with respect to the PUSCH (S403). After reducing the transmission power reduction amount ΔP (S404) determined based on the above, and further adjusting based on the value 0 [dB] of the TPC command (S405), the PUSCH transmission power P PUSCH −ΔP [dBm] To decide. That is, the transmission power in S406 of FIG. 6 according to the first embodiment is lower by the transmission power reduction amount ΔP determined based on the interference than in S104 of FIG.
 一例としてS404で決定された送信電力削減量ΔPが10[dB]とする。このとき、第1実施形態に係る図6では、干渉発生後のPUSCHの送信電力を、参考技術に係る図5のように10回のTPCコマンド(TPC=-1)を受信することなく、干渉発生前のPUSCHの送信電力から10[dB]低減することが可能となる。これにより、第1無線通信の送信信号による第2無線通信の受信信号に対する干渉が発生した後に、第1無線通信の送信電力を迅速に大幅に下げることができる。したがって、第1実施形態によれば、第1無線通信の送信信号による第2無線通信の受信信号に対する干渉を迅速且つ大幅に低減することが可能となる。 As an example, the transmission power reduction amount ΔP determined in S404 is 10 [dB]. At this time, in FIG. 6 according to the first embodiment, the transmission power of the PUSCH after the interference is generated without receiving 10 TPC commands (TPC = −1) as in FIG. 5 according to the reference technique. It is possible to reduce the transmission power of PUSCH before the occurrence by 10 [dB]. As a result, the transmission power of the first wireless communication can be rapidly and greatly reduced after the interference of the transmission signal of the first wireless communication with the reception signal of the second wireless communication occurs. Therefore, according to the first embodiment, it is possible to quickly and significantly reduce interference between the transmission signal of the first wireless communication and the reception signal of the second wireless communication.
 なお、S406の後において、無線基地局10は無線端末20に送信電力を上げることを指示するTPCコマンド(例えばTPC=+3)を含むDCIを送信するかもしれない(不図示)。無線基地局10は、無線端末20が自律的に送信電力を下げたことを認識できないためである。このとき無線端末20は、TPCコマンドに基づいて送信電力を上げてもよいし、TPCコマンドを無視して送信電力を維持してもよい。TPCコマンドを無視する場合、その期間は所定期間であってもよいし、所定条件を満たす期間としてもよい。ここで所定条件は、例えば第2無線通信の受信が継続中であるか否かとすることができる。 Note that after S406, the radio base station 10 may transmit a DCI including a TPC command (for example, TPC = + 3) instructing the radio terminal 20 to increase transmission power (not shown). This is because the radio base station 10 cannot recognize that the radio terminal 20 has autonomously reduced transmission power. At this time, the radio terminal 20 may increase the transmission power based on the TPC command, or may ignore the TPC command and maintain the transmission power. When the TPC command is ignored, the period may be a predetermined period or may be a period that satisfies a predetermined condition. Here, the predetermined condition can be, for example, whether reception of the second wireless communication is ongoing.
 また、S406の後において、所定期間の経過後または所定条件を満たす場合に、無線端末20は送信電力を自律的に増加してもよい。所定条件は、例えば第2無線通信の受信が継続中であるか否かとすることができる。 Further, after S406, the radio terminal 20 may autonomously increase the transmission power after a predetermined period has elapsed or when a predetermined condition is satisfied. The predetermined condition may be, for example, whether reception of the second wireless communication is ongoing.
 以上説明した第1実施形態によれば、IDCに基づく干渉が発生した場合に、干渉源である無線通信の送信電力を迅速に大幅に下げることができる。したがって、第1実施形態によれば、IDCに基づく干渉を迅速且つ大幅に低減することが可能となる。 According to the first embodiment described above, when interference based on IDC occurs, it is possible to quickly and significantly reduce the transmission power of wireless communication that is an interference source. Therefore, according to the first embodiment, interference based on IDC can be quickly and significantly reduced.
[第2実施形態]
 第2実施形態は、無線端末20が送信電力を自律的に下げる旨を無線基地局10に通知するものである。言い換えると、第2実施形態における無線通信装置(無線端末20)は、第1実施形態における無線通信装置であって、前記送信部はさらに、前記第2送信電力で前記第1無線送信を行うことを示す第2制御信号を前記他無線通信装置に送信するものである。
[Second Embodiment]
In the second embodiment, the radio terminal 20 notifies the radio base station 10 that the transmission power is autonomously reduced. In other words, the wireless communication device (wireless terminal 20) in the second embodiment is the wireless communication device in the first embodiment, and the transmission unit further performs the first wireless transmission with the second transmission power. Is transmitted to the other wireless communication device.
 第2実施形態は、第1実施形態と共通する点が多い。以下では第2実施形態において第1実施形態と異なる点を中心に説明する。 The second embodiment has many points in common with the first embodiment. In the following, the second embodiment will be described with a focus on differences from the first embodiment.
 第2実施形態における前提は第1実施形態と同様である。無線端末20はIDCに対応しており、より具体的には、無線端末20は第1無線通信(LTE-A等に基づく無線通信)と、第2無線通信(LTE-A等以外の無線通信方式に基づく無線通信)とを同時に行うことができるとする。また、説明の単純化のため、上りの送信規模(帯域幅や送信情報量)は一定であるものとする。 The premise in the second embodiment is the same as that in the first embodiment. The wireless terminal 20 is compatible with IDC, and more specifically, the wireless terminal 20 includes a first wireless communication (wireless communication based on LTE-A or the like) and a second wireless communication (wireless communication other than LTE-A or the like). Wireless communication based on the system) can be performed simultaneously. For simplicity of explanation, it is assumed that the uplink transmission scale (bandwidth and transmission information amount) is constant.
 図7に、第2実施形態に係る無線通信システムの処理シーケンスの一例を示す。なお、図7では一例として、送信電力制御対象をPUSCHとしているが、PUCCHやその他の送信電力制御に対しても同様に適用することができる。まず、図7のS501~S504は、図6のS401~S404と同様のため、ここでの説明は割愛する。 FIG. 7 shows an example of a processing sequence of the wireless communication system according to the second embodiment. In FIG. 7, the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control. First, since S501 to S504 in FIG. 7 are the same as S401 to S404 in FIG. 6, the description thereof is omitted here.
 図7のS505において無線端末20は、送信電力を削減する旨の通知である送信電力削減通知を無線基地局10に通知する。送信電力削減通知は、S504で決定した送信電力削減量を含むものであって良い。送信電力削減通知は、例えば上りのRRCシグナリングによって行うことができる。なお、送信電力削減通知を送信する際の送信電力には、S504で決定した送信電力削減量を反映しないで維持するのが望ましい(通信の確実性を重視するため)が、反映して削減しても構わない。 In S505 of FIG. 7, the wireless terminal 20 notifies the wireless base station 10 of a transmission power reduction notification that is a notification to reduce the transmission power. The transmission power reduction notification may include the transmission power reduction amount determined in S504. The transmission power reduction notification can be performed by, for example, uplink RRC signaling. In addition, it is desirable to maintain the transmission power when transmitting the transmission power reduction notification without reflecting the transmission power reduction amount determined in S504 (in order to place importance on the certainty of communication). It doesn't matter.
 図7のS506において無線端末20は、一例としてDCI0を無線基地局10から受信する。ここで、無線基地局10はS505で受信した送信電力削減通知により、無線端末20が自律的に送信電力を下げることを認識している。そこで、S506で無線基地局10は、無線端末20に送信するDCI0の各パラメータに対し、受信した送信電力削減通知を反映させることができる。 In S506 of FIG. 7, the wireless terminal 20 receives DCI0 from the wireless base station 10 as an example. Here, the radio base station 10 recognizes that the radio terminal 20 autonomously lowers the transmission power based on the transmission power reduction notification received in S505. Therefore, in step S506, the radio base station 10 can reflect the received transmission power reduction notification on each parameter of DCI0 transmitted to the radio terminal 20.
 例えばS506で無線基地局10は、送信電力削減通知の受信に応じて、無線端末20に送信するDCI0に含まれるTPCコマンドの値を、所定の間、0あるいはそれ未満とすることができる。無線端末20が自律的に削減した送信電力を無線基地局10の都合で直ちに増加させては、自律的な送信電力削減の効果が弱まるためである。 For example, in step S506, the radio base station 10 can set the value of the TPC command included in DCI0 transmitted to the radio terminal 20 to 0 or less for a predetermined time in response to reception of the transmission power reduction notification. This is because if the transmission power autonomously reduced by the radio terminal 20 is immediately increased due to the convenience of the radio base station 10, the effect of autonomous transmission power reduction is weakened.
 また、S506で無線基地局10は、送信電力削減通知の受信に応じて、変調符号化方式を示すパラメータであるMCSの値を調整することができる。これにより、送信電力の削減に起因する通信特性の劣化を抑制することが可能となる。一般に無線基地局10はMCSの値を、上りの受信誤り率が一定の水準となるように定める。一方、上りの受信誤り率は、上りの信号対干渉雑音比(SINR: Signal to Interference plus Noise Ratio)に依存し、さらにSINRは信号(希望波)の送信電力に依存する。 Also, in S506, the radio base station 10 can adjust the value of MCS, which is a parameter indicating the modulation and coding scheme, in response to reception of the transmission power reduction notification. As a result, it is possible to suppress deterioration of communication characteristics due to a reduction in transmission power. In general, the radio base station 10 determines the MCS value so that the uplink reception error rate becomes a constant level. On the other hand, the uplink reception error rate depends on the uplink signal-to-interference noise ratio (SINR: Signal to Interference plus Noise Ratio), and SINR depends on the transmission power of the signal (desired signal).
 図8は、送信電力の劣化に起因する通信特性の劣化を示す図である。図8に示すように、無線基地局10は、無線端末20側の送信電力が一定の水準であること、延いてはSINRが一定の水準SINR1であることを前提とし、受信誤り率が一定の水準ER1となるようにMCSを定める。しかし、無線端末20が送信電力を自律的に削減すると、それに伴いSINRがSINR2に減少し、さらに受信誤り率がER2に増加する。このような送信電力の劣化に起因する通信特性の劣化を抑制するため、S506において無線基地局10は、送信電力削減通知が示す送信電力削減量に基づいて、送信電力削減がない場合と比べて誤りに強いMCSを選択し、当該MCSを含むDCIを無線端末20に送信することができる。 FIG. 8 is a diagram showing deterioration of communication characteristics due to deterioration of transmission power. As shown in FIG. 8, the radio base station 10 has a constant reception error rate on the premise that the transmission power on the radio terminal 20 side is at a constant level and that SINR is at a constant level SINR1. The MCS is determined to be level ER1. However, when the radio terminal 20 autonomously reduces the transmission power, SINR is reduced to SINR2 accordingly, and the reception error rate is further increased to ER2. In order to suppress the deterioration of the communication characteristics due to the deterioration of the transmission power, the radio base station 10 in S506 is based on the transmission power reduction amount indicated by the transmission power reduction notification as compared with the case where there is no transmission power reduction. An MCS that is resistant to errors can be selected, and a DCI that includes the MCS can be transmitted to the radio terminal 20.
 なお、S506におけるMCSの決定においては、予め作成したMCSテーブルを使用してもよい。ここで、MCSテーブルとは、SINRの閾値(範囲)とMCSとを対応付けたテーブルである。無線基地局10は、例えば閉ループ方式(closed-loop)等によりMCSテーブルを作成することができるが、ここでは詳細な説明は割愛する。S506において無線基地局10は、送信電力削減量に基づいて送信電力削減後のSINRの想定値を求め、当該想定値とMCSテーブルとに基づいて、MCSを選択することができる。 It should be noted that an MCS table created in advance may be used in determining the MCS in S506. Here, the MCS table is a table in which the SINR threshold (range) is associated with the MCS. The radio base station 10 can create an MCS table by, for example, a closed-loop method, but a detailed description is omitted here. In S506, the radio base station 10 can obtain an assumed value of SINR after transmission power reduction based on the transmission power reduction amount, and can select an MCS based on the assumed value and the MCS table.
 さらに無線基地局10は、S505で送信電力削減通知を受信した後に、無線端末20からの上り信号の受信の正否に影響を与える各種パラメータを調整したり、必要に応じて当該パラメータを無線端末20に通知することができる。一例として無線基地局10は、送信電力削減通知の受信に応じてHARQの上りの最大再送回数を増加して無線端末20に通知することができる。別の例として無線基地局10は、送信電力削減通知の受信に応じてHARQの上りのタイムアウト時間を長くすることができる。 Further, after receiving the transmission power reduction notification in S505, the radio base station 10 adjusts various parameters that affect the correctness of reception of the uplink signal from the radio terminal 20, or sets the parameters as necessary. Can be notified. As an example, the radio base station 10 can notify the radio terminal 20 by increasing the maximum number of HARQ uplink retransmissions in response to the reception of the transmission power reduction notification. As another example, the radio base station 10 can lengthen the HARQ uplink timeout period in response to the reception of the transmission power reduction notification.
 最後にS507(S506の4サブフレーム後)において無線端末20は、S506で受信したDCI0に対応する上りデータを、無線基地局10に送信電力PPUSCH-ΔP[dBm]で送信する。 Finally, in S507 (after 4 subframes in S506), the radio terminal 20 transmits uplink data corresponding to DCI0 received in S506 to the radio base station 10 with transmission power P PUSCH −ΔP [dBm].
 なお、S507において無線端末20は、所定条件を満たす場合に、自律的にPPUSCH-ΔP[dBm]よりも高い送信電力でPUSCHを送信することとしてもよい。仮に無線基地局10が想定していたよりも高い送信電力で無線端末20がPUSCHを送信しても、デメリットは小さいためである。一つのデメリットとして、無線基地局10が定めたMCSが過剰品質となることにより、無線リソースの利用効率が低下することが挙げられるが、その影響は限定的と考えられる。なお、自律的に送信電力を増加させるための所定条件は、例えば第2無線通信の受信が継続中ではないこととすることができる。 In S507, the radio terminal 20 may autonomously transmit the PUSCH with a transmission power higher than P PUSCH −ΔP [dBm] when the predetermined condition is satisfied. This is because even if the wireless terminal 20 transmits the PUSCH with higher transmission power than the wireless base station 10 assumes, the disadvantage is small. One demerit is that the MCS defined by the radio base station 10 becomes excessive quality, and the use efficiency of radio resources is reduced. However, the effect is considered to be limited. Note that the predetermined condition for autonomously increasing the transmission power can be, for example, that reception of the second wireless communication is not ongoing.
 また、もしS506において、もしくはそれ以降のPUSCH送信において、TPCが0以外の値であった場合、無線端末20はTPCコマンドに基づいて送信電力を変化させてもよいし、TPCコマンドを無視して送信電力を維持してもよい。 Also, if the TPC is a value other than 0 in S506 or subsequent PUSCH transmission, the wireless terminal 20 may change the transmission power based on the TPC command, or ignore the TPC command. The transmission power may be maintained.
 以上説明した第2実施形態によれば、第1実施形態と同様に、IDCに基づく干渉が発生した場合に、干渉源である無線通信の送信電力を迅速に大幅に下げることができる。したがって、第2実施形態によれば、IDCに基づく干渉を迅速且つ大幅に低減することが可能となる。 According to the second embodiment described above, similarly to the first embodiment, when interference based on the IDC occurs, the transmission power of the wireless communication that is the interference source can be quickly and significantly reduced. Therefore, according to the second embodiment, it is possible to quickly and significantly reduce IDC-based interference.
 さらに、第2実施形態によれば、第1実施形態で得られない効果を得ることができる。具体的には、無線基地局10が送信電力削減通知に応じて上り信号に関する各種のパラメータ等を調整することができることにより、無線端末20の送信電力削減に伴う受信誤りの増加を抑制する効果が得られる。 Furthermore, according to the second embodiment, an effect that cannot be obtained in the first embodiment can be obtained. Specifically, since the radio base station 10 can adjust various parameters related to the uplink signal according to the transmission power reduction notification, there is an effect of suppressing an increase in reception errors due to the transmission power reduction of the radio terminal 20. can get.
[第3実施形態]
 第1実施形態と第2実施形態とは、無線端末20aがIDCに対応していることを前提としている。しかしながら、本願発明は無線端末20aがIDCに対応していることは必須というわけではない。第3実施形態は、IDCに対応していない無線端末20aに本願発明を適用した場合に相当する実施形態である。
[Third Embodiment]
The first embodiment and the second embodiment are based on the premise that the wireless terminal 20a supports IDC. However, in the present invention, it is not essential that the wireless terminal 20a supports IDC. The third embodiment is an embodiment corresponding to a case where the present invention is applied to a wireless terminal 20a that does not support IDC.
 第3実施形態の全体を説明する。第3実施形態においては、無線端末20aがIDCに対応していることは要しない。第3実施形態においては、無線端末20a及び無線基地局10aが下りの多地点協調(CoMP: Coordinated Multiple Point)送信に対応していることを前提とする。具体的には、無線端末20aは無線基地局10aと隣接無線基地局10bとの2つから協調送信された下り信号を受信できるものとする。協調送信にはいくつかの種類があるが、ここでは無線基地局10aと隣接無線基地局10bとを高速に切り替えて一方から信号を受信する態様を想定している。 The entire third embodiment will be described. In the third embodiment, it is not necessary for the wireless terminal 20a to support IDC. In the third embodiment, it is assumed that the radio terminal 20a and the radio base station 10a are compatible with downlink multi-point coordinated (CoMP: Coordinated Multiple Point) transmission. Specifically, it is assumed that the radio terminal 20a can receive downlink signals transmitted in cooperation from the radio base station 10a and the adjacent radio base station 10b. There are several types of coordinated transmission. Here, a mode is assumed in which the radio base station 10a and the adjacent radio base station 10b are switched at high speed and signals are received from one side.
 図9に第3実施形態の処理シーケンスの一例を示す。なお、図9では一例として、送信電力制御対象をPUSCHとしているが、PUCCHやその他の送信電力制御に対しても同様に適用することができる。図9のS601~S602は、図6のS401~S402と同様な処理のため、説明は割愛する。 FIG. 9 shows an example of the processing sequence of the third embodiment. In FIG. 9, the transmission power control target is PUSCH as an example, but the present invention can be similarly applied to PUCCH and other transmission power control. Since S601 to S602 in FIG. 9 are the same processing as S401 to S402 in FIG. 6, the description thereof is omitted.
 図9のS603において隣接無線基地局10bは、S602で無線端末20aから送信された上り信号に基づいて発生した干渉を検出する。ここで、干渉発生の検出方法は問わないものとする。例えば隣接無線基地局10bは、無線端末20aの送信時に、他無線端末20b(不図示)からの受信誤り率が所定値以上であるかを判断することにより、干渉発生を検出することができる。また、S603においては、干渉発生の有無のみならず、発生した干渉の大きさを測定(検出)してもよい。例えば隣接無線基地局10bは、無線端末20aの送信時の他無線端末20bからの受信誤り率と所定値との差分値を、発生した干渉の大きさとすることができる。 In S603 of FIG. 9, the adjacent radio base station 10b detects the interference generated based on the uplink signal transmitted from the radio terminal 20a in S602. Here, the detection method of interference generation shall not be ask | required. For example, the adjacent radio base station 10b can detect the occurrence of interference by determining whether the reception error rate from the other radio terminal 20b (not shown) is equal to or higher than a predetermined value at the time of transmission of the radio terminal 20a. In S603, not only the presence / absence of interference, but also the magnitude of the generated interference may be measured (detected). For example, the adjacent radio base station 10b can set the difference value between the reception error rate from the other radio terminal 20b and the predetermined value at the time of transmission of the radio terminal 20a as the magnitude of the generated interference.
 図9のS604において隣接無線基地局10bは、無線端末20aに送信電力の削減を要求する信号である送信電力削減要求を送信する。送信電力削減要求は、S603で測定した干渉の大きさを含むものであって良い。送信電力削減通知は、例えば下りのRRCシグナリングによって行うことができる。 In S604 of FIG. 9, the adjacent radio base station 10b transmits a transmission power reduction request that is a signal requesting the radio terminal 20a to reduce transmission power. The transmission power reduction request may include the interference magnitude measured in S603. The transmission power reduction notification can be performed by downlink RRC signaling, for example.
 図9のS605において無線端末20aは、S604で受信した送信電力削減要求に応じて、送信電力削減量ΔP[dBm]を決定する。ここで、送信電力削減量の決定方法は問わないものとする。例えば無線端末20aは、S604で受信した送信電力削減要求に含まれる干渉の大きさに基づいて、送信電力削減量を決定することができる。 In S605 of FIG. 9, the radio terminal 20a determines the transmission power reduction amount ΔP [dBm] in response to the transmission power reduction request received in S604. Here, the transmission power reduction amount determination method is not limited. For example, the radio terminal 20a can determine the transmission power reduction amount based on the magnitude of interference included in the transmission power reduction request received in S604.
 次に図9のS606において無線端末20aは、一例としてTPC=0であるDCI0を、無線基地局10aから受信する。このときS607(S606の4サブフレーム後)において無線端末20aは、S606で受信したDCI0に対応する上りデータを、無線端末20aが無線基地局10aに送信電力PPUSCH-ΔP[dBm]で送信する。 Next, in S606 of FIG. 9, the radio terminal 20a receives DCI0 with TPC = 0 as an example from the radio base station 10a. At this time, in S607 (after 4 subframes of S606), the radio terminal 20a transmits the uplink data corresponding to DCI0 received in S606 to the radio base station 10a with the transmission power P PUSCH −ΔP [dBm]. .
 図9の処理シーケンスの意義を説明する。S604において隣接無線基地局10bは無線端末20aに送信電力削減要求を送信しているが、例えば隣接無線基地局10bが無線基地局10aに送信電力削減要求を送信することで、無線端末20aの送信電力を削減する方法もあるようにも思われる。しかしながら、そのような方法によれば、無線基地局10aから無線端末20aへの送信電力削減の指示は従来のTPCコマンドを用いて行うため、前述したような干渉対策実施の遅れ等の問題が残ることになる。さらに、無線基地局10a間の通信は伝送遅延が大きい(平均20msec程度)ため、干渉対策の実施はさらに遅延することになるので望ましくない。図9のように隣接無線基地局10bから無線端末20aに送信電力削減要求を直接(無線基地局10aを介さずに)送信することで、干渉対策実施までの遅延を最小限に抑制することができるのである。 The significance of the processing sequence of FIG. 9 will be described. In S604, the adjacent radio base station 10b transmits a transmission power reduction request to the radio terminal 20a. For example, when the adjacent radio base station 10b transmits a transmission power reduction request to the radio base station 10a, the transmission of the radio terminal 20a is performed. There seems to be a way to reduce power. However, according to such a method, since the instruction to reduce the transmission power from the radio base station 10a to the radio terminal 20a is performed using the conventional TPC command, problems such as the delay in implementing interference countermeasures as described above remain. It will be. Furthermore, since communication between the radio base stations 10a has a large transmission delay (average of about 20 msec), implementation of interference countermeasures is further delayed, which is not desirable. As shown in FIG. 9, by transmitting a transmission power reduction request directly from the adjacent radio base station 10b to the radio terminal 20a (without going through the radio base station 10a), it is possible to minimize the delay until the countermeasure against interference is implemented. It can be done.
 なお、図9の処理シーケンスにおいては、無線端末20aは電力削減量を決定(S605)した後に無線基地局10aに送信電力削減通知を送信していない。しかしながら、図9においても、図7のS505と同様に、無線端末20aは無線基地局10aに送信電力削減通知を送信してもよい。そしてS606において無線基地局10aは、無線端末20aから受信した送信電力削減通知に基づき、無線端末20aの送信に対する各種パラメータを調整してもよい。処理の詳細については、図7のS505~506について説明しているので、ここでの説明は割愛する。 In the processing sequence of FIG. 9, the radio terminal 20a does not transmit a transmission power reduction notification to the radio base station 10a after determining the power reduction amount (S605). However, also in FIG. 9, similarly to S505 in FIG. 7, the radio terminal 20a may transmit a transmission power reduction notification to the radio base station 10a. In S606, the radio base station 10a may adjust various parameters for the transmission of the radio terminal 20a based on the transmission power reduction notification received from the radio terminal 20a. The details of the processing have been described for S505 to 506 in FIG. 7, and will not be described here.
 以上説明した第3実施形態によれば、無線端末20aの送信に基づいて隣接無線基地局10bにおいて干渉が発生した場合に、干渉源である無線端末20aの送信電力を迅速に大幅に下げることができる。したがって、第3実施形態によれば、無線端末20aの送信に基づく隣接無線基地局10bにおける干渉を迅速且つ大幅に低減することが可能となる。 According to the third embodiment described above, when interference occurs in the adjacent radio base station 10b based on the transmission of the radio terminal 20a, the transmission power of the radio terminal 20a, which is an interference source, can be rapidly and greatly reduced. it can. Therefore, according to the third embodiment, it is possible to quickly and significantly reduce interference in the adjacent radio base station 10b based on the transmission of the radio terminal 20a.
[送信電力削減量の決定に関する変形例]
 ここでは第1~第2の実施形態の変形例を説明する。この変形例は、送信電力削減量の決定に関するものである。
[Variation regarding determination of transmission power reduction amount]
Here, modified examples of the first and second embodiments will be described. This modification relates to determination of the transmission power reduction amount.
 第1実施形態においては、S403において干渉の大きさをまず測定し、当該干渉の大きさに基づいてS404で送信電力削減量を決定している。ここで、干渉の大きさとしては、一例として、第1無線通信の送信時の第2無線通信の受信誤り率と所定値との差分値としている。これに対し、第1実施形態に対する本変形例においては、無線端末20は干渉を検出して送信電力を削減することを決定すると、送信電力削減量を決定するために、送信電力を下げた測定用送信を行う。具体的には、送信電力P0[dBm]の送信信号で干渉を検出した場合に、一例として無線端末20は送信電力P0-5[dBm]、P0-10[dBm]、P0-15[dBm] P0-20[dBm]のそれぞれで測定用の送信を行い、それぞれの干渉の大きさを測定する。そして無線端末20は、測定されたそれぞれの干渉の大きさに基づいて、送信電力削減量を決定する。例えば無線端末20は、干渉の大きさが所定値以内で最大である場合に対応する送信時の送信電力から、送信電力削減量を決定することができる。なお、ここで測定用の信号は、スケジューリング用の上りの参照信号であるSRS(Sounding Reference Signal)の送信であっても良いし、データ信号(PUSCH)や制御信号(PUCCH)の送信でも良い。 In the first embodiment, the magnitude of interference is first measured in S403, and the transmission power reduction amount is determined in S404 based on the magnitude of the interference. Here, as an example, the magnitude of the interference is a difference value between the reception error rate of the second wireless communication at the time of transmission of the first wireless communication and a predetermined value. On the other hand, in the present modification to the first embodiment, when the wireless terminal 20 detects interference and decides to reduce the transmission power, the measurement in which the transmission power is reduced to determine the transmission power reduction amount. Send for use. Specifically, when interference is detected in a transmission signal with transmission power P 0 [dBm], for example, the radio terminal 20 transmits the transmission power P 0 -5 [dBm], P 0 -10 [dBm], P 0 − Transmission for measurement is performed at each of 15 [dBm] P 0 -20 [dBm], and the magnitude of each interference is measured. Then, the radio terminal 20 determines a transmission power reduction amount based on the measured magnitude of each interference. For example, the radio terminal 20 can determine the transmission power reduction amount from the transmission power at the time of transmission corresponding to the case where the magnitude of interference is the maximum within a predetermined value. Here, the measurement signal may be transmission of an SRS (Sounding Reference Signal) that is an uplink reference signal for scheduling, or may be transmission of a data signal (PUSCH) or a control signal (PUCCH).
 図10は、第2実施形態に対する本変形例を説明する図である。図10の処理シーケンスは、図7の処理シーケンスのS503~S504の処理に対応するものである。図10のS701において、SRSを送信電力P0で送信している。次にS702において、無線端末20において第2無線通信に対する干渉が検出され、当該無線端末20は送信電力削減を決定したとする。このときS703において無線端末20は、一時的に送信電力を削減することを示す送信電力一時削減通知を無線基地局10に送信する。その後S704~S707で無線端末20は、送信電力P0-5[dBm]、P0-10[dBm]、P0-15[dBm] P0-20[dBm]のそれぞれで測定用の送信を行い、それぞれの干渉の大きさを測定する。そしてS708で無線端末20は、測定されたそれぞれの干渉の大きさに基づいて、送信電力削減量ΔPを決定する。例えば無線端末20は、干渉の大きさが所定値以内で最大である場合に対応する送信時の送信電力から、送信電力削減量を決定することができる。なお、図10における送信電力一時削減通知によって、予め一時的に送信電力を削減することを無線基地局10に通知することで、その後に送信されたSRSに基づく無線基地局10によるスケジューリングが適切に行われるという効果が得られる。また、図10において測定用の信号は、SRSの他に、データ信号(PUSCH)や制御信号(PUCCH)の送信でも良い。 FIG. 10 is a diagram for explaining this modification example with respect to the second embodiment. The processing sequence of FIG. 10 corresponds to the processing of S503 to S504 of the processing sequence of FIG. In S701 of FIG. 10, and it transmits the SRS by the transmission power P 0. Next, in S702, it is assumed that interference with the second radio communication is detected in the radio terminal 20, and the radio terminal 20 determines transmission power reduction. At this time, in S703, the radio terminal 20 transmits a transmission power temporary reduction notification indicating that the transmission power is temporarily reduced to the radio base station 10. Thereafter, in steps S704 to S707, the wireless terminal 20 transmits transmissions for measurement at transmission powers P 0 -5 [dBm], P 0 -10 [dBm], and P 0 -15 [dBm] P 0 -20 [dBm]. And measure the magnitude of each interference. In step S708, the radio terminal 20 determines the transmission power reduction amount ΔP based on the measured magnitudes of interference. For example, the radio terminal 20 can determine the transmission power reduction amount from the transmission power at the time of transmission corresponding to the case where the magnitude of interference is the maximum within a predetermined value. In addition, by notifying the radio base station 10 beforehand that the transmission power is temporarily reduced by the transmission power temporary reduction notification in FIG. 10, scheduling by the radio base station 10 based on the SRS transmitted thereafter is appropriately performed. The effect of being performed is obtained. Further, in FIG. 10, the measurement signal may be a data signal (PUSCH) or a control signal (PUCCH) transmission in addition to the SRS.
[その他の変形例]
 以下では各実施形態におけるその他の変形例を説明する。これらは各実施形態に適宜組み合わせて実施することができる。
[Other variations]
Below, the other modification in each embodiment is demonstrated. These can be implemented in combination with each embodiment as appropriate.
 第2実施形態においては、送信電力削減通知が事前(送信電力削減の前に)に通知されている。具体的には、図7において無線端末20は、S507のPUSCH送信の前に、S505で送信電力削減通知を無線基地局10に送信している。これに対し、送信電力削減通知を事前には送信せず、送信電力を削減する通信において通知することもできる。具体的には、図7において無線端末20は、S505で送信電力削減通知を無線基地局10に送信せず、S507のPUSCH送信と同じサブフレームにおいて送信電力削減通知を送信することができる。BSR(Buffer Status Report)の値が量子化されていることから、無線基地局10が無線端末20に割当てるPUSCH送信用の無線リソースには、通常は若干の余地がある。無線端末20はこの余地の部分において、PUSCH送信と同じサブフレームにおいて送信電力削減通知を送信することができる。 In the second embodiment, the transmission power reduction notification is notified in advance (before transmission power reduction). Specifically, in FIG. 7, the radio terminal 20 transmits a transmission power reduction notification to the radio base station 10 in S505 before the PUSCH transmission in S507. On the other hand, the transmission power reduction notification may not be transmitted in advance, but may be notified in communication for reducing transmission power. Specifically, in FIG. 7, the wireless terminal 20 can transmit the transmission power reduction notification in the same subframe as the PUSCH transmission in S507 without transmitting the transmission power reduction notification to the wireless base station 10 in S505. Since the value of BSR (Buffer Status Report) is quantized, there is usually some room for radio resources for PUSCH transmission allocated to the radio terminal 20 by the radio base station 10. The radio terminal 20 can transmit a transmission power reduction notification in the same subframe as the PUSCH transmission in this room.
[各実施形態の無線通信システムのネットワーク構成]
 次に図11に基づいて、各実施形態および各変形例の無線通信システム1のネットワーク構成を説明する。図11に示すように、無線通信システム1は、無線基地局10と、無線端末20とを有する。無線基地局10は、セルC10を形成している。無線端末20はセルC10に存在している。なお、本願においては無線基地局10と無線端末20とをまとめて「無線局」と総称することがあることに注意されたい。
[Network configuration of wireless communication system of each embodiment]
Next, the network configuration of the wireless communication system 1 of each embodiment and each modification will be described with reference to FIG. As illustrated in FIG. 11, the wireless communication system 1 includes a wireless base station 10 and a wireless terminal 20. The radio base station 10 forms a cell C10. The radio terminal 20 exists in the cell C10. Note that in the present application, the radio base station 10 and the radio terminal 20 may be collectively referred to as “radio station”.
 無線基地局10は、有線接続を介してネットワーク装置3と接続されており、ネットワーク装置3は、有線接続を介してネットワーク2に接続されている。無線基地局10は、ネットワーク装置3およびネットワーク2を介して、他の無線基地局とデータや制御情報を送受信可能に設けられている。 The wireless base station 10 is connected to the network device 3 via a wired connection, and the network device 3 is connected to the network 2 via a wired connection. The radio base station 10 is provided so as to be able to transmit and receive data and control information to and from other radio base stations via the network device 3 and the network 2.
 無線基地局10は、無線端末20との無線通信機能とデジタル信号処理および制御機能とを分離して別装置としてもよい。この場合、無線通信機能を備える装置をRRH(Remote Radio Head)、デジタル信号処理および制御機能を備える装置をBBU(Base Band Unit)と呼ぶ。RRHはBBUから張り出されて設置され、それらの間は光ファイバなどで有線接続されてもよい。また、無線基地局10は、マクロ無線基地局、ピコ無線基地局等の小型無線基地局(マイクロ無線基地局、フェムト無線基地局等を含む)の他、様々な規模の無線基地局であってよい。また、無線基地局10と無線端末20との無線通信を中継する中継局が使用される場合、当該中継局(無線端末20との送受信およびその制御)も本願の無線基地局10に含まれることとしてもよい。 The radio base station 10 may separate the radio communication function with the radio terminal 20 and the digital signal processing and control function to be a separate device. In this case, a device having a wireless communication function is called RRH (Remote Radio Head), and a device having a digital signal processing and control function is called BBU (Base Band Unit). The RRH may be installed overhanging from the BBU, and may be wired by an optical fiber between them. The radio base station 10 is a radio base station of various scales besides a small radio base station (including a micro radio base station, a femto radio base station, etc.) such as a macro radio base station and a pico radio base station. Good. When a relay station that relays wireless communication between the wireless base station 10 and the wireless terminal 20 is used, the relay station (transmission / reception with the wireless terminal 20 and its control) is also included in the wireless base station 10 of the present application. It is good.
 一方、無線端末20は、第1無線通信で無線基地局10と通信を行う。また、無線端末20は、第2無線通信で無線基地局10以外のアクセスポイントや通信機器と通信を行う。第1無線通信としては、例えばLTEやLTE-Aが挙げられる。また、第2無線通信としては、例えばWiFi(登録商標)やWiMAX(登録商標)等の無線LAN、Bluetooth(登録商標)、GPS、Zigbee(登録商標)、GSM(登録商標、Global System for Mobile communications)、UMTS(Universal Mobile Telecommunications System)等を用いることもできる。 On the other hand, the wireless terminal 20 communicates with the wireless base station 10 by the first wireless communication. The radio terminal 20 communicates with an access point other than the radio base station 10 and a communication device by the second radio communication. Examples of the first wireless communication include LTE and LTE-A. In addition, as the second wireless communication, for example, wireless LAN such as WiFi (registered trademark) and WiMAX (registered trademark), Bluetooth (registered trademark), GPS, Zigbee (registered trademark), GSM (registered trademark, Global System for Mobile Communications) ), UMTS (Universal Mobile Telecommunications System) or the like can also be used.
 第1無線通信と、第2無線通信とは、同じあるいは近い周波数帯を用いて通信が行われる。例えば、第1無線通信に用意される周波数帯群と、第2無線通信に用意される周波数帯群とが、隣り合う場合や、第1無線通信と第2無線通信とが、同じ周波数帯群を共用する場合が想定される。 The first wireless communication and the second wireless communication are performed using the same or close frequency band. For example, when the frequency band group prepared for the first wireless communication and the frequency band group prepared for the second wireless communication are adjacent to each other, or when the first wireless communication and the second wireless communication are the same frequency band group Is assumed to be shared.
 無線端末20は、携帯電話機、スマートフォン、PDA(Personal Digital Assistant)、パーソナルコンピュータ(Personal Computer)、無線通信機能を有する各種装置や機器(センサー装置等)などの無線端末であってよい。また、無線基地局10と他の無線端末20との無線通信を中継する中継局が使用される場合、当該中継局(無線基地局10との送受信およびその制御)も本稿の無線端末20に含まれることとしてもよい。 The wireless terminal 20 may be a wireless terminal such as a mobile phone, a smartphone, a PDA (Personal Digital Assistant), a personal computer (Personal Computer), various devices or devices (such as sensor devices) having a wireless communication function. When a relay station that relays radio communication between the radio base station 10 and another radio terminal 20 is used, the relay station (transmission / reception with the radio base station 10 and its control) is also included in the radio terminal 20 of this paper. It is also possible that
 ネットワーク装置3は、例えば通信部と制御部とを備え、これら各構成部分が、一方向または双方向に、信号やデータの入出力が可能なように接続されている。ネットワーク装置3は、例えばゲートウェイにより実現される。ネットワーク装置3のハードウェア構成としては、例えば通信部はインタフェース回路、制御部はプロセッサとメモリとで実現される。 The network device 3 includes, for example, a communication unit and a control unit, and these components are connected so that signals and data can be input and output in one direction or in both directions. The network device 3 is realized by a gateway, for example. As a hardware configuration of the network device 3, for example, the communication unit is realized by an interface circuit, and the control unit is realized by a processor and a memory.
 なお、無線基地局10、無線端末20の各構成要素の分散・統合の具体的態様は、第1実施形態の態様に限定されず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、メモリを、無線基地局10、無線端末20の外部装置としてネットワークやケーブル経由で接続するようにしてもよい。 In addition, the specific mode of distribution / integration of each component of the radio base station 10 and the radio terminal 20 is not limited to the mode of the first embodiment, and all or a part thereof can be used for various loads, usage conditions, and the like. Accordingly, it may be configured to be functionally or physically distributed / integrated in an arbitrary unit. For example, the memory may be connected as an external device of the radio base station 10 and the radio terminal 20 via a network or a cable.
[各実施形態の無線通信システムにおける各装置の機能構成]
 次に、図12~図13に基づいて、各実施形態および各変形例の無線通信システムにおける各装置の機能構成を説明する。
[Functional Configuration of Each Device in Radio Communication System of Each Embodiment]
Next, the functional configuration of each device in the wireless communication system of each embodiment and each modification will be described with reference to FIGS.
 図12は、無線基地局10の構成を示す機能ブロック図である。図12に示すように、無線基地局10は、送信部11と、受信部12と、制御部13とを備える。これら各構成部分は、一方向または双方向に、信号やデータの入出力が可能なように接続されている。 FIG. 12 is a functional block diagram showing the configuration of the radio base station 10. As illustrated in FIG. 12, the radio base station 10 includes a transmission unit 11, a reception unit 12, and a control unit 13. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 送信部11は、データ信号や制御信号を、アンテナを介して第1無線通信で送信する。なお、アンテナは送信と受信で共通でもよい。送信部11は、例えば下りのデータチャネルや制御チャネルを介して、下り信号を送信する。下りの物理データチャネルは例えば、個別データチャネルPDSCH(Physical Downlink Shared Channel)を含む。また、下りの物理制御チャネルは例えば、個別制御チャネルPDCCH(Physical Downlink Control Channel)を含む。送信する信号は例えば、接続状態の無線端末20に個別制御チャネル上で伝送されるL1/L2制御信号や、接続状態の無線端末20に個別データチャネル上で伝送されるユーザデータ信号やRRC(Radio Resource Control)シグナリングを含む。また、送信する信号は例えば、チャネル推定や復調のために用いられるリファレンス信号を含む。 The transmission unit 11 transmits a data signal and a control signal by first wireless communication via an antenna. The antenna may be common for transmission and reception. The transmitter 11 transmits a downlink signal via, for example, a downlink data channel or a control channel. The downlink physical data channel includes, for example, a dedicated data channel PDSCH (Physical Downlink Shared Channel). The downlink physical control channel includes, for example, a dedicated control channel PDCCH (PhysicalPhysDownlink Control Channel). The signal to be transmitted is, for example, an L1 / L2 control signal transmitted to the connected wireless terminal 20 on the dedicated control channel, a user data signal transmitted to the connected wireless terminal 20 on the dedicated data channel, or RRC (Radio). Resource (Control) signaling included. The signal to be transmitted includes, for example, a reference signal used for channel estimation and demodulation.
 送信部11が送信する信号の具体例としては、図6~7または図9~10において各無線基地局により送信される各信号が挙げられる。具体的には、送信部11は、図6~7または図9~10におけるTPCコマンドを含むDCIの各種フォーマットを、PDCCHを介して送信しうる。また、送信部11は、図9における送信電力削減要求を、例えばPDSCHを介してRRCシグナリングにより送信しうる。 Specific examples of signals transmitted by the transmission unit 11 include signals transmitted by each radio base station in FIGS. 6 to 7 or FIGS. 9 to 10. Specifically, the transmission unit 11 can transmit various DCI formats including the TPC command in FIGS. 6 to 7 or 9 to 10 via the PDCCH. Moreover, the transmission part 11 can transmit the transmission power reduction request | requirement in FIG. 9 by RRC signaling via PDSCH, for example.
 受信部12は、無線端末20から送信されたデータ信号や制御信号を、アンテナを介して第1無線通信で受信する。受信部12は、例えば上りのデータチャネルや制御チャネルを介して、上り信号を受信する。上りの物理データチャネルは例えば、個別データチャネルPUSCH(Physical Uplink Shared Channel)を含む。また、上りの物理制御チャネルは例えば、個別制御チャネルPUCCH(Physical Uplink Control Channel)を含む。受信する信号は例えば、接続状態の無線端末20から個別制御チャネル上で伝送されるL1/L2制御信号や、接続状態の無線端末20から個別データチャネル上で伝送されるユーザデータ信号やRRC(Radio Resource Control)シグナリングを含む。また、受信する信号は例えば、チャネル推定や復調のために用いられるリファレンス信号を含む。 The receiving unit 12 receives the data signal and the control signal transmitted from the wireless terminal 20 through the first wireless communication via the antenna. The receiving unit 12 receives an uplink signal via, for example, an uplink data channel or a control channel. The uplink physical data channel includes, for example, a dedicated data channel PUSCH (Physical Uplink Shared Channel). Further, the uplink physical control channel includes, for example, a dedicated control channel PUCCH (Physical Uplink Control Channel). The received signal is, for example, an L1 / L2 control signal transmitted from the connected wireless terminal 20 on the dedicated control channel, a user data signal transmitted from the connected wireless terminal 20 on the dedicated data channel, or RRC (Radio). Resource (Control) signaling included. The received signal includes, for example, a reference signal used for channel estimation and demodulation.
 受信部12が受信する信号の具体例としては、図6~7または図9~10において各無線基地局により受信される各信号が挙げられる。具体的には、受信部12は、図6~7または図9における上りデータを、PUSCHを介して受信しうる。また、受信部12は、図7における送信電力削減通知を、例えばPUSCHを介してRRCシグナリングにより受信しうる。また、受信部12は、図10における送信電力一時削減通知を例えばPUSCHを介してRRCシグナリングにより受信しうるとともに、SRSを受信しうる。 Specific examples of signals received by the receiving unit 12 include signals received by the respective radio base stations in FIGS. 6 to 7 or FIGS. 9 to 10. Specifically, the receiving unit 12 can receive the uplink data in FIGS. 6 to 7 or 9 via the PUSCH. Moreover, the receiving part 12 can receive the transmission power reduction notification in FIG. 7 by RRC signaling via PUSCH, for example. In addition, the receiving unit 12 can receive the transmission power temporary reduction notification in FIG. 10 by RRC signaling via PUSCH, for example, and can receive SRS.
 制御部13は、送信するデータや制御情報を送信部11に出力する。制御部13は、受信されるデータや制御情報を受信部12から入力する。制御部13は、有線接続あるいは無線接続を介して、ネットワーク装置3や他の無線基地局からデータや制御情報を取得する。制御部13はこれら以外にも送信部11が送信する各種の送信信号や受信部12が受信する各種の受信信号に関連する種々の制御を行う。 The control unit 13 outputs data to be transmitted and control information to the transmission unit 11. The control unit 13 inputs received data and control information from the reception unit 12. The control unit 13 acquires data and control information from the network device 3 and other wireless base stations via a wired connection or a wireless connection. In addition to these, the control unit 13 performs various controls related to various transmission signals transmitted by the transmission unit 11 and various reception signals received by the reception unit 12.
 制御部13が制御する処理の具体例としては、図6~7または図9~10において各無線基地局において実行される各種処理が挙げられる。制御部13は、図6~7および図9においては、TPCコマンドを含むDCIの各種フォーマットの送信、上りデータの受信の各処理を制御しうる。制御部13は、図7においては、送信電力削減通知の受信の処理を制御しうる。制御部13は、図9においては、干渉検出、送信電力削減要求の送信の各処理を制御しうる。制御部13は、図10においては、SRSの受信の処理を制御しうる。 Specific examples of the process controlled by the control unit 13 include various processes executed in each radio base station in FIGS. 6 to 7 or 9 to 10. In FIGS. 6 to 7 and 9, the control unit 13 can control each process of transmission of various formats of DCI including a TPC command and reception of uplink data. In FIG. 7, the control unit 13 can control the process of receiving the transmission power reduction notification. In FIG. 9, the control unit 13 can control each process of interference detection and transmission of a transmission power reduction request. In FIG. 10, the control unit 13 can control the SRS reception process.
 図13は、無線端末20の構成を示す機能ブロック図である。図13に示すように、無線端末20は、送信部21A,21Bと、受信部22A,22Bと、制御部23A,23Bと、を備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 FIG. 13 is a functional block diagram showing the configuration of the wireless terminal 20. As illustrated in FIG. 13, the wireless terminal 20 includes transmission units 21A and 21B, reception units 22A and 22B, and control units 23A and 23B. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 送信部21Aは、データ信号や制御信号を、アンテナを介して第1無線通信で送信する。なお、アンテナは送信と受信で共通でもよい。送信部21Aは、例えば上りのデータチャネルや制御チャネルを介して、上り信号を送信する。上りの物理データチャネルは例えば、個別データチャネルPUSCHを含む。また、上りの物理制御チャネルは例えば、個別制御チャネルPUCCHを含む。送信する信号は例えば、接続中の無線基地局10へ個別制御チャネル上で伝送されるL1/L2制御信号や、接続中の無線基地局10へ個別データチャネル上で伝送されるユーザデータ信号やRRC(Radio Resource Control)シグナリングを含む。また、送信する信号は例えば、チャネル推定や復調のために用いられるリファレンス信号を含む。 21 A of transmission parts transmit a data signal and a control signal by 1st wireless communication via an antenna. The antenna may be common for transmission and reception. The transmission unit 21A transmits an uplink signal via, for example, an uplink data channel or a control channel. The uplink physical data channel includes, for example, a dedicated data channel PUSCH. Further, the uplink physical control channel includes, for example, a dedicated control channel PUCCH. The signal to be transmitted is, for example, an L1 / L2 control signal transmitted on the dedicated control channel to the connected radio base station 10, or a user data signal or RRC transmitted on the dedicated data channel to the connected radio base station 10. (Radio-Resource-Control) signaling included. The signal to be transmitted includes, for example, a reference signal used for channel estimation and demodulation.
 また、送信部21Aは、制御部23Aによって制御された送信電力に基づいて、図6~7および図9~10において各無線通信が行う各送信を行うことができる。 Also, the transmission unit 21A can perform each transmission performed by each wireless communication in FIGS. 6 to 7 and FIGS. 9 to 10 based on the transmission power controlled by the control unit 23A.
 送信部21Aが送信する信号の具体例としては、図6~7または図9~10において各無線端末により送信される各信号が挙げられる。具体的には、送信部21Aは、図6~7または図9における上りデータを、PUSCHを介して送信しうる。また、送信部21Aは、図7における送信電力削減通知を、例えばPUSCHを介してRRCシグナリングにより送信しうる。また、送信部21Aは、図10における送信電力一時削減通知を例えばPUSCHを介してRRCシグナリングにより送信しうるとともに、SRSを送信しうる。 Specific examples of signals transmitted by the transmission unit 21A include signals transmitted by the wireless terminals in FIGS. 6 to 7 or FIGS. 9 to 10. Specifically, the transmission unit 21A can transmit the uplink data in FIGS. 6 to 7 or 9 via the PUSCH. Further, the transmission unit 21A can transmit the transmission power reduction notification in FIG. 7 by RRC signaling via the PUSCH, for example. Further, the transmission unit 21A can transmit the transmission power temporary reduction notification in FIG. 10 by RRC signaling via PUSCH, for example, and can also transmit SRS.
 受信部22Aは、無線基地局10から送信されたデータ信号や制御信号を、アンテナを介して第1無線通信で受信する。受信部22Aは、例えば下りのデータチャネルや制御チャネルを介して、下り信号を受信する。下りの物理データチャネルは例えば、個別データチャネルPDSCHを含む。また、下りの物理制御チャネルは例えば、個別制御チャネルPDCCHを含む。受信する信号は例えば、接続中の無線基地局10から個別制御チャネル上で伝送されるL1/L2制御信号や、接続中の無線基地局10から個別データチャネル上で伝送されるユーザデータ信号やRRC(Radio Resource Control)シグナリングを含む。また、受信する信号は例えば、チャネル推定や復調のために用いられるリファレンス信号を含む。 The receiving unit 22A receives the data signal and the control signal transmitted from the radio base station 10 through the first radio communication via the antenna. The receiving unit 22A receives a downlink signal via, for example, a downlink data channel or a control channel. The downlink physical data channel includes, for example, a dedicated data channel PDSCH. Further, the downlink physical control channel includes, for example, a dedicated control channel PDCCH. The received signal is, for example, an L1 / L2 control signal transmitted on the dedicated control channel from the connected radio base station 10, or a user data signal or RRC transmitted on the dedicated data channel from the connected radio base station 10. (Radio-Resource-Control) signaling included. The received signal includes, for example, a reference signal used for channel estimation and demodulation.
 受信部22Aが受信する信号の具体例としては、図6~7または図9~10において各無線端末により受信される各信号が挙げられる。具体的には、受信部22Aは、図6~7または図9~10におけるTPCコマンドを含むDCIの各種フォーマットを、PDCCHを介して受信しうる。また、受信部22Aは、図9における送信電力削減要求を、例えばPDSCHを介してRRCシグナリングにより受信しうる。 Specific examples of signals received by the receiving unit 22A include the signals received by the wireless terminals in FIGS. 6 to 7 or FIGS. 9 to 10. Specifically, the receiving unit 22A can receive various DCI formats including the TPC command in FIGS. 6 to 7 or 9 to 10 via the PDCCH. Further, the reception unit 22A can receive the transmission power reduction request in FIG. 9 by RRC signaling via, for example, PDSCH.
 制御部23Aは、送信するデータや制御情報を送信部21Aに出力する。制御部23Aは、受信されるデータや制御情報を受信部22Aから入力する。制御部23Aはこれら以外にも送信部21Aが送信する各種の送信信号や受信部22Aが受信する各種の受信信号に関連する種々の制御を行う。 The control unit 23A outputs data to be transmitted and control information to the transmission unit 21A. The control unit 23A inputs received data and control information from the reception unit 22A. In addition to these, the control unit 23A performs various controls related to various transmission signals transmitted by the transmission unit 21A and various reception signals received by the reception unit 22A.
 また、制御部23Aは、図6~7および図9~10において各無線通信が行う各送信の送信電力を制御しうる。 Further, the control unit 23A can control the transmission power of each transmission performed by each wireless communication in FIGS. 6 to 7 and FIGS. 9 to 10.
 制御部23Aが制御する処理の具体例としては、図5~9において各無線端末において実行される各種処理が挙げられる。制御部23Aは、図6~7および図9~10においては、電力削減量決定の処理を制御しうる。制御部23Aは、図6~7および図9においては、TPCコマンドを含むDCIの各種フォーマットの受信、上りデータの送信の各処理を制御しうる。制御部23Aは、図6~7および図10においては、干渉検出の処理を制御しうる。制御部23Aは、図7においては、送信電力削減通知の送信の処理を制御しうる。制御部23Aは、図9においては、送信電力削減要求の受信の処理を制御しうる。制御部23Aは、図10においては、送信電力一時削減通知の送信、SRSの送信の処理を制御しうる。 Specific examples of the process controlled by the control unit 23A include various processes executed in each wireless terminal in FIGS. The control unit 23A can control the power reduction amount determination process in FIGS. 6 to 7 and FIGS. 9 to 10. In FIGS. 6 to 7 and FIG. 9, the control unit 23A can control each process of reception of various formats of DCI including a TPC command and transmission of uplink data. The control unit 23A can control the interference detection process in FIGS. 6 to 7 and FIG. In FIG. 7, the control unit 23 </ b> A can control the transmission process of the transmission power reduction notification. In FIG. 9, the control unit 23 </ b> A can control processing for receiving a transmission power reduction request. In FIG. 10, the control unit 23A can control the transmission power temporary reduction notification transmission and the SRS transmission processing.
 送信部21Bは、データ信号や制御信号を、アンテナを介して第2無線通信で送信する。なお、アンテナは送信と受信で共通でもよい。 The transmitting unit 21B transmits a data signal and a control signal by second wireless communication via the antenna. The antenna may be common for transmission and reception.
 受信部22Bは、無線基地局から送信されたデータ信号や制御信号を、アンテナを介して第2無線通信で受信する。 The receiving unit 22B receives the data signal and the control signal transmitted from the radio base station by the second radio communication via the antenna.
 制御部23Bは、送信するデータや制御情報を送信部21に出力する。また、制御部23は、受信部22から受信されるデータや制御情報を入力する。 The control unit 23B outputs data to be transmitted and control information to the transmission unit 21. In addition, the control unit 23 inputs data and control information received from the receiving unit 22.
 制御部23Bは例えば、第1無線通信および第2無線通信が動作時の、第2無線通信側での受信信号のエラー特性等に基づいて、第2無線通信での干渉の発生を検出する(あるいは第2無線通信での通信性能の劣化を判定する)。 For example, the control unit 23B detects the occurrence of interference in the second wireless communication based on the error characteristics of the received signal on the second wireless communication side when the first wireless communication and the second wireless communication are operating ( Alternatively, the deterioration of the communication performance in the second wireless communication is determined).
 制御部23Bは、計測した受信信号レベルを制御部23Aに通知する。制御部23Bは、計測した受信信号レベルに基づいて、第2無線通信での通信性能の劣化を判定し、判定結果を制御部23Aに通知してもよい。 The control unit 23B notifies the measured reception signal level to the control unit 23A. The control unit 23B may determine deterioration of communication performance in the second wireless communication based on the measured received signal level and notify the determination result to the control unit 23A.
[各実施形態の無線通信システムにおける各装置のハードウェア構成]
 図14~図15に基づいて、各実施形態および各変形例の無線通信システムにおける各装置のハードウェア構成を説明する。
[Hardware Configuration of Each Device in Radio Communication System of Each Embodiment]
Based on FIGS. 14 to 15, the hardware configuration of each device in the wireless communication system of each embodiment and each modification will be described.
 図14は、無線基地局10のハードウェア構成を示す図である。図14に示すように、無線基地局10は、ハードウェアの構成要素として、例えばアンテナ31を備えるRF(Radio Frequency)回路32と、CPU(Central Processing Unit)33と、DSP(Digital Signal Processor)34と、メモリ35と、ネットワークIF(Interface)36とを有する。CPUは、スイッチ等のネットワークIF36を介して各種信号やデータの入出力が可能なように接続されている。メモリ35は、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、およびフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。送信部11および受信部12は、例えばRF回路32、あるいはアンテナ31およびRF回路32により実現される。制御部13は、例えばCPU33、DSP34、メモリ35、不図示のデジタル電子回路等により実現される。デジタル電子回路としては例えば、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field-Programming Gate Array)、LSI(Large Scale Integration)等が挙げられる。 FIG. 14 is a diagram illustrating a hardware configuration of the radio base station 10. As shown in FIG. 14, the radio base station 10 includes, as hardware components, an RF (Radio Frequency) circuit 32 including an antenna 31, a CPU (Central Processing Unit) 33, and a DSP (Digital Signal Processor) 34, for example. And a memory 35 and a network IF (Interface) 36. The CPU is connected via a network IF 36 such as a switch so that various signals and data can be input and output. The memory 35 includes, for example, at least one of a RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), and a flash memory, and stores programs, control information, and data. The transmission unit 11 and the reception unit 12 are realized by the RF circuit 32 or the antenna 31 and the RF circuit 32, for example. The control unit 13 is realized by, for example, a CPU 33, a DSP 34, a memory 35, a digital electronic circuit (not shown), and the like. Examples of the digital electronic circuit include ASIC (Application Specific Integrated Circuit), FPGA (Field-Programming Gate Array), LSI (Large Scale Integration), and the like.
 図15は、無線端末20のハードウェア構成を示す図である。図15に示すように、無線端末20は、ハードウェアの構成要素として、例えばアンテナ41A,41Bをそれぞれ備えるRF回路42A,42Bと、CPU43A,43Bと、メモリ44A,44Bとを有する。さらに、無線端末20は、CPU43A,43Bに接続されるLCD(Liquid Crystal Display)等の表示装置を有してもよい。メモリ44A,44Bは、例えばSDRAM等のRAM、ROM、およびフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータを格納する。送信部21Aおよび受信部22Aは、例えばRF回路42A、あるいはアンテナ41AおよびRF回路42Aにより実現される。制御部23Aは、例えばCPU43A、メモリ44A、不図示のデジタル電子回路等により実現される。デジタル電子回路としては例えば、例えばASIC、FPGA、LSI等が挙げられる。同様に、送信部21Bおよび受信部22Bは、例えばRF回路42B、あるいはアンテナ41BおよびRF回路42Bにより実現される。制御部23Bは、CPU43B、メモリ44B、不図示のデジタル電子回路等により実現される。 FIG. 15 is a diagram illustrating a hardware configuration of the wireless terminal 20. As illustrated in FIG. 15, the wireless terminal 20 includes, as hardware components, RF circuits 42A and 42B each including antennas 41A and 41B, CPUs 43A and 43B, and memories 44A and 44B, for example. Further, the wireless terminal 20 may include a display device such as an LCD (Liquid Crystal Display) connected to the CPUs 43A and 43B. The memories 44A and 44B include at least one of RAM such as SDRAM, ROM, and flash memory, for example, and store programs, control information, and data. The transmitting unit 21A and the receiving unit 22A are realized by, for example, the RF circuit 42A, or the antenna 41A and the RF circuit 42A. The control unit 23A is realized by, for example, the CPU 43A, the memory 44A, a digital electronic circuit (not shown), and the like. Examples of digital electronic circuits include ASIC, FPGA, LSI, and the like. Similarly, the transmission unit 21B and the reception unit 22B are realized by, for example, the RF circuit 42B, or the antenna 41B and the RF circuit 42B. The control unit 23B is realized by a CPU 43B, a memory 44B, a digital electronic circuit (not shown), and the like.
 1 無線通信システム
 2 ネットワーク
 3 ネットワーク装置
 10 無線基地局
 C10 セル
 20 無線端末
1 wireless communication system 2 network 3 network device 10 wireless base station C10 cell 20 wireless terminal

Claims (12)

  1.  送信電力を変化または維持することを指示する第1制御信号を他無線通信装置から繰り返し受信し、該他無線通信装置に対する第1無線送信の送信電力を、該第1無線送信の前に受信した該第1制御信号に基づいて決定する無線通信装置であって、
     前記決定に基づく第1送信電力より小さい第2送信電力で前記第1無線送信を行う第1無線通信部
    を備える無線通信装置。
    The first control signal instructing to change or maintain the transmission power is repeatedly received from the other radio communication apparatus, and the transmission power of the first radio transmission to the other radio communication apparatus is received before the first radio transmission. A wireless communication device that determines based on the first control signal,
    A wireless communication apparatus comprising a first wireless communication unit that performs the first wireless transmission with a second transmission power smaller than the first transmission power based on the determination.
  2.  前記第1無線通信部はさらに、前記第2送信電力で前記第1無線送信を行うことを示す第2制御信号を前記他無線通信装置に送信する
    請求項1記載の無線通信装置。
    The wireless communication device according to claim 1, wherein the first wireless communication unit further transmits a second control signal indicating that the first wireless transmission is performed with the second transmission power to the other wireless communication device.
  3.  前記第1無線送信の送信中に受信可能な第2無線通信部をさらに備え、
     前記第1無線送信の送信中に前記第2無線通信部において干渉が検出された場合に、前記第1無線通信部は前記第2送信電力で前記第1無線送信を行う
     請求項1記載の無線通信装置。
    A second wireless communication unit capable of receiving during transmission of the first wireless transmission;
    The radio according to claim 1, wherein, when interference is detected in the second radio communication unit during transmission of the first radio transmission, the first radio communication unit performs the first radio transmission with the second transmission power. Communication device.
  4.  前記第1制御信号は、送信電力の変化量を所定値以内で指示するものであり、
     前記第2送信電力は、前記第1送信電力から前記所定値を超える量の送信電力を削減するものである
     請求項1記載の無線通信装置。
    The first control signal indicates a change amount of transmission power within a predetermined value,
    The radio communication apparatus according to claim 1, wherein the second transmission power is used to reduce an amount of transmission power that exceeds the predetermined value from the first transmission power.
  5.  無線通信装置と、
     他無線通信装置と
     を備え、
     前記無線通信装置は、
      送信電力を変化または維持することを指示する第1制御信号を前記他無線通信装置から繰り返し受信し、該他無線通信装置に対する第1無線送信の送信電力を、該第1無線送信の前に受信した該第1制御信号に基づいて決定する制御部と、
      前記決定に基づく第1送信電力より小さい第2送信電力で前記第1無線送信を行う第1無線通信部と
    を備える無線通信システム。
    A wireless communication device;
    With other wireless communication devices,
    The wireless communication device
    A first control signal instructing to change or maintain the transmission power is repeatedly received from the other radio communication device, and the transmission power of the first radio transmission to the other radio communication device is received before the first radio transmission. A control unit for determining based on the first control signal,
    A wireless communication system comprising: a first wireless communication unit that performs the first wireless transmission with a second transmission power smaller than the first transmission power based on the determination.
  6.  前記第1無線通信部はさらに、前記第2送信電力で前記第1無線送信を行うことを示す第2制御信号を前記他無線通信装置に送信する
    請求項5記載の無線通信システム。
    The wireless communication system according to claim 5, wherein the first wireless communication unit further transmits a second control signal indicating that the first wireless transmission is performed with the second transmission power to the other wireless communication device.
  7.  前記無線通信装置は、前記第1無線送信の送信中に受信可能な第2無線通信部をさらに備え、
     前記第1無線送信の送信中に前記第2無線通信部において干渉が検出された場合に、前記第1無線通信部は前記第2送信電力で前記第1無線送信を行う
     請求項5記載の無線通信システム。
    The wireless communication device further includes a second wireless communication unit capable of receiving during transmission of the first wireless transmission,
    The radio according to claim 5, wherein when the second radio communication unit detects interference during transmission of the first radio transmission, the first radio communication unit performs the first radio transmission with the second transmission power. Communications system.
  8.  前記第1制御信号は、送信電力の変化量を所定値以内で指示するものであり、
     前記第2送信電力は、前記第1送信電力から前記所定値を超える量の送信電力を削減するものである
     請求項5記載の無線通信システム。
    The first control signal indicates a change amount of transmission power within a predetermined value,
    The wireless communication system according to claim 5, wherein the second transmission power is a value that reduces an amount of transmission power that exceeds the predetermined value from the first transmission power.
  9.  送信電力を変化または維持することを指示する第1制御信号を他無線通信装置から繰り返し受信し、該他無線通信装置に対する第1無線送信の送信電力を、該第1無線送信の前に受信した該第1制御信号に基づいて決定する無線通信装置における無線通信方法であって、
     前記無線通信装置が備える第1無線通信部が、前記決定に基づく第1送信電力より小さい第2送信電力で前記第1無線送信を行う
    無線通信方法。
    The first control signal instructing to change or maintain the transmission power is repeatedly received from the other radio communication apparatus, and the transmission power of the first radio transmission to the other radio communication apparatus is received before the first radio transmission. A wireless communication method in a wireless communication device that is determined based on the first control signal,
    The radio | wireless communication method with which the 1st radio | wireless communication part with which the said radio | wireless communication apparatus is provided performs said 1st radio | wireless transmission with 2nd transmission power smaller than the 1st transmission power based on the said determination.
  10.  前記第1無線通信部が、前記第2送信電力で前記第1無線送信を行うことを示す第2制御信号を前記他無線通信装置に送信する
    請求項9記載の無線通信方法。
    The wireless communication method according to claim 9, wherein the first wireless communication unit transmits a second control signal indicating that the first wireless transmission is performed with the second transmission power to the other wireless communication device.
  11.  前記第1無線送信の送信中に受信可能な第2無線通信部において、前記第1無線送信の送信中に干渉が検出された場合に、前記第1無線通信部は前記第2送信電力で前記第1無線送信を行う
     請求項9記載の無線通信方法。
    In the second radio communication unit that can be received during transmission of the first radio transmission, when interference is detected during transmission of the first radio transmission, the first radio communication unit uses the second transmission power to The wireless communication method according to claim 9, wherein the first wireless transmission is performed.
  12.  前記第1制御信号は、送信電力の変化量を所定値以内で指示するものであり、
     前記第2送信電力は、前記第1送信電力から前記所定値を超える量の送信電力を削減するものである
     請求項9記載の無線通信方法。
     
     
     
    The first control signal indicates a change amount of transmission power within a predetermined value,
    The wireless communication method according to claim 9, wherein the second transmission power is to reduce an amount of transmission power that exceeds the predetermined value from the first transmission power.


PCT/JP2012/008005 2012-12-14 2012-12-14 Wireless communication device, wireless communication system, and wireless communication method WO2014091527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008005 WO2014091527A1 (en) 2012-12-14 2012-12-14 Wireless communication device, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008005 WO2014091527A1 (en) 2012-12-14 2012-12-14 Wireless communication device, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2014091527A1 true WO2014091527A1 (en) 2014-06-19

Family

ID=50933856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008005 WO2014091527A1 (en) 2012-12-14 2012-12-14 Wireless communication device, wireless communication system, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2014091527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042638A (en) * 2014-08-15 2016-03-31 株式会社Nttドコモ Base station device and control method
JP6019182B1 (en) * 2015-06-24 2016-11-02 株式会社Nttドコモ User terminal, radio base station, and radio communication method
JP2017528086A (en) * 2014-09-22 2017-09-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Structured channel raster for unlicensed spectrum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964814A (en) * 1995-05-04 1997-03-07 Oki America Inc Output power control method and output power system
JP2002305477A (en) * 2001-04-04 2002-10-18 Matsushita Electric Ind Co Ltd Base station apparatus, mobile station device and method for controlling transmission power
JP2011509592A (en) * 2008-01-07 2011-03-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Uplink power control in power limited terminals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964814A (en) * 1995-05-04 1997-03-07 Oki America Inc Output power control method and output power system
JP2002305477A (en) * 2001-04-04 2002-10-18 Matsushita Electric Ind Co Ltd Base station apparatus, mobile station device and method for controlling transmission power
JP2011509592A (en) * 2008-01-07 2011-03-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Uplink power control in power limited terminals

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E- UTRA), Study on signalling and procedure for interference avoidance for in-device coexistence (Release 11", 3GPP TR 36.816 V11.2.0, December 2011 (2011-12-01) *
LG ELECTRONICS INC.: "Triggering of the indication for IDC interference", 3GPP TSG-RAN WG2#74 R2-113260 *
MEDIATEK: "Power control alternatives for IDC", 3GPP TSG-RAN WG2#73BIS R2-112021, 11 April 2011 (2011-04-11) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042638A (en) * 2014-08-15 2016-03-31 株式会社Nttドコモ Base station device and control method
JP2017528086A (en) * 2014-09-22 2017-09-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Structured channel raster for unlicensed spectrum
US11109376B2 (en) 2014-09-22 2021-08-31 Qualcomm Incorporated Structured channel rasters for unlicensed spectrum
JP6019182B1 (en) * 2015-06-24 2016-11-02 株式会社Nttドコモ User terminal, radio base station, and radio communication method
WO2016208680A1 (en) * 2015-06-24 2016-12-29 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
CN107710837A (en) * 2015-06-24 2018-02-16 株式会社Ntt都科摩 User terminal, wireless base station and wireless communications method
RU2707175C2 (en) * 2015-06-24 2019-11-25 Нтт Докомо, Инк. User terminal, radio base station and radio communication method
CN107710837B (en) * 2015-06-24 2021-06-04 株式会社Ntt都科摩 User terminal, radio base station, and radio communication method
CN113382463A (en) * 2015-06-24 2021-09-10 株式会社Ntt都科摩 Terminal, radio base station, radio communication method, and radio communication system

Similar Documents

Publication Publication Date Title
US11044674B2 (en) Uplink transmissions for dual connectivity
CN109478981B (en) Channel estimation enhancement
CN106465295B (en) Power control for transmission of uplink control information on two cells in carrier aggregation
KR102179296B1 (en) Method and apparatus for managing transmit power for device-to-device communication
CA2938056C (en) A method, apparatus and computer readable medium for controlling data transmissions in a network
JP6388768B2 (en) User terminal, radio base station, and radio communication method
JP6060978B2 (en) Wireless communication apparatus and wireless communication method
CN116209048A (en) Method for performing power control in a Novel Radio (NR) system
CN105934992B (en) User terminal, radio base station, and radio communication method
KR20190017136A (en) Method and apparatus for uplink transmission in a wireless communication system
WO2016017705A1 (en) User terminal, radio base station, and radio communication method
AU2015205047A1 (en) Uplink transmissions for dual connectivity
WO2017173920A1 (en) Power control method and device
US10588095B2 (en) Power usage state information transmission method and apparatus
WO2015107842A1 (en) User terminal, radio base station, and radio communication method
JP2016178688A (en) User terminal, radio base station, and radio communication method
WO2014091527A1 (en) Wireless communication device, wireless communication system, and wireless communication method
EP3113552A1 (en) Method for controlling uplink power, user equipment, and base stations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP