WO2014084187A1 - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
WO2014084187A1
WO2014084187A1 PCT/JP2013/081700 JP2013081700W WO2014084187A1 WO 2014084187 A1 WO2014084187 A1 WO 2014084187A1 JP 2013081700 W JP2013081700 W JP 2013081700W WO 2014084187 A1 WO2014084187 A1 WO 2014084187A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gas separation
separation membrane
represented
hfip
Prior art date
Application number
PCT/JP2013/081700
Other languages
French (fr)
Japanese (ja)
Inventor
山中 一広
健資 須田
大樹 魚山
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201380062298.2A priority Critical patent/CN104822444B/en
Publication of WO2014084187A1 publication Critical patent/WO2014084187A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/106Repairing membrane apparatus or modules
    • B01D65/108Repairing membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide

Definitions

  • the present invention relates to a gas separation membrane.
  • Gas separation by a gas separation membrane has long been attracting attention as a simple technique that can continuously separate a mixed gas in a gaseous state and does not involve phase change.
  • Gas separation is a technique for selectively separating gas by utilizing the difference in permeation speed and the presence or absence of permeation depending on the type of gas that permeates the gas separation membrane (hereinafter, sometimes referred to as “gas”).
  • polymers such as cellulose acetate, polysulfone or polyimide are known.
  • polyimide is known as a material that has strength suitable for use as a gas separation membrane, is not easily damaged, has excellent heat resistance, and can be used at high temperatures.
  • a polyimide gas separation membrane containing a hexafluoroisopropylidene group (hereinafter sometimes referred to as “—C (CF 3 ) 2 —group”) in the repeating structure is represented by helium (hereinafter referred to as “He”). ), Carbon dioxide (hereinafter sometimes referred to as “CO 2 ”), high permeability to these gases, oxygen of these gases (hereinafter sometimes referred to as “O 2 ”), methane (Hereinafter, sometimes referred to as “CH 4 ”) is known to have high selectivity.
  • He helium
  • CO 2 Carbon dioxide
  • O 2 oxygen of these gases
  • CH 4 methane
  • Patent Documents 1 to 3 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group (hereinafter “—C (CF 3 ) 2 OH” or “A fluorine-containing polymerizable monomer, which is a diamine having “HFIP group” in some cases, and a method for producing the same are disclosed.
  • a method for producing a gas separation membrane made of polyimide or the like includes a method in which a polyimide solution is wet-coated and then a solvent is simply evaporated to obtain a homogeneous membrane, and a heterogeneous asymmetric membrane consisting of a dense layer and a porous layer. There is a way to get it.
  • a method of obtaining an asymmetric membrane is a method in which a polymer solution is discharged from a discharge port, a solvent existing in the vicinity of the surface is evaporated in the air to form a dense layer, and then a solvent that is compatible with the solvent of the polymer solution but does not dissolve the polymer.
  • Patent Document 4 discloses a method for producing a composite reverse osmosis membrane by this method.
  • the diamine and tetracarboxylic dianhydride for obtaining a polyimide containing a —C (CF 3 ) 2 — group are limited, and the chemical structure is limited when forming a polyimide film.
  • a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering workability, strength, and separation performance.
  • An object of the present invention is to solve such problems, and to provide a gas separation membrane that dissolves in an organic solvent, has excellent moldability, and has excellent gas separation performance when used as a gas separation membrane.
  • the present inventors have prepared a polyimide obtained from an aromatic diamine having an HFIP group, which is a polar group having an —OH group, as a substituent, and two —NH 2 groups in the compound being in an asymmetric positional relationship. By using it, it was made soluble in an organic solvent, particularly a polar solvent, and the polyimide was used as a gas separation membrane, thereby improving gas separation performance and completing the present invention.
  • the present invention is as follows.
  • R 1 represents a divalent organic group
  • R 2 represents a tetravalent organic group.
  • R 1 is represented by the general formula (2) (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.
  • HFIP is —C (CF 3 ) 2 represents an OH group, where p and q are each independently an integer of 0 to
  • R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3) — group, —CH (OH) — group or —NH— group, or 3 carbon atoms
  • HFIP is —C (CF 3 ) 2 Represents an OH group, r and s are each independently an integer of 0 to 2, and satisfy 1 ⁇ r + s ⁇ 4.
  • a line segment intersecting with a wavy line represents a bonding position.
  • the divalent organic group represented by the general formula (2) is represented by the general formula (4).
  • R ab is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.
  • HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
  • the gas separation membrane according to invention 1 wherein
  • the divalent organic group represented by the general formula (2) is represented by the formula (4-1) or (4-2) (In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
  • the divalent organic group represented by the general formula (3) is represented by the formula (5).
  • R bb is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.
  • HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
  • the gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
  • the divalent organic group represented by the general formula (3) is represented by the formula (5-1) or (5-2) (In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
  • the gas separation membrane of invention 1 or 4 which is any one of the above.
  • R 2 represents the formulas (6) to (11) (In the formula, the line that intersects the wavy line represents the coupling position.)
  • invention 7 The gas separation membrane according to any one of inventions 1 to 6, wherein a hydrogen atom of an —OH group of the HFIP group contained in R 1 is substituted with a glycidyl group.
  • invention 9 Furthermore, the gas separation membrane according to any one of inventions 1 to 8, obtained by mixing with an epoxy compound and heating.
  • the epoxy compound has the general formula (12) (In the formula, R f is a g-valent organic group in which an arbitrary number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, and g represents an integer of 1 to 4).
  • the gas separation membrane of the invention 9 represented by these.
  • the polyimide-based gas separation membrane obtained from an asymmetric aromatic diamine having a HFIP group as a substituent of the present invention has good separation performance due to having an HFIP group as a substituent and an asymmetric structure. Since the HFIP group has an —OH group, the gas separation membrane according to the present invention is soluble in a specific organic solvent, particularly a polar solvent, and it is easy to prepare a polyimide solution, which is molded into a desired membrane shape. Is possible.
  • the polyimide gas separation membrane having an asymmetric structure with the HFIP group of the present invention it is easy to introduce the HFIP group into the aromatic diamine having an asymmetric structure as a raw material. Compared to a separation membrane, in addition to high gas separation performance, it is possible to design a structure for improving membrane properties such as membrane strength or resistance to swelling in a solvent.
  • a gas separation membrane having a —C (CF 3 ) 2 — group in addition to an HFIP group and an asymmetric structure exhibits even better gas separation performance.
  • a polyimide having an HFIP group and having an asymmetric structure may be referred to as “HFIP group-containing asymmetric polyimide”.
  • an aromatic diamine compound having an HFIP group and an asymmetric structure may be referred to as an “HFIP group-containing asymmetric aromatic diamine compound”.
  • the gas separation membrane of the present invention is made from an HFIP group-containing asymmetric polyimide.
  • the monomer compound used as a raw material for the HFIP group-containing asymmetric polyimide include HFIP group-containing asymmetric aromatic diamine and tetracarboxylic dianhydride. It is preferable to employ an aromatic diamine for its strength when it is used as a gas separation membrane.
  • the HFIP group-containing asymmetric polyimide is obtained by reacting these monomer compounds.
  • asymmetric aromatic diamine having an HFIP group may be added to adjust the strength and separation performance of the membrane.
  • other dicarboxylic acids and derivatives thereof may be added in addition to tetracarboxylic dianhydride in order to adjust the strength and separation performance of the membrane.
  • the HFIP group-containing asymmetric aromatic diamine As a monomer compound for synthesizing the HFIP group-containing asymmetric polyimide for producing the gas separation membrane of the present invention, the HFIP group-containing asymmetric aromatic diamine has the formula (2-A) (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 2 ) 2 — group, —
  • R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • HFIP is —C (CF 3 ) 2 represents an OH group, where r and s are each independently an integer of 0 to 2 and satisfy 1 ⁇ r + s ⁇ 4. It is represented by
  • HFIP group-containing asymmetric aromatic diamine (2-A) examples of the divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms include cyclohexane, bicyclohexane, and adamantane.
  • a divalent organic group formed by removing two hydrogen atoms of norbornane is preferable, and the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is benzene.
  • the HFIP group-containing asymmetric aromatic diamine (2-A) has the formula (4-A) Wherein R ab is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.
  • HFIP is —C (CF 3 ) 2 represents an OH group.) The compound represented by these is preferable.
  • HFIP represents a —C (CF 3 ) 2 OH group.
  • Me represents a methyl group.
  • Et represents an ethyl group.
  • the compound represented by these is mentioned.
  • the formulas (4-1-A) and (4-2-A) are particularly preferable because of easy availability of the raw material diamine.
  • the divalent organic group formed by removing two hydrogen atoms from the alicyclic hydrocarbon compound having 3 to 12 carbon atoms includes cyclohexane, bicyclohexane, and adamantane.
  • a divalent organic group formed by removing two hydrogen atoms of norbornane is preferable, and the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is benzene.
  • the HFIP group-containing asymmetric aromatic diamine (3-A) has the formula (5-A) Wherein R bb is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number
  • This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.
  • HFIP is —C (CF 3 ) 2 represents an OH group.) The compound represented by these is preferable.
  • HFIP represents a —C (CF 3 ) 2 OH group.
  • Me represents a methyl group.
  • Et represents an ethyl group.
  • the compound represented by these is mentioned.
  • (5-1-A) and (5-2-A) are particularly preferred because of the availability of raw material diamines.
  • HFIP group-containing asymmetric aromatic diamines may be used in combination of two or more.
  • the diamine can be obtained by reacting an asymmetric structure-containing aromatic diamine with hexafluoroacetone or hexafluoroacetone trihydrate.
  • reaction with the symmetrical structure containing aromatic diamine of patent document 1 and hexafluoroacetone or hexafluoroacetone trihydrate is applicable.
  • diamines Asymmetric aromatic diamines with HFIP groups in the synthesis of polyimides with HFIP groups and asymmetric structures for the adjustment of membrane properties such as gas separation performance, solubility in polar solvents, membrane strength, etc.
  • other diamines and dihydroxyamines may be used.
  • the amount used is 10 mol% to 80 mol%, preferably 30 mol% to 60 mol%, based on the tetracarboxylic dianhydride.
  • diamines include 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 2,2′-bistrifluoromethyl- 4,4'-diaminobiphenyl, 3,3'-bistrifluoromethyl-5,5'-diaminobiphenyl, bis (trifluoromethyl) -4,4'-diaminobiphenyl, bis (fluorinated alkyl) -4,4 '-Diaminobiphenyl, dichloro-4,4'-diaminobiphenyl, dibromo-4,4'-diaminobiphenyl, bis (fluorinated alkoxy) -4,4'-diaminobiphenyl, diphenyl-4,4'-diaminobiphenyl, 4,4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenz
  • dihydroxyamines examples include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3'-diamino-4,4'-dihydroxydiphenylsulfone, 4,4'-diamino-3,3'-dihydroxydiphenylsulfone, bis- (3-amino-4-hydroxyphenyl) methane, 2,2-bis- (3-amino-4-hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis- (4-amino-3-hydroxyphenyl) hexafluoro Propane, bis- (4-amino-3-hydroxyphenyl) methane, 2,2-bis- (4-amino-3-hydroxyphenyl) Lopan, 4,4′-diamino-3,3′-
  • Tetracarboxylic dianhydride used for synthesizing the HFIP group-containing asymmetric polyimide according to the present invention has the general formula (12). (In the formula, R 2 represents a tetravalent organic group.) It is represented by
  • R 2 is preferably a tetravalent organic group in which four hydrogen atoms are removed from an alkane, alicyclic ring or aromatic ring, and has a fluorine atom, chlorine atom, oxygen atom, sulfur in the structure.
  • An atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
  • tetracarboxylic dianhydrides include pyromellitic dianhydride (hereinafter sometimes referred to as “PMDA”), trifluoromethylbenzenetetracarboxylic dianhydride, bistrifluoro.
  • PMDA pyromellitic dianhydride
  • trifluoromethylbenzenetetracarboxylic dianhydride bistrifluoro.
  • PMDA, BPDA, BTDA, DSDA, ODPA and 6FDA are particularly preferable from the viewpoint of availability, and 6FDA is more preferable from the viewpoint of good gas separation performance (permeability and selectivity).
  • R 3 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and an alkylene group, and may contain an oxygen atom, a sulfur atom or a nitrogen atom,
  • R 4 may be substituted with an alkyl group, a fluorine atom, a chlorine atom, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group
  • R 4 is independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • each X is independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom.
  • R 3 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and an alkylene group, and may contain an oxygen atom, a sulfur atom or a nitrogen atom, The hydrogen atom may be substituted with an alkyl group, a fluorine atom, a chlorine atom, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
  • the dicarboxylic acid or dicarboxylic acid derivative represented by the general formulas (13) and (14) any of aliphatic dicarboxylic acid, aromatic dicarboxylic acid, or these dicarboxylic acid derivatives may be used.
  • Examples of the aliphatic dicarboxylic acid and derivatives thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, dicarboxylic acid compounds of sebacic acid or their dicarboxylic acid derivatives. It is done.
  • aromatic dicarboxylic acids and derivatives thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-dicarboxybiphenyl, 3,3′-dicarboxybiphenyl, 3,3′-dicarboxyldiphenyl ether, 3, 4'-dicarboxyldiphenyl ether, 4,4'-dicarboxyldiphenyl ether, 3,3'-dicarboxyldiphenylmethane, 3,4'-dicarboxyldiphenylmethane, 4,4'-dicarboxyldiphenylmethane, 4,4'-dicarboxyldiphenylmethane, 3,3'-dicarboxyl Diphenyldifluoromethane, 3,4'-dicarboxyldiphenyldifluoromethane, 4,4'-dicarboxyldiphenyldifluoromethane, 3,3'-dicarboxyldiphenylsulfone
  • terephthalic acid isophthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-ditrifluoromethyl-4,4'-dicarboxybiphenyl because of its ease of availability and ease of condensation polymerization.
  • 2,2-bis (4-carboxyphenyl) hexafluoropropane is preferred.
  • the amount of the dicarboxylic acid or the dicarboxylic acid derivative used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol% or less with respect to the tetracarboxylic dianhydride. Within the range of the molar ratio, gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
  • dicarboxylic acid (derivative) means “dicarboxylic acid or dicarboxylic acid derivative”. The same applies hereinafter in the description.
  • the above-mentioned HFIP group-containing asymmetric aromatic diamine and tetracarboxylic dianhydride are essential, and if necessary, other diamines and dicarboxylic acids.
  • examples thereof include a method in which an acid (derivative) is added and then melted at 150 ° C. or higher and reacted without solvent, and a method in which a polymerization reaction is carried out in an organic solvent at a reaction temperature of ⁇ 20 to 80 ° C.
  • diamine and carboxylic dianhydride or dicarboxylic acid (derivative) react with each other in a one-to-one molar ratio, so that HFIP group-containing asymmetric diamine and other diamines and tetracarboxylic acids.
  • the organic solvent that can be used in the polymerization reaction is only required to dissolve the reaction substrate.
  • the polymerization reaction may be carried out in the presence of these organic solvents and an acid acceptor such as pyridine or triethylamine.
  • the polyamic acid having an asymmetric structure with the HFIP group obtained by the polymerization reaction can be further converted to a polyimide having an asymmetric structure with the HFIP group, which is the target product, by immobilization by cyclization by dehydration ring closure reaction. .
  • the dehydration ring closure reaction is performed under conditions that promote cyclization, such as heating and use of an acid catalyst.
  • a polyamic acid solution having an asymmetric structure with an HFIP group immediately after the polymerization reaction can be imidized at a high temperature of 150 ° C. or more and 250 ° C. or less to prepare an HFIP group-containing asymmetric polyimide solution.
  • pyridine, triethylamine, acetic anhydride or the like may be added.
  • the concentration of the HFIP group-containing asymmetric polyimide in the solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is too thin to be industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
  • the weight average molecular weight (hereinafter sometimes referred to as “Mw”) of the HFIP group-containing asymmetric polyimide according to the present invention is preferably 10,000 or more, and more preferably 20,000 or more.
  • the upper limit of the weight average molecular weight is preferably 500,000 or less, and more preferably 300,000 or less.
  • the weight average molecular weight is less than 10,000, the strength of the resulting polymer film is poor.
  • the weight average molecular weight is more than 500,000, the viscosity of the resulting polymer solution becomes too high and handling becomes difficult.
  • the weight average molecular weight here is determined as a converted value based on standard polystyrene by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) analysis (the same applies hereinafter). Detailed analysis conditions for the analysis are described in the examples of the present application.
  • GPC gel permeation chromatography
  • HFIP group-containing asymmetric polyimide solution Preparation of HFIP group-containing asymmetric polyimide solution
  • the HFIP group-containing asymmetric polyimide solution thus obtained can be used as it is for gas separation membrane production.
  • a solution of an HFIP group-containing asymmetric polyimide is added to a poor solvent such as water or alcohol to add an HFIP group.
  • a poor solvent such as water or alcohol
  • the organic solvent that can be used is not particularly limited as long as the HFIP group-containing asymmetric polyimide is dissolved.
  • the gas separation membrane containing the HFIP group-containing asymmetric polyimide of the present invention is a homogeneous membrane obtained by a wet film formation method for producing a thin film by utilizing the evaporation of the solvent from the HFIP group-containing asymmetric polyimide solution, Alternatively, it may be any one of an asymmetric membrane having a dense layer and a porous layer obtained by other methods.
  • the homogenous film is, for example, wet-coated with a spin coater, applicator or the like on the above-mentioned HFIP group-containing asymmetric polyimide solution on a substrate such as a glass substrate, and then heated in a dry gas such as air, nitrogen or argon, After evaporating the solvent, it is obtained by peeling from the glass substrate.
  • a HFIP group-containing asymmetric polyamic acid solution is used to coat the substrate by the above procedure, and then heated to imidize to obtain a homogeneous film.
  • the thickness of the homogeneous membrane is preferably 5 ⁇ m or more and 1 mm or less.
  • a film thinner than 5 ⁇ m is difficult to manufacture and easily broken.
  • a film thicker than 1 mm is difficult for gas to permeate. More preferably, it is 10 ⁇ m to 200 ⁇ m.
  • An asymmetric film having a dense layer and a porous layer can be formed by the method described above. Moreover, after forming an asymmetric film using a polyamic acid solution instead of a polyimide solution, the asymmetric film can also be obtained by thermal imidization.
  • the dense layer has different permeation speeds depending on the gas type, and has a gas separation function to be selected for the mixed gas.
  • the porous layer has a role as a support for maintaining the membrane shape.
  • the asymmetric membrane including the HFIP group-containing asymmetric polyimide used for the gas separation membrane of the present invention may be either a flat membrane shape or a hollow fiber shape.
  • the thickness of the dense layer is preferably 10 nm or more and 10 ⁇ m or less. If it is thinner than 10 nm, it is difficult to form a film and it is not practical. If it is thicker than 10 ⁇ m, it is difficult for gas to permeate. Preferably they are 30 nm or more and 1 micrometer or less.
  • the thickness of the porous layer is preferably 5 ⁇ m or more and 2 mm or less for a flat film. If it is thinner than 5 ⁇ m, it is difficult to form a film and it is not practical. If it is thicker than 2 mm, it is difficult for gas to permeate. More preferably, they are 10 micrometers or more and 500 micrometers or less.
  • the inner diameter is 10 ⁇ m or more and 4 mm or less, preferably 20 ⁇ m or more and 1 mm or less, and the outer diameter is 30 ⁇ m or more and 8 mm or less, preferably 50 ⁇ m or more and 1.5 mm or less. In the case of a hollow fiber shape, it is preferable to have a dense layer on the outside.
  • the coagulation liquid for producing the asymmetric membrane water or a mixed solvent of water and an organic solvent is preferably used.
  • the mixed solvent contains 40% by mass or more, preferably 50% by mass or more of water, and examples of the organic solvent include alcohols such as methanol, ethanol or isopropanol, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • alcohols such as methanol, ethanol or isopropanol
  • ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • the HFIP group-containing asymmetric structure polyimide used for the gas separation membrane of the present invention is an amide solvent N, N-dimethylacetamide, N, N-dimethylformamide or N- It is particularly easy to dissolve in methyl-2-pyrrolidone, lactones ⁇ -butyrolactone and ⁇ -valerolactone, it is easy to produce a homogeneous film having a desired film thickness, and an asymmetric film using an aqueous coagulant is used. It is also easy to produce.
  • both dry air, aqueous coagulation liquid, etc. are discharged inside the discharge port.
  • a desired dense layer can be formed.
  • a porous layer having a desired pore size, pore size distribution, and thickness can be formed by changing the organic solvent species of the coagulation bath.
  • the film treated with the coagulating liquid is preferably used after being dried by heat treatment.
  • the heat treatment temperature is preferably not higher than the glass transition temperature of polyimide so as not to melt.
  • silicone resin coating For the purpose of repairing the surface defect of the produced gas separation membrane, a silicone resin may be coated on the surface of the separation membrane.
  • a coating method a known coating method such as spin coating, coating with an applicator, or dip coating can be used.
  • Silicone resins include general dimethyl silicone, phenyl group-containing silicone, vinyl group-containing silicone, Si-H group-containing silicone, trifluoropropyl group-containing silicone, silanol group-containing silicone, amino group-containing silicone, epoxy group-containing silicone, A methacryl group containing silicone, an acryl group containing silicone, etc. are mentioned. These are commercially available, such as DMS series, PDV series, VDT series, FMV series, HMS series, DMS series, HPM series, FMS series, SQO series, AMS series, MCR series, ECMS series, RMS series manufactured by Gelest. Is mentioned.
  • the polymer compound having a repeating unit represented by the general formula (1) is mixed with an epoxy compound as in the gas separation membranes of Inventions 7 to 10 for the purpose of improving mechanical strength or plastic resistance. And cured by heating or light irradiation to form a cured film. The cured film can also be applied to the homogeneous film and the asymmetric film.
  • Epoxy compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol triol.
  • Rf is a g-valent organic group in which g hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, or a fluoroalkyl group.
  • G is an integer of 1 to 4.
  • Examples of the alcohol include 1,4-cyclohexanediol, 1,3-adamantanediol, catechol, 1,3-benzenediol, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and 2,2′-methylene.
  • these epoxy compounds and epoxy resin curing agents may be used in combination.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, mercaptan compounds, imidazole compounds, polysulfide resin compounds, and phosphorus compounds.
  • thermosetting agents diaminodiphenylmethane, diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride Methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2-methylimidazole, triphenylphosphine, 2-ethyl-4-methylimidazole, BF 3 -amine complex or Examples thereof include guanidine derivatives, ultraviolet curing agents such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate.
  • ultraviolet curing agents such as diphenyliodonium hexafluorophosphate
  • the mixing ratio of the epoxy compound and the curing agent for the epoxy resin is 70:30 to 99.5: 0.5, preferably 90:10 to 99: 1, expressed as a mass ratio.
  • the gas separation membrane In the middle step of manufacturing the gas separation membrane, for example, it is applied to a glass or silicon substrate, and then cured by heating or ultraviolet irradiation with an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane.
  • UV ultraviolet
  • the organic solvent that can be used is not particularly limited as long as it can dissolve the HFIP group-containing asymmetric polyimide having the repeating unit represented by the general formula (1) and the composition mainly composed of the epoxy compound. can do.
  • N, N-dimethylacetamide solution in which polyimide 1 was dissolved was obtained.
  • the Mw of polyimide 1 determined by GPC measurement of the solution (the device is HLC-8320 manufactured by Tosoh Corporation, the solvent is tetrahydrofuran, converted to polystyrene, and the same shall apply hereinafter) was 28,000.
  • the above N, N-dimethylacetamide solution was applied on a glass substrate, and using a spin coater, the rotation speed: 1000 rpm, the retention time: 30 sec.
  • Spin coating was performed under the following coating conditions.
  • the obtained glass substrate is heated at 200 ° C. for 1 hour in a nitrogen atmosphere, and then peeled off from the glass substrate, that is, a film obtained from polyimide 1, that is, a polyimide 1 film having an asymmetric structure with an HFIP group (hereinafter, “ May be referred to as “polyimide film 1”).
  • the film thickness was measured and found to be 25 ⁇ m.
  • polyimide films 2 to 9 were obtained from polyimides 2 to 9, respectively, in the same manner as described above.
  • raw material compounds and film thicknesses are shown in Table 1, and Mw of polyimides 2 to 9 obtained by GPC measurement are shown in Table 2.
  • Epoxy resin 1 bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 2 Cresol novolac type epoxy resin (manufactured by Aldrich, catalog No. 408042)
  • the polyimide membrane 1 was measured for gas permeability coefficient and evaluated for separation performance. The measurement method of the gas permeation performance of the gas separation membrane is shown below.
  • the gas permeability coefficient is the same as the differential pressure method described in Part 1 of JIS K7126-1: 2006 “Plastics—Films and Sheets—Gas Permeability Test Method” by placing a gas separation membrane with a membrane area of 7 cm 2 in a stainless steel cell. Measured in conformity.
  • helium (He), carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), nitrogen gas (N 2 ) and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C.
  • helium (He) carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), nitrogen gas (N 2 ) and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C.
  • the permeability coefficient and separation performance of each gas were measured.
  • Comparative Example 1 Comparison of Polyimide Membrane 1 and Conventional Resin Next, the gas permeation coefficient and gas separation performance of the polyimide membrane 1 described above, and a fluorine-containing polyimide having no HFIP group of the following structural formula not within the scope of the present invention The gas permeability coefficient and gas separation performance of the membrane (Comparative Example 1) were compared.
  • Table 6 shows the results of gas permeability coefficients of CO 2 , O 2 , N 2 and CH 4 of the polyimide membrane obtained from the fluorine-containing polyimide of Comparative Example 1, and Table 7 shows the results of the separation performance of the membrane.
  • the gas permeation coefficients of CO 2 , O 2 , N 2 and CH 4 of the gas separation membrane obtained from the polyimide membrane 1 of Example 1 which is the HFIP group-containing asymmetric polyimide membrane of the present invention Shows a value larger than the gas permeability coefficient of CO 2 , O 2 , N 2 and CH 4 of the conventional fluorine-containing polyimide film described in Comparative Example 1 which is not in the category of the present invention.
  • the polyimide membrane 1 exhibited better gas separation properties.
  • the gas separation membrane of Example 2 obtained from the polyimide having an HFIP group and an asymmetric structure of the present invention is more CO 2 / CH 4 and CO 2 than the gas separation membrane of Comparative Example 1.
  • the separation performance of / N 2 was excellent.
  • the gas separation membrane obtained from the HFIP group-containing asymmetric polyimide membrane of the present invention has a large difference in permeation rate (gas permeation coefficient) depending on the type of gas, and is excellent in gas separation performance. Therefore, it can be suitably used for a separation / fixation technique of carbon dioxide from liquefied natural gas or the like, and a water-ethanol separation membrane for the purpose of recovering ethanol for fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a gas separation membrane which dissolves in an organic solvent, exhibits excellent formability, and exhibits excellent gas-separation performance when used as a gas separation membrane. [Solution] A gas separation membrane having a polyimide structure having a repeating unit represented by general formula (1) (In the formula, R1 represents a bivalent organic group, and R2 represents a tetravalent organic group.), wherein R1 is a bivalent organic group represented by general formula (2) or a bivalent organic group represented by general formula (3).

Description

気体分離膜Gas separation membrane
 本発明は、気体分離膜に関する。 The present invention relates to a gas separation membrane.
 気体分離膜による気体の分離は、連続的に混合気体を気体状態のままで分離でき、相変化を伴わない簡便な技術として、古くから注目されている。気体の分離は、気体分離膜を透過させる気体(以下、「ガス」と表すことがある。)の種類による透過の有無、透過速度の差異を利用し選択的にガスを分離する技術である。 Gas separation by a gas separation membrane has long been attracting attention as a simple technique that can continuously separate a mixed gas in a gaseous state and does not involve phase change. Gas separation is a technique for selectively separating gas by utilizing the difference in permeation speed and the presence or absence of permeation depending on the type of gas that permeates the gas separation membrane (hereinafter, sometimes referred to as “gas”).
 このような気体分離膜用の材料として、酢酸セルロース、ポリスルホンまたはポリイミド等のポリマーが知られている。中でも、ポリイミドは、気体分離膜として使用するに適した強度があり破損し難く、耐熱性に優れ高温での使用が可能な材料として知られている。 As such a gas separation membrane material, polymers such as cellulose acetate, polysulfone or polyimide are known. Among these, polyimide is known as a material that has strength suitable for use as a gas separation membrane, is not easily damaged, has excellent heat resistance, and can be used at high temperatures.
 ポリイミドを用いた気体分離膜に関する報告は多く、目的とするガスを分離するための膜に対する透過性、および目的とするガスの高い選択性等の気体の分離性能に対するモノマーの構造の影響について、詳細に研究されている。 There are many reports on gas separation membranes using polyimide, and details on the influence of monomer structure on gas separation performance, such as permeability to membranes for separating the target gas and high selectivity of the target gas, etc. Has been studied.
 例えば、繰り返し構造中にヘキサフルオロイソプロピリデン基(以下、「-C(CF3)2-基」と表すことがある。)を含むポリイミド系気体分離膜は、ヘリウム(以下、「He」と表すことがある。)、二酸化炭素(以下、「CO2」と表すことがある。)に対する高い透過性を有し、これらガスの酸素(以下、「O2」と表すことがある。)、メタン(以下、「CH4」と表すことがある。)との高い選択性を有することが知られている。 For example, a polyimide gas separation membrane containing a hexafluoroisopropylidene group (hereinafter sometimes referred to as “—C (CF 3 ) 2 —group”) in the repeating structure is represented by helium (hereinafter referred to as “He”). ), Carbon dioxide (hereinafter sometimes referred to as “CO 2 ”), high permeability to these gases, oxygen of these gases (hereinafter sometimes referred to as “O 2 ”), methane (Hereinafter, sometimes referred to as “CH 4 ”) is known to have high selectivity.
 また、気体分離膜において、-C(CF3)2-基をポリイミド中の繰り返し単位に導入することで、分子鎖の剛直性を高めながら、分子間相互作用を弱め、ガスの種類による気体分離膜透過の差異を生じさせ、高い膜透過性および高い選択性を両立できるとされる。(非特許文献1および非特許文献2参照)。 In addition, by introducing —C (CF 3 ) 2 — groups into the repeating unit in the polyimide in the gas separation membrane, the intermolecular interaction is weakened while the rigidity of the molecular chain is enhanced, and the gas separation according to the type of gas. It is said that a difference in membrane permeation is caused and both high membrane permeability and high selectivity can be achieved. (See Non-Patent Document 1 and Non-Patent Document 2).
 しかしながら、-C(CF3)2-基を含むポリイミドの合成原料の内、容易に入手可能なものとしては、下記のジアミンおよびテトラカルボン酸二無水物しかなく、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。
Figure JPOXMLDOC01-appb-C000010
However, among the raw materials for the synthesis of polyimides containing a —C (CF 3 ) 2 — group, only the following diamines and tetracarboxylic dianhydrides are readily available. Therefore, when a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering strength and separation performance.
Figure JPOXMLDOC01-appb-C000010
 さらに、溶解する有機溶剤が限られるという問題があった。 Furthermore, there was a problem that the organic solvent to be dissolved was limited.
 特許文献1~3には、含フッ素ポリイミドを重合するための、2-ヒドロキシ-1,1,1,3,3,3-フルオロイソプロピル基(以下、「-C(CF3)2OH」または「HFIP基」と表すことがある。)を有するジアミンである含フッ素重合性単量体およびその製造方法が開示されている。 In Patent Documents 1 to 3, 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group (hereinafter “—C (CF 3 ) 2 OH” or “ A fluorine-containing polymerizable monomer, which is a diamine having “HFIP group” in some cases, and a method for producing the same are disclosed.
 また、ポリイミド等からなる気体分離膜の製造方法には、ポリイミドの溶液を湿式塗布した後、溶剤を単に蒸発させ均質な膜を得る方法、緻密層と多孔質層からなる不均質な非対称膜を得る方法がある。非対称膜を得る方法は、ポリマー溶液を吐出口から吐出し、表面近傍に存在する溶媒を空気中に蒸発させ緻密層を形成した後、ポリマー溶液の溶媒と相溶するがポリマーは溶解しない溶媒である凝固液を満たした凝固浴に浸漬し、凝固層内で微細な多孔質層を形成させる方法がある。特許文献4には、当該方法による複合逆浸透膜の製造方法が開示されている。 In addition, a method for producing a gas separation membrane made of polyimide or the like includes a method in which a polyimide solution is wet-coated and then a solvent is simply evaporated to obtain a homogeneous membrane, and a heterogeneous asymmetric membrane consisting of a dense layer and a porous layer. There is a way to get it. A method of obtaining an asymmetric membrane is a method in which a polymer solution is discharged from a discharge port, a solvent existing in the vicinity of the surface is evaporated in the air to form a dense layer, and then a solvent that is compatible with the solvent of the polymer solution but does not dissolve the polymer. There is a method of immersing in a coagulation bath filled with a certain coagulation liquid to form a fine porous layer in the coagulation layer. Patent Document 4 discloses a method for producing a composite reverse osmosis membrane by this method.
 前述したように、-C(CF3)2-基を含むポリイミドを得るためのジアミンおよびテトラカルボン酸二無水物は限られており、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、加工性、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。 As described above, the diamine and tetracarboxylic dianhydride for obtaining a polyimide containing a —C (CF 3 ) 2 — group are limited, and the chemical structure is limited when forming a polyimide film. When a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering workability, strength, and separation performance.
特開2007-119503号公報JP 2007-119503 A 特開2007-119504号公報JP 2007-119504 A 特開2008-150534号公報JP 2008-150534 A 米国特許3133132号US Pat. No. 3,133,132
 本発明は係る問題を解決し、有機溶剤に溶解し、成形性に優れ、気体分離膜として用いた際に気体の分離性能に優れた気体分離膜を提供することを目的とする。 An object of the present invention is to solve such problems, and to provide a gas separation membrane that dissolves in an organic solvent, has excellent moldability, and has excellent gas separation performance when used as a gas separation membrane.
 本発明者らは、-OH基を有する極性基であるHFIP基を置換基として有し、かつ、化合物中の2つの-NH2基が非対称な位置関係にある芳香族ジアミンから得られるポリイミドを用いることで、有機溶剤、特に極性溶剤に可溶とし、当該ポリイミドを気体分離膜とすることで気体分離性能の向上を見出し、本発明を完成させた。 The present inventors have prepared a polyimide obtained from an aromatic diamine having an HFIP group, which is a polar group having an —OH group, as a substituent, and two —NH 2 groups in the compound being in an asymmetric positional relationship. By using it, it was made soluble in an organic solvent, particularly a polar solvent, and the polyimide was used as a gas separation membrane, thereby improving gas separation performance and completing the present invention.
 すなわち、本発明は以下の通りである。 That is, the present invention is as follows.
 [発明1]
一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、R1は2価の有機基を表し、R2は4価の有機基を表す。)
で表される繰り返し単位を有し、R1が一般式(2)
Figure JPOXMLDOC01-appb-C000012
(式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。pとqはそれぞれ独立に0~2の整数であり、1≦p+q≦4を満たす。波線と交差する線分は結合位置を表す。)
で表される2価の有機基、または、一般式(3)
Figure JPOXMLDOC01-appb-C000013
(式中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。rとsはそれぞれ独立に0~2の整数であり、1≦r+s≦4を満たす。波線と交差する線分は結合位置を表す。)
で表される2価の有機基である、ポリイミド構造を有する、気体分離膜。
[Invention 1]
General formula (1)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 represents a divalent organic group, and R 2 represents a tetravalent organic group.)
And R 1 is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000012
(Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group, where p and q are each independently an integer of 0 to 2, satisfying 1 ≦ p + q ≦ 4, and a line segment intersecting with a wavy line represents a bonding position.
Or a divalent organic group represented by the general formula (3)
Figure JPOXMLDOC01-appb-C000013
(Wherein R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3) — group, —CH (OH) — group or —NH— group, or 3 carbon atoms It is a divalent organic group formed by removing any two hydrogen atoms of an alicyclic hydrocarbon compound of ˜12 and an aromatic hydrocarbon compound of 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 Represents an OH group, r and s are each independently an integer of 0 to 2, and satisfy 1 ≦ r + s ≦ 4. A line segment intersecting with a wavy line represents a bonding position.)
A gas separation membrane having a polyimide structure, which is a divalent organic group represented by:
[発明2]
一般式(2)で表される2価の有機基が、一般式(4)
Figure JPOXMLDOC01-appb-C000014
(式中、Rabは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
である、発明1に記載の気体分離膜。
[Invention 2]
The divalent organic group represented by the general formula (2) is represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000014
Wherein R ab is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
The gas separation membrane according to invention 1, wherein
[発明3]
一般式(2)で表される2価の有機基が、式(4-1)または(4-2)
Figure JPOXMLDOC01-appb-C000015
(式中、HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
のいずれかである、発明1または2に記載の気体分離膜。
[Invention 3]
The divalent organic group represented by the general formula (2) is represented by the formula (4-1) or (4-2)
Figure JPOXMLDOC01-appb-C000015
(In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
The gas separation membrane according to invention 1 or 2, which is any one of the above.
[発明4]
一般式(3)で表される2価の有機基が、式(5)
Figure JPOXMLDOC01-appb-C000016
(式中、Rbbは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
で表される2価の有機基のいずれかである、発明1に記載の気体分離膜。
[Invention 4]
The divalent organic group represented by the general formula (3) is represented by the formula (5).
Figure JPOXMLDOC01-appb-C000016
Wherein R bb is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
The gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
[発明5]
一般式(3)で表される2価の有機基が、式(5-1)または(5-2)
Figure JPOXMLDOC01-appb-C000017
(式中、HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
のいずれかである、発明1または4に記載の気体分離膜。
[Invention 5]
The divalent organic group represented by the general formula (3) is represented by the formula (5-1) or (5-2)
Figure JPOXMLDOC01-appb-C000017
(In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
The gas separation membrane of invention 1 or 4 which is any one of the above.
[発明6]
2が式(6)~(11)
Figure JPOXMLDOC01-appb-C000018
(式中、波線と交差する線分は結合位置を表す。)
で表される4価の有機基のいずれかである、発明1~5のいずれかに記載の気体分離膜。
[Invention 6]
R 2 represents the formulas (6) to (11)
Figure JPOXMLDOC01-appb-C000018
(In the formula, the line that intersects the wavy line represents the coupling position.)
The gas separation membrane according to any one of inventions 1 to 5, which is any one of the tetravalent organic groups represented by the formula:
[発明7]
1に含まれるHFIP基が有する-OH基の水素原子がグリシジル基で置換されてなる、発明1~6のいずれかに記載の気体分離膜。
[Invention 7]
7. The gas separation membrane according to any one of inventions 1 to 6, wherein a hydrogen atom of an —OH group of the HFIP group contained in R 1 is substituted with a glycidyl group.
[発明8]
グリシジル基の環状エーテル部位が開環し架橋してなる発明7に記載の気体分離膜。
[Invention 8]
The gas separation membrane according to invention 7, wherein the cyclic ether moiety of the glycidyl group is opened and crosslinked.
[発明9]
さらに、エポキシ化合物と混合し、加熱して得られる、発明1~8のいずれかに記載の気体分離膜。
[Invention 9]
Furthermore, the gas separation membrane according to any one of inventions 1 to 8, obtained by mixing with an epoxy compound and heating.
[発明10]
エポキシ化合物が一般式(12)
Figure JPOXMLDOC01-appb-C000019
(式中、Rfはアルカン、芳香環または脂環から任意の水素原子がg個離脱したg価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよく、gは1~4の整数を表す。)
で表される、発明9に記載の気体分離膜。
[Invention 10]
The epoxy compound has the general formula (12)
Figure JPOXMLDOC01-appb-C000019
(In the formula, R f is a g-valent organic group in which an arbitrary number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, and g represents an integer of 1 to 4).
The gas separation membrane of the invention 9 represented by these.
 本発明のHFIP基を置換基として有する非対称な芳香族ジアミンから得られるポリイミド系気体分離膜は、HFIP基を置換基として有することと非対称構造であることによる良好な分離性能を有する。HFIP基は-OH基を有するため、本発明にかかる気体分離膜は、特定の有機溶剤、特に極性溶剤に可溶であり、ポリイミド溶液を調製することも容易であり、所望の膜形状に成形可能である。 The polyimide-based gas separation membrane obtained from an asymmetric aromatic diamine having a HFIP group as a substituent of the present invention has good separation performance due to having an HFIP group as a substituent and an asymmetric structure. Since the HFIP group has an —OH group, the gas separation membrane according to the present invention is soluble in a specific organic solvent, particularly a polar solvent, and it is easy to prepare a polyimide solution, which is molded into a desired membrane shape. Is possible.
 さらに、本発明のHFIP基と非対称構造を有するポリイミド系気体分離膜において、原料としての非対称構造を有する芳香族ジアミンにHFIP基を導入することが容易であることから、従来の含フッ素ポリイミド系気体分離膜と比較して、高い気体分離性能に加え、膜強度または溶剤への耐膨潤性などの膜物性を優れたものとするための構造設計が可能となる。 Further, in the polyimide gas separation membrane having an asymmetric structure with the HFIP group of the present invention, it is easy to introduce the HFIP group into the aromatic diamine having an asymmetric structure as a raw material. Compared to a separation membrane, in addition to high gas separation performance, it is possible to design a structure for improving membrane properties such as membrane strength or resistance to swelling in a solvent.
 また、HFIP基と非対称構造に加え、-C(CF3)2-基を有する気体分離膜では、さらに良好な気体分離性能を示す。 Further, a gas separation membrane having a —C (CF 3 ) 2 — group in addition to an HFIP group and an asymmetric structure exhibits even better gas separation performance.
 以下、本発明について説明するが、本発明は以下の実施態様に限定されるものではない。 Hereinafter, the present invention will be described, but the present invention is not limited to the following embodiments.
 本明細書において、HFIP基を有し、かつ非対称構造を有するポリイミドを「HFIP基含有非対称ポリイミド」と表すことがある。また、HFIP基を有し、かつ非対称構造を有する芳香族ジアミン化合物を「HFIP基含有非対称芳香族ジアミン化合物」と表すことがある。 In this specification, a polyimide having an HFIP group and having an asymmetric structure may be referred to as “HFIP group-containing asymmetric polyimide”. In addition, an aromatic diamine compound having an HFIP group and an asymmetric structure may be referred to as an “HFIP group-containing asymmetric aromatic diamine compound”.
 本発明の気体分離膜は、HFIP基含有非対称ポリイミドから作製される。HFIP基含有非対称ポリイミドの原料となる単量体化合物には、HFIP基含有非対称芳香族ジアミンと、テトラカルボン酸二無水物が挙げられる。気体分離膜とした際の強度のために、芳香族ジアミンを採用することが好ましい。これらの単量体化合物を反応させることで、当該HFIP基含有非対称ポリイミドが得られる。 The gas separation membrane of the present invention is made from an HFIP group-containing asymmetric polyimide. Examples of the monomer compound used as a raw material for the HFIP group-containing asymmetric polyimide include HFIP group-containing asymmetric aromatic diamine and tetracarboxylic dianhydride. It is preferable to employ an aromatic diamine for its strength when it is used as a gas separation membrane. The HFIP group-containing asymmetric polyimide is obtained by reacting these monomer compounds.
HFIP基を有する非対称芳香族ジアミンに加えて、膜とした際の強度、分離性能の調整のために、その他のジアミンを加えてもよい。同様に、膜とした際の強度、分離性能の調整のために、テトラカルボン酸二無水物に加え、その他のジカルボン酸およびその誘導体を加えてもよい。 In addition to the asymmetric aromatic diamine having an HFIP group, other diamines may be added to adjust the strength and separation performance of the membrane. Similarly, other dicarboxylic acids and derivatives thereof may be added in addition to tetracarboxylic dianhydride in order to adjust the strength and separation performance of the membrane.
1.HFIP基含有非対称芳香族ジアミン
 本発明の気体分離膜を作製するためのHFIP基含有非対称ポリイミドを合成するための単量体化合物としての、HFIP基含有非対称芳香族ジアミンは、式(2-A)
Figure JPOXMLDOC01-appb-C000020
(式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH2)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。pとqはそれぞれ独立に0~2の整数であり、1≦p+q≦4を満たす。)
または式(3-A)
Figure JPOXMLDOC01-appb-C000021
(式中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH2)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。rとsはそれぞれ独立に0~2の整数であり、1≦r+s≦4を満たす。)
で表される。
1. HFIP group-containing asymmetric aromatic diamine As a monomer compound for synthesizing the HFIP group-containing asymmetric polyimide for producing the gas separation membrane of the present invention, the HFIP group-containing asymmetric aromatic diamine has the formula (2-A)
Figure JPOXMLDOC01-appb-C000020
(Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group, where p and q are each independently an integer of 0 to 2 and satisfy 1 ≦ p + q ≦ 4.
Or formula (3-A)
Figure JPOXMLDOC01-appb-C000021
(Wherein R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group, where r and s are each independently an integer of 0 to 2 and satisfy 1 ≦ r + s ≦ 4.
It is represented by
[HFIP基含有非対称芳香族ジアミン(2-A)]
 HFIP基含有非対称芳香族ジアミン(2-A)において、炭素数3~12の脂環式炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、シクロヘキサン、ビシクロヘキサン、アダマンタンまたはノルボルナンの水素原子が2個離脱してなる2価の有機基が好ましく、炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、ベンゼン、ビフェニル、ナフタレンまたはフルオレンの水素原子が2個離脱してなる2価の有機基が挙げられる。
[HFIP group-containing asymmetric aromatic diamine (2-A)]
In the HFIP group-containing asymmetric aromatic diamine (2-A), examples of the divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms include cyclohexane, bicyclohexane, and adamantane. Alternatively, a divalent organic group formed by removing two hydrogen atoms of norbornane is preferable, and the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is benzene. , Bivalent organic groups formed by leaving two hydrogen atoms of biphenyl, naphthalene or fluorene.
HFIP基含有非対称芳香族ジアミン(2-A)は、式(4-A)
Figure JPOXMLDOC01-appb-C000022
(式中、Rabは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH2)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。)
で表される化合物が好ましい。具体的には、式(4-1-A)~(4-14-A)
Figure JPOXMLDOC01-appb-C000023
(式中、HFIPは-C(CF3)2OH基を表す。Meはメチル基を表す。Etはエチル基を表す。)
で表される化合物が挙げられる。中でも、原料ジアミンの入手の容易性から、式(4-1-A)と(4-2-A)が特に好ましい。
The HFIP group-containing asymmetric aromatic diamine (2-A) has the formula (4-A)
Figure JPOXMLDOC01-appb-C000022
Wherein R ab is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group.)
The compound represented by these is preferable. Specifically, the formulas (4-1-A) to (4-14-A)
Figure JPOXMLDOC01-appb-C000023
(In the formula, HFIP represents a —C (CF 3 ) 2 OH group. Me represents a methyl group. Et represents an ethyl group.)
The compound represented by these is mentioned. Among these, the formulas (4-1-A) and (4-2-A) are particularly preferable because of easy availability of the raw material diamine.
[HFIP基含有非対称芳香族ジアミン(3-A)]
 HFIP基含有非対称芳香族ジアミン(3-A)において、炭素数3~12の脂環式炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、シクロヘキサン、ビシクロヘキサン、アダマンタンまたはノルボルナンの水素原子が2個離脱してなる2価の有機基が好ましく、炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、ベンゼン、ビフェニル、ナフタレンまたはフルオレンの水素原子が2個離脱してなる2価の有機基が挙げられる。
[HFIP group-containing asymmetric aromatic diamine (3-A)]
In the HFIP group-containing asymmetric aromatic diamine (3-A), the divalent organic group formed by removing two hydrogen atoms from the alicyclic hydrocarbon compound having 3 to 12 carbon atoms includes cyclohexane, bicyclohexane, and adamantane. Alternatively, a divalent organic group formed by removing two hydrogen atoms of norbornane is preferable, and the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is benzene. , Bivalent organic groups formed by leaving two hydrogen atoms of biphenyl, naphthalene or fluorene.
 HFIP基含有非対称芳香族ジアミン(3-A)は、式(5-A)
Figure JPOXMLDOC01-appb-C000024
(式中、Rbbは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH2)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。)
で表される化合物が好ましい。具体的には、式(5-1-A)~(5-14-A)
Figure JPOXMLDOC01-appb-C000025
(式中、HFIPは-C(CF3)2OH基を表す。Meはメチル基を表す。Etはエチル基を表す。)
で表される化合物が挙げられる。中でも、原料ジアミンの入手の容易性から、(5-1-A)と(5-2-A)が特に好ましい。
The HFIP group-containing asymmetric aromatic diamine (3-A) has the formula (5-A)
Figure JPOXMLDOC01-appb-C000024
Wherein R bb is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 2 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group.)
The compound represented by these is preferable. Specifically, the formulas (5-1-A) to (5-14-A)
Figure JPOXMLDOC01-appb-C000025
(In the formula, HFIP represents a —C (CF 3 ) 2 OH group. Me represents a methyl group. Et represents an ethyl group.)
The compound represented by these is mentioned. Of these, (5-1-A) and (5-2-A) are particularly preferred because of the availability of raw material diamines.
 これらのHFIP基含有非対称芳香族ジアミンは2種以上併用しても良い。 These HFIP group-containing asymmetric aromatic diamines may be used in combination of two or more.
 当該ジアミンは、非対称構造含有芳香族ジアミンと、ヘキサフルオロアセトンもしくはヘキサフルオロアセトン三水和物との反応により得られる。その製造方法については、特許文献1に記載の対称構造含有芳香族ジアミンと、ヘキサフルオロアセトンもしくはヘキサフルオロアセトン三水和物との反応を適用可能である。 The diamine can be obtained by reacting an asymmetric structure-containing aromatic diamine with hexafluoroacetone or hexafluoroacetone trihydrate. About the manufacturing method, reaction with the symmetrical structure containing aromatic diamine of patent document 1 and hexafluoroacetone or hexafluoroacetone trihydrate is applicable.
2.その他のジアミン
 気体分離膜における気体分離性能、極性溶剤への溶解性、膜強度などの膜物性の調整のために、HFIP基と非対称構造を有するポリイミドの合成において、HFIP基を有する非対称芳香族ジアミンに加え、他のジアミン、ジヒドロキシアミンを用いてもよい。使用量は、前記テトラカルボン酸二無水物に対し10モル%から80モル%であり、好ましくは30モル%から60モル%である。
2. Other diamines Asymmetric aromatic diamines with HFIP groups in the synthesis of polyimides with HFIP groups and asymmetric structures for the adjustment of membrane properties such as gas separation performance, solubility in polar solvents, membrane strength, etc. In addition, other diamines and dihydroxyamines may be used. The amount used is 10 mol% to 80 mol%, preferably 30 mol% to 60 mol%, based on the tetracarboxylic dianhydride.
 他のジアミンとしては、3,5-ジアミノベンゾトリフルオリド、2,5-ジアミノベンゾトリフルオリド、3,3’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、2,2’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ビストリフルオロメチル-5,5’-ジアミノビフェニル、ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、ビス(フッ素化アルキル)-4,4’-ジアミノビフェニル、ジクロロ-4,4’-ジアミノビフェニル、ジブロモ-4,4’-ジアミノビフェニル、ビス(フッ素化アルコキシ)-4,4’-ジアミノビフェニル、ジフェニル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノテトラフルオロフェノキシ)テトラフルオロベンゼン、4,4’-ビス(4-アミノテトラフルオロフェノキシ)オクタフルオロビフェニル、4,4’-ビナフチルアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノジュレン、1,4-キシリレンジアミン、ジメチル-4,4’-ジアミノビフェニル、ジアルキル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、ジメトキシ-4,4’-ジアミノビフェニル、ジエトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,4’-ジアミノジフェニルメタン、3,3’-ジメチルージアミノジフェニルメタン、3,3’-ジエチルージアミノジフェニルメタン、9、9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノ-5-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)オクタフルオロビフェニルまたは4,4’-ジアミノベンズアニリドが挙げられ、これらを2種以上併用することもできる。中でも、得られる気体分離膜に高透過性を与える、-C(CF3)2-基を有する下記構造式で表されるジアミンを用いる事が好ましい。
Figure JPOXMLDOC01-appb-C000026
Other diamines include 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 2,2′-bistrifluoromethyl- 4,4'-diaminobiphenyl, 3,3'-bistrifluoromethyl-5,5'-diaminobiphenyl, bis (trifluoromethyl) -4,4'-diaminobiphenyl, bis (fluorinated alkyl) -4,4 '-Diaminobiphenyl, dichloro-4,4'-diaminobiphenyl, dibromo-4,4'-diaminobiphenyl, bis (fluorinated alkoxy) -4,4'-diaminobiphenyl, diphenyl-4,4'-diaminobiphenyl, 4,4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenzene, 4,4′-bis (4-amino Tetrafluorophenoxy) octafluorobiphenyl, 4,4′-binaphthylamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diamino Xylene, 2,4-diaminodurene, 1,4-xylylenediamine, dimethyl-4,4'-diaminobiphenyl, dialkyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'- Diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, dimethoxy-4,4′-diaminobiphenyl, diethoxy-4,4′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,4 ′ -Diaminodiphenylmethane, 2,4'-diaminodiphenylmethane, 3,3'-dimethyl-dia Nodiphenylmethane, 3,3′-diethyl-diaminodiphenylmethane, 9,9-bis (4-aminophenyl) fluorene, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,3'-diamino Benzophenone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4- Aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl Sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) Hexafluoropropane, 2,2-bis (4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- (3-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (4-Amino-2-trifluoromethylphenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (3-amino-5-trifluoromethylphenoxy) phenyl) hexafluoropropane, 2,2-bis ( 4-aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 4,4′-bis (4-aminophenoxy) octafluorobiphenyl or 4,4′-diaminobenzanilide may be mentioned, and two or more of these may be used in combination. Among them, it is preferable to use a diamine represented by the following structural formula having a —C (CF 3 ) 2 — group, which gives high permeability to the obtained gas separation membrane.
Figure JPOXMLDOC01-appb-C000026
 また、ジヒドロキシアミンを例示するならば、3,3’-ジヒドロキシベンジジン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス-(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス-(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、及び1,3-ジアミノ-4,6-ジヒドロキシベンゼンが挙げられ、これらを2種以上併用することもできる。中でも、得られる気体分離膜に高透過性を与える、-C(CF3)2-基を有する下記構造式で表されるジヒドロキシアミンを用いる事が好ましい。
Figure JPOXMLDOC01-appb-C000027
Examples of dihydroxyamines include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3'-diamino-4,4'-dihydroxydiphenylsulfone, 4,4'-diamino-3,3'-dihydroxydiphenylsulfone, bis- (3-amino-4-hydroxyphenyl) methane, 2,2-bis- (3-amino-4-hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis- (4-amino-3-hydroxyphenyl) hexafluoro Propane, bis- (4-amino-3-hydroxyphenyl) methane, 2,2-bis- (4-amino-3-hydroxyphenyl) Lopan, 4,4′-diamino-3,3′-dihydroxybenzophenone, 3,3′-diamino-4,4′-dihydroxybenzophenone, 4,4′-diamino-3,3′-dihydroxydiphenyl ether, 3,3 '-Diamino-4,4'-dihydroxydiphenyl ether, 1,4-diamino-2,5-dihydroxybenzene, 1,3-diamino-2,4-dihydroxybenzene, and 1,3-diamino-4,6-dihydroxy Benzene can be mentioned, and two or more of these can be used in combination. Among them, it is preferable to use dihydroxyamine represented by the following structural formula having a —C (CF 3 ) 2 — group, which gives high permeability to the obtained gas separation membrane.
Figure JPOXMLDOC01-appb-C000027
3.テトラカルボン酸二無水物
 本発明に係るHFIP基含有非対称ポリイミドを合成するために用いるテトラカルボン酸二無水物は、一般式(12)
Figure JPOXMLDOC01-appb-C000028
(式中、R2は4価の有機基を表す。)
で表される。
3. Tetracarboxylic dianhydride The tetracarboxylic dianhydride used for synthesizing the HFIP group-containing asymmetric polyimide according to the present invention has the general formula (12).
Figure JPOXMLDOC01-appb-C000028
(In the formula, R 2 represents a tetravalent organic group.)
It is represented by
 一般式(12)において、R2は、好ましくは、アルカン、脂環または芳香環から水素原子が4個離脱した4価の有機基であり、構造中にフッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含んでもよく、水素原子の一部がアルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。 In the general formula (12), R 2 is preferably a tetravalent organic group in which four hydrogen atoms are removed from an alkane, alicyclic ring or aromatic ring, and has a fluorine atom, chlorine atom, oxygen atom, sulfur in the structure. An atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
このようなテトラカルボン酸二無水物としては、具体的には、ピロメリット酸二無水物(以下、「PMDA」と表すことがある。)、トリフルオロメチルベンゼンテトラカルボン酸二無水物、ビストリフルオロメチルベンゼンテトラカルボン酸二無水物、ジフルオロベンゼンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水化物、ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と表すことがある。)、ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、「BTDA」と表すことがある。)、オキシジフタル酸二無水物(以下、「ODPA」と表すことがある。)、ビシクロ(2,2,2)オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(以下、「6FDA」と表すことがある。)、2,3,4,5-チオフェンテトラカルボン酸二無水化物、2,5,6,2',5',6'- ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水化物、ビス(3,4-ジカルボキシフェニル)スルホン酸二無水化物(以下、「DSDA」と表すことがある。)または3,4,9,10-ペリレンテトラカルボン酸二無水化物が挙げられ、これらを2種以上併用することもでき、併用の際に特に限定されるものではない。 Specific examples of such tetracarboxylic dianhydrides include pyromellitic dianhydride (hereinafter sometimes referred to as “PMDA”), trifluoromethylbenzenetetracarboxylic dianhydride, bistrifluoro. Methylbenzenetetracarboxylic dianhydride, difluorobenzenetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as “BPDA”), terphenyltetra Carboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as “BTDA”), oxydiphthalic dianhydride (hereinafter referred to as “ODPA”) Bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2 2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride (hereinafter sometimes referred to as “6FDA”), 2,3,4,5-thiophenetetracarboxylic dianhydride, 2 , 5,6,2 ′, 5 ′, 6′- hexafluoro-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfonic acid dianhydride (Hereinafter sometimes referred to as “DSDA”) or 3,4,9,10-perylenetetracarboxylic dianhydride, which may be used in combination of two or more thereof, and is particularly limited when used in combination. Is not to be done.
 中でも、入手の容易性からPMDA、BPDA、BTDA、DSDA、ODPAおよび6FDAが特に好ましく、良好なガス分離性能(透過性と選択性)から、6FDAがさらに好ましい。 Among these, PMDA, BPDA, BTDA, DSDA, ODPA and 6FDA are particularly preferable from the viewpoint of availability, and 6FDA is more preferable from the viewpoint of good gas separation performance (permeability and selectivity).
4.ジカルボン酸とジカルボン酸誘導体
 気体分離膜とした際の分離性能および強度などの膜物性の調整のために、前記テトラカルボン酸二無水物に加え、一般式(13)または一般式(14)
Figure JPOXMLDOC01-appb-C000029
(式中、R3は脂環、芳香環、アルキレン基から選ばれる一種以上を含有した2価の有機基であり、酸素原子、硫黄原子または窒素原子を含有していてもよく、任意の数の水素原子がアルキル基、フッ素原子、塩素原子、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。R4はそれぞれ独立に水素原子、炭素数1~10のアルキル基またはベンジル基である。Xはそれぞれ独立に、塩素原子、フッ素原子、臭素原子またはヨウ素原子である。)
で表されるジカルボン酸またはジカルボン酸誘導体を使用してもよい。
4). Dicarboxylic acid and dicarboxylic acid derivative In addition to the tetracarboxylic dianhydride, in addition to the tetracarboxylic dianhydride, the general formula (13) or general formula (14)
Figure JPOXMLDOC01-appb-C000029
(In the formula, R 3 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and an alkylene group, and may contain an oxygen atom, a sulfur atom or a nitrogen atom, In which R 4 may be substituted with an alkyl group, a fluorine atom, a chlorine atom, a fluoroalkyl group, a carboxyl group, a hydroxy group, or a cyano group, and R 4 is independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Or a benzyl group, and each X is independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom.)
A dicarboxylic acid or a dicarboxylic acid derivative represented by
 なお、縮合反応後は、一般式(15)に記載のヘテロ環構造を共重合成分として含有した構造単位となる。
Figure JPOXMLDOC01-appb-C000030
(式中、R3は脂環、芳香環、アルキレン基から選ばれる一種以上を含有した2価の有機基であり、酸素原子、硫黄原子または窒素原子を含有していてもよく、任意の数の水素原子がアルキル基、フッ素原子、塩素原子、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。)
 一般式(13)、(14)で表されるジカルボン酸またはジカルボン酸誘導体は、脂肪族ジカルボン酸、芳香族ジカルボン酸またはこれらのジカルボン酸誘導体のいずれを用いてもよい。
In addition, after a condensation reaction, it becomes a structural unit containing the heterocyclic structure described in the general formula (15) as a copolymerization component.
Figure JPOXMLDOC01-appb-C000030
(In the formula, R 3 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and an alkylene group, and may contain an oxygen atom, a sulfur atom or a nitrogen atom, The hydrogen atom may be substituted with an alkyl group, a fluorine atom, a chlorine atom, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.)
As the dicarboxylic acid or dicarboxylic acid derivative represented by the general formulas (13) and (14), any of aliphatic dicarboxylic acid, aromatic dicarboxylic acid, or these dicarboxylic acid derivatives may be used.
 脂肪族ジカルボン酸とその誘導体としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸のジカルボン酸化合物またはこれらのジカルボン酸誘導体が挙げられる。 Examples of the aliphatic dicarboxylic acid and derivatives thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, dicarboxylic acid compounds of sebacic acid or their dicarboxylic acid derivatives. It is done.
 芳香族ジカルボン酸とその誘導体としては、例えば、フタル酸、イソフタル酸、テレフタル酸、4,4’-ジカルボキシビフェニル、3,3’-ジカルボキシビフェニル、3,3’-ジカルボキシルジフェニルエーテル、3,4’-ジカルボキシルジフェニルエーテル、4,4’-ジカルボキシルジフェニルエーテル、3,3’-ジカルボキシルジフェニルメタン、3,4’-ジカルボキシルジフェニルメタン、4,4’-ジカルボキシルジフェニルメタン、3,3’-ジカルボキシルジフェニルジフルオロメタン、3,4’-ジカルボキシルジフェニルジフルオロメタン、4,4’-ジカルボキシルジフェニルジフルオロメタン、3,3’-ジカルボキシルジフェニルスルホン、3,4’-ジカルボキシルジフェニルスルホン、4,4’-ジカルボキシルジフェニルスルホン、3,3’-ジカルボキシルジフェニルスルフィド、3,4’-ジカルボキシルジフェニルスルフィド、4,4’-ジカルボキシルジフェニルスルフィド、3,3’-ジカルボキシルジフェニルケトン、3,4’-ジカルボキシルジフェニルケトン、4,4’-ジカルボキシルジフェニルケトン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2-ビス(3,4’-ジカルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4’-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,3-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(4-カルボキシフェノキシ)ベンゼン、3,3’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、3,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、4,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4-(3-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(4-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(3-カルボキシフェノキシ)フェニル)スルホンまたはビス(4-(4-カルボキシフェノキシ)フェニル)スルホン、パーフルオロノネニルオキシ基含有のジカルボン酸である5-(パーフルオロノネニルオキシ)イソフタル酸、4-(パーフルオロノネニルオキシ)フタル酸、2-(パーフルオロノネニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロノネニルオキシ)イソフタル酸、パーフルオロヘキセニルオキシ基含有のジカルボン酸である、5-(パーフルオロヘキセニルオキシ)イソフタル酸、4-(パーフルオロヘキセニルオキシ)フタル酸、2-(パーフルオロヘキセニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロヘキセニルオキシ)イソフタル酸、2,2’-ジートリフルオロメチル-4,4’-ジカルボキシビフェニルまたはこれらのジカルボン酸の誘導体が挙げられる。また、これらを2種以上併用してもよい。 Examples of aromatic dicarboxylic acids and derivatives thereof include phthalic acid, isophthalic acid, terephthalic acid, 4,4′-dicarboxybiphenyl, 3,3′-dicarboxybiphenyl, 3,3′-dicarboxyldiphenyl ether, 3, 4'-dicarboxyldiphenyl ether, 4,4'-dicarboxyldiphenyl ether, 3,3'-dicarboxyldiphenylmethane, 3,4'-dicarboxyldiphenylmethane, 4,4'-dicarboxyldiphenylmethane, 3,3'-dicarboxyl Diphenyldifluoromethane, 3,4'-dicarboxyldiphenyldifluoromethane, 4,4'-dicarboxyldiphenyldifluoromethane, 3,3'-dicarboxyldiphenylsulfone, 3,4'-dicarboxyldiphenylsulfone, 4,4 ' Dicarboxyl diphenyl sulfone, 3,3′-dicarboxyl diphenyl sulfide, 3,4′-dicarboxyl diphenyl sulfide, 4,4′-dicarboxyl diphenyl sulfide, 3,3′-dicarboxyl diphenyl ketone, 3,4′- Dicarboxyl diphenyl ketone, 4,4'-dicarboxyl diphenyl ketone, 2,2-bis (3-carboxyphenyl) propane, 2,2-bis (3,4'-dicarboxyphenyl) propane, 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (3-carboxyphenyl) hexafluoropropane, 2,2-bis (3,4'-dicarboxyphenyl) hexafluoropropane, 2,2-bis (4- Carboxyphenyl) hexafluoropropane, 1,3-bis (3-carboxy Boxyphenoxy) benzene, 1,4-bis (3-carboxyphenoxy) benzene, 1,4-bis (4-carboxyphenoxy) benzene, 3,3 ′-(1,4-phenylenebis (1-methylethylidene) ) Bisbenzoic acid, 3,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisbenzoic acid, 4,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisbenzoic acid 2,2-bis (4- (3-carboxyphenoxy) phenyl) propane, 2,2-bis (4- (4-carboxyphenoxy) phenyl) propane, 2,2-bis (4- (3-carboxyphenoxy) ) Phenyl) hexafluoropropane, 2,2-bis (4- (4-carboxyphenoxy) phenyl) hexafluoropropane, bis (4- (3-carboxy) Ciphenoxy) phenyl) sulfide, bis (4- (4-carboxyphenoxy) phenyl) sulfide, bis (4- (3-carboxyphenoxy) phenyl) sulfone or bis (4- (4-carboxyphenoxy) phenyl) sulfone, per 5- (perfluorononenyloxy) isophthalic acid, 4- (perfluorononenyloxy) phthalic acid, 2- (perfluorononenyloxy) terephthalic acid or 4-methoxy which is a dicarboxylic acid containing a fluorononenyloxy group -5- (perfluorononenyloxy) isophthalic acid, a dicarboxylic acid containing a perfluorohexenyloxy group, 5- (perfluorohexenyloxy) isophthalic acid, 4- (perfluorohexenyloxy) phthalic acid, 2- ( Perfluorohexenyloxy) tele Tal acid or 4-methoxy-5- (perfluoroalkyl hexenyloxy) isophthalic acid, 2,2'-di-trifluoromethyl-4,4'-dicarboxylate biphenyl or derivatives of these dicarboxylic acids. Two or more of these may be used in combination.
 中でも入手の容易さ、縮重合反応のし易さに優れることから、テレフタル酸、イソフタル酸、4,4’-ジカルボキシビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジカルボキシビフェニル、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパンが好ましい。 Among these, terephthalic acid, isophthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-ditrifluoromethyl-4,4'-dicarboxybiphenyl because of its ease of availability and ease of condensation polymerization. 2,2-bis (4-carboxyphenyl) hexafluoropropane is preferred.
 当該ジカルボン酸または当該ジカルボン酸誘導体の使用量は、前記テトラカルボン酸二無水物に対して10モル%以上、80モル%以下であり、好ましくは30モル%以上、60モル%以下である。当該モル比の範囲内で、ガス分離性能、極性溶剤への溶解性、膜強度の調整を行うことができる。 The amount of the dicarboxylic acid or the dicarboxylic acid derivative used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol% or less with respect to the tetracarboxylic dianhydride. Within the range of the molar ratio, gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
5.HFIP基含有非対称ポリイミドの合成
 本発明の気体分離膜に使用するHFIP基含有非対称ポリイミドの合成方法について説明する。
5. Synthesis of HFIP group-containing asymmetric polyimide A method for synthesizing the HFIP group-containing asymmetric polyimide used in the gas separation membrane of the present invention will be described.
 ここで、「ジカルボン酸(誘導体)」と表す場合、「ジカルボン酸またはジカルボン酸誘導体」を意味する。明細書において以下同じ。 Here, the expression “dicarboxylic acid (derivative)” means “dicarboxylic acid or dicarboxylic acid derivative”. The same applies hereinafter in the description.
 本発明の気体分離膜に使用するHFIP基含有非対称ポリイミドを合成するには、前述のHFIP基含有非対称芳香族ジアミンとテトラカルボン酸二無水物を必須とし、必要であれば、その他のジアミンおよびジカルボン酸(誘導体)を加えた後、150℃以上で相互に溶融させて無溶媒で反応させる方法、反応温度-20~80℃下にて、有機溶媒中で重合反応させる方法を挙げることができる。重合反応においては、ジアミンと、無水カルボン酸二無水物またはジカルボン酸(誘導体)とが、モル比で表して1対1で反応することから、HFIP基含有非対称ジアミンおよびその他のジアミン、テトラカルボン酸二無水物およびジカルボン酸(誘導体)の存在比は、モル比で表して、芳香族ジアミンおよびその他ジアミン:テトラカルボン酸二無水物およびジカルボン酸(誘導体)=1:1であることが好ましい。 In order to synthesize the HFIP group-containing asymmetric polyimide used in the gas separation membrane of the present invention, the above-mentioned HFIP group-containing asymmetric aromatic diamine and tetracarboxylic dianhydride are essential, and if necessary, other diamines and dicarboxylic acids. Examples thereof include a method in which an acid (derivative) is added and then melted at 150 ° C. or higher and reacted without solvent, and a method in which a polymerization reaction is carried out in an organic solvent at a reaction temperature of −20 to 80 ° C. In the polymerization reaction, diamine and carboxylic dianhydride or dicarboxylic acid (derivative) react with each other in a one-to-one molar ratio, so that HFIP group-containing asymmetric diamine and other diamines and tetracarboxylic acids. The abundance ratio of the dianhydride and the dicarboxylic acid (derivative) is preferably expressed as a molar ratio such that aromatic diamine and other diamine: tetracarboxylic dianhydride and dicarboxylic acid (derivative) = 1: 1.
 前記重合反応に使用できる有機溶媒は、反応基質が溶解すればよく、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミドまたはN-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼンまたはベンゾニトリル、ハロゲン系溶媒であるクロロホルム、ジクロロメタン、1,2-ジクロロエタンまたは1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトン、アルコール類およびグリコールエーテル類である2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールまたはn-ブチルアルコールが挙げられる。また、これらの有機溶媒と、酸受容体、例えば、ピリジン、トリエチルアミンを共存させて重合反応を行ってもよい。 The organic solvent that can be used in the polymerization reaction is only required to dissolve the reaction substrate. N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, or N-methyl-2-pyrrolidone, which are amide solvents, are used. Benzene, anisole, diphenyl ether, nitrobenzene or benzonitrile as aromatic solvents, chloroform, dichloromethane, 1,2-dichloroethane or 1,1,2,2-tetrachloroethane as halogen solvents, and γ-as lactones Butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone or α-methyl-γ-butyrolactone, alcohols and glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxy Ethanol or n- butyl alcohol. Further, the polymerization reaction may be carried out in the presence of these organic solvents and an acid acceptor such as pyridine or triethylamine.
 前記重合反応で得られたHFIP基と非対称構造を有するポリアミド酸を、さらに脱水閉環反応させ環化することでイミド化して、目的物であるHFIP基と非対称構造を有するポリイミドに転化することができる。 The polyamic acid having an asymmetric structure with the HFIP group obtained by the polymerization reaction can be further converted to a polyimide having an asymmetric structure with the HFIP group, which is the target product, by immobilization by cyclization by dehydration ring closure reaction. .
 脱水閉環反応は、加熱、酸触媒の使用等の反応条件を環化が促進する条件により行う。一般的には、重合反応直後のHFIP基と非対称構造を有するポリアミド酸溶液を150℃以上、250℃以下の高温でイミド化し、HFIP基含有非対称ポリイミド溶液に調製することができる。その際、ピリジン、トリエチルアミン、無水酢酸などを加えてもよい。溶液中のHFIP基含有非対称ポリイミドの濃度は、5質量%以上、50質量%以下が好ましい。5質量%より少ないと、薄すぎて工業的に実用的ではない。50質量%を超えると溶解し難い。さらに、好ましくは10質量%以上、40質量%以下である。 The dehydration ring closure reaction is performed under conditions that promote cyclization, such as heating and use of an acid catalyst. In general, a polyamic acid solution having an asymmetric structure with an HFIP group immediately after the polymerization reaction can be imidized at a high temperature of 150 ° C. or more and 250 ° C. or less to prepare an HFIP group-containing asymmetric polyimide solution. At that time, pyridine, triethylamine, acetic anhydride or the like may be added. The concentration of the HFIP group-containing asymmetric polyimide in the solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is too thin to be industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
 本発明に係るHFIP基含有非対称ポリイミドの重量平均分子量(以下、「Mw」と表すことがある。)は、好ましくは10,000以上であり、より好ましくは20,000以上である。当該重量平均分子量の上限は、500,000以下が好ましく、300,000以下がさらに好ましい。重量平均分子量が10,000未満だと、得られる高分子膜の強度が乏しい。重量平均分子量が500,000超だと、得られる高分子溶液の粘度が高くなりすぎて取り扱いが難しくなる。ここでいう重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と表すことがある。)分析により、標準ポリスチレン基準の換算値として求められるものである(本願において以下同じ。)。当該分析の詳細な分析条件は、本願の実施例で記述する。 The weight average molecular weight (hereinafter sometimes referred to as “Mw”) of the HFIP group-containing asymmetric polyimide according to the present invention is preferably 10,000 or more, and more preferably 20,000 or more. The upper limit of the weight average molecular weight is preferably 500,000 or less, and more preferably 300,000 or less. When the weight average molecular weight is less than 10,000, the strength of the resulting polymer film is poor. When the weight average molecular weight is more than 500,000, the viscosity of the resulting polymer solution becomes too high and handling becomes difficult. The weight average molecular weight here is determined as a converted value based on standard polystyrene by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) analysis (the same applies hereinafter). Detailed analysis conditions for the analysis are described in the examples of the present application.
6.HFIP基含有非対称ポリイミド溶液の調製
 このようにして得られたHFIP基含有非対称ポリイミドの溶液は、気体分離膜製造にそのまま用いることもできる。また、HFIP基と非対称構造を含むポリイミドの溶液中に含まれる残存モノマー、低分子量体を除去する目的で、水またはアルコールなどの貧溶媒中に、HFIP基含有非対称ポリイミドの溶液を加え、HFIP基含有非対称ポリイミドを沈殿させて単離精製した後、改めて有機溶媒に前記濃度になるように溶解させて調整してもよい。
6). Preparation of HFIP group-containing asymmetric polyimide solution The HFIP group-containing asymmetric polyimide solution thus obtained can be used as it is for gas separation membrane production. In addition, for the purpose of removing residual monomers and low molecular weight substances contained in a polyimide solution containing an HFIP group and an asymmetric structure, a solution of an HFIP group-containing asymmetric polyimide is added to a poor solvent such as water or alcohol to add an HFIP group. After the contained asymmetric polyimide is precipitated and isolated and purified, it may be adjusted by dissolving it again in the organic solvent to the above concentration.
 使用できる有機溶媒は、HFIP基含有非対称ポリイミドが溶解すれば特に限定されず、例えば、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼンまたはベンゾニトリル、ハロゲン系溶媒であるクロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトン、フェノール類であるフェノール、クレゾール、キシレノール、カテコールまたはクロルフェノール、アルコール類およびグリコールエーテル類である2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールまたはn-ブチルアルコールなどが挙げられる。また、これらの混合溶媒を使用してもよい。 The organic solvent that can be used is not particularly limited as long as the HFIP group-containing asymmetric polyimide is dissolved. For example, amide solvents N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethyl Phosphoric triamide, N-methyl-2-pyrrolidone, aromatic solvents benzene, anisole, diphenyl ether, nitrobenzene or benzonitrile, halogenated solvents chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2, 2-tetrachloroethane, lactones γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone or α-methyl-γ-butyrolactone, phenols phenol, cresol, xylenol, Tekoru or chlorophenol is alcohols and glycol ethers 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol or n- butyl alcohol. Moreover, you may use these mixed solvents.
7.気体分離膜の作製
 本発明のHFIP基含有非対称ポリイミドを含む気体分離膜は、HFIP基含有非対称ポリイミド溶液から溶媒が蒸発することを利用して薄膜を作製する湿式成膜法で得られる均質膜、または他の方法で得られる緻密層と多孔質層とを有する非対称膜のいずれであってもよい。
7). Production of Gas Separation Membrane The gas separation membrane containing the HFIP group-containing asymmetric polyimide of the present invention is a homogeneous membrane obtained by a wet film formation method for producing a thin film by utilizing the evaporation of the solvent from the HFIP group-containing asymmetric polyimide solution, Alternatively, it may be any one of an asymmetric membrane having a dense layer and a porous layer obtained by other methods.
[均質膜]
 均質膜は、例えば、前述のHFIP基含有非対称ポリイミドの溶液を、ガラス基板などの基体にスピンコーター、アプリケーター等を用いて湿式被覆した後、空気、窒素またはアルゴン等の乾燥気体中で加熱し、溶剤を蒸発させた後、ガラス基材から剥離させることで得られる。また、HFIP基含有非対称ポリイミド溶液の代わりに、HFIP基含有非対称ポリアミド酸溶液を用いて、上記手順で基体に被覆させた後、加熱してイミド化させることでも均質な膜を得ることもできる。
[Homogeneous membrane]
The homogenous film is, for example, wet-coated with a spin coater, applicator or the like on the above-mentioned HFIP group-containing asymmetric polyimide solution on a substrate such as a glass substrate, and then heated in a dry gas such as air, nitrogen or argon, After evaporating the solvent, it is obtained by peeling from the glass substrate. Further, instead of the HFIP group-containing asymmetric polyimide solution, a HFIP group-containing asymmetric polyamic acid solution is used to coat the substrate by the above procedure, and then heated to imidize to obtain a homogeneous film.
気体分離膜に使用するためには、均質膜の厚さとしては5μm以上、1mm以下が好ましい。5μmより薄い膜は、作製が困難な上に破れ易い。1mmより厚い膜は、ガスが透過しにくい。さらに好ましくは、10μmから200μmである。 For use in a gas separation membrane, the thickness of the homogeneous membrane is preferably 5 μm or more and 1 mm or less. A film thinner than 5 μm is difficult to manufacture and easily broken. A film thicker than 1 mm is difficult for gas to permeate. More preferably, it is 10 μm to 200 μm.
[非対称膜]
 緻密層と多孔質層とを有する非対称な膜は、前述の方法で成膜することができる。また、ポリイミド溶液の代わりに、ポリアミド酸溶液を用いて非対称膜を形成した後、熱イミド化させることでも、非対称膜を得ることができる。
[Asymmetric membrane]
An asymmetric film having a dense layer and a porous layer can be formed by the method described above. Moreover, after forming an asymmetric film using a polyamic acid solution instead of a polyimide solution, the asymmetric film can also be obtained by thermal imidization.
 非対称膜において、緻密層はガス種によって透過速度が異なり、混合ガスに対しての選択する気体分離機能を有する。一方で、多孔質層は、膜形状を保持するための支持体としての役割を有する。 In the asymmetric membrane, the dense layer has different permeation speeds depending on the gas type, and has a gas separation function to be selected for the mixed gas. On the other hand, the porous layer has a role as a support for maintaining the membrane shape.
 本発明の気体分離膜に使用する、HFIP基含有非対称ポリイミドを含む非対称膜は、平らな膜状、中空糸状のいずれの形状であってもよい。 The asymmetric membrane including the HFIP group-containing asymmetric polyimide used for the gas separation membrane of the present invention may be either a flat membrane shape or a hollow fiber shape.
 緻密層の厚さは10nm以上、10μm以下が好ましい。10nmより薄いと成膜し難く実用的でない。10μmより厚いと、ガスが透過しにくい。好ましくは30nm以上、1μm以下である。 The thickness of the dense layer is preferably 10 nm or more and 10 μm or less. If it is thinner than 10 nm, it is difficult to form a film and it is not practical. If it is thicker than 10 μm, it is difficult for gas to permeate. Preferably they are 30 nm or more and 1 micrometer or less.
 多孔質層の厚さは、平らな膜状では、5μm以上、2mm以下が好ましい。5μmより薄いと成膜し難く実用的でない。2mmより厚いと、ガスが透過し難い。さらに好ましくは10μm以上、500μm以下である。中空糸状では、内径が10μm以上、4mm以下、好ましくは20μm以上、1mm以下であり、外径は30μm以上、8mm以下、好ましくは50μm以上、1.5mm以下である。中空糸状とする場合は、外側に緻密層を有することが好ましい。 The thickness of the porous layer is preferably 5 μm or more and 2 mm or less for a flat film. If it is thinner than 5 μm, it is difficult to form a film and it is not practical. If it is thicker than 2 mm, it is difficult for gas to permeate. More preferably, they are 10 micrometers or more and 500 micrometers or less. In the hollow fiber shape, the inner diameter is 10 μm or more and 4 mm or less, preferably 20 μm or more and 1 mm or less, and the outer diameter is 30 μm or more and 8 mm or less, preferably 50 μm or more and 1.5 mm or less. In the case of a hollow fiber shape, it is preferable to have a dense layer on the outside.
 非対称膜を作製する際の凝固液としては、水、または水と有機溶剤の混合溶媒が好適に使用される。混合溶媒は、40質量%以上、好ましくは50質量%以上の水を含有し、有機溶媒としては、アルコールであるメタノール、エタノールまたはイソプロパノール、ケトンであるアセトン、メチルエチルケトン、ジエチルケトンが挙げられる。凝固液に水またはその混合溶媒を用いると、膜作製設備を防爆仕様とすることの必要性がなく、コスト削減になる。 As the coagulation liquid for producing the asymmetric membrane, water or a mixed solvent of water and an organic solvent is preferably used. The mixed solvent contains 40% by mass or more, preferably 50% by mass or more of water, and examples of the organic solvent include alcohols such as methanol, ethanol or isopropanol, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone. When water or a mixed solvent thereof is used for the coagulation liquid, there is no need to make the film production facility explosion-proof, and the cost can be reduced.
[凝固液]
 本発明の気体分離膜に使用する、HFIP基含有非対称構造ポリイミドは、極性基であるHFIP基の含有効果により、アミド系溶媒であるN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドまたはN-メチル-2-ピロリドン、ラクトンであるγ-ブチロラクトン、γ-バレロラクトンに特に溶解し易く、所望の膜厚を有する均質膜を作製することも容易であるし、水系凝固液を使用した非対称膜を作製することも容易である。
[Coagulation liquid]
The HFIP group-containing asymmetric structure polyimide used for the gas separation membrane of the present invention is an amide solvent N, N-dimethylacetamide, N, N-dimethylformamide or N- It is particularly easy to dissolve in methyl-2-pyrrolidone, lactones γ-butyrolactone and γ-valerolactone, it is easy to produce a homogeneous film having a desired film thickness, and an asymmetric film using an aqueous coagulant is used. It is also easy to produce.
 特に、非対称膜作製にあたっては、吐出口から凝固浴までの距離を変更することで、また、中空糸状に吐出する場合は、吐出口の内側に乾燥空気、水系凝固液などを共に吐出することで、所望の緻密層を形成できる。凝固浴の有機溶媒種を変更することで、所望の孔径、孔径分布、厚さを有する多孔質層を形成できる。 In particular, in producing an asymmetric membrane, by changing the distance from the discharge port to the coagulation bath, and when discharging in the form of a hollow fiber, both dry air, aqueous coagulation liquid, etc. are discharged inside the discharge port. A desired dense layer can be formed. A porous layer having a desired pore size, pore size distribution, and thickness can be formed by changing the organic solvent species of the coagulation bath.
 凝固液で処理した膜は、加熱処理で乾燥させた後に用いることが好ましい。加熱処理温度は、溶融させないためにポリイミドのガラス転移温度以下が好ましい。 The film treated with the coagulating liquid is preferably used after being dried by heat treatment. The heat treatment temperature is preferably not higher than the glass transition temperature of polyimide so as not to melt.
[シリコーン樹脂コーティング]
 作製した気体分離膜の表面欠陥を修復することを目的として、シリコーン樹脂を分離膜表面にコーティングしてもよい。コーティング方法としては、スピンコーティング、アプリケーターによるコーティング、浸漬コーティングなど、公知のコーティング法を使用することができる。
[Silicone resin coating]
For the purpose of repairing the surface defect of the produced gas separation membrane, a silicone resin may be coated on the surface of the separation membrane. As a coating method, a known coating method such as spin coating, coating with an applicator, or dip coating can be used.
 シリコーン樹脂としては、一般的なジメチルシリコーン、フェニル基含有シリコーン、ビニル基含有シリコーン、Si-H基含有シリコーン、トリフルオロプロピル基含有シリコーン、シラノール基含有シリコーン、アミノ基含有シリコーン、エポキシ基含有シリコーン、メタクリル基含有シリコーン、アクリル基含有シリコーンなどが挙げられる。これらは市販されており、Gelest社製のDMSシリーズ、PDVシリーズ、VDTシリーズ、FMVシリーズ、HMSシリーズ、DMSシリーズ、HPMシリーズ、FMSシリーズ、SQOシリーズ、AMSシリーズ、MCRシリーズ、ECMSシリーズ、RMSシリーズなどが挙げられる。 Silicone resins include general dimethyl silicone, phenyl group-containing silicone, vinyl group-containing silicone, Si-H group-containing silicone, trifluoropropyl group-containing silicone, silanol group-containing silicone, amino group-containing silicone, epoxy group-containing silicone, A methacryl group containing silicone, an acryl group containing silicone, etc. are mentioned. These are commercially available, such as DMS series, PDV series, VDT series, FMV series, HMS series, DMS series, HPM series, FMS series, SQO series, AMS series, MCR series, ECMS series, RMS series manufactured by Gelest. Is mentioned.
8.エポキシ化合物の併用
 前記一般式(1)で表される繰り返し単位を有する高分子化合物は、機械強度または耐可塑性を向上させる目的で、発明7乃至10の気体分離膜のように、エポキシ化合物と混合し、加熱または光照射などにより硬化させて硬化膜とすることができる。当該硬化膜は、前記の均質膜、および非対称膜にも適用可能である。
8). Combined use of epoxy compound The polymer compound having a repeating unit represented by the general formula (1) is mixed with an epoxy compound as in the gas separation membranes of Inventions 7 to 10 for the purpose of improving mechanical strength or plastic resistance. And cured by heating or light irradiation to form a cured film. The cured film can also be applied to the homogeneous film and the asymmetric film.
 エポキシ化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂またはアミノトリアジン変性フェノール樹脂化合物を、エピクロロヒドリンと接触させることによりエポキシ変性させたエポキシ化合物が挙げられる。 Epoxy compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol triol. Contacting methylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin or aminotriazine-modified phenol resin compound with epichlorohydrin An epoxy compound modified by epoxy is mentioned.
 これらは、市販されており、ビスフェノールA型(大日本インキ工業株式会社製、商品名、エピクロン840)、ビスフェノールF型(旭電化工業株式会社製、商品名、アデカレジンEP-4901)、クレゾールノボラック型(大日本インキ工業株式会社製、商品名、エピクロンN-600シリーズ)、ジシクロペンタジエン型(大日本インキ工業株式会社製、商品名、エピクロンHP-7200シリーズ)、トリアジン型(日産化学工業株式会社製、商品名、TEPICシリーズ)などが挙げられる。 These are commercially available, bisphenol A type (Dainippon Ink Industries, trade name, Epicron 840), bisphenol F type (Asahi Denka Kogyo, trade name, Adeka Resin EP-4901), cresol novolak type (Dainippon Ink Industries, trade name, Epicron N-600 series), dicyclopentadiene type (Dainippon Ink Industries, trade name, Epicron HP-7200 series), Triazine (Nissan Chemical Industry Co., Ltd.) Manufactured, trade name, TEPIC series) and the like.
 一般式(12)
Figure JPOXMLDOC01-appb-C000031
(式(12)中、Rfはアルカン、芳香環または脂環から水素原子がg個離脱したg価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよい。gは1~4の整数である。)
で表されるエポキシ化合物は、これに対応するアルコールとエピクロロヒドリンから合成される。
Formula (12)
Figure JPOXMLDOC01-appb-C000031
(In the formula (12), Rf is a g-valent organic group in which g hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, or a fluoroalkyl group. G is an integer of 1 to 4.)
Is synthesized from a corresponding alcohol and epichlorohydrin.
 当該アルコールとしては、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、カテコール、1,3-ベンゼンジオール、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、2,2’-メチレンジフェノール、4,4’-メチレンジフェノール、エチレングリコール、プロピレングリコール、2,2-ビス(4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-ブタン、3,3-ビス(4-ヒドロキシフェニル)-ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、3,3-ビス(4-ヒドロキシフェニル)-ヘキサン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、4,4´-ジヒドロキシジフェニルエーテル、4,4´-ジヒドロキシジフェニルスルフィド、4,4´-ジヒドロキシジフェニルスルホキシド、4,4´-ジヒドロキシジフェニルスルホン、4,4´-ジヒドロキシベンゾフェノン、1,4-ジヒドロキシヘキサン、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、1,1´-メチレンジ-2-ナフトール、4,4´、4´-トリヒドロキシトリフェニルメタン、1,1,1-トリス(4-ヒドロキシフェニル)エタンまたはα,α,α´-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼンが挙げられる。 Examples of the alcohol include 1,4-cyclohexanediol, 1,3-adamantanediol, catechol, 1,3-benzenediol, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and 2,2′-methylene. Diphenol, 4,4'-methylenediphenol, ethylene glycol, propylene glycol, 2,2-bis (4-hydroxyphenyl) -propane, 2,2-bis (4-hydroxyphenyl) -3-methylpropane, 2 , 2-bis (4-hydroxyphenyl) -butane, 3,3-bis (4-hydroxyphenyl) -pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 3,3-bis ( 4-hydroxyphenyl) -hexane, 2,2-bis (3-chloro-4-hydroxyphenyl) -Propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) -propane, 2,2-bis (3-bromo-4-hydroxyphenyl) -propane, 2,2-bis (3,5 -Dibromo-4-hydroxyphenyl) -propane, 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3 , 3-hexafluoropropane, 2,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 2,3-dihydroxypyridine, , 4-dihydroxypyridine, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, , 4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 1,4-dihydroxyhexane, 2,2-bis (4-hydroxycyclohexyl) -propane, 1,1 ' -Methylenedi-2-naphthol, 4,4 ', 4'-trihydroxytriphenylmethane, 1,1,1-tris (4-hydroxyphenyl) ethane or α, α, α'-tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene.
 当該アルコールとして、式(1)で表される繰り返し単位に含まれるHFIP基中のアルコールを用いる事も可能である。 As the alcohol, it is also possible to use an alcohol in the HFIP group contained in the repeating unit represented by the formula (1).
 発明7~10の気体分離膜を得る際、これらのエポキシ化合物と、エポキシ樹脂用硬化剤を併用してもよい。当該硬化剤を例示するならば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、メルカプタン系化合物、イミダゾール系化合物、ポリスルフィド樹脂系化合物またはリン系化合物が挙げられる。具体的には、熱硬化剤であるジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチレントリアミン、トリエチレンテトラミン、ポリアルキレングリコールポリアミン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、2-メチルイミダゾ-ル、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、BF3-アミン錯体またはグアニジン誘導体、紫外線硬化剤であるジフェニルヨードニウムヘキサフロロフォスフェート、トリフェニルスルホニウムヘキサフロロホスフェートが挙げられる。 When obtaining the gas separation membranes of the inventions 7 to 10, these epoxy compounds and epoxy resin curing agents may be used in combination. Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, mercaptan compounds, imidazole compounds, polysulfide resin compounds, and phosphorus compounds. Specifically, thermosetting agents diaminodiphenylmethane, diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride Methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2-methylimidazole, triphenylphosphine, 2-ethyl-4-methylimidazole, BF 3 -amine complex or Examples thereof include guanidine derivatives, ultraviolet curing agents such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate.
 一般式(1)で表される繰り返し単位を含む高分子化合物とエポキシ化合物の混合割合は、質量比で表して高分子化合物:エポキシ化合物=10:90~98:2であり、好ましくは50:50~95:5である。 The mixing ratio of the polymer compound containing the repeating unit represented by the general formula (1) and the epoxy compound is expressed by mass ratio: polymer compound: epoxy compound = 10: 90 to 98: 2, preferably 50: 50-95: 5.
 エポキシ化合物と、エポキシ樹脂用硬化剤との混合比は、質量比で表して、70:30~99.5:0.5であり、好ましくは90:10~99:1である。 The mixing ratio of the epoxy compound and the curing agent for the epoxy resin is 70:30 to 99.5: 0.5, preferably 90:10 to 99: 1, expressed as a mass ratio.
 前記気体分離膜を製造する途中工程にて、例えば、ガラスまたはシリコン基板に塗布し、その後、加熱または、紫外線(UV)ランプなどによる紫外線照射により硬化させて、架橋硬化した気体分離膜とすることができる。使用できる有機溶媒としては、一般式(1)で表される繰り返し単位を有するHFIP基含有非対称ポリイミド、および前記エポキシ化合物を主成分とする組成物が溶解するものであれば特に限定すること無く使用することができる。具体的に例示するならば、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミドまたはN-メチル-2-ピロリドン、他、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートまたはγ―ブチロラクトンが挙げられる。 In the middle step of manufacturing the gas separation membrane, for example, it is applied to a glass or silicon substrate, and then cured by heating or ultraviolet irradiation with an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane. Can do. The organic solvent that can be used is not particularly limited as long as it can dissolve the HFIP group-containing asymmetric polyimide having the repeating unit represented by the general formula (1) and the composition mainly composed of the epoxy compound. can do. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide or N-methyl-2-pyrrolidone, and others, cyclohexanone, Examples include propylene glycol monomethyl ether acetate or γ-butyrolactone.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[ポリイミド膜の調整]
 気体分離膜用のHFIP基含有非対称ポリイミド膜の調製について説明する。
[Adjustment of polyimide film]
Preparation of an HFIP group-containing asymmetric polyimide membrane for gas separation membrane will be described.
 窒素導入管および還流冷却器を備えた200mL三口フラスコに、下記HFA-3,4’-ODA、2.01g(3.78 mmol)、6FDA、1.68 g(3.78mmol)、N,N-ジメチルアセトアミド14gを加え、窒素雰囲気下、室温で18時間攪拌した後、ピリジンを0.66g(8.32 mmol)、無水酢酸を0.77g(7.56mmol)を加え、更に室温下で3時間撹拌した。得られた反応液を200℃に昇温し、さらに6時間攪拌後、室温に冷却した。ポリイミド1が溶解した均一なN,N-ジメチルアセトアミド溶液を得た。当該溶液のGPC測定(装置は東ソー株式会社製HLC-8320、溶媒はテトラヒドロフラン、ポリスチレン換算。以下同じ。)にて求めたポリイミド1のMwは28,000であった。
Figure JPOXMLDOC01-appb-C000032
To a 200 mL three-necked flask equipped with a nitrogen inlet tube and a reflux condenser, the following HFA-3,4′-ODA, 2.01 g (3.78 mmol), 6FDA, 1.68 g (3.78 mmol), N, N After adding 14 g of dimethylacetamide and stirring at room temperature for 18 hours under a nitrogen atmosphere, 0.66 g (8.32 mmol) of pyridine and 0.77 g (7.56 mmol) of acetic anhydride were added, and further 3 at room temperature. Stir for hours. The resulting reaction solution was heated to 200 ° C., further stirred for 6 hours, and then cooled to room temperature. A uniform N, N-dimethylacetamide solution in which polyimide 1 was dissolved was obtained. The Mw of polyimide 1 determined by GPC measurement of the solution (the device is HLC-8320 manufactured by Tosoh Corporation, the solvent is tetrahydrofuran, converted to polystyrene, and the same shall apply hereinafter) was 28,000.
Figure JPOXMLDOC01-appb-C000032
 前記のN,N-ジメチルアセトアミド溶液をガラス基板上に塗布し、スピンコーターを用いて、回転速度:1000rpm 保持時間:30sec.の塗布条件でスピンコートした。得られたガラス基板を、窒素雰囲気下、200℃、1時間加熱処理した後、ガラス基板から剥がすことでポリイミド1から得られる膜、即ち、HFIP基と非対称構造を有するポリイミド1膜(以下、「ポリイミド膜1」と表すことがある。)を得た。膜厚を測定したところ、25μmであった。 The above N, N-dimethylacetamide solution was applied on a glass substrate, and using a spin coater, the rotation speed: 1000 rpm, the retention time: 30 sec. Spin coating was performed under the following coating conditions. The obtained glass substrate is heated at 200 ° C. for 1 hour in a nitrogen atmosphere, and then peeled off from the glass substrate, that is, a film obtained from polyimide 1, that is, a polyimide 1 film having an asymmetric structure with an HFIP group (hereinafter, “ May be referred to as “polyimide film 1”). The film thickness was measured and found to be 25 μm.
 次に、下記に示した、HFIP基を有する一連のジアミン化合物(HFA-3,4’-MDA、HFA-2,4’-ODA)、
Figure JPOXMLDOC01-appb-C000033
および、下記のテトラカルボン酸二無水物(PMDA、BPDA、BTDA、DSDA、ODPA、6FDA)、
Figure JPOXMLDOC01-appb-C000034
を反応させて、前記と同様の手法にて、ポリイミド2~9からそれぞれポリイミド膜2~9を得た。得られたポリイミド膜2~9についてそれぞれ、原料化合物、膜厚を表1に、GPC測定にて求めたポリイミド2~9のMwを表2に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Next, a series of diamine compounds having HFIP groups (HFA-3,4′-MDA, HFA-2,4′-ODA) shown below,
Figure JPOXMLDOC01-appb-C000033
And the following tetracarboxylic dianhydrides (PMDA, BPDA, BTDA, DSDA, ODPA, 6FDA),
Figure JPOXMLDOC01-appb-C000034
And polyimide films 2 to 9 were obtained from polyimides 2 to 9, respectively, in the same manner as described above. For the obtained polyimide films 2 to 9, raw material compounds and film thicknesses are shown in Table 1, and Mw of polyimides 2 to 9 obtained by GPC measurement are shown in Table 2.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 次に、HFIP基を含有した一連のジアミン化合物(HFA-3,4’-ODA、HFA-3,4’-MDA)と一連のテトラカルボン酸二無水物(6FDA、BPDA、BTDA、DSDA)を組み合わせて重合し、反応後得られたN,N-ジメチルアセトアミド溶液に、所定量の下記エポキシ樹脂1またはエポキシ樹脂2、硬化剤としてトリフェニルホスフィン(エポキシ樹脂に対して1質量%)を加えてそれぞれポリイミドを得た。当該ポリイミドをそれぞれ製膜してポリイミド膜10~13を得た。得られたポリイミド膜10~13についてそれぞれ、原料化合物、膜厚を表3に示す。 Next, a series of diamine compounds containing HFIP groups (HFA-3,4′-ODA, HFA-3,4′-MDA) and a series of tetracarboxylic dianhydrides (6FDA, BPDA, BTDA, DSDA) A predetermined amount of the following epoxy resin 1 or epoxy resin 2 and triphenylphosphine (1% by mass with respect to the epoxy resin) as a curing agent are added to the N, N-dimethylacetamide solution obtained after the polymerization in combination. Each polyimide was obtained. The polyimide films were formed to obtain polyimide films 10 to 13, respectively. Table 3 shows the raw material compounds and film thicknesses of the obtained polyimide films 10 to 13, respectively.
エポキシ樹脂1:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製JER828)
エポキシ樹脂2:クレゾールノボラック型エポキシ樹脂(アルドリッチ社製、カタログNo.408042)
Figure JPOXMLDOC01-appb-T000037
Epoxy resin 1: bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
Epoxy resin 2: Cresol novolac type epoxy resin (manufactured by Aldrich, catalog No. 408042)
Figure JPOXMLDOC01-appb-T000037
[ポリイミド膜1の評価]
 ポリイミド膜1に対し、ガス透過係数の測定および分離性能の評価を行った。以下に気体分離膜のガス透過性能の測定方法を示す。
[Evaluation of polyimide film 1]
The polyimide membrane 1 was measured for gas permeability coefficient and evaluated for separation performance. The measurement method of the gas permeation performance of the gas separation membrane is shown below.
 気体透過係数は、ステンレス製のセルに膜面積7cm2の気体分離膜を配置し、JIS K7126-1:2006「プラスチック―フィルム及びシート―ガス透過度試験方法」の第1部に記載の差圧法に準拠して測定した。 The gas permeability coefficient is the same as the differential pressure method described in Part 1 of JIS K7126-1: 2006 “Plastics—Films and Sheets—Gas Permeability Test Method” by placing a gas separation membrane with a membrane area of 7 cm 2 in a stainless steel cell. Measured in conformity.
 具体的には、温度23℃の条件で、試験気体として、ヘリウム(He)、炭酸ガス(CO2)、酸素ガス(O2)、窒素ガス(N2)およびメタンガス(CH4)を用い、JIS K7126-1:2006に準拠し、各ガスの透過係数および分離性能(各ガスの透過係数の比)を測定した。 Specifically, helium (He), carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), nitrogen gas (N 2 ) and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C. In accordance with JIS K7126-1: 2006, the permeability coefficient and separation performance of each gas (ratio of the permeability coefficient of each gas) were measured.
 前述のJIS K7126-1:2006に準拠し、ポリイミド膜1のガス透過係数の測定結果を表4に、分離性能の評価結果を表5に示した。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
In accordance with the above-mentioned JIS K7126-1: 2006, the measurement results of the gas permeability coefficient of the polyimide membrane 1 are shown in Table 4, and the evaluation results of the separation performance are shown in Table 5.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
[比較例1] ポリイミド膜1と従来樹脂との比較
 次いで、前記のポリイミド膜1のガス透過係数およびガス分離性能と、本発明の範疇にない以下構造式のHFIP基を有さない含フッ素ポリイミド膜(比較例1)のガス透過係数およびガス分離性能を比較した。
Figure JPOXMLDOC01-appb-C000040
Comparative Example 1 Comparison of Polyimide Membrane 1 and Conventional Resin Next, the gas permeation coefficient and gas separation performance of the polyimide membrane 1 described above, and a fluorine-containing polyimide having no HFIP group of the following structural formula not within the scope of the present invention The gas permeability coefficient and gas separation performance of the membrane (Comparative Example 1) were compared.
Figure JPOXMLDOC01-appb-C000040
 表6が比較例1の含フッ素ポリイミドから得られるポリイミド膜のCO2、O2、N2およびCH4のガス透過係数の結果で、表7が当該膜の分離性能の結果である。 Table 6 shows the results of gas permeability coefficients of CO 2 , O 2 , N 2 and CH 4 of the polyimide membrane obtained from the fluorine-containing polyimide of Comparative Example 1, and Table 7 shows the results of the separation performance of the membrane.
 表4および表6を比較すると、本発明のHFIP基含有非対称ポリイミド膜である、実施例1のポリイミド膜1から得られる気体分離膜のCO2、O2、N2およびCH4のガス透過係数は、本発明の範疇にない比較例1に記載の従来の含フッ素ポリイミド膜のCO2、O2、N2およびCH4のガス透過係数よりも大きい値を示し、本発明の実施例1のポリイミド膜1はより優れた気体分離性を示した。 When Table 4 and Table 6 are compared, the gas permeation coefficients of CO 2 , O 2 , N 2 and CH 4 of the gas separation membrane obtained from the polyimide membrane 1 of Example 1 which is the HFIP group-containing asymmetric polyimide membrane of the present invention Shows a value larger than the gas permeability coefficient of CO 2 , O 2 , N 2 and CH 4 of the conventional fluorine-containing polyimide film described in Comparative Example 1 which is not in the category of the present invention. The polyimide membrane 1 exhibited better gas separation properties.
 表7に示すように、本発明のHFIP基と非対称構造を有するポリイミドから得られる実施例2の気体分離膜の方が、比較例1の気体分離膜よりも、CO2/CH4およびCO2/N2の分離性能に優れていた。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
As shown in Table 7, the gas separation membrane of Example 2 obtained from the polyimide having an HFIP group and an asymmetric structure of the present invention is more CO 2 / CH 4 and CO 2 than the gas separation membrane of Comparative Example 1. The separation performance of / N 2 was excellent.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
[ポリイミド膜2~13の評価]
 ポリイミド膜1と同様の評価方法を用いて、ポリイミド膜2~13について分離性能を測定した。結果として、CO2の透過係数は30 Barrer以上で高い透過係数を示し、比較例1のポリイミド膜と比較しても、より優れた性能を示す事が明らかとなった。
[Evaluation of polyimide films 2 to 13]
Using the same evaluation method as for the polyimide film 1, the separation performance of the polyimide films 2 to 13 was measured. As a result, it has been clarified that the CO 2 permeability coefficient is 30 Barrer or higher, indicating a high permeability coefficient, and even better performance than the polyimide film of Comparative Example 1.
 本発明のHFIP基含有非対称ポリイミド膜から得られる気体分離膜は、ガスの種類による透過速度(気体透過係数)の違いが大きく、気体分離性能に優れる。従って、液化天然ガスなどからの二酸化炭素の分離・固定化技術への応用、燃料用エタノール回収を目的とした水―エタノール分離膜などに好適に使用され得る。 The gas separation membrane obtained from the HFIP group-containing asymmetric polyimide membrane of the present invention has a large difference in permeation rate (gas permeation coefficient) depending on the type of gas, and is excellent in gas separation performance. Therefore, it can be suitably used for a separation / fixation technique of carbon dioxide from liquefied natural gas or the like, and a water-ethanol separation membrane for the purpose of recovering ethanol for fuel.

Claims (10)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は2価の有機基を表し、R2は4価の有機基を表す。)
    で表される繰り返し単位を有し、R1が一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。pとqはそれぞれ独立に0~2の整数であり、1≦p+q≦4を満たす。波線と交差する線分は結合位置を表す。)
    で表される2価の有機基、または、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。rとsはそれぞれ独立に0~2の整数であり、1≦r+s≦4を満たす。波線と交差する線分は結合位置を表す。)
    で表される2価の有機基である、ポリイミド構造を有する、気体分離膜。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a divalent organic group, and R 2 represents a tetravalent organic group.)
    And R 1 is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group, where p and q are each independently an integer of 0 to 2, satisfying 1 ≦ p + q ≦ 4, and a line segment intersecting with a wavy line represents a bonding position.
    Or a divalent organic group represented by the general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 represents an OH group, where r and s are each independently an integer of 0 to 2, satisfying 1 ≦ r + s ≦ 4, and a line segment intersecting with a wavy line represents a bonding position.)
    A gas separation membrane having a polyimide structure, which is a divalent organic group represented by:
  2. 一般式(2)で表される2価の有機基が、一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rabは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
    である、請求項1に記載の気体分離膜。
    The divalent organic group represented by the general formula (2) is represented by the general formula (4).
    Figure JPOXMLDOC01-appb-C000004
    Wherein R ab is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
    The gas separation membrane according to claim 1, wherein
  3. 一般式(2)で表される2価の有機基が、式(4-1)または(4-2)
    Figure JPOXMLDOC01-appb-C000005
    (式中、HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
    のいずれかである、請求項1または2に記載の気体分離膜。
    The divalent organic group represented by the general formula (2) is represented by the formula (4-1) or (4-2)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
    The gas separation membrane according to claim 1 or 2, wherein
  4. 一般式(3)で表される2価の有機基が、式(5)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rbbは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基、-C(CF3)2-基、-CH(CH3)-基、-CH(OH)-基もしくは-NH-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
    で表される2価の有機基のいずれかである、請求項1に記載の気体分離膜。
    The divalent organic group represented by the general formula (3) is represented by the formula (5).
    Figure JPOXMLDOC01-appb-C000006
    Wherein R bb is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group, —C (CF 3 ) 2 — group, —CH (CH 3 ) — group, —CH (OH) — group or —NH— group, or carbon number This is a divalent organic group formed by removing any two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms and an aromatic hydrocarbon compound having 6 to 25 carbon atoms.HFIP is —C (CF 3 ) 2 Represents an OH group (the line that intersects the wavy line represents the bond position)
    The gas separation membrane according to claim 1, which is any one of divalent organic groups represented by:
  5. 一般式(3)で表される2価の有機基が、式(5-1)または(5-2)
    Figure JPOXMLDOC01-appb-C000007
    (式中、HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合位置を表す。)
    のいずれかである、請求項1または4に記載の気体分離膜。
    The divalent organic group represented by the general formula (3) is represented by the formula (5-1) or (5-2)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, HFIP represents a —C (CF 3 ) 2 OH group. A line segment intersecting with a wavy line represents a bonding position.)
    The gas separation membrane according to claim 1 or 4, wherein
  6. 2が式(6)~(11)
    Figure JPOXMLDOC01-appb-C000008
    (式中、波線と交差する線分は結合位置を表す。)
    で表される4価の有機基のいずれかである、請求項1~5のいずれかに記載の気体分離膜。
    R 2 represents the formulas (6) to (11)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, the line that intersects the wavy line represents the coupling position.)
    The gas separation membrane according to any one of claims 1 to 5, which is any one of the tetravalent organic groups represented by the formula:
  7. 1に含まれるHFIP基が有する-OH基の水素原子がグリシジル基で置換されてなる、請求項1~6のいずれかに記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 6, wherein a hydrogen atom of an -OH group contained in an HFIP group contained in R 1 is substituted with a glycidyl group.
  8. グリシジル基の環状エーテル部位が開環し架橋してなる請求項7に記載の気体分離膜。 The gas separation membrane according to claim 7, wherein the cyclic ether moiety of the glycidyl group is opened and crosslinked.
  9. さらに、エポキシ化合物と混合し、加熱して得られる、請求項1~8のいずれかに記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 8, further obtained by mixing with an epoxy compound and heating.
  10. エポキシ化合物が一般式(12)
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rfはアルカン、芳香環または脂環から任意の水素原子がg個離脱したg価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよく、gは1~4の整数を表す。)
    で表される、請求項9に記載の気体分離膜。
    The epoxy compound has the general formula (12)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, R f is a g-valent organic group in which an arbitrary number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, and g represents an integer of 1 to 4).
    The gas separation membrane of Claim 9 represented by these.
PCT/JP2013/081700 2012-11-28 2013-11-26 Gas separation membrane WO2014084187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380062298.2A CN104822444B (en) 2012-11-28 2013-11-26 Gas separation membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012260191 2012-11-28
JP2012-260191 2012-11-28
JP2013236336A JP6194774B2 (en) 2012-11-28 2013-11-14 Gas separation membrane
JP2013-236336 2013-11-14

Publications (1)

Publication Number Publication Date
WO2014084187A1 true WO2014084187A1 (en) 2014-06-05

Family

ID=50827823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081700 WO2014084187A1 (en) 2012-11-28 2013-11-26 Gas separation membrane

Country Status (3)

Country Link
JP (1) JP6194774B2 (en)
CN (1) CN104822444B (en)
WO (1) WO2014084187A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547503B2 (en) * 2014-09-12 2019-07-24 セントラル硝子株式会社 Gas separation membrane
JP2016137484A (en) * 2015-01-26 2016-08-04 セントラル硝子株式会社 Gas separation membrane
CN105289337B (en) * 2015-11-04 2017-07-28 中国科学院山西煤炭化学研究所 A kind of crosslinkable polyimide gas separation membrane and preparation method
TWI629095B (en) * 2016-04-08 2018-07-11 財團法人紡織產業綜合研究所 Polyimide composition and preparation method of separation membrane
TWI641654B (en) * 2016-04-08 2018-11-21 Taiwan Textile Research Institute Polyimide composition and preparation method of separation membrane
CN107138056B (en) * 2017-05-12 2020-04-14 天津工业大学 For N2/CH4Separated gas separation membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
US5320650A (en) * 1993-05-04 1994-06-14 E. I. Du Pont De Nemours And Company Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
JPH08173778A (en) * 1994-10-26 1996-07-09 Nitto Denko Corp Manufacture of fluorine containing polyimide gas separating membrane
US5690870A (en) * 1994-10-26 1997-11-25 Nitto Denko Corporation Method of manufacturing a polyimide-type gas permeation membrane including fluorine
JP2011161396A (en) * 2010-02-12 2011-08-25 Ube Industries Ltd Gas separation membrane made of polyimide and gas separation method
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040089A (en) * 1999-07-27 2001-02-13 Nitto Denko Corp Polyimide resin, its production and gas separation membrane composed thereof
EP1783158B1 (en) * 2004-10-13 2013-12-11 Central Glass Company, Limited Fluorine-containing polymerizable monomer and polymer compound using same
JP5114938B2 (en) * 2006-12-19 2013-01-09 セントラル硝子株式会社 Fluorine-containing diamine and polymer compound using the same
US20100216967A1 (en) * 2009-02-20 2010-08-26 International Business Machines Corporation Interfacial polymerization methods for making fluoroalcohol-containing polyamides

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69321240T2 (en) * 1992-09-02 1999-06-17 Du Pont GAS SEPARATION MEMBRANES FROM t-BUTYL-SUBSTITUTED POLYIMIDES, POLYAMIDES AND POLYAMIDIMIDES
WO1994005405A1 (en) * 1992-09-02 1994-03-17 E.I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
EP0658127A1 (en) * 1992-09-02 1995-06-21 E.I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
JPH08501978A (en) * 1992-09-02 1996-03-05 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Gas separation membrane made of alkyl-substituted polyimide, polyamide and polyamide-imide
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
US5320650A (en) * 1993-05-04 1994-06-14 E. I. Du Pont De Nemours And Company Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
EP0627257A1 (en) * 1993-05-04 1994-12-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
JPH07132216A (en) * 1993-05-04 1995-05-23 E I Du Pont De Nemours & Co Separation film for fluorinated aromatic polyimide, polyamide and polyamide-imide gas
JPH08173778A (en) * 1994-10-26 1996-07-09 Nitto Denko Corp Manufacture of fluorine containing polyimide gas separating membrane
US5690870A (en) * 1994-10-26 1997-11-25 Nitto Denko Corporation Method of manufacturing a polyimide-type gas permeation membrane including fluorine
JP2011161396A (en) * 2010-02-12 2011-08-25 Ube Industries Ltd Gas separation membrane made of polyimide and gas separation method
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane
JP2013010096A (en) * 2011-05-30 2013-01-17 Central Glass Co Ltd Gas separation membrane

Also Published As

Publication number Publication date
CN104822444A (en) 2015-08-05
CN104822444B (en) 2017-03-08
JP6194774B2 (en) 2017-09-13
JP2014128788A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5915376B2 (en) Gas separation membrane
JP6194773B2 (en) Gas separation membrane
JP6194774B2 (en) Gas separation membrane
US9050566B2 (en) Gas separation membrane
CN107522860B (en) Polyimide-based liquid and polyimide-based film prepared using the same
TWI470003B (en) Polyamic acid polymer composite and method for producing same
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
WO2012133744A1 (en) Composite hollow fiber membrane
KR20200118027A (en) Polyimide resin composition and polyimide film
JP2015129201A (en) Polyamic acid solution composition and polyimide
WO2012165435A1 (en) Fluorine-containing polymerizable monomer and polymer compound using same
US9056285B2 (en) Gas separation membrane
KR101420165B1 (en) Polyamic acid and heat resistant transparent polyimide prepared by using same
JPH0422429A (en) Gas separation film
JP2019076882A (en) Gas separation membrane
JP2018002963A (en) Polyimide precursor, resin composition, polyimide containing resin film and method for producing the same
JP2007291151A (en) Polyimide resin, polyimide resin layer using the same and optical member
JP2019119829A (en) Polyimide film and optical member using the same
TW202330710A (en) Resin composition, molded body and film
JP2016059919A (en) Gas separation membrane
WO2013089084A1 (en) Hexafluoroisopropanol group-including polysulfone, and synthesis method therefor
JPH10235811A (en) Composite film and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858715

Country of ref document: EP

Kind code of ref document: A1