WO2014084186A1 - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
WO2014084186A1
WO2014084186A1 PCT/JP2013/081699 JP2013081699W WO2014084186A1 WO 2014084186 A1 WO2014084186 A1 WO 2014084186A1 JP 2013081699 W JP2013081699 W JP 2013081699W WO 2014084186 A1 WO2014084186 A1 WO 2014084186A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gas separation
separation membrane
represented
carbon atoms
Prior art date
Application number
PCT/JP2013/081699
Other languages
French (fr)
Japanese (ja)
Inventor
山中 一広
健資 須田
大樹 魚山
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201380062305.9A priority Critical patent/CN104822445B/en
Publication of WO2014084186A1 publication Critical patent/WO2014084186A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/106Repairing membrane apparatus or modules
    • B01D65/108Repairing membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide

Definitions

  • the present invention relates to a gas separation membrane.
  • Gas separation by a gas separation membrane has long been attracting attention as a simple technique that can continuously separate a mixed gas in a gaseous state and does not involve phase change.
  • Gas separation is a technique for selectively separating gas by utilizing the difference in permeation speed and the presence or absence of permeation depending on the type of gas that permeates the gas separation membrane (hereinafter, sometimes referred to as “gas”).
  • polymers such as cellulose acetate, polysulfone or polyimide are known.
  • polyimide is known as a material that has strength suitable for use as a gas separation membrane, is not easily damaged, has excellent heat resistance, and can be used at high temperatures.
  • a polyimide gas separation membrane having a hexafluoroisopropylidene group (hereinafter sometimes referred to as “—C (CF 3 ) 2 —group”) in a repeating structure is represented by helium (hereinafter referred to as “He”). ), Carbon dioxide (hereinafter sometimes referred to as “CO 2 ”), high permeability to these gases, oxygen of these gases (hereinafter sometimes referred to as “O 2 ”), methane (Hereinafter, sometimes referred to as “CH 4 ”) is known to have high selectivity.
  • He helium
  • CO 2 Carbon dioxide
  • O 2 oxygen of these gases
  • CH 4 methane
  • Patent Documents 1 to 3 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group (hereinafter referred to as “—C (CF 3 ) 2 OH group” for polymerizing a fluorine-containing polyimide is disclosed.
  • a fluorine-containing polymerizable monomer which is a diamine having a “HFIP group” and a method for producing the same is disclosed.
  • a method for producing a gas separation membrane obtained from polyimide or the like includes a method in which a polyimide solution is wet-coated and then a solvent is simply evaporated to obtain a homogeneous membrane.
  • a heterogeneous asymmetric membrane comprising a dense layer and a porous layer. There is a way to get it.
  • a method of obtaining an asymmetric membrane is a method in which a polymer solution is discharged from a discharge port, a solvent existing in the vicinity of the surface is evaporated in the air to form a dense layer, and then a solvent that is compatible with the solvent of the polymer solution but does not dissolve the polymer.
  • Patent Document 4 discloses a method for producing a composite reverse osmosis membrane by this method.
  • the diamine compound and tetracarboxylic dianhydride for obtaining a polyimide having a —C (CF 3 ) 2 — group are limited, and the chemical structure is limited when forming a polyimide film.
  • a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering workability, strength, and separation performance.
  • An object of the present invention is to solve such problems, and to provide a gas separation membrane that dissolves in an organic solvent, has excellent moldability, and has excellent gas separation performance when used as a gas separation membrane.
  • the present inventors have made a soluble in an organic solvent, particularly a polar solvent, by using a polyimide compound having an HFIP group, which is a polar group having an —OH group, as a substituent and an alkyl group as a substituent.
  • the present invention was completed by improving the gas separation performance by using the polyimide compound as a gas separation membrane.
  • the present invention is as follows.
  • R 1 represents a divalent organic group
  • R 2 represents a tetravalent organic group.
  • R 1 is represented by the general formula (2) (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms
  • R ab is an alkyl group having 1 to 6 carbon atoms
  • ac and ad are each independently an integer of 0 to 2
  • ⁇ ac + ad ⁇ 4 HFIP represents a —C (CF 3 ) 2 OH group
  • a line segment intersecting with a wavy line represents
  • the divalent organic group represented by the general formula (2) is represented by the general formula (3).
  • R ba represents a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms
  • R bb is an alkyl group having 1 to 6 carbon atoms
  • bc and bd are each independently an integer of 0 to 2 Yes, 1 ⁇ bc + bd ⁇ 4
  • HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a
  • the divalent organic group represented by the general formula (2) is represented by the general formula (4) or (5).
  • R ca is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms
  • R cb is an alkyl group having 1 to 6 carbon atoms
  • HFIP represents a —C (CF 3 ) 2 OH group.
  • R da is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, — A C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic carbon atom having 6 to 25 carbon atoms
  • a line segment intersecting with the wavy line represents a binding site.
  • the gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
  • the divalent organic group represented by the general formula (2) is represented by the formulas (6) to (8).
  • HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.
  • the gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
  • R 2 represents the formulas (9) to (14) (In the formula, the line segment intersecting with the wavy line represents the binding site.)
  • invention 6 A gas separation membrane containing a polyimide structure according to any one of inventions 1 to 5, wherein a hydrogen atom of an —OH group of the HFIP group contained in R 1 is substituted with a glycidyl group.
  • invention 8 Furthermore, the gas separation membrane according to any one of inventions 1 to 7, obtained by mixing with an epoxy compound and heating.
  • the epoxy compound has the general formula (15) (In the formula, R e is an f-valent organic group in which any number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, or a fluoroalkyl group, and f is an integer of 1 to 4.)
  • the gas separation membrane of the invention 8 represented by these.
  • the polyimide gas separation membrane having an HFIP group and an alkyl group according to the present invention has a good separation performance due to the HFIP group and the alkyl group. Further, since the HFIP group has an —OH group, it is soluble in a specific organic solvent, particularly a polar solvent, and it is easy to prepare a polyimide solution, and it can be formed into a desired film shape.
  • the polyimide gas separation membrane having an HFIP group and an alkyl group according to the present invention, it is easy to introduce the HFIP group into the alkyl group-containing aromatic diamine as a raw material. Compared to a membrane, in addition to gas separation performance, it is possible to design a structure for improving membrane properties such as membrane strength or resistance to swelling in a solvent.
  • a gas separation membrane having a —C (CF 3 ) 2 — group in addition to an HFIP group and an alkyl group exhibits even better gas separation performance.
  • the monomer compound used as the raw material of the polyimide having an HFIP group and an alkyl group for producing the gas separation membrane of the present invention includes a diamine having an HFIP group and tetracarboxylic dianhydride.
  • a diamine having an HFIP group and tetracarboxylic dianhydride In order to adjust the strength and separation performance of the membrane in addition to the aromatic diamine having an HFIP group and an alkyl group, it is preferable to employ an aromatic diamine for strength as a gas separation membrane. Diamine may be added. Similarly, in addition to tetracarboxylic dianhydride, other dicarboxylic acids and derivatives thereof may be added in order to adjust the strength and separation performance of the membrane.
  • Aromatic diamine having HFIP group and alkyl group Aromatic compound having HFIP group and alkyl group as monomer compound for synthesizing polyimide having HFIP group and alkyl group for producing gas separation membrane of the present invention
  • Diamine is represented by the general formula (2-A) (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms
  • R ab is an alkyl group having 1 to 6 carbon atoms, ac and ad are each independently an integer of 0 to 2; ⁇ ac + ad ⁇ 4 HFIP represents a —C
  • the divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms includes cyclohexane, A divalent organic group formed by leaving two hydrogen atoms of cyclohexane, adamantane or norbornane is preferable.
  • the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is a divalent organic group formed by removing two hydrogen atoms of benzene, biphenyl, naphthalene or fluorene. Groups.
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group.
  • the aromatic diamine (2-A) having a HFIP group and an alkyl group is represented by the formula (3-A) (Wherein R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms
  • R bb is an alkyl group having 1 to 6 carbon atoms
  • bc and bd are each independently an integer of 0 to 2
  • ⁇ bc + bd ⁇ 4 HFIP represents a —C (CF 3 ) 2 OH group.
  • R ca is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — A —C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or 6 to 25 carbon atoms, A divalent organic group formed by removing two arbitrary hydrogen atoms from an aromatic hydrocarbon compound, R cb is an alkyl group having 1 to 6 carbon atoms, and HFIP is a —C (CF 3 ) 2 OH group.
  • R da is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C ( ⁇ O) — group, —C (CH 3 ) 2 — group , —C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, aromatic having 6 to 25 carbon atoms It is a divalent organic group formed by leaving two arbitrary hydrogen atoms of a group hydrocarbon compound.
  • R db is an alkyl group having 1 to 6 carbon atoms.
  • HFIP represents a —C (CF 3 ) 2 OH group. ) Is particularly preferred.
  • the alkyl group having 1 to 6 carbon atoms of R cb is a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or a pentyl group. And a hexyl group.
  • the compounds represented by formula (4-A) are represented by formulas (4-1-A) to (4-22-A).
  • R cb is an alkyl group having 1 to 6 carbon atoms.
  • HFIP represents a —C (CF 3 ) 2 OH group.
  • the formulas (4-1-A), (4-10-A), (4-13-A), (4-17-A), (4- 21-A) is preferred.
  • the alkyl group having 1 to 6 carbon atoms of R db is a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or a pentyl group. And a hexyl group.
  • the compounds represented by the formula (5-A) are represented by the formulas (5-1-A) to (5-22-A).
  • R db is an alkyl group having 1 to 6 carbon atoms.
  • HFIP represents a —C (CF 3 ) 2 OH group.
  • the formulas (5-10-A) and (5-21-A) are preferable because of easy availability of the raw material diamine.
  • aromatic diamines having an HFIP group and an alkyl group may be used in combination of two or more.
  • the diamine can be obtained by a reaction between an alkyl group-containing aromatic diamine and hexafluoroacetone or hexafluoroacetone trihydrate.
  • the reaction of an aromatic diamine having no alkyl group described in Patent Documents 1 to 3 with hexafluoroacetone or hexafluoroacetone trihydrate can be applied.
  • diamines In order to adjust membrane properties such as gas separation performance, solubility in polar solvents, membrane strength, etc. in the synthesis of polyimides having HFIP groups and alkyl groups, aromatics having HFIP groups and alkyl groups In addition to the group diamine, other diamines and dihydroxyamines may be used. The amount used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol% or less with respect to the tetracarboxylic dianhydride.
  • diamine examples include 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 2,2′-bistrifluoromethyl-4, 4'-diaminobiphenyl, 3,3'-bistrifluoromethyl-5,5'-diaminobiphenyl, bis (trifluoromethyl) -4,4'-diaminobiphenyl, bis (fluorinated alkyl) -4,4'- Diaminobiphenyl, dichloro-4,4′-diaminobiphenyl, dibromo-4,4′-diaminobiphenyl, bis (fluorinated alkoxy) -4,4′-diaminobiphenyl, diphenyl-4,4′-diaminobiphenyl, 4, 4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenz
  • dihydroxyamines examples include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3′-diamino-4,4′-dihydroxydiphenylsulfone, 4,4′-diamino-3,3′-dihydroxydiphenylsulfone, bis (3-amino-4-hydroxyphenyl) methane, 2,2-bis- ( 3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, bis (4-amino-3-hydroxyphenyl) methane, 2,2-bis (4-amino-3-hydroxyphenyl) propane, 4'-diamino-3,3'-dihydroxybenzoph
  • Tetracarboxylic dianhydride used for synthesizing a polyimide having an HFIP group and an alkyl group according to the present invention is represented by the general formula (16). (In the formula, R 2 represents a tetravalent organic group.) It is represented by
  • R 2 is preferably a tetravalent organic group in which four hydrogen atoms are separated from an alkane, alicyclic ring or aromatic ring, and has a fluorine atom, chlorine atom, oxygen atom, sulfur in the structure.
  • An atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
  • tetracarboxylic dianhydrides include pyromellitic dianhydride (hereinafter sometimes referred to as “PMDA”), trifluoromethylbenzenetetracarboxylic dianhydride, bistrifluoro.
  • PMDA pyromellitic dianhydride
  • trifluoromethylbenzenetetracarboxylic dianhydride bistrifluoro.
  • PMDA, BPDA, BTDA, DSDA, ODPA and 6FDA are particularly preferable from the viewpoint of availability, and 6FDA is more preferable from the viewpoint of good gas separation performance (permeability and selectivity).
  • Dicarboxylic acid and dicarboxylic acid derivative In addition to the tetracarboxylic dianhydride, in order to adjust the membrane properties such as separation performance and strength when used as a gas separation membrane, it is represented by the general formulas (17) and (18) Dicarboxylic acids or dicarboxylic acid derivatives may be used. The amount used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol%, relative to the tetracarboxylic dianhydride. Within the range of this molar ratio, gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
  • A is an organic group, preferably a divalent organic group in which two hydrogen atoms are removed from an alkane, alicyclic ring, or aromatic ring, and contains an oxygen atom or a sulfur atom in the structure.
  • Some of the hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and R 3 is independently a hydrogen atom, having 1 to 10 alkyl groups or a benzyl group.
  • A is an organic group, preferably an alkane, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and an oxygen atom, a sulfur atom or a nitrogen atom in the structure. And a part of the hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and X is independently a chlorine atom, fluorine An atom, a bromine atom or an iodine atom.
  • the general formula (19) (In the formula, A is an organic group, preferably an alkane, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and contains an oxygen atom, a sulfur atom or a nitrogen atom in the structure. And a part of hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group))
  • the contained structural unit (In the formula, A is an organic group, preferably an alkane, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and contains an oxygen atom, a sulfur atom or a nitrogen atom in the structure. And a part of hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group)
  • dicarboxylic acid or the dicarboxylic acid derivative represented by the general formulas (17) and (18) for synthesizing the fluorine-containing polyimide used for the gas separation membrane of the present invention is exemplified in the form of the raw dicarboxylic acid, Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid or sebacic acid, aromatic carboxylic acid phthalic acid, isophthalic acid, terephthalic acid, 4, 4'-dicarboxybiphenyl, 3,3'-dicarboxybiphenyl, 3,3'-dicarboxyldiphenyl ether, 3,4'-dicarboxyldiphenyl ether, 4,4'-dicarboxyldiphenyl ether, 3,3'-dicarboxyl Diphenylmethane, 3,4'-dicarboxyldiphenylmethane, 4,4'--
  • terephthalic acid isophthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-ditrifluoromethyl-4,4'-dicarboxybiphenyl because of its ease of availability and ease of condensation polymerization.
  • 2,2-bis (4-carboxyphenyl) hexafluoropropane is preferred.
  • dicarboxylic acid (derivative) means “dicarboxylic acid or dicarboxylic acid derivative”. The same shall apply hereinafter in the specification.
  • the above-mentioned aromatic diamine having an HFIP group and an alkyl group and tetracarboxylic dianhydride are essential, and if necessary , A method of adding other diamines and dicarboxylic acids (derivatives), and then melting them at 150 ° C. or higher and reacting them without solvent, a method of carrying out a polymerization reaction in an organic solvent at a reaction temperature of ⁇ 20 to 80 ° C. Can be mentioned.
  • the diamine and the carboxylic dianhydride or dicarboxylic acid (derivative) are reacted in a one-to-one ratio in terms of a molar ratio, so that an aromatic diamine having an HFIP group and an alkyl group, and other
  • the organic solvent that can be used in the polymerization reaction is only required to dissolve the reaction substrate.
  • the polymerization reaction may be carried out in the presence of these organic solvents and an acid acceptor such as pyridine or triethylamine.
  • the polyamic acid having an HFIP group and an alkyl group obtained by the polymerization reaction can be further imidized by cyclization by dehydration ring-closing reaction, and converted into a target polyimide having an HFIP group and an alkyl group. .
  • the dehydration ring closure reaction is performed under conditions that promote cyclization, such as heating and use of an acid catalyst.
  • the polyamic acid solution having an HFIP group and an alkyl group immediately after the polymerization reaction is imidized at a high temperature of 150 ° C. or more and 250 ° C. or less to prepare a polyimide solution having an HFIP group and an alkyl group.
  • pyridine, triethylamine, acetic anhydride or the like may be added.
  • the concentration of the polyimide having an HFIP group and an alkyl group in the solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is too thin to be industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
  • the weight average molecular weight (hereinafter sometimes referred to as “Mw”) of the polyimide having an HFIP group and an alkyl group according to the present invention is preferably 10,000 or more, and more preferably 20,000 or more.
  • the upper limit of the weight average molecular weight is preferably 500,000 or less, and more preferably 300,000 or less. When the weight average molecular weight is less than 10,000, the strength of the resulting polymer film is poor. When the weight average molecular weight is more than 500,000, the viscosity of the resulting polymer solution becomes too high and handling becomes difficult.
  • the weight average molecular weight here is determined as a converted value based on standard polystyrene by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) analysis (the same applies hereinafter). Detailed analysis conditions for the analysis are described in the examples of the present application.
  • GPC gel permeation chromatography
  • polyimide solution having HFIP group and alkyl group Preparation of polyimide solution having HFIP group and alkyl group
  • the polyimide solution having HFIP group and alkyl group thus obtained can be used as it is for gas separation membrane production.
  • a polyimide solution having an HFIP group and an alkyl group is added to a poor solvent such as water or alcohol for the purpose of removing residual monomers and low molecular weight substances contained in the polyimide solution having an HFIP group and an alkyl group.
  • a poor solvent such as water or alcohol
  • the organic solvent that can be used is such that the polyimide having an HFIP group and an alkyl group can be dissolved, and N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric acid are amide solvents.
  • Halogen solvents such as triamide, N-methyl-2-pyrrolidone, aromatic solvents benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2- Tetrachloroethane, lactones ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone or ⁇ -methyl- ⁇ -butyrolactone, phenols phenol, cresol, xylenol, catechol or Chlorophenol, are alcohols and glycol ethers 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol or n- butyl alcohol or may be used to select from a mixed solvent thereof.
  • Gas separation membrane containing polyimide having HFIP group and alkyl group is a wet film-forming method for producing a thin film by using solvent evaporation from a polyimide solution having HFIP group and alkyl group. Or asymmetric membrane having a dense layer and a porous layer obtained by other methods.
  • the homogeneous film is formed by wet-coating a polyimide solution having the HFIP group and alkyl group described above on a substrate such as a glass substrate using a spin coater, applicator, etc., and then in a dry gas such as air, nitrogen or argon. After heating and evaporating the solvent, it is obtained by peeling from the glass substrate.
  • a polyimide solution having an HFIP group and an alkyl group instead of a polyimide solution having an HFIP group and an alkyl group, a polyamic acid solution having an HFIP group and an alkyl group is used to coat the substrate by the above procedure, followed by heating to imidize to form a homogeneous film. You can also get
  • the thickness of the homogeneous membrane is preferably 5 ⁇ m or more and 1 mm or less.
  • a film thinner than 5 ⁇ m is difficult to manufacture and easily broken.
  • a film thicker than 1 mm is difficult for gas to permeate. More preferably, it is 10 ⁇ m to 200 ⁇ m.
  • An asymmetric film having a dense layer and a porous layer can be formed by the method described above. Moreover, after forming an asymmetric film using a polyamic acid solution instead of a polyimide solution, the asymmetric film can also be obtained by thermal imidization.
  • the dense layer has different permeation speeds depending on the gas type, and has a gas separation function to be selected for the mixed gas.
  • the porous layer has a role as a support for maintaining the membrane shape.
  • the asymmetric membrane containing polyimide having an HFIP group and an alkyl group used for the gas separation membrane of the present invention may be either a flat membrane shape or a hollow fiber shape.
  • the thickness of the dense layer is preferably 10 nm or more and 10 ⁇ m or less. If it is thinner than 10 nm, it is difficult to form a film and it is not practical. If it is thicker than 10 ⁇ m, it is difficult for gas to permeate. Preferably they are 30 nm or more and 1 micrometer or less.
  • the thickness of the porous layer is preferably 5 ⁇ m or more and 2 mm or less for a flat film. If it is thinner than 5 ⁇ m, it is difficult to form a film and it is not practical. If it is thicker than 2 mm, it is difficult for gas to permeate. More preferably, they are 10 micrometers or more and 500 micrometers or less.
  • the inner diameter is 10 ⁇ m or more and 4 mm or less, preferably 20 ⁇ m or more and 1 mm or less, and the outer diameter is 30 ⁇ m or more and 8 mm or less, preferably 50 ⁇ m or more and 1.5 mm or less. In the case of a hollow fiber shape, it is preferable to have a dense layer on the outside.
  • the coagulation liquid for producing the asymmetric membrane water or a mixed solvent of water and an organic solvent is preferably used.
  • the mixed solvent contains 40% by mass or more, preferably 50% by mass or more of water, and examples of the organic solvent include alcohols such as methanol, ethanol or isopropanol, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • alcohols such as methanol, ethanol or isopropanol
  • ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • the polyimide having an HFIP group and an alkyl group to be used for the gas separation membrane of the present invention has an amide solvent N, N-dimethylacetamide, N, N-dimethylformamide, or It is particularly easy to dissolve in N-methyl-2-pyrrolidone, lactones ⁇ -butyrolactone and ⁇ -valerolactone, and it is easy to produce a homogeneous film having a desired film thickness. It is also easy to produce a film.
  • both dry air, aqueous coagulation liquid, etc. are discharged inside the discharge port.
  • a desired dense layer can be formed.
  • a porous layer having a desired pore size, pore size distribution, and thickness can be formed by changing the organic solvent species of the coagulation bath.
  • the film treated with the coagulating liquid is preferably used after being dried by heat treatment.
  • the heat treatment temperature is preferably not higher than the glass transition temperature of polyimide so as not to melt.
  • silicone resin coating For the purpose of repairing the surface defect of the produced gas separation membrane, a silicone resin may be coated on the surface of the separation membrane.
  • a coating method a known coating method such as spin coating, coating with an applicator, or dip coating can be used.
  • Silicone resins include general dimethyl silicone, phenyl group-containing silicone, vinyl group-containing silicone, Si-H group-containing silicone, trifluoropropyl group-containing silicone, silanol group-containing silicone, amino group-containing silicone, epoxy group-containing silicone, A methacryl group containing silicone, an acryl group containing silicone, etc. are mentioned. These are commercially available, such as DMS series, PDV series, VDT series, FMV series, HMS series, DMS series, HPM series, FMS series, SQO series, AMS series, MCR series, ECMS series, RMS series manufactured by Gelest. Is mentioned.
  • the polymer compound having a repeating unit represented by the general formula (1) is mixed with an epoxy compound as in the gas separation membranes of Inventions 6 to 9 for the purpose of improving mechanical strength or plastic resistance. And cured by heating or light irradiation to form a cured film. The cured film can also be applied to the homogeneous film and the asymmetric film.
  • Epoxy compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol triol.
  • R e is an f-valent organic group in which f hydrogen atoms have been removed from an alkyl group, an aromatic ring or an alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom; (A part of the atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group.
  • F is an integer of 1 to 4.
  • Examples of the alcohol include 1,4-cyclohexanediol, 1,3-adamantanediol, catechol, 1,3-benzenediol, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and 2,2′-methylene.
  • these epoxy compounds and epoxy resin curing agents may be used in combination.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, mercaptan compounds, imidazole compounds, polysulfide resin compounds, and phosphorus compounds.
  • thermosetting agents diaminodiphenylmethane, diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride Methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2-methylimidazole, triphenylphosphine, 2-ethyl-4-methylimidazole, BF 3 -amine complex or Examples thereof include guanidine derivatives, diphenyliodonium hexafluorophosphate which is an ultraviolet curing agent, and triphenylsulfonium hexafluorophosphate.
  • the mixing ratio of the epoxy compound and the curing agent for the epoxy resin is 70:30 to 99.5: 0.5, preferably 90:10 to 99: 1, expressed as a mass ratio.
  • the gas separation membrane In the middle step of manufacturing the gas separation membrane, for example, it is applied to a glass or silicon substrate, and then cured by heating or ultraviolet irradiation with an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane.
  • UV ultraviolet
  • the organic solvent that can be used is particularly limited as long as it dissolves the HFIP group-containing polyimide represented by the general formula (1) and the polyimide having an alkyl group, and the composition mainly composed of the epoxy compound. It can be used without any problems.
  • N, N-dimethylacetamide solution in which polyimide 1 was dissolved was obtained.
  • the Mw of polyimide 1 determined by GPC (gel permeation chromatography) measurement of the solution (the apparatus is HLC-8320 manufactured by Tosoh Corporation, the solvent is tetrahydrofuran, converted to polystyrene, and the same shall apply hereinafter) was 42,000.
  • Me represents a methyl group. The same shall apply hereinafter in the specification.
  • the N, N-dimethylacetamide solution was applied onto a glass substrate, and using a spin coater, rotation speed: 1000 rpm, holding time: 30 sec. Spin coating was performed under the following coating conditions.
  • the obtained glass substrate was heat-treated at 200 ° C.
  • polyimide 1 film a film obtained from polyimide 1, that is, a polyimide 1 film having an HFIP group and an alkyl group (hereinafter, referred to as “polyimide 1 film”). It may be expressed as “Polyimide film 1”).
  • the film thickness was measured and found to be 25 ⁇ m.
  • a series of diamine compounds having an HFIP group and an alkyl group (HFA-2DMeBD, HFA-MeFL, HFA-3DMeBD) and a series of tetracarboxylic dianhydrides (6FDA, BPDA, BTDA, DSDA) are combined and polymerized.
  • a predetermined amount of the following epoxy resin 1 or epoxy resin 2 and triphenylphosphine (1% by mass relative to the epoxy resin) as a curing agent were added to the DMAc solution obtained after the reaction to obtain polyimides.
  • the polyimides were respectively formed to obtain polyimide films 18 to 23.
  • Table 3 shows the raw material compounds of the obtained polyimide films 18 to 23 together with the respective film thicknesses.
  • Epoxy resin 1 bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 2 Cresol novolac type epoxy resin (manufactured by Aldrich, catalog No. 408042)
  • the gas permeation coefficient was determined by placing a gas separation membrane with a membrane area of 7 cm 2 in a stainless steel cell, and the differential pressure method described in Part 1 of JIS K7126-1: 2006 “Plastics—Film and Sheet—Gas Permeability Test Method”. Measured according to
  • helium (He), carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C., and JIS K7126-1: 2006
  • helium (He) carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), and methane gas (CH 4 )
  • CO 2 carbon dioxide gas
  • O 2 oxygen gas
  • CH 4 methane gas
  • the CO 2 permeability coefficient of the polyimide film having no HFIP group of Comparative Example 1 was 5 Barrer.
  • the CO 2 permeability coefficient of the polyimide film obtained from the polyimide 5 having an HFIP group and an alkyl group of the present invention was 347 Barrer. From these results, it was clarified that the introduction of HFIP group increased the CO 2 permeability coefficient and showed better performance.
  • the CO 2 permeability coefficient of the polyimide film having no HFIP group of Comparative Example 2 was 12 Barrer.
  • the CO 2 permeability coefficient of the polyimide film obtained from the polyimide 8 having an HFIP group and an alkyl group of the present invention was 310 Barrer. From these results, it was clarified that the introduction of HFIP group increased the CO 2 permeability coefficient and showed better performance.
  • the permeability coefficients of CO 2 of the polyimide films 1 to 4, polyimide films 7 and polyimide films 9 to 23 of the present invention are all 50 Barrer or higher, showing a high permeability coefficient, compared with the polyimide films of Comparative Examples 1 and 2. However, it has become clear that it shows better performance.
  • the gas separation membrane comprising a polyimide membrane having an HFIP group and an alkyl group according to the present invention has a large difference in permeation rate (gas permeation coefficient) depending on the type of gas, and is excellent in gas separation performance. Therefore, it can be suitably used for a separation / fixation technique of carbon dioxide from liquefied natural gas or the like, and a water-ethanol separation membrane for the purpose of recovering ethanol for fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

[Problem] To provide a gas separation membrane which dissolves in an organic solvent, exhibits excellent formability, and exhibits excellent gas-separation performance when used as a gas separation membrane. [Solution] A gas separation membrane having a polyimide structure containing a repeating unit represented by general formula (1) (In the formula, R1 represents a bivalent organic group, and R2 represents a tetravalent organic group.), wherein R1 is a bivalent organic group represented by general formula (2) (In the formula, Raa represents a single bond, a sulfur atom, -SO2-, -CH2-, -C(=O)-, -C(CH3)2-, -C(CH3)(CH2CH3)- or -C(CF3)2-, or a bivalent organic group obtained by separating two arbitrary hydrogen atoms from a C3-12 alicyclic hydrocarbon compound or from a C6-25 aromatic hydrocarbon compound. Rab is a C1-6 alkyl group. ac and ad each independently represent an integer of 0-2. 1≤ac+ad≤4. HFIP represents a -C(CF3)2OH group. The line segments intersecting the wavy lines represent the locations of bonds.)

Description

気体分離膜Gas separation membrane
 本発明は、気体分離膜に関する。 The present invention relates to a gas separation membrane.
 気体分離膜による気体の分離は、連続的に混合気体を気体状態のままで分離でき、相変化を伴わない簡便な技術として、古くから注目されている。気体の分離は、気体分離膜を透過させる気体(以下、「ガス」と表すことがある。)の種類による透過の有無、透過速度の差異を利用し選択的にガスを分離する技術である。 Gas separation by a gas separation membrane has long been attracting attention as a simple technique that can continuously separate a mixed gas in a gaseous state and does not involve phase change. Gas separation is a technique for selectively separating gas by utilizing the difference in permeation speed and the presence or absence of permeation depending on the type of gas that permeates the gas separation membrane (hereinafter, sometimes referred to as “gas”).
 このような気体分離膜用の材料として、酢酸セルロース、ポリスルホンまたはポリイミド等のポリマーが知られている。中でも、ポリイミドは、気体分離膜として使用するに適した強度があり破損し難く、耐熱性に優れ高温での使用が可能な材料として知られている。 As such a gas separation membrane material, polymers such as cellulose acetate, polysulfone or polyimide are known. Among these, polyimide is known as a material that has strength suitable for use as a gas separation membrane, is not easily damaged, has excellent heat resistance, and can be used at high temperatures.
 ポリイミドを用いた気体分離膜に関する報告は多く、目的とするガスを分離するための膜に対する透過性、および目的とするガスの高い選択性等の気体の分離性能に対するモノマーの構造の影響について、詳細に研究されている。 There are many reports on gas separation membranes using polyimide, and details on the influence of monomer structure on gas separation performance, such as permeability to membranes for separating the target gas and high selectivity of the target gas, etc. Has been studied.
 例えば、繰り返し構造中にヘキサフルオロイソプロピリデン基(以下、「-C(CF3)2-基」と表すことがある。)を有するポリイミド系気体分離膜は、ヘリウム(以下、「He」と表すことがある。)、二酸化炭素(以下、「CO2」と表すことがある。)に対する高い透過性を有し、これらガスの酸素(以下、「O2」と表すことがある。)、メタン(以下、「CH4」と表すことがある。)との高い選択性を有することが知られている。 For example, a polyimide gas separation membrane having a hexafluoroisopropylidene group (hereinafter sometimes referred to as “—C (CF 3 ) 2 —group”) in a repeating structure is represented by helium (hereinafter referred to as “He”). ), Carbon dioxide (hereinafter sometimes referred to as “CO 2 ”), high permeability to these gases, oxygen of these gases (hereinafter sometimes referred to as “O 2 ”), methane (Hereinafter, sometimes referred to as “CH 4 ”) is known to have high selectivity.
 また、気体分離膜において、-C(CF3)2-基をポリイミド中の繰り返し単位に導入することで、分子鎖の剛直性を高めながら、分子間相互作用を弱め、ガスの種類による気体分離膜透過の差異を生じさせ、高い膜透過性および高い選択性を両立できるとされる。(非特許文献1および非特許文献2参照)。 In addition, by introducing —C (CF 3 ) 2 — groups into the repeating unit in the polyimide in the gas separation membrane, the intermolecular interaction is weakened while the rigidity of the molecular chain is enhanced, and the gas separation according to the type of gas. It is said that a difference in membrane permeation is caused and both high membrane permeability and high selectivity can be achieved. (See Non-Patent Document 1 and Non-Patent Document 2).
 しかしながら、-C(CF3)2-基を有するポリイミドの合成原料の内、容易に入手可能なものとしては、下記のジアミンおよびテトラカルボン酸二無水物しかなく、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。
Figure JPOXMLDOC01-appb-C000008
However, among the raw materials for the synthesis of polyimides having —C (CF 3 ) 2 — groups, the only readily available materials are the following diamines and tetracarboxylic dianhydrides. Therefore, when a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering strength and separation performance.
Figure JPOXMLDOC01-appb-C000008
 さらに、溶解する有機溶剤が限られるという問題があった。 Furthermore, there was a problem that the organic solvent to be dissolved was limited.
 特許文献1~3には、含フッ素ポリイミドを重合するための、2-ヒドロキシ-1,1,1,3,3,3-フルオロイソプロピル基(以下、「-C(CF3)2OH基」または「HFIP基」と表すことがある。)を有するジアミンである含フッ素重合性単量体およびその製造方法が開示されている。 In Patent Documents 1 to 3, 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group (hereinafter referred to as “—C (CF 3 ) 2 OH group” for polymerizing a fluorine-containing polyimide is disclosed. Alternatively, a fluorine-containing polymerizable monomer which is a diamine having a “HFIP group” and a method for producing the same is disclosed.
 また、ポリイミド等から得られる気体分離膜の製造方法には、ポリイミドの溶液を湿式塗布した後、溶剤を単に蒸発させ均質な膜を得る方法、緻密層と多孔質層からなる不均質な非対称膜を得る方法がある。非対称膜を得る方法は、ポリマー溶液を吐出口から吐出し、表面近傍に存在する溶媒を空気中に蒸発させ緻密層を形成した後、ポリマー溶液の溶媒と相溶するがポリマーは溶解しない溶媒である凝固液を満たした凝固浴に浸漬し、凝固層内で微細な多孔質層を形成させる方法がある。特許文献4には、当該方法による複合逆浸透膜の製造方法が開示されている。 In addition, a method for producing a gas separation membrane obtained from polyimide or the like includes a method in which a polyimide solution is wet-coated and then a solvent is simply evaporated to obtain a homogeneous membrane. A heterogeneous asymmetric membrane comprising a dense layer and a porous layer. There is a way to get it. A method of obtaining an asymmetric membrane is a method in which a polymer solution is discharged from a discharge port, a solvent existing in the vicinity of the surface is evaporated in the air to form a dense layer, and then a solvent that is compatible with the solvent of the polymer solution but does not dissolve the polymer. There is a method of immersing in a coagulation bath filled with a certain coagulation liquid to form a fine porous layer in the coagulation layer. Patent Document 4 discloses a method for producing a composite reverse osmosis membrane by this method.
 前述したように、-C(CF3)2-基を有するポリイミドを得るためのジアミン化合物およびテトラカルボン酸二無水物は限られており、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、加工性、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。 As described above, the diamine compound and tetracarboxylic dianhydride for obtaining a polyimide having a —C (CF 3 ) 2 — group are limited, and the chemical structure is limited when forming a polyimide film. When a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering workability, strength, and separation performance.
特開2007-119503号公報JP 2007-119503 A 特開2007-119504号公報JP 2007-119504 A 特開2008-150534号公報JP 2008-150534 A 米国特許3133132号US Pat. No. 3,133,132
 本発明は係る問題を解決し、有機溶剤に溶解し、成形性に優れ、気体分離膜として用いた際に気体の分離性能に優れた気体分離膜を提供することを目的とする。 An object of the present invention is to solve such problems, and to provide a gas separation membrane that dissolves in an organic solvent, has excellent moldability, and has excellent gas separation performance when used as a gas separation membrane.
 本発明者らは、-OH基を有する極性基であるHFIP基を置換基として有し、かつ、アルキル基を置換基として有するポリイミド化合物を用いることで、有機溶剤、特に極性溶剤に可溶とし、当該ポリイミド化合物を気体分離膜とすることで気体分離性能を向上させて、本発明を完成させた。 The present inventors have made a soluble in an organic solvent, particularly a polar solvent, by using a polyimide compound having an HFIP group, which is a polar group having an —OH group, as a substituent and an alkyl group as a substituent. The present invention was completed by improving the gas separation performance by using the polyimide compound as a gas separation membrane.
 すなわち、本発明は以下の通りである。 That is, the present invention is as follows.
[発明1]
一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、R1は2価の有機基を表し、R2は4価の有機基を表す。)
で表される繰り返し単位を含み、R1が一般式(2)
Figure JPOXMLDOC01-appb-C000010
(式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rabは炭素数1~6のアルキル基である。acとadはそれぞれ独立に0~2の整数であり、1≦ac+ad≦4である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合部位を表す。)
で表される2価の有機基である、ポリイミド構造を有する、気体分離膜。
[Invention 1]
General formula (1)
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 1 represents a divalent organic group, and R 2 represents a tetravalent organic group.)
Wherein R 1 is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000010
(Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms R ab is an alkyl group having 1 to 6 carbon atoms, ac and ad are each independently an integer of 0 to 2; ≦ ac + ad ≦ 4 HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
A gas separation membrane having a polyimide structure, which is a divalent organic group represented by:
[発明2]
一般式(2)で表される2価の有機基が、一般式(3)
Figure JPOXMLDOC01-appb-C000011
(式(3)中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rbbは炭素数1~6のアルキル基であり、bcとbdはそれぞれ独立に0~2の整数であり、1≦bc+bd≦4であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
で表される2価の有機基である、発明1に記載の気体分離膜。
[Invention 2]
The divalent organic group represented by the general formula (2) is represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000011
(In the formula (3), R ba represents a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms from a hydrocarbon compound, R bb is an alkyl group having 1 to 6 carbon atoms, and bc and bd are each independently an integer of 0 to 2 Yes, 1 ≦ bc + bd ≦ 4, HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
The gas separation membrane of invention 1 which is a divalent organic group represented by:
[発明3]
一般式(2)で表される2価の有機基が、一般式(4)または(5)
Figure JPOXMLDOC01-appb-C000012
(式(4)中、Rcaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rcbは炭素数1~6のアルキル基であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。
式(5)中、Rdaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rdbは炭素数1~6のアルキル基であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
で表される2価の有機基のいずれかである、発明1に記載の気体分離膜。
[Invention 3]
The divalent organic group represented by the general formula (2) is represented by the general formula (4) or (5).
Figure JPOXMLDOC01-appb-C000012
(In the formula (4), R ca is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms from a hydrocarbon compound, R cb is an alkyl group having 1 to 6 carbon atoms, and HFIP represents a —C (CF 3 ) 2 OH group. The line segment that intersects with the wavy line represents the binding site.
In the formula (5), R da is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, — A C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic carbon atom having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms of a hydrogen compound, R db is an alkyl group having 1 to 6 carbon atoms, HFIP represents a —C (CF 3 ) 2 OH group, A line segment intersecting with the wavy line represents a binding site. )
The gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
[発明4]
一般式(2)で表される2価の有機基が、式(6)~(8)
Figure JPOXMLDOC01-appb-C000013
(式中、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
で表される2価の有機基のいずれかである、発明1に記載の気体分離膜。
[Invention 4]
The divalent organic group represented by the general formula (2) is represented by the formulas (6) to (8).
Figure JPOXMLDOC01-appb-C000013
(In the formula, HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
The gas separation membrane of invention 1 which is any one of divalent organic groups represented by:
[発明5]
2が式(9)~(14)
Figure JPOXMLDOC01-appb-C000014
(式中、波線と交差する線分は結合部位を表す。)
で表される4価の有機基のいずれかである、発明1~4のいずれかに記載のポリイミド構造を含有する気体分離膜。
[Invention 5]
R 2 represents the formulas (9) to (14)
Figure JPOXMLDOC01-appb-C000014
(In the formula, the line segment intersecting with the wavy line represents the binding site.)
A gas separation membrane containing a polyimide structure according to any one of inventions 1 to 4, which is any one of the tetravalent organic groups represented by the formula:
[発明6]
1に含まれるHFIP基が有する-OH基の水素原子がグリシジル基で置換されてなる、発明1~5のいずれかに記載のポリイミド構造を含有する気体分離膜。
[Invention 6]
6. A gas separation membrane containing a polyimide structure according to any one of inventions 1 to 5, wherein a hydrogen atom of an —OH group of the HFIP group contained in R 1 is substituted with a glycidyl group.
[発明7]
グリシジル基の環状エーテル部位が開環し架橋してなる発明6に記載の気体分離膜。
[Invention 7]
The gas separation membrane according to invention 6, wherein the cyclic ether moiety of the glycidyl group is opened and crosslinked.
[発明8]
さらに、エポキシ化合物と混合し、加熱して得られる、発明1~7のいずれかに記載の気体分離膜。
[Invention 8]
Furthermore, the gas separation membrane according to any one of inventions 1 to 7, obtained by mixing with an epoxy compound and heating.
[発明9]
エポキシ化合物が一般式(15)
Figure JPOXMLDOC01-appb-C000015
(式中、Reはアルカン、芳香環または脂環から任意の水素原子がf個離脱したf価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、またはフルオロアルキル基で置換されていてもよく、fは1~4の整数である。)
で表される、発明8に記載の気体分離膜。
[Invention 9]
The epoxy compound has the general formula (15)
Figure JPOXMLDOC01-appb-C000015
(In the formula, R e is an f-valent organic group in which any number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, (Part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, or a fluoroalkyl group, and f is an integer of 1 to 4.)
The gas separation membrane of the invention 8 represented by these.
本発明のHFIP基とアルキル基を有するポリイミド系気体分離膜は、HFIP基とアルキル基による良好な分離性能を有する。また、HFIP基は-OH基を有するため、特定の有機溶剤、特に極性溶剤に可溶であり、ポリイミド溶液を調製することも容易であり、所望の膜形状に成形可能である。 The polyimide gas separation membrane having an HFIP group and an alkyl group according to the present invention has a good separation performance due to the HFIP group and the alkyl group. Further, since the HFIP group has an —OH group, it is soluble in a specific organic solvent, particularly a polar solvent, and it is easy to prepare a polyimide solution, and it can be formed into a desired film shape.
 さらに、本発明のHFIP基とアルキル基を有するポリイミド系気体分離膜において、原料としてのアルキル基含有芳香族ジアミンにHFIP基を導入することが容易であることから、従来の含フッ素ポリイミド系気体分離膜に比較して、気体分離性能に加え、膜強度または溶剤への耐膨潤性等の膜物性を優れたものとするための構造設計が可能となる。 Further, in the polyimide gas separation membrane having an HFIP group and an alkyl group according to the present invention, it is easy to introduce the HFIP group into the alkyl group-containing aromatic diamine as a raw material. Compared to a membrane, in addition to gas separation performance, it is possible to design a structure for improving membrane properties such as membrane strength or resistance to swelling in a solvent.
 また、HFIP基とアルキル基に加え、-C(CF3)2-基を有する気体分離膜は、さらに良好な気体分離性能を示す。 In addition, a gas separation membrane having a —C (CF 3 ) 2 — group in addition to an HFIP group and an alkyl group exhibits even better gas separation performance.
 以下、本発明について説明するが、本発明は以下の実施態様に限定されるものではない。 Hereinafter, the present invention will be described, but the present invention is not limited to the following embodiments.
 本発明の気体分離膜を作製するためのHFIP基とアルキル基を有するポリイミドの原料となる単量体化合物には、HFIP基を有するジアミンと、テトラカルボン酸二無水物が挙げられる。気体分離膜とした強度のために芳香族ジアミンを採用することが好ましく、HFIP基とアルキル基を有する芳香族ジアミンに加えて、膜とした際の強度、分離性能の調整のために、その他のジアミンを加えてもよい。また、同様に、膜とした際の強度、分離性能の調整のために、テトラカルボン酸二無水物に加え、その他のジカルボン酸およびその誘導体を加えてもよい。 The monomer compound used as the raw material of the polyimide having an HFIP group and an alkyl group for producing the gas separation membrane of the present invention includes a diamine having an HFIP group and tetracarboxylic dianhydride. In order to adjust the strength and separation performance of the membrane in addition to the aromatic diamine having an HFIP group and an alkyl group, it is preferable to employ an aromatic diamine for strength as a gas separation membrane. Diamine may be added. Similarly, in addition to tetracarboxylic dianhydride, other dicarboxylic acids and derivatives thereof may be added in order to adjust the strength and separation performance of the membrane.
1.HFIP基とアルキル基を有する芳香族ジアミン
 本発明の気体分離膜を作製するためのHFIP基とアルキル基を有するポリイミドを合成するための単量体化合物としての、HFIP基とアルキル基を有する芳香族ジアミンは、一般式(2-A)
Figure JPOXMLDOC01-appb-C000016
(式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rabは炭素数1~6のアルキル基である。acとadはそれぞれ独立に0~2の整数であり、1≦ac+ad≦4である。HFIPは-C(CF3)2OH基を表す。)
で表される。
1. Aromatic diamine having HFIP group and alkyl group Aromatic compound having HFIP group and alkyl group as monomer compound for synthesizing polyimide having HFIP group and alkyl group for producing gas separation membrane of the present invention Diamine is represented by the general formula (2-A)
Figure JPOXMLDOC01-appb-C000016
(Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms R ab is an alkyl group having 1 to 6 carbon atoms, ac and ad are each independently an integer of 0 to 2; ≦ ac + ad ≦ 4 HFIP represents a —C (CF 3 ) 2 OH group.
It is represented by
 HFIP基とアルキル基を有する芳香族ジアミン(2-A)において、炭素数3~12の脂環式炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、シクロヘキサン、ビシクロヘキサン、アダマンタンまたはノルボルナンの水素原子が2個離脱してなる2価の有機基が好ましい。炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、ベンゼン、ビフェニル、ナフタレンまたはフルオレンの水素原子が2個離脱してなる2価の有機基が挙げられる。炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。 In the aromatic diamine (2-A) having an HFIP group and an alkyl group, the divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms includes cyclohexane, A divalent organic group formed by leaving two hydrogen atoms of cyclohexane, adamantane or norbornane is preferable. The divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms is a divalent organic group formed by removing two hydrogen atoms of benzene, biphenyl, naphthalene or fluorene. Groups. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, and tert-butyl group.
 HFIP基とアルキル基を有する芳香族ジアミン(2-A)は、式(3-A)
Figure JPOXMLDOC01-appb-C000017
(式中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rbbは炭素数1~6のアルキル基である。bcとbdはそれぞれ独立に0~2の整数であり、1≦bc+bd≦4である。HFIPは-C(CF3)2OH基を表す。)
で表される化合物が好ましく、式(4-A)、(5-A)
Figure JPOXMLDOC01-appb-C000018
(式(4-A)中、Rcaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rcbは炭素数1~6のアルキル基である。HFIPは-C(CF3)2OH基を表す。
式(5-A)中、Rdaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rdbは炭素数1~6のアルキル基である。HFIPは-C(CF3)2OH基を表す。)
で表される化合物が特に好ましい。
The aromatic diamine (2-A) having a HFIP group and an alkyl group is represented by the formula (3-A)
Figure JPOXMLDOC01-appb-C000017
(Wherein R ba is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms R bb is an alkyl group having 1 to 6 carbon atoms, bc and bd are each independently an integer of 0 to 2, ≦ bc + bd ≦ 4 HFIP represents a —C (CF 3 ) 2 OH group.
And a compound represented by the formula (4-A) or (5-A):
Figure JPOXMLDOC01-appb-C000018
(In the formula (4-A), R ca is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — A —C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or 6 to 25 carbon atoms, A divalent organic group formed by removing two arbitrary hydrogen atoms from an aromatic hydrocarbon compound, R cb is an alkyl group having 1 to 6 carbon atoms, and HFIP is a —C (CF 3 ) 2 OH group. Represents.
In the formula (5-A), R da is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group , —C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, aromatic having 6 to 25 carbon atoms It is a divalent organic group formed by leaving two arbitrary hydrogen atoms of a group hydrocarbon compound. R db is an alkyl group having 1 to 6 carbon atoms. HFIP represents a —C (CF 3 ) 2 OH group. )
Is particularly preferred.
 式(4-A)において、Rcbの炭素数1~6のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。 In formula (4-A), the alkyl group having 1 to 6 carbon atoms of R cb is a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or a pentyl group. And a hexyl group.
 式(4-A)で表される化合物は、具体的には、式(4-1-A)~(4-22-A)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式中、Rcbは炭素数1~6のアルキル基である。HFIPは-C(CF3)2OH基を表す。)
が挙げられ、中でも、原料ジアミンの入手の容易性から式(4-1-A)、(4-10-A)、(4-13-A)、(4-17-A)、(4-21-A)が好ましい。
Specifically, the compounds represented by formula (4-A) are represented by formulas (4-1-A) to (4-22-A).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(Wherein R cb is an alkyl group having 1 to 6 carbon atoms. HFIP represents a —C (CF 3 ) 2 OH group.)
Among them, the formulas (4-1-A), (4-10-A), (4-13-A), (4-17-A), (4- 21-A) is preferred.
 式(5-A)において、Rdbの炭素数1~6のアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。 In the formula (5-A), the alkyl group having 1 to 6 carbon atoms of R db is a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or a pentyl group. And a hexyl group.
 式(5-A)で表される化合物は、具体的には、式(5-1-A)~(5-22-A)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式中、Rdbは炭素数1~6のアルキル基である。HFIPは-C(CF3)2OH基を表す。)
が挙げられ、中でも、原料ジアミンの入手の容易性から式(5-10-A)、(5-21-A)が好ましい。
Specifically, the compounds represented by the formula (5-A) are represented by the formulas (5-1-A) to (5-22-A).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(In the formula, R db is an alkyl group having 1 to 6 carbon atoms. HFIP represents a —C (CF 3 ) 2 OH group.)
Among them, the formulas (5-10-A) and (5-21-A) are preferable because of easy availability of the raw material diamine.
 これらのHFIP基とアルキル基を有する芳香族ジアミンは2種以上併用しても良い。 These aromatic diamines having an HFIP group and an alkyl group may be used in combination of two or more.
 当該ジアミンは、アルキル基含有芳香族ジアミンと、ヘキサフルオロアセトンもしくはヘキサフルオロアセトン三水和物との反応により得られる。その製造方法については、特許文献1~3に記載のアルキル基を有さない芳香族ジアミンと、ヘキサフルオロアセトンもしくはヘキサフルオロアセトン三水和物との反応を適用可能である。 The diamine can be obtained by a reaction between an alkyl group-containing aromatic diamine and hexafluoroacetone or hexafluoroacetone trihydrate. Regarding the production method, the reaction of an aromatic diamine having no alkyl group described in Patent Documents 1 to 3 with hexafluoroacetone or hexafluoroacetone trihydrate can be applied.
2.その他のジアミン
 気体分離膜における気体分離性能、極性溶剤への溶解性、膜強度などの膜物性の調整のために、HFIP基とアルキル基を有するポリイミドの合成において、HFIP基とアルキル基を有する芳香族ジアミンに加え、他のジアミン、ジヒドロキシアミンを用いてもよい。使用量は、前記テトラカルボン酸二無水物に対し10モル%以上、80モル%以下であり、好ましくは30モル%以上、60モル%以下である。
2. Other diamines In order to adjust membrane properties such as gas separation performance, solubility in polar solvents, membrane strength, etc. in the synthesis of polyimides having HFIP groups and alkyl groups, aromatics having HFIP groups and alkyl groups In addition to the group diamine, other diamines and dihydroxyamines may be used. The amount used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol% or less with respect to the tetracarboxylic dianhydride.
 ジアミンとしては、3,5-ジアミノベンゾトリフルオリド、2,5-ジアミノベンゾトリフルオリド、3,3’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、2,2’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ビストリフルオロメチル-5,5’-ジアミノビフェニル、ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、ビス(フッ素化アルキル)-4,4’-ジアミノビフェニル、ジクロロ-4,4’-ジアミノビフェニル、ジブロモ-4,4’-ジアミノビフェニル、ビス(フッ素化アルコキシ)-4,4’-ジアミノビフェニル、ジフェニル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノテトラフルオロフェノキシ)テトラフルオロベンゼン、4,4’-ビス(4-アミノテトラフルオロフェノキシ)オクタフルオロビフェニル、4,4’-ビナフチルアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノジュレン、1,4-キシリレンジアミン、ジメチル-4,4’-ジアミノビフェニル、ジアルキル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、ジメトキシ-4,4’-ジアミノビフェニル、ジエトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,4’-ジアミノジフェニルメタン、3,3’-ジメチルージアミノジフェニルメタン、3,3’-ジエチルージアミノジフェニルメタン、9、9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノ-5-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)オクタフルオロビフェニルまたは4,4’-ジアミノベンズアニリドが挙げられ、これらを2種以上併用することもできる。中でも、得られる気体分離膜に高透過性を与える、-C(CF3)2-基を有する下記構造式で表されるジアミンを用いる事が好ましい。
Figure JPOXMLDOC01-appb-C000024
Examples of the diamine include 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 2,2′-bistrifluoromethyl-4, 4'-diaminobiphenyl, 3,3'-bistrifluoromethyl-5,5'-diaminobiphenyl, bis (trifluoromethyl) -4,4'-diaminobiphenyl, bis (fluorinated alkyl) -4,4'- Diaminobiphenyl, dichloro-4,4′-diaminobiphenyl, dibromo-4,4′-diaminobiphenyl, bis (fluorinated alkoxy) -4,4′-diaminobiphenyl, diphenyl-4,4′-diaminobiphenyl, 4, 4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenzene, 4,4′-bis (4-aminote Rafluorophenoxy) octafluorobiphenyl, 4,4'-binaphthylamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diamino Xylene, 2,4-diaminodurene, 1,4-xylylenediamine, dimethyl-4,4'-diaminobiphenyl, dialkyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'- Diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, dimethoxy-4,4′-diaminobiphenyl, diethoxy-4,4′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,4 ′ -Diaminodiphenylmethane, 2,4'-diaminodiphenylmethane, 3,3'-dimethyldiamino Phenylmethane, 3,3′-diethyl-diaminodiphenylmethane, 9,9-bis (4-aminophenyl) fluorene, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,3'-diamino Benzophenone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4- Aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) Hong, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) Hexafluoropropane, 2,2-bis (4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- (3-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (4-Amino-2-trifluoromethylphenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (3-amino-5-trifluoromethylphenoxy) phenyl) hexafluoropropane, 2,2-bis ( 4-Aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis 3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 4,4′-bis (4-aminophenoxy) octafluorobiphenyl or 4, 4'-diaminobenzanilide can be mentioned, and two or more of these can be used in combination. Among them, it is preferable to use a diamine represented by the following structural formula having a —C (CF 3 ) 2 — group, which gives high permeability to the obtained gas separation membrane.
Figure JPOXMLDOC01-appb-C000024
 また、ジヒドロキシアミンを例示するならば、3,3’-ジヒドロキシベンジジン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、及び1,3-ジアミノ-4,6-ジヒドロキシベンゼンが挙げられ、これらを2種以上併用することもできる。中でも、得られる気体分離膜に高透過性を与える、-C(CF3)2-基を有する下記構造式で表されるジヒドロキシアミンを用いる事が好ましい。
Figure JPOXMLDOC01-appb-C000025
Examples of dihydroxyamines include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3′-diamino-4,4′-dihydroxydiphenylsulfone, 4,4′-diamino-3,3′-dihydroxydiphenylsulfone, bis (3-amino-4-hydroxyphenyl) methane, 2,2-bis- ( 3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, bis (4-amino-3-hydroxyphenyl) methane, 2,2-bis (4-amino-3-hydroxyphenyl) propane, , 4'-diamino-3,3'-dihydroxybenzophenone, 3,3'-diamino-4,4'-dihydroxybenzophenone, 4,4'-diamino-3,3'-dihydroxydiphenyl ether, 3,3'-diamino -4,4'-dihydroxydiphenyl ether, 1,4-diamino-2,5-dihydroxybenzene, 1,3-diamino-2,4-dihydroxybenzene, and 1,3-diamino-4,6-dihydroxybenzene Two or more of these may be used in combination. Among them, it is preferable to use dihydroxyamine represented by the following structural formula having a —C (CF 3 ) 2 — group, which gives high permeability to the obtained gas separation membrane.
Figure JPOXMLDOC01-appb-C000025
3.テトラカルボン酸二無水物
 本発明に係るHFIP基とアルキル基を有するポリイミドを合成するために用いるテトラカルボン酸二無水物は、一般式(16)
Figure JPOXMLDOC01-appb-C000026
(式中、R2は4価の有機基を表す。)
で表される。
3. Tetracarboxylic dianhydride The tetracarboxylic dianhydride used for synthesizing a polyimide having an HFIP group and an alkyl group according to the present invention is represented by the general formula (16).
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 2 represents a tetravalent organic group.)
It is represented by
 一般式(16)において、R2は、好ましくは、アルカン、脂環または芳香環から水素原子が4個離脱した4価の有機基であり、構造中にフッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含んでもよく、水素原子の一部がアルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。 In the general formula (16), R 2 is preferably a tetravalent organic group in which four hydrogen atoms are separated from an alkane, alicyclic ring or aromatic ring, and has a fluorine atom, chlorine atom, oxygen atom, sulfur in the structure. An atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
このようなテトラカルボン酸二無水物としては、具体的には、ピロメリット酸二無水物(以下、「PMDA」と表すことがある。)、トリフルオロメチルベンゼンテトラカルボン酸二無水物、ビストリフルオロメチルベンゼンテトラカルボン酸二無水物、ジフルオロベンゼンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水化物、ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と表すことがある。)、ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、「BTDA」と表すことがある。)、オキシジフタル酸二無水物(以下、「ODPA」と表すことがある。)、ビシクロ(2,2,2)オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(以下、「6FDA」と表すことがある。)、2,3,4,5-チオフェンテトラカルボン酸二無水化物、2,5,6,2',5',6'- ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水化物、ビス(3,4-ジカルボキシフェニル)スルホン酸二無水化物(以下、「DSDA」と表すことがある。)または3,4,9,10-ペリレンテトラカルボン酸二無水化物が挙げられ、これらのテトラカルボン酸二無水物は単独で用いても良いし、2種以上併用しても良い。 Specific examples of such tetracarboxylic dianhydrides include pyromellitic dianhydride (hereinafter sometimes referred to as “PMDA”), trifluoromethylbenzenetetracarboxylic dianhydride, bistrifluoro. Methylbenzenetetracarboxylic dianhydride, difluorobenzenetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as “BPDA”), terphenyltetra Carboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as “BTDA”), oxydiphthalic dianhydride (hereinafter referred to as “ODPA”) Bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2 2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride (hereinafter sometimes referred to as “6FDA”), 2,3,4,5-thiophenetetracarboxylic dianhydride, 2 , 5,6,2 ′, 5 ′, 6′- hexafluoro-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfonic acid dianhydride (Hereinafter sometimes referred to as “DSDA”) or 3,4,9,10-perylenetetracarboxylic dianhydride, and these tetracarboxylic dianhydrides may be used alone, Two or more kinds may be used in combination.
 中でも、入手の容易性からPMDA、BPDA、BTDA、DSDA、ODPAおよび6FDAが特に好ましく、良好なガス分離性能(透過性と選択性)から、6FDAがさらに好ましい。 Among these, PMDA, BPDA, BTDA, DSDA, ODPA and 6FDA are particularly preferable from the viewpoint of availability, and 6FDA is more preferable from the viewpoint of good gas separation performance (permeability and selectivity).
4.ジカルボン酸とジカルボン酸誘導体
 気体分離膜とした際の分離性能および強度等の膜物性の調整のために、前記テトラカルボン酸二無水物に加え、一般式(17)、(18)で表されるジカルボン酸またはジカルボン酸誘導体を使用してもよい。使用量は、前記テトラカルボン酸二無水物に対し10モル%以上、80モル%以下であり、好ましくは30モル%以上、60モル%である。本モル比の範囲内で、ガス分離性能、極性溶剤への溶解性、膜強度の調整を行うことができる。
4). Dicarboxylic acid and dicarboxylic acid derivative In addition to the tetracarboxylic dianhydride, in order to adjust the membrane properties such as separation performance and strength when used as a gas separation membrane, it is represented by the general formulas (17) and (18) Dicarboxylic acids or dicarboxylic acid derivatives may be used. The amount used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol%, relative to the tetracarboxylic dianhydride. Within the range of this molar ratio, gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
 一般式(17):
Figure JPOXMLDOC01-appb-C000027
(式(17)中、Aは有機基、好ましくは、アルカン、脂環、または芳香環から水素原子が2個離脱した2価の有機基であり、構造中に酸素原子または硫黄原子を含有してもよく、水素原子の一部がアルキル基、フッ素、塩素、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。R3はそれぞれ独立に水素原子、炭素数1~10のアルキル基、またはベンジル基である。
Formula (17):
Figure JPOXMLDOC01-appb-C000027
(In Formula (17), A is an organic group, preferably a divalent organic group in which two hydrogen atoms are removed from an alkane, alicyclic ring, or aromatic ring, and contains an oxygen atom or a sulfur atom in the structure. Some of the hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and R 3 is independently a hydrogen atom, having 1 to 10 alkyl groups or a benzyl group.
 一般式(18):
Figure JPOXMLDOC01-appb-C000028
(式(18)中、Aは有機基、好ましくは、アルカン、または脂環もしくは芳香環から水素原子が1個離脱した2価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がアルキル基、フッ素、塩素、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。Xはそれぞれ独立に、塩素原子、フッ素原子、臭素原子またはヨウ素原子である。
General formula (18):
Figure JPOXMLDOC01-appb-C000028
(In the formula (18), A is an organic group, preferably an alkane, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and an oxygen atom, a sulfur atom or a nitrogen atom in the structure. And a part of the hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and X is independently a chlorine atom, fluorine An atom, a bromine atom or an iodine atom.
 尚、縮合反応後は一般式(19)
Figure JPOXMLDOC01-appb-C000029
(式中、Aは有機基、好ましくは、アルカン、または脂環もしくは芳香環から水素原子が1個離脱した2価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がアルキル基、フッ素、塩素、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。)で表されるヘテロ環構造を共重合成分として含有した構造単位となる。
In addition, after the condensation reaction, the general formula (19)
Figure JPOXMLDOC01-appb-C000029
(In the formula, A is an organic group, preferably an alkane, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and contains an oxygen atom, a sulfur atom or a nitrogen atom in the structure. And a part of hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group)) The contained structural unit.
 本発明の気体分離膜に使用する含フッ素ポリイミドを合成するための、一般式(17)、(18)で表されるジカルボン酸またはジカルボン酸誘導体を、原料のジカルボン酸の形で例示すると、脂肪族ジカルボン酸である、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸またはセバシン酸、芳香族カルボン酸であるフタル酸、イソフタル酸、テレフタル酸、4,4’-ジカルボキシビフェニル、3,3’-ジカルボキシビフェニル、3,3’-ジカルボキシルジフェニルエーテル、3,4’-ジカルボキシルジフェニルエーテル、4,4’-ジカルボキシルジフェニルエーテル、3,3’-ジカルボキシルジフェニルメタン、3,4’-ジカルボキシルジフェニルメタン、4,4’-ジカルボキシルジフェニルメタン、3,3’-ジカルボキシルジフェニルジフルオロメタン、3,4’-ジカルボキシルジフェニルジフルオロメタン、4,4’-ジカルボキシルジフェニルジフルオロメタン、3,3’-ジカルボキシルジフェニルスルホン、3,4’-ジカルボキシルジフェニルスルホン、4,4’-ジカルボキシルジフェニルスルホン、3,3’-ジカルボキシルジフェニルスルフィド、3,4’-ジカルボキシルジフェニルスルフィド、4,4’-ジカルボキシルジフェニルスルフィド、3,3’-ジカルボキシルジフェニルケトン、3,4’-ジカルボキシルジフェニルケトン、4,4’-ジカルボキシルジフェニルケトン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2-ビス(3,4’-ジカルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4’-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,3-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(4-カルボキシフェノキシ)ベンゼン、3,3’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、3,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、4,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4-(3-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(4-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(3-カルボキシフェノキシ)フェニル)スルホンまたはビス(4-(4-カルボキシフェノキシ)フェニル)スルホン、パーフルオロノネニルオキシ基含有のジカルボン酸である5-(パーフルオロノネニルオキシ)イソフタル酸、4-(パーフルオロノネニルオキシ)フタル酸、2-(パーフルオロノネニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロノネニルオキシ)イソフタル酸、パーフルオロヘキセニルオキシ基含有のジカルボン酸である、5-(パーフルオロヘキセニルオキシ)イソフタル酸、4-(パーフルオロヘキセニルオキシ)フタル酸、2-(パーフルオロヘキセニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロヘキセニルオキシ)イソフタル酸、2,2’-ジトリフルオロメチル-4,4’-ジカルボキシビフェニルが挙げられる。また、これらを2種以上併用してもよい。 When the dicarboxylic acid or the dicarboxylic acid derivative represented by the general formulas (17) and (18) for synthesizing the fluorine-containing polyimide used for the gas separation membrane of the present invention is exemplified in the form of the raw dicarboxylic acid, Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid or sebacic acid, aromatic carboxylic acid phthalic acid, isophthalic acid, terephthalic acid, 4, 4'-dicarboxybiphenyl, 3,3'-dicarboxybiphenyl, 3,3'-dicarboxyldiphenyl ether, 3,4'-dicarboxyldiphenyl ether, 4,4'-dicarboxyldiphenyl ether, 3,3'-dicarboxyl Diphenylmethane, 3,4'-dicarboxyldiphenylmethane, 4,4'-di Ruboxyl diphenylmethane, 3,3′-dicarboxyldiphenyldifluoromethane, 3,4′-dicarboxyldiphenyldifluoromethane, 4,4′-dicarboxyldiphenyldifluoromethane, 3,3′-dicarboxyldiphenylsulfone, 3,4 ′ -Dicarboxyl diphenyl sulfone, 4,4'-dicarboxyl diphenyl sulfone, 3,3'-dicarboxyl diphenyl sulfide, 3,4'-dicarboxyl diphenyl sulfide, 4,4'-dicarboxyl diphenyl sulfide, 3,3 ' -Dicarboxyl diphenyl ketone, 3,4'-dicarboxyl diphenyl ketone, 4,4'-dicarboxyl diphenyl ketone, 2,2-bis (3-carboxyphenyl) propane, 2,2-bis (3,4'- Dicarboxy Enyl) propane, 2,2-bis (4-carboxyphenyl) propane, 2,2-bis (3-carboxyphenyl) hexafluoropropane, 2,2-bis (3,4'-dicarboxyphenyl) hexafluoropropane 2,2-bis (4-carboxyphenyl) hexafluoropropane, 1,3-bis (3-carboxyphenoxy) benzene, 1,4-bis (3-carboxyphenoxy) benzene, 1,4-bis (4- Carboxyphenoxy) benzene, 3,3 ′-(1,4-phenylenebis (1-methylethylidene)) bisbenzoic acid, 3,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisbenzoic acid 4,4 ′-(1,4-phenylenebis (1-methylethylidene)) bisbenzoic acid, 2,2-bis (4- (3-carboxy Phenoxy) phenyl) propane, 2,2-bis (4- (4-carboxyphenoxy) phenyl) propane, 2,2-bis (4- (3-carboxyphenoxy) phenyl) hexafluoropropane, 2,2-bis ( 4- (4-carboxyphenoxy) phenyl) hexafluoropropane, bis (4- (3-carboxyphenoxy) phenyl) sulfide, bis (4- (4-carboxyphenoxy) phenyl) sulfide, bis (4- (3-carboxy Phenoxy) phenyl) sulfone or bis (4- (4-carboxyphenoxy) phenyl) sulfone, 5- (perfluorononenyloxy) isophthalic acid, a dicarboxylic acid containing a perfluorononenyloxy group, 4- (perfluoronone) Nyloxy) phthalic acid, 2- (perfluorononeni Oxy) terephthalic acid or 4-methoxy-5- (perfluorononenyloxy) isophthalic acid, a dicarboxylic acid containing a perfluorohexenyloxy group, 5- (perfluorohexenyloxy) isophthalic acid, 4- (perfluorohexenyl) Oxy) phthalic acid, 2- (perfluorohexenyloxy) terephthalic acid or 4-methoxy-5- (perfluorohexenyloxy) isophthalic acid, 2,2'-ditrifluoromethyl-4,4'-dicarboxybiphenyl It is done. Two or more of these may be used in combination.
 中でも入手の容易さ、縮重合反応のし易さに優れることから、テレフタル酸、イソフタル酸、4,4’-ジカルボキシビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジカルボキシビフェニル、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパンが好ましい。 Among these, terephthalic acid, isophthalic acid, 4,4'-dicarboxybiphenyl, 2,2'-ditrifluoromethyl-4,4'-dicarboxybiphenyl because of its ease of availability and ease of condensation polymerization. 2,2-bis (4-carboxyphenyl) hexafluoropropane is preferred.
5.HFIP基とアルキル基を有するポリイミドの合成
 本発明の気体分離膜に使用するHFIP基とアルキル基を有するポリイミドを合成方法について説明する。
5. Synthesis of polyimide having HFIP group and alkyl group A method for synthesizing a polyimide having an HFIP group and an alkyl group used in the gas separation membrane of the present invention will be described.
 ここで、「ジカルボン酸(誘導体)」と表す場合、「ジカルボン酸またはジカルボン酸誘導体」を意味する。明細書において、以下同じ。 Here, the expression “dicarboxylic acid (derivative)” means “dicarboxylic acid or dicarboxylic acid derivative”. The same shall apply hereinafter in the specification.
 本発明の気体分離膜に使用するHFIP基とアルキル基を有するポリイミドを合成するには、前述のHFIP基とアルキル基を有する芳香族ジアミンとテトラカルボン酸二無水物を必須とし、必要であれば、その他のジアミンおよびジカルボン酸(誘導体)を加えた後、150℃以上で相互に溶融させて無溶媒で反応させる方法、反応温度-20~80℃下にて、有機溶媒中で重合反応させる方法を挙げることができる。重合反応においては、ジアミンと、無水カルボン酸二無水物またはジカルボン酸(誘導体)とが、モル比で表して1対1で反応することから、HFIP基とアルキル基を有する芳香族ジアミンおよびその他のジアミン、テトラカルボン酸二無水物およびジカルボン酸(誘導体)の存在比は、モル比で表して、芳香族ジアミンおよびその他ジアミン:テトラカルボン酸二無水物およびジカルボン酸(誘導体)=1:1であることが好ましい。 In order to synthesize a polyimide having an HFIP group and an alkyl group for use in the gas separation membrane of the present invention, the above-mentioned aromatic diamine having an HFIP group and an alkyl group and tetracarboxylic dianhydride are essential, and if necessary , A method of adding other diamines and dicarboxylic acids (derivatives), and then melting them at 150 ° C. or higher and reacting them without solvent, a method of carrying out a polymerization reaction in an organic solvent at a reaction temperature of −20 to 80 ° C. Can be mentioned. In the polymerization reaction, the diamine and the carboxylic dianhydride or dicarboxylic acid (derivative) are reacted in a one-to-one ratio in terms of a molar ratio, so that an aromatic diamine having an HFIP group and an alkyl group, and other The abundance ratio of diamine, tetracarboxylic dianhydride and dicarboxylic acid (derivative) is expressed as a molar ratio, and aromatic diamine and other diamine: tetracarboxylic dianhydride and dicarboxylic acid (derivative) = 1: 1. It is preferable.
 前記重合反応に使用できる有機溶媒は、反応基質が溶解すればよく、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミドまたはN-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼンまたはベンゾニトリル、ハロゲン系溶媒であるクロロホルム、ジクロロメタン、1,2-ジクロロエタンまたは1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトン、アルコール類およびグリコールエーテル類である2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールまたはn-ブチルアルコールが挙げられる。また、これらの有機溶媒と、酸受容体、例えば、ピリジン、トリエチルアミンを共存させて重合反応を行ってもよい。 The organic solvent that can be used in the polymerization reaction is only required to dissolve the reaction substrate. N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, or N-methyl-2-pyrrolidone, which are amide solvents, are used. Benzene, anisole, diphenyl ether, nitrobenzene or benzonitrile as aromatic solvents, chloroform, dichloromethane, 1,2-dichloroethane or 1,1,2,2-tetrachloroethane as halogen solvents, and γ-as lactones Butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone or α-methyl-γ-butyrolactone, alcohols and glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxy Ethanol or n- butyl alcohol. Further, the polymerization reaction may be carried out in the presence of these organic solvents and an acid acceptor such as pyridine or triethylamine.
 前記重合反応で得られたHFIP基とアルキル基を有するポリアミド酸を、さらに脱水閉環反応させ環化することでイミド化して、目的物であるHFIP基とアルキル基を有するポリイミドに転化することができる。 The polyamic acid having an HFIP group and an alkyl group obtained by the polymerization reaction can be further imidized by cyclization by dehydration ring-closing reaction, and converted into a target polyimide having an HFIP group and an alkyl group. .
 脱水閉環反応は、加熱、酸触媒の使用等の反応条件を環化が促進する条件により行う。一般的には、重合反応直後のHFIP基とアルキル基を有するポリアミド酸溶液を150℃以上、250℃以下の高温でイミド化し、HFIP基とアルキル基を有するポリイミド溶液に調製することができる。その際、ピリジン、トリエチルアミン、無水酢酸などを加えてもよい。溶液中のHFIP基とアルキル基を有するポリイミドの濃度は、5質量%以上、50質量%以下が好ましい。5質量%より少ないと、薄すぎて工業的に実用的ではない。50質量%を超えると溶解し難い。さらに、好ましくは10質量%以上、40質量%以下である。 The dehydration ring closure reaction is performed under conditions that promote cyclization, such as heating and use of an acid catalyst. Generally, the polyamic acid solution having an HFIP group and an alkyl group immediately after the polymerization reaction is imidized at a high temperature of 150 ° C. or more and 250 ° C. or less to prepare a polyimide solution having an HFIP group and an alkyl group. At that time, pyridine, triethylamine, acetic anhydride or the like may be added. The concentration of the polyimide having an HFIP group and an alkyl group in the solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is too thin to be industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
 本発明に係るHFIP基とアルキル基を有するポリイミドの重量平均分子量(以下、「Mw」と表すことがある。)は、好ましくは10,000以上であり、より好ましくは20,000以上である。当該重量平均分子量の上限は、500,000以下が好ましく、300,000以下がさらに好ましい。重量平均分子量が10,000未満だと、得られる高分子膜の強度が乏しい。重量平均分子量が500,000超だと、得られる高分子溶液の粘度が高くなりすぎて取り扱いが難しくなる。ここでいう重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と表すことがある。)分析により、標準ポリスチレン基準の換算値として求められるものである(本願において以下同じ。)。当該分析の詳細な分析条件は、本願の実施例で記述する。 The weight average molecular weight (hereinafter sometimes referred to as “Mw”) of the polyimide having an HFIP group and an alkyl group according to the present invention is preferably 10,000 or more, and more preferably 20,000 or more. The upper limit of the weight average molecular weight is preferably 500,000 or less, and more preferably 300,000 or less. When the weight average molecular weight is less than 10,000, the strength of the resulting polymer film is poor. When the weight average molecular weight is more than 500,000, the viscosity of the resulting polymer solution becomes too high and handling becomes difficult. The weight average molecular weight here is determined as a converted value based on standard polystyrene by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) analysis (the same applies hereinafter). Detailed analysis conditions for the analysis are described in the examples of the present application.
6.HFIP基とアルキル基を有するポリイミド溶液の調製
 このようにして得られたHFIP基とアルキル基を有するポリイミドの溶液は、気体分離膜製造にそのまま用いることもできる。また、HFIP基とアルキル基を有するポリイミドの溶液中に含まれる残存モノマー、低分子量体を除去する目的で、水またはアルコール等の貧溶媒中に、HFIP基とアルキル基を有するポリイミドの溶液を加え、HFIP基とアルキル基を有するポリイミドを沈殿させて単離精製した後、改めて有機溶媒に前記濃度になるように溶解させて調整してもよい。
6). Preparation of polyimide solution having HFIP group and alkyl group The polyimide solution having HFIP group and alkyl group thus obtained can be used as it is for gas separation membrane production. In addition, a polyimide solution having an HFIP group and an alkyl group is added to a poor solvent such as water or alcohol for the purpose of removing residual monomers and low molecular weight substances contained in the polyimide solution having an HFIP group and an alkyl group. After the polyimide having an HFIP group and an alkyl group is precipitated and isolated and purified, it may be adjusted by dissolving it again in the organic solvent to the above concentration.
 使用できる有機溶媒は、HFIP基とアルキル基を有するポリイミドが溶解すればよく、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の、ハロゲン系溶媒クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトン、フェノール類であるフェノール、クレゾール、キシレノール、カテコールまたはクロルフェノール、アルコール類およびグリコールエーテル類である2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールまたはn-ブチルアルコール、あるいはそれらの混合溶媒から選んで使用すればよい。 The organic solvent that can be used is such that the polyimide having an HFIP group and an alkyl group can be dissolved, and N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric acid are amide solvents. Halogen solvents such as triamide, N-methyl-2-pyrrolidone, aromatic solvents benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2- Tetrachloroethane, lactones γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone or α-methyl-γ-butyrolactone, phenols phenol, cresol, xylenol, catechol or Chlorophenol, are alcohols and glycol ethers 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol or n- butyl alcohol or may be used to select from a mixed solvent thereof.
7.気体分離膜の作製
 本発明のHFIP基とアルキル基を有するポリイミドを含む気体分離膜は、HFIP基とアルキル基を有するポリイミド溶液から溶媒が蒸発することを利用して薄膜を作製する湿式成膜法で得られる均質膜、または他の方法で得られる緻密層と多孔質層とを有する非対称膜のいずれであってもよい。
7). Production of Gas Separation Membrane Gas separation membrane containing polyimide having HFIP group and alkyl group according to the present invention is a wet film-forming method for producing a thin film by using solvent evaporation from a polyimide solution having HFIP group and alkyl group. Or asymmetric membrane having a dense layer and a porous layer obtained by other methods.
[均質膜]
 均質膜は、例えば、前述のHFIP基とアルキル基を有するポリイミドの溶液を、ガラス基板などの基体にスピンコーター、アプリケーター等を用いて湿式被覆した後、空気、窒素またはアルゴン等の乾燥気体中で加熱し、溶剤を蒸発させた後、ガラス基材から剥離させることで得られる。また、HFIP基とアルキル基を有するポリイミド溶液の代わりに、HFIP基とアルキル基を有するポリアミド酸溶液を用いて、上記手順で基体に被覆させた後、加熱してイミド化させることでも均質な膜を得ることもできる。
[Homogeneous membrane]
For example, the homogeneous film is formed by wet-coating a polyimide solution having the HFIP group and alkyl group described above on a substrate such as a glass substrate using a spin coater, applicator, etc., and then in a dry gas such as air, nitrogen or argon. After heating and evaporating the solvent, it is obtained by peeling from the glass substrate. In addition, instead of a polyimide solution having an HFIP group and an alkyl group, a polyamic acid solution having an HFIP group and an alkyl group is used to coat the substrate by the above procedure, followed by heating to imidize to form a homogeneous film. You can also get
 気体分離膜に使用するためには、均質膜の厚さとしては5μm以上、1mm以下が好ましい。5μmより薄い膜は、作製が困難な上に破れ易い。1mmより厚い膜は、ガスが透過しにくい。さらに好ましくは、10μmから200μmである。 In order to be used for a gas separation membrane, the thickness of the homogeneous membrane is preferably 5 μm or more and 1 mm or less. A film thinner than 5 μm is difficult to manufacture and easily broken. A film thicker than 1 mm is difficult for gas to permeate. More preferably, it is 10 μm to 200 μm.
[非対称膜]
 緻密層と多孔質層とを有する非対称な膜は、前述の方法で成膜することができる。また、ポリイミド溶液の代わりに、ポリアミド酸溶液を用いて非対称膜を形成した後、熱イミド化させることでも、非対称膜を得ることができる。
[Asymmetric membrane]
An asymmetric film having a dense layer and a porous layer can be formed by the method described above. Moreover, after forming an asymmetric film using a polyamic acid solution instead of a polyimide solution, the asymmetric film can also be obtained by thermal imidization.
 非対称膜において、緻密層はガス種によって透過速度が異なり、混合ガスに対しての選択する気体分離機能を有する。一方で、多孔質層は、膜形状を保持するための支持体としての役割を有する。 In the asymmetric membrane, the dense layer has different permeation speeds depending on the gas type, and has a gas separation function to be selected for the mixed gas. On the other hand, the porous layer has a role as a support for maintaining the membrane shape.
 本発明の気体分離膜に使用する、HFIP基とアルキル基を有するポリイミドを含む非対称膜は、平らな膜状、中空糸状のいずれの形状であってもよい。 The asymmetric membrane containing polyimide having an HFIP group and an alkyl group used for the gas separation membrane of the present invention may be either a flat membrane shape or a hollow fiber shape.
 緻密層の厚さは10nm以上、10μm以下が好ましい。10nmより薄いと成膜し難く実用的でない。10μmより厚いと、ガスが透過しにくい。好ましくは30nm以上、1μm以下である。 The thickness of the dense layer is preferably 10 nm or more and 10 μm or less. If it is thinner than 10 nm, it is difficult to form a film and it is not practical. If it is thicker than 10 μm, it is difficult for gas to permeate. Preferably they are 30 nm or more and 1 micrometer or less.
 多孔質層の厚さは、平らな膜状では、5μm以上、2mm以下が好ましい。5μmより薄いと成膜し難く実用的でない。2mmより厚いと、ガスが透過し難い。さらに好ましくは10μm以上、500μm以下である。中空糸状では、内径が10μm以上、4mm以下、好ましくは20μm以上、1mm以下であり、外径は30μm以上、8mm以下、好ましくは50μm以上、1.5mm以下である。中空糸状とする場合は、外側に緻密層を有することが好ましい。 The thickness of the porous layer is preferably 5 μm or more and 2 mm or less for a flat film. If it is thinner than 5 μm, it is difficult to form a film and it is not practical. If it is thicker than 2 mm, it is difficult for gas to permeate. More preferably, they are 10 micrometers or more and 500 micrometers or less. In the hollow fiber shape, the inner diameter is 10 μm or more and 4 mm or less, preferably 20 μm or more and 1 mm or less, and the outer diameter is 30 μm or more and 8 mm or less, preferably 50 μm or more and 1.5 mm or less. In the case of a hollow fiber shape, it is preferable to have a dense layer on the outside.
 非対称膜を作製する際の凝固液としては、水、または水と有機溶剤の混合溶媒が好適に使用される。混合溶媒は、40質量%以上、好ましくは50質量%以上の水を含有し、有機溶媒としては、アルコールであるメタノール、エタノールまたはイソプロパノール、ケトンであるアセトン、メチルエチルケトン、ジエチルケトンが挙げられる。凝固液に水またはその混合溶媒を用いると、膜作製設備を防爆仕様とすることの必要性がなく、コスト削減になる。 As the coagulation liquid for producing the asymmetric membrane, water or a mixed solvent of water and an organic solvent is preferably used. The mixed solvent contains 40% by mass or more, preferably 50% by mass or more of water, and examples of the organic solvent include alcohols such as methanol, ethanol or isopropanol, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone. When water or a mixed solvent thereof is used for the coagulation liquid, there is no need to make the film production facility explosion-proof, and the cost can be reduced.
[凝固液]
 本発明の気体分離膜に使用する、HFIP基とアルキル基を有するポリイミドは、極性基であるHFIP基の含有効果により、アミド系溶媒であるN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドまたはN-メチル-2-ピロリドン、ラクトンであるγ-ブチロラクトン、γ-バレロラクトンに特に溶解し易く、所望の膜厚を有する均質膜を作製することも容易であるし、水系凝固液を使用した非対称膜を作製することも容易である。
[Coagulation liquid]
The polyimide having an HFIP group and an alkyl group to be used for the gas separation membrane of the present invention has an amide solvent N, N-dimethylacetamide, N, N-dimethylformamide, or It is particularly easy to dissolve in N-methyl-2-pyrrolidone, lactones γ-butyrolactone and γ-valerolactone, and it is easy to produce a homogeneous film having a desired film thickness. It is also easy to produce a film.
 特に、非対称膜作製にあたっては、吐出口から凝固浴までの距離を変更することで、また、中空糸状に吐出する場合は、吐出口の内側に乾燥空気、水系凝固液などを共に吐出することで、所望の緻密層を形成できる。凝固浴の有機溶媒種を変更することで、所望の孔径、孔径分布、厚さを有する多孔質層を形成できる。 In particular, in producing an asymmetric membrane, by changing the distance from the discharge port to the coagulation bath, and when discharging in the form of a hollow fiber, both dry air, aqueous coagulation liquid, etc. are discharged inside the discharge port. A desired dense layer can be formed. A porous layer having a desired pore size, pore size distribution, and thickness can be formed by changing the organic solvent species of the coagulation bath.
 凝固液で処理した膜は、加熱処理で乾燥させた後に用いることが好ましい。加熱処理温度は、溶融させないためにポリイミドのガラス転移温度以下が好ましい。 The film treated with the coagulating liquid is preferably used after being dried by heat treatment. The heat treatment temperature is preferably not higher than the glass transition temperature of polyimide so as not to melt.
[シリコーン樹脂コーティング]
 作製した気体分離膜の表面欠陥を修復することを目的として、シリコーン樹脂を分離膜表面にコーティングしてもよい。コーティング方法としては、スピンコーティング、アプリケーターによるコーティング、浸漬コーティングなど、公知のコーティング法を使用することができる。
[Silicone resin coating]
For the purpose of repairing the surface defect of the produced gas separation membrane, a silicone resin may be coated on the surface of the separation membrane. As a coating method, a known coating method such as spin coating, coating with an applicator, or dip coating can be used.
 シリコーン樹脂としては、一般的なジメチルシリコーン、フェニル基含有シリコーン、ビニル基含有シリコーン、Si-H基含有シリコーン、トリフルオロプロピル基含有シリコーン、シラノール基含有シリコーン、アミノ基含有シリコーン、エポキシ基含有シリコーン、メタクリル基含有シリコーン、アクリル基含有シリコーンなどが挙げられる。これらは市販されており、Gelest社製のDMSシリーズ、PDVシリーズ、VDTシリーズ、FMVシリーズ、HMSシリーズ、DMSシリーズ、HPMシリーズ、FMSシリーズ、SQOシリーズ、AMSシリーズ、MCRシリーズ、ECMSシリーズ、RMSシリーズなどが挙げられる。 Silicone resins include general dimethyl silicone, phenyl group-containing silicone, vinyl group-containing silicone, Si-H group-containing silicone, trifluoropropyl group-containing silicone, silanol group-containing silicone, amino group-containing silicone, epoxy group-containing silicone, A methacryl group containing silicone, an acryl group containing silicone, etc. are mentioned. These are commercially available, such as DMS series, PDV series, VDT series, FMV series, HMS series, DMS series, HPM series, FMS series, SQO series, AMS series, MCR series, ECMS series, RMS series manufactured by Gelest. Is mentioned.
8.エポキシ化合物の併用
 前記一般式(1)で表される繰り返し単位を有する高分子化合物は、機械強度または耐可塑性を向上させる目的で、発明6~9の気体分離膜のように、エポキシ化合物と混合し、加熱または光照射などにより硬化させて硬化膜とすることができる。当該硬化膜は、前記の均質膜、および非対称膜にも適用可能である。
8). Combined use of epoxy compound The polymer compound having a repeating unit represented by the general formula (1) is mixed with an epoxy compound as in the gas separation membranes of Inventions 6 to 9 for the purpose of improving mechanical strength or plastic resistance. And cured by heating or light irradiation to form a cured film. The cured film can also be applied to the homogeneous film and the asymmetric film.
 エポキシ化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂またはアミノトリアジン変性フェノール樹脂化合物を、エピクロロヒドリンと接触させることによりエポキシ変性させたエポキシ化合物が挙げられる。 Epoxy compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol triol. Contacting methylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin or aminotriazine-modified phenol resin compound with epichlorohydrin An epoxy compound modified by epoxy is mentioned.
 これらは、市販されており、ビスフェノールA型(大日本インキ工業株式会社製、商品名、エピクロン840)、ビスフェノールF型(旭電化工業株式会社製、商品名、アデカレジンEP-4901)、クレゾールノボラック型(大日本インキ工業株式会社製、商品名、エピクロンN-600シリーズ)、ジシクロペンタジエン型(大日本インキ工業株式会社製、商品名、エピクロンHP-7200シリーズ)、トリアジン型(日産化学工業株式会社製、商品名、TEPICシリーズ)などが挙げられる。 These are commercially available, bisphenol A type (Dainippon Ink Industries, trade name, Epicron 840), bisphenol F type (Asahi Denka Kogyo, trade name, Adeka Resin EP-4901), cresol novolak type (Dainippon Ink Industries, trade name, Epicron N-600 series), dicyclopentadiene type (Dainippon Ink Industries, trade name, Epicron HP-7200 series), Triazine (Nissan Chemical Industry Co., Ltd.) Manufactured, trade name, TEPIC series) and the like.
 一般式(15)
Figure JPOXMLDOC01-appb-C000030
(式中、Reはアルキル基、芳香環または脂環から水素原子がf個離脱したf価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよい。fは1~4の整数である。)
で表されるエポキシ化合物は、これに対応するアルコールとエピクロロヒドリンから合成される。
General formula (15)
Figure JPOXMLDOC01-appb-C000030
(Wherein R e is an f-valent organic group in which f hydrogen atoms have been removed from an alkyl group, an aromatic ring or an alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom; (A part of the atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group. F is an integer of 1 to 4.)
Is synthesized from a corresponding alcohol and epichlorohydrin.
 当該アルコールとしては、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、カテコール、1,3-ベンゼンジオール、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、2,2’-メチレンジフェノール、4,4’-メチレンジフェノール、エチレングリコール、プロピレングリコール、2,2-ビス(4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-ブタン、3,3-ビス(4-ヒドロキシフェニル)-ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、3,3-ビス(4-ヒドロキシフェニル)-ヘキサン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、4,4´-ジヒドロキシジフェニルエーテル、4,4´-ジヒドロキシジフェニルスルフィド、4,4´-ジヒドロキシジフェニルスルホキシド、4,4´-ジヒドロキシジフェニルスルホン、4,4´-ジヒドロキシベンゾフェノン、1,4-ジヒドロキシヘキサン、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、1,1´-メチレンジ-2-ナフトール、4,4´、4´-トリヒドロキシトリフェニルメタン、1,1,1-トリス(4-ヒドロキシフェニル)エタンまたはα,α,α´-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼンが挙げられる。 Examples of the alcohol include 1,4-cyclohexanediol, 1,3-adamantanediol, catechol, 1,3-benzenediol, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and 2,2′-methylene. Diphenol, 4,4'-methylenediphenol, ethylene glycol, propylene glycol, 2,2-bis (4-hydroxyphenyl) -propane, 2,2-bis (4-hydroxyphenyl) -3-methylpropane, 2 , 2-bis (4-hydroxyphenyl) -butane, 3,3-bis (4-hydroxyphenyl) -pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 3,3-bis ( 4-hydroxyphenyl) -hexane, 2,2-bis (3-chloro-4-hydroxyphenyl) -Propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) -propane, 2,2-bis (3-bromo-4-hydroxyphenyl) -propane, 2,2-bis (3,5 -Dibromo-4-hydroxyphenyl) -propane, 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3 , 3-hexafluoropropane, 2,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 2,3-dihydroxypyridine, , 4-dihydroxypyridine, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, , 4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 1,4-dihydroxyhexane, 2,2-bis (4-hydroxycyclohexyl) -propane, 1,1 ' -Methylenedi-2-naphthol, 4,4 ', 4'-trihydroxytriphenylmethane, 1,1,1-tris (4-hydroxyphenyl) ethane or α, α, α'-tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene.
 当該アルコールとして、式(1)で表される繰り返し単位に含まれるHFIP基中のアルコールを用いる事も可能である。 As the alcohol, it is also possible to use an alcohol in the HFIP group contained in the repeating unit represented by the formula (1).
 発明6~9の気体分離膜を得る際、これらエポキシ化合物と、エポキシ樹脂用硬化剤を併用してもよい。当該硬化剤を例示するならば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物、メルカプタン系化合物、イミダゾール系化合物、ポリスルフィド樹脂系化合物またはリン系化合物が挙げられる。具体的には、熱硬化剤であるジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチレントリアミン、トリエチレンテトラミン、ポリアルキレングリコールポリアミン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、2-メチルイミダゾ-ル、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、BF3-アミン錯体またはグアニジン誘導体、紫外線硬化剤であるジフェニルヨードニウムヘキサフロロホスフェート、トリフェニルスルホニウムヘキサフロロホスフェートが挙げられる。 In obtaining the gas separation membranes of Inventions 6 to 9, these epoxy compounds and epoxy resin curing agents may be used in combination. Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, mercaptan compounds, imidazole compounds, polysulfide resin compounds, and phosphorus compounds. Specifically, thermosetting agents diaminodiphenylmethane, diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride Methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2-methylimidazole, triphenylphosphine, 2-ethyl-4-methylimidazole, BF 3 -amine complex or Examples thereof include guanidine derivatives, diphenyliodonium hexafluorophosphate which is an ultraviolet curing agent, and triphenylsulfonium hexafluorophosphate.
 一般式(1)で表される繰り返し単位を有する高分子化合物とエポキシ化合物の混合割合は、質量比で表して高分子化合物:エポキシ化合物=10:90~98:2であり、好ましくは50:50~95:5である。 The mixing ratio of the polymer compound having the repeating unit represented by the general formula (1) and the epoxy compound is expressed by mass ratio: polymer compound: epoxy compound = 10: 90 to 98: 2, preferably 50: 50-95: 5.
 エポキシ化合物と、エポキシ樹脂用硬化剤との混合比は、質量比で表して、70:30~99.5:0.5であり、好ましくは90:10~99:1である。 The mixing ratio of the epoxy compound and the curing agent for the epoxy resin is 70:30 to 99.5: 0.5, preferably 90:10 to 99: 1, expressed as a mass ratio.
 前記気体分離膜を製造する途中工程にて、例えば、ガラスまたはシリコン基板に塗布し、その後、加熱または、紫外線(UV)ランプなどによる紫外線照射により硬化させて、架橋硬化した気体分離膜とすることができる。使用できる有機溶媒としては、一般式(1)で表される繰り返し単位を有するHFIP基とアルキル基を有するポリイミド、および前記エポキシ化合物を主成分とする組成物が溶解するものであれば特に限定すること無く使用することができる。具体的に例示するならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドンなどのアミド系溶媒、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、γ―ブチロラクトンなどが挙げられる。 In the middle step of manufacturing the gas separation membrane, for example, it is applied to a glass or silicon substrate, and then cured by heating or ultraviolet irradiation with an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane. Can do. The organic solvent that can be used is particularly limited as long as it dissolves the HFIP group-containing polyimide represented by the general formula (1) and the polyimide having an alkyl group, and the composition mainly composed of the epoxy compound. It can be used without any problems. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, amide solvents such as hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, cyclohexanone, propylene glycol Examples thereof include monomethyl ether acetate and γ-butyrolactone.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[ポリイミド膜の調整]
 気体分離膜用のHFIP基とアルキル基を有するポリイミド膜の調製について説明する。
[Adjustment of polyimide film]
Preparation of a polyimide membrane having a HFIP group and an alkyl group for a gas separation membrane will be described.
 窒素導入管と還流冷却器を備えた200mL三口フラスコに、下記HFA-2DMeBD(2.06g、3.78 mmol)、6FDA(1.68g、3.78mmol)、N,N-ジメチルアセトアミド(14g)を加え、窒素雰囲気下、室温で18時間攪拌した後、ピリジン(0.66g、8.32 mmol)と無水酢酸(0.77g、7.56 mmol)を加え、さらに室温下で3時間撹拌した。得られた反応液を200℃に昇温し、さらに6時間攪拌後、室温に冷却した。ポリイミド1が溶解した均一なN,N-ジメチルアセトアミド溶液を得た。当該溶液のGPC(ゲルパーミエーションクロマトグラフィー)測定(装置は東ソー株式会社製HLC-8320、溶媒はテトラヒドロフラン、ポリスチレン換算。以下同じ。)にて求めたポリイミド1のMwは42,000であった。
Figure JPOXMLDOC01-appb-C000031
(式中、Meはメチル基を表す。明細書中において、以下同じ。)
 前記のN,N-ジメチルアセトアミド溶液をガラス基板上に塗布し、スピンコーターを用いて、回転速度:1000rpm、保持時間:30sec.の塗布条件でスピンコートした。得られたガラス基板を、窒素雰囲気下、200℃、1時間加熱処理した後、ガラス基板から剥がすことで、ポリイミド1から得られる膜、即ち、HFIP基とアルキル基を有するポリイミド1膜(以下、「ポリイミド膜1」と表すことがある。)を得た。膜厚を測定したところ、25μmであった。
To a 200 mL three-necked flask equipped with a nitrogen inlet tube and a reflux condenser, the following HFA-2DMeBD (2.06 g, 3.78 mmol), 6FDA (1.68 g, 3.78 mmol), N, N-dimethylacetamide (14 g) After stirring at room temperature for 18 hours under a nitrogen atmosphere, pyridine (0.66 g, 8.32 mmol) and acetic anhydride (0.77 g, 7.56 mmol) were added, and the mixture was further stirred at room temperature for 3 hours. . The resulting reaction solution was heated to 200 ° C., further stirred for 6 hours, and then cooled to room temperature. A uniform N, N-dimethylacetamide solution in which polyimide 1 was dissolved was obtained. The Mw of polyimide 1 determined by GPC (gel permeation chromatography) measurement of the solution (the apparatus is HLC-8320 manufactured by Tosoh Corporation, the solvent is tetrahydrofuran, converted to polystyrene, and the same shall apply hereinafter) was 42,000.
Figure JPOXMLDOC01-appb-C000031
(In the formula, Me represents a methyl group. The same shall apply hereinafter in the specification.)
The N, N-dimethylacetamide solution was applied onto a glass substrate, and using a spin coater, rotation speed: 1000 rpm, holding time: 30 sec. Spin coating was performed under the following coating conditions. The obtained glass substrate was heat-treated at 200 ° C. for 1 hour in a nitrogen atmosphere, and then peeled off from the glass substrate to obtain a film obtained from polyimide 1, that is, a polyimide 1 film having an HFIP group and an alkyl group (hereinafter, referred to as “polyimide 1 film”). It may be expressed as “Polyimide film 1”). The film thickness was measured and found to be 25 μm.
 次に、下記に示した、HFIP基とアルキル基を有する一連のジアミン化合物(HFA-2DMeBD、HFA-MeFL、HFA-3DMeBD、mHFA-3DMeBD)、
Figure JPOXMLDOC01-appb-C000032
および、下記のテトラカルボン酸二無水物(PMDA,BPDA,BTDA、DSDA、ODPA,6FDA)、
Figure JPOXMLDOC01-appb-C000033
を反応させて、前記と同様の手法にて、ポリイミド2~17から得られるポリイミド膜(ポリイミド膜2~17)を得た。ポリイミド膜2~17の原料化合物および膜厚を表1に、ポリイミド2~17のMwを表2に示す。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Next, a series of diamine compounds (HFA-2DMeBD, HFA-MeFL, HFA-3DMeBD, mHFA-3DMeBD) having the HFIP group and the alkyl group shown below,
Figure JPOXMLDOC01-appb-C000032
And the following tetracarboxylic dianhydrides (PMDA, BPDA, BTDA, DSDA, ODPA, 6FDA),
Figure JPOXMLDOC01-appb-C000033
Were reacted to obtain polyimide films (polyimide films 2 to 17) obtained from polyimides 2 to 17 in the same manner as described above. Table 1 shows the raw material compounds and film thicknesses of the polyimide films 2 to 17, and Table 2 shows Mw of the polyimides 2 to 17.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 次に、HFIP基とアルキル基を有する一連のジアミン化合物(HFA-2DMeBD、HFA-MeFL、HFA-3DMeBD)と一連のテトラカルボン酸二無水物(6FDA、BPDA、BTDA、DSDA)を組み合わせて重合し、反応後得られたDMAc溶液に、所定量の下記エポキシ樹脂1またはエポキシ樹脂2、硬化剤としてトリフェニルホスフィン(エポキシ樹脂に対して1質量%)を加えてそれぞれポリイミドを得た。当該ポリイミドをそれぞれ製膜してポリイミド膜18~23を得た。得られたポリイミド膜18~23の原料化合物を、それぞれの膜厚とともに、表3に示す。 Next, a series of diamine compounds having an HFIP group and an alkyl group (HFA-2DMeBD, HFA-MeFL, HFA-3DMeBD) and a series of tetracarboxylic dianhydrides (6FDA, BPDA, BTDA, DSDA) are combined and polymerized. A predetermined amount of the following epoxy resin 1 or epoxy resin 2 and triphenylphosphine (1% by mass relative to the epoxy resin) as a curing agent were added to the DMAc solution obtained after the reaction to obtain polyimides. The polyimides were respectively formed to obtain polyimide films 18 to 23. Table 3 shows the raw material compounds of the obtained polyimide films 18 to 23 together with the respective film thicknesses.
 エポキシ樹脂1:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製JER828)
 エポキシ樹脂2:クレゾールノボラック型エポキシ樹脂(アルドリッチ社製、カタログNo.408042)
Figure JPOXMLDOC01-appb-T000036
Epoxy resin 1: bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
Epoxy resin 2: Cresol novolac type epoxy resin (manufactured by Aldrich, catalog No. 408042)
Figure JPOXMLDOC01-appb-T000036
[ポリイミド5の評価]
 ポリイミド5に対し、ガス透過係数の測定および分離性能の評価を行った。以下に気体分離膜のガス透過性能の測定方法を示す。
[Evaluation of Polyimide 5]
The polyimide 5 was measured for gas permeability coefficient and evaluated for separation performance. The measurement method of the gas permeation performance of the gas separation membrane is shown below.
 気体透過係数は、ステンレス製のセルに膜面積7cm2の気体分離膜を配置し、JIS K7126-1:2006「プラスチック―フィルム及びシート―ガス透過度試験方法」の第1部に記載の差圧法に準拠して測定した。 The gas permeation coefficient was determined by placing a gas separation membrane with a membrane area of 7 cm 2 in a stainless steel cell, and the differential pressure method described in Part 1 of JIS K7126-1: 2006 “Plastics—Film and Sheet—Gas Permeability Test Method”. Measured according to
 具体的には、温度23℃の条件で、試験気体として、ヘリウム(He)、炭酸ガス(CO2)、酸素ガス(O2)およびメタンガス(CH4)を用い、JIS K7126-1:2006に準拠し、各ガスの透過係数および分離性能(各ガスの透過係数の比)を測定した。 Specifically, helium (He), carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C., and JIS K7126-1: 2006 In conformity, the permeability coefficient and separation performance of each gas (ratio of the permeability coefficient of each gas) were measured.
 前述のJIS K7126-1:2006に準拠し、ポリイミド5から作成膜のガス透過係数の測定結果を表4に示し、分離性能の評価結果を表5に示す。 Based on the above-mentioned JIS K7126-1: 2006, the measurement results of the gas permeability coefficient of the membrane prepared from polyimide 5 are shown in Table 4, and the evaluation results of the separation performance are shown in Table 5.
 同様に、ポリイミド6を有する膜、ポリイミド8を有する膜のガス透過係数の測定結果を表4に示し、分離性能の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Similarly, the measurement results of the gas permeability coefficient of the membrane having polyimide 6 and the membrane having polyimide 8 are shown in Table 4, and the evaluation results of the separation performance are shown in Table 5.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 次いで、前記のHFIP基とアルキル基を有するポリイミド膜(ポリイミド膜5、6および8)のガス分離性能と、従来の本発明の範疇にない以下構造式のHFIP基を有さないポリイミド膜(比較例1および2)のガス分離性能を比較した。 Next, the gas separation performance of the polyimide film having the HFIP group and the alkyl group (polyimide films 5, 6 and 8) and the polyimide film not having the HFIP group of the following structural formula not included in the scope of the present invention (comparison) The gas separation performance of Examples 1 and 2) was compared.
[比較例1]
Figure JPOXMLDOC01-appb-C000039
[Comparative Example 1]
Figure JPOXMLDOC01-appb-C000039
 比較例1のHFIP基を有さないポリイミド膜のCO2の透過係数は、5 Barrerであった。表4に記載の通り、本発明のHFIP基とアルキル基を有するポリイミド5から得られるポリイミド膜のCO2の透過係数は、347 Barrerであった。これらの結果より、HFIP基を導入することでCO2の透過係数が高くなり、より優れた性能を示す事が明らかとなった。 The CO 2 permeability coefficient of the polyimide film having no HFIP group of Comparative Example 1 was 5 Barrer. As shown in Table 4, the CO 2 permeability coefficient of the polyimide film obtained from the polyimide 5 having an HFIP group and an alkyl group of the present invention was 347 Barrer. From these results, it was clarified that the introduction of HFIP group increased the CO 2 permeability coefficient and showed better performance.
[比較例2]
Figure JPOXMLDOC01-appb-C000040
[Comparative Example 2]
Figure JPOXMLDOC01-appb-C000040
 比較例2のHFIP基を有さないポリイミド膜のCO2の透過係数は、12 Barrerであった。表5に記載の通り、本発明のHFIP基とアルキル基を有するポリイミド8から得られるポリイミド膜のCO2の透過係数は、310 Barrerであった。これらの結果より、HFIP基を導入することでCO2の透過係数が高くなり、より優れた性能を示す事が明らかとなった。 The CO 2 permeability coefficient of the polyimide film having no HFIP group of Comparative Example 2 was 12 Barrer. As shown in Table 5, the CO 2 permeability coefficient of the polyimide film obtained from the polyimide 8 having an HFIP group and an alkyl group of the present invention was 310 Barrer. From these results, it was clarified that the introduction of HFIP group increased the CO 2 permeability coefficient and showed better performance.
 更に、本発明のポリイミド膜1~4、ポリイミド膜7、ポリイミド膜9~23のCO2の透過係数はいずれも50 Barrer以上で高い透過係数を示し、比較例1および2のポリイミド膜と比較しても、より優れた性能を示す事が明らかとなった。 Furthermore, the permeability coefficients of CO 2 of the polyimide films 1 to 4, polyimide films 7 and polyimide films 9 to 23 of the present invention are all 50 Barrer or higher, showing a high permeability coefficient, compared with the polyimide films of Comparative Examples 1 and 2. However, it has become clear that it shows better performance.
 本発明のHFIP基とアルキル基を有するポリイミド膜からなる気体分離膜は、ガスの種類による透過速度(気体透過係数)の違いが大きく、気体分離性能に優れる。従って、液化天然ガスなどからの二酸化炭素の分離・固定化技術への応用、燃料用エタノール回収を目的とした水―エタノール分離膜などに好適に使用され得る。 The gas separation membrane comprising a polyimide membrane having an HFIP group and an alkyl group according to the present invention has a large difference in permeation rate (gas permeation coefficient) depending on the type of gas, and is excellent in gas separation performance. Therefore, it can be suitably used for a separation / fixation technique of carbon dioxide from liquefied natural gas or the like, and a water-ethanol separation membrane for the purpose of recovering ethanol for fuel.

Claims (9)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は2価の有機基を表し、R2は4価の有機基を表す。)
    で表される繰り返し単位を含み、R1が一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Raaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基である。Rabは炭素数1~6のアルキル基である。acとadはそれぞれ独立に0~2の整数であり、1≦ac+ad≦4である。HFIPは-C(CF3)2OH基を表す。波線と交差する線分は結合部位を表す。)
    で表される2価の有機基である、ポリイミド構造を有する、気体分離膜。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a divalent organic group, and R 2 represents a tetravalent organic group.)
    Wherein R 1 is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R aa is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, —C ( CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, or an aromatic hydrocarbon compound having 6 to 25 carbon atoms R ab is an alkyl group having 1 to 6 carbon atoms, ac and ad are each independently an integer of 0 to 2; ≦ ac + ad ≦ 4 HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
    A gas separation membrane having a polyimide structure, which is a divalent organic group represented by:
  2. 一般式(2)で表される2価の有機基が、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rbaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rbbは炭素数1~6のアルキル基であり、bcとbdはそれぞれ独立に0~2の整数であり、1≦bc+bd≦4であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
    で表される2価の有機基である、請求項1に記載の気体分離膜。
    The divalent organic group represented by the general formula (2) is represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R ba represents a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms from a hydrocarbon compound, R bb is an alkyl group having 1 to 6 carbon atoms, and bc and bd are each independently an integer of 0 to 2 Yes, 1 ≦ bc + bd ≦ 4, HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
    The gas separation membrane of Claim 1 which is a bivalent organic group represented by these.
  3. 一般式(2)で表される2価の有機基が、一般式(4)または(5)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Rcaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rcbは炭素数1~6のアルキル基であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。
    式(5)中、Rdaは単結合、酸素原子、硫黄原子、-SO2-基、-CH2-基、-C(=O)-基、-C(CH3)2-基、-C(CH3)(CH2CH3)-基もしくは-C(CF3)2-基であり、または、炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の任意の水素原子2個が離脱してなる2価の有機基であり、Rdbは炭素数1~6のアルキル基であり、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
    で表される2価の有機基のいずれかである、請求項1に記載の気体分離膜。
    The divalent organic group represented by the general formula (2) is represented by the general formula (4) or (5).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (4), R ca is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, A —C (CH 3 ) (CH 2 CH 3 ) — group or a —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic group having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms from a hydrocarbon compound, R cb is an alkyl group having 1 to 6 carbon atoms, and HFIP represents a —C (CF 3 ) 2 OH group. The line segment that intersects with the wavy line represents the binding site.
    In the formula (5), R da is a single bond, oxygen atom, sulfur atom, —SO 2 — group, —CH 2 — group, —C (═O) — group, —C (CH 3 ) 2 — group, — A C (CH 3 ) (CH 2 CH 3 ) — group or —C (CF 3 ) 2 — group, or an alicyclic hydrocarbon compound having 3 to 12 carbon atoms, an aromatic carbon atom having 6 to 25 carbon atoms A divalent organic group formed by removing two arbitrary hydrogen atoms of a hydrogen compound, R db is an alkyl group having 1 to 6 carbon atoms, HFIP represents a —C (CF 3 ) 2 OH group, A line segment intersecting with the wavy line represents a binding site. )
    The gas separation membrane according to claim 1, which is any one of divalent organic groups represented by:
  4. 一般式(2)で表される2価の有機基が、式(6)~(8)
    Figure JPOXMLDOC01-appb-C000005
    (式中、HFIPは-C(CF3)2OH基を表し、波線と交差する線分は結合部位を表す。)
    で表される2価の有機基のいずれかである、請求項1に記載の気体分離膜。
    The divalent organic group represented by the general formula (2) is represented by the formulas (6) to (8).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, HFIP represents a —C (CF 3 ) 2 OH group, and a line segment intersecting with a wavy line represents a binding site.)
    The gas separation membrane according to claim 1, which is any one of divalent organic groups represented by:
  5. 2が式(9)~(14)
    Figure JPOXMLDOC01-appb-C000006
    (式中、波線と交差する線分は結合部位を表す。)
    で表される4価の有機基のいずれかである、請求項1~4のいずれかに記載のポリイミド構造を含有する気体分離膜。
    R 2 represents the formulas (9) to (14)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, the line segment intersecting with the wavy line represents the binding site.)
    The gas separation membrane containing a polyimide structure according to any one of claims 1 to 4, which is any one of tetravalent organic groups represented by the formula:
  6. 1に含まれるHFIP基が有する-OH基の水素原子がグリシジル基で置換されてなる、請求項1~5のいずれかに記載のポリイミド構造を含有する気体分離膜。 The gas separation membrane containing a polyimide structure according to any one of claims 1 to 5, wherein a hydrogen atom of an -OH group of the HFIP group contained in R 1 is substituted with a glycidyl group.
  7. グリシジル基の環状エーテル部位が開環し架橋してなる請求項6に記載の気体分離膜。 The gas separation membrane according to claim 6, wherein the cyclic ether moiety of the glycidyl group is opened and crosslinked.
  8. さらに、エポキシ化合物と混合し、加熱して得られる、請求項1~7のいずれかに記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 7, further obtained by mixing with an epoxy compound and heating.
  9. エポキシ化合物が一般式(15)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Reはアルカン、芳香環または脂環から任意の水素原子がf個離脱したf価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよく、fは1~4の整数である。)
    で表される、請求項8に記載の気体分離膜。
    The epoxy compound has the general formula (15)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R e is an f-valent organic group in which any number of hydrogen atoms have been removed from an alkane, aromatic ring or alicyclic ring, and the structure may contain an oxygen atom, a sulfur atom or a nitrogen atom, A part of hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, and f is an integer of 1 to 4.)
    The gas separation membrane of Claim 8 represented by these.
PCT/JP2013/081699 2012-11-28 2013-11-26 Gas separation membrane WO2014084186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380062305.9A CN104822445B (en) 2012-11-28 2013-11-26 Gas separation membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-260190 2012-11-28
JP2012260190 2012-11-28
JP2013236335A JP6194773B2 (en) 2012-11-28 2013-11-14 Gas separation membrane
JP2013-236335 2013-11-14

Publications (1)

Publication Number Publication Date
WO2014084186A1 true WO2014084186A1 (en) 2014-06-05

Family

ID=50827822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081699 WO2014084186A1 (en) 2012-11-28 2013-11-26 Gas separation membrane

Country Status (3)

Country Link
JP (1) JP6194773B2 (en)
CN (1) CN104822445B (en)
WO (1) WO2014084186A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052311A1 (en) * 2014-10-02 2016-04-07 セントラル硝子株式会社 Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2016076481A (en) * 2014-10-02 2016-05-12 セントラル硝子株式会社 Substrate for organic electroluminescence and organic electroluminescence display arranged by use thereof
CN111363148A (en) * 2020-03-26 2020-07-03 天津理工大学 Preparation method of binaphthyl network type polyimide resin and film and application of binaphthyl network type polyimide resin and film in gas separation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547503B2 (en) * 2014-09-12 2019-07-24 セントラル硝子株式会社 Gas separation membrane
JP2016137484A (en) * 2015-01-26 2016-08-04 セントラル硝子株式会社 Gas separation membrane
JP6366813B2 (en) 2015-02-27 2018-08-01 富士フイルム株式会社 Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
CN106853342B (en) * 2016-11-29 2019-10-25 攀枝花市九鼎智远知识产权运营有限公司 A kind of idle call based Dehumidification Membranes and preparation method thereof and its air-conditioning
CN106799116A (en) * 2016-11-30 2017-06-06 彭州市运达知识产权服务有限公司 A kind of air conditioner dehumidification film and the film liquid separator comprising based Dehumidification Membranes
CN107042058A (en) * 2016-11-30 2017-08-15 彭州市运达知识产权服务有限公司 A kind of air dehumidifier and based Dehumidification Membranes based on the wet pump of film
US11274206B2 (en) 2017-01-20 2022-03-15 Sumitomo Chemical Company, Limited Polyamideimide resin and optical member including polyamideimide resin
JP7084710B2 (en) * 2017-01-20 2022-06-15 住友化学株式会社 Polyamide-imide resin and an optical member containing the polyamide-imide resin.
CN110433672B (en) * 2018-05-03 2021-11-19 李保军 Non-coplanar polyimide gas separation membrane with large steric hindrance and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
US5320650A (en) * 1993-05-04 1994-06-14 E. I. Du Pont De Nemours And Company Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
JPH08173778A (en) * 1994-10-26 1996-07-09 Nitto Denko Corp Manufacture of fluorine containing polyimide gas separating membrane
US5690870A (en) * 1994-10-26 1997-11-25 Nitto Denko Corporation Method of manufacturing a polyimide-type gas permeation membrane including fluorine
JP2011161396A (en) * 2010-02-12 2011-08-25 Ube Industries Ltd Gas separation membrane made of polyimide and gas separation method
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239049A4 (en) * 2008-01-18 2011-08-10 Ube Industries Solvent-resistant asymmetric hollow fiber gas separation membrane, and method for production thereof
US8409325B2 (en) * 2008-09-30 2013-04-02 Ube Industries, Ltd. Asymmetric gas separation membrane and process for gas separation

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69321240T2 (en) * 1992-09-02 1999-06-17 Du Pont GAS SEPARATION MEMBRANES FROM t-BUTYL-SUBSTITUTED POLYIMIDES, POLYAMIDES AND POLYAMIDIMIDES
WO1994005405A1 (en) * 1992-09-02 1994-03-17 E.I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
EP0658127A1 (en) * 1992-09-02 1995-06-21 E.I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
JPH08501978A (en) * 1992-09-02 1996-03-05 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Gas separation membrane made of alkyl-substituted polyimide, polyamide and polyamide-imide
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
US5320650A (en) * 1993-05-04 1994-06-14 E. I. Du Pont De Nemours And Company Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
EP0627257A1 (en) * 1993-05-04 1994-12-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
JPH07132216A (en) * 1993-05-04 1995-05-23 E I Du Pont De Nemours & Co Separation film for fluorinated aromatic polyimide, polyamide and polyamide-imide gas
JPH08173778A (en) * 1994-10-26 1996-07-09 Nitto Denko Corp Manufacture of fluorine containing polyimide gas separating membrane
US5690870A (en) * 1994-10-26 1997-11-25 Nitto Denko Corporation Method of manufacturing a polyimide-type gas permeation membrane including fluorine
JP2011161396A (en) * 2010-02-12 2011-08-25 Ube Industries Ltd Gas separation membrane made of polyimide and gas separation method
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane
JP2013010096A (en) * 2011-05-30 2013-01-17 Central Glass Co Ltd Gas separation membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052311A1 (en) * 2014-10-02 2016-04-07 セントラル硝子株式会社 Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2016076481A (en) * 2014-10-02 2016-05-12 セントラル硝子株式会社 Substrate for organic electroluminescence and organic electroluminescence display arranged by use thereof
CN111363148A (en) * 2020-03-26 2020-07-03 天津理工大学 Preparation method of binaphthyl network type polyimide resin and film and application of binaphthyl network type polyimide resin and film in gas separation

Also Published As

Publication number Publication date
CN104822445A (en) 2015-08-05
JP2014128787A (en) 2014-07-10
JP6194773B2 (en) 2017-09-13
CN104822445B (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5915376B2 (en) Gas separation membrane
JP6194773B2 (en) Gas separation membrane
US9050566B2 (en) Gas separation membrane
JP6194774B2 (en) Gas separation membrane
CN107522860B (en) Polyimide-based liquid and polyimide-based film prepared using the same
TWI470003B (en) Polyamic acid polymer composite and method for producing same
Park et al. Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
WO2012133744A1 (en) Composite hollow fiber membrane
JP2015129201A (en) Polyamic acid solution composition and polyimide
WO2011129329A1 (en) Gas separation membrane
US9056285B2 (en) Gas separation membrane
KR20180122586A (en) Thin-film composite membrane for organic solvent nanofiltration and preparation method thereof
JP2019076882A (en) Gas separation membrane
JPH0422429A (en) Gas separation film
JP6547503B2 (en) Gas separation membrane
JP2018001118A (en) Gas separation membrane
JP2018002963A (en) Polyimide precursor, resin composition, polyimide containing resin film and method for producing the same
JP2019119829A (en) Polyimide film and optical member using the same
WO2023048063A1 (en) Polyimide, polyamide, resin composition, polyimide film, display device, substrate for electronic material, method for producing polyamide and method for producing polyimide
JPS6248726A (en) Polyimide film
KR20180097894A (en) Thin-film composite membrane for organic solvent nanofiltration and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859544

Country of ref document: EP

Kind code of ref document: A1