WO2014087993A1 - Control apparatus, communication system, communication method and program - Google Patents

Control apparatus, communication system, communication method and program Download PDF

Info

Publication number
WO2014087993A1
WO2014087993A1 PCT/JP2013/082457 JP2013082457W WO2014087993A1 WO 2014087993 A1 WO2014087993 A1 WO 2014087993A1 JP 2013082457 W JP2013082457 W JP 2013082457W WO 2014087993 A1 WO2014087993 A1 WO 2014087993A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
network
control
relay device
information
Prior art date
Application number
PCT/JP2013/082457
Other languages
French (fr)
Japanese (ja)
Inventor
喜弘 楠本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014087993A1 publication Critical patent/WO2014087993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2012-265328 (filed on Dec. 4, 2012), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a control device, a communication system, a communication method, and a program, and more particularly, to a control device, a communication system, a communication method, and a program that realize communication by centrally controlling switches.
  • Non-Patent Documents 1 and 2 OpenFlow captures communication as an end-to-end flow and performs path control, failure recovery, load balancing, and optimization on a per-flow basis.
  • the OpenFlow switch specified in Non-Patent Document 2 includes a secure channel for communication with the OpenFlow controller, and operates according to a flow table that is appropriately added or rewritten from the OpenFlow controller. For each flow, a set of match conditions (Match Fields), flow statistical information (Counters), and instructions (Instructions) that define processing contents are defined for each flow (non-patented). (Refer to “4.1 Flow Table” in Document 2).
  • the OpenFlow switch searches the flow table for an entry having a matching condition (see “4.3 Match Fields” in Non-Patent Document 2) that matches the header information of the received packet. If an entry that matches the received packet is found as a result of the search, the OpenFlow switch updates the flow statistical information (counter) and processes the processing (designated) in the instruction field of the entry for the received packet. Perform packet transmission, flooding, discard, etc. from the port. On the other hand, if no entry matching the received packet is found as a result of the search, the OpenFlow switch sends an entry setting request to the OpenFlow controller via the secure channel, that is, a control for processing the received packet. An information transmission request (Packet-In message) is transmitted. The OpenFlow switch receives a flow entry whose processing content is defined and updates the flow table. As described above, the OpenFlow switch performs packet transfer using the entry stored in the flow table as control information.
  • a matching condition see “4.3 Match Fields” in Non-Patent Document 2
  • the OpenFlow switch updates the flow statistical information
  • Patent Document 1 discloses a plurality of data communication networks including a plurality of interconnected network elements, at least one of which is a centrally managed network and at least one of which is a distributed management network. According to the same document, when the control information of each network is communicated in the network by each network control channel means, the centralized management protocol and the distributed management are configured by making the connection form related to the control channel of each network different. Supporting both protocols, it is said that it becomes possible to realize two pseudo-parallel data communication networks, one for centralized management and the other for distributed management.
  • Non-Patent Documents 1 and 2 there is a known network in which routers and switches on a network determine a packet transfer destination using a routing table or a MAC (Media Access Protocol) address table. Yes.
  • the OpenFlow networks of Non-Patent Documents 1 and 2 are referred to as “centralized control type networks”, and a method in which routers and switches of the network perform path control is referred to as “distributed control type networks”.
  • the control device of the centralized control type network cannot grasp the communication state and behavior of the distributed control type network. For this reason, there is a problem that a route passing through a distributed control type network cannot be used. In addition, even if a route through a distributed control network is set, depending on the behavior of the device outside the control target on the corresponding route, the packet may be discarded or transferred to an unintended destination. There is a problem that packets cannot be transferred.
  • the present invention can set a packet transfer path through a distributed control type network ("network not to be controlled” from the viewpoint of a control device) in a centralized control type communication system represented by the above-described OpenFlow. It is an object of the present invention to provide a control device, a communication system, a communication method, and a program that contribute to effective use of existing network resources.
  • a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled
  • a topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information
  • a path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus And one of the relay devices connected to the non-control target network among the relay devices on the transfer path that passes through the non-control target network.
  • a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled
  • a topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information
  • a path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus
  • a control device comprising: A plurality of relay devices arranged across the non-control target network and operating according to the control information set by the control device, the control device on a transfer path via the non-control target network Of a relay device connected to the non-control target network from one of the relay devices to the other relay device and transmitting a predetermined specific link confirmation packet on the transfer route via the non-control target network
  • a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled
  • a topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information
  • a path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus A relay that connects to the non-controllable network among relay devices on a transfer path that passes through the non-controllable network.
  • a communication method is provided. This method is linked to a specific machine called a control device that controls a relay device by setting control information.
  • a specific link management unit that grasps a link state between relay devices connected via a network that is not controlled, and collected from the relay devices to be controlled
  • a topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information
  • a path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus Among the relay devices on a transfer path that passes through the non-control target network.
  • This program can be recorded on a computer-readable (non-transient) storage medium. That is, the present invention can be embodied as a computer program product.
  • FIG. 5 is a flowchart showing an operation of a control device when information related to a legacy network is set in the communication system according to the first exemplary embodiment of the present invention.
  • FIG. 8 is a continuation diagram of FIG. 7. It is a figure which shows the example of the control information (flow entry) which the control apparatus of the communication system of the 1st Embodiment of this invention produces
  • FIG. 1 shows the structural example of the topology table (after topology update) of the control apparatus of the communication system of the 1st Embodiment of this invention. It is another flowchart for demonstrating the topology update operation
  • control information (flow entry) set to the relay apparatus 1104 by the control apparatus of the communication system of the 1st Embodiment of this invention It is an example of the control information (flow entry) set to the relay apparatus 1104 by the control apparatus of the communication system of the 1st Embodiment of this invention. It is a figure which shows the transfer path
  • FIG. 1 is a diagram illustrating a configuration of a communication system according to a first embodiment of this invention.
  • control information flow entry
  • the legacy network 1200 including the relay devices 1106 and 1107, the relay devices 1103 and 1104 connected to the legacy network 1200, and the relay devices 1103 and 1104.
  • a configuration including the control device 100 that controls the relay devices 1103 and 1104 is shown.
  • terminal apparatuses 1102 and 1105 are connected to the relay apparatuses 1103 and 1104, respectively.
  • a maintenance terminal 1101 for managing legacy information and the like held by the control device 100 is connected to the control device 100.
  • a solid line in the figure indicates a transfer channel for transferring user data and the like, and a broken line in the figure indicates a control channel for sending and receiving control messages.
  • symbols P1 to P4 given in boxes indicating relay apparatuses 1103, 1104, 1106, and 1107 represent port numbers of the respective relay apparatuses.
  • the relay apparatuses 1103 and 1104 can be configured with devices such as the open flow switches of Non-Patent Documents 1 and 2 that operate according to control information set by the control apparatus 100.
  • the relay devices 1106 and 1107 are devices such as L2 switches that are not controlled by the control device 100.
  • the relay devices 1106 and 1107 hold an address table in which ports and destination L2 addresses are associated, and ports corresponding to L2 addresses of received packets Send a packet from The relay apparatuses 1106 and 1107 perform a destination learning operation on the address table when receiving a packet.
  • the legacy network 1200 includes a relay device that is not a control target, such as the L2 switch, and is not subjected to control from the control device 100.
  • the terminal devices 1102 and 1105 are various terminal devices used by the user. In the present embodiment, an example of realizing communication between the terminal devices 1102 and 1105 will be described. However, a device other than the terminal device may be a communication partner. For example, the terminal device may communicate with various servers or may be so-called M2M communication between machines.
  • FIG. 2 is a diagram illustrating a configuration example of the control device 100.
  • the relay device communication unit 101 sends and receives messages such as control information (flow entry) settings for the relay devices 1103 and 1104 and control information (flow entry) setting requests from the relay devices 1103 and 1104.
  • the relay device communication unit 101 instructs the relay devices 1103 and 1104 to transmit a topology confirmation packet, and receives a response packet for the topology confirmation packet from the relay devices 1103 and 1104.
  • the OpenFlow protocol of Non-Patent Document 2 can also be used.
  • the topology management unit 102 manages the topology table 103 shown in FIG. 3 based on the transmission result of the topology confirmation packet by the relay apparatuses 1103 and 1104.
  • the update process of the topology table 103 will be described in detail later.
  • the maintenance terminal communication unit 104 transmits an input screen for legacy connection port information and legacy identification information to the maintenance terminal 1101.
  • the maintenance terminal communication unit 104 transfers them to the legacy management unit 105.
  • the legacy management unit 105 manages information on legacy networks connected to the relay apparatuses 1103 and 1104 that are controlled by the control apparatus 100.
  • FIG. 4 is a diagram illustrating a configuration example of the legacy management table 106.
  • the legacy management table 106 of FIG. 4 includes identification information of the legacy network (here, “1200” as the code of the legacy network), an identification VLAN (Virtual Local Area Network) ID, and the control device 100's ID.
  • An entry for storing an entry that associates the connection ports of the relay apparatuses 1103 and 1104 to be controlled is stored.
  • a value of “3000” is set as the identification VLAN (ID)
  • the port P2 of the relay device 1103 and the port P2 of the relay device 1104 are set as connection ports as shown in FIG. Is set. That is, the entry of FIG. 4 indicates that the legacy network of the identification information 1200 to which the VLAN ID “3000” is assigned is connected to the port P2 of the relay apparatus 1103 and the port P2 of the relay apparatus 1104.
  • the legacy link management unit 107 reads the connection port information from the corresponding entry in the legacy management table 106 to obtain the legacy network.
  • Information on connection links (hereinafter referred to as “legacy links”).
  • the legacy link management unit 107 corresponds to the specific link management unit described above.
  • the legacy link can also be referred to as a “virtual link (specific link) between relay apparatuses connected via a legacy network”.
  • FIG. 5 is a diagram illustrating a configuration example of the legacy link management table 108.
  • the legacy link management table 108 in FIG. 5 for each connection port read from the legacy management table 106, an entry for storing an entry in which the MAC address (Media Access Control Address) of the port and the connection state are associated is stored. ing.
  • the MAC addresses of the relay apparatuses 1103 and 1104 can be obtained by inquiring the relay apparatuses 1103 and 1104, and the connection state can be detected based on the transmission result of the specific link confirmation packet described later.
  • the route management unit 109 refers to the topology table 103 and the legacy management table 106 to calculate and manage a route between relay devices under its own device. Further, the route management unit 109 generates control information for causing the relay device on the calculated route to perform packet transfer along the route, and causes the relay device communication unit 101 to set the control information. .
  • the control device 100 described above can be realized with a configuration in which a legacy network management function, a route setting function via the legacy network, and the like are added based on the OpenFlow controllers of Non-Patent Documents 1 and 2. 2 can also be realized by a computer program that causes a computer constituting the control device 100 to execute the above-described processes using the hardware thereof.
  • FIG. 6 is a flowchart for explaining the topology collection operation of the control device 100.
  • the control device 100 instructs the relay devices 1103 and 1104 to transmit a topology confirmation packet from each port (STEP 1).
  • a packet of a routing protocol such as LLDP (Link Layer Discovery Protocol) or OSPF (Open Shortest Path First) can be used.
  • a packet-out message of Non-Patent Document 2 can be used as a packet output instruction from the control apparatus 100 to the relay apparatuses 1103 and 1104.
  • the relay devices 1103 and 1104 when the relay devices 1103 and 1104 receive these topology confirmation packets from other relay devices, they notify the control device 100 that these topology confirmation packets have been received and their reception ports ( (Step 2).
  • the Packet-In message of Non-Patent Document 2 can be used to report a received packet from the relay apparatuses 1103 and 1104 to the control apparatus 100.
  • FIG. 3 shows a state after the transmission of the topology confirmation packet.
  • the topology confirmation packets transmitted from the ports P1 and P2 of the relay apparatuses 1103 and 1104 are received by the terminals 1102 and 1105 or the relay apparatuses 1106 and 1107 of the legacy network. Since these devices do not transmit the reception confirmation of the topology confirmation packet to the control device 100, the control device 100 sets “no” for the relay devices adjacent to each port of each relay device.
  • control device 100 records the topology information generated in STEP 3 in the topology table 103 (STEP 4).
  • FIG. 7 and 8 are flowcharts showing the operation of the control device 100 when information about the legacy network is set by the user.
  • the user designates legacy identification information, identification VLAN, and connection port information via the maintenance terminal 1101 (STEP 11).
  • legacy identification information 1200
  • identification VLAN 3000
  • connection port information 1103, P2, and 1104, P2.
  • the control device 100 that has received the information transmitted from the maintenance terminal 1101 records the information in the legacy management table 106 shown in FIG. 4 (STEP 12).
  • the control device 100 acquires the MAC address of the port specified in the connection port information of the entry newly registered in the legacy management table 106 from the corresponding relay devices 1103 and 1104 (STEP 13).
  • the control device 100 records these pieces of information in the legacy link management table 108 shown in FIG. 5 (STEP 14).
  • the MAC address (MAC-A) of the port P2 of the relay apparatus 1103 and the MAC address (MAC-B) of the port P2 of the relay apparatus 1104 are acquired and correspond to the port information as shown in FIG. Shall be recorded.
  • control device 100 creates control information instructing the discard of the packet from the port connected to the legacy network (STEP 15 in FIG. 8).
  • FIG. 9 is an example of control information created based on the entries in the legacy link management table 108 shown in FIG.
  • the upper part of FIG. 9 shows an example of control information set in the relay apparatus 1103.
  • the control information in FIG. 9 is arranged in order from the lowest priority. Therefore, when the relay apparatus 1103 receives a packet whose source MAC address (SMAC) is MAC-B (MAC address of the port P2 of the relay apparatus 1104) from the port P2, the relay apparatus 1103 performs an operation of discarding the packet. Further, the control information in which the match condition is “none” defines the processing contents to be executed when the priority does not match any of the higher-order control information. For this reason, the relay apparatus 1103 performs an operation of discarding other packets even when receiving other packets from the port P2.
  • SMAC source MAC address
  • MAC-B MAC address of the port P2 of the relay apparatus 1104
  • FIG. 9 shows an example of control information set in the relay apparatus 1104.
  • SMAC source MAC address
  • MAC-A MAC address of the port P2 of the relay apparatus 1103
  • the relay apparatus 1104 performs an operation of discarding the packet.
  • the relay device 1104 is also provided with control information indicating that the match condition is “none”, the relay device 1104 performs an operation of discarding the packet even when receiving another packet from the port P2.
  • control device 100 sets the control information created as described above in the relay devices 1103 and 1104 (STEP 16 in FIG. 8).
  • FIG. 10 is a flowchart for explaining the topology update operation by the control device of this embodiment.
  • the control device 100 instructs the relay devices 1103 and 1104 to transmit a specific link confirmation packet from each legacy connection port (STEP 21).
  • the specific link confirmation packet a packet similar to the above-described topology confirmation packet can be used.
  • the relay devices 1106 and 1107 in the legacy network learn the address table by using the specific link confirmation packet. Note that aging processing of the address table may be performed in the relay devices 1106 and 1107 in the legacy network. For this reason, it is desirable that the control device 100 periodically executes the series of processes in FIG. 10 at predetermined intervals.
  • the relay apparatuses 1103 and 1104 discard the specific link confirmation packet according to the control information set in STEP 16 of FIG. .
  • the control device 100 confirms that the specific link confirmation packet has been discarded by inquiring of the relay devices 1103 and 1104 whether or not the specific link confirmation packet has been discarded (STEP 22).
  • the control device 100 confirms that the relay device 1103 and the relay device 1104 are connected via the legacy network 1200. Recognize (STEP 23).
  • FIG. 11 is a diagram illustrating the updated topology table.
  • the adjacent relay device 1104 and its port information P2 are additionally recorded as link information of the port P2 of the relay device 1103.
  • the adjacent relay device 1103 and its port information P2 are additionally recorded as the link information of the port P2 of the relay device 1104.
  • FIG. 12 is a flowchart for explaining the operation when it is not possible to confirm that the specific link confirmation packet has been discarded.
  • STEPs 21 and 22 in FIG. 12 are the same as STEPs 21 and 22 in FIG.
  • the control device 100 recognizes that the link between the relay device 1103 and the relay device 1104 has been disconnected (STEP 33).
  • control device 100 updates the topology table 103 (STEP 34). As shown in FIG. 3, the content after the update is in a state in which the adjacent relay device and its port information are deleted from the link information of the port P2 of the relay device 1103 and the port P2 of the relay device 1104.
  • FIG. 13 is a flowchart for explaining a user packet transfer operation in the communication system according to the first embodiment of this invention.
  • the terminal device 1102 (1105) transmits a packet addressed to the terminal device 1105 (1102) (hereinafter referred to as “user packet”).
  • the relay device 1103 (1104) searches the control information set by the control device 100 for control information having a matching condition that matches the user packet. As shown, control information for processing user packets is not set. Therefore, the relay device 1103 (1104) transfers the user packet to the control device 100 and requests setting of control information.
  • the control device 100 refers to the topology table 103 and calculates a transfer path for transferring the user packet to the destination (STEP 42).
  • the control device 100 transmits the packet from the terminal device 1102 to the relay device 1103, A route to be transferred to the terminal device 1105 in the order of the legacy network 1200 and the relay device 1104 is calculated.
  • control device 100 generates control information for causing the relay device on the calculated transfer route to perform packet transfer along the transfer route (STEP 43). For example, the control device 100 sets control information that causes the relay device 1103 to transfer the packet from the terminal device 1102 from the port P2. In addition, the control device 100 sets control information that causes the relay device 1104 to transfer a packet addressed to the terminal device 1105 received from the port P2 (legacy network) from the port P1.
  • control device 100 sets the generated control information in the relay devices 1103 and 1104 on the transfer path (STEP 44). Further, the control device 100 instructs the relay device 1104 to output the packet received from the relay device 1103 in STEP 41 (STEP 45).
  • the packet transmitted from the terminal apparatus 1102 to the terminal 1105 is transferred to the terminal 1105 according to the control information set in the relay apparatuses 1103 and 1104.
  • FIG. 14 is an example of control information set in the relay apparatus 1103.
  • the entry described as “added” on the left side of FIG. 14 is control information added to process a user packet.
  • a match condition is set such that the source MAC address (SMAC) is the MAC address of the terminal device 1102 and the destination MAC address (DMAC) is the MAC address of the terminal device 1105.
  • SMAC source MAC address
  • DMAC destination MAC address
  • SMAC is changed to MAC-A (MAC address of port P2 of relay apparatus 1103)
  • DMAC is changed to MAC-B (MAC address of port P2 of relay apparatus 1104)
  • VLAN An action (Action) for performing a process of transferring from the port P2 after giving the ID 3000 is described.
  • FIG. 1 source MAC address
  • DMAC destination MAC address
  • control information for processing a response packet addressed to the terminal 1102 from the terminal device 1105 is also set.
  • the fourth entry from the top restores SMAC and DMAC for each packet that matches the match condition where the destination MAC address (DMAC) is MAC-A (the MAC address of port P2 of the relay device 1103), and the VLAN ID.
  • DMAC destination MAC address
  • MAC-A the MAC address of port P2 of the relay device 1103
  • FIG. 15 is an example of control information set in the relay device 1104.
  • the entry described as “added” on the left side of FIG. 15 is control information added to process the user packet.
  • the third entry from the top is control information for processing a response packet addressed to the terminal 1102 from the terminal device 1105.
  • a match condition is set such that the source MAC address (SMAC) is the MAC address of the terminal device 1105 and the destination MAC address (DMAC) is the MAC address of the terminal device 1102.
  • SMAC For packets that match this match condition, SMAC is changed to MAC-B (MAC address of port P2 of relay apparatus 1104), DMAC is changed to MAC-A (MAC address of port P2 of relay apparatus 1103), VLAN An action (Action) for performing a process of transferring from the port P2 after giving the ID 3000 is described.
  • the fourth entry from the top is control information for processing a packet addressed to the terminal 1105 from the terminal device 1102, and the destination MAC address (DMAC) is MAC-B (the MAC address of the port P2 of the relay device 1104).
  • An action (Action) for restoring the SMAC and the DMAC and deleting the VLAN ID and transferring the packet from the port P2 is described.
  • bidirectional packet transfer via the legacy network 1200 is realized as shown in FIG.
  • the packet addressed to the terminal 1105 transmitted from the terminal device 1102 is subjected to MAC rewriting so that the packet is correctly transferred in the legacy network in the ingress relay device 1103, and is transmitted to the egress relay device 1104. And restored.
  • the number of control information entries to be set in each relay apparatus is two, and an inquiry to the control apparatus 100 (control information setting request) is also received at the first packet reception. Therefore, the load on the control device 100 and the relay devices 1103 and 1104 is not increased, and the resource usage is not increased.
  • second to fifth embodiments of the present invention will be described.
  • the second to fifth embodiments of the present invention are different from each other in the arrangement relationship between the network in which the relay apparatus controlled by the control apparatus 100 and the first embodiment and the network (legacy network) that is not the first embodiment are arranged. Therefore, there is no particular change in the configuration of the control device 100.
  • the difference will be mainly described.
  • FIG. 17 is a diagram showing a configuration of a communication system according to the second exemplary embodiment of the present invention.
  • networks 1310 and 1320 in which relay devices controlled by the control device 100 are arranged are arranged at both ends of the legacy network 1200, and the terminal devices 1001 to 1004 are arranged. It is a point to communicate via these.
  • FIG. 18 is a diagram showing a network topology grasped by transmitting a topology confirmation packet as in the first embodiment.
  • the relay device 1103 of the first embodiment is two relay devices 1010 and 1011
  • the relay device 1104 of the first embodiment is two relay devices 1018 and 1019
  • Only the terminal devices 1001 to 1004 are connected to each other, and there is no difference in the basic configuration.
  • FIG. 19 is a diagram showing a network topology that is grasped by transmitting a specific link confirmation packet, as in the first embodiment.
  • the relay apparatuses 1071 to 1076 learn the correspondence between the respective ports and the MAC addresses of the legacy connection ports of the relay apparatuses 1010, 1011, 1018, and 1019.
  • the control device 100 grasps the state of the link between the relay devices 1010, 1011, 1018, and 1019.
  • the relay device on the entrance side of the legacy network is set with the control information to be transferred to the legacy network after rewriting the necessary headers. Control information to be transferred after restoring the header is set in the relay device.
  • the packets between the terminal devices 1001 to 1004 are rewritten (restored) in the headers by the relay devices each having a connection port with the legacy network, and after exceeding the legacy network, according to the instruction of the control device 100, Transferred to the destination communication terminal.
  • the present invention is not limited to the configuration in which the terminal device and the relay device illustrated in FIG. 1 are arranged one-on-one, and there are a plurality of relay devices under control of the control device 100, each of which is a terminal device. It can also be applied to a network configuration in which are connected.
  • FIG. 20 is a diagram showing a configuration of a communication system according to the third exemplary embodiment of the present invention.
  • the difference from the second embodiment shown in FIG. 17 is that there are a plurality of legacy networks and a plurality of legacy networks 1200 and 1210 exist.
  • This configuration can also be viewed as a configuration in which the configuration of the first embodiment is connected in parallel.
  • This configuration has an advantage that the control device 100 can select which of the legacy networks 1200 and 1210 is used to transfer the user packet.
  • the packet between the terminal apparatuses 1001 to 1003 can be transferred via the legacy network 1200
  • the packet between the terminal apparatuses 1002 to 1004 can be transferred via the legacy network 1210.
  • FIG. 21 is a diagram showing a configuration of a communication system according to the fourth exemplary embodiment of the present invention.
  • the difference from the third embodiment shown in FIG. 20 is that there is no legacy network 1210 and the network 1310 and the network 1320 are directly connected.
  • this configuration has an advantage that the control device 100 can select whether or not to transfer the user packet using the legacy network 1200.
  • FIG. 22 is a diagram showing a configuration of a communication system according to the fifth exemplary embodiment of the present invention.
  • the difference from the third embodiment shown in FIG. 20 is that the legacy network 1210 is located on the outside of the network 1310 and the network 1330 in which the relay device that can be controlled by the control device is located on the outside. It is a point.
  • address learning is performed in the relay apparatuses on the legacy networks 1200 and 1210 by transmission of the specific link confirmation packet, and the link between the relay apparatuses belonging to the networks 1310-1320 by the control apparatus 100 and the network 1320 is also performed.
  • the status of the link between relay devices belonging to -1330 is ascertained. For this reason, as in the first embodiment, by setting control information instructing necessary header rewriting and packet transfer from the control device 100, packets are transferred via the two legacy networks 1200 and 1210. be able to.
  • the relay device of the legacy network has been described as an L2 switch.
  • L3 switch that transfers packets based on FIB (Forwarding Information DataBase) or the like. It may be a device used.
  • FIB Forwarding Information DataBase
  • the specific link management unit holds address information given to a port of a relay device connected via the network not controlled, By transmitting a packet in which the address assigned to the port of the relay device is set to the transmission source and the destination as the specific link confirmation packet, the address and port are transmitted to the relay device arranged in the non-control target network.
  • a control device that learns the correspondence relationship between [Third embodiment]
  • For data packets that pass on a transfer path that passes through the network that is not controlled Causing the relay device in front of the non-control target network to perform header rewriting with the address given to the port of the relay device located beyond the non-control target network as the destination, By causing the relay device in a position beyond the network not to be controlled to perform the process of restoring the rewritten header, A control device that causes a relay device on a transfer path that passes through the non-control target network to perform packet transfer according to the transfer path.
  • control device For data packets that pass on a transfer path that passes through the network that is not controlled, Causing the relay device in front of the non-controllable network to perform header rewriting to add predetermined VLAN information; A control device that causes a relay device located beyond a network that is not controlled to perform processing for restoring VLAN information in the rewritten header.
  • the topology information managed by the topology management unit is updated. Control device.
  • the specific link management unit uses a table that stores an entry that associates a port of a relay device connected via the network not controlled, an address assigned to the port, and a link state, A control device that manages a link state and an address between relay devices connected via a network other than the control target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The present invention allows for the establishment of a packet transfer path running from the control apparatus of a centralized-control type communication system through a distributed-control type network. A control apparatus comprises: a particular link management unit that ascertains a state of the link between relay apparatuses connected via a network that is not to be controlled; a topology management unit that manages the information of a topology including the link between the relay apparatuses connected via the network that is not to be controlled; a path management unit that calculates, on the basis of the information of the topology, a packet transfer path between machines connected to the relay apparatuses and generates control information to be used for causing the relay apparatuses on the transfer path to perform packet transfers in accordance with the transfer path; and a relay apparatus communication unit that sets the control information to the relay apparatuses. The control apparatus causes, out of the relay apparatuses on the transfer path running through the network that is not to be controlled, one of two relay apparatuses, which are connected to the network that is not to be controlled, to transmit a predetermined particular link recognition packet addressed to the other of the two relay apparatuses.

Description

制御装置、通信システム、通信方法及びプログラムControl device, communication system, communication method, and program
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2012-265328号(2012年12月4日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、制御装置、通信システム、通信方法及びプログラムに関し、特に、スイッチを集中制御することにより通信を実現する制御装置、通信システム、通信方法及びプログラムに関する。
(Description of related applications)
The present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2012-265328 (filed on Dec. 4, 2012), the entire contents of which are incorporated herein by reference. Shall.
The present invention relates to a control device, a communication system, a communication method, and a program, and more particularly, to a control device, a communication system, a communication method, and a program that realize communication by centrally controlling switches.
 近年、オープンフロー(OpenFlow)という技術が提案されている(非特許文献1、2参照)。オープンフローは、通信をエンドツーエンドのフローとして捉え、フロー単位で経路制御、障害回復、負荷分散、最適化を行うものである。非特許文献2に仕様化されているオープンフロースイッチは、オープンフローコントローラとの通信用のセキュアチャネルを備え、オープンフローコントローラから適宜追加または書き換え指示されるフローテーブルに従って動作する。フローテーブルには、フロー毎に、パケットヘッダと照合するマッチ条件(Match Fields)と、フロー統計情報(Counters)と、処理内容を定義したインストラクション(Instructions)と、の組が定義される(非特許文献2の「4.1 Flow Table」の項参照)。 In recent years, a technique called OpenFlow has been proposed (see Non-Patent Documents 1 and 2). OpenFlow captures communication as an end-to-end flow and performs path control, failure recovery, load balancing, and optimization on a per-flow basis. The OpenFlow switch specified in Non-Patent Document 2 includes a secure channel for communication with the OpenFlow controller, and operates according to a flow table that is appropriately added or rewritten from the OpenFlow controller. For each flow, a set of match conditions (Match Fields), flow statistical information (Counters), and instructions (Instructions) that define processing contents are defined for each flow (non-patented). (Refer to “4.1 Flow Table” in Document 2).
 例えば、オープンフロースイッチは、パケットを受信すると、フローテーブルから、受信パケットのヘッダ情報に適合するマッチ条件(非特許文献2の「4.3 Match Fields」参照)を持つエントリを検索する。検索の結果、受信パケットに適合するエントリが見つかった場合、オープンフロースイッチは、フロー統計情報(カウンタ)を更新するとともに、受信パケットに対して、当該エントリのインストラクションフィールドに記述された処理内容(指定ポートからのパケット送信、フラッディング、廃棄等)を実施する。一方、検索の結果、受信パケットに適合するエントリが見つからなかった場合、オープンフロースイッチは、セキュアチャネルを介して、オープンフローコントローラに対してエントリ設定の要求、即ち、受信パケットを処理するための制御情報の送信要求(Packet-Inメッセージ)を送信する。オープンフロースイッチは、処理内容が定められたフローエントリを受け取ってフローテーブルを更新する。このように、オープンフロースイッチは、フローテーブルに格納されたエントリを制御情報として用いてパケット転送を行う。 For example, when the OpenFlow switch receives a packet, the OpenFlow switch searches the flow table for an entry having a matching condition (see “4.3 Match Fields” in Non-Patent Document 2) that matches the header information of the received packet. If an entry that matches the received packet is found as a result of the search, the OpenFlow switch updates the flow statistical information (counter) and processes the processing (designated) in the instruction field of the entry for the received packet. Perform packet transmission, flooding, discard, etc. from the port. On the other hand, if no entry matching the received packet is found as a result of the search, the OpenFlow switch sends an entry setting request to the OpenFlow controller via the secure channel, that is, a control for processing the received packet. An information transmission request (Packet-In message) is transmitted. The OpenFlow switch receives a flow entry whose processing content is defined and updates the flow table. As described above, the OpenFlow switch performs packet transfer using the entry stored in the flow table as control information.
 また、特許文献1には、少なくとも1つは集中管理されたネットワークで、さらに少なくとも1つは分散管理されたネットワークである複数の相互接続ネットワーク要素から成る複数のデータ通信ネットワークが開示されている。同文献によると、前記各ネットワークの制御チャネルに関する接続形態を異なる構成にすることにより、各ネットワーク制御チャネル手段によって前記各ネットワークの制御情報が前記ネットワークで通信される際に、集中管理プロトコルと分散管理プロトコルの両方をサポートして、一つは集中管理でもう一つは分散管理の2つの擬似並行データ通信ネットワークを実現することが可能となる、とされている。 Patent Document 1 discloses a plurality of data communication networks including a plurality of interconnected network elements, at least one of which is a centrally managed network and at least one of which is a distributed management network. According to the same document, when the control information of each network is communicated in the network by each network control channel means, the centralized management protocol and the distributed management are configured by making the connection form related to the control channel of each network different. Supporting both protocols, it is said that it becomes possible to realize two pseudo-parallel data communication networks, one for centralized management and the other for distributed management.
特表2004-524784号公報JP-T-2004-524784
 以下の分析は、本発明によって与えられたものである。上記非特許文献1、2のオープンフローネットワークとは別に、ネットワーク上のルータやスイッチがルーティングテーブルや、MAC(Media Access Protocol)アドレステーブルを用いてパケットの転送先を決める方式のネットワークが知られている。以下、上記非特許文献1、2のオープンフローネットワークを「集中制御型のネットワーク」といい、ネットワークのルータやスイッチが経路制御を行う方式を「分散制御型のネットワーク」という。 The following analysis is given by the present invention. In addition to the OpenFlow networks described in Non-Patent Documents 1 and 2 above, there is a known network in which routers and switches on a network determine a packet transfer destination using a routing table or a MAC (Media Access Protocol) address table. Yes. Hereinafter, the OpenFlow networks of Non-Patent Documents 1 and 2 are referred to as “centralized control type networks”, and a method in which routers and switches of the network perform path control is referred to as “distributed control type networks”.
 集中制御型のネットワークと分散制御型のネットワークとが混在する環境においては、集中制御型のネットワークの制御装置が、分散制御型のネットワークの疎通状態や挙動を把握することができない。このため、分散制御型のネットワークを経由する経路を使用することができないという問題点がある。また、分散制御型のネットワークを経由する経路を設定したとしても、該当経路上の制御対象外に機器のふるまいによっては、パケットが破棄されたり、意図しない宛先に転送されてしまい、意図した経路でパケットを転送させることができないという問題点がある。 In an environment where a centralized control type network and a distributed control type network coexist, the control device of the centralized control type network cannot grasp the communication state and behavior of the distributed control type network. For this reason, there is a problem that a route passing through a distributed control type network cannot be used. In addition, even if a route through a distributed control network is set, depending on the behavior of the device outside the control target on the corresponding route, the packet may be discarded or transferred to an unintended destination. There is a problem that packets cannot be transferred.
 本発明は、上記したオープンフローに代表される集中制御型の通信システムにおいて、分散制御型のネットワーク(制御装置から見れば「制御対象外のネットワーク」)を経由するパケット転送経路を設定できるようにすることで既存のネットワーク資源の有効活用に貢献する制御装置、通信システム、通信方法及びプログラムを提供することを目的とする。 The present invention can set a packet transfer path through a distributed control type network ("network not to be controlled" from the viewpoint of a control device) in a centralized control type communication system represented by the above-described OpenFlow. It is an object of the present invention to provide a control device, a communication system, a communication method, and a program that contribute to effective use of existing network resources.
 第1の視点によれば、制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、前記中継装置に前記制御情報を設定する中継装置通信部と、を備え、前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させ、前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御装置が提供される。 According to the first aspect, among the relay devices to be controlled, a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled A topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information A path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus And one of the relay devices connected to the non-control target network among the relay devices on the transfer path that passes through the non-control target network. Provided by the control device that transmits a predetermined specific link confirmation packet to the other relay device, and causes the relay device on the transfer route passing through the non-control target network to perform packet transfer according to the transfer route. Is done.
 第2の視点によれば、制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置と、
 前記制御対象外のネットワークを挟んで配置され、前記制御装置から設定された制御情報に従って動作する複数の中継装置と、を含み、前記制御装置が、前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させ、前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる通信システムが提供される。
According to the second aspect, among the relay devices to be controlled, a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled A topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information A path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus A control device comprising:
A plurality of relay devices arranged across the non-control target network and operating according to the control information set by the control device, the control device on a transfer path via the non-control target network Of a relay device connected to the non-control target network from one of the relay devices to the other relay device and transmitting a predetermined specific link confirmation packet on the transfer route via the non-control target network A communication system is provided in which the relay apparatus performs packet transfer according to the transfer path.
 第3の視点によれば、制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置が、前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させるステップと、前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせるステップと、を含む通信方法が提供される。本方法は、制御情報を設定することにより中継装置を制御する制御装置という、特定の機械に結びつけられている。 According to the third aspect, among the relay devices to be controlled, a specific link management unit that grasps a link state between relay devices that are connected via a non-control target network, and collected from the relay devices to be controlled A topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information A path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus A relay that connects to the non-controllable network among relay devices on a transfer path that passes through the non-controllable network. Transmitting a predetermined specific link confirmation packet from one of the devices to the other relay device, and forwarding the packet along the transfer route to the relay device on the transfer route passing through the non-control target network. A communication method is provided. This method is linked to a specific machine called a control device that controls a relay device by setting control information.
 第4の視点によれば、制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置を構成するコンピュータに、前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させる処理と、前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる処理と、を実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な(非トランジエントな)記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。 According to the fourth aspect, among the relay devices to be controlled, a specific link management unit that grasps a link state between relay devices connected via a network that is not controlled, and collected from the relay devices to be controlled A topology management unit that manages topology information including a link between relay devices that are connected via the network other than the control target based on the information, and a packet between machines that are connected to the relay device based on the topology information A path management unit that calculates a transfer path and generates control information for causing the relay apparatus on the transfer path to perform packet transfer according to the transfer path; and a relay apparatus communication unit that sets the control information in the relay apparatus Among the relay devices on a transfer path that passes through the non-control target network. A process of transmitting a predetermined specific link confirmation packet from one of the relay apparatuses connected to the work to the other relay apparatus, and a relay apparatus on a transfer path that passes through the network other than the control target. And a program for executing the packet transfer according to the above. This program can be recorded on a computer-readable (non-transient) storage medium. That is, the present invention can be embodied as a computer program product.
 本発明によれば、集中制御型の通信システムにおいて、分散制御型のネットワーク(制御装置から見れば「制御対象外のネットワーク」)を経由するパケット転送経路を設定できるようになる。この結果、既存のネットワーク資源の有効活用に貢献することが可能となる。 According to the present invention, in a centralized control type communication system, it is possible to set a packet transfer path that passes through a distributed control type network (“network not subject to control” as seen from the control device). As a result, it is possible to contribute to the effective use of existing network resources.
本発明の第1の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のトポロジテーブル(トポロジ収集前)の構成例を示す図である。It is a figure which shows the structural example of the topology table (before topology collection) of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のレガシー管理テーブルの構成例を示す図である。It is a figure which shows the structural example of the legacy management table of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のレガシーリンク管理テーブルの構成例を示す図である。It is a figure which shows the structural example of the legacy link management table of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のトポロジ構築動作を説明するための流れ図である。It is a flowchart for demonstrating the topology construction operation | movement of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムにおいて、レガシーネットワークに関する情報が設定された際の制御装置の動作を表した流れ図である。5 is a flowchart showing an operation of a control device when information related to a legacy network is set in the communication system according to the first exemplary embodiment of the present invention. 図7の続図である。FIG. 8 is a continuation diagram of FIG. 7. 本発明の第1の実施形態の通信システムの制御装置が生成する制御情報(フローエントリ)の例を示す図である。It is a figure which shows the example of the control information (flow entry) which the control apparatus of the communication system of the 1st Embodiment of this invention produces | generates. 本発明の第1の実施形態の通信システムの制御装置のトポロジ更新動作を説明するための流れ図である。It is a flowchart for demonstrating the topology update operation | movement of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のトポロジテーブル(トポロジ更新後)の構成例を示す図である。It is a figure which shows the structural example of the topology table (after topology update) of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置のトポロジ更新動作を説明するための別の流れ図である。It is another flowchart for demonstrating the topology update operation | movement of the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムにおけるユーザパケットの転送動作を説明するための流れ図である。It is a flowchart for demonstrating the transfer operation | movement of the user packet in the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置により中継装置1103に設定される制御情報(フローエントリ)の例である。It is an example of the control information (flow entry) set to the relay apparatus 1103 by the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置により中継装置1104に設定される制御情報(フローエントリ)の例である。It is an example of the control information (flow entry) set to the relay apparatus 1104 by the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第1の実施形態の通信システムの制御装置により中継装置1103及び中継装置1104に設定された制御情報(フローエントリ)により実現される転送経路を示す図である。It is a figure which shows the transfer path | route implement | achieved by the control information (flow entry) set to the relay apparatus 1103 and the relay apparatus 1104 by the control apparatus of the communication system of the 1st Embodiment of this invention. 本発明の第2の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の通信システムの構成を示す別の図である。It is another figure which shows the structure of the communication system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の通信システムの構成を示す別の図である。It is another figure which shows the structure of the communication system of the 2nd Embodiment of this invention. 本発明の第3の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 3rd Embodiment of this invention. 本発明の第4の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 4th Embodiment of this invention. 本発明の第5の実施形態の通信システムの構成を示す図である。It is a figure which shows the structure of the communication system of the 5th Embodiment of this invention.
[第1の実施形態]
 続いて、本発明の第1の実施形態について図面を参照して詳細に説明する。図1は、本発明の第1の実施形態の通信システムの構成を示す図である。図1を参照すると、中継装置1106、1107を含んで構成されるレガシーネットワーク1200と、レガシーネットワーク1200と接続された中継装置1103、1104と、中継装置1103、1104に制御情報(フローエントリ)を設定することにより中継装置1103、1104を制御する制御装置100と、を備えた構成が示されている。また、中継装置1103、1104にはそれぞれ、端末装置1102、1105が接続されている。また、制御装置100には、制御装置100が保持するレガシー情報等を管理するための保守端末1101が接続されている。
[First Embodiment]
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a communication system according to a first embodiment of this invention. Referring to FIG. 1, control information (flow entry) is set in the legacy network 1200 including the relay devices 1106 and 1107, the relay devices 1103 and 1104 connected to the legacy network 1200, and the relay devices 1103 and 1104. Thus, a configuration including the control device 100 that controls the relay devices 1103 and 1104 is shown. Further, terminal apparatuses 1102 and 1105 are connected to the relay apparatuses 1103 and 1104, respectively. In addition, a maintenance terminal 1101 for managing legacy information and the like held by the control device 100 is connected to the control device 100.
 図1において、図中の実線は、ユーザデータ等を転送する転送チャネルを示し、図中の破線は制御メッセージを授受する制御チャネルを示している。また、中継装置1103、1104、1106、1107を示すボックス内に付された記号P1~P4は、各中継装置のポート番号を表している。 1, a solid line in the figure indicates a transfer channel for transferring user data and the like, and a broken line in the figure indicates a control channel for sending and receiving control messages. Further, symbols P1 to P4 given in boxes indicating relay apparatuses 1103, 1104, 1106, and 1107 represent port numbers of the respective relay apparatuses.
 中継装置1103、1104は、制御装置100から設定された制御情報に従って動作する、非特許文献1、2のオープンフロースイッチ等の機器で構成することができる。 The relay apparatuses 1103 and 1104 can be configured with devices such as the open flow switches of Non-Patent Documents 1 and 2 that operate according to control information set by the control apparatus 100.
 中継装置1106、1107は、制御装置100の制御を受けないL2スイッチ等の機器であり、例えば、ポートと宛先L2アドレスとを対応付けたアドレステーブルを保持し、受信パケットのL2アドレスに対応するポートからパケットを送信する。また、中継装置1106、1107は、パケット受信時に、前記アドレステーブルへの宛先の学習動作を行う。レガシーネットワーク1200は、これらのL2スイッチ等の制御対象外の中継装置を含んで構成され、制御装置100からの制御を受けないネットワークである。 The relay devices 1106 and 1107 are devices such as L2 switches that are not controlled by the control device 100. For example, the relay devices 1106 and 1107 hold an address table in which ports and destination L2 addresses are associated, and ports corresponding to L2 addresses of received packets Send a packet from The relay apparatuses 1106 and 1107 perform a destination learning operation on the address table when receiving a packet. The legacy network 1200 includes a relay device that is not a control target, such as the L2 switch, and is not subjected to control from the control device 100.
 端末装置1102、1105は、ユーザの利用する各種の端末装置である。なお、本実施形態では、端末装置1102、1105間の通信を実現する例を挙げて説明するが、端末装置以外の機器が通信相手であってもよい。例えば、端末装置が各種のサーバと通信する場合でもよいし、あるいは、マシン同士、いわゆるM2M通信であってもよい。 The terminal devices 1102 and 1105 are various terminal devices used by the user. In the present embodiment, an example of realizing communication between the terminal devices 1102 and 1105 will be described. However, a device other than the terminal device may be a communication partner. For example, the terminal device may communicate with various servers or may be so-called M2M communication between machines.
 図2は、上記制御装置100の構成例を示す図である。図2を参照すると、中継装置通信部101と、トポロジ管理部102と、トポロジテーブル103と、保守端末通信部104と、レガシー管理部105と、レガシー管理テーブル106と、レガシーリンク管理部107と、レガシーリンク管理テーブル108と、経路管理部109と、を備えた構成が示されている。 FIG. 2 is a diagram illustrating a configuration example of the control device 100. Referring to FIG. 2, the relay device communication unit 101, the topology management unit 102, the topology table 103, the maintenance terminal communication unit 104, the legacy management unit 105, the legacy management table 106, the legacy link management unit 107, A configuration including a legacy link management table 108 and a path management unit 109 is shown.
 中継装置通信部101は、中継装置1103、1104に対する制御情報(フローエントリ)の設定や、中継装置1103、1104からの制御情報(フローエントリ)の設定要求等のメッセージを授受する。また、中継装置通信部101は、中継装置1103、1104に対してトポロジ確認用パケットの送信を指示し、中継装置1103、1104からトポロジ確認用パケットに対する応答パケットを受信する。中継装置1103、1104とのメッセージの授受には、非特許文献2のオープンフロープロトコルを用いることもできる。 The relay device communication unit 101 sends and receives messages such as control information (flow entry) settings for the relay devices 1103 and 1104 and control information (flow entry) setting requests from the relay devices 1103 and 1104. The relay device communication unit 101 instructs the relay devices 1103 and 1104 to transmit a topology confirmation packet, and receives a response packet for the topology confirmation packet from the relay devices 1103 and 1104. For the exchange of messages with the relay apparatuses 1103 and 1104, the OpenFlow protocol of Non-Patent Document 2 can also be used.
 トポロジ管理部102は、中継装置1103、1104によるトポロジ確認用パケットの送信結果に基づいて、図3に示すトポロジテーブル103を管理する。トポロジテーブル103の更新処理については、後に詳細に説明する。 The topology management unit 102 manages the topology table 103 shown in FIG. 3 based on the transmission result of the topology confirmation packet by the relay apparatuses 1103 and 1104. The update process of the topology table 103 will be described in detail later.
 保守端末通信部104は、保守端末1101に対し、レガシー接続ポート情報及びレガシー識別情報の入力画面を送信する。ユーザから、レガシー接続ポート情報及びレガシー識別情報の入力を受け付けると、保守端末通信部104は、レガシー管理部105に対して、これらを転送する。 The maintenance terminal communication unit 104 transmits an input screen for legacy connection port information and legacy identification information to the maintenance terminal 1101. When receiving the input of the legacy connection port information and the legacy identification information from the user, the maintenance terminal communication unit 104 transfers them to the legacy management unit 105.
 レガシー管理部105は、制御装置100の制御対象となっている中継装置1103、1104に接続されているレガシーネットワークの情報を管理する。 The legacy management unit 105 manages information on legacy networks connected to the relay apparatuses 1103 and 1104 that are controlled by the control apparatus 100.
 図4は、レガシー管理テーブル106の構成例を示す図である。図4のレガシー管理テーブル106には、レガシーネットワークの識別情報(ここでは、レガシーネットワークの符号と同じく「1200」とする。)と、識別用VLAN(Virtual Local Area Network) IDと、制御装置100の制御対象となっている中継装置1103、1104の接続ポートとを対応付けたエントリを格納するエントリが格納されている。また、図4の例では、識別用VLAN(ID)として、「3000」という値が設定され、接続ポートとして図1に示すとおり、中継装置1103のポートP2と、中継装置1104のポートP2とが設定されている。即ち、図4のエントリは、中継装置1103のポートP2と、中継装置1104のポートP2とにVLAN ID「3000」が割り当てられた識別情報1200のレガシーネットワークが接続されていることを示している。 FIG. 4 is a diagram illustrating a configuration example of the legacy management table 106. The legacy management table 106 of FIG. 4 includes identification information of the legacy network (here, “1200” as the code of the legacy network), an identification VLAN (Virtual Local Area Network) ID, and the control device 100's ID. An entry for storing an entry that associates the connection ports of the relay apparatuses 1103 and 1104 to be controlled is stored. In the example of FIG. 4, a value of “3000” is set as the identification VLAN (ID), and the port P2 of the relay device 1103 and the port P2 of the relay device 1104 are set as connection ports as shown in FIG. Is set. That is, the entry of FIG. 4 indicates that the legacy network of the identification information 1200 to which the VLAN ID “3000” is assigned is connected to the port P2 of the relay apparatus 1103 and the port P2 of the relay apparatus 1104.
 レガシーリンク管理部107は、上記のようにして、レガシー管理テーブル106に新規エントリの追加、既存エントリの変更等が行われると、レガシー管理テーブル106の該当エントリから接続ポート情報を読み出して、レガシーネットワークとの接続リンク(以下、「レガシーリンク」という。)の情報を管理する。レガシーリンク管理部107は上記した特定リンク管理部に相当する。また、レガシーリンクは、「レガシーネットワークを介して接続する中継装置間の仮想的なリンク(特定リンク)」とも言い換えることができる。 When a new entry is added to the legacy management table 106 or an existing entry is changed as described above, the legacy link management unit 107 reads the connection port information from the corresponding entry in the legacy management table 106 to obtain the legacy network. Information on connection links (hereinafter referred to as “legacy links”). The legacy link management unit 107 corresponds to the specific link management unit described above. The legacy link can also be referred to as a “virtual link (specific link) between relay apparatuses connected via a legacy network”.
 図5は、レガシーリンク管理テーブル108の構成例を示す図である。図5のレガシーリンク管理テーブル108には、レガシー管理テーブル106から読み出した接続ポート毎に、そのポートのMACアドレス(Media Access Control Address)、接続状態等を対応付けたエントリを格納するエントリが格納されている。なお、中継装置1103、1104のMACアドレスは、中継装置1103、1104に問い合わせることにより入手可能であり、接続状態は、後記する特定リンク確認パケットの送信結果に基づき検出することができる。 FIG. 5 is a diagram illustrating a configuration example of the legacy link management table 108. In the legacy link management table 108 in FIG. 5, for each connection port read from the legacy management table 106, an entry for storing an entry in which the MAC address (Media Access Control Address) of the port and the connection state are associated is stored. ing. The MAC addresses of the relay apparatuses 1103 and 1104 can be obtained by inquiring the relay apparatuses 1103 and 1104, and the connection state can be detected based on the transmission result of the specific link confirmation packet described later.
 経路管理部109は、トポロジテーブル103及びレガシー管理テーブル106を参照して、自装置の配下の中継装置間の経路を計算して管理する。また、経路管理部109は、前記計算した経路上の中継装置に、その経路に沿ったパケット転送を行わせるための制御情報を生成し、中継装置通信部101に、これらの制御情報を設定させる。 The route management unit 109 refers to the topology table 103 and the legacy management table 106 to calculate and manage a route between relay devices under its own device. Further, the route management unit 109 generates control information for causing the relay device on the calculated route to perform packet transfer along the route, and causes the relay device communication unit 101 to set the control information. .
 なお、上記した制御装置100は、非特許文献1、2のオープンフローコントローラをベースにレガシーネットワークの管理機能、レガシーネットワークを経由する経路設定機能等を追加した構成にて実現できる。また、図2に示した制御装置100の各部(処理手段)は、制御装置100を構成するコンピュータに、そのハードウェアを用いて、上記した各処理を実行させるコンピュータプログラムにより実現することもできる。 The control device 100 described above can be realized with a configuration in which a legacy network management function, a route setting function via the legacy network, and the like are added based on the OpenFlow controllers of Non-Patent Documents 1 and 2. 2 can also be realized by a computer program that causes a computer constituting the control device 100 to execute the above-described processes using the hardware thereof.
 続いて、本実施形態の動作について図面を参照して詳細に説明する。 Subsequently, the operation of the present embodiment will be described in detail with reference to the drawings.
(トポロジ構築)
 はじめに、制御装置100のトポロジ構築動作について説明する。図6は、制御装置100のトポロジ収集動作を説明するための流れ図である。
(Topology construction)
First, the topology construction operation of the control device 100 will be described. FIG. 6 is a flowchart for explaining the topology collection operation of the control device 100.
 図6を参照すると、まず、制御装置100は、中継装置1103、1104に対し、それぞれのポートからトポロジ確認用のパケットを送信するよう指示する(STEP1)。トポロジ確認用のパケットとしては、LLDP(Link Layer Discovery Protocol)パケットや、OSPF(Open Shortest Path First)等のルーティングプロトコルのパケットを用いることができる。また、制御装置100から中継装置1103、1104へのパケット出力指示は、例えば、非特許文献2のPacket-Outメッセージを用いることができる。 Referring to FIG. 6, first, the control device 100 instructs the relay devices 1103 and 1104 to transmit a topology confirmation packet from each port (STEP 1). As the topology confirmation packet, a packet of a routing protocol such as LLDP (Link Layer Discovery Protocol) or OSPF (Open Shortest Path First) can be used. Further, for example, a packet-out message of Non-Patent Document 2 can be used as a packet output instruction from the control apparatus 100 to the relay apparatuses 1103 and 1104.
 一方、中継装置1103、1104は、他の中継装置からこれらトポロジ確認用のパケットを受信すると、制御装置100に対し、これらトポロジ確認用のパケットを受信した旨と、その受信ポートとを通知する(STEP2)。また、中継装置1103、1104から制御装置100への受信パケットの報告は、例えば、非特許文献2のPacket-Inメッセージを用いることができる。 On the other hand, when the relay devices 1103 and 1104 receive these topology confirmation packets from other relay devices, they notify the control device 100 that these topology confirmation packets have been received and their reception ports ( (Step 2). In addition, for example, the Packet-In message of Non-Patent Document 2 can be used to report a received packet from the relay apparatuses 1103 and 1104 to the control apparatus 100.
 制御装置100は、前記トポロジ確認用のパケットを受信した中継装置1103、1104からの情報に基づいて、トポロジ確認用のパケットを授受した中継装置間が接続されていることを認識し、トポロジ情報を生成する(STEP3)。図3は、トポロジ確認用パケットの送信後の状態を示している。図1に示したように、中継装置1103、1104のポートP1、P2から送信したトポロジ確認用のパケットは、端末1102、1105又はレガシーネットワークの中継装置1106、1107にて受信される。これらの装置は、制御装置100に対して、トポロジ確認用のパケットの受信通知を送信しないため、制御装置100は、各中継装置の各ポートに隣接する中継装置等は「無し」と設定する。 Based on the information from the relay apparatuses 1103 and 1104 that have received the topology confirmation packet, the control apparatus 100 recognizes that the relay apparatuses that have exchanged the topology confirmation packet are connected, and obtains the topology information. Generate (STEP 3). FIG. 3 shows a state after the transmission of the topology confirmation packet. As shown in FIG. 1, the topology confirmation packets transmitted from the ports P1 and P2 of the relay apparatuses 1103 and 1104 are received by the terminals 1102 and 1105 or the relay apparatuses 1106 and 1107 of the legacy network. Since these devices do not transmit the reception confirmation of the topology confirmation packet to the control device 100, the control device 100 sets “no” for the relay devices adjacent to each port of each relay device.
 次に、制御装置100は、STEP3で生成したトポロジ情報をトポロジテーブル103に記録する(STEP4)。 Next, the control device 100 records the topology information generated in STEP 3 in the topology table 103 (STEP 4).
(レガシーネットワーク情報の取得)
 続いて、制御装置100のレガシーネットワーク情報の取得動作について説明する。図7、図8は、ユーザからレガシーネットワークに関する情報が設定された際の制御装置100の動作を表した流れ図である。
(Obtaining legacy network information)
Next, the legacy network information acquisition operation of the control device 100 will be described. 7 and 8 are flowcharts showing the operation of the control device 100 when information about the legacy network is set by the user.
 図7を参照すると、まず、ユーザが保守端末1101を介して、レガシー識別情報と、識別用VLANと、接続ポート情報とを指定する(STEP11)。ここでは、図4に示すように、レガシー識別情報=1200と、識別用VLAN=3000と、接続ポート情報=1103のP2、1104のP2と指定がされたものとする。 Referring to FIG. 7, first, the user designates legacy identification information, identification VLAN, and connection port information via the maintenance terminal 1101 (STEP 11). Here, as shown in FIG. 4, it is assumed that legacy identification information = 1200, identification VLAN = 3000, connection port information = 1103, P2, and 1104, P2.
 前記保守端末1101から送信された情報を受信した制御装置100は、これらの情報を図4に示すレガシー管理テーブル106に記録する(STEP12)。 The control device 100 that has received the information transmitted from the maintenance terminal 1101 records the information in the legacy management table 106 shown in FIG. 4 (STEP 12).
 次に制御装置100は、レガシー管理テーブル106に新規に登録されたエントリの接続ポート情報に指定されているポートのMACアドレスを、該当する中継装置1103、1104から取得する(STEP13)。次に、制御装置100は、これらの情報を図5に示すレガシーリンク管理テーブル108に記録する(STEP14)。ここでは、中継装置1103のポートP2のMACアドレス(MAC-A)と、中継装置1104のポートP2のMACアドレス(MAC-B)とが取得され、それぞれ図5に示すように、ポート情報と対応付けて記録されたものとする。 Next, the control device 100 acquires the MAC address of the port specified in the connection port information of the entry newly registered in the legacy management table 106 from the corresponding relay devices 1103 and 1104 (STEP 13). Next, the control device 100 records these pieces of information in the legacy link management table 108 shown in FIG. 5 (STEP 14). Here, the MAC address (MAC-A) of the port P2 of the relay apparatus 1103 and the MAC address (MAC-B) of the port P2 of the relay apparatus 1104 are acquired and correspond to the port information as shown in FIG. Shall be recorded.
 次に、制御装置100は、レガシーネットワークに接続しているポートからのパケットの廃棄を指示する制御情報を作成する(図8のSTEP15)。 Next, the control device 100 creates control information instructing the discard of the packet from the port connected to the legacy network (STEP 15 in FIG. 8).
 図9は、図5に示すレガシーリンク管理テーブル108のエントリに基づいて作成された制御情報の例である。図9の上段は、中継装置1103に設定される制御情報の例を示す。また、図9の制御情報は優先順位が低い順に、順番に並べられている。従い、中継装置1103は、ポートP2から送信元MACアドレス(SMAC)がMAC-B(中継装置1104のポートP2のMACアドレス)であるパケットを受信すると、そのパケットを廃棄する動作を行う。また、マッチ条件が「なし」となっている制御情報は、優先順位が上位の制御情報のいずれにも適合しない場合に実行される処理内容を規定している。このため、中継装置1103は、ポートP2からその他パケットを受信した場合も、そのパケットを廃棄する動作を行う。 FIG. 9 is an example of control information created based on the entries in the legacy link management table 108 shown in FIG. The upper part of FIG. 9 shows an example of control information set in the relay apparatus 1103. Also, the control information in FIG. 9 is arranged in order from the lowest priority. Therefore, when the relay apparatus 1103 receives a packet whose source MAC address (SMAC) is MAC-B (MAC address of the port P2 of the relay apparatus 1104) from the port P2, the relay apparatus 1103 performs an operation of discarding the packet. Further, the control information in which the match condition is “none” defines the processing contents to be executed when the priority does not match any of the higher-order control information. For this reason, the relay apparatus 1103 performs an operation of discarding other packets even when receiving other packets from the port P2.
 同様に、図9の下段は、中継装置1104に設定される制御情報の例を示す。中継装置1104は、ポートP1から送信元MACアドレス(SMAC)がMAC-A(中継装置1103のポートP2のMACアドレス)であるパケットを受信すると、そのパケットを廃棄する動作を行う。また、中継装置1104においてもマッチ条件を「なし」とした制御情報が設けられているため、中継装置1104は、ポートP2からその他パケットを受信した場合も、そのパケットを廃棄する動作を行う。 Similarly, the lower part of FIG. 9 shows an example of control information set in the relay apparatus 1104. When the relay apparatus 1104 receives a packet whose source MAC address (SMAC) is MAC-A (MAC address of the port P2 of the relay apparatus 1103) from the port P1, the relay apparatus 1104 performs an operation of discarding the packet. Further, since the relay device 1104 is also provided with control information indicating that the match condition is “none”, the relay device 1104 performs an operation of discarding the packet even when receiving another packet from the port P2.
 次に、制御装置100は、上記のようにして作成した制御情報を中継装置1103、1104に設定する(図8のSTEP16)。 Next, the control device 100 sets the control information created as described above in the relay devices 1103 and 1104 (STEP 16 in FIG. 8).
(レガシーネットワークの情報を用いたトポロジの更新)
 続いて、制御装置100における、前記レガシーネットワークの情報を用いたトポロジ更新動作について説明する。図10は、本実施形態の制御装置によるトポロジ更新動作を説明するための流れ図である。
(Topology update using legacy network information)
Next, a topology update operation using the legacy network information in the control apparatus 100 will be described. FIG. 10 is a flowchart for explaining the topology update operation by the control device of this embodiment.
 制御装置100は、中継装置1103、1104に対し、それぞれのレガシー接続ポートから特定リンク確認パケットを送信するよう指示する(STEP21)。特定リンク確認パケットとしては、前述のトポロジ確認用のパケットと同様のパケットを用いることができる。また、特定リンク確認パケットによりレガシーネットワークの中継装置1106、1107がアドレステーブルの学習を行うことになる。なお、レガシーネットワークの中継装置1106、1107におけるアドレステーブルのエージング処理が行われる場合がある。このため、制御装置100は、所定の間隔で周期的に図10の一連の処理を実行することが望ましい。 The control device 100 instructs the relay devices 1103 and 1104 to transmit a specific link confirmation packet from each legacy connection port (STEP 21). As the specific link confirmation packet, a packet similar to the above-described topology confirmation packet can be used. Further, the relay devices 1106 and 1107 in the legacy network learn the address table by using the specific link confirmation packet. Note that aging processing of the address table may be performed in the relay devices 1106 and 1107 in the legacy network. For this reason, it is desirable that the control device 100 periodically executes the series of processes in FIG. 10 at predetermined intervals.
 一方、中継装置1103、1104は、レガシーネットワーク1200を介して、他の中継装置からこれら特定リンク確認パケットを受信すると、図8のSTEP16にて設定された制御情報に従い、特定リンク確認パケットを廃棄する。制御装置100は、中継装置1103、1104に対して、特定リンク確認パケットを廃棄したか否かを問い合わせることにより、特定リンク確認パケットが廃棄されたことを確認する(STEP22)。 On the other hand, when receiving the specific link confirmation packet from another relay apparatus via the legacy network 1200, the relay apparatuses 1103 and 1104 discard the specific link confirmation packet according to the control information set in STEP 16 of FIG. . The control device 100 confirms that the specific link confirmation packet has been discarded by inquiring of the relay devices 1103 and 1104 whether or not the specific link confirmation packet has been discarded (STEP 22).
 前記確認の結果、予定通りに特定リンク確認パケットが廃棄されたことを確認できた場合、制御装置100は、中継装置1103と中継装置1104とが、レガシーネットワーク1200を介して接続されていることを認識する(STEP23)。 As a result of the confirmation, when it is confirmed that the specific link confirmation packet is discarded as scheduled, the control device 100 confirms that the relay device 1103 and the relay device 1104 are connected via the legacy network 1200. Recognize (STEP 23).
 そして、制御装置100は、トポロジテーブル103を更新する(STEP24)。図11は、更新後のトポロジテーブルを示す図である。図11を参照すると、中継装置1103のポートP2のリンクの情報として、隣接中継装置1104と、そのポート情報P2が追記されている。同様に、中継装置1104のポートP2のリンクの情報として、隣接中継装置1103と、そのポート情報P2が追記されている。 Then, the control device 100 updates the topology table 103 (STEP 24). FIG. 11 is a diagram illustrating the updated topology table. Referring to FIG. 11, the adjacent relay device 1104 and its port information P2 are additionally recorded as link information of the port P2 of the relay device 1103. Similarly, the adjacent relay device 1103 and its port information P2 are additionally recorded as the link information of the port P2 of the relay device 1104.
 ここで、図10のSTEP22において、特定リンク確認パケットが廃棄されたことを確認できなかった場合の動作について説明する。 Here, the operation when it is not confirmed in STEP 22 in FIG. 10 that the specific link confirmation packet has been discarded will be described.
 図12は、特定リンク確認パケットが廃棄されたことを確認できなかった場合の動作を説明するための流れ図である。図12のSTEP21、22は、図10のSTEP21、22と同様である。STEP22の確認の結果、特定リンク確認パケットが廃棄されたことを確認できなかった場合、制御装置100は、中継装置1103と中継装置1104とのリンクが切断されたことを認識する(STEP33)。 FIG. 12 is a flowchart for explaining the operation when it is not possible to confirm that the specific link confirmation packet has been discarded. STEPs 21 and 22 in FIG. 12 are the same as STEPs 21 and 22 in FIG. As a result of the confirmation in STEP 22, if it cannot be confirmed that the specific link confirmation packet has been discarded, the control device 100 recognizes that the link between the relay device 1103 and the relay device 1104 has been disconnected (STEP 33).
 そして、制御装置100は、トポロジテーブル103を更新する(STEP34)。更新後の内容は、図3に示したとおり、中継装置1103のポートP2、中継装置1104のポートP2のリンクの情報から、隣接中継装置とそのポート情報が削除された状態となる。 Then, the control device 100 updates the topology table 103 (STEP 34). As shown in FIG. 3, the content after the update is in a state in which the adjacent relay device and its port information are deleted from the link information of the port P2 of the relay device 1103 and the port P2 of the relay device 1104.
(ユーザパケットの転送)
 続いて、上記のようにして把握されるトポロジを用いて行われるユーザパケット(データパケット)の転送動作について説明する。図13は、本発明の第1の実施形態の通信システムにおけるユーザパケットの転送動作を説明するための流れ図である。
(User packet transfer)
Subsequently, a transfer operation of a user packet (data packet) performed using the topology grasped as described above will be described. FIG. 13 is a flowchart for explaining a user packet transfer operation in the communication system according to the first embodiment of this invention.
 図13を参照すると、まず、端末装置1102(1105)が端末装置1105(1102)宛てのパケット(以下、「ユーザパケット」という。)を送信する。中継装置1103(1104)は、ユーザパケットを受信すると、制御装置100から設定された制御情報の中から、ユーザパケットに適合するマッチ条件を持つ制御情報を検索するが、この時点では、図9に示したように、ユーザパケットを処理するための制御情報は設定されていない。そこで、中継装置1103(1104)は、制御装置100に対してユーザパケットを転送し、制御情報の設定を要求する。制御装置100は、中継装置1103(1104)からユーザパケットを受信すると(STEP41)、トポロジテーブル103を参照して、ユーザパケットを宛先に転送するための転送経路を計算する(STEP42)。 Referring to FIG. 13, first, the terminal device 1102 (1105) transmits a packet addressed to the terminal device 1105 (1102) (hereinafter referred to as “user packet”). When the relay device 1103 (1104) receives the user packet, the relay device 1103 (1104) searches the control information set by the control device 100 for control information having a matching condition that matches the user packet. As shown, control information for processing user packets is not set. Therefore, the relay device 1103 (1104) transfers the user packet to the control device 100 and requests setting of control information. When receiving the user packet from the relay device 1103 (1104) (STEP 41), the control device 100 refers to the topology table 103 and calculates a transfer path for transferring the user packet to the destination (STEP 42).
 上述したトポロジの構築、更新により、レガシーネットワークを含んだ全体のトポロジは、図4に示すように把握されているため、制御装置100は、例えば、端末装置1102からのパケットを、中継装置1103、レガシーネットワーク1200、中継装置1104の順で端末装置1105に転送する経路を計算する。 Since the overall topology including the legacy network is grasped as shown in FIG. 4 by the construction and update of the topology described above, the control device 100, for example, transmits the packet from the terminal device 1102 to the relay device 1103, A route to be transferred to the terminal device 1105 in the order of the legacy network 1200 and the relay device 1104 is calculated.
 次に、制御装置100は、計算した転送経路上の中継装置に、転送経路に沿ったパケット転送を行わせるための制御情報を生成する(STEP43)。例えば、制御装置100は、中継装置1103に、端末装置1102からのパケットを、そのポートP2から転送させる制御情報を設定する。また、制御装置100は、中継装置1104に、ポートP2(レガシーネットワーク)から受信した端末装置1105宛てのパケットを、そのポートP1から転送させる制御情報を設定する。 Next, the control device 100 generates control information for causing the relay device on the calculated transfer route to perform packet transfer along the transfer route (STEP 43). For example, the control device 100 sets control information that causes the relay device 1103 to transfer the packet from the terminal device 1102 from the port P2. In addition, the control device 100 sets control information that causes the relay device 1104 to transfer a packet addressed to the terminal device 1105 received from the port P2 (legacy network) from the port P1.
 次に、制御装置100は、前記生成した制御情報を、転送経路上の中継装置1103、1104に設定する(STEP44)。さらに、制御装置100は、STEP41で中継装置1103から受信したパケットを出力するよう、中継装置1104に指示する(STEP45)。 Next, the control device 100 sets the generated control information in the relay devices 1103 and 1104 on the transfer path (STEP 44). Further, the control device 100 instructs the relay device 1104 to output the packet received from the relay device 1103 in STEP 41 (STEP 45).
 以上により、その後、端末装置1102から端末1105に宛てて送信されたパケットは、中継装置1103、1104に設定された制御情報に従って端末1105に転送される。 As described above, the packet transmitted from the terminal apparatus 1102 to the terminal 1105 is transferred to the terminal 1105 according to the control information set in the relay apparatuses 1103 and 1104.
 図14は、中継装置1103に設定される制御情報の例である。図14の左側に「追加」と記載されたエントリが、ユーザパケットを処理するために追加された制御情報である。上から3番目のエントリは、送信元MACアドレス(SMAC)が端末装置1102のMACアドレスであり、かつ、宛先MACアドレス(DMAC)が端末装置1105のMACアドレスであるというマッチ条件が設定されている。そして、このマッチ条件に適合するパケットについて、SMACをMAC-A(中継装置1103のポートP2のMACアドレス)に変更、DMACをMAC-B(中継装置1104のポートP2のMACアドレス)に変更、VLAN ID3000を付与してから、ポートP2から転送する処理を行わせるアクション(Action)が記述されている。また、図14の例では、端末装置1105から端末1102宛ての応答パケットを処理するための制御情報も設定されている。上から4番目のエントリは、宛先MACアドレス(DMAC)がMAC-A(中継装置1103のポートP2のMACアドレス)というマッチ条件に適合するパケットについて、SMAC、DMACをそれぞれ復元し、かつ、VLAN IDを削除した上で、ポートP2から転送させる処理を行わせるアクション(Action)が記述されている。 FIG. 14 is an example of control information set in the relay apparatus 1103. The entry described as “added” on the left side of FIG. 14 is control information added to process a user packet. In the third entry from the top, a match condition is set such that the source MAC address (SMAC) is the MAC address of the terminal device 1102 and the destination MAC address (DMAC) is the MAC address of the terminal device 1105. . For packets that match this match condition, SMAC is changed to MAC-A (MAC address of port P2 of relay apparatus 1103), DMAC is changed to MAC-B (MAC address of port P2 of relay apparatus 1104), VLAN An action (Action) for performing a process of transferring from the port P2 after giving the ID 3000 is described. In the example of FIG. 14, control information for processing a response packet addressed to the terminal 1102 from the terminal device 1105 is also set. The fourth entry from the top restores SMAC and DMAC for each packet that matches the match condition where the destination MAC address (DMAC) is MAC-A (the MAC address of port P2 of the relay device 1103), and the VLAN ID. In addition, an action (Action) for performing a process of transferring from port P2 is described.
 図15は、中継装置1104に設定される制御情報の例である。図15の左側に「追加」と記載されたエントリが、ユーザパケットを処理するために追加された制御情報である。上から3番目のエントリは、端末装置1105から端末1102宛ての応答パケットを処理するための制御情報である。具体的には、送信元MACアドレス(SMAC)が端末装置1105のMACアドレスであり、かつ、宛先MACアドレス(DMAC)が端末装置1102のMACアドレスであるというマッチ条件が設定されている。そして、このマッチ条件に適合するパケットについて、SMACをMAC-B(中継装置1104のポートP2のMACアドレス)に変更、DMACをMAC-A(中継装置1103のポートP2のMACアドレス)に変更、VLAN ID3000を付与してから、ポートP2から転送する処理を行わせるアクション(Action)が記述されている。また、上から4番目のエントリは、端末装置1102から端末1105宛てのパケットを処理するための制御情報であり、宛先MACアドレス(DMAC)がMAC-B(中継装置1104のポートP2のMACアドレス)というマッチ条件に適合するパケットについて、SMAC、DMACをそれぞれ復元し、かつ、VLAN IDを削除した上で、ポートP2から転送させる処理を行わせるアクション(Action)が記述されている。 FIG. 15 is an example of control information set in the relay device 1104. The entry described as “added” on the left side of FIG. 15 is control information added to process the user packet. The third entry from the top is control information for processing a response packet addressed to the terminal 1102 from the terminal device 1105. Specifically, a match condition is set such that the source MAC address (SMAC) is the MAC address of the terminal device 1105 and the destination MAC address (DMAC) is the MAC address of the terminal device 1102. For packets that match this match condition, SMAC is changed to MAC-B (MAC address of port P2 of relay apparatus 1104), DMAC is changed to MAC-A (MAC address of port P2 of relay apparatus 1103), VLAN An action (Action) for performing a process of transferring from the port P2 after giving the ID 3000 is described. The fourth entry from the top is control information for processing a packet addressed to the terminal 1105 from the terminal device 1102, and the destination MAC address (DMAC) is MAC-B (the MAC address of the port P2 of the relay device 1104). An action (Action) for restoring the SMAC and the DMAC and deleting the VLAN ID and transferring the packet from the port P2 is described.
 以上の結果、図16に示すように、レガシーネットワーク1200を経由する双方向のパケット転送が実現される。そして、例えば、端末装置1102から送信された端末1105宛てのパケットは、入口側の中継装置1103にて、レガシーネットワークで正しく転送が行われるようなMAC書き換えが行われ、出口側の中継装置1104にて、復元される。そして、図13、図14に示したように、個々の中継装置に設定する制御情報のエントリ数は2つであり、制御装置100への問い合わせ(制御情報の設定要求)も初回のパケット受信時となっているため、制御装置100や中継装置1103、1104の負荷の増大や、リソース使用量の増大を伴うこともない。 As a result, bidirectional packet transfer via the legacy network 1200 is realized as shown in FIG. Then, for example, the packet addressed to the terminal 1105 transmitted from the terminal device 1102 is subjected to MAC rewriting so that the packet is correctly transferred in the legacy network in the ingress relay device 1103, and is transmitted to the egress relay device 1104. And restored. As shown in FIGS. 13 and 14, the number of control information entries to be set in each relay apparatus is two, and an inquiry to the control apparatus 100 (control information setting request) is also received at the first packet reception. Therefore, the load on the control device 100 and the relay devices 1103 and 1104 is not increased, and the resource usage is not increased.
 続いて、本発明の第2~第5の実施形態について説明する。本発明の第2~第5の実施形態は、第1の実施形態と制御装置100によって制御される中継装置が配置されたネットワークと、そうではないネットワーク(レガシーネットワーク)の配置関係が相違するものであり、制御装置100の構成に特段の変更はない。以下、その相違点を中心に説明する。 Subsequently, second to fifth embodiments of the present invention will be described. The second to fifth embodiments of the present invention are different from each other in the arrangement relationship between the network in which the relay apparatus controlled by the control apparatus 100 and the first embodiment and the network (legacy network) that is not the first embodiment are arranged. Therefore, there is no particular change in the configuration of the control device 100. Hereinafter, the difference will be mainly described.
[第2の実施形態]
 図17は、本発明の第2の実施形態の通信システムの構成を示す図である。図1に示した第1の実施形態との相違点は、レガシーネットワーク1200の両端に、制御装置100によって制御される中継装置が配置されたネットワーク1310、1320が配置され、端末装置1001~1004がこれらを経由して通信する点である。
[Second Embodiment]
FIG. 17 is a diagram showing a configuration of a communication system according to the second exemplary embodiment of the present invention. A difference from the first embodiment shown in FIG. 1 is that networks 1310 and 1320 in which relay devices controlled by the control device 100 are arranged are arranged at both ends of the legacy network 1200, and the terminal devices 1001 to 1004 are arranged. It is a point to communicate via these.
 図18は、第1の実施形態と同様にトポロジ確認用のパケットを送信することにより把握されるネットワークトポロジを示す図である。図18に表されたとおり、第1の実施形態の中継装置1103が、中継装置1010、1011の2台となり、第1の実施形態の中継装置1104が、中継装置1018、1019の2台となり、それぞれに端末装置1001~1004が接続されているだけで、基本的な構成に相違は無い。 FIG. 18 is a diagram showing a network topology grasped by transmitting a topology confirmation packet as in the first embodiment. As illustrated in FIG. 18, the relay device 1103 of the first embodiment is two relay devices 1010 and 1011, the relay device 1104 of the first embodiment is two relay devices 1018 and 1019, Only the terminal devices 1001 to 1004 are connected to each other, and there is no difference in the basic configuration.
 図19は、第1の実施形態と同様に、特定リンク確認パケットを送信することにより把握されるネットワークトポロジを示す図である。特定リンク確認パケットの送信により、中継装置1071~1076は、それぞれのポートと、中継装置1010、1011、1018、1019のレガシー接続ポートのMACアドレスとの対応関係を学習する。また、制御装置100は、中継装置1010、1011、1018、1019間のリンクの状態を把握する。これにより、第1の実施形態と同様に、レガシーネットワークの入口側の中継装置には、必要なヘッダの書き換えを行ってからレガシーネットワークに転送する制御情報が設定され、レガシーネットワークからの出口側の中継装置には、ヘッダの復元を行ってから転送する制御情報が設定される。この結果、端末装置1001~1004間のパケットは、それぞれレガシーネットワークとの接続ポートを有する中継装置にてヘッダ書換え(復元)が行われ、レガシーネットワークを越えた後は、制御装置100の指示に従い、宛先の通信端末に転送される。 FIG. 19 is a diagram showing a network topology that is grasped by transmitting a specific link confirmation packet, as in the first embodiment. By transmitting the specific link confirmation packet, the relay apparatuses 1071 to 1076 learn the correspondence between the respective ports and the MAC addresses of the legacy connection ports of the relay apparatuses 1010, 1011, 1018, and 1019. Further, the control device 100 grasps the state of the link between the relay devices 1010, 1011, 1018, and 1019. As a result, as in the first embodiment, the relay device on the entrance side of the legacy network is set with the control information to be transferred to the legacy network after rewriting the necessary headers. Control information to be transferred after restoring the header is set in the relay device. As a result, the packets between the terminal devices 1001 to 1004 are rewritten (restored) in the headers by the relay devices each having a connection port with the legacy network, and after exceeding the legacy network, according to the instruction of the control device 100, Transferred to the destination communication terminal.
 以上のように、本発明は、図1に示した端末装置と中継装置とが1対1で配置されている構成に限らず、制御装置100の配下の中継装置が複数あり、それぞれに端末装置が接続されているようなネットワーク構成にも適用できる。 As described above, the present invention is not limited to the configuration in which the terminal device and the relay device illustrated in FIG. 1 are arranged one-on-one, and there are a plurality of relay devices under control of the control device 100, each of which is a terminal device. It can also be applied to a network configuration in which are connected.
[第3の実施形態]
 図20は、本発明の第3の実施形態の通信システムの構成を示す図である。図17に示した第2の実施形態との相違点は、レガシーネットワークが複数あり、レガシーネットワーク1200、1210として複数存在する点である。この構成は、第1の実施形態の構成を並列接続した構成と見ることもできる。この構成では、制御装置100が、レガシーネットワーク1200、1210のどちらを用いてユーザパケットを転送するかを選択することができる、という利点がある。例えば、端末装置1001-1003間のパケットは、レガシーネットワーク1200を経由して転送し、端末装置1002-1004間のパケットは、レガシーネットワーク1210を経由して転送するといった分散が可能となる。また例えば、端末装置1001-1003間のパケットと端末装置1002-1004間のパケットとの双方を、レガシーネットワーク1200を経由して転送し、レガシーネットワーク1210を休止させるといった運用も可能となる。
[Third Embodiment]
FIG. 20 is a diagram showing a configuration of a communication system according to the third exemplary embodiment of the present invention. The difference from the second embodiment shown in FIG. 17 is that there are a plurality of legacy networks and a plurality of legacy networks 1200 and 1210 exist. This configuration can also be viewed as a configuration in which the configuration of the first embodiment is connected in parallel. This configuration has an advantage that the control device 100 can select which of the legacy networks 1200 and 1210 is used to transfer the user packet. For example, the packet between the terminal apparatuses 1001 to 1003 can be transferred via the legacy network 1200, and the packet between the terminal apparatuses 1002 to 1004 can be transferred via the legacy network 1210. Further, for example, it is possible to operate such that both the packet between the terminal devices 1001 to 1003 and the packet between the terminal devices 1002 to 1004 are transferred via the legacy network 1200 and the legacy network 1210 is suspended.
[第4の実施形態]
 図21は、本発明の第4の実施形態の通信システムの構成を示す図である。図20に示した第3の実施形態との相違点は、レガシーネットワーク1210がなく、ネットワーク1310とネットワーク1320とが直接接続されている点である。この構成では、この構成では、制御装置100が、レガシーネットワーク1200を用いてユーザパケットを転送するか否かを選択することができる、という利点がある。
[Fourth Embodiment]
FIG. 21 is a diagram showing a configuration of a communication system according to the fourth exemplary embodiment of the present invention. The difference from the third embodiment shown in FIG. 20 is that there is no legacy network 1210 and the network 1310 and the network 1320 are directly connected. In this configuration, this configuration has an advantage that the control device 100 can select whether or not to transfer the user packet using the legacy network 1200.
[第5の実施形態]
 図22は、本発明の第5の実施形態の通信システムの構成を示す図である。図20に示した第3の実施形態との相違点は、ネットワーク1310のさらに外側にレガシーネットワーク1210があり、さらにその外側に制御装置が制御可能な中継装置が配置されているネットワーク1330が配置されている点である。
[Fifth Embodiment]
FIG. 22 is a diagram showing a configuration of a communication system according to the fifth exemplary embodiment of the present invention. The difference from the third embodiment shown in FIG. 20 is that the legacy network 1210 is located on the outside of the network 1310 and the network 1330 in which the relay device that can be controlled by the control device is located on the outside. It is a point.
 本実施形態においても、特定リンク確認パケットの送信により、レガシーネットワーク1200、1210上の中継装置におけるアドレス学習が行われ、また、制御装置100によるネットワーク1310-1320に属する中継装置間のリンク及びネットワーク1320-1330に属する中継装置間のリンクの状態の把握が行われる。このため、第1の実施形態と同様に、制御装置100から、必要なヘッダ書換えとパケット転送を指示する制御情報を設定することで、2つのレガシーネットワーク1200、1210を経由してパケットを転送することができる。 Also in the present embodiment, address learning is performed in the relay apparatuses on the legacy networks 1200 and 1210 by transmission of the specific link confirmation packet, and the link between the relay apparatuses belonging to the networks 1310-1320 by the control apparatus 100 and the network 1320 is also performed. The status of the link between relay devices belonging to -1330 is ascertained. For this reason, as in the first embodiment, by setting control information instructing necessary header rewriting and packet transfer from the control device 100, packets are transferred via the two legacy networks 1200 and 1210. be able to.
 以上、本発明の実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、上記した実施形態で用いた中継装置や端末装置の数や、ネットワークの構成はあくまで一例であり、種々の変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and further modifications, substitutions, and adjustments may be made without departing from the basic technical idea of the present invention. Can be added. For example, the number of relay devices and terminal devices used in the above embodiment and the network configuration are merely examples, and various modifications can be made.
 また、上記した実施形態では、レガシーネットワークの中継装置が、L2スイッチであるものとして説明したが、FIB(Forwareding Information DataqBase)等に基づきパケットを転送するL3スイッチ等のその他の分散制御型のネットワークで用いられる機器であってもよい。 In the above-described embodiment, the relay device of the legacy network has been described as an L2 switch. However, in other distributed control type networks such as an L3 switch that transfers packets based on FIB (Forwarding Information DataBase) or the like. It may be a device used.
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による制御装置参照)
[第2の形態]
 第1の形態の制御装置において、
 前記特定リンク管理部は、前記制御対象外のネットワークを介して接続する中継装置のポートに付与されたアドレス情報を保持しており、
 前記特定リンク確認パケットとして、送信元及び宛先に、前記中継装置のポートに付与されたアドレスを設定したパケットを送信することにより、前記制御対象外のネットワークに配置された中継装置に、アドレスとポートとの対応関係の学習を行わせる制御装置。
[第3の形態]
 第2の形態の制御装置において、
 前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
 前記制御対象外のネットワークの手前にある中継装置に、前記制御対象外のネットワークを越えた位置にある中継装置のポートに付与されたアドレスを宛先とするヘッダ書換えを行わせ、
 前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダを復元する処理を行わせることにより、
 前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御装置。
[第4の形態]
 第3の形態の制御装置において、
 前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
 前記制御対象外のネットワークの手前にある中継装置に、前記制御対象外のネットワークに接続されたポートに付与されたアドレスを送信元とするヘッダ書換えを行わせ、
 前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダ中の送信元を復元する処理を行わせる制御装置。
[第5の形態]
 第4の形態の制御装置において、
 前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
 前記制御対象外のネットワークの手前にある中継装置に、所定のVLAN情報を付加するヘッダ書換えを行わせ、
 前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダ中のVLAN情報を復元する処理を行わせる制御装置。
[第6の形態]
 第1~第5いずれか一の形態の制御装置において、
 前記特定リンク確認パケットの送信結果から、前記制御対象外のネットワークを介して接続する中継装置間のリンクが切断状態にあると判定した場合、前記トポロジ管理部にて管理されているトポロジ情報を更新する制御装置。
[第7の形態]
 第2~第6いずれか一の形態の制御装置において、
 前記特定リンク管理部は、前記制御対象外のネットワークを介して接続する中継装置のポートと、該ポートに付与されたアドレスと、リンクの状態とを対応付けたエントリを格納するテーブルを用いて、前記制御対象外のネットワークを介して接続する中継装置間のリンクの状態と、アドレスとを管理する制御装置。
[第8の形態]
 (上記第2の視点による通信システム参照)
[第9の形態]
 (上記第3の視点による通信方法参照)
[第10の形態]
 (上記第4の視点によるプログラム参照)
 なお、上記第8~第10の形態は、第1の形態と同様に、第2~第7の形態に展開することが可能である。
Finally, a preferred form of the invention is summarized.
[First embodiment]
(Refer to the control device according to the first viewpoint)
[Second form]
In the control device of the first form,
The specific link management unit holds address information given to a port of a relay device connected via the network not controlled,
By transmitting a packet in which the address assigned to the port of the relay device is set to the transmission source and the destination as the specific link confirmation packet, the address and port are transmitted to the relay device arranged in the non-control target network. A control device that learns the correspondence relationship between
[Third embodiment]
In the control device of the second form,
For data packets that pass on a transfer path that passes through the network that is not controlled,
Causing the relay device in front of the non-control target network to perform header rewriting with the address given to the port of the relay device located beyond the non-control target network as the destination,
By causing the relay device in a position beyond the network not to be controlled to perform the process of restoring the rewritten header,
A control device that causes a relay device on a transfer path that passes through the non-control target network to perform packet transfer according to the transfer path.
[Fourth form]
In the control device of the third aspect,
For data packets that pass on a transfer path that passes through the network that is not controlled,
Have the relay device in front of the non-control target network perform header rewriting with the address given to the port connected to the non-control target network as the transmission source,
A control device that causes a relay device located beyond a non-control target network to perform a process of restoring a transmission source in the rewritten header.
[Fifth embodiment]
In the control device of the fourth form,
For data packets that pass on a transfer path that passes through the network that is not controlled,
Causing the relay device in front of the non-controllable network to perform header rewriting to add predetermined VLAN information;
A control device that causes a relay device located beyond a network that is not controlled to perform processing for restoring VLAN information in the rewritten header.
[Sixth embodiment]
In the control device according to any one of the first to fifth aspects,
When it is determined from the transmission result of the specific link confirmation packet that the link between the relay devices connected via the network not to be controlled is in a disconnected state, the topology information managed by the topology management unit is updated. Control device.
[Seventh form]
In the control device according to any one of the second to sixth aspects,
The specific link management unit uses a table that stores an entry that associates a port of a relay device connected via the network not controlled, an address assigned to the port, and a link state, A control device that manages a link state and an address between relay devices connected via a network other than the control target.
[Eighth form]
(Refer to the communication system according to the second viewpoint)
[Ninth Embodiment]
(Refer to the communication method according to the third viewpoint)
[Tenth embodiment]
(Refer to the program from the fourth viewpoint above.)
Note that the eighth to tenth embodiments can be developed into the second to seventh embodiments as in the first embodiment.
 なお、上記の特許文献および非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。 It should be noted that the disclosures of the above patent documents and non-patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Further, various combinations or selections of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the scope of the claims of the present invention. Is possible. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea. In particular, with respect to the numerical ranges described in this document, any numerical value or small range included in the range should be construed as being specifically described even if there is no specific description.
 100 制御装置
 101 中継装置通信部
 102 トポロジ管理部
 103 トポロジテーブル
 104 保守端末通信部
 105 レガシー管理部
 106 レガシー管理テーブル
 107 レガシーリンク管理部
 108 レガシーリンク管理テーブル
 109 経路管理部
 1101 保守端末
 1001~1004、1102、1105 端末装置
 1010、1011、1018、1019、1103、1104 中継装置
 1071~1076、1106、1107 中継装置(L2)
 1200、1210 レガシーネットワーク
 1300~1330 ネットワーク
 P1~P4 ポート番号 
DESCRIPTION OF SYMBOLS 100 Control apparatus 101 Relay apparatus communication part 102 Topology management part 103 Topology table 104 Maintenance terminal communication part 105 Legacy management part 106 Legacy management table 107 Legacy link management part 108 Legacy link management table 109 Path management part 1101 Maintenance terminals 1001 to 1004, 1102 1105 Terminal device 1010, 1011, 1018, 1019, 1103, 1104 Relay device 1071-1076, 1106, 1107 Relay device (L2)
1200, 1210 Legacy network 1300-1330 Network P1-P4 Port number

Claims (10)

  1.  制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、
     前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、
     前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、
     前記中継装置に前記制御情報を設定する中継装置通信部と、を備え、
     前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させ、前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせること、
     を特徴とする制御装置。
    Among the relay devices to be controlled, a specific link management unit that grasps the state of the link between relay devices connected via a network that is not controlled,
    A topology management unit that manages topology information including a link between relay devices connected via the non-control target network based on information collected from the control target relay device;
    Route management that calculates a packet transfer path between machines connected to the relay device based on the topology information and generates control information for causing the relay device on the transfer route to perform packet transfer according to the transfer route And
    A relay device communication unit that sets the control information in the relay device,
    Among relay devices on a transfer path that passes through the non-control target network, one of relay devices connected to the non-control target network is addressed to the other relay device, and a predetermined specific link confirmation packet is transmitted. Causing a relay device on a transfer path through the network outside the control target to perform packet transfer according to the transfer path;
    A control device characterized by.
  2.  前記特定リンク管理部は、前記制御対象外のネットワークを介して接続する中継装置のポートに付与されたアドレス情報を保持しており、
     前記特定リンク確認パケットとして、送信元及び宛先に、前記中継装置のポートに付与されたアドレスを設定したパケットを送信することにより、前記制御対象外のネットワークに配置された中継装置に、アドレスとポートとの対応関係の学習を行わせる請求項1の制御装置。
    The specific link management unit holds address information given to a port of a relay device connected via the network not controlled,
    By transmitting a packet in which the address assigned to the port of the relay device is set to the transmission source and the destination as the specific link confirmation packet, the address and port are transmitted to the relay device arranged in the non-control target network. The control apparatus according to claim 1, wherein learning of the correspondence relationship between the two and the like is performed.
  3.  前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
     前記制御対象外のネットワークの手前にある中継装置に、前記制御対象外のネットワークを越えた位置にある中継装置のポートに付与されたアドレスを宛先とするヘッダ書換えを行わせ、
     前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダを復元する処理を行わせることにより、
     前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる請求項2の制御装置。
    For data packets that pass on a transfer path that passes through the network that is not controlled,
    Causing the relay device in front of the non-control target network to perform header rewriting with the address given to the port of the relay device located beyond the non-control target network as the destination,
    By causing the relay device in a position beyond the network not to be controlled to perform the process of restoring the rewritten header,
    The control apparatus according to claim 2, wherein a relay apparatus on a transfer path that passes through the non-control target network performs packet transfer according to the transfer path.
  4.  前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
     前記制御対象外のネットワークの手前にある中継装置に、前記制御対象外のネットワークに接続されたポートに付与されたアドレスを送信元とするヘッダ書換えを行わせ、
     前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダ中の送信元を復元する処理を行わせる請求項3の制御装置。
    For data packets that pass on a transfer path that passes through the network that is not controlled,
    Have the relay device in front of the non-control target network perform header rewriting with the address given to the port connected to the non-control target network as the transmission source,
    The control apparatus according to claim 3, wherein a relay apparatus located at a position beyond the non-control target network performs a process of restoring the transmission source in the rewritten header.
  5.  前記制御対象外のネットワークを経由する転送経路上を経由するデータパケットについて、
     前記制御対象外のネットワークの手前にある中継装置に、所定のVLAN情報を付加するヘッダ書換えを行わせ、
     前記制御対象外のネットワークを越えた位置にある中継装置に、前記書き換えたヘッダ中のVLAN情報を復元する処理を行わせる請求項4の制御装置。
    For data packets that pass on a transfer path that passes through the network that is not controlled,
    Causing the relay device in front of the non-controllable network to perform header rewriting to add predetermined VLAN information;
    5. The control device according to claim 4, wherein the relay device located at a position beyond the network not to be controlled performs a process of restoring the VLAN information in the rewritten header.
  6.  前記特定リンク確認パケットの送信結果から、前記制御対象外のネットワークを介して接続する中継装置間のリンクが切断状態にあると判定した場合、前記トポロジ管理部にて管理されているトポロジ情報を更新する請求項1から5いずれか一の制御装置。 When it is determined from the transmission result of the specific link confirmation packet that the link between the relay devices connected via the network not to be controlled is in a disconnected state, the topology information managed by the topology management unit is updated. The control device according to any one of claims 1 to 5.
  7.  前記特定リンク管理部は、前記制御対象外のネットワークを介して接続する中継装置のポートと、該ポートに付与されたアドレスと、リンクの状態とを対応付けたエントリを格納するテーブルを用いて、前記制御対象外のネットワークを介して接続する中継装置間のリンクの状態と、アドレスとを管理する請求項2から6いずれか一の制御装置。 The specific link management unit uses a table that stores an entry that associates a port of a relay device connected via the network not controlled, an address assigned to the port, and a link state, The control device according to any one of claims 2 to 6, which manages a link state and an address between relay devices connected via the non-control target network.
  8.  制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、
     前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、
     前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、
     前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置と、
     前記制御対象外のネットワークを挟んで配置され、前記制御装置から設定された制御情報に従って動作する複数の中継装置と、を含み、
     前記制御装置が、
     前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させ、
     前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせること、
     を特徴とする通信システム。
    Among the relay devices to be controlled, a specific link management unit that grasps the state of the link between relay devices connected via a network that is not controlled,
    A topology management unit that manages topology information including a link between relay devices connected via the non-control target network based on information collected from the control target relay device;
    Route management that calculates a packet transfer path between machines connected to the relay device based on the topology information and generates control information for causing the relay device on the transfer route to perform packet transfer according to the transfer route And
    A control device comprising: a relay device communication unit that sets the control information in the relay device;
    A plurality of relay devices that are arranged across the non-control target network and operate according to control information set by the control device,
    The control device is
    Among relay devices on a transfer path that passes through the non-control target network, one of relay devices connected to the non-control target network is addressed to the other relay device, and a predetermined specific link confirmation packet is transmitted.
    Causing a relay device on a transfer path through the network outside the control target to perform packet transfer according to the transfer path;
    A communication system characterized by the above.
  9.  制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、
     前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、
     前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、
     前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置が、
     前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させるステップと、
     前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせるステップと、を含む通信方法。
    Among the relay devices to be controlled, a specific link management unit that grasps the state of the link between relay devices connected via a network that is not controlled,
    A topology management unit that manages topology information including a link between relay devices connected via the non-control target network based on information collected from the control target relay device;
    Route management that calculates a packet transfer path between machines connected to the relay device based on the topology information and generates control information for causing the relay device on the transfer route to perform packet transfer according to the transfer route And
    A control device comprising a relay device communication unit that sets the control information in the relay device,
    A step of transmitting a predetermined specific link confirmation packet from one of the relay devices connected to the non-control target network to the other relay device among the relay devices on a transfer path passing through the non-control target network When,
    Causing a relay device on a transfer path that passes through the non-controllable network to perform packet transfer according to the transfer path.
  10.  制御対象の中継装置のうち、制御対象外のネットワークを介して接続する中継装置間のリンクの状態を把握する特定リンク管理部と、
     前記制御対象の中継装置から収集した情報に基づいて前記制御対象外のネットワークを介して接続する中継装置間のリンクを含むトポロジ情報を管理するトポロジ管理部と、
     前記トポロジ情報に基づいて、前記中継装置に接続するマシン間のパケット転送経路を計算し、該転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる制御情報を生成する経路管理部と、
     前記中継装置に前記制御情報を設定する中継装置通信部と、を備える制御装置を構成するコンピュータに、
     前記制御対象外のネットワークを経由する転送経路上の中継装置のうち、前記制御対象外のネットワークと接続する中継装置の一方から他方の中継装置に宛てて、所定の特定リンク確認パケットを送信させる処理と、
     前記制御対象外のネットワークを経由する転送経路上の中継装置に、前記転送経路に従ったパケット転送を行わせる処理と、を実行させるプログラム。
    Among the relay devices to be controlled, a specific link management unit that grasps the state of the link between relay devices connected via a network that is not controlled,
    A topology management unit that manages topology information including a link between relay devices connected via the non-control target network based on information collected from the control target relay device;
    Route management that calculates a packet transfer path between machines connected to the relay device based on the topology information and generates control information for causing the relay device on the transfer route to perform packet transfer according to the transfer route And
    A computer comprising a control device comprising a relay device communication unit for setting the control information in the relay device;
    Processing for transmitting a predetermined specific link confirmation packet from one of relay devices connected to the non-control target network to the other relay device among relay devices on a transfer path passing through the non-control target network When,
    A program for causing a relay apparatus on a transfer path passing through the network not to be controlled to perform packet transfer according to the transfer path.
PCT/JP2013/082457 2012-12-04 2013-12-03 Control apparatus, communication system, communication method and program WO2014087993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265328 2012-12-04
JP2012-265328 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087993A1 true WO2014087993A1 (en) 2014-06-12

Family

ID=50883411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082457 WO2014087993A1 (en) 2012-12-04 2013-12-03 Control apparatus, communication system, communication method and program

Country Status (1)

Country Link
WO (1) WO2014087993A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072660A (en) * 2003-08-25 2005-03-17 Furukawa Electric Co Ltd:The Understanding confirmation method, data relaying apparatus, and data relaying system
WO2012023604A1 (en) * 2010-08-20 2012-02-23 日本電気株式会社 Communication system, control apparatus, communication method and program
WO2012023292A1 (en) * 2010-08-20 2012-02-23 Nec Corporation Communication system, controller, node controlling method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072660A (en) * 2003-08-25 2005-03-17 Furukawa Electric Co Ltd:The Understanding confirmation method, data relaying apparatus, and data relaying system
WO2012023604A1 (en) * 2010-08-20 2012-02-23 日本電気株式会社 Communication system, control apparatus, communication method and program
WO2012023292A1 (en) * 2010-08-20 2012-02-23 Nec Corporation Communication system, controller, node controlling method and program

Similar Documents

Publication Publication Date Title
JP6418261B2 (en) COMMUNICATION SYSTEM, NODE, CONTROL DEVICE, COMMUNICATION METHOD, AND PROGRAM
JP5850471B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, NODE CONTROL METHOD, AND PROGRAM
JP5987920B2 (en) Communication system, control apparatus, and network topology management method
US20130282867A1 (en) Information system, control apparatus, method of providing virtual network, and program
JP5987841B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, TRANSFER NODE, COMMUNICATION SYSTEM CONTROL METHOD AND PROGRAM
JP5818268B2 (en) COMMUNICATION SYSTEM, CONTROL DEVICE, ROUTE CONTROL METHOD, AND PROGRAM
JP5987971B2 (en) Communication system, switch, control device, control channel construction method and program
JP5999251B2 (en) COMMUNICATION SYSTEM, SWITCH, CONTROL DEVICE, PACKET PROCESSING METHOD, AND PROGRAM
JP2013535895A (en) Communication system, node, statistical information collecting apparatus, statistical information collecting method and program
JP5854049B2 (en) COMMUNICATION SYSTEM, CONTROL INFORMATION RELAY DEVICE, CONTROL DEVICE, CONTROL INFORMATION TRANSMISSION METHOD, AND PROGRAM
US10523629B2 (en) Control apparatus, communication system, communication method, and program
WO2011118586A1 (en) Communication system, control device, forwarding node, method for updating processing rules, and program
EP2916497A1 (en) Communication system, path information exchange device, communication node, transfer method for path information and program
US9614758B2 (en) Communication system, integrated controller, packet forwarding method and program
WO2014104277A1 (en) Control apparatus, communication system, communication node control method and program
JP5991427B2 (en) Control device, communication system, control information transmission method and program
JP6206493B2 (en) CONTROL DEVICE, COMMUNICATION SYSTEM, RELAY DEVICE CONTROL METHOD, AND PROGRAM
WO2014087993A1 (en) Control apparatus, communication system, communication method and program
JPWO2015045275A1 (en) Control device, network system, packet transfer control method, control device program
WO2015046539A1 (en) Relay apparatus, control apparatus, communication system, monitor packet processing method, and topology management method
WO2014142081A1 (en) Transfer node, control device, communication system, packet processing method and program
JP2016225933A (en) Control device, control method for relay device, program, and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP