WO2014087978A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2014087978A1
WO2014087978A1 PCT/JP2013/082401 JP2013082401W WO2014087978A1 WO 2014087978 A1 WO2014087978 A1 WO 2014087978A1 JP 2013082401 W JP2013082401 W JP 2013082401W WO 2014087978 A1 WO2014087978 A1 WO 2014087978A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
amount
power
pump
hydraulic pump
Prior art date
Application number
PCT/JP2013/082401
Other languages
French (fr)
Japanese (ja)
Inventor
星野 雅俊
園田 光夫
坂本 博史
新士 石原
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2014551094A priority Critical patent/JP6126625B2/en
Publication of WO2014087978A1 publication Critical patent/WO2014087978A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle

Definitions

  • the present invention relates to a working machine provided with a hydraulic pump, an engine for driving the hydraulic pump, and a motor for assisting the engine.
  • a hydraulic pump for supplying pressure oil to a hydraulic actuator, an engine for driving the hydraulic pump, and an electric motor (or motor generator for assisting the engine
  • an electric motor or motor generator for assisting the engine
  • the load on the hydraulic pump may be reduced to suppress an increase in the load on the engine.
  • the capacity of the hydraulic pump is reduced as described above, the flow rate of the hydraulic oil supplied to the hydraulic actuator (for example, a boom cylinder or the like) is reduced, which may lower the operability of the boom or the like.
  • Japanese Patent Application Laid-Open No. 2009-174447 discloses that, in the hybrid work machine (hydraulic shovel) as described above, when it is predicted that the variable displacement hydraulic pump is overloaded, the motor is driven by the electric motor. It is disclosed to aim at suppression of operativity fall, without changing the capacity of the hydraulic pump concerned by assisting.
  • the engine assist when the pump load is predicted to be overloaded, the engine assist is performed by the electric motor. Therefore, depending on the status of the working machine, the engine assist may lower operability and power consumption May be promoted.
  • An object of the present invention is to provide a working machine capable of suppressing the decrease in operability and the increase in power consumption as much as possible depending on the situation.
  • the present invention achieves the above object by providing an engine, a motor generator that transmits torque between the engine, and a variable displacement hydraulic pump driven by at least one of the engine and the motor generator. And controlling an amount of assist torque to the engine by the motor generator based on a hydraulic actuator driven by pressure oil discharged from the hydraulic pump, and a target rotation speed and an actual rotation speed of the engine.
  • the absorption torque limit amount is set larger than the assist torque amount
  • the acceleration of the engine based on the target rotational speed and the value of the actual rotational speed of the engine shall be the absorption torque restriction rate than the larger is the assist torque amount.
  • the present invention it is possible to quickly reach the target rotational speed without losing operability when the engine accelerates, and to quickly return to the target rotational speed while suppressing excessive power consumption when the engine lag is down.
  • FIG. 7 is a view schematically showing the magnitude relationship between the magnitude of the assist torque amount Tm and the magnitude of the absorption torque limit amount Tp1 in the present embodiment.
  • FIG. 1 is an external view of a hybrid hydraulic shovel according to an embodiment of the present invention.
  • the hydraulic shovel shown in this figure includes an articulated work apparatus 100A having a boom 100a, an arm 100b and a bucket 100c, and a vehicle body 100B having an upper swing body 100d and a lower traveling body 100e.
  • the boom 100 a is rotatably supported by the upper swing body 100 d and driven by a hydraulic cylinder (boom cylinder) 91.
  • the arm 100 b is rotatably supported by the boom 100 a and driven by a hydraulic cylinder (arm cylinder) 92.
  • the bucket 100 c is rotatably supported by the arm 100 b and driven by a hydraulic cylinder (bucket cylinder) 93.
  • the upper swing structure 100d is driven to rotate by a motor (swing motor) 19 (see FIG. 2), and the lower traveling vehicle 100e is driven by left and right traveling motors (hydraulic motors) 95 and 96.
  • the hydraulic cylinder 91, the hydraulic cylinder 92, the hydraulic cylinder 93, and the traveling motors 95, 96 are driven by pressure oil pumped up from a tank (not shown) by the hydraulic pump 3 (see FIG. 2).
  • FIG. 2 is a schematic configuration diagram of an actuator drive control system in the hybrid hydraulic shovel shown in FIG.
  • the same reference numerals are given to the same parts as the parts shown in the previous figures, and the description may be omitted as appropriate (the same applies to the latter figures).
  • the actuator drive control system shown in this figure is a variable displacement hydraulic pump driven by at least one of an engine 1 and a motor generator 2 that transmits torque between the engine 1 and the engine 1. 3 (hereinafter sometimes referred to simply as “hydraulic pump 3”) and a hydraulic actuator 5 driven by pressure oil discharged from the hydraulic pump 3 (eg, hydraulic cylinders 91, 92, 93 shown in FIG.
  • An inverter for controlling transfer of electric power between the motor generator 2 and the storage device 10 as well as controlling the storage device (storage means) 10 to be stored and the motor generator 2 (Power conversion device) 9A and inverter (power conversion device) 9B for controlling transfer of power between the swing motor 19 and the storage device 10 together with control of the swing motor 19, hydraulic actuator 5 and swing motor 19 Operation lever (operation device) 16 that outputs an operation signal for driving the motor based on the operation amount, a governor 7 that adjusts the fuel injection amount of the engine 1, and a rotation number sensor that detects the actual rotation number of the engine Control device 8 that performs actual rotation number detection means 6, rotation control of engine 1, torque control of motor generator 2 and swing motor 19, displacement control of hydraulic pump 3, charge / discharge control of power storage device 10 by output And have.
  • the control lever 16 reduces the pressure oil discharged from the pilot pump 32 according to the amount of operation, and generates operation signals of the hydraulic actuator 5 and the electric actuator (swing motor 19).
  • the operation signal of the hydraulic actuator 5 the pressure oil depressurized by the operation lever 16 according to the operation amount is used as it is, and the pressure oil is used in any of a plurality of control valves (not shown) in the valve device 4. It is output and drives the control valve.
  • the pressure oil discharged from the hydraulic pump 3 is supplied to the valve device 4, and the flow rate, direction, and pressure of the pressure oil are appropriately changed by the control valve in the valve device 4. Supplied to Thus, the driving of each hydraulic actuator 5 is controlled.
  • the operation signal of the swing motor 19 (electric actuator) of the present embodiment
  • the pressure of the pressure oil reduced by the control lever 16 is used.
  • the pressure of the pressure oil is detected by pressure sensors (pressure detectors) 18a and 18b, and the swing motor 19 is controlled by the control device 8 based on the outputs of the pressure sensors 18a and 18b.
  • the same number of oil passages as the number of directions in which the operation lever 16 can be operated exists.
  • the operation amount of the operation lever 16 is detected based on the detection value of the pressure sensor installed in the oil passage.
  • the operation amount of the operation lever 16 may be detected, and the hydraulic actuator 5 or the swing motor 19 may be appropriately controlled based on the operation amount.
  • a position sensor for example, a rotary encoder
  • an electric operation signal corresponding to the operating direction and the operating amount of the operating lever 16 is obtained.
  • a configuration for direct output to the control device 8 may be employed.
  • the engine 1 is controlled by controlling the fuel injection amount by the governor 7.
  • a pressure sensor 22 (a pressure sensor for measuring the pressure of the pressure oil discharged from the hydraulic pump 3 as a means (pump information detection means) for detecting information necessary for calculating the load of the hydraulic pump 3 to the hydraulic pump 3
  • a detection means a flow rate sensor (flow rate detection means) for measuring the flow rate of the pressure oil, and an angle sensor (angle detection means) for measuring the tilt angle of the hydraulic pump 3 are provided.
  • the flow rate sensor and the angle sensor output the detected sensor values to the control device 8.
  • the inverter (motor control unit) 9A controls the amount of assist torque applied to the engine 1 by the motor generator 2 mainly based on the magnitude of the deviation between the target speed of the engine 1 and the actual speed. ing.
  • the pump control unit (pump control unit) 45 includes the regulator 14 and the solenoid proportional valve 15.
  • the hydraulic pressure is mainly based on the difference between the target rotation speed of the engine 1 and the actual rotation speed.
  • the absorption torque limit amount of the pump 3 is controlled.
  • the regulator 14 is provided to the hydraulic pump 3, and when the tilt angle of the swash plate or the oblique shaft of the hydraulic pump 3 is operated by the regulator 14, the displacement (displacement volume) of the hydraulic pump 3 is changed to absorb the hydraulic pump 3.
  • Torque (input torque) can be controlled (pump absorption torque control).
  • the regulator 14 in the present embodiment is controlled by the control pressure generated by the solenoid proportional valve 15.
  • the solenoid proportional valve 15 operates based on a signal (volume command) output from the controller 8.
  • the regulator 14 controls, for example, the displacement of the hydraulic pump 3 in accordance with the control characteristic diagram shown in FIG. FIG. 3 is a control characteristic diagram of pump absorption torque by the regulator 14 according to the embodiment of the present invention.
  • the broken line 31A shown in this figure shows the characteristic of the capacity of the hydraulic pump 3 set with respect to the discharge pressure of the hydraulic pump 3, and the maximum value of the total output of the engine 1 and the motor generator 2 (FIG.
  • the torque (the product of the pump displacement and the pump discharge pressure) of the hydraulic pump 3 is set to be substantially constant within a range not exceeding the hyperbola (constant torque diagram) indicated by the broken line.
  • the torque of hydraulic pump 3 can be controlled so as not to exceed the maximum output by engine 1 and motor generator 2 .
  • the pump discharge pressure is P1 or less
  • the pump absorption torque control is not performed, and the pump displacement is determined by the operation amount of the operation lever for operating each control valve of the valve device 4 (for example, any operation lever Becomes q1 when the operation amount of is the maximum).
  • the pump discharge pressure becomes P1 to P2
  • the pump absorption torque control by the regulator 14 is executed, and the pump displacement angle by the regulator 14 decreases the pump displacement along the broken line 31A with the increase of the pump discharge pressure. Is operated.
  • the pump absorption torque is controlled to be equal to or less than the torque specified by the broken line 31A.
  • P2 is the maximum value of the pump discharge pressure, which is equal to the set pressure of the relief valve connected to the circuit on the hydraulic pump 3 side in the valve device 4, and the pump discharge pressure does not rise above this value.
  • a broken line 31A in which two straight lines are combined is used as a control characteristic diagram of absorption torque of the hydraulic pump, but if it is set in a range not exceeding the constant torque diagram (hyperbola) in FIG.
  • a control characteristic chart may be used.
  • the control device 8 (capacity calculation unit 53 (FIG. 5)) outputs a control signal (electric signal) to the solenoid proportional valve 15, and the solenoid proportional valve 15 generates the control pressure according to the operation signal, thereby regulating the regulator 14. Drive.
  • the displacement of the hydraulic pump 3 is changed by the regulator 14, and the absorption torque of the hydraulic pump 3 is appropriately adjusted in a range where engine stall does not occur.
  • the current sensor 11 In the power storage device 10 configured of a secondary battery (battery) or a capacitor, the current sensor 11, a voltage as a means (power storage information detection means) for detecting information necessary to calculate the storage amount of the power storage device 10.
  • a sensor 12 and a temperature sensor 13 are attached.
  • Control device 8 calculates the state of charge (SOC) of power storage device 10 in charge remaining amount calculation unit 54 (described later) based on information such as current, voltage and temperature detected by these sensors 11, 12 and 13. The storage amount of the storage device 10 is managed.
  • SOC state of charge
  • the control device 8 has a hardware configuration, an arithmetic processing unit (for example, a CPU) as an arithmetic unit for executing various programs, and a storage device (for example, a storage unit for storing various data including the program). , Semiconductor memory such as ROM, RAM and flash memory, magnetic storage device such as hard disk drive), input / output operation processing to perform input / output control such as data and instruction to the operation processing device and the storage device etc The device is provided (none shown).
  • FIGS. 4 and 5 are diagrams showing a part of the schematic configuration of the control device 8 according to the embodiment of the present invention, and even if the above hardware configuration is adopted for each part shown in FIGS.
  • the above hardware configuration may be adopted as a combination of a plurality of parts.
  • the control device 8 As a circuit mainly for controlling the engine 1, the control device 8 is, as shown in FIG. 4, a pump required power calculation unit 41, an adder 42, a target rotation speed calculation unit 43, and an engine control unit (ECU) 44 is provided.
  • ECU engine control unit
  • the pump required power calculation unit 41 executes a process of estimating the required power of the hydraulic pump 3 based on the product of the discharge pressure of the hydraulic pump 3 and the flow rate.
  • the discharge pressure of the hydraulic pump 3 is determined using the detection value of the pressure sensor 22, and the lever operation amount of the control lever 16 is determined from the detection values of the pressure sensors 18a and 18b.
  • the flow rate of the hydraulic pump 3 is estimated from the amount.
  • the adder 42 adds the pump request power input from the pump request power calculation unit 41 and the power generation request power requested by the motor generator 2 and executes the processing to output to the target rotation speed calculation unit 43. is there.
  • the power generation requirement motive power is motive power to be borne by the engine 1 and is set so that the amount of power generation increases according to the decrease in the remaining amount of charge when the amount of remaining charge (amount of charge) of the storage device 10 is small. It is done.
  • the sum of the pump required power and the power generation required power is the power required for the engine 1 (required engine power). Note that the power generation request power may be calculated based on the remaining power amount of the power storage device 10 calculated by the remaining power amount calculation unit 54 in the maximum motor power calculation unit 55 in FIG. 5 described later.
  • the target rotation speed calculation unit 43 is a part that executes a process of calculating a target rotation speed of the engine 1 based on the required engine power input from the adder 42.
  • the engine 1 be operated at a rotation speed as small as possible, which is capable of driving the pump 3 and generating electric power.
  • the target rotational speed is set to discretely increase stepwise as the required engine power increases.
  • the target rotational speed is set to be constant for the required engine power in a predetermined range, and the target rotational speed is repeatedly increased by one step when the required engine power increases beyond the range. It is set. Further, since the heights of the respective steps are set to be equal, the increase amount (e1) of the target rotational speed corresponding to the height is set to be constant. Furthermore, in order to prevent hunting when switching the target rotational speed, a hysteresis is provided in the map of the target rotational speed. That is, the value of the required engine power at which the target rotational speed changes is different when the required engine power is increased and decreased.
  • the target rotation speed output from the target rotation speed calculation unit 43 is output to the engine control unit (ECU) 44.
  • the engine control unit 44 controls the engine 1 so that the actual rotation speed approaches the target rotation speed by appropriately controlling the fuel injection amount with the governor 7.
  • As an example of rotation speed control of the engine 1 by the engine control unit 44 feedback control based on the actual rotation speed input from the rotation speed sensor 6 and the value of the target rotation speed input from the target rotation speed calculation unit 43 is there.
  • the control device 8 includes a subtractor (rotational speed deviation calculator) 51, an assist torque calculation unit 70, and storage of electricity.
  • An adder 52 and a capacity calculation unit 53 are provided.
  • Deviation e occurs (1) when the target rotational speed increases with respect to the actual rotational speed, and (2) when the actual rotational speed decreases with respect to the target rotational speed.
  • the target rotational speed is determined by the target rotational speed calculation unit 43 as shown in FIG. 4, for example, when the pump required power increases, the deviation e occurs due to the increase of the target rotational speed with respect to the actual rotational speed. (Case (1) above).
  • a state in which the target rotation speed increases with respect to the actual rotation speed and the generated deviation e is eliminated is referred to as “acceleration”, and when the target rotation speed is the maximum value, the target rotation is increased by the engine load.
  • a state where the actual rotation speed decreases with respect to the number and the generated deviation e increases is referred to as “lag down (engine lag down)”.
  • the simplification is further advanced, and it is determined that "acceleration” is performed when the magnitude of the deviation e is equal to or larger than the set value N1, and when the magnitude of the deviation e is smaller than the set value N1. Shall be judged as "lag down”.
  • the determination result affects the magnitude relationship (ratio) between the magnitude of the absorption torque limit amount Tp1 calculated by the limit torque calculation unit 60 described later and the magnitude of the assist torque amount Tm calculated by the assist torque calculation unit 70.
  • the assist torque calculation unit 70 is a part that executes a process of calculating an assist torque amount Tm to the engine 1 by the motor generator 2 based on the rotational speed deviation e output from the subtractor 51.
  • the first limit torque calculation unit 60 is a part that executes a process of calculating the absorption torque limit amount Tp1 of the hydraulic pump 3 based on the rotational speed deviation e output from the subtractor 51.
  • the ratio of the magnitude of the assist torque amount Tm to the magnitude of the absorption torque limit amount Tp1 is set larger in the magnitude of the absorption torque limit amount Tp1 when it is determined that the deviation e is generated due to the lag-down. When it is determined that the deviation e has occurred, the magnitude of the assist torque amount Tm is set larger.
  • the assist torque calculation unit 70 calculates the assist torque Tm based on the deviation e, and the assist torque Tm output from the PI control unit 71 is used as the motor generator 2 appropriately.
  • a correction unit 78 that corrects from the viewpoint of proper control.
  • the PI control unit 71 includes a proportional gain (Kp) calculation unit 72, an integral gain (Ki) calculation unit 73, a multiplier 74, a multiplier 75, an integrator 76, and an adder 77.
  • the Kp calculation unit 72 is a part that executes a process of calculating the proportional gain Kp based on the deviation e.
  • the Kp calculating unit 72 is set so that the proportional gain Kp output from the Kp calculating unit 72 monotonously increases as the deviation e increases.
  • the Ki calculation unit 73 is a part that executes a process of calculating the integral gain Ki based on the deviation e.
  • the Ki calculating unit 73 is set so that the integral gain Ki output from the Ki calculating unit 73 monotonously increases as the deviation e increases.
  • “monotonically increasing” includes (1) not only “monotonously increasing in a narrow sense” in which the integral gain Ki always increases with the increase of the deviation e but also (2) the integral gain Ki with the increase of the deviation e.
  • “Monotonic increase in a broad sense” which increases stepwise (discretely) while holding constant at a predetermined interval is also included (note that “monotonic increase in a broad sense” is integrated with the increase of the deviation e
  • the gain Ki may be referred to as “monotonous non-decreasing” because it increases without decreasing.)
  • the monotonous decrement is also included.
  • the multiplier 74 is a part that executes the process of multiplying the deviation e by the integral gain Ki
  • the multiplier 75 is a part that executes the process of multiplying the deviation e by the proportional gain Kp
  • the integrator 76 is a multiplier 74. It is a part which performs processing which accumulates a time change of an operation result of.
  • the adder 77 executes a process of adding the calculation result of the multiplier 75 and the calculation result of the integrator 76, and outputs the calculation result to the correction unit 78.
  • the correction unit 78 is a part that converts the assist torque to zero and outputs it when the value of the assist torque Tm output from the adder 77 is negative, and the adder 77 when the assist torque Tm is equal to or greater than zero.
  • the value output from is output to the minimum value selector 57 as it is.
  • the reason for converting negative values to zero is as follows. That is, when the actual rotational speed of the engine 1 overshoots, the assist torque amount Tm may be negative, but the calculation of the negative assist torque amount Tm is to drive the motor generator 2 as a generator. Means that the torque (power generation torque) was calculated. However, in the present embodiment, the power generation torque is calculated based on the remaining charge amount of the power storage device 10, and the calculation of the power generation torque based on the rotational speed deviation e is unnecessary as described later.
  • the assist torque calculation unit 70 when the assist torque Tm calculated by the PI control unit 71 is greater than or equal to zero, the gains (Kp, Ki) monotonously increase in accordance with the increase in the rotational speed deviation e. Due to the map setting of the Kp calculating unit 72 and the Ki calculating unit 73, the assist torque Tm is set so as to increase monotonously as the rotational speed deviation e increases.
  • the first limit torque calculation unit 60 calculates the absorption torque limit amount Tp1 based on the deviation e, and the absorption torque limit amount Tp1 output from the PI control unit 61 for the hydraulic pump 3 properly.
  • a correction unit 68 that corrects from the viewpoint of control.
  • the PI control unit 61 includes a proportional gain (Kp) computing unit 62, an integral gain (Ki) computing unit 63, a multiplier 64, a multiplier 65, an integrator 66, and an adder 67.
  • the Kp calculating unit 62 is a part that executes a process of calculating the proportional gain Kp based on the deviation e.
  • the Kp calculating unit 62 is set so that the proportional gain Kp output from the Kp calculating unit 62 monotonously decreases as the deviation e increases.
  • the Ki calculation unit 63 is a part that executes a process of calculating the integral gain Ki based on the deviation e.
  • the Ki calculating unit 63 is set so that the integral gain Ki output from the Ki calculating unit 63 monotonously decreases as the deviation e increases.
  • the multiplier 64 is a part that executes the process of multiplying the deviation e by the integral gain Ki
  • the multiplier 65 is a part that executes the process of multiplying the deviation e by the proportional gain Kp
  • the integrator 66 is a multiplier 64. It is a part which performs processing which accumulates a time change of an operation result of.
  • the adder 67 executes a process of adding the calculation result of the multiplier 65 and the calculation result of the integrator 66, and outputs the calculation result to the correction unit 68.
  • the correction unit 68 is a part that converts the absorption torque restriction amount Tp1 to zero and outputs the absorption torque restriction amount Tp1 when the value of the absorption torque restriction amount Tp1 output from the adder 67 is negative, and the absorption torque restriction amount Tp1 is zero or more. In this case, the value output from the adder 67 is output to the adder 52 as it is.
  • the reason for converting negative values to zero is as follows. That is, when the actual rotational speed of the engine 1 overshoots, the absorption torque limit amount Tp1 may become negative, but in this case, the restriction of the absorption torque (pump power) of the hydraulic pump 3 is unnecessary. is there.
  • the gains (Kp, Ki) are adjusted according to the increase in the rotational speed deviation e. Due to the map setting in the Kp computing unit 62 and the Ki computing unit 63 in which the ⁇ ⁇ decreases monotonically, the absorption torque limit amount Tp1 is set to decrease monotonically as the rotational speed deviation e increases.
  • FIG. 6 is a view schematically showing the magnitude relationship between the magnitude of the assist torque amount Tm and the magnitude of the absorption torque limit amount Tp1 in the present embodiment.
  • the ratio of the assist torque amount Tm to the absorption torque limit amount Tp1 changes according to the rotation speed deviation e.
  • the assist torque amount Tm monotonously increases with the increase of the rotational speed deviation e
  • the absorption torque limit amount Tp1 monotonously decreases with the increase of the rotational speed deviation e. Therefore, as shown in FIG.
  • the absorption torque limit amount Tp1 intersect at one point.
  • the ratio of the magnitude of the assist torque amount Tm to the magnitude of the absorption torque limit amount Tp1 is set such that the magnitude of the absorption torque limit amount Tp1 is larger when e ⁇ N1 where it is determined that a lag-down has occurred.
  • e ⁇ N1 the magnitude of the assist torque amount Tm is set larger.
  • the Kp computing units 62 and 72 and the Ki computing units 63 and 73 function as a determination unit for determining whether the cause of the rotation speed deviation e is acceleration or lag-down.
  • the remaining charge calculation unit 54 is a part that executes a process of calculating the remaining charge (SOC) of the power storage device 10.
  • SOC remaining charge
  • the remaining charge amount there is a method of calculating the remaining charge amount based on information such as current, voltage and temperature detected by the current sensor 11, the voltage sensor 12, and the temperature sensor 13.
  • Maximum motor power calculation unit 55 is a part that executes processing for calculating the maximum assist power (maximum motor power) of motor generator 2 according to the remaining amount of power storage device 10 output from power storage amount calculation unit 54. is there.
  • the maximum power of motor generator 2 is set to zero or more when the remaining amount of power is equal to or greater than predetermined value S1, and assist is provided according to the increase in remaining amount of power.
  • the power is set to increase.
  • the remaining charge amount is less than S1
  • the power of the motor generator 2 "negative" indicates that the motor generator 2 is driven as a generator, and the power storage device 10 is charged by the power generation of the motor generator 2 when the storage amount is less than S1.
  • the power value calculated by the maximum motor power calculation 55 is output to the divider 56 and the limit torque calculation unit 80.
  • the value calculated by maximum motor power calculation unit 55 may be used as power generation request power, and the adder 42 shown the value in FIG. It may be output to In the graph in FIG. 5 relating to the maximum motor power calculation unit 55, the maximum motor power monotonously increases when the storage residual amount is S1 or more, but the storage residual amount has a predetermined value S2 (S2> S1
  • S2> S1 The above setting may be used to keep the maximum motor power constant.
  • the divider 56 divides the power value output from the maximum motor power calculation unit 55 by the actual number of revolutions of the engine 1 (which can be calculated from the output value of the number-of-rotations sensor), thereby dividing the maximum value of the torque of the motor generator 2 It is a part to calculate. That is, the divider 56 functions as a torque calculator. The torque calculated by the divider 56 is output to the minimum value selector 57.
  • the minimum value selector 57 compares the assist torque amount Tm output from the assist torque calculation unit 70 with the torque maximum value output from the divider 56, and uses the smaller one as the torque command value of the motor generator 2 as an inverter. Output to 9A (motor control unit). Thus, the inverter 9A controls the motor generator 2 based on the torque command.
  • the remaining charge amount of power storage device 10 is less than S1
  • the output of power calculation unit 55 has a negative value
  • the output of divider 56 also has a negative value. Therefore, in the present embodiment, even if a positive assist torque amount Tm is output by the assist torque calculation unit 70 due to the presence of the deviation e, the minimum value selector 57 always selects the negative value output from the divider 56. Power generation is to be prioritized over engine assist.
  • the control for reducing the torque corresponding to the insufficient power (the absorption torque limit amount Tp2 of the hydraulic pump 3) from the absorption torque of the hydraulic pump 3 is limited torque calculation unit 80 It is going on.
  • the absorption torque limit amount Tp2 of hydraulic pump 3 is increased as the storage amount of charge decreases.
  • the storage torque of the hydraulic pump 3 is limited by referring to the remaining charge amount of the power storage device 10 (Tp2) can be increased or decreased.
  • the limit torque calculation unit 80 is a part that calculates the absorption torque limit amount Tp2 according to the remaining charge amount, and the adder 81, the subtractor 82, the correction unit 83, and the divider It has 84.
  • the adder 81 is a part that calculates the sum of the power of the motor generator 2 output from the maximum motor power calculation unit 55 and the maximum power of the engine 1, and outputs the calculation result to the subtractor 82.
  • the subtractor 82 is a part that executes a process of subtracting the power output from the adder 81 from the pump power requirement output from the pump power requirement calculator 41 (FIG. 4). Output.
  • the fact that the calculated value of the subtractor 82 is positive indicates that the pump request power is excessive with respect to the power of the engine 1 and the motor generator 2. In this case, the actual rotational speed of the engine 1 decreases due to lag-down. Indicates to do.
  • the power of the motor generator 2 output from the maximum motor power calculation unit 55 is negative, the power (power required to generate power) is treated as a load on the engine 1 together with the power required for the pump in the subtractor 82. .
  • the correction unit 83 If the output from the subtractor 82 is greater than or equal to zero, the correction unit 83 outputs the value as it is to the divider 84.
  • the output to the divider 84 at this time corresponds to the insufficient power.
  • the insufficient power the absorption torque limitation amount of the hydraulic pump 3
  • the absorption torque limitation of the hydraulic pump 3 by the limitation torque calculation unit 80 is not finally executed.
  • the divider 84 divides the power value output from the correction unit 83 by the actual number of revolutions of the engine 1 (which can be calculated from the output value of the number-of-rotations sensor) to calculate the absorption torque limit amount Tp2 (amount of torque shortage). Part of the That is, the divider 84 functions as a torque calculator. The absorption torque limit amount Tp2 calculated by the divider 84 is output to the adder 52.
  • the adder 52 executes a process of adding the absorption torque limit amount Tp1 output from the limit torque calculation unit 60 and the absorption torque limit amount Tp2 output from the limit torque calculation unit 80, and calculates the calculation result as a capacity calculation. Output to the part 53. Therefore, the value (Tp1 + Tp2) calculated by the adder 52 becomes the final absorption torque limit amount of the hydraulic pump 3.
  • the displacement calculation unit 53 calculates the target displacement of the hydraulic pump 3 based on the total value (Tp1 + Tp2) of the torque limitation amount output from the adder 52 and the discharge pressure of the hydraulic pump 3 obtained from the output of the pressure sensor 22. It is a part which performs the process to be performed and outputs the capacity
  • the magnitude of the deviation e is the set value e1 (N1) If it is less than this, it is determined that the cause of occurrence of the deviation is "lag down (engine lag down)", and the hydraulic pressure pump is larger than the assist torque amount Tm of the motor generator 2 by the limit torque calculation unit 60 and the assist torque calculation unit 70.
  • the magnitude of the absorption torque limit amount Tp1 of 3 is set large (
  • the engine is operating at maximum power at the time of lag-down, and if the assist power by the motor generator is mainly used to recover from the lag-down, energy required to assist the motor generator increases and power consumption is consumed. The amount tends to increase. For this reason, when a battery (power storage device) is provided as a power source to the motor generator, the necessity of driving the motor generator as an electric generator as an engine increases, and the fuel consumption may increase. On the other hand, when the generation and charge by the generator motor are not performed, the time during which the motor generator can assist the engine decreases. On the other hand, if control is performed as in the present embodiment, the power of the hydraulic pump 3 is mainly limited at the time of lag-down, so that it is possible to promptly return to the target rotation speed while suppressing excessive power consumption.
  • the magnitude of the deviation e is the set value e1 ( If it is N1) or more, the cause of the deviation is determined to be "acceleration" of the engine 1, and the motor generator is more than the size of the absorption torque limit amount Tp1 of the hydraulic pump 3 by the limit torque calculation unit 60 and the assist torque calculation unit 70.
  • the magnitude of the assist torque amount Tm of 2 is set to be large (
  • the engine power is often increased by increasing the engine speed and the like because the required power of the hydraulic pump is increased.
  • the pump power is excessively limited due to the rotational speed deviation generated at the time of acceleration, and the operability may be deteriorated.
  • the engine 1 is mainly accelerated by the assist power of the motor generator 2, and the power limitation of the hydraulic pump 3 is suppressed. Can be reached.
  • the control of absorption torque limit amount Tp2 according to the state of charge (charge amount) of power storage device 10 along with the change of the ratio of assist torque amount Tm and absorption torque limit amount Tp1 according to acceleration and lagdown. Is performed by the limit torque calculation unit 80.
  • the motor generator can not assist, and thus if the pump request power exceeds the engine power, the engine rotational speed is lowered to cause an engine stall.
  • the pump power is limited when a decrease in engine rotational speed is detected, it is possible to avoid a reduction in engine rotational speed and engine stall.
  • the pump power is limited before the reduction of the engine speed actually appears. Not only can the engine rotational speed decrease and engine stall be prevented, but also the deterioration of the operability due to the power reduction and the rotational speed fluctuation accompanying the engine rotational speed decrease can be suppressed.
  • the amount of charge of a secondary battery power storage device
  • it is compared with a conventional hydraulic working machine equipped with only a hydraulic actuator. Although the load on the engine is increased, according to the present embodiment, since the pump power can be rapidly limited, the above effect is remarkable.
  • the rotational speed deviation e may be monitored by monitoring the target rotational speed of the engine 1 and changes in the actual rotational speed, etc. It may be determined with high accuracy whether the cause of the occurrence of the delay is lag down or acceleration, and the above control may be performed based on the determination result.
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
  • the configuration according to the control device 8 may be a program (software) in which each function according to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU).
  • the information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

A work machine is provided with an inverter (9A) for controlling an assist torque amount (Tm) to an engine from a motor generator (2) on the basis of the size of a deviation (e) of the actual speed of the engine (1) from a target speed, and a pump control device (45) for controlling an absorption torque limit amount (Tp1) of a variable-displacement hydraulic pump (3) on the basis of the size of the deviation (e). The ratio of the size of the assist torque amount (Tm) and the size of the absorption torque limit amount (Tp1) is such that the size of the absorption torque limit amount (Tp1) is set to be greater when a deviation (e) occurs due to a stall in the engine, and the size of the assist torque amount (Tm) is set to be greater when a deviation (e) occurs due to engine acceleration.

Description

作業機械Work machine
 本発明は、油圧ポンプと、当該油圧ポンプを駆動するエンジンと、当該エンジンをアシストする電動機とを備えた作業機械に関する。 The present invention relates to a working machine provided with a hydraulic pump, an engine for driving the hydraulic pump, and a motor for assisting the engine.
 建設機械及び産業機械を含む作業機械には、油圧アクチュエータに圧油を供給するための油圧ポンプと、当該油圧ポンプを駆動するためのエンジンと、当該エンジンをアシストするための電動機(または電動発電機)を備えるハイブリッド式のものがある。 In working machines including construction machines and industrial machines, a hydraulic pump for supplying pressure oil to a hydraulic actuator, an engine for driving the hydraulic pump, and an electric motor (or motor generator for assisting the engine There is a hybrid type provided with.
 ところで、エンジンアシスト用の電動機を備えない従来型の油圧ショベルでは、可変容量形の油圧ポンプの負荷が上昇すると、当該油圧ポンプの容量を小さくすることでエンジンの負荷増大を抑制することがある。しかし、このように油圧ポンプの容量を小さくすると、油圧アクチュエータ(例えば、ブームシリンダ等)へ供給される圧油の流量が減少するので、ブーム等の操作性が低下することがある。 By the way, in a conventional hydraulic shovel that does not have an electric motor for engine assist, when the load of the variable displacement hydraulic pump rises, the load on the hydraulic pump may be reduced to suppress an increase in the load on the engine. However, when the capacity of the hydraulic pump is reduced as described above, the flow rate of the hydraulic oil supplied to the hydraulic actuator (for example, a boom cylinder or the like) is reduced, which may lower the operability of the boom or the like.
 この点に関して、特開2009-174447号公報は、上記のようなハイブリッド式の作業機械(油圧ショベル)において、可変容量形の油圧ポンプが過負荷状態になると予測された場合に、電動機でエンジンをアシストすることで当該油圧ポンプの容量を変更することなく操作性低下の抑制を図ることを開示している。 In this regard, Japanese Patent Application Laid-Open No. 2009-174447 discloses that, in the hybrid work machine (hydraulic shovel) as described above, when it is predicted that the variable displacement hydraulic pump is overloaded, the motor is driven by the electric motor. It is disclosed to aim at suppression of operativity fall, without changing the capacity of the hydraulic pump concerned by assisting.
2009-174447号公報2009-174447 gazette
 しかし、上記文献の技術では、ポンプ負荷が過負荷状態になると予測された場合に電動機によるエンジンアシストを実行するので、作業機械のおかれた状況によってはエンジンアシストにより操作性の低下や電力消費量の増加が促進される可能性もある。 However, in the technique of the above-mentioned document, when the pump load is predicted to be overloaded, the engine assist is performed by the electric motor. Therefore, depending on the status of the working machine, the engine assist may lower operability and power consumption May be promoted.
 上記文献の技術では、ポンプ負荷が過負荷になると予測されたときには、電動機によるエンジンアシストが直ちに開始される。そのため、例えば、エンジン回転数が定格回転数よりも低く設定されている場合(例えば、燃費向上や静粛性確保の観点からエンジン回転数を自動的に低下させるオートアイドリング制御を利用した場合)にポンプ負荷が過負荷になると予測されエンジンアシストが開始されたときには、電動機のアシストだけでは負荷を支えきれず、油圧ポンプの吸収トルクを制限することが必要になり、結局操作性を低下させることがある。 In the technique of the above document, when it is predicted that the pump load is overloaded, engine assist by the motor is immediately started. Therefore, for example, when the engine rotational speed is set to be lower than the rated rotational speed (for example, when using automatic idling control that automatically reduces the engine rotational speed from the viewpoint of fuel efficiency improvement and quietness securing) When the load is predicted to be overloaded and engine assist is started, the motor assist alone can not support the load, and it is necessary to limit the absorption torque of the hydraulic pump, which may eventually reduce operability. .
 また、油圧ポンプの負荷が電動機のアシストで対応できる程度であっても、アシストの必要が無くエンジンが定格で運転されているときに比べれば、電動機によるアシストに必要な分だけエネルギが多くなり電力消費量が増加する傾向がある。このため、発電が可能で電動機への電力源としてバッテリ(蓄電装置)を備えている場合には、電動機を発電機としてエンジンで駆動する必要性が増し燃料消費量が増大するおそれがある。一方、発電が不可能で作業中に充電しない場合には、電動機でエンジンアシスト可能な時間が減少してしまう。このように、上記文献の技術のように油圧ポンプの容量を保持しながら電動機によるアシストトルクを発生しても、操作性の低下や、燃費の低下(電力消費量の増加)が発生する場合がある。 Further, even if the load of the hydraulic pump can be coped with by the assist of the electric motor, energy is increased by the amount necessary for the assist by the electric motor compared to when the engine is operated at the rated without the need of assist Consumption tends to increase. For this reason, in the case where a battery (power storage device) is provided as a power source to the electric motor that can generate electric power, the necessity of driving the electric motor as an electric generator as an engine increases and the fuel consumption may increase. On the other hand, when power generation is impossible and charging is not performed during work, the time during which the motor can assist the engine decreases. As described above, even if the assist torque is generated by the motor while maintaining the capacity of the hydraulic pump as in the technique of the above-mentioned document, there may be a case where operability decreases or fuel efficiency decreases (power consumption increases). is there.
 本発明の目的は、操作性の低下や電力消費量の増加を状況に応じてできるだけ抑制できる作業機械を提供することにある。 An object of the present invention is to provide a working machine capable of suppressing the decrease in operability and the increase in power consumption as much as possible depending on the situation.
 本発明は、上記目的を達成するために、エンジンと、前記エンジンとの間でトルクの伝達を行う電動発電機と、前記エンジン及び前記電動発電機の少なくとも一方によって駆動される可変容量形油圧ポンプと、当該油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータと、前記エンジンの目標回転数と実回転数の値に基づいて、前記電動発電機による前記エンジンへのアシストトルク量を制御する電動機制御部と、前記エンジンの目標回転数と実回転数の値に基づいて、前記油圧ポンプの吸収トルク制限量を制御するポンプ制御部とを備え、前記エンジンの目標回転数と実回転数の値に基づいて前記エンジンのラグダウンと判定されたときには、前記アシストトルク量よりも前記吸収トルク制限量が大きく設定され、前記エンジンの目標回転数と実回転数の値に基づいて前記エンジンの加速と判定されたときには、前記吸収トルク制限量よりも前記アシストトルク量が大きく設定されるものとする。 The present invention achieves the above object by providing an engine, a motor generator that transmits torque between the engine, and a variable displacement hydraulic pump driven by at least one of the engine and the motor generator. And controlling an amount of assist torque to the engine by the motor generator based on a hydraulic actuator driven by pressure oil discharged from the hydraulic pump, and a target rotation speed and an actual rotation speed of the engine. A motor control unit, and a pump control unit for controlling an absorption torque limit amount of the hydraulic pump based on values of a target rotation speed and an actual rotation speed of the engine, the target rotation speed and the actual rotation speed of the engine When it is determined based on the value that the engine lags down, the absorption torque limit amount is set larger than the assist torque amount, and When it is determined that the acceleration of the engine based on the target rotational speed and the value of the actual rotational speed of the engine shall be the absorption torque restriction rate than the larger is the assist torque amount.
 本発明によれば、エンジン加速時には操作性を損なわずに目標回転数に速やかに到達でき、一方、エンジンラグダウン時には過度の電力消費を抑制しながら目標回転数に速やかに復帰できる。 According to the present invention, it is possible to quickly reach the target rotational speed without losing operability when the engine accelerates, and to quickly return to the target rotational speed while suppressing excessive power consumption when the engine lag is down.
本発明の実施の形態に係るハイブリッド式油圧ショベルの外観図。BRIEF DESCRIPTION OF THE DRAWINGS The external view of the hybrid type hydraulic shovel concerning embodiment of this invention. 本発明の実施の形態に係るハイブリッド式油圧ショベルにおけるアクチュエータ駆動制御システムの概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the actuator drive control system in the hybrid type hydraulic shovel concerning embodiment of this invention. 本発明の実施の形態に係るレギュレータによるポンプ吸収トルクの制御特性図。The control characteristic view of the pump absorption torque by the regulator which concerns on embodiment of this invention. 本発明の実施の形態に係る制御装置8の概略構成の一部を示した図。The figure which showed a part of schematic structure of the control apparatus 8 which concerns on embodiment of this invention. 本発明の実施の形態に係る制御装置8の概略構成の一部を示した図。The figure which showed a part of schematic structure of the control apparatus 8 which concerns on embodiment of this invention. 本実施の形態におけるアシストトルク量Tmの大きさと吸収トルク制限量Tp1の大きさの大小関係を模式的に示した図。FIG. 7 is a view schematically showing the magnitude relationship between the magnitude of the assist torque amount Tm and the magnitude of the absorption torque limit amount Tp1 in the present embodiment.
 以下、本発明の実施の形態について図面を用いて説明する。 
 図1は本発明の実施の形態に係るハイブリッド式油圧ショベルの外観図である。この図に示す油圧ショベルは、ブーム100a、アーム100b及びバケット100cを有する多関節型の作業装置100Aと、上部旋回体100d及び下部走行体100eを有する車体100Bを備えている。
Hereinafter, embodiments of the present invention will be described using the drawings.
FIG. 1 is an external view of a hybrid hydraulic shovel according to an embodiment of the present invention. The hydraulic shovel shown in this figure includes an articulated work apparatus 100A having a boom 100a, an arm 100b and a bucket 100c, and a vehicle body 100B having an upper swing body 100d and a lower traveling body 100e.
 ブーム100aは、上部旋回体100dに回動可能に支持されており、油圧シリンダ(ブームシリンダ)91により駆動される。アーム100bは、ブーム100aに回動可能に支持されており、油圧シリンダ(アームシリンダ)92により駆動される。バケット100cは、アーム100bに回動可能に支持されており、油圧シリンダ(バケットシリンダ)93により駆動される。上部旋回体100dは電動機(旋回モータ)19(図2参照)により旋回駆動され、下部走行体100eは左右の走行モータ(油圧モータ)95,96により駆動される。油圧シリンダ91、油圧シリンダ92、油圧シリンダ93及び走行モータ95,96は、油圧ポンプ3(図2参照)によってタンク(図示せず)から汲み上げられる圧油によって駆動される。 The boom 100 a is rotatably supported by the upper swing body 100 d and driven by a hydraulic cylinder (boom cylinder) 91. The arm 100 b is rotatably supported by the boom 100 a and driven by a hydraulic cylinder (arm cylinder) 92. The bucket 100 c is rotatably supported by the arm 100 b and driven by a hydraulic cylinder (bucket cylinder) 93. The upper swing structure 100d is driven to rotate by a motor (swing motor) 19 (see FIG. 2), and the lower traveling vehicle 100e is driven by left and right traveling motors (hydraulic motors) 95 and 96. The hydraulic cylinder 91, the hydraulic cylinder 92, the hydraulic cylinder 93, and the traveling motors 95, 96 are driven by pressure oil pumped up from a tank (not shown) by the hydraulic pump 3 (see FIG. 2).
 図2は図1に示したハイブリッド式油圧ショベルにおけるアクチュエータ駆動制御システムの概略構成図である。なお、先の図に示した部分と同じ部分には同じ符号を付して説明は適宜省略することがある(後の図についても同じ)。 FIG. 2 is a schematic configuration diagram of an actuator drive control system in the hybrid hydraulic shovel shown in FIG. The same reference numerals are given to the same parts as the parts shown in the previous figures, and the description may be omitted as appropriate (the same applies to the latter figures).
 この図に示すアクチュエータ駆動制御システムは、エンジン1と、エンジン1との間でトルクの伝達を行う電動発電機2と、エンジン1及び電動発電機2の少なくとも一方によって駆動される可変容量形油圧ポンプ3(以下、単に「油圧ポンプ3」と称することがある)と、油圧ポンプ3から吐出される圧油によって駆動される油圧アクチュエータ5(例えば、図1に示した油圧シリンダ91,92,93、油圧モータ95,96)と、油圧ポンプ3の容量を調節して吸収トルクを制御するためのポンプ制御装置(ポンプ制御部)45と、電動発電機2及び旋回モータ19等に供給される電力が蓄えられる蓄電装置(蓄電手段)10と、電動発電機2の制御とともに、電動発電機2と蓄電装置10間での電力の授受を制御するためのインバータ(電力変換装置)9Aと、旋回モータ19の制御とともに、旋回モータ19と蓄電装置10間での電力の授受を制御するためのインバータ(電力変換装置)9Bと、油圧アクチュエータ5及び旋回モータ19を駆動するための操作信号を操作量に基づいて出力する操作レバー(操作装置)16と、エンジン1の燃料噴射量を調整するガバナ7と、エンジン1の実回転数を検出する回転数センサ(実回転数検出手段)6と、エンジン1の回転数制御、電動発電機2及び旋回モータ19のトルク制御、油圧ポンプ3の容量制御、蓄電装置10の充放電制御等を出力によって行う制御装置8とを備えている。 The actuator drive control system shown in this figure is a variable displacement hydraulic pump driven by at least one of an engine 1 and a motor generator 2 that transmits torque between the engine 1 and the engine 1. 3 (hereinafter sometimes referred to simply as “hydraulic pump 3”) and a hydraulic actuator 5 driven by pressure oil discharged from the hydraulic pump 3 (eg, hydraulic cylinders 91, 92, 93 shown in FIG. 1) Electric power supplied to the hydraulic motor 95, 96), the pump control device (pump control unit) 45 for controlling the absorption torque by adjusting the capacity of the hydraulic pump 3, the motor generator 2, the swing motor 19 and the like An inverter for controlling transfer of electric power between the motor generator 2 and the storage device 10 as well as controlling the storage device (storage means) 10 to be stored and the motor generator 2 (Power conversion device) 9A and inverter (power conversion device) 9B for controlling transfer of power between the swing motor 19 and the storage device 10 together with control of the swing motor 19, hydraulic actuator 5 and swing motor 19 Operation lever (operation device) 16 that outputs an operation signal for driving the motor based on the operation amount, a governor 7 that adjusts the fuel injection amount of the engine 1, and a rotation number sensor that detects the actual rotation number of the engine Control device 8 that performs actual rotation number detection means 6, rotation control of engine 1, torque control of motor generator 2 and swing motor 19, displacement control of hydraulic pump 3, charge / discharge control of power storage device 10 by output And have.
 操作レバー16は、パイロットポンプ32から吐出される圧油を操作量に応じて減圧して油圧アクチュエータ5及び電動アクチュエータ(旋回モータ19)の操作信号を生成する。油圧アクチュエータ5の操作信号としては、操作量に応じて操作レバー16で減圧された圧油がそのまま利用され、当該圧油はバルブ装置4内の複数のコントロールバルブ(図示せず)のいずれかに出力され当該コントロールバルブを駆動する。本実施の形態では、油圧ポンプ3から吐出された圧油はバルブ装置4に供給され、当該バルブ装置4内のコントロールバルブによって圧油の流量・方向・圧力を適宜変更された後に各油圧アクチュエータ5に供給される。これにより各油圧アクチュエータ5の駆動が制御される。一方、本実施の形態の旋回モータ19(電動アクチュエータ)の操作信号としては、操作レバー16で減圧された圧油の圧力が利用される。当該圧油の圧力は、圧力センサ(圧力検出器)18a,18bによって検出されており、圧力センサ18a,18bの出力に基づいて旋回モータ19が制御装置8によって制御される。 The control lever 16 reduces the pressure oil discharged from the pilot pump 32 according to the amount of operation, and generates operation signals of the hydraulic actuator 5 and the electric actuator (swing motor 19). As the operation signal of the hydraulic actuator 5, the pressure oil depressurized by the operation lever 16 according to the operation amount is used as it is, and the pressure oil is used in any of a plurality of control valves (not shown) in the valve device 4. It is output and drives the control valve. In the present embodiment, the pressure oil discharged from the hydraulic pump 3 is supplied to the valve device 4, and the flow rate, direction, and pressure of the pressure oil are appropriately changed by the control valve in the valve device 4. Supplied to Thus, the driving of each hydraulic actuator 5 is controlled. On the other hand, as the operation signal of the swing motor 19 (electric actuator) of the present embodiment, the pressure of the pressure oil reduced by the control lever 16 is used. The pressure of the pressure oil is detected by pressure sensors (pressure detectors) 18a and 18b, and the swing motor 19 is controlled by the control device 8 based on the outputs of the pressure sensors 18a and 18b.
 なお、図2では、簡略して1組の圧力センサ18a,18bのみを示したが、本実施の形態では操作レバー16を操作可能な方向の数と同数の油路が存在しており、各油路に設置した圧力センサの検出値に基づいて操作レバー16の操作量を検出するものとする。また、操作レバー16の操作量を検出し、当該操作量に基づいて油圧アクチュエータ5又は旋回モータ19を適宜制御する構成としても良い。また、圧力センサ18a,18bに代えて、操作レバー16の回転変位を検出する位置センサ(例えば、ロータリーエンコーダ)を利用することで、操作レバー16の操作方向及び操作量に応じた電気操作信号を制御装置8に直接出力する構成を採用しても良い。 Although only one set of pressure sensors 18a and 18b is simply shown in FIG. 2, in the present embodiment, the same number of oil passages as the number of directions in which the operation lever 16 can be operated exists. The operation amount of the operation lever 16 is detected based on the detection value of the pressure sensor installed in the oil passage. In addition, the operation amount of the operation lever 16 may be detected, and the hydraulic actuator 5 or the swing motor 19 may be appropriately controlled based on the operation amount. Further, by using a position sensor (for example, a rotary encoder) for detecting the rotational displacement of the operating lever 16 instead of the pressure sensors 18a and 18b, an electric operation signal corresponding to the operating direction and the operating amount of the operating lever 16 is obtained. A configuration for direct output to the control device 8 may be employed.
 エンジン1は、ガバナ7によって燃料噴射量を制御することで調速される。油圧ポンプ3には、油圧ポンプ3の負荷を演算するために必要な情報を検出する手段(ポンプ情報検出手段)として、油圧ポンプ3から吐出される圧油の圧力を計測する圧力センサ22(圧力検出手段)と、当該圧油の流量を計測する流量センサ(流量検出手段)と、油圧ポンプ3の傾転角を計測する角度センサ(角度検出手段)とが設置されており、これら圧力センサ22、流量センサ及び角度センサは、検出したセンサ値を制御装置8に出力している。 The engine 1 is controlled by controlling the fuel injection amount by the governor 7. A pressure sensor 22 (a pressure sensor for measuring the pressure of the pressure oil discharged from the hydraulic pump 3 as a means (pump information detection means) for detecting information necessary for calculating the load of the hydraulic pump 3 to the hydraulic pump 3 A detection means), a flow rate sensor (flow rate detection means) for measuring the flow rate of the pressure oil, and an angle sensor (angle detection means) for measuring the tilt angle of the hydraulic pump 3 are provided. The flow rate sensor and the angle sensor output the detected sensor values to the control device 8.
 インバータ(電動機制御部)9Aは、本実施の形態では主にエンジン1の目標回転数と実回転数の偏差の大きさに基づいて、電動発電機2によるエンジン1へのアシストトルク量を制御している。 In the present embodiment, the inverter (motor control unit) 9A controls the amount of assist torque applied to the engine 1 by the motor generator 2 mainly based on the magnitude of the deviation between the target speed of the engine 1 and the actual speed. ing.
 ポンプ制御装置(ポンプ制御部)45は、レギュレータ14と電磁比例弁15を有しており、本実施の形態では主にエンジン1の目標回転数と実回転数の偏差の大きさに基づいて油圧ポンプ3の吸収トルク制限量を制御している。レギュレータ14は油圧ポンプ3に備えられており、レギュレータ14によって油圧ポンプ3の斜板もしくは斜軸の傾転角を操作すると、油圧ポンプ3の容量(押しのけ容積)が変更されて油圧ポンプ3の吸収トルク(入力トルク)を制御することができる(ポンプ吸収トルク制御)。本実施の形態におけるレギュレータ14は、電磁比例弁15が発生する制御圧によって制御されている。電磁比例弁15は、制御装置8から出力される信号(容積指令)に基づいて動作する。 The pump control unit (pump control unit) 45 includes the regulator 14 and the solenoid proportional valve 15. In the present embodiment, the hydraulic pressure is mainly based on the difference between the target rotation speed of the engine 1 and the actual rotation speed. The absorption torque limit amount of the pump 3 is controlled. The regulator 14 is provided to the hydraulic pump 3, and when the tilt angle of the swash plate or the oblique shaft of the hydraulic pump 3 is operated by the regulator 14, the displacement (displacement volume) of the hydraulic pump 3 is changed to absorb the hydraulic pump 3. Torque (input torque) can be controlled (pump absorption torque control). The regulator 14 in the present embodiment is controlled by the control pressure generated by the solenoid proportional valve 15. The solenoid proportional valve 15 operates based on a signal (volume command) output from the controller 8.
 本実施の形態に係るレギュレータ14は、例えば、図3に示した制御特性図に従って油圧ポンプ3の容量を制御している。図3は本発明の実施の形態に係るレギュレータ14によるポンプ吸収トルクの制御特性図である。この図に示す折れ線31Aは、油圧ポンプ3の吐出圧に対して設定される油圧ポンプ3の容量の特性を示しており、エンジン1と電動発電機2の合計出力の最大値(図2中の破線で示した双曲線(一定トルク線図))を超えない範囲で油圧ポンプ3のトルク(ポンプ容量とポンプ吐出圧力の積)がほぼ一定になるように設定されている。すなわち、その時々のポンプ吐出圧力に応じて折れ線31Aを利用して油圧ポンプ3の容量を設定すれば、エンジン1と電動発電機2による最大出力を超えないように油圧ポンプ3のトルクを制御できる。ポンプ吐出圧力がP1以下である時にはポンプ吸収トルク制御は実施されず、ポンプ容量はバルブ装置4の各コントロールバルブを操作するための操作レバーの操作量によって決定される(例えば、いずれかの操作レバーの操作量が最大の時にq1になる)。一方、ポンプ吐出圧力がP1~P2になると、レギュレータ14によるポンプ吸収トルク制御が実施され、ポンプ吐出圧の増加に伴って折れ線31Aに沿ってポンプ容量が減少するようにレギュレータ14によってポンプ傾転角が操作される。これにより、ポンプ吸収トルクは、折れ線31Aで規定したトルク以下になるように制御される。なお、P2はポンプ吐出圧力の最大値であり、バルブ装置4において油圧ポンプ3側の回路に接続されるリリーフ弁の設定圧力に等しく、ポンプ吐出圧力はこの値以上に上昇しない。なお、ここでは、油圧ポンプの吸収トルクの制御特性図として、2つの直線を組み合わせた折れ線31Aを使用したが、図2中の一定トルク線図(双曲線)を超えない範囲で設定すれば他の制御特性図を利用しても良い。 The regulator 14 according to the present embodiment controls, for example, the displacement of the hydraulic pump 3 in accordance with the control characteristic diagram shown in FIG. FIG. 3 is a control characteristic diagram of pump absorption torque by the regulator 14 according to the embodiment of the present invention. The broken line 31A shown in this figure shows the characteristic of the capacity of the hydraulic pump 3 set with respect to the discharge pressure of the hydraulic pump 3, and the maximum value of the total output of the engine 1 and the motor generator 2 (FIG. The torque (the product of the pump displacement and the pump discharge pressure) of the hydraulic pump 3 is set to be substantially constant within a range not exceeding the hyperbola (constant torque diagram) indicated by the broken line. That is, if the capacity of hydraulic pump 3 is set using polygonal line 31A according to the pump discharge pressure at that time, the torque of hydraulic pump 3 can be controlled so as not to exceed the maximum output by engine 1 and motor generator 2 . When the pump discharge pressure is P1 or less, the pump absorption torque control is not performed, and the pump displacement is determined by the operation amount of the operation lever for operating each control valve of the valve device 4 (for example, any operation lever Becomes q1 when the operation amount of is the maximum). On the other hand, when the pump discharge pressure becomes P1 to P2, the pump absorption torque control by the regulator 14 is executed, and the pump displacement angle by the regulator 14 decreases the pump displacement along the broken line 31A with the increase of the pump discharge pressure. Is operated. Thus, the pump absorption torque is controlled to be equal to or less than the torque specified by the broken line 31A. P2 is the maximum value of the pump discharge pressure, which is equal to the set pressure of the relief valve connected to the circuit on the hydraulic pump 3 side in the valve device 4, and the pump discharge pressure does not rise above this value. Here, a broken line 31A in which two straight lines are combined is used as a control characteristic diagram of absorption torque of the hydraulic pump, but if it is set in a range not exceeding the constant torque diagram (hyperbola) in FIG. A control characteristic chart may be used.
 制御装置8(容量演算部53(図5))は、制御信号(電気信号)を電磁比例弁15に出力し、電磁比例弁15は当該操作信号に応じた制御圧力を生成することでレギュレータ14を駆動する。これによりレギュレータ14によって油圧ポンプ3の容量が変更され、油圧ポンプ3の吸収トルクはエンジンストールが発生しない範囲に適宜調整される。 The control device 8 (capacity calculation unit 53 (FIG. 5)) outputs a control signal (electric signal) to the solenoid proportional valve 15, and the solenoid proportional valve 15 generates the control pressure according to the operation signal, thereby regulating the regulator 14. Drive. As a result, the displacement of the hydraulic pump 3 is changed by the regulator 14, and the absorption torque of the hydraulic pump 3 is appropriately adjusted in a range where engine stall does not occur.
 二次電池(バッテリ)又はキャパシタ等で構成される蓄電装置10には、蓄電装置10の蓄電量を演算するために必要な情報を検出する手段(蓄電情報検出手段)として、電流センサ11、電圧センサ12及び温度センサ13が取り付けられている。制御装置8は、これらセンサ11,12,13によって検出された電流、電圧及び温度等の情報に基づいて蓄電残量演算部54(後述)において蓄電装置10の蓄電残量(SOC)を演算し、蓄電装置10の蓄電量を管理している。 In the power storage device 10 configured of a secondary battery (battery) or a capacitor, the current sensor 11, a voltage as a means (power storage information detection means) for detecting information necessary to calculate the storage amount of the power storage device 10. A sensor 12 and a temperature sensor 13 are attached. Control device 8 calculates the state of charge (SOC) of power storage device 10 in charge remaining amount calculation unit 54 (described later) based on information such as current, voltage and temperature detected by these sensors 11, 12 and 13. The storage amount of the storage device 10 is managed.
 制御装置8は、ハードウェア構成として、各種プログラムを実行するための演算手段としての演算処理装置(例えば、CPU)と、当該プログラムをはじめ各種データを記憶するための記憶手段としての記憶装置(例えば、ROM、RAMおよびフラッシュメモリ等の半導体メモリや、ハードディスクドライブ等の磁気記憶装置)と、当該演算処理装置及び当該記憶装置等へのデータ及び指示等の入出力制御を行うための入出力演算処理装置を備えている(いずれも図示せず)。図4及び図5は本発明の実施の形態に係る制御装置8の概略構成の一部をそれぞれ示した図であり、図4,5に示した各部ごとに上記ハードウェア構成を採用しても良いし、複数の部分を統合したものに上記ハードウェア構成を採用しても良い。 The control device 8 has a hardware configuration, an arithmetic processing unit (for example, a CPU) as an arithmetic unit for executing various programs, and a storage device (for example, a storage unit for storing various data including the program). , Semiconductor memory such as ROM, RAM and flash memory, magnetic storage device such as hard disk drive), input / output operation processing to perform input / output control such as data and instruction to the operation processing device and the storage device etc The device is provided (none shown). FIGS. 4 and 5 are diagrams showing a part of the schematic configuration of the control device 8 according to the embodiment of the present invention, and even if the above hardware configuration is adopted for each part shown in FIGS. The above hardware configuration may be adopted as a combination of a plurality of parts.
 まず、制御装置8は、主にエンジン1を制御するための回路として、図4に示すような、ポンプ要求動力演算部41と、加算器42と、目標回転数演算部43と、エンジン制御部(ECU)44を備える。 First, as a circuit mainly for controlling the engine 1, the control device 8 is, as shown in FIG. 4, a pump required power calculation unit 41, an adder 42, a target rotation speed calculation unit 43, and an engine control unit (ECU) 44 is provided.
 ポンプ要求動力演算部41は、油圧ポンプ3の吐出圧と流量の積に基づいて油圧ポンプ3の要求動力を推定する処理を実行する。本実施の形態では、圧力センサ22の検出値を利用して油圧ポンプ3の吐出圧を求めており、さらに、圧力センサ18a,18bの検出値から操作レバー16のレバー操作量を求め、当該操作量から油圧ポンプ3の流量を推定している。 The pump required power calculation unit 41 executes a process of estimating the required power of the hydraulic pump 3 based on the product of the discharge pressure of the hydraulic pump 3 and the flow rate. In the present embodiment, the discharge pressure of the hydraulic pump 3 is determined using the detection value of the pressure sensor 22, and the lever operation amount of the control lever 16 is determined from the detection values of the pressure sensors 18a and 18b. The flow rate of the hydraulic pump 3 is estimated from the amount.
 加算器42は、ポンプ要求動力演算部41から入力されたポンプ要求動力と、電動発電機2が要求する発電要求動力とを加算し、目標回転数演算部43に出力する処理を実行する部分である。なお、発電要求動力は、エンジン1が負担すべき動力であって、蓄電装置10の蓄電残量(充電量)が少ないとき、当該蓄電残量の減少に応じて発電量が増加するように設定されたものである。ポンプ要求動力と発電要求動力の和はエンジン1に要求される動力(必要エンジン動力)となる。なお、発電要求動力は、後述する図5中の最大モータ動力演算部55において、蓄電残量演算部54で算出された蓄電装置10の蓄電残量に基づいて算出するものとしても良い。 The adder 42 adds the pump request power input from the pump request power calculation unit 41 and the power generation request power requested by the motor generator 2 and executes the processing to output to the target rotation speed calculation unit 43. is there. The power generation requirement motive power is motive power to be borne by the engine 1 and is set so that the amount of power generation increases according to the decrease in the remaining amount of charge when the amount of remaining charge (amount of charge) of the storage device 10 is small. It is done. The sum of the pump required power and the power generation required power is the power required for the engine 1 (required engine power). Note that the power generation request power may be calculated based on the remaining power amount of the power storage device 10 calculated by the remaining power amount calculation unit 54 in the maximum motor power calculation unit 55 in FIG. 5 described later.
 目標回転数演算部43は、加算器42から入力される必要エンジン動力に基づいてエンジン1の目標回転数を算出する処理を実行する部分である。ところで、エンジン1は、燃費の観点からは、ポンプ3の駆動と発電が可能な、なるべく小さい回転数で運転するのが望ましい。一方で、ポンプ動力の小さな変動に追従してエンジン回転数を変更すると、実際の作業ではエンジン回転数が不安定になって操作性が低下する恐れがある。そこで、本実施の形態では、目標回転数は、必要エンジン動力が増加するにつれて階段状に離散的に増加するように設定されている。すなわち、所定の範囲の必要エンジン動力に対しては目標回転数は一定に設定されており、必要エンジン動力が当該範囲を超えて増加した場合に目標回転数が一段階増加することを繰り返すように設定されている。また、各階段の高さは等しく設定されているため、当該高さに相当する目標回転数の増加量(e1)は一定に設定されている。さらに、目標回転数の切り替え時のハンチングを防ぐため、目標回転数のマップにヒステリシスが設けられている。すなわち、目標回転数が変化する必要エンジン動力の値は、必要エンジン動力の増加時と減少時で異なっている。 The target rotation speed calculation unit 43 is a part that executes a process of calculating a target rotation speed of the engine 1 based on the required engine power input from the adder 42. By the way, from the viewpoint of fuel consumption, it is desirable that the engine 1 be operated at a rotation speed as small as possible, which is capable of driving the pump 3 and generating electric power. On the other hand, if the engine rotational speed is changed following a small variation in pump power, the engine rotational speed may become unstable in actual operation and operability may deteriorate. Therefore, in the present embodiment, the target rotational speed is set to discretely increase stepwise as the required engine power increases. That is, the target rotational speed is set to be constant for the required engine power in a predetermined range, and the target rotational speed is repeatedly increased by one step when the required engine power increases beyond the range. It is set. Further, since the heights of the respective steps are set to be equal, the increase amount (e1) of the target rotational speed corresponding to the height is set to be constant. Furthermore, in order to prevent hunting when switching the target rotational speed, a hysteresis is provided in the map of the target rotational speed. That is, the value of the required engine power at which the target rotational speed changes is different when the required engine power is increased and decreased.
 目標回転数演算部43から出力された目標回転数は、エンジン制御部(ECU)44に出力される。エンジン制御部44は、ガバナ7で燃料噴射量を適宜制御することで、実回転数が目標回転数に近づくようにエンジン1を制御する。エンジン制御部44によるエンジン1の回転数制御の例としては、回転数センサ6から入力される実回転数と、目標回転数演算部43から入力される目標回転数の値に基づいたフィードバック制御がある。 The target rotation speed output from the target rotation speed calculation unit 43 is output to the engine control unit (ECU) 44. The engine control unit 44 controls the engine 1 so that the actual rotation speed approaches the target rotation speed by appropriately controlling the fuel injection amount with the governor 7. As an example of rotation speed control of the engine 1 by the engine control unit 44, feedback control based on the actual rotation speed input from the rotation speed sensor 6 and the value of the target rotation speed input from the target rotation speed calculation unit 43 is there.
 また、制御装置8は、油圧ポンプ3と電動発電機2を制御するための回路として、図5に示すように、減算器(回転数偏差算出器)51と、アシストトルク演算部70と、蓄電残量演算部54と、最大モータ動力演算部55と、除算器(トルク算出器)56と、最小値選択器57と、第1制限トルク演算部60と、第2制限トルク演算部80と、加算器52と、容量演算部53を備えている。 Further, as a circuit for controlling the hydraulic pump 3 and the motor generator 2, as shown in FIG. 5, the control device 8 includes a subtractor (rotational speed deviation calculator) 51, an assist torque calculation unit 70, and storage of electricity. A remaining amount calculation unit 54, a maximum motor power calculation unit 55, a divider (torque calculator) 56, a minimum value selector 57, a first limit torque calculation unit 60, and a second limit torque calculation unit 80; An adder 52 and a capacity calculation unit 53 are provided.
 減算器51には、目標回転数演算部43から出力される目標回転数と、回転数センサ6から出力される実回転数とが入力されており、当該目標回転数から当該実回転数を減算することで回転数偏差eを算出する。偏差eは、(1)実回転数に対して目標回転数が増加した場合と、(2)目標回転数に対して実回転数が低下した場合に発生する。図4のように目標回転数演算部43で目標回転数を決めた場合、例えば、ポンプ要求動力が増加すると、まず、実回転数に対して目標回転数が増加することによって偏差eが発生する(上記(1)のケース)。そして、目標回転数が最大の値になって当該偏差eが解消された以降に、さらにポンプ要求動力が増加すると、目標回転数に対して実回転数が低下して再び偏差eが発生する(上記(2)のケース)。エンジン1はどちらの偏差eも解消するようにトルクを発生するので、ポンプ要求動力がエンジン1の最大トルクより小さければ、偏差eは次第に小さくなる。 The target rotational speed output from the target rotational speed calculation unit 43 and the actual rotational speed output from the rotational speed sensor 6 are input to the subtractor 51, and the actual rotational speed is subtracted from the target rotational speed By doing this, the rotational speed deviation e is calculated. Deviation e occurs (1) when the target rotational speed increases with respect to the actual rotational speed, and (2) when the actual rotational speed decreases with respect to the target rotational speed. When the target rotational speed is determined by the target rotational speed calculation unit 43 as shown in FIG. 4, for example, when the pump required power increases, the deviation e occurs due to the increase of the target rotational speed with respect to the actual rotational speed. (Case (1) above). Then, after the target rotational speed reaches the maximum value and the deviation e is eliminated, if the pump request power further increases, the actual rotational speed decreases with respect to the target rotational speed and the deviation e occurs again ( Case (2) above). Since the engine 1 generates torque so as to eliminate both deviations e, if the pump required power is smaller than the maximum torque of the engine 1, the deviation e becomes smaller gradually.
 ここでは、実回転数に対して目標回転数が増加して発生した偏差eが解消していく状態を「加速」とし、目標回転数が最大値であるときに、エンジン負荷の増加によって目標回転数に対して実回転数が減少して発生した偏差eが増大していく状態を「ラグダウン(エンジンラグダウン)」とする。そして、本実施の形態では、さらに簡略化を進めて、偏差eの大きさが設定値N1以上のときを「加速」と判定し、他方、当該偏差eの大きさが設定値N1未満のときを「ラグダウン」と判定するものとする。当該判定結果は、後述する制限トルク演算部60で算出される吸収トルク制限量Tp1の大きさと、アシストトルク演算部70で算出されるアシストトルク量Tmの大きさの大小関係(比率)に影響を与える。なお、本実施の形態では、図4のように必要エンジン動力の増加に比例して目標回転数が階段状に増加する設定を採用しているため、ラグダウンによって生じる偏差よりも階段の1段の高さを大きく設定しておけば、当該段の高さに相当する偏差を設定値N1と設定することで、「加速」と「ラグダウン」を判別することができる。そこで、以下では、設定値N1として、図4の目標回転数演算部43の階段の1段分に相当する回転数偏差e1(図4参照)を利用したこと(すなわち、「N1=e1」)を前提にして説明する。 Here, a state in which the target rotation speed increases with respect to the actual rotation speed and the generated deviation e is eliminated is referred to as “acceleration”, and when the target rotation speed is the maximum value, the target rotation is increased by the engine load. A state where the actual rotation speed decreases with respect to the number and the generated deviation e increases is referred to as “lag down (engine lag down)”. Then, in the present embodiment, the simplification is further advanced, and it is determined that "acceleration" is performed when the magnitude of the deviation e is equal to or larger than the set value N1, and when the magnitude of the deviation e is smaller than the set value N1. Shall be judged as "lag down". The determination result affects the magnitude relationship (ratio) between the magnitude of the absorption torque limit amount Tp1 calculated by the limit torque calculation unit 60 described later and the magnitude of the assist torque amount Tm calculated by the assist torque calculation unit 70. give. In this embodiment, as shown in FIG. 4, the target rotational speed is increased stepwise in proportion to the increase of the required engine power. If the height is set large, “acceleration” and “lag down” can be determined by setting the deviation corresponding to the height of the step as the set value N1. Therefore, in the following, using the rotational speed deviation e1 (see FIG. 4) corresponding to one step of the stairs of the target rotational speed calculation unit 43 of FIG. 4 as the setting value N1 (ie, “N1 = e1”) The explanation is based on
 なお、もちろん、偏差eのみではなく、目標回転数自体も含めて判定すれば、加速とラグダウンの判定精度を向上することも可能である。また、目標回転数を図1のような階段状ではなく連続的に設定した場合でも、目標回転数の変化と偏差eに基づいて「加速」と「ラグダウン」の判定は可能である。 Of course, it is also possible to improve the determination accuracy of acceleration and lag-down by determining not only the deviation e but also the target rotation speed itself. In addition, even when the target rotation speed is not set stepwise as in FIG. 1 but continuously set, it is possible to determine “acceleration” and “lag down” based on the change in the target rotation speed and the deviation e.
 アシストトルク演算部70は、減算器51から出力される回転数偏差eに基づいて電動発電機2によるエンジン1へのアシストトルク量Tmを算出する処理を実行する部分である。第1制限トルク演算部60は、減算器51から出力される回転数偏差eに基づいて油圧ポンプ3の吸収トルク制限量Tp1を算出する処理を実行する部分である。アシストトルク量Tmの大きさと吸収トルク制限量Tp1の大きさの比率は、ラグダウンによって偏差eが生じたと判定されたときは、吸収トルク制限量Tp1の大きさの方が大きく設定されており、加速によって偏差eが生じたと判定されたときは、アシストトルク量Tmの大きさの方が大きく設定されている。次に、当該機能を実現するために、本実施の形態に係る制御装置8が具備した構成について説明する。 The assist torque calculation unit 70 is a part that executes a process of calculating an assist torque amount Tm to the engine 1 by the motor generator 2 based on the rotational speed deviation e output from the subtractor 51. The first limit torque calculation unit 60 is a part that executes a process of calculating the absorption torque limit amount Tp1 of the hydraulic pump 3 based on the rotational speed deviation e output from the subtractor 51. The ratio of the magnitude of the assist torque amount Tm to the magnitude of the absorption torque limit amount Tp1 is set larger in the magnitude of the absorption torque limit amount Tp1 when it is determined that the deviation e is generated due to the lag-down. When it is determined that the deviation e has occurred, the magnitude of the assist torque amount Tm is set larger. Next, in order to realize the said function, the structure which the control apparatus 8 which concerns on this Embodiment comprised was demonstrated.
 上記機能を実現するために、アシストトルク演算部70は、偏差eに基づいてアシストトルクTmを算出するPI制御部71と、PI制御部71から出力されたアシストトルクTmを電動発電機2の適正な制御の観点から補正する補正部78とを備えている。PI制御部71は、比例ゲイン(Kp)演算部72と、積分ゲイン(Ki)演算部73と、乗算器74と、乗算器75と、積分器76と、加算器77を備えている。 In order to realize the above function, the assist torque calculation unit 70 calculates the assist torque Tm based on the deviation e, and the assist torque Tm output from the PI control unit 71 is used as the motor generator 2 appropriately. And a correction unit 78 that corrects from the viewpoint of proper control. The PI control unit 71 includes a proportional gain (Kp) calculation unit 72, an integral gain (Ki) calculation unit 73, a multiplier 74, a multiplier 75, an integrator 76, and an adder 77.
 Kp演算部72は、偏差eに基づいて比例ゲインKpを算出する処理を実行する部分である。Kp演算部72では、偏差eが増加するにつれて、Kp演算部72から出力される比例ゲインKpが単調に増加するように設定されている。Ki演算部73は、偏差eに基づいて積分ゲインKiを算出する処理を実行する部分である。Ki演算部73では、偏差eが増加するにつれて、Ki演算部73から出力される積分ゲインKiが単調に増加するように設定されている。なお、ここにおける「単調増加」には、(1)偏差eの増加とともに積分ゲインKiが常に増加していく「狭義の単調増加」だけでなく、(2)偏差eの増加とともに、積分ゲインKiが所定の区間で一定に保持されながら階段状(離散的)に増加していく「広義の単調増加」も含まれるものとし(なお、「広義の単調増加」は、偏差eの増加とともに、積分ゲインKiが減少することなく増加することから「単調非減少」と呼ばれることもある。)、以下では単調減少も含めて同様に扱うものとする。 The Kp calculation unit 72 is a part that executes a process of calculating the proportional gain Kp based on the deviation e. The Kp calculating unit 72 is set so that the proportional gain Kp output from the Kp calculating unit 72 monotonously increases as the deviation e increases. The Ki calculation unit 73 is a part that executes a process of calculating the integral gain Ki based on the deviation e. The Ki calculating unit 73 is set so that the integral gain Ki output from the Ki calculating unit 73 monotonously increases as the deviation e increases. Here, “monotonically increasing” includes (1) not only “monotonously increasing in a narrow sense” in which the integral gain Ki always increases with the increase of the deviation e but also (2) the integral gain Ki with the increase of the deviation e. "Monotonic increase in a broad sense" which increases stepwise (discretely) while holding constant at a predetermined interval is also included (note that "monotonic increase in a broad sense" is integrated with the increase of the deviation e The gain Ki may be referred to as “monotonous non-decreasing” because it increases without decreasing.) Hereinafter, the monotonous decrement is also included.
 乗算器74は、偏差eと積分ゲインKiを乗じる処理を実行する部分であり、乗算器75は、偏差eと比例ゲインKpを乗じる処理を実行する部分であり、積分器76は、乗算器74の演算結果の時間変化を累積する処理を実行する部分である。加算器77は、乗算器75の演算結果と積分器76の演算結果を加算する処理を実行し、当該演算結果を補正部78に出力する。 The multiplier 74 is a part that executes the process of multiplying the deviation e by the integral gain Ki, the multiplier 75 is a part that executes the process of multiplying the deviation e by the proportional gain Kp, and the integrator 76 is a multiplier 74. It is a part which performs processing which accumulates a time change of an operation result of. The adder 77 executes a process of adding the calculation result of the multiplier 75 and the calculation result of the integrator 76, and outputs the calculation result to the correction unit 78.
 補正部78は、加算器77から出力されたアシストトルクTmの値が負の場合に当該アシストトルクをゼロに変換して出力する部分であり、アシストトルクTmがゼロ以上の場合には加算器77から出力された値をそのまま最小値選択器57に出力する。ここで負の値をゼロに変換したのは次の理由による。すなわち、エンジン1の実回転数がオーバーシュートした場合には、アシストトルク量Tmは負になることがあるが、負のアシストトルク量Tmの算出は、電動発電機2を発電機として駆動するためのトルク(発電トルク)が算出されたことを意味する。しかし、本実施の形態では、蓄電装置10の蓄電残量に基づいて発電トルクを算出しており、回転数偏差eに基づいた発電トルクの算出は後述するように不要だからである。 The correction unit 78 is a part that converts the assist torque to zero and outputs it when the value of the assist torque Tm output from the adder 77 is negative, and the adder 77 when the assist torque Tm is equal to or greater than zero. The value output from is output to the minimum value selector 57 as it is. The reason for converting negative values to zero is as follows. That is, when the actual rotational speed of the engine 1 overshoots, the assist torque amount Tm may be negative, but the calculation of the negative assist torque amount Tm is to drive the motor generator 2 as a generator. Means that the torque (power generation torque) was calculated. However, in the present embodiment, the power generation torque is calculated based on the remaining charge amount of the power storage device 10, and the calculation of the power generation torque based on the rotational speed deviation e is unnecessary as described later.
 上記のように、アシストトルク演算部70では、PI制御部71により算出されるアシストトルクTmがゼロ以上の場合には、回転数偏差eの増加に合わせてゲイン(Kp,Ki)が単調増加するKp演算部72及びKi演算部73のマップ設定に起因して、回転数偏差eが増加するにつれて単調に増加するようにアシストトルクTmが設定される。 As described above, in the assist torque calculation unit 70, when the assist torque Tm calculated by the PI control unit 71 is greater than or equal to zero, the gains (Kp, Ki) monotonously increase in accordance with the increase in the rotational speed deviation e. Due to the map setting of the Kp calculating unit 72 and the Ki calculating unit 73, the assist torque Tm is set so as to increase monotonously as the rotational speed deviation e increases.
 また、第1制限トルク演算部60は、偏差eに基づいて吸収トルク制限量Tp1を算出するPI制御部61と、PI制御部61から出力された吸収トルク制限量Tp1を油圧ポンプ3の適正な制御の観点から補正する補正部68とを備えている。PI制御部61は、比例ゲイン(Kp)演算部62と、積分ゲイン(Ki)演算部63と、乗算器64と、乗算器65と、積分器66と、加算器67を備えている。 In addition, the first limit torque calculation unit 60 calculates the absorption torque limit amount Tp1 based on the deviation e, and the absorption torque limit amount Tp1 output from the PI control unit 61 for the hydraulic pump 3 properly. And a correction unit 68 that corrects from the viewpoint of control. The PI control unit 61 includes a proportional gain (Kp) computing unit 62, an integral gain (Ki) computing unit 63, a multiplier 64, a multiplier 65, an integrator 66, and an adder 67.
 Kp演算部62は、偏差eに基づいて比例ゲインKpを算出する処理を実行する部分である。Kp演算部62では、偏差eが増加するにつれて、Kp演算部62から出力される比例ゲインKpが単調に減少するように設定されている。Ki演算部63は、偏差eに基づいて積分ゲインKiを算出する処理を実行する部分である。Ki演算部63では、偏差eが増加するにつれて、Ki演算部63から出力される積分ゲインKiが単調に減少するように設定されている。 The Kp calculating unit 62 is a part that executes a process of calculating the proportional gain Kp based on the deviation e. The Kp calculating unit 62 is set so that the proportional gain Kp output from the Kp calculating unit 62 monotonously decreases as the deviation e increases. The Ki calculation unit 63 is a part that executes a process of calculating the integral gain Ki based on the deviation e. The Ki calculating unit 63 is set so that the integral gain Ki output from the Ki calculating unit 63 monotonously decreases as the deviation e increases.
 乗算器64は、偏差eと積分ゲインKiを乗じる処理を実行する部分であり、乗算器65は、偏差eと比例ゲインKpを乗じる処理を実行する部分であり、積分器66は、乗算器64の演算結果の時間変化を累積する処理を実行する部分である。加算器67は、乗算器65の演算結果と積分器66の演算結果を加算する処理を実行し、当該演算結果を補正部68に出力する。 The multiplier 64 is a part that executes the process of multiplying the deviation e by the integral gain Ki, the multiplier 65 is a part that executes the process of multiplying the deviation e by the proportional gain Kp, and the integrator 66 is a multiplier 64. It is a part which performs processing which accumulates a time change of an operation result of. The adder 67 executes a process of adding the calculation result of the multiplier 65 and the calculation result of the integrator 66, and outputs the calculation result to the correction unit 68.
 補正部68は、加算器67から出力された吸収トルク制限量Tp1の値が負の場合に当該吸収トルク制限量Tp1をゼロに変換して出力する部分であり、吸収トルク制限量Tp1がゼロ以上の場合には加算器67から出力された値をそのまま加算器52に出力する。ここで負の値をゼロに変換したのは次の理由による。すなわち、エンジン1の実回転数がオーバーシュートした場合には、吸収トルク制限量Tp1は負になることがあるが、この場合には油圧ポンプ3の吸収トルク(ポンプ動力)の制限は不要だからである。 The correction unit 68 is a part that converts the absorption torque restriction amount Tp1 to zero and outputs the absorption torque restriction amount Tp1 when the value of the absorption torque restriction amount Tp1 output from the adder 67 is negative, and the absorption torque restriction amount Tp1 is zero or more. In this case, the value output from the adder 67 is output to the adder 52 as it is. The reason for converting negative values to zero is as follows. That is, when the actual rotational speed of the engine 1 overshoots, the absorption torque limit amount Tp1 may become negative, but in this case, the restriction of the absorption torque (pump power) of the hydraulic pump 3 is unnecessary. is there.
 上記のように、第1制限トルク演算部60では、PI制御部61により算出される吸収トルク制限量Tp1がゼロ以上の場合には、回転数偏差eの増加に合わせてゲイン(Kp,Ki)が単調減少するKp演算部62及びKi演算部63におけるマップ設定に起因して、吸収トルク制限量Tp1は、回転数偏差eが増加するにつれて単調に減少するように設定される。 As described above, in the first limit torque calculation unit 60, when the absorption torque limit amount Tp1 calculated by the PI control unit 61 is greater than or equal to zero, the gains (Kp, Ki) are adjusted according to the increase in the rotational speed deviation e. Due to the map setting in the Kp computing unit 62 and the Ki computing unit 63 in which the 単 調 decreases monotonically, the absorption torque limit amount Tp1 is set to decrease monotonically as the rotational speed deviation e increases.
 図6は本実施の形態におけるアシストトルク量Tmの大きさと吸収トルク制限量Tp1の大きさの大小関係を模式的に示した図である。上記の構成を備えた本実施の形態に係る制御装置8によれば、回転数偏差eに応じて、アシストトルク量Tmと吸収トルク制限量Tp1の比率が変化する。アシストトルク量Tmは回転数偏差eの増加に合わせて単調に増加し、吸収トルク制限量Tp1は回転数偏差eの増加に合わせて単調に減少するため、図6に示すようにアシストトルク量Tmと吸収トルク制限量Tp1は一点で交差する。そして、その交点は、Kp演算部62,72及びKi演算部63,73におけるマップの設定によって、設定値N1(N1=e1)に一致するように構成されている。これにより、アシストトルク量Tmの大きさと吸収トルク制限量Tp1の大きさの比率は、ラグダウンが生じたと判定されるe<N1のときは、吸収トルク制限量Tp1の大きさの方が大きく設定され、加速が生じたと判定されるe≧N1のときは、アシストトルク量Tmの大きさの方が大きく設定される。このとき、Kp演算部62,72及びKi演算部63,73は、回転数偏差eの発生原因が加速にあるのか又はラグダウンにあるのかを判定するための判定部として機能する。 FIG. 6 is a view schematically showing the magnitude relationship between the magnitude of the assist torque amount Tm and the magnitude of the absorption torque limit amount Tp1 in the present embodiment. According to the control device 8 according to the present embodiment having the above configuration, the ratio of the assist torque amount Tm to the absorption torque limit amount Tp1 changes according to the rotation speed deviation e. The assist torque amount Tm monotonously increases with the increase of the rotational speed deviation e, and the absorption torque limit amount Tp1 monotonously decreases with the increase of the rotational speed deviation e. Therefore, as shown in FIG. And the absorption torque limit amount Tp1 intersect at one point. The intersection point is configured to coincide with the set value N1 (N1 = e1) by the setting of the maps in the Kp computing units 62 and 72 and the Ki computing units 63 and 73. Thereby, the ratio of the magnitude of the assist torque amount Tm to the magnitude of the absorption torque limit amount Tp1 is set such that the magnitude of the absorption torque limit amount Tp1 is larger when e <N1 where it is determined that a lag-down has occurred. When it is determined that acceleration has occurred, e ≧ N1, the magnitude of the assist torque amount Tm is set larger. At this time, the Kp computing units 62 and 72 and the Ki computing units 63 and 73 function as a determination unit for determining whether the cause of the rotation speed deviation e is acceleration or lag-down.
 図5に戻り、蓄電残量演算部54は、蓄電装置10の蓄電残量(SOC)を演算する処理を実行する部分である。蓄電残量を演算する方法としては、電流センサ11、電圧センサ12及び温度センサ13によって検出された電流、電圧及び温度等の情報に基づいて蓄電残量を算出するものがある。 Returning to FIG. 5, the remaining charge calculation unit 54 is a part that executes a process of calculating the remaining charge (SOC) of the power storage device 10. As a method of calculating the remaining charge amount, there is a method of calculating the remaining charge amount based on information such as current, voltage and temperature detected by the current sensor 11, the voltage sensor 12, and the temperature sensor 13.
 最大モータ動力演算部55は、蓄電残量演算部54から出力される蓄電装置10の蓄電残量に応じて電動発電機2の最大アシスト動力(最大モータ動力)を演算する処理を実行する部分である。本実施の形態では、図5に示すように、蓄電残量が所定の値S1以上のときは電動発電機2の最大動力はゼロ以上に設定されており、蓄電残量の増加に応じてアシスト動力が大きくなるように設定されている。一方、蓄電残量がS1未満のときは負に設定される。電動発電機2の動力が「負」とは、電動発電機2を発電機として駆動する場合を示し、蓄電残量がS1未満のとき蓄電装置10は電動発電機2の発電により充電される。最大モータ動力算出55で算出された動力値は、除算器56及び制限トルク演算部80に出力される。なお、蓄電残量がS1未満のとき(発電時)は、最大モータ動力演算部55によって算出される値を発電要求動力として利用しても良く、さらに当該値を図4に示した加算器42に出力しても良い。なお、最大モータ動力演算部55に係る図5中のグラフでは、蓄電残量がS1以上のときは最大モータ動力が単調増加する設定としているが、蓄電残量が所定の値S2(S2>S1)以上のときに最大モータ動力を一定に保持する設定を利用しても良い。 Maximum motor power calculation unit 55 is a part that executes processing for calculating the maximum assist power (maximum motor power) of motor generator 2 according to the remaining amount of power storage device 10 output from power storage amount calculation unit 54. is there. In the present embodiment, as shown in FIG. 5, the maximum power of motor generator 2 is set to zero or more when the remaining amount of power is equal to or greater than predetermined value S1, and assist is provided according to the increase in remaining amount of power. The power is set to increase. On the other hand, when the remaining charge amount is less than S1, it is set negative. The power of the motor generator 2 "negative" indicates that the motor generator 2 is driven as a generator, and the power storage device 10 is charged by the power generation of the motor generator 2 when the storage amount is less than S1. The power value calculated by the maximum motor power calculation 55 is output to the divider 56 and the limit torque calculation unit 80. When the remaining charge amount is less than S1 (during power generation), the value calculated by maximum motor power calculation unit 55 may be used as power generation request power, and the adder 42 shown the value in FIG. It may be output to In the graph in FIG. 5 relating to the maximum motor power calculation unit 55, the maximum motor power monotonously increases when the storage residual amount is S1 or more, but the storage residual amount has a predetermined value S2 (S2> S1 The above setting may be used to keep the maximum motor power constant.
 除算器56は、最大モータ動力演算部55から出力される動力値をエンジン1の実回転数(回転数センサの出力値から演算可能)で除することで電動発電機2のトルクの最大値を算出する部分である。すなわち、除算器56はトルク算出器として機能する。除算器56で算出されたトルクは最小値選択器57に出力される。 The divider 56 divides the power value output from the maximum motor power calculation unit 55 by the actual number of revolutions of the engine 1 (which can be calculated from the output value of the number-of-rotations sensor), thereby dividing the maximum value of the torque of the motor generator 2 It is a part to calculate. That is, the divider 56 functions as a torque calculator. The torque calculated by the divider 56 is output to the minimum value selector 57.
 最小値選択器57は、アシストトルク演算部70から出力されたアシストトルク量Tmと除算器56から出力されたトルク最大値とを比較して、小さい方を電動発電機2のトルク指令値としてインバータ9A(モータ制御部)に出力する。これにより、インバータ9Aは、当該トルク指令に基づいて電動発電機2を制御する。なお、蓄電装置10の蓄電残量がS1未満のときは動力演算部55の出力は負の値となり、除算器56の出力も負の値となる。そのため、本実施の形態では、偏差eの存在によりアシストトルク演算部70で正のアシストトルク量Tmが出力されても、最小値選択器57では除算器56から出力される負の値が必ず選択されることになり、エンジンアシストよりも発電が優先されることになっている。 The minimum value selector 57 compares the assist torque amount Tm output from the assist torque calculation unit 70 with the torque maximum value output from the divider 56, and uses the smaller one as the torque command value of the motor generator 2 as an inverter. Output to 9A (motor control unit). Thus, the inverter 9A controls the motor generator 2 based on the torque command. When the remaining charge amount of power storage device 10 is less than S1, the output of power calculation unit 55 has a negative value, and the output of divider 56 also has a negative value. Therefore, in the present embodiment, even if a positive assist torque amount Tm is output by the assist torque calculation unit 70 due to the presence of the deviation e, the minimum value selector 57 always selects the negative value output from the divider 56. Power generation is to be prioritized over engine assist.
 ところで、最大モータ動力演算部55で算出された動力とエンジン1の最大動力の和を上回るポンプ動力が要求された場合には、油圧ポンプ3に供給する動力が不足して、ラグダウンによりエンジン1の実回転数が低下することが予測される。そこで、このようなラグダウンを防ぐために、本実施の形態では、不足する動力に対応するトルク(油圧ポンプ3の吸収トルク制限量Tp2)を油圧ポンプ3の吸収トルクから減じる制御を制限トルク演算部80で行っている。蓄電装置10の蓄電残量が設定値S1以上のとき、油圧ポンプ3の吸収トルク制限量Tp2は蓄電残量が減少するにつれて増加される。この処理により、エンジン1の実回転数の低下を待たずに(すなわち、ラグダウンの発生を待たずに)、蓄電装置10の蓄電残量を参照することで、油圧ポンプ3の吸収トルクの制限量(Tp2)を増減することができる。当該機能を実現するために、制限トルク演算部80は、蓄電残量に応じた吸収トルク制限量Tp2を算出する部分であり、加算器81と、減算器82と、補正部83と、除算器84を備えている。 By the way, when the pump power exceeding the sum of the power calculated by the maximum motor power calculation unit 55 and the maximum power of the engine 1 is required, the power supplied to the hydraulic pump 3 is insufficient. It is predicted that the actual rotational speed will decrease. Therefore, in order to prevent such a lag-down, in the present embodiment, the control for reducing the torque corresponding to the insufficient power (the absorption torque limit amount Tp2 of the hydraulic pump 3) from the absorption torque of the hydraulic pump 3 is limited torque calculation unit 80 It is going on. When the storage amount of power storage device 10 is equal to or greater than the set value S1, the absorption torque limit amount Tp2 of hydraulic pump 3 is increased as the storage amount of charge decreases. By this processing, without waiting for the decrease in the actual rotational speed of the engine 1 (that is, without waiting for the occurrence of a lag-down), the storage torque of the hydraulic pump 3 is limited by referring to the remaining charge amount of the power storage device 10 (Tp2) can be increased or decreased. In order to realize the function, the limit torque calculation unit 80 is a part that calculates the absorption torque limit amount Tp2 according to the remaining charge amount, and the adder 81, the subtractor 82, the correction unit 83, and the divider It has 84.
 加算器81は、最大モータ動力演算部55から出力される電動発電機2の動力とエンジン1の最大動力の和を算出する部分であり、算出結果を減算器82に出力する。 The adder 81 is a part that calculates the sum of the power of the motor generator 2 output from the maximum motor power calculation unit 55 and the maximum power of the engine 1, and outputs the calculation result to the subtractor 82.
 減算器82は、ポンプ要求動力演算部41(図4)より出力されるポンプ要求動力から、加算器81より出力される動力を減じる処理を実行する部分であり、その算出値を補正部83に出力する。減算器82の算出値が正であることは、エンジン1と電動発電機2の動力に対してポンプ要求動力が過大であることを示し、そのままではラグダウンによりエンジン1の実回転数の低下が発生することを示す。なお、最大モータ動力演算部55から出力される電動発電機2の動力が負の場合には、当該動力(発電要求動力)は、減算器82において、ポンプ要求動力とともにエンジン1に対する負荷として扱われる。 The subtractor 82 is a part that executes a process of subtracting the power output from the adder 81 from the pump power requirement output from the pump power requirement calculator 41 (FIG. 4). Output. The fact that the calculated value of the subtractor 82 is positive indicates that the pump request power is excessive with respect to the power of the engine 1 and the motor generator 2. In this case, the actual rotational speed of the engine 1 decreases due to lag-down. Indicates to do. When the power of the motor generator 2 output from the maximum motor power calculation unit 55 is negative, the power (power required to generate power) is treated as a load on the engine 1 together with the power required for the pump in the subtractor 82. .
 補正部83では、減算器82からの出力がゼロ以上であれば、そのままの値を除算器84に出力する。このときの除算器84への出力は、不足する動力に相当する。蓄電装置10の蓄電残量が設定値S1以上のときは、蓄電残量が減少するにつれて不足動力(油圧ポンプ3の吸収トルク制限量)は増加することになる。一方、減算器82からの出力が負の場合には、動力は不足しないことを示すので、除算器84にはゼロを出力する。後者の場合、制限トルク演算部80による油圧ポンプ3の吸収トルク制限は、最終的に実行されないことになる。 If the output from the subtractor 82 is greater than or equal to zero, the correction unit 83 outputs the value as it is to the divider 84. The output to the divider 84 at this time corresponds to the insufficient power. When the storage amount of the storage device 10 is equal to or greater than the set value S1, the insufficient power (the absorption torque limitation amount of the hydraulic pump 3) increases as the storage amount decreases. On the other hand, if the output from the subtractor 82 is negative, it indicates that the power is not insufficient, so zero is output to the divider 84. In the latter case, the absorption torque limitation of the hydraulic pump 3 by the limitation torque calculation unit 80 is not finally executed.
 除算器84は、補正部83から出力される動力値をエンジン1の実回転数(回転数センサの出力値から演算可能)で除することで吸収トルク制限量Tp2(不足するトルク量)を算出する部分である。すなわち、除算器84はトルク算出器として機能する。除算器84で算出された吸収トルク制限量Tp2は加算器52に出力される。 The divider 84 divides the power value output from the correction unit 83 by the actual number of revolutions of the engine 1 (which can be calculated from the output value of the number-of-rotations sensor) to calculate the absorption torque limit amount Tp2 (amount of torque shortage). Part of the That is, the divider 84 functions as a torque calculator. The absorption torque limit amount Tp2 calculated by the divider 84 is output to the adder 52.
 加算器52は、制限トルク演算部60から出力される吸収トルク制限量Tp1と、制限トルク演算部80から出力される吸収トルク制限量Tp2とを加算する処理を実行し、その算出結果を容量演算部53に出力する。したがって、加算器52で算出された値(Tp1+Tp2)が最終的な油圧ポンプ3の吸収トルク制限量になる。 The adder 52 executes a process of adding the absorption torque limit amount Tp1 output from the limit torque calculation unit 60 and the absorption torque limit amount Tp2 output from the limit torque calculation unit 80, and calculates the calculation result as a capacity calculation. Output to the part 53. Therefore, the value (Tp1 + Tp2) calculated by the adder 52 becomes the final absorption torque limit amount of the hydraulic pump 3.
 容量演算部53は、加算器52から出力されるトルク制限量の合計値(Tp1+Tp2)と、圧力センサ22の出力から得られる油圧ポンプ3の吐出圧に基づいて、油圧ポンプ3の目標容量を算出する処理を実行する部分であり、算出した目標容量に基づいた容量指令をレギュレータ14(電磁比例弁15)に出力する。これにより、制限トルク演算部60,80の演算結果に基づいて油圧ポンプ3の容量が制御される。 The displacement calculation unit 53 calculates the target displacement of the hydraulic pump 3 based on the total value (Tp1 + Tp2) of the torque limitation amount output from the adder 52 and the discharge pressure of the hydraulic pump 3 obtained from the output of the pressure sensor 22. It is a part which performs the process to be performed and outputs the capacity | capacitance instruction | command based on the calculated target capacity | capacitance to the regulator 14 (electromagnetic proportional valve 15). Thus, the displacement of the hydraulic pump 3 is controlled based on the calculation results of the limit torque calculation units 60 and 80.
 上記のように構成された本実施の形態に係る作業機械によれば、エンジン1の目標回転数と実回転数の偏差eが生じた場合、当該偏差eの大きさが設定値e1(N1)未満であれば、当該偏差の発生原因が「ラグダウン(エンジンラグダウン)」と判定され、制限トルク演算部60及びアシストトルク演算部70によって電動発電機2のアシストトルク量Tmの大きさよりも油圧ポンプ3の吸収トルク制限量Tp1の大きさが大きく設定され(|Tm|<|Tp1|)、主として油圧ポンプ3の動力が制限される。 According to the working machine according to the present embodiment configured as described above, when a deviation e between the target number of revolutions of the engine 1 and the actual number of revolutions occurs, the magnitude of the deviation e is the set value e1 (N1) If it is less than this, it is determined that the cause of occurrence of the deviation is "lag down (engine lag down)", and the hydraulic pressure pump is larger than the assist torque amount Tm of the motor generator 2 by the limit torque calculation unit 60 and the assist torque calculation unit 70. The magnitude of the absorption torque limit amount Tp1 of 3 is set large (| Tm | <| Tp1 |), and the power of the hydraulic pump 3 is mainly limited.
 一般的に、ラグダウン時はエンジンが最大動力で運転している状態であり、ラグダウンからの復帰に電動発電機によるアシスト動力を主として利用すると、電動発電機のアシストに必要なエネルギが多くなり電力消費量が増加する傾向がある。このため、電動発電機への電力源としてバッテリ(蓄電装置)を備えている場合には、電動発電機を発電機としてエンジンで駆動する必要性が増し燃料消費量が増大するおそれがある。一方、発電電動機による発電・充電を実施しない場合には、電動発電機でエンジンアシスト可能な時間が減少してしまう。これに対して、本実施の形態のように制御すれば、ラグダウン時には、主として油圧ポンプ3の動力が制限されるので、過度の電力消費を抑制しながら目標回転数に速やかに復帰できる。 In general, the engine is operating at maximum power at the time of lag-down, and if the assist power by the motor generator is mainly used to recover from the lag-down, energy required to assist the motor generator increases and power consumption is consumed. The amount tends to increase. For this reason, when a battery (power storage device) is provided as a power source to the motor generator, the necessity of driving the motor generator as an electric generator as an engine increases, and the fuel consumption may increase. On the other hand, when the generation and charge by the generator motor are not performed, the time during which the motor generator can assist the engine decreases. On the other hand, if control is performed as in the present embodiment, the power of the hydraulic pump 3 is mainly limited at the time of lag-down, so that it is possible to promptly return to the target rotation speed while suppressing excessive power consumption.
 また、エンジンの回転数偏差の大きさに応じて電動発電機のアシスト動力を決定する方法があるが、当該方法では、エンジンが最大動力又はこれに近い状態で運転している間は発電することが難しいため、作業機械の作業量が蓄電装置の充電量に極度に依存してしまう。しかし、本実施の形態によれば、ラグダウン時は、主として油圧ポンプ3の動力を制限することで対応するため、電動発電機2により連続して大きな動力でアシストする機会が制限され、蓄電装置10の充電量が短時間で低下することが抑制される。そのため、蓄電装置10の充電量に作業機械の作業量が極度に依存することが回避でき、安定した操作を継続することができる。 Also, there is a method of determining the assist power of the motor generator according to the magnitude of the rotational speed deviation of the engine, but in this method, power generation is performed while the engine is operating at or near maximum power. The amount of work of the work machine is extremely dependent on the amount of charge of the storage device. However, according to the present embodiment, at the time of lag-down, since the power of hydraulic pump 3 is mainly limited to cope with this, the opportunity to assist with large power continuously by motor generator 2 is limited. It is suppressed that the charge amount of the battery decreases in a short time. Therefore, it can be avoided that the amount of work of the work machine is extremely dependent on the charge amount of power storage device 10, and stable operation can be continued.
 一方、上記のように構成された本実施の形態に係る作業機械によれば、エンジン1の目標回転数と実回転数の偏差eが生じた場合、当該偏差eの大きさが設定値e1(N1)以上であれば、当該偏差の原因がエンジン1の「加速」と判定され、制限トルク演算部60及びアシストトルク演算部70によって油圧ポンプ3の吸収トルク制限量Tp1の大きさよりも電動発電機2のアシストトルク量Tmの大きさが大きく設定され(|Tm|>|Tp1|)、主として電動発電機2によるエンジンアシストが実行される。 On the other hand, according to the work machine according to the present embodiment configured as described above, when a deviation e between the target speed of the engine 1 and the actual speed occurs, the magnitude of the deviation e is the set value e1 ( If it is N1) or more, the cause of the deviation is determined to be "acceleration" of the engine 1, and the motor generator is more than the size of the absorption torque limit amount Tp1 of the hydraulic pump 3 by the limit torque calculation unit 60 and the assist torque calculation unit 70. The magnitude of the assist torque amount Tm of 2 is set to be large (| Tm |> | Tp1 |), and the engine assist by the motor generator 2 is mainly executed.
 一般的に、エンジン加速時は、油圧ポンプの要求動力が上昇すること等を理由にして、エンジンの回転数を上げて動力を引き出す場面なので、エンジン動力には余裕があることが多い。エンジンの回転数偏差の大きさに応じてポンプ動力を制限する方法があるが、当該方法では、加速時に発生した回転数偏差によりポンプ動力が過度に制限されて操作性が低下するおそれがある。これに対して、本実施の形態は、主として電動発電機2のアシスト動力によりエンジン1を加速し、油圧ポンプ3の動力制限は抑制されるので、操作性を損なわずに目標回転数に速やかに到達することができる。 Generally, at the time of engine acceleration, the engine power is often increased by increasing the engine speed and the like because the required power of the hydraulic pump is increased. Although there is a method of limiting the pump power according to the magnitude of the rotational speed deviation of the engine, in this method, the pump power is excessively limited due to the rotational speed deviation generated at the time of acceleration, and the operability may be deteriorated. On the other hand, in the present embodiment, the engine 1 is mainly accelerated by the assist power of the motor generator 2, and the power limitation of the hydraulic pump 3 is suppressed. Can be reached.
 したがって、本実施の形態によれば、エンジン加速時には操作性を損なわずに目標回転数に速やかに到達でき、一方、ラグダウン時には過度の電力消費を抑制しながら目標回転数に速やかに復帰できる。 Therefore, according to the present embodiment, it is possible to quickly reach the target rotation speed without losing operability when the engine accelerates, and to quickly return to the target rotation speed while suppressing excessive power consumption at the time of lag-down.
 また、本実施の形態では、加速とラグダウンに応じたアシストトルク量Tmと吸収トルク制限量Tp1の比率の変更とともに、蓄電装置10の蓄電状態(充電量)に応じた吸収トルク制限量Tp2の制御を制限トルク演算部80で行っている。 Further, in the present embodiment, the control of absorption torque limit amount Tp2 according to the state of charge (charge amount) of power storage device 10 along with the change of the ratio of assist torque amount Tm and absorption torque limit amount Tp1 according to acceleration and lagdown. Is performed by the limit torque calculation unit 80.
 一般に、蓄電装置の充電量が少ないときには、電動発電機によるアシストはできないので、ポンプ要求動力がエンジン動力を上回れば、エンジン回転数が低下してエンストに至ってしまう。この種の課題に対しては、従来のスピードセンシングのように、エンジン回転数の低下が検出されたときにポンプ動力を制限してもエンジン回転数の低下とエンジンストールを回避できる。 In general, when the amount of charge of the power storage device is small, the motor generator can not assist, and thus if the pump request power exceeds the engine power, the engine rotational speed is lowered to cause an engine stall. For this type of problem, as in the conventional speed sensing, even if the pump power is limited when a decrease in engine rotational speed is detected, it is possible to avoid a reduction in engine rotational speed and engine stall.
 これに対して、本実施の形態にように蓄電装置10の充電量に基づいて吸収トルク制限量Tp2を制御すると、エンジン回転数の低下が実際に表れるのに先立ってポンプ動力が制限されるので、エンジン回転数の低下とエンジンストールを防止できるだけでなく、エンジン回転数の低下に伴う動力低下及び回転数変動による操作性の悪化を抑止することもできる。特に、二次電池(蓄電装置)の充電量が非常に少なく当該二次電池の保護のために電動発電機による発電が必要な場合には、油圧アクチュエータのみを備える従来型の油圧作業機械と比較してエンジンの負荷が大きくなるが、本実施の形態によれば速やかなポンプ動力の制限が可能なので、上記効果は顕著となる。 On the other hand, when the absorption torque limit amount Tp2 is controlled based on the charge amount of the power storage device 10 as in the present embodiment, the pump power is limited before the reduction of the engine speed actually appears. Not only can the engine rotational speed decrease and engine stall be prevented, but also the deterioration of the operability due to the power reduction and the rotational speed fluctuation accompanying the engine rotational speed decrease can be suppressed. In particular, when the amount of charge of a secondary battery (power storage device) is very small and it is necessary to generate electric power by a motor generator to protect the secondary battery, it is compared with a conventional hydraulic working machine equipped with only a hydraulic actuator. Although the load on the engine is increased, according to the present embodiment, since the pump power can be rapidly limited, the above effect is remarkable.
 なお、上記の実施の形態では、「制限トルク演算部60及びアシストトルク演算部70によるアシストトルク量Tmと吸収トルク制限量Tp1の比率の変更」と、「制限トルク演算部80による吸収トルク制限量Tp2の変更」の双方を行う場合について説明したが、「制限トルク演算部60及びアシストトルク演算部70」と「制限トルク演算部80」の双方のうちいずれか一方を備えることでも上記各効果は発揮されるため、両者のうちいずれか一方は適宜省略可能である。 In the above embodiment, “change of the ratio of the assist torque amount Tm to the absorption torque limit amount Tp1 by the limit torque calculation unit 60 and the assist torque calculation unit 70” and “the absorption torque limit amount by the limit torque calculation unit 80” Although the case of performing both of Tp2 has been described, each effect can also be obtained by including one of both of the “limiting torque computing unit 60 and the assist torque computing unit 70” and the “limiting torque computing unit 80”. In order to be demonstrated, either one of the two can be omitted appropriately.
 また、本実施の形態では、回転数偏差eのみに基づいてラグダウンか加速かを判定したが、エンジン1の目標回転数及び実回転数の変化等も含めて監視することで、回転数偏差eの発生原因がラグダウンか加速かを精度良く判定し、当該判定結果に基づいて上記のような制御を行っても良い。 Further, in the present embodiment, it is determined whether lagdown or acceleration is based on only the rotational speed deviation e. However, the rotational speed deviation e may be monitored by monitoring the target rotational speed of the engine 1 and changes in the actual rotational speed, etc. It may be determined with high accuracy whether the cause of the occurrence of the delay is lag down or acceleration, and the above control may be performed based on the determination result.
 また、上記の実施の形態では、作業機械としてハイブリッド式油圧ショベルの場合について説明したが、エンジンに機械的に接続された可変容量形油圧ポンプ及び電動発電機を備えるものであれば、油圧ショベル以外の作業機械にも適用可能である。 In the above embodiment, although the case of the hybrid hydraulic shovel was described as the working machine, except for the hydraulic shovel, as long as it is provided with a variable displacement hydraulic pump and a motor generator mechanically connected to the engine. It is applicable also to the work machine of.
 なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications within the scope of the present invention. For example, the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted. In addition, a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
 また、上記の制御装置8に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。 The configuration according to the control device 8 may be a program (software) in which each function according to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU). The information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
 また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 Moreover, although the control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.
 1…エンジン、2…電動発電機、3…可変容量形油圧ポンプ、5…油圧アクチュエータ、8…制御装置、9A,9B…インバータ、14…レギュレータ、16…操作レバー、18a,18b…圧力センサ、19…電動機(旋回モータ)、22…圧力センサ、32…パイロットポンプ、41…ポンプ要求動力演算部、43…目標回転数演算部、53…容量演算部、54…蓄電残量演算部、55…最大モータ動力演算部、57…最小値選択器、60…第1制限トルク演算部、70…アシストトルク演算部、80…第2制限トルク演算部、91,92,93…油圧シリンダ、95,96…油圧モータ、100a…ブーム、100b…アーム、100c…バケット(アタッチメント)、100d…上部旋回体、100e…下部走行体 DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Motor generator, 3 ... Variable displacement hydraulic pump, 5 ... Hydraulic actuator, 8 ... Control apparatus, 9A, 9B ... Inverter, 14 ... Regulator, 16 ... Operation lever, 18a, 18b ... Pressure sensor, 19: motor (swing motor), 22: pressure sensor, 32: pilot pump, 41: pump request power operation unit, 43: target rotational speed operation unit, 53: capacity operation unit, 54: remaining charge operation unit, 55: Maximum motor power operation unit 57: minimum value selector 60: first limit torque operation unit 70: assist torque operation unit 80: second limit torque operation unit 91, 92, 93 hydraulic cylinder 95, 96 ... hydraulic motor, 100a ... boom, 100b ... arm, 100c ... bucket (attachment), 100d ... upper revolving unit, 100e ... lower traveling unit

Claims (5)

  1.  エンジンと、
     前記エンジンとの間でトルクの伝達を行う電動発電機と、
     前記エンジン及び前記電動発電機の少なくとも一方によって駆動される可変容量形油圧ポンプと、
     当該油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータと、
     前記エンジンの目標回転数と実回転数の値に基づいて、前記電動発電機による前記エンジンへのアシストトルク量を制御する電動機制御部と、
     前記エンジンの目標回転数と実回転数の値に基づいて、前記油圧ポンプの吸収トルク制限量を制御するポンプ制御部とを備え、
     前記エンジンの目標回転数と実回転数の値に基づいて前記エンジンのラグダウンと判定されたときには、前記アシストトルク量よりも前記吸収トルク制限量が大きく設定され、
     前記エンジンの目標回転数と実回転数の値に基づいて前記エンジンの加速と判定されたときには、前記吸収トルク制限量よりも前記アシストトルク量が大きく設定されることを特徴とする作業機械。
    With the engine,
    A motor generator for transmitting torque between the engine and the engine;
    A variable displacement hydraulic pump driven by at least one of the engine and the motor generator;
    A hydraulic actuator driven by pressure oil discharged from the hydraulic pump;
    A motor control unit configured to control an assist torque amount applied to the engine by the motor generator based on the target rotation speed and the actual rotation speed of the engine;
    And a pump control unit configured to control an absorption torque limit amount of the hydraulic pump based on the target rotation speed and the actual rotation speed of the engine.
    When it is determined that the engine is in a lag-down state based on the target engine speed and the actual engine speed, the absorption torque limit amount is set larger than the assist torque amount.
    A working machine characterized in that the assist torque amount is set larger than the absorption torque limit amount when it is determined that the engine is accelerated based on the target engine speed and the actual engine speed.
  2.  請求項1に記載の作業機械において、
     前記エンジンの目標回転数と実回転数の偏差の大きさが設定値N1以上のときを前記エンジンの加速と判定し、前記偏差の大きさが前記設定値N1未満のときを前記エンジンのラグダウンと判定する判定部をさらに備え、
     前記電動機制御部及び前記ポンプ制御部は、前記判定部の判定結果に基づいて前記アシストトルク量及び前記吸収トルク制限量を制限することを特徴とする作業機械。
    In the work machine according to claim 1,
    When the magnitude of the deviation between the target rotational speed of the engine and the actual rotational speed is greater than or equal to the set value N1 is determined as acceleration of the engine, and when the magnitude of the deviation is less than the set value N1 is lagdown of the engine and The apparatus further comprises a determination unit for determining
    A working machine, wherein the motor control unit and the pump control unit limit the assist torque amount and the absorption torque limit amount based on the determination result of the determination unit.
  3.  請求項2に記載の作業機械において、
     前記電動発電機に供給される電力が蓄えられる蓄電装置をさらに備え、
     前記ポンプ制御部は、前記蓄電装置の蓄電残量が設定値S1以上のとき、当該蓄電残量が減少するにつれて前記油圧ポンプの吸収トルク制限量を増加することを特徴とする作業機械。
    In the working machine according to claim 2,
    It further comprises a power storage device in which the power supplied to the motor generator is stored,
    The working machine, wherein the pump control unit increases the absorption torque limitation amount of the hydraulic pump as the remaining charge amount decreases when the remaining charge amount of the power storage device is equal to or greater than a set value S1.
  4.  請求項2又は3に記載の作業機械において、
     前記目標回転数は、前記ポンプの要求動力と前記電動発電機の発電要求動力の合計が増加するにつれて階段状に離散的に増加するように設定されており、
     当該階段の各段の高さに相当する目標回転数の増加量は一定値であり、
     当該一定値と前記設定値N1は一致することを特徴とする作業機械。
    In the working machine according to claim 2 or 3,
    The target rotational speed is set to discretely increase stepwise as the sum of the required power of the pump and the required power of generation of the motor generator increases.
    The amount of increase in the target speed corresponding to the height of each step of the step is a constant value,
    A working machine characterized in that the constant value and the set value N1 coincide with each other.
  5.  エンジンと、
     前記エンジンとの間でトルクの伝達を行う電動発電機と、
     前記エンジン及び前記電動発電機の少なくとも一方によって駆動される可変容量形油圧ポンプと、
     当該油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータと、
     前記エンジンの目標回転数と実回転数の値に基づいて、前記電動発電機による前記エンジンへのアシストトルク量を制御する電動機制御部と、
     前記エンジンの目標回転数と実回転数の値に基づいて、前記油圧ポンプの吸収トルク制限量を制御するポンプ制御部と、
     前記電動発電機に供給される電力が蓄えられる蓄電装置とを備え、
     前記ポンプ制御部は、前記蓄電装置の蓄電残量が設定値S1以上のとき、当該蓄電量が減少するにつれて前記油圧ポンプの吸収トルク制限量を増加することを特徴とする作業機械。
    With the engine,
    A motor generator for transmitting torque between the engine and the engine;
    A variable displacement hydraulic pump driven by at least one of the engine and the motor generator;
    A hydraulic actuator driven by pressure oil discharged from the hydraulic pump;
    A motor control unit configured to control an assist torque amount applied to the engine by the motor generator based on the target rotation speed and the actual rotation speed of the engine;
    A pump control unit configured to control an absorption torque limit amount of the hydraulic pump based on values of the target rotation speed and the actual rotation speed of the engine;
    And a power storage device for storing power supplied to the motor generator.
    The working machine, wherein the pump control unit increases the absorption torque limitation amount of the hydraulic pump as the storage amount decreases when the storage amount of the storage device is equal to or greater than a set value S1.
PCT/JP2013/082401 2012-12-03 2013-12-02 Work machine WO2014087978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551094A JP6126625B2 (en) 2012-12-03 2013-12-02 Work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012264711 2012-12-03
JP2012-264711 2012-12-03

Publications (1)

Publication Number Publication Date
WO2014087978A1 true WO2014087978A1 (en) 2014-06-12

Family

ID=50883395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082401 WO2014087978A1 (en) 2012-12-03 2013-12-02 Work machine

Country Status (2)

Country Link
JP (1) JP6126625B2 (en)
WO (1) WO2014087978A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105317667A (en) * 2014-07-24 2016-02-10 中联重科股份有限公司 Method and device for controlling pumping speed, pumping system and engineering machine
JP2016156253A (en) * 2015-02-26 2016-09-01 コベルコ建機株式会社 Hybrid construction machine
JP2016160662A (en) * 2015-03-02 2016-09-05 日立建機株式会社 Hybrid type work machine
JP2021073128A (en) * 2015-02-23 2021-05-13 ドイツ アクツィエンゲゼルシャフトDeutz Aktiengesellschaft Hybrid drive-train

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028071A (en) * 2001-07-18 2003-01-29 Hitachi Constr Mach Co Ltd Drive control device for hybrid construction machine, hybrid construction machine and drive control program therefor
JP2007290607A (en) * 2006-04-26 2007-11-08 Kobelco Contstruction Machinery Ltd Power source device of hybrid type working machine
JP2010159648A (en) * 2009-01-06 2010-07-22 Kobelco Contstruction Machinery Ltd Power source device for hybrid working machine
JP2011236759A (en) * 2010-05-07 2011-11-24 Komatsu Ltd Working vehicle and method for controlling working vehicle
JP2012158890A (en) * 2011-01-31 2012-08-23 Hitachi Constr Mach Co Ltd Drive control device for working machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028071A (en) * 2001-07-18 2003-01-29 Hitachi Constr Mach Co Ltd Drive control device for hybrid construction machine, hybrid construction machine and drive control program therefor
JP2007290607A (en) * 2006-04-26 2007-11-08 Kobelco Contstruction Machinery Ltd Power source device of hybrid type working machine
JP2010159648A (en) * 2009-01-06 2010-07-22 Kobelco Contstruction Machinery Ltd Power source device for hybrid working machine
JP2011236759A (en) * 2010-05-07 2011-11-24 Komatsu Ltd Working vehicle and method for controlling working vehicle
JP2012158890A (en) * 2011-01-31 2012-08-23 Hitachi Constr Mach Co Ltd Drive control device for working machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105317667A (en) * 2014-07-24 2016-02-10 中联重科股份有限公司 Method and device for controlling pumping speed, pumping system and engineering machine
JP2021073128A (en) * 2015-02-23 2021-05-13 ドイツ アクツィエンゲゼルシャフトDeutz Aktiengesellschaft Hybrid drive-train
JP2016156253A (en) * 2015-02-26 2016-09-01 コベルコ建機株式会社 Hybrid construction machine
CN105926705B (en) * 2015-02-26 2020-09-22 神钢建机株式会社 Hybrid construction machine
JP2016160662A (en) * 2015-03-02 2016-09-05 日立建機株式会社 Hybrid type work machine
WO2016139852A1 (en) * 2015-03-02 2016-09-09 日立建機株式会社 Hybrid work machine
US10315508B2 (en) 2015-03-02 2019-06-11 Hitachi Construction Machinery Tierra Co., Ltd Hybrid work machine

Also Published As

Publication number Publication date
JPWO2014087978A1 (en) 2017-01-05
JP6126625B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5356436B2 (en) Construction machine control equipment
JP5952901B2 (en) Hybrid construction machine
JP5342473B2 (en) Control device for hybrid construction machinery
JP5974014B2 (en) Hybrid drive hydraulic work machine
JP5594748B2 (en) Hybrid construction machinery
US10030363B2 (en) Hybrid work machine
KR101804433B1 (en) Construction machine
WO2014087978A1 (en) Work machine
JP2016044414A (en) Hydraulic drive system
JP6336855B2 (en) Hydraulic pump drive system
EP3112640B1 (en) Hybrid construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860343

Country of ref document: EP

Kind code of ref document: A1