WO2014088148A1 - Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same - Google Patents

Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same Download PDF

Info

Publication number
WO2014088148A1
WO2014088148A1 PCT/KR2012/011443 KR2012011443W WO2014088148A1 WO 2014088148 A1 WO2014088148 A1 WO 2014088148A1 KR 2012011443 W KR2012011443 W KR 2012011443W WO 2014088148 A1 WO2014088148 A1 WO 2014088148A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
hydroxide
electrolyte
precipitation aid
alcohol
Prior art date
Application number
PCT/KR2012/011443
Other languages
French (fr)
Korean (ko)
Inventor
김태오
임광진
김찬수
송동근
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Publication of WO2014088148A1 publication Critical patent/WO2014088148A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a method and apparatus for reducing carbon dioxide to alkanes and hydrogen gas. More particularly, carbon dioxide dissolved in an electrolyte converts and produces alkanes and hydrogen, which are renewable energy, by electrochemical decomposition.
  • the present invention relates to a device that can significantly reduce and reduce.
  • the conventional carbon dioxide reduction method requires a large overvoltage because the reduction reaction of carbon dioxide does not easily occur, and there is a problem that an efficient catalyst with improved selectivity is required. Renewable energy can be produced at less cost than the method.
  • a carbon dioxide resource recycling method using electrochemical reduction converts carbon dioxide saturated in an electrolyte solution into a metal electrode and converts it into methane, ethane, alcohol, and the like, causing electrolysis and hydrogenation.
  • the device and the simple operation and the produced compounds can be used as a general gas fuel, liquid fuel, chemical products.
  • the reduction of carbon dioxide does not occur easily and requires a large overvoltage.
  • Hydrogen generation at the positive electrode and reduction at the negative electrode compete with each other and react at a relatively large negative potential. Therefore, the development of efficient catalysts with improved selectivity as well as increased efficiency of voltage and potential is very important for the reduction of carbon dioxide.
  • the present invention has been made to solve the above-mentioned problems, the problem to be solved of the present invention to solve the problem of carbon dioxide treatment and at the same time to obtain a large amount of renewable energy, carbon dioxide is electrochemically without the use of a reduction catalyst
  • a reduction catalyst Provided are an apparatus and a method for reducing and converting renewable energy such as alkanes and hydrogen.
  • the present invention includes the steps of: (1) injecting an electrolyte containing carbon dioxide and a precipitation aid in a reactor comprising an anode, a cathode and an ion permeable diaphragm dividing them; And (2) electrolyzing carbon dioxide dissolved in the electrolyte by applying a current to the reactor.
  • the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH)
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • RbOH rubidium hydroxide
  • CsOH cesium hydroxide
  • FrOH francium hydroxide
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • RbOH rubidium hydroxide
  • CsOH cesium hydroxide
  • FrOH francium hydroxide
  • the alcohol may be one or more selected from C 1 ⁇ C 5 alcohol, more preferably methanol.
  • the cathode may be a copper (Cu) or mercury (Hg) electrode.
  • the positive electrode may be one or more selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag).
  • the present invention includes a reactor including an alcohol and a precipitation aid and a carbon dioxide dissolved electrolyte; An anode provided in the reactor and partially or fully immersed in the electrolyte; A negative electrode provided in the reactor to face the positive electrode and partially or fully immersed in the electrolyte; And it provides a carbon dioxide reduction device comprising an ion permeable diaphragm that divides them between the anode and the cathode.
  • it may further include a power supply unit for applying a current to the positive electrode and the negative electrode.
  • the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH)
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • RbOH rubidium hydroxide
  • CsOH cesium hydroxide
  • FrOH francium hydroxide
  • the precipitation aid may be a mixture of potassium hydroxide and sodium hydroxide 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of potassium hydroxide.
  • the precipitation aid may comprise 0.1 to 0.6 mol per 1L of electrolyte.
  • the alcohol is one or more selected from C 1 ⁇ C 5 alcohol, more preferably methanol can be used.
  • the cathode may be a metal electrode, more preferably a copper (Cu) or mercury (Hg) electrode.
  • the anode is one or more selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag), more preferably platinum (Pt) Stainless steel can be used.
  • the carbon dioxide reduction device may be produced by alkanes and hydrogen.
  • a carbon dioxide reduction device further comprising a reference electrode.
  • the present invention includes an alcohol and a precipitation aid, and provides a carbon dioxide reduction electrolyte in which carbon dioxide is dissolved.
  • the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH)
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • RbOH rubidium hydroxide
  • CsOH cesium hydroxide
  • FrOH francium hydroxide
  • the precipitation aid may be a mixture of potassium hydroxide and sodium hydroxide 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of potassium hydroxide.
  • the alcohol is one or more selected from C 1 ⁇ C 5 alcohol, more preferably methanol can be used.
  • precipitation aid of the present invention is a preparation for maximizing the amount of reduced alkanes and hydrogen, and may also play a role of a conduction aid when the precipitation aid is added in the present invention.
  • conductive aid of the present invention means a substance which is added to all alcohols which are non-electrolytes and participates in the generation and flow of electric current.
  • the carbon dioxide reduction apparatus of the present invention can produce renewable energy such as alkanes and hydrogen by electrochemically reducing carbon dioxide and can provide an excellent carbon dioxide reduction method that can significantly reduce carbon dioxide.
  • renewable energy since the overvoltage required in the existing method and apparatus for reducing carbon dioxide is not required, renewable energy may be produced by reducing carbon dioxide without much cost and risk required for overvoltage.
  • FIG. 1 is a cross-sectional view of a carbon dioxide reduction apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a carbon dioxide reduction apparatus according to another preferred embodiment of the present invention.
  • FIG. 3 is a graph showing a concentration change over time of alkanes produced by performing Example 1.
  • FIG. 4 is a graph of concentration change with time of hydrogen produced by performing Example 1.
  • 5 is a graph of concentration change with time of alkanes produced by performing Examples 2 to 5.
  • FIG. 6 is a graph of concentration change with time of hydrogen generated by performing Examples 2 to 5.
  • the conventional carbon dioxide reduction method does not easily occur in the reduction reaction of carbon dioxide, so there is a lot of cost and risks due to overvoltage, and there is a problem in that an efficient catalyst development with improved selectivity is required.
  • the present invention includes an alcohol and a precipitation aid, a reactor including an electrolyte in which carbon dioxide is dissolved, a positive electrode provided in the reactor and partially or fully immersed in the electrolyte, provided in the reactor to face the positive electrode, and partially or fully immersed in the electrolyte.
  • a carbon dioxide reduction apparatus and a method for reducing the same including a negative electrode and an ion permeable diaphragm which divides them between the positive electrode and the negative electrode.
  • the carbon dioxide reduction apparatus of the present invention can produce new renewable energy such as alkanes and hydrogen by electrochemically reducing carbon dioxide and can provide an excellent carbon dioxide reduction method that can significantly reduce carbon dioxide.
  • renewable energy may be produced by reducing carbon dioxide without much cost and risk required for overvoltage.
  • FIG. 1 is a cross-sectional view of the carbon dioxide reduction apparatus 100 according to an embodiment of the present invention.
  • the carbon dioxide reduction apparatus 100 includes an alcohol and a precipitation aid, includes an electrolyte 110 in which carbon dioxide is dissolved, and is provided in the reactor 160 and is provided in the anode 120 partially or fully immersed in the electrolyte and the anode.
  • the reactor 160 will be described.
  • the reactor is not particularly limited as long as it is commonly used, but preferably, the material of the reactor is pyrex to acryl to polyvinyl chloride (PVC; PolyVinyl Chloride), and the size of the reactor may be 0.1 m 3 to 100.0 m 3 . However, it is not limited thereto.
  • Electrolyte dissolves carbon dioxide and flows a current so that carbon dioxide is reduced to play a role of converting renewable energy such as alkanes and hydrogen.
  • a solution containing carbon dioxide and an alcohol and a precipitation aid may be used.
  • the alcohol, precipitation aid and carbon dioxide contained in the electrolyte can be used to dissolve sequentially or all at once, and in particular, carbon dioxide can be dissolved by supplying the electrolyte to the reducing device after supplying or dissolving it before supplying the reducing device. Is also included in the scope of the present invention.
  • Alcohol may serve to absorb and dissolve carbon dioxide.
  • Alcohol of the present invention is not particularly limited as long as it is alcohol, but more preferably at least one selected from C 1 ⁇ C 5 alcohol, more preferably using methanol is very advantageous to maximize the reduction efficiency of carbon dioxide ( Table 1, Figures 5 and 6).
  • the content of the alcohol contained in the electrolyte 110 may be included in the weight of 50 to 100% by weight of the total electrolyte. If the alcohol content is less than 50% by weight, a large amount of unreacted carbon dioxide may be generated, which may cause a problem in that the purity of the generated gas is reduced.
  • the precipitation aid included in the electrolyte 110 can be used without limitation as long as it can electrolyze carbon dioxide that is thermodynamically stable, ie, combine with electrons in carbon dioxide to radicalize carbon dioxide, and preferably use an alkali hydroxide. More preferably, at least one selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), and francium hydroxide (FrOH) can be used. have. Meanwhile, most preferably, a mixture of potassium hydroxide and sodium hydroxide is most advantageous for maximizing renewable energy production efficiency such as alkanes and hydrogen (see Table 1 and FIGS. 5 to 6). In addition, when the precipitation aid is not added to the electrolyte, carbon dioxide may not be smoothly reduced, and thus it may be difficult to reduce carbon dioxide to renewable energy such as alkanes and hydrogen.
  • the mixing ratio of potassium hydroxide and sodium hydroxide may be used by mixing 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of sodium hydroxide, but is not limited thereto.
  • 0.1 to 0.3 mol of potassium hydroxide and sodium hydroxide dissolved in 1 L of the electrolyte may be used, but is not limited thereto. If the concentration of potassium hydroxide and / or sodium hydroxide is less than 0.1 mol, the amount of methane and hydrogen is lowered and unreacted carbon dioxide may be emitted. If the concentration is higher than 0.6 mol, a large amount of carbonate may occur. have.
  • the electrolyte 110 including the alcohol and the precipitation aid and dissolving carbon dioxide may include the precipitation aid in a concentration of 0.1 to 0.6 mol per liter of the electrolyte. If the concentration is less than 0.1 mol / L there is a problem of low purity of renewable energy, such as alkanes and hydrogen, there may be a problem that a large amount of carbonate occurs when more than 0.6 mol / L.
  • Carbon dioxide dissolved in the electrolyte 110 is not particularly limited as long as it is usually generated during the industrial process, the concentration of carbon dioxide in the electrolyte may be used in the 0.05 ⁇ 99%, but is not limited thereto.
  • the electrolyte may further include materials generally used in the electrolyte of the electrochemical reduction method, preferably distilled water, neon gas, argon gas, nitric acid, carbon dioxide, NaCl, HCl, HNO 3 , KOH, KCl, CH 3 COOH, CuSO 4 and HgCl 2 may be further included.
  • materials generally used in the electrolyte of the electrochemical reduction method preferably distilled water, neon gas, argon gas, nitric acid, carbon dioxide, NaCl, HCl, HNO 3 , KOH, KCl, CH 3 COOH, CuSO 4 and HgCl 2 may be further included.
  • the negative electrode may be used without limitation as long as it is commonly used as a negative electrode material of the electrochemical reduction apparatus, preferably a metal electrode, and more preferably a copper (Cu) or mercury (Hg) electrode. Copper electrode has an excellent efficiency for hydrocarbon gas, and excellent adsorption power for carbon dioxide generated during the electrolysis process is most preferred for use as a cathode of the present invention, but is not limited thereto.
  • the positive electrode 120 which is partially or wholly immersed in the electrolyte 110 and is opposed to the cathode 130.
  • the positive electrode may be used without limitation as long as it is commonly used as a positive electrode material of an electrochemical reduction apparatus, and preferably may be durable to oxides, more preferably platinum (Pt), stainless steel, gold (Au), and the like.
  • Pt platinum
  • Au gold
  • One or more selected from the group consisting of silver (Ag), more preferably platinum or stainless steel may be used, but is not limited thereto.
  • the ion-permeable diaphragm 140 dividing them between the anode 120 and the cathode 130 may be used without limitation as long as it is generally used as an ion-permeable diaphragm of an electrochemical reduction apparatus, and preferably, ion exchange.
  • the resin may be molded in a film shape, more preferably, a perfluorinated sulfonic acid polymer material, and more preferably, one selected from the group consisting of Nafion 112, Nafion 115, and Nafion 117 of DuPont The above can be used, but it is not limited to this.
  • the ion-permeable diaphragm When the ion-permeable diaphragm is immersed in an electrolyte and an electric current is applied to the electrolyte, the ion-permeable diaphragm exhibits a resistance close to 100% for the passage of cations but anion passage.
  • the power supply unit 150 for applying a voltage to the positive electrode 120 and the negative electrode 130 may be connected to both the positive electrode and the negative electrode or only one, and the carbon dioxide reduction apparatus of the present invention may include one or more power supply units.
  • the voltage applied by the power supply unit 150 is not particularly limited, but more preferably 10 volts or more may be used, and more preferably 10 to 100 volts may be applied.
  • a voltage of at least 60 volts is applied, but in the present invention, a reduction reaction of carbon dioxide may occur even with a voltage of at least 10 volts.
  • the voltage is applied below 10 volts, current exchange is not smooth due to the resistance of the ion permeable diaphragm, and there may be a problem in that the purity of alkanes and hydrogen gas is low. In this case, alkanes and hydrogen gas can be obtained in proportion to the voltage.
  • the carbon dioxide reduction apparatus of the present invention may provide a carbon dioxide reduction apparatus 100 further comprising a reference electrode 170, as shown in FIG.
  • the reference electrode is not particularly limited as long as it is a conventional electrode that can be used as a reference because a single pole potential used when measuring electromotive force or electrode potential of a chemical cell is more preferable. More preferably, silver chloride electrode, calomel electrode, and sulfuric acid are used. Mercury (I) can be used.
  • the reference electrode may be positioned on either the cathode or the anode.
  • the carbon dioxide reduction apparatus of the present invention may include a renewable energy collection unit (not shown).
  • the renewable energy collection unit serves to capture renewable energy such as alkanes and hydrogen produced by the carbon dioxide reduction device.
  • Alkanes produced by the carbon dioxide reduction apparatus of the present invention may be methane, ethane, propane.
  • the electrolyte is injected before or after the negative electrode and the positive electrode are installed in the reactor, so that the ion-permeable diaphragm may be installed after the electrolyte is injected.
  • the alcohol, precipitation aid and carbon dioxide contained in the electrolyte in step (1) may be used by sequentially dissolving or dissolving all at once, in particular, carbon dioxide is supplied by dissolving the electrolyte after feeding the electrolyte into the reducing device or inputting the reducing device. Dissolution by feeding before is also included in the scope of the present invention.
  • the alcohol of step (1) is not particularly limited as long as it is alcohol, but more preferably at least one selected from C 1 to C 5 alcohols, and more preferably methanol.
  • the precipitation aid is not particularly limited as long as it is a hydroxide consisting of an alkali element, more preferably lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH) ), May be used one or more selected from the group consisting of francium hydroxide (FrOH), more preferably two or more selected from the group.
  • potassium hydroxide and sodium hydroxide it is most preferred for the production of renewable energy, such as alkanes and hydrogen, but is not limited thereto.
  • the electrolyte containing the alcohol and the precipitation aid, and the carbon dioxide dissolved electrolyte may be used in the concentration of 0.1 ⁇ 0.6 mol per 1L electrolyte. If the concentration is less than 0.1 mol / L there is a problem of low purity of renewable energy, such as alkanes and hydrogen, there may be a problem that a large amount of carbonate occurs when more than 0.6 mol / L.
  • carbon dioxide dissolved in the electrolyte is not particularly limited as long as it is usually generated during industrial processes, it may reduce the risk of explosion if carbon dioxide and inert gas is included.
  • the negative electrode included in the reactor in the step (2) is not particularly limited as long as it uses a conventional metal electrode, more preferably a copper (Cu) or mercury (Hg) electrode can be used.
  • the copper electrode is most preferable for use as a cathode of the present invention because it has excellent efficiency for hydrocarbon gas and excellent adsorption power for carbon dioxide generated during electrolysis.
  • the anode included in the reactor in step (2) is not particularly limited as long as the oxide is durable, more preferably a group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag). At least one selected from, more preferably platinum or stainless steel may be used.
  • the ion permeable diaphragm dividing the positive electrode and the negative electrode of step (2) is not particularly limited as long as the ion-exchange resin is molded into a membrane shape.
  • the voltage applied to the cathode and the anode is not particularly limited, but preferably a voltage of 10 to 100 V may be applied. Therefore, using a lower voltage than the conventional reduction method can reduce the cost of carbon dioxide reduction method.
  • the present invention includes an alcohol and a precipitation aid, and provides a carbon dioxide reduction electrolyte in which carbon dioxide is dissolved.
  • an alcohol and a precipitation aid are mixed to prepare an electrolyte, and carbon dioxide is injected and dissolved in the electrolyte, and then the electrolyte is placed in a reactor as shown in FIG. 2 to install a cathode, an anode, and an ion permeable membrane. Then, when a voltage is applied to the cathode and the anode, carbon dioxide is reduced at the cathode to generate an alkane gas, and at the anode, alcohol is reduced to generate hydrogen gas. At this time, alkanes and hydrogen gas may be collected in separate renewable energy collectors to measure concentration and purity.
  • 0.2 M potassium hydroxide and 0.2 M sodium hydroxide were dissolved in 200 ml of methanol by stirring for 30 minutes. 200 ml of the stirred solution was transferred to an electrochemical apparatus, and the positive electrode and the negative electrode were connected. Then, carbon dioxide was supplied at 20 ml / min to dissolve for 30 minutes, and then the negative electrode and the positive electrode were separated by an ion permeable membrane to perform electrolysis. . The concentration of alkanes and hydrogen generated during the electrolysis was measured for each reaction time and is shown in FIGS. 3 and 4.
  • Example 2 The same procedure as in Example 1 was carried out except that 0.1 M potassium hydroxide and 0.1 M sodium hydroxide were mixed in 200 ml of methanol.
  • Example 2 The same process as in Example 1 was carried out except that 0.15 M potassium hydroxide and 0.15 M sodium hydroxide were mixed in methanol.
  • Example 2 The same procedure as in Example 1 was carried out except that 0.25 M potassium hydroxide and 0.25 M sodium hydroxide were mixed in 200 ml of methanol.
  • Example 2 The same procedure as in Example 1 was carried out except that 0.3 M potassium hydroxide and 0.3 M sodium hydroxide were mixed with 200 ml of methanol.
  • Example 2 It carried out similarly to Example 1 except having used ethanol instead of the methanol used in Example 1.
  • the combustible gases such as alkanes or hydrogen produced at this time were not measured.
  • Example 2 It carried out similarly to Example 1 except having used butanol instead of the methanol used in Example 1.
  • the combustible gases such as alkanes or hydrogen produced at this time were not measured.
  • Example 2 It carried out similarly to Example 1 except having used isopropyl alcohol instead of the methanol used in Example 1.
  • the combustible gases such as alkanes or hydrogen produced at this time were not measured.
  • the concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that only 0.2 M sodium hydroxide was mixed with 200 ml of methanol, but the measured concentrations of flammable gases such as alkanes or hydrogen were insufficient. Methane, ethane and propane were not measured and hydrogen was measured at 0.5% or less.
  • the concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that only 0.2 M potassium hydroxide was mixed in 200 ml of methanol, but the measured concentrations of flammable gases such as alkanes or hydrogen were insufficient. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
  • the measured concentration of methane was the highest in Example 1 using 0.2 M sodium hydroxide and 0.2 M potassium hydroxide.
  • the measured concentration of hydrogen was also highest in Example 1 using 0.2 M sodium hydroxide and 0.2 M potassium hydroxide.
  • Example 1 Except not dissolving carbon dioxide in 200 ml of the stirred solution in Example 1, the concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1, but a flammable gas such as alkanes or hydrogen was not measured.
  • the concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that the precipitation aid was not added to 200 ml of methanol, but the measured concentration of the flammable gas such as alkanes or hydrogen was not measured.
  • Example 1 Except for using distilled water instead of methanol in Example 1 was carried out in the same manner as in Example 1 to measure the concentration of alkanes and hydrogen produced, but the measured concentration of the alkanes or hydrogen and flammable gas is inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1.5% or less.
  • Example 1 Except for using distilled water instead of methanol and dissolving carbon dioxide in Example 1 was carried out in the same manner as in Example 1 to measure the concentration of alkanes and hydrogen produced, but the measured concentration of alkane or hydrogen and flammable gas was not enough. Methane, ethane and propane were not measured and hydrogen was measured at 1.5% or less.
  • Example 1 Except for using distilled water instead of methanol and mixing only 0.2M sodium hydroxide as a precipitation aid in Example 1 was measured in the same manner as in Example 1 but the concentration of alkanes and hydrogen was measured The concentration was inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
  • Example 1 Except for using distilled water instead of methanol and mixing only 0.2M potassium hydroxide as a precipitation aid in Example 1 was measured in the same manner as in Example 1 but the measurement of alkanes and hydrogen and flammable gas The concentration was inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
  • electrolysis of carbon dioxide using an electrolyte containing carbon dioxide and potassium hydroxide and sodium hydroxide as a precipitation aid and dissolving carbon dioxide can produce alkanes, methane, ethane and propane, Hydrogen could be produced.
  • concentrations of potassium hydroxide and sodium hydroxide were less than 0.15M, the purity of alkanes and hydrogen generated was low, and when the concentrations of potassium hydroxide and sodium hydroxide exceed 0.25M, a large amount of carbonate is generated to hinder the reduction of carbon dioxide. It was confirmed that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a method and apparatus for reducing carbon dioxide. More particularly, the present invention relates to a method and apparatus for reducing carbon dioxide, in which the method and apparatus electrochemically reduces the carbon dioxide so as to produce new renewable energy such as alkane and hydrogen.

Description

이산화탄소 환원방법 및 이를 이용한 이산화탄소 환원장치CO2 Reduction Method and CO2 Reduction Device Using the Same
본 발명은 이산화탄소를 알칸과 수소가스로 환원하는 방법 및 장치에 관한 것으로서, 보다 상세하게는 전해질 내에 용해된 이산화탄소가 전기화학적 분해에 의해 신재생에너지인 알칸 및 수소 등을 우수하게 전환 생산하고 이산화탄소를 획기적으로 저감하고 환원할 수 있는 장치에 관한 것이다. 또한, 기존의 이산화탄소 환원방법은 이산화탄소의 환원 반응이 쉽게 일어나지 않아 큰 과전압이 필요하고, 선택성이 향상된 효율적인 촉매 개발이 필요한 문제점이 있는데 상기 장치를 이용한 이산화탄소 환원방법에는 과전압 및 촉매가 없어 기존의 이산화탄소 환원방법보다 적은 비용으로 신재생에너지를 생산할 수 있다.The present invention relates to a method and apparatus for reducing carbon dioxide to alkanes and hydrogen gas. More particularly, carbon dioxide dissolved in an electrolyte converts and produces alkanes and hydrogen, which are renewable energy, by electrochemical decomposition. The present invention relates to a device that can significantly reduce and reduce. In addition, the conventional carbon dioxide reduction method requires a large overvoltage because the reduction reaction of carbon dioxide does not easily occur, and there is a problem that an efficient catalyst with improved selectivity is required. Renewable energy can be produced at less cost than the method.
최근 급격한 산업화 및 경제 활동에 의해 대기 중으로 다량 배출되는 이산화탄소는 온실효과를 증대시켜 지표나 하층대기의 기온을 상승, 지구온난화 및 기후변화를 초래하고 있다. 이러한 이산화탄소를 분리?회수하는 기술분야는 물리화학적 흡수법, 흡착법, 막분리법 등이 있으며, 이는 지중이나 해양에 저장할 수 있다. 또한 이산화탄소는 지구상에서 가장 풍부하게 존재하는 탄소화합물이므로 이산화탄소를 효과적으로 활성화시켜서 유용한 유기물로 변환시켜 에너지원 혹은 유기합성에 필요한 탄소의 공급원으로 이용하기 위해 촉매법, 전기화학법, 생물학적 전환법, 광화학법 등으로 재생에너지와 같은 형태로 전환해 왔다.In recent years, carbon dioxide emitted to the atmosphere by rapid industrialization and economic activity increases the greenhouse effect, raising the temperature of the surface or the lower atmosphere, causing global warming and climate change. Technical fields for separating and recovering carbon dioxide include physicochemical absorption, adsorption, and membrane separation, which can be stored underground or in the ocean. In addition, carbon dioxide is the most abundant carbon compound on the planet, so it can be effectively activated to convert carbon dioxide into useful organic materials to be used as a source of carbon for energy or organic synthesis. Catalysis, electrochemistry, biological conversion, photochemistry Has been converted to the same form as renewable energy.
이산화탄소를 유용한 화합물로의 전환기술은 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키는 기술이기 때문에 에너지의 투입이 필수적이고 효과적인 전환을 위하여 관련된 반응 조건의 확립이 필수적이다. 에너지원으로 사용 가능한 것은 수소, 메탄 등의 화학에너지, 태양에너지, 전기에너지 등이다.Since the conversion of carbon dioxide to useful compounds is a technique of converting the most stable carbon dioxide among other carbon compounds into other useful compounds, input of energy is essential and establishment of related reaction conditions is essential for effective conversion. Available energy sources include chemical energy such as hydrogen and methane, solar energy, and electrical energy.
이 중 전기화학적 환원에 의한 이산화탄소 자원화 방법은 전해질 용액내에 포화된 이산화탄소를 금속전극으로 전기화학반응을 일으켜 메탄, 에탄, 알코올 등으로 전환시키는 것으로 전기분해와 동시에 수소화 반응을 일으킨다. 특히 장치와 조작이 간단하고 생산된 화합물들은 일반적인 기체연료나 액체연료, 화학제품 등으로 이용될 수 있다. 그러나 이산화탄소의 환원 반응은 쉽게 일어나지 않고 큰 과전압이 필요하다. 양극에서의 수소 발생과 음극에서의 환원은 경쟁하므로 상대적으로 큰 음의 전위에서 반응하게 된다. 그러므로 전압과 전위의 효율 증가뿐 아니라 선택성이 향상된 효율적인 촉매의 개발이 이산화탄소의 환원에 있어서 매우 중요하다.Among them, a carbon dioxide resource recycling method using electrochemical reduction converts carbon dioxide saturated in an electrolyte solution into a metal electrode and converts it into methane, ethane, alcohol, and the like, causing electrolysis and hydrogenation. In particular, the device and the simple operation and the produced compounds can be used as a general gas fuel, liquid fuel, chemical products. However, the reduction of carbon dioxide does not occur easily and requires a large overvoltage. Hydrogen generation at the positive electrode and reduction at the negative electrode compete with each other and react at a relatively large negative potential. Therefore, the development of efficient catalysts with improved selectivity as well as increased efficiency of voltage and potential is very important for the reduction of carbon dioxide.
하지만 상기한 문제를 해결하기 위한 선행기술들은 이산화탄소의 저감만을 목적으로 두고 있으며 일부 선행문헌에 개시된 처리공정은 다량의 이산화탄소를 효과적으로 처리하기에는 적합하지 않고, 특히 바이오가스 정제 시 발생하는 이산화탄소를 제거하는 것만을 목표로 하는 단점이 있다.However, prior arts for solving the above problems are aimed at reducing carbon dioxide only, and the treatment processes disclosed in some prior documents are not suitable for effectively treating a large amount of carbon dioxide, and in particular, only remove carbon dioxide generated during biogas purification. There is a disadvantage to aiming at.
또한, 기존의 이산화탄소를 환원하는 방법 및 장치는 이산화탄소를 환원하여 알칸과 수소가스를 생산하는 것까지 이어지지 않았으며, 이산화탄소의 환원 반응이 쉽게 일어나지 않아 과전압이 필요하여 많은 비용 및 위험성이 있었으며, 이산화탄소를 환원시키기 위하여 이산화탄소만을 선택적으로 환원시킬 수 있는 환원촉매가 필요하였다. 그러나 이러한 환원촉매는 그 비용이 비싸 상용화되는데 어려울 뿐 아니라 환원되는 이산화탄소에서 유용한 신재생에너지를 얻기 어려운 문제가 있었다.In addition, the existing method and apparatus for reducing carbon dioxide did not lead to the production of alkanes and hydrogen gas by reducing carbon dioxide, and the reduction reaction of carbon dioxide did not occur easily, so that overvoltage was required, and there was a lot of cost and risk. In order to reduce, a reduction catalyst capable of selectively reducing only carbon dioxide was needed. However, these reduction catalysts are difficult to commercialize because of their high cost, and there are problems that it is difficult to obtain useful renewable energy from the reduced carbon dioxide.
본 발명은 상술한 문제를 해결하기 위해 안출된 것으로, 본 발명의 해결하고자 하는 과제는 이산화탄소 처리의 문제점을 해결함과 동시에 신재생에너지를 다량 수득하기 위하여, 이산화탄소를 환원촉매의 사용 없이도 전기화학적으로 환원하여 알칸 및 수소 등의 신재생에너지로 전환시키는 장치 및 방법을 제공한다.The present invention has been made to solve the above-mentioned problems, the problem to be solved of the present invention to solve the problem of carbon dioxide treatment and at the same time to obtain a large amount of renewable energy, carbon dioxide is electrochemically without the use of a reduction catalyst Provided are an apparatus and a method for reducing and converting renewable energy such as alkanes and hydrogen.
본 발명은 (1) 양극, 음극 및 이들을 분할하는 이온투과성 격막을 포함하는 반응기에 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 주입하는 단계; 및 (2) 상기 반응기에 전류를 인가하여 상기 전해질 내에 용해된 이산화탄소를 전기분해하는 단계;를 포함하는 이산화탄소 환원방법을 제공한다.The present invention includes the steps of: (1) injecting an electrolyte containing carbon dioxide and a precipitation aid in a reactor comprising an anode, a cathode and an ion permeable diaphragm dividing them; And (2) electrolyzing carbon dioxide dissolved in the electrolyte by applying a current to the reactor.
본 발명의 바람직한 일실시예에 따르면, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것, 보다 바람직하게는 상기 군에서 선택된 2종 이상인 것, 더 바람직하게는 수산화칼륨 및 수산화나트륨인 것을 사용할 수 있다.According to a preferred embodiment of the present invention, the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) One or more selected from the group consisting of, more preferably two or more selected from the group, and more preferably potassium hydroxide and sodium hydroxide.
본 발명의 다른 바람직한 일실시예에 따르면, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상, 더 바람직하게는 메탄올을 사용할 수 있다.According to another preferred embodiment of the present invention, the alcohol may be one or more selected from C 1 ~ C 5 alcohol, more preferably methanol.
본 발명의 또 다른 바람직한 일실시예에 따르면, 음극이 구리(Cu) 또는 수은(Hg)전극을 사용할 수 있다.According to another preferred embodiment of the present invention, the cathode may be a copper (Cu) or mercury (Hg) electrode.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 양극은 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상인 것을 사용할 수 있다.According to another preferred embodiment of the present invention, the positive electrode may be one or more selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag).
또한, 본 발명은 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 포함하는 반응기; 상기 반응기 내에 구비되며 전해질에 일부 또는 전부 침지된 양극; 상기 반응기 내에 구비되어 양극에 대향되며 전해질에 일부 또는 전부 침지된 음극; 및 상기 양극과 음극의 사이에서 이들을 분할하는 이온투과성 격막을 포함하는 이산화탄소 환원장치를 제공한다.In addition, the present invention includes a reactor including an alcohol and a precipitation aid and a carbon dioxide dissolved electrolyte; An anode provided in the reactor and partially or fully immersed in the electrolyte; A negative electrode provided in the reactor to face the positive electrode and partially or fully immersed in the electrolyte; And it provides a carbon dioxide reduction device comprising an ion permeable diaphragm that divides them between the anode and the cathode.
본 발명의 바람직한 일실시예에 따르면, 상기 양극 및 음극에 전류를 인가하는 전원부를 더 포함할 수 있다.According to a preferred embodiment of the present invention, it may further include a power supply unit for applying a current to the positive electrode and the negative electrode.
본 발명의 다른 바람직한 일실시예에 따르면, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것, 보다 바람직하게는 상기 군에서 선택된 2종 이상인 것, 더욱 바람직하게는 수산화칼륨 및 수산화나트륨을 사용할 수 있다.According to another preferred embodiment of the present invention, the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) One or more selected from the group consisting of, more preferably two or more selected from the group, more preferably potassium hydroxide and sodium hydroxide can be used.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 석출보조제가 수산화칼륨 및 수산화나트륨을 수산화칼륨 100 중량부 대비 100 ~ 300 중량비의 수산화나트륨을 혼합한 것을 사용할 수 있다.According to another preferred embodiment of the present invention, the precipitation aid may be a mixture of potassium hydroxide and sodium hydroxide 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of potassium hydroxide.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 석출보조제가 전해질 1L당 0.1 ~ 0.6 mol 포함할 수 있다.According to another preferred embodiment of the present invention, the precipitation aid may comprise 0.1 to 0.6 mol per 1L of electrolyte.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상인 것, 더 바람직하게는 메탄올을 사용할 수 있다.According to another preferred embodiment of the present invention, the alcohol is one or more selected from C 1 ~ C 5 alcohol, more preferably methanol can be used.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 음극은 금속전극, 더 바람직하게는 구리(Cu) 또는 수은(Hg)전극을 사용할 수 있다.According to another preferred embodiment of the present invention, the cathode may be a metal electrode, more preferably a copper (Cu) or mercury (Hg) electrode.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 양극은 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상인 것, 더 바람직하게는 백금(Pt), 스테인레스 스틸을 사용할 수 있다.According to another preferred embodiment of the present invention, the anode is one or more selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag), more preferably platinum (Pt) Stainless steel can be used.
본 발명의 또 다른 바람직한 일실시예에 따르면, 이산화탄소 환원장치는 알칸 및 수소가 생성할 수 있다.According to another preferred embodiment of the present invention, the carbon dioxide reduction device may be produced by alkanes and hydrogen.
본 발명의 또 다른 바람직한 일실시예에 따르면, 기준전극을 더 포함하는 이산화탄소 환원장치를 제공할 수 있다.According to another preferred embodiment of the present invention, it is possible to provide a carbon dioxide reduction device further comprising a reference electrode.
또한, 본 발명은 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 이산화탄소 환원용 전해질을 제공한다.In addition, the present invention includes an alcohol and a precipitation aid, and provides a carbon dioxide reduction electrolyte in which carbon dioxide is dissolved.
본 발명의 또 다른 바람직한 일실시예에 따르면, 석출보조제는 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것, 보다 바람직하게는 상기 군에서 선택된 2종 이상인 것, 더욱 바람직하게는 수산화칼륨 및 수산화나트륨을 사용할 수 있다.According to another preferred embodiment of the present invention, the precipitation aid is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) One or more selected from the group consisting of, more preferably two or more selected from the group, more preferably potassium hydroxide and sodium hydroxide can be used.
본 발명의 또 다른 바람직한 일실시예에 따르면, 석출보조제가 수산화칼륨 및 수산화나트륨을 수산화칼륨 100 중량부 대비 100 ~ 300 중량비의 수산화나트륨을 혼합한 것을 사용할 수 있다.According to another preferred embodiment of the present invention, the precipitation aid may be a mixture of potassium hydroxide and sodium hydroxide 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of potassium hydroxide.
본 발명의 또 다른 바람직한 일실시예에 따르면, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상인 것, 더 바람직하게는 메탄올을 사용할 수 있다.According to another preferred embodiment of the present invention, the alcohol is one or more selected from C 1 ~ C 5 alcohol, more preferably methanol can be used.
이하, 본 명세서에서 사용된 용어에 대해 간략히 설명한다.Hereinafter, the terms used in the present specification will be briefly described.
본 발명의 "석출보조제"라 함은 환원되는 알칸 및 수소의 석출량을 극대화하기 위한 제제이며, 본 발명에서 석출보조제 첨가시 전도보조제의 역할도 수행할 수 있다.The term "precipitation aid" of the present invention is a preparation for maximizing the amount of reduced alkanes and hydrogen, and may also play a role of a conduction aid when the precipitation aid is added in the present invention.
본 발명의 “전도보조제”라 함은 비전해질인 모든 알코올 내에 투입되어 전류의 생성과 흐름에 관여하는 물질을 의미한다.The term "conductive aid" of the present invention means a substance which is added to all alcohols which are non-electrolytes and participates in the generation and flow of electric current.
본 발명의 이산화탄소 환원장치는 이산화탄소를 전기화학적으로 환원하여 알칸 및 수소와 같은 신재생에너지를 생산할 수 있으며 이산화탄소를 획기적으로 저감할 수 있는 우수한 이산화탄소 환원방법을 제공할 수 있다. 또한, 기존의 이산화탄소를 환원하는 방법 및 장치에서 필요로 했던 과전압이 필요하지 않아 과전압에 필요한 많은 비용과 위험성 없이도 이산화탄소를 환원하여 신재생에너지를 생산할 수 있다. 또한 기존의 환원방법에서 필요했던 선택성이 향상된 효율적인 촉매 없이도 이산화탄소를 환원하여 신재생에너지를 생산할 수 있어 환원촉매의 비용을 절감할 수 있어 기존의 환원방법보다 현저하게 저렴한 비용으로 신재생에너지를 대량생산할 수 있다.The carbon dioxide reduction apparatus of the present invention can produce renewable energy such as alkanes and hydrogen by electrochemically reducing carbon dioxide and can provide an excellent carbon dioxide reduction method that can significantly reduce carbon dioxide. In addition, since the overvoltage required in the existing method and apparatus for reducing carbon dioxide is not required, renewable energy may be produced by reducing carbon dioxide without much cost and risk required for overvoltage. In addition, it is possible to produce renewable energy by reducing carbon dioxide without the efficient catalyst with improved selectivity required in the existing reduction method, which can reduce the cost of the reduction catalyst. Therefore, it is possible to mass produce renewable energy at a significantly lower cost than the conventional reduction method. Can be.
도 1은 본 발명의 바람직한 일구현예에 따른 이산화탄소 환원장치의 단면도이다.1 is a cross-sectional view of a carbon dioxide reduction apparatus according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 다른 일구현예에 따른 이산화탄소 환원장치의 단면도이다.2 is a cross-sectional view of a carbon dioxide reduction apparatus according to another preferred embodiment of the present invention.
도 3은 실시예 1을 실시하여 생성된 알칸의 시간에 따른 농도변화 그래프이다.3 is a graph showing a concentration change over time of alkanes produced by performing Example 1. FIG.
도 4는 실시예 1을 실시하여 생성된 수소의 시간에 따른 농도변화 그래프이다.4 is a graph of concentration change with time of hydrogen produced by performing Example 1. FIG.
도 5는 실시예 2 내지 5를 실시하여 생성된 알칸의 시간에 따른 농도변화 그래프이다.5 is a graph of concentration change with time of alkanes produced by performing Examples 2 to 5.
도 6은 실시예 2 내지 5를 실시하여 생성된 수소의 시간에 따른 농도변화 그래프이다.6 is a graph of concentration change with time of hydrogen generated by performing Examples 2 to 5. FIG.
이하, 첨부된 도면을 참고하여 본 발명을 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described the present invention in more detail.
상술한 바와 같이 기존의 이산화탄소 환원방법은 이산화탄소의 환원 반응이 쉽게 일어나지 않아 과전압이 필요하여 많은 비용 및 위험성이 있었으며, 선택성이 향상된 효율적인 촉매 개발이 필요한 문제점이 있었다.As described above, the conventional carbon dioxide reduction method does not easily occur in the reduction reaction of carbon dioxide, so there is a lot of cost and risks due to overvoltage, and there is a problem in that an efficient catalyst development with improved selectivity is required.
이에 본 발명에서는 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 포함하는 반응기, 상기 반응기 내에 구비되며 전해질에 일부 또는 전부 침지된 양극, 상기 반응기 내에 구비되어 양극에 대향되며 전해질에 일부 또는 전부 침지된 음극 및 상기 양극과 음극의 사이에서 이들을 분할하는 이온투과성 격막을 포함하는 이산화탄소 환원장치 및 이의 환원방법을 제공함으로써 상술한 문제의 해결을 모색하였다. 또한 본 발명의 이산화탄소 환원장치는 이산화탄소를 전기화학적으로 환원하여 알칸 및 수소와 같은 신재생에너지를 생산할 수 있으며 이산화탄소를 획기적으로 저감할 수 있는 우수한 이산화탄소 환원방법을 제공할 수 있다. 또한, 기존의 이산화탄소를 환원하는 방법 및 장치에서 필요로 했던 과전압이 필요하지 않아 과전압에 필요한 많은 비용과 위험성 없이도 이산화탄소를 환원하여 신재생에너지를 생산할 수 있다. 또한 기존의 환원방법에서 필요했던 선택성이 향상된 효율적인 촉매 없이도 이산화탄소를 환원하여 신재생에너지를 생산할 수 있어 환원촉매의 비용을 절감할 수 있어 기존의 환원방법보다 현저하게 저렴한 비용으로 신재생에너지를 대량생산할 수 있다.Accordingly, the present invention includes an alcohol and a precipitation aid, a reactor including an electrolyte in which carbon dioxide is dissolved, a positive electrode provided in the reactor and partially or fully immersed in the electrolyte, provided in the reactor to face the positive electrode, and partially or fully immersed in the electrolyte. The above-mentioned problem has been sought by providing a carbon dioxide reduction apparatus and a method for reducing the same, including a negative electrode and an ion permeable diaphragm which divides them between the positive electrode and the negative electrode. In addition, the carbon dioxide reduction apparatus of the present invention can produce new renewable energy such as alkanes and hydrogen by electrochemically reducing carbon dioxide and can provide an excellent carbon dioxide reduction method that can significantly reduce carbon dioxide. In addition, since the overvoltage required in the existing method and apparatus for reducing carbon dioxide is not required, renewable energy may be produced by reducing carbon dioxide without much cost and risk required for overvoltage. In addition, it is possible to produce renewable energy by reducing carbon dioxide without the efficient catalyst with improved selectivity required in the existing reduction method, which can reduce the cost of the reduction catalyst. Therefore, it is possible to mass produce renewable energy at a significantly lower cost than the conventional reduction method. Can be.
구체적으로, 도 1은 본 발명의 일구현예에 따른 이산화탄소 환원장치(100)의 단면도이다. 이산화탄소 환원장치(100)는 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질(110)을 포함하며, 반응기(160) 내에 구비되며 전해질에 일부 또는 전부 침지된 양극(120) 및 반응기 내에 구비되어 양극에 대향되며 전해질에 일부 또는 전부 침지된 음극(130)을 포함한다. 또한 양극과 음극의 사이에서 이들을 분할하는 이온투과성 격막(140)과 양극 및 음극에 전압을 인가하는 전원부(150)를 포함한다.Specifically, Figure 1 is a cross-sectional view of the carbon dioxide reduction apparatus 100 according to an embodiment of the present invention. The carbon dioxide reduction apparatus 100 includes an alcohol and a precipitation aid, includes an electrolyte 110 in which carbon dioxide is dissolved, and is provided in the reactor 160 and is provided in the anode 120 partially or fully immersed in the electrolyte and the anode. Opposed to and includes a cathode 130 partially or fully immersed in the electrolyte. It also includes an ion permeable diaphragm 140 to divide them between the anode and the cathode and a power supply unit 150 for applying a voltage to the anode and the cathode.
먼저, 반응기(160)에 대해 설명한다. 반응기는 통상적으로 사용하는 것이라면 특별한 제한이 없으나, 바람직하게는 반응기의 재질이 파이렉스 내지 아크릴 내지 폴리염화비닐(PVC; PolyVinyl Chloride)인 것, 반응기의 크기는 0.1 m3 ~ 100.0 m3인 것을 사용할 수 있으나 이에 한정되는 것은 아니다.First, the reactor 160 will be described. The reactor is not particularly limited as long as it is commonly used, but preferably, the material of the reactor is pyrex to acryl to polyvinyl chloride (PVC; PolyVinyl Chloride), and the size of the reactor may be 0.1 m 3 to 100.0 m 3 . However, it is not limited thereto.
다음, 상기 반응기(160) 내부에 포함되는 전해질(110)을 설명한다. 전해질은 이산화탄소를 용해하며 전류를 흐르게 하여 이산화탄소가 환원되어 알칸 및 수소 등의 신재생에너지를 전환시키는 역할을 할 수 있다. 본 발명의 전해질은 이산화탄소가 용해되며 알코올 및 석출보조제를 포함하는 용액을 사용할 수 있다. 또한, 전해질에 포함되는 알코올, 석출보조제 및 이산화탄소는 각각 순차적으로 용해하거나 한꺼번에 모두 용해하여 사용할 수 있으며, 특히 이산화탄소는 환원장치에 전해질은 투입한 후 공급하여 용해시키거나 환원장치 투입 전에 공급하여 용해시키는 것 역시 본 발명의 범위에 포함된다.Next, the electrolyte 110 included in the reactor 160 will be described. Electrolyte dissolves carbon dioxide and flows a current so that carbon dioxide is reduced to play a role of converting renewable energy such as alkanes and hydrogen. In the electrolyte of the present invention, a solution containing carbon dioxide and an alcohol and a precipitation aid may be used. In addition, the alcohol, precipitation aid and carbon dioxide contained in the electrolyte can be used to dissolve sequentially or all at once, and in particular, carbon dioxide can be dissolved by supplying the electrolyte to the reducing device after supplying or dissolving it before supplying the reducing device. Is also included in the scope of the present invention.
다음으로 상기 전해질(110)에 포함된 알코올을 설명한다. 알코올은 이산화탄소를 흡수하여 용해하는 역할을 할 수 있다. 본 발명의 알코올은 알코올류라면 특별한 제한이 없으나, 보다 바람직하게는 C1 ~ C5 알코올 중 선택된 1종 이상인 것, 더 바람직하게는 메탄올을 사용하는 것이 이산화탄소의 환원효율을 극대화하는데 매우 유리하다(표 1, 도 5 및 도 6 참조). Next, the alcohol contained in the electrolyte 110 will be described. Alcohol may serve to absorb and dissolve carbon dioxide. Alcohol of the present invention is not particularly limited as long as it is alcohol, but more preferably at least one selected from C 1 ~ C 5 alcohol, more preferably using methanol is very advantageous to maximize the reduction efficiency of carbon dioxide ( Table 1, Figures 5 and 6).
또한, 전해질(110)에 포함된 알코올의 함량은 전체 전해질 중량에 50 ~ 100 중량% 포함될 수 있다. 만일 알코올의 함량이 50 중량% 미만이면 미반응 이산화탄소가 다량 발생하여 생성되는 가스의 순도가 떨어지는 문제가 발생할 수 있다.In addition, the content of the alcohol contained in the electrolyte 110 may be included in the weight of 50 to 100% by weight of the total electrolyte. If the alcohol content is less than 50% by weight, a large amount of unreacted carbon dioxide may be generated, which may cause a problem in that the purity of the generated gas is reduced.
상기 전해질(110)이 포함하는 석출보조제는 열역학적으로 안정한 이산화탄소를 전기분해, 즉 이산화탄소 내의 전자와 결합하여 이산화탄소를 라디칼화할 수 있는 것이라면 제한없이 사용할 수 있으나, 바람직하게는 알칼리족 수산화물을 사용할 수 있고, 보다 바람직하게는 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것을 사용할 수 있다. 한편 가장 바람직하게는 수산화칼륨 및 수산화나트륨을 혼합 사용하는 것이 알칸 및 수소와 같은 신재생에너지 생산효율을 극대화하는데 가장 유리하다(표 1 및 도 5 내지 6 참조). 또한, 상기 전해질에 석출보조제를 첨가하지 않을 경우, 이산화탄소의 환원이 원활하지 않아 이산화탄소를 알칸 및 수소와 같은 신재생에너지로 환원시키기 힘들 수 있다.The precipitation aid included in the electrolyte 110 can be used without limitation as long as it can electrolyze carbon dioxide that is thermodynamically stable, ie, combine with electrons in carbon dioxide to radicalize carbon dioxide, and preferably use an alkali hydroxide. More preferably, at least one selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), and francium hydroxide (FrOH) can be used. have. Meanwhile, most preferably, a mixture of potassium hydroxide and sodium hydroxide is most advantageous for maximizing renewable energy production efficiency such as alkanes and hydrogen (see Table 1 and FIGS. 5 to 6). In addition, when the precipitation aid is not added to the electrolyte, carbon dioxide may not be smoothly reduced, and thus it may be difficult to reduce carbon dioxide to renewable energy such as alkanes and hydrogen.
또한, 수산화칼륨 및 수산화나트륨을 석출보조제로 사용할 경우, 수산화칼륨 및 수산화나트륨의 혼합비는 수산화나트륨 100 중량부 대비 100 ~ 300 중량부의 수산화나트륨을 혼합하여 사용할 수 있으나 이에 한정하지는 않는다. 또한, 전해질 1ℓ에 수산화칼륨 및 수산화나트륨을 각각 0.1 ~ 0.3 mol 용해한 것을 사용할 수 있으나 이에 한정하는 것은 아니다. 만일 수산화칼륨 및/또는 수산화나트륨의 농도가 0.1 mol 미만일 경우 메탄과 수소의 석출량이 낮아지며 미반응 이산화탄소가 배출되는 문제가 발생할 수 있으며, 농도가 0.6 mol 초과일 경우 탄산염이 다량 발생하는 문제가 발생할 수 있다.In addition, when using potassium hydroxide and sodium hydroxide as a precipitation aid, the mixing ratio of potassium hydroxide and sodium hydroxide may be used by mixing 100 to 300 parts by weight of sodium hydroxide compared to 100 parts by weight of sodium hydroxide, but is not limited thereto. In addition, 0.1 to 0.3 mol of potassium hydroxide and sodium hydroxide dissolved in 1 L of the electrolyte may be used, but is not limited thereto. If the concentration of potassium hydroxide and / or sodium hydroxide is less than 0.1 mol, the amount of methane and hydrogen is lowered and unreacted carbon dioxide may be emitted. If the concentration is higher than 0.6 mol, a large amount of carbonate may occur. have.
상기 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질(110)은 석출보조제를 전해질 1L당 0.1 ~ 0.6 mol의 농도로 포함될 수 있다. 상기 농도가 0.1 mol/L 미만일 경우 알칸 및 수소와 같은 신재생에너지의 순도가 낮은 문제가 있으며, 0.6 mol/L 초과일 경우 탄산염이 다량 발생하는 문제점이 있을 수 있다.The electrolyte 110 including the alcohol and the precipitation aid and dissolving carbon dioxide may include the precipitation aid in a concentration of 0.1 to 0.6 mol per liter of the electrolyte. If the concentration is less than 0.1 mol / L there is a problem of low purity of renewable energy, such as alkanes and hydrogen, there may be a problem that a large amount of carbonate occurs when more than 0.6 mol / L.
상기 전해질(110)에 용해된 이산화탄소는 통상적으로 산업공정 중 발생하는 것이라면 특별한 제한이 없으며, 전해질 내에 이산화탄소의 농도는 0.05 ~ 99%인 것을 사용할 수 있으나, 이에 한정하는 것은 아니다.Carbon dioxide dissolved in the electrolyte 110 is not particularly limited as long as it is usually generated during the industrial process, the concentration of carbon dioxide in the electrolyte may be used in the 0.05 ~ 99%, but is not limited thereto.
또한, 상기 전해질은 통상적으로 전기화학적 환원방법의 전해질에 사용되는 물질들이 더 포함될 수 있으며, 바람직하게는 증류수, 네온가스, 아르곤가스, 질산, 탄산가스, NaCl, HCl, HNO3, KOH, KCl, CH3COOH, CuSO4 및 HgCl2 등을 추가로 더 포함할 수 있다.In addition, the electrolyte may further include materials generally used in the electrolyte of the electrochemical reduction method, preferably distilled water, neon gas, argon gas, nitric acid, carbon dioxide, NaCl, HCl, HNO 3 , KOH, KCl, CH 3 COOH, CuSO 4 and HgCl 2 may be further included.
다음으로, 상기 전해질(110)에 일부 또는 전부 침지된 음극(130)을 설명한다. 음극은 통상적으로 전기화학적 환원장치의 음극재질로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 금속전극일 수 있으며, 보다 바람직하게는 구리(Cu) 또는 수은(Hg)전극을 사용할 수 있다. 구리 전극은 탄화수소 가스에 대한 효율이 뛰어나며, 전기분해 과정에서 발생하는 이산화탄소에 대한 흡착력이 우수하여 본원 발명의 음극으로 사용하기에 가장 바람직하나, 이에 한정하지 않는다.Next, the cathode 130 partially or fully immersed in the electrolyte 110 will be described. The negative electrode may be used without limitation as long as it is commonly used as a negative electrode material of the electrochemical reduction apparatus, preferably a metal electrode, and more preferably a copper (Cu) or mercury (Hg) electrode. Copper electrode has an excellent efficiency for hydrocarbon gas, and excellent adsorption power for carbon dioxide generated during the electrolysis process is most preferred for use as a cathode of the present invention, but is not limited thereto.
다음은 상기 음극(130)에 대향되며 전해질(110)에 일부 또는 전부 침지된 양극(120)을 설명한다. 양극은 통상적으로 전기화학적 환원장치의 양극재질로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 산화물에 내구성이 있는 것일 수 있으며, 보다 바람직하게는 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상, 더 바람직하게는 백금 또는 스테인레스 스틸을 사용할 수 있으나, 이에 한정하지 않는다. The following describes the anode 120 which is partially or wholly immersed in the electrolyte 110 and is opposed to the cathode 130. The positive electrode may be used without limitation as long as it is commonly used as a positive electrode material of an electrochemical reduction apparatus, and preferably may be durable to oxides, more preferably platinum (Pt), stainless steel, gold (Au), and the like. One or more selected from the group consisting of silver (Ag), more preferably platinum or stainless steel may be used, but is not limited thereto.
다음은 상기 양극(120)과 음극(130)의 사이에서 이들을 분할하는 이온투과성 격막(140)은 통상적으로 전기화학적 환원장치의 이온투과성 격막으로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 이온교환 수지를 막 모양으로 성형 제조한 것일 수 있으며, 보다 바람직하게는 과플루오르화 술폰산 중합체 재질일 수 있고, 더 바람직하게는 듀폰사의 나피온 112, 나피온 115 및 나피온 117로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으나, 이에 한정하지는 않는다. 이온투과성 격막을 전해질에 담근 후 상기 전해질에 전류를 인가하면 상기 이온투과성 격막은 양이온은 통과시키지만 음이온 통과에는 100%에 가까운 저항을 나타낸다.Next, the ion-permeable diaphragm 140 dividing them between the anode 120 and the cathode 130 may be used without limitation as long as it is generally used as an ion-permeable diaphragm of an electrochemical reduction apparatus, and preferably, ion exchange. The resin may be molded in a film shape, more preferably, a perfluorinated sulfonic acid polymer material, and more preferably, one selected from the group consisting of Nafion 112, Nafion 115, and Nafion 117 of DuPont The above can be used, but it is not limited to this. When the ion-permeable diaphragm is immersed in an electrolyte and an electric current is applied to the electrolyte, the ion-permeable diaphragm exhibits a resistance close to 100% for the passage of cations but anion passage.
상기 양극(120)과 음극(130)에 전압을 인가하는 전원부(150)는 양극 및 음극에 모두 연결되거나 하나에만 연결될 수 있으며, 본 발명의 이산화탄소 환원장치는 1개 이상의 전원부를 포함할 수 있다. The power supply unit 150 for applying a voltage to the positive electrode 120 and the negative electrode 130 may be connected to both the positive electrode and the negative electrode or only one, and the carbon dioxide reduction apparatus of the present invention may include one or more power supply units.
상기 전원부(150)가 인가하는 전압은 특별히 한정하지 않으나, 보다 바람직하게는 10 볼트 이상을 사용할 수 있으며, 더욱 바람직하게는 10 ~ 100 볼트의 전압을 인가할 수 있다. 종래의 이산화탄소 환원방법에서는 최소 60볼트의 전압을 인가하였는데 본 발명에서는 최소 10볼트의 전압만으로도 이산화탄소의 환원반응이 일어날 수 있다. 10 볼트 이하로 전압을 인가할 경우, 이온투과성 격막의 저항으로 인해 전류 교환이 원활하지 않아, 알칸 및 수소가스의 순도가 낮은 문제점이 있을 수 있으며, 10 볼트 이상, 100 볼트 이하로 전압을 인가할 경우, 전압에 비례하여 알칸 및 수소가스를 수득할 수 있다.The voltage applied by the power supply unit 150 is not particularly limited, but more preferably 10 volts or more may be used, and more preferably 10 to 100 volts may be applied. In the conventional carbon dioxide reduction method, a voltage of at least 60 volts is applied, but in the present invention, a reduction reaction of carbon dioxide may occur even with a voltage of at least 10 volts. When the voltage is applied below 10 volts, current exchange is not smooth due to the resistance of the ion permeable diaphragm, and there may be a problem in that the purity of alkanes and hydrogen gas is low. In this case, alkanes and hydrogen gas can be obtained in proportion to the voltage.
또한, 본 발명의 이산화탄소 환원장치는 도 2에 도시된 바와 같이, 기준전극(170)을 더 포함하는 이산화탄소 환원장치(100)를 제공할 수 있다. 상기 기준전극은 화학전지의 기전력 또는 전극전위를 측정할 때 사용하는 단극전위가 일정하여 기준이 될 수 있는 전극으로 통상적으로 사용하는 것이면 특별한 제한이 없으나, 보다 바람직하게는 염화은전극, 칼로멜전극, 황산수은(I)을 사용할 수 있다. 또한, 기준전극 음극 또는 양극 중 어느 한 쪽에 위치할 수 있다.In addition, the carbon dioxide reduction apparatus of the present invention may provide a carbon dioxide reduction apparatus 100 further comprising a reference electrode 170, as shown in FIG. The reference electrode is not particularly limited as long as it is a conventional electrode that can be used as a reference because a single pole potential used when measuring electromotive force or electrode potential of a chemical cell is more preferable. More preferably, silver chloride electrode, calomel electrode, and sulfuric acid are used. Mercury (I) can be used. In addition, the reference electrode may be positioned on either the cathode or the anode.
또한, 본 발명의 이산화탄소 환원장치는 신재생에너지 포집부(미도시)를 포함할 수 있다. 상기 신재생에너지 포집부는 이산화탄소 환원장치에 의해 생산된 알칸 및 수소 등의 신재생에너지를 포집하는 역할을 한다. In addition, the carbon dioxide reduction apparatus of the present invention may include a renewable energy collection unit (not shown). The renewable energy collection unit serves to capture renewable energy such as alkanes and hydrogen produced by the carbon dioxide reduction device.
본 발명의 이산화탄소 환원장치에 의해 생산된 알칸가스는 메탄, 에탄, 프로판일 수 있다.Alkanes produced by the carbon dioxide reduction apparatus of the present invention may be methane, ethane, propane.
또한, 본 발명의 실시형태에 따른 이산화탄소 환원방법을 설명하면, (1) 양극, 음극 및 이들을 분할하는 이온투과성 격막을 포함하는 반응기에 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 주입하는 단계; 및 (2) 상기 반응기에 전압을 인가하여 상기 전해질 내에 용해된 이산화탄소를 전기분해하는 단계; 를 포함하는 이산화탄소 환원방법을 제공한다.In addition, describing the carbon dioxide reduction method according to an embodiment of the present invention, (1) injecting an electrolyte containing carbon dioxide and a precipitation aid and carbon dioxide dissolved in a reactor including an anode, a cathode and an ion permeable diaphragm that divides them ; And (2) applying a voltage to the reactor to electrolyze carbon dioxide dissolved in the electrolyte; It provides a carbon dioxide reduction method comprising a.
상기 (1)단계에서 전해질이 투입되는 시기는 반응기 내에 음극, 양극이 설치되기 전이나 후 모두 가능하여, 전해질이 투입된 이후 이온투과성 격막을 설치할 수 있다.In the step (1), the electrolyte is injected before or after the negative electrode and the positive electrode are installed in the reactor, so that the ion-permeable diaphragm may be installed after the electrolyte is injected.
또한 상기 단계 (1)에서 전해질에 포함되는 알코올, 석출보조제 및 이산화탄소는 각각 순차적으로 용해하거나 한꺼번에 모두 용해하여 사용할 수 있으며, 특히 이산화탄소는 환원장치에 전해질은 투입한 후 공급하여 용해시키거나 환원장치 투입 전에 공급하여 용해시키는 것 역시 본 발명의 범위에 포함된다.In addition, the alcohol, precipitation aid and carbon dioxide contained in the electrolyte in step (1) may be used by sequentially dissolving or dissolving all at once, in particular, carbon dioxide is supplied by dissolving the electrolyte after feeding the electrolyte into the reducing device or inputting the reducing device. Dissolution by feeding before is also included in the scope of the present invention.
상기 (1)단계의 알코올은 알코올류라면 특별한 제한이 없으나, 보다 바람직하게는 C1 ~ C5 알코올 중 선택된 1종 이상인 것, 더 바람직하게는 메탄올을 사용할 수 있다.The alcohol of step (1) is not particularly limited as long as it is alcohol, but more preferably at least one selected from C 1 to C 5 alcohols, and more preferably methanol.
또한, 상기 석출보조제는 알칼리족 원소로 이루어진 수산화물이라면 특별한 제한이 없으나, 보다 바람직하게는 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것을 사용할 수 있으며, 더 바람직하게는 상기 군에서 선택된 2종 이상을 사용할 수 있다. 또한, 수산화칼륨 및 수산화나트륨을 석출보조제로 사용할 경우, 알칸 및 수소와 같은 신재생에너지 생산에 가장 바람직하나 이에 한정하는 것은 아니다.In addition, the precipitation aid is not particularly limited as long as it is a hydroxide consisting of an alkali element, more preferably lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH) ), May be used one or more selected from the group consisting of francium hydroxide (FrOH), more preferably two or more selected from the group. In addition, when using potassium hydroxide and sodium hydroxide as a precipitation aid, it is most preferred for the production of renewable energy, such as alkanes and hydrogen, but is not limited thereto.
상기 (1)단계에서 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질은 석출보조제를 전해질 1L당 0.1 ~ 0.6 mol의 농도로 사용할 수 있다. 상기 농도가 0.1 mol/L 미만일 경우 알칸 및 수소와 같은 신재생에너지의 순도가 낮은 문제가 있으며, 0.6 mol/L 초과일 경우 탄산염이 다량 발생하는 문제점이 있을 수 있다.In the step (1), the electrolyte containing the alcohol and the precipitation aid, and the carbon dioxide dissolved electrolyte may be used in the concentration of 0.1 ~ 0.6 mol per 1L electrolyte. If the concentration is less than 0.1 mol / L there is a problem of low purity of renewable energy, such as alkanes and hydrogen, there may be a problem that a large amount of carbonate occurs when more than 0.6 mol / L.
또한, 상기 전해질에 용해된 이산화탄소는 통상적으로 산업공정 중 발생하는 것이라면 특별한 제한이 없으나, 이산화탄소 및 불활성 가스를 포함할 경우 폭발의 위험성을 줄일 수 있다.In addition, carbon dioxide dissolved in the electrolyte is not particularly limited as long as it is usually generated during industrial processes, it may reduce the risk of explosion if carbon dioxide and inert gas is included.
상기 (2)단계에서 반응기에 포함된 음극은 통상적인 금속전극을 사용하는 것이라면 특별한 제한이 없으나, 보다 바람직하게는 구리(Cu) 또는 수은(Hg)전극을 사용할 수 있다. 구리 전극은 탄화수소 가스에 대한 효율이 뛰어나며, 전기분해 과정에서 발생하는 이산화탄소에 대한 흡착력이 우수하여 본원 발명의 음극으로 사용하기에 가장 바람직하다.The negative electrode included in the reactor in the step (2) is not particularly limited as long as it uses a conventional metal electrode, more preferably a copper (Cu) or mercury (Hg) electrode can be used. The copper electrode is most preferable for use as a cathode of the present invention because it has excellent efficiency for hydrocarbon gas and excellent adsorption power for carbon dioxide generated during electrolysis.
또한, 상기 (2)단계에서 반응기에 포함된 양극은 통상적으로 산화물에 내구성이 있으면 특별한 제한이 없으나, 보다 바람직하게는 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상인 것, 더 바람직하게는 백금 또는 스테인레스 스틸을 사용할 수 있다. In addition, the anode included in the reactor in step (2) is not particularly limited as long as the oxide is durable, more preferably a group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag). At least one selected from, more preferably platinum or stainless steel may be used.
상기 (2)단계의 양극 및 음극을 분할하는 이온투과성 격막은 이온교환 수지를 막 모양으로 성형 제조한 것이면 특별한 제한이 없다.The ion permeable diaphragm dividing the positive electrode and the negative electrode of step (2) is not particularly limited as long as the ion-exchange resin is molded into a membrane shape.
또한, 상기 음극 및 양극에 인가되는 전압은 특별히 제한하지 않으나, 바람직하게는 10 ~ 100 V의 전압을 인가할 수 있다. 따라서 기존의 환원방법보다 저전압을 사용하여 이산화탄소 환원방법에 비용을 절감할 수 있다.In addition, the voltage applied to the cathode and the anode is not particularly limited, but preferably a voltage of 10 to 100 V may be applied. Therefore, using a lower voltage than the conventional reduction method can reduce the cost of carbon dioxide reduction method.
또한, 본 발명은 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 이산화탄소 환원용 전해질을 제공한다.In addition, the present invention includes an alcohol and a precipitation aid, and provides a carbon dioxide reduction electrolyte in which carbon dioxide is dissolved.
이하, 작동예를 통해 본 발명의 이산화탄소 전환장치를 보다 구체적으로 설명하기로 한다. 하지만 하기 작동예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the carbon dioxide conversion device of the present invention through the operation example will be described in more detail. However, the following working examples are not intended to limit the scope of the present invention, which should be construed as to help the understanding of the present invention.
먼저, 알코올 및 석출보조제를 혼합하여 전해질을 제조한 후 전해질에 이산화탄소를 주입 용해한 후 전해질을 도 2와 같은 반응기에 넣고 음극, 양극 및 이온투과성 격막을 설치한다. 이후 음극 및 양극에 전압을 인가하면 음극에서는 이산화탄소가 환원되어 알칸 가스가 생성되고, 양극에서는 알코올이 환원되어 수소가스가 생성된다. 이때 별도의 신재생에너지 포집기에 알칸 및 수소가스가 각각 포집되어 농도 및 순도를 측정할 수 있다.First, an alcohol and a precipitation aid are mixed to prepare an electrolyte, and carbon dioxide is injected and dissolved in the electrolyte, and then the electrolyte is placed in a reactor as shown in FIG. 2 to install a cathode, an anode, and an ion permeable membrane. Then, when a voltage is applied to the cathode and the anode, carbon dioxide is reduced at the cathode to generate an alkane gas, and at the anode, alcohol is reduced to generate hydrogen gas. At this time, alkanes and hydrogen gas may be collected in separate renewable energy collectors to measure concentration and purity.
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 한다. 하지만 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are not intended to limit the scope of the present invention, which will be construed as to help the understanding of the present invention.
[실시예]EXAMPLE
실시예 1. Example 1.
메탄올 200㎖에 0.2M 수산화칼륨 및 0.2M 수산화나트륨을 30분 동안 교반하여 용해시켰다. 교반시킨 용액 200㎖를 전기화학장치에 옮겨 양극 및 음극을 연결한 다음, 이산화탄소를 20㎖/분으로 공급하여 30분 동안 용해시킨 후, 이온투과성 격막으로 음극과 양극을 분할하여 전기분해를 실시하였다. 상기 전기분해 실시시 생성되는 알칸 및 수소의 농도를 반응 시간별로 측정하여 하기 도면 3 및 도면 4에 나타내었다.0.2 M potassium hydroxide and 0.2 M sodium hydroxide were dissolved in 200 ml of methanol by stirring for 30 minutes. 200 ml of the stirred solution was transferred to an electrochemical apparatus, and the positive electrode and the negative electrode were connected. Then, carbon dioxide was supplied at 20 ml / min to dissolve for 30 minutes, and then the negative electrode and the positive electrode were separated by an ion permeable membrane to perform electrolysis. . The concentration of alkanes and hydrogen generated during the electrolysis was measured for each reaction time and is shown in FIGS. 3 and 4.
도 3에서 확인할 수 있듯이, 메탄, 에탄, 프로판 및 수소가 검출되는 것을 확인하였다. 또한 도 4에서 확인할 수 있듯이, 수소는 3%이상의 농도로 검출되었다.As can be seen in Figure 3, it was confirmed that methane, ethane, propane and hydrogen are detected. In addition, as can be seen in Figure 4, hydrogen was detected at a concentration of 3% or more.
실시예2. Example 2.
메탄올 200㎖에 0.1M 수산화칼륨 및 0.1M 수산화나트륨을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that 0.1 M potassium hydroxide and 0.1 M sodium hydroxide were mixed in 200 ml of methanol.
실시예3. Example 3.
메탄올에 0.15M 수산화칼륨 및 0.15M 수산화나트륨을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same process as in Example 1 was carried out except that 0.15 M potassium hydroxide and 0.15 M sodium hydroxide were mixed in methanol.
실시예4. Example 4.
메탄올 200㎖에 0.25M 수산화칼륨 및 0.25M 수산화나트륨을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that 0.25 M potassium hydroxide and 0.25 M sodium hydroxide were mixed in 200 ml of methanol.
실시예5. Example 5.
메탄올 200㎖에 0.3M 수산화칼륨 및 0.3M 수산화나트륨을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that 0.3 M potassium hydroxide and 0.3 M sodium hydroxide were mixed with 200 ml of methanol.
실시예 6.Example 6.
실시예 1에서 사용한 메탄올 대신에 에탄올을 사용한 것 말고는 실시예 1과 동일하게 실시하였다. 이때 생성되는 알칸 또는 수소와 같은 가연성 가스는 측정되지 않았다.It carried out similarly to Example 1 except having used ethanol instead of the methanol used in Example 1. The combustible gases such as alkanes or hydrogen produced at this time were not measured.
실시예 7.Example 7.
실시예 1에서 사용한 메탄올 대신에 부탄올을 사용한 것 말고는 실시예 1과 동일하게 실시하였다. 이때 생성되는 알칸 또는 수소와 같은 가연성 가스는 측정되지 않았다.It carried out similarly to Example 1 except having used butanol instead of the methanol used in Example 1. The combustible gases such as alkanes or hydrogen produced at this time were not measured.
실시예 8.Example 8.
실시예 1에서 사용한 메탄올 대신에 이소프로필알코올을 사용한 것 말고는 실시예 1과 동일하게 실시하였다. 이때 생성되는 알칸 또는 수소와 같은 가연성 가스는 측정되지 않았다.It carried out similarly to Example 1 except having used isopropyl alcohol instead of the methanol used in Example 1. The combustible gases such as alkanes or hydrogen produced at this time were not measured.
실시예 9.Example 9.
메탄올 200㎖에 0.2M 수산화나트륨만을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 같은 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 0.5% 이하로 측정되었다.The concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that only 0.2 M sodium hydroxide was mixed with 200 ml of methanol, but the measured concentrations of flammable gases such as alkanes or hydrogen were insufficient. Methane, ethane and propane were not measured and hydrogen was measured at 0.5% or less.
실시예 10.Example 10.
메탄올 200㎖에 0.2M 수산화칼륨만을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 같은 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 1% 이하로 측정되었다.The concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that only 0.2 M potassium hydroxide was mixed in 200 ml of methanol, but the measured concentrations of flammable gases such as alkanes or hydrogen were insufficient. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
실험예 1.Experimental Example 1.
실시예 1 내지 5에서 제작된 이산화탄소 환원장치를 통해서 생성되는 메탄 및 수소의 농도를 측정하여 하기 도면 5 및 도면 6에 나타내었다.The concentrations of methane and hydrogen produced through the carbon dioxide reduction apparatuses manufactured in Examples 1 to 5 were measured and shown in FIGS. 5 and 6.
도 5에서 확인되는 바와 같이, 측정된 메탄의 농도는 0.2M의 수산화나트륨 및 0.2M의 수산화칼륨을 사용한 실시예 1에서 가장 높게 측정되었다. 또한, 도 6에서 확인되는 바와 같이, 측정된 수소의 농도 또한 0.2M의 수산화나트륨 및 0.2M의 수산화칼륨을 사용한 실시예 1에서 가장 높게 측정되었다.As confirmed in FIG. 5, the measured concentration of methane was the highest in Example 1 using 0.2 M sodium hydroxide and 0.2 M potassium hydroxide. In addition, as confirmed in FIG. 6, the measured concentration of hydrogen was also highest in Example 1 using 0.2 M sodium hydroxide and 0.2 M potassium hydroxide.
비교예 1. Comparative Example 1.
실시예 1에서 교반한 용액 200㎖에 이산화탄소를 용해시키지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 같은 가연성 가스는 측정되지 않았다.Except not dissolving carbon dioxide in 200 ml of the stirred solution in Example 1, the concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1, but a flammable gas such as alkanes or hydrogen was not measured.
비교예 2. Comparative Example 2.
메탄올 200㎖에 석출보조제를 첨가하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 같은 가연성 가스의 측정 농도는 측정되지 않았다.The concentration of alkanes and hydrogen produced was measured in the same manner as in Example 1 except that the precipitation aid was not added to 200 ml of methanol, but the measured concentration of the flammable gas such as alkanes or hydrogen was not measured.
비교예 3.Comparative Example 3.
실시예 1에 메탄올 대신 증류수를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 1.5% 이하로 측정되었다.Except for using distilled water instead of methanol in Example 1 was carried out in the same manner as in Example 1 to measure the concentration of alkanes and hydrogen produced, but the measured concentration of the alkanes or hydrogen and flammable gas is inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1.5% or less.
비교예 4.Comparative Example 4.
실시예 1에 메탄올 대신 증류수를 사용하고 이산화탄소를 용해하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 1.5% 이하로 측정되었다.Except for using distilled water instead of methanol and dissolving carbon dioxide in Example 1 was carried out in the same manner as in Example 1 to measure the concentration of alkanes and hydrogen produced, but the measured concentration of alkane or hydrogen and flammable gas was not enough. Methane, ethane and propane were not measured and hydrogen was measured at 1.5% or less.
비교예 5.Comparative Example 5.
실시예 1에 메탄올 대신 증류수를 사용하고 석출보조제로 0.2M 수산화나트륨만을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 1% 이하로 측정되었다.Except for using distilled water instead of methanol and mixing only 0.2M sodium hydroxide as a precipitation aid in Example 1 was measured in the same manner as in Example 1 but the concentration of alkanes and hydrogen was measured The concentration was inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
비교예 6.Comparative Example 6.
실시예 1에 메탄올 대신 증류수를 사용하고 석출보조제로 0.2M 수산화칼륨만을 혼합한 것을 제외하고는 실시예 1과 동일하게 실시하여 생성되는 알칸 및 수소의 농도를 측정하였으나 알칸 또는 수소와 가연성 가스의 측정 농도는 미비하였다. 메탄, 에탄 및 프로판은 측정되지 않았고, 수소는 1% 이하로 측정되었다.Except for using distilled water instead of methanol and mixing only 0.2M potassium hydroxide as a precipitation aid in Example 1 was measured in the same manner as in Example 1 but the measurement of alkanes and hydrogen and flammable gas The concentration was inadequate. Methane, ethane and propane were not measured and hydrogen was measured at 1% or less.
실험예 2.Experimental Example 2.
상기 실시예 1 내지 10 및 비교예 1 내지 6을 5시간 동안 처리하여 얻어진 알칸 및 수소가스의 농도를 하기 표 1에 나타내었다.The concentrations of alkanes and hydrogen gas obtained by treating Examples 1 to 10 and Comparative Examples 1 to 6 for 5 hours are shown in Table 1 below.
표 1
구분 생성된 메탄가스 농도(ppm) 생성된 에탄가스 농도(ppm) 생성된 프로판가스 농도(ppm) 생성된 수소가스 농도(ppm)
실시예 1 967.85 247.52 311.91 4.95
실시예 2 355.43 116.41 189.32 3.15
실시예 3 377.60 154.71 249.66 3.30
실시예 4 527.10 200.54 275.83 4.20
실시예 5 278.20 34.50 68.10 3.05
실시예 6 검출안됨 검출안됨 검출안됨 검출안됨
실시예 7 검출안됨 검출안됨 검출안됨 검출안됨
실시예 8 검출안됨 검출안됨 검출안됨 검출안됨
실시예 9 검출안됨 검출안됨 검출안됨 0.5% 이하
실시예 10 검출안됨 검출안됨 검출안됨 1% 이하
비교예 1 검출안됨 검출안됨 검출안됨 검출안됨
비교예 2 검출안됨 검출안됨 검출안됨 검출안됨
비교예 3 검출안됨 검출안됨 검출안됨 1.5% 이하
비교예 4 검출안됨 검출안됨 검출안됨 1.5% 이하
비교예 5 검출안됨 검출안됨 검출안됨 1% 이하
비교예 6 검출안됨 검출안됨 검출안됨 1% 이하
Table 1
division Generated Methane Gas Concentration (ppm) Produced ethane gas concentration (ppm) Generated Propane Gas Concentration (ppm) Generated hydrogen gas concentration (ppm)
Example 1 967.85 247.52 311.91 4.95
Example 2 355.43 116.41 189.32 3.15
Example 3 377.60 154.71 249.66 3.30
Example 4 527.10 200.54 275.83 4.20
Example 5 278.20 34.50 68.10 3.05
Example 6 Not detected Not detected Not detected Not detected
Example 7 Not detected Not detected Not detected Not detected
Example 8 Not detected Not detected Not detected Not detected
Example 9 Not detected Not detected Not detected 0.5% or less
Example 10 Not detected Not detected Not detected 1% less than
Comparative Example 1 Not detected Not detected Not detected Not detected
Comparative Example 2 Not detected Not detected Not detected Not detected
Comparative Example 3 Not detected Not detected Not detected 1.5% or less
Comparative Example 4 Not detected Not detected Not detected 1.5% or less
Comparative Example 5 Not detected Not detected Not detected 1% less than
Comparative Example 6 Not detected Not detected Not detected 1% less than
상기 표 1에서 확인되는 바와 같이, 메탄올 및 석출보조제인 수산화칼륨 및 수산화나트륨을 포함하며 이산화탄소가 용해된 전해질을 사용하여 이산화탄소를 전기분해하면 알칸인 메탄, 에탄 및 프로판을 생성할 수 있으며, 다량의 수소를 생성할 수 있었다. 또한, 수산화칼륨 및 수산화나트륨의 농도가 0.15M 미만일 경우 발생되는 알칸 및 수소의 순도가 낮았으며, 수산화칼륨 및 수산화나트륨의 농도가 0.25M을 초과할 경우 다량의 탄산염이 발생하여 이산화탄소의 환원을 방해하는 것을 확인하였다.As can be seen in Table 1, electrolysis of carbon dioxide using an electrolyte containing carbon dioxide and potassium hydroxide and sodium hydroxide as a precipitation aid and dissolving carbon dioxide can produce alkanes, methane, ethane and propane, Hydrogen could be produced. In addition, when the concentrations of potassium hydroxide and sodium hydroxide were less than 0.15M, the purity of alkanes and hydrogen generated was low, and when the concentrations of potassium hydroxide and sodium hydroxide exceed 0.25M, a large amount of carbonate is generated to hinder the reduction of carbon dioxide. It was confirmed that.

Claims (25)

  1. (1) 양극, 음극 및 이들을 분할하는 이온투과성 격막을 포함하는 반응기에 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 주입하는 단계; 및(1) injecting an electrolyte containing carbon dioxide and a precipitation aid and dissolving carbon dioxide into a reactor including an anode, a cathode, and an ion permeable diaphragm dividing the same; And
    (2) 상기 반응기에 전압을 인가하여 상기 전해질 내에 용해된 이산화탄소를 전기분해하는 단계;(2) applying a voltage to the reactor to electrolyze carbon dioxide dissolved in the electrolyte;
    를 포함하는 이산화탄소 환원방법.Carbon dioxide reduction method comprising a.
  2. 제 1항에 있어서, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원방법.According to claim 1, wherein the precipitation aid is selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) Carbon dioxide reduction method, characterized in that at least one.
  3. 제 2항에 있어서, 상기 석출보조제가 수산화칼륨 및 수산화나트륨이 혼합된 것을 특징으로 하는 이산화탄소 환원방법.The method of claim 2, wherein the precipitation aid is a carbon dioxide reduction method, characterized in that the mixture of potassium hydroxide and sodium hydroxide.
  4. 제 1항에 있어서, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원방법.The method of reducing carbon dioxide according to claim 1, wherein the alcohol is at least one selected from C 1 to C 5 alcohols.
  5. 제 4항에 있어서, 상기 알코올이 메탄올인 것을 특징으로 하는 이산화탄소 환원방법.The method of reducing carbon dioxide according to claim 4, wherein the alcohol is methanol.
  6. 제 1항에 있어서, 상기 양극은 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상인 것, 상기 음극은 구리(Cu) 또는 수은(Hg)전극인 것을 특징으로 하는 이산화탄소 환원방법.The method of claim 1, wherein the anode is at least one selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag), and the cathode is a copper (Cu) or mercury (Hg) electrode. Reduction of carbon dioxide, characterized in that.
  7. 제 1항에 있어서, 상기 반응기에 인가되는 전압이 10 ~ 100 볼트인 것을 특징으로 하는 이산화탄소 환원방법.The method of reducing carbon dioxide according to claim 1, wherein the voltage applied to the reactor is 10 to 100 volts.
  8. 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 전해질을 포함하는 반응기;A reactor including an alcohol and a precipitation aid and comprising an electrolyte in which carbon dioxide is dissolved;
    상기 반응기 내에 구비되며 전해질에 일부 또는 전부 침지된 양극;An anode provided in the reactor and partially or fully immersed in the electrolyte;
    상기 반응기 내에 구비되어 양극에 대향되며 전해질에 일부 또는 전부 침지된 음극; 및A negative electrode provided in the reactor to face the positive electrode and partially or fully immersed in the electrolyte; And
    상기 양극과 음극의 사이에서 이들을 분할하는 이온투과성 격막을 포함하는 이산화탄소 환원장치.A carbon dioxide reduction device comprising an ion permeable membrane for dividing them between the anode and the cathode.
  9. 제 8항에 있어서, 상기 양극 및 음극에 전류를 인가하는 전원부를 더 포함하는 것을 특징으로 하는 이산화탄소 환원장치.9. The carbon dioxide reduction apparatus according to claim 8, further comprising a power supply unit for applying current to the anode and the cathode.
  10. 제 8항에 있어서, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원장치.The method of claim 8, wherein the precipitation aid is selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) Carbon dioxide reduction device, characterized in that at least one.
  11. 제 8항에 있어서, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 2종 이상인 것을 특징으로 하는 이산화탄소 환원장치.The method of claim 8, wherein the precipitation aid is selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) Carbon dioxide reduction device, characterized in that two or more kinds.
  12. 제 11항에 있어서, 상기 석출보조제가 수산화칼륨 및 수산화나트륨인 것을 특징으로 하는 이산화탄소 환원장치.The carbon dioxide reduction apparatus according to claim 11, wherein the precipitation aid is potassium hydroxide and sodium hydroxide.
  13. 제 12항에 있어서, 상기 석출보조제가 수산화칼륨 및 수산화나트륨을 수산화칼륨 100 중량부에 대해 100 ~ 300 중량비의 수산화나트륨을 혼합한 것인 것을 특징으로 하는 이산화탄소 환원장치.13. The carbon dioxide reduction apparatus according to claim 12, wherein the precipitation aid is a mixture of potassium hydroxide and sodium hydroxide in an amount of 100 to 300 parts by weight based on 100 parts by weight of potassium hydroxide.
  14. 제 8항에 있어서, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원장치.The carbon dioxide reduction device according to claim 8, wherein the alcohol is at least one selected from C 1 to C 5 alcohols.
  15. 제 8항에 있어서, 상기 알코올이 메탄올인 것을 특징으로 하는 이산화탄소 환원장치.The carbon dioxide reduction apparatus according to claim 8, wherein the alcohol is methanol.
  16. 제 8항에 있어서, 상기 음극은 구리(Cu) 또는 수은(Hg)전극인 것, 상기 양극은 백금(Pt), 스테인레스 스틸, 금(Au) 및 은(Ag)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원장치.The method of claim 8, wherein the cathode is a copper (Cu) or mercury (Hg) electrode, the anode is one or more selected from the group consisting of platinum (Pt), stainless steel, gold (Au) and silver (Ag). Carbon dioxide reduction device, characterized in that.
  17. 제 8항에 있어서, 전압측정을 위한 기준전극을 더 포함하는 것을 특징으로 하는 이산화탄소 환원장치.The carbon dioxide reduction apparatus according to claim 8, further comprising a reference electrode for voltage measurement.
  18. 제 8항 내지 제 17항 중 선택된 어느 한 항에 있어서, 상기 석출보조제가 전해질 1L당 0.1 ~ 0.6 mol 포함하는 것을 특징으로 하는 이산화탄소 환원장치.18. The carbon dioxide reduction apparatus according to any one of claims 8 to 17, wherein the precipitation aid comprises 0.1 to 0.6 mol per liter of the electrolyte.
  19. 제 8항 내지 제 17항 중 선택된 어느 한 항에 있어서, 알칸 및 수소가 생성되는 것을 특징으로 하는 이산화탄소 환원장치.18. The carbon dioxide reduction apparatus according to any one of claims 8 to 17, wherein alkane and hydrogen are produced.
  20. 알코올 및 석출보조제를 포함하며 이산화탄소가 용해된 이산화탄소 환원용 전해질.Carbon dioxide reduction electrolyte containing alcohol and precipitation aid, carbon dioxide dissolved.
  21. 제 20항에 있어서, 상기 석출보조제가 수산화리튬(LiOH), 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화루비듐(RbOH), 수산화세슘(CsOH), 수산화프랑슘(FrOH)로 구성된 군에서 선택된 2종 이상인 것을 특징으로 하는 이산화탄소 환원용 전해질.The method of claim 20, wherein the precipitation aid is selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), francium hydroxide (FrOH) Carbon dioxide reduction electrolyte, characterized in that two or more.
  22. 제 21항에 있어서, 상기 석출보조제가 수산화칼륨 및 수산화나트륨인 것을 특징으로 하는 이산화탄소 환원용 전해질.The electrolyte for reducing carbon dioxide according to claim 21, wherein the precipitation aid is potassium hydroxide and sodium hydroxide.
  23. 제 22항에 있어서, 상기 석출보조제가 수산화칼륨 및 수산화나트륨을 수산화칼륨 100 중량부에 대해 100 ~ 300 중량비의 수산화나트륨을 혼합한 것을 특징으로 하는 이산화탄소 환원용 전해질.The electrolyte for reducing carbon dioxide according to claim 22, wherein the precipitation aid mixes potassium hydroxide and sodium hydroxide in an amount of 100 to 300 parts by weight based on 100 parts by weight of potassium hydroxide.
  24. 제 20항에 있어서, 상기 알코올이 C1 ~ C5 알코올 중 선택된 1종 이상인 것을 특징으로 하는 이산화탄소 환원용 전해질.The method of claim 20, wherein the alcohol is carbon dioxide reducing electrolyte, characterized in that at least one selected from C 1 ~ C 5 alcohol.
  25. 제 24항에 있어서, 상기 알코올이 메탄올인 것을 특징으로 하는 이산화탄소 환원용 전해질.The electrolyte for reducing carbon dioxide according to claim 24, wherein the alcohol is methanol.
PCT/KR2012/011443 2012-12-05 2012-12-26 Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same WO2014088148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120140601A KR101451630B1 (en) 2012-12-05 2012-12-05 Method for reducing carbon dioxide and reductor of carbon dioxide using the same
KR10-2012-0140601 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014088148A1 true WO2014088148A1 (en) 2014-06-12

Family

ID=50883555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011443 WO2014088148A1 (en) 2012-12-05 2012-12-26 Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same

Country Status (2)

Country Link
KR (1) KR101451630B1 (en)
WO (1) WO2014088148A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038363A (en) 2014-09-30 2016-04-07 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide and apparatus therefor
KR101672623B1 (en) * 2015-02-10 2016-11-17 서울대학교산학협력단 Reduction method of gas using couette-taylor reactor
WO2017010814A1 (en) * 2015-07-14 2017-01-19 한국에너지기술연구원 Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide
KR101926705B1 (en) * 2016-11-17 2018-12-07 한국에너지기술연구원 Microbial electrochemical system having membrane-electrode assembly and water softening apparatus using the same
KR101982021B1 (en) * 2017-11-15 2019-05-24 한국과학기술연구원 Method for electrochemical carbon dioxide evolution reaction
KR101986642B1 (en) 2018-08-27 2019-06-07 울산과학기술원 Fuel cell systme having hydrogen generation apparatus using carbon dioxide
KR102001213B1 (en) 2018-12-24 2019-10-01 울산과학기술원 Fuel cell system having hydrogen generating and carbon dioxide removing apparatus using carbon dioxide
KR20240049164A (en) * 2022-10-07 2024-04-16 주식회사 엘지화학 Electrolysis apparatus and method of opreating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609441A (en) * 1985-12-18 1986-09-02 Gas Research Institute Electrochemical reduction of aqueous carbon dioxide to methanol
US4673473A (en) * 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
US20080245660A1 (en) * 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture
US20090035625A1 (en) * 2007-08-01 2009-02-05 Tihiro Ohkawa Hydrogen fuel cell with integrated reformer
US20100137457A1 (en) * 2008-07-01 2010-06-03 Kaplan Thomas Proger Method for conversion of atmospheric carbon dioxide into useful materials
US8138380B2 (en) * 2007-07-13 2012-03-20 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546981B1 (en) * 2007-08-22 2015-08-24 데쿠세리아루즈 가부시키가이샤 Novel amide group-containing siloxane amine compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673473A (en) * 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
US4609441A (en) * 1985-12-18 1986-09-02 Gas Research Institute Electrochemical reduction of aqueous carbon dioxide to methanol
US20080245660A1 (en) * 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture
US8138380B2 (en) * 2007-07-13 2012-03-20 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
US20090035625A1 (en) * 2007-08-01 2009-02-05 Tihiro Ohkawa Hydrogen fuel cell with integrated reformer
US20100137457A1 (en) * 2008-07-01 2010-06-03 Kaplan Thomas Proger Method for conversion of atmospheric carbon dioxide into useful materials

Also Published As

Publication number Publication date
KR101451630B1 (en) 2014-10-23
KR20140073007A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
WO2014088148A1 (en) Method for reducing carbon dioxide, and apparatus for reducing carbon dioxide using same
WO2014104477A1 (en) Method for reducing carbon dioxide and diaphragm-free device for reducing carbon dioxide
Steele et al. Oxidation of methane in solid state electrochemical reactors
CN105483747B (en) A kind of method and device of water electrolysis hydrogen production gas
WO2017010814A1 (en) Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide
CN1141656A (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
WO2017023029A1 (en) Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor
RU2014118837A (en) METHOD AND SYSTEM FOR PROCESSING CARBON-CONTAINING GASES BY ELECTROCHEMICAL HYDROGENIZATION FOR PRODUCING CxHyOz COMPOUND
KR20170049467A (en) Process of producing hydrogen and the non-diaphragm hydrogen producing system
WO2016043383A1 (en) Method for synthesizing formic acid from carbon dioxide using methylotrophic bacteria
Tanaka et al. Hydrogen extraction using one-end closed tube made of CaZrO3-based proton-conducting ceramic for tritium recovery system
WO2020159224A1 (en) Electrochemical reactor and production method for producing ammonium nitrate from nitrogen oxides
CN105696017B (en) A kind of new technique method of iron reduction nitrobenzene
WO2016052985A1 (en) Method and device for electrochemical reduction of carbon dioxide
CN111979558A (en) Method and equipment for preparing hydrogen selenide by electrolysis method
WO2019151714A1 (en) Electrode and electrochemical cell comprising electrode
CN105862072B (en) A kind of new technique method of zinc reduction nitrobenzene
WO2013191402A1 (en) Method for generating hydrogen and sulfuric acid from sulfur dioxide gas by using diluted gas
WO2017171115A1 (en) Formic acid preparation apparatus and formic acid preparation method
WO2016108603A1 (en) Intermittent electrochemical reduction system of carbon dioxide
Manjula et al. Influence of ethyl acetate as a contaminant in methanol on performance of electrochemical methanol reformer for hydrogen production
WO2013191502A1 (en) Redox fuel cell and method for isolating nitrogen monoxide using same
JP2011000511A (en) Air quality restoring method utilizing copper and cuprate catalyst
WO2018062952A1 (en) Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process
WO2024090780A1 (en) Carbon dioxide conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889418

Country of ref document: EP

Kind code of ref document: A1