WO2014080653A1 - Relay device, master station device, communication system, and communication method - Google Patents

Relay device, master station device, communication system, and communication method Download PDF

Info

Publication number
WO2014080653A1
WO2014080653A1 PCT/JP2013/065028 JP2013065028W WO2014080653A1 WO 2014080653 A1 WO2014080653 A1 WO 2014080653A1 JP 2013065028 W JP2013065028 W JP 2013065028W WO 2014080653 A1 WO2014080653 A1 WO 2014080653A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
station device
transmission
slave station
relay
Prior art date
Application number
PCT/JP2013/065028
Other languages
French (fr)
Japanese (ja)
Inventor
善文 堀田
隆志 西谷
潤 水口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2014080653A1 publication Critical patent/WO2014080653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • H04L12/2885Arrangements interfacing with optical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to a relay device, a master station device, a communication system, and a communication method, and in particular, the master station device and the relay device are connected by an optical transmission line such as an optical fiber, and The present invention relates to a communication system in which a slave station device performs communication.
  • a conventional PON (Passive Optical Network) system which is one of communication systems, includes a slave station device and a master station device connected by a communication medium (optical fiber) having a constant communication speed.
  • the master station device acquires identification information and ranging (distance) information of each slave station device connected to the master station device.
  • the downlink direction which is the direction toward each slave station device, is broadcast, and the uplink direction is time-division multiplexed.
  • TDMA Time Division Multiple Access
  • Patent Document 1 an optical fiber and a coaxial cable are connected via a relay device, and a PON TDMA control is performed between a master station device and a slave station device (EPoC (EPON Protocol over a (Coax) method) has been proposed, and standardization is currently underway in the P802.3bn task force of IEEE (The Institute of Electrical and Electronics Engineers).
  • EPoC EPON Protocol over a (Coax) method
  • an optical fiber and a coaxial cable are connected via a relay device and the purpose is to realize point-to-multipoint control.
  • a coaxial cable has a lower transmission speed than an optical fiber.
  • the control (MPCP: Multi-Point Control Protocol) frame cannot be transferred with a fixed delay. Therefore, in general, in an EPoC system, it is difficult to accurately measure RTT (Round Trip Time), and there is a problem that PON-specific uplink TDMA control cannot be realized.
  • the repeater OCU Optical Concentration Unit
  • ONU a slave station device of a conventional PON system
  • CLT Coax Line Terminal
  • the present invention has been made in view of the above, and is capable of relaying a control frame with a fixed delay even when the transmission speed of the transmission path receiving the control frame is different from the transmission speed of the relay destination transmission path.
  • the purpose is to obtain a relay device.
  • the present invention is connected to the master station device via the first transmission path, and has a second transmission speed lower than that of the first transmission path.
  • a relay device connected to a slave station device via a transmission path and relaying a signal between the master station device and the slave station device, wherein a signal addressed to the slave station device received from the master station device A control signal and a data signal are separated, and the control signal and the data signal are transmitted to the slave station device using different bands.
  • FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention.
  • FIG. 2 is a diagram illustrating a frame transmission operation in the downlink direction.
  • FIG. 3 is a diagram illustrating a configuration example of the OCU.
  • FIG. 4 is a functional block diagram of the OCU.
  • FIG. 5 is a diagram illustrating a configuration example of a CNU.
  • FIG. 6 is a diagram illustrating a state of uplink OFDMA communication in the coaxial cable section of the communication system.
  • FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention.
  • the communication system will be described by taking a PON (Passive Optical Network) system as an example, but the invention is not limited to the PON system.
  • PON Passive Optical Network
  • the PON system is connected to the OLT 10 via an optical fiber and a station-side optical communication device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) that operates as a master station device.
  • a user-side optical communication device also referred to as “Optical Network Unit”, hereinafter referred to as “ONU” 20 that operates as a slave station device, an optical fiber and a coaxial cable are connected, and signals are transmitted and received on these transmission lines.
  • a relay device also referred to as “Optical Concentration Unit”, hereinafter referred to as “OCU”) 30 and a user side communication device (“Coax Network Unit”) connected to the OCU 30 via a coaxial cable and operating as a slave station device. ", Also referred to as” CNU “hereinafter) 40.
  • the PON system in FIG. 1 is configured to perform point-to-multipoint control (PON control) between the OLT 10 and the ONU 20 and CNU 40.
  • PON control point-to-multipoint control
  • one ONU 20 and two OCUs 30 are connected to the ONT 10 by optical fibers branched via the splitter 50, but one or more OCUs 30 are connected to the OLT 10. Need only be connected.
  • the ONU 20 may not be connected.
  • One or more CNUs 40 are connected to the OCU 30.
  • the frame format between the OLT 10 and the ONU 20 and the OCU 30 connected to the OLT 10 is basically G-EPON (Gigabit Ethernet-Passive) defined in IEEE 802.3av and IEEE 802.3.
  • G-EPON Gigabit Ethernet-Passive
  • Optical Network Optical Network
  • 10G-EPON frame formats and the communication system shall comply with these regulations.
  • G-EPON and 10G-EPON frames are transmitted using OFDM (Orthogonal Frequency Division Multiplexing) for downstream communication and OFDMA (Orthogonal Frequency Division Multiple for upstream communication). Access).
  • the optical fiber section between the OLT 10 and the ONU 20 or the OCU 30 is a WDM (Wavelength Division Multiplexing) of the downstream wavelength ⁇ 1 and the upstream wavelength ⁇ 2, and the downstream signals are the ONU 20 and the OCU 30.
  • the upstream signals are controlled by TDMA (Time Division Multiple Access) so that signals from the ONUs 20 and the OCUs 30 do not collide with each other.
  • TDMA Time Division Multiple Access
  • the downlink OFDM signal is broadcast to all the CNUs 40, and the uplink signal communicates under the control of the TDMA / OFDMA hybrid.
  • Control by TDMA / OFDMA hybrid refers to TDMA control so that signals transmitted from a plurality of CNUs 40 allocated to the same subcarrier do not collide.
  • the OCU 30 maps the signal to an OFDM signal and transmits it to the CNU 40.
  • the upstream signal received by the OFDMA is converted into an optical signal and transmitted from the ONU 20 connected to the same OLT 10. So as not to collide with the received optical signal. That is, the OCU 30 converts a signal received from the OLT 10 via an optical fiber into a communication method signal applied to the coaxial cable section, transfers the signal to each CNU 30, and transmits a signal received from each CNU 30 via the coaxial cable to the optical fiber section.
  • the transmission speed in the optical fiber is faster than the transmission speed in the coaxial cable.
  • the transmission speed in the optical fiber is 10 Gb / s
  • the transmission speed in the coaxial cable is 1 Gb / s.
  • the OLT 10 needs to accurately measure the RTT (Round Trip Time) of the ONU 20 and the CNU 40 in order to control the upstream signal so that it does not collide both in the optical fiber section and the coaxial cable section.
  • RTT Red Trip Time
  • the G-EPON system and the 10G-EPON system use a 32-bit timer that increments every 16 ns.
  • the OLT 10 and the timers of the ONU 20 and the CNU 40 are synchronized using the control frame, and the RTT is measured by the OLT 10.
  • the OLT 10 can control so that signals from the ONU 20 and the CNU 40 do not collide with each other in the coaxial cable section or the optical fiber section by measuring the RTT of each device (ONU 20, CNU 40) on the user side.
  • ONU 20, CNU 40 the RTT of each device
  • the OLT 10 of the present embodiment is different from the OLT of the conventional PON system in that it is a control frame in an empty area of the preamble of the MPCP frame that is a control frame transmitted to the ONU 20 and the OCU 30. Stores the information indicated. Further, the OLT 10 acquires the effective rate information of the control channel established between the OCU 30 and each CNU 40, and transmits a control frame at a transmission rate equal to or lower than the control channel of the OCU 30, so that the OLT 30 The delay fluctuation of the control frame due to the residence time is prevented from occurring.
  • the OCU 30 operates as follows with each CNU 40 connected to itself. That is, the OCU 30 establishes a control channel and a data channel with a plurality of CNUs 40 connected to the OCU 30. As shown in FIG. 2, the OCU 30 receives the downlink frame from the OLT 10 based on the presence / absence of the preamble information (information indicating that it is a control frame) stored in the OLT 10 when sending the downstream frame to the coaxial interface. The processed frames are distributed to the control channel and the data channel. As a result, in the coaxial cable section, control information (control frame) is transmitted on the control channel, and data (data frame) is transmitted on the data channel. In the optical fiber section, the control frame and the data frame are transmitted from the OLT 10 to the OCU 30 in-channel (that is, using the same channel) as in the communication between the OLT and the ONU in the conventional PON system.
  • control frame and the data frame are transmitted from the OLT 10 to the OCU 30 in-channel (that is, using the same
  • preamble information (information indicating a data frame) may be added to the data frame instead of adding the preamble information to the control frame.
  • FIG. 3 is a diagram showing a configuration example of the OCU 30, and shows a configuration example when the OLT side is a 10 G-EPON interface and the CNU side is a 1 Gbps EPoC interface.
  • the OCU 30 converts an optical transmission / reception unit (10G-EPON TRx) 301 that transmits / receives an optical signal to / from the OLT 10 and converts a parallel signal into a serial signal. Then, the parallel / serial converter (SER DES) 302 that inputs the parallel signal, the descrambler 303 that decrypts the encrypted signal when it is input, and the input signal are encrypted.
  • an optical transmission / reception unit (10G-EPON TRx) 301 that transmits / receives an optical signal to / from the OLT 10 and converts a parallel signal into a serial signal.
  • the parallel / serial converter (SER DES) 302 that inputs the parallel signal
  • the descrambler 303 that decrypts the encrypted signal when it is input, and the input signal are encrypted.
  • a scrambler 304 an FEC decoder 305 that performs error correction of the input signal, an FEC encoder 306 that performs error correction coding on the input signal, and converts a signal of 66 bits when a signal of 64 bits is input
  • a 64B / 66B conversion unit converts the signal into a 64-bit unit.
  • a parser (Parser) 308 that analyzes the input signal to determine whether it corresponds to a control signal or a data signal, and receives and holds a control signal in 64-bit units, and in 8-bit units
  • a buffer (FIFO) 309 for output and a data signal in units of 64 bits are received and held, and a buffer (FIFO) 310 for output in units of 8 bits and a signal in units of 8 bits are input in units of 10 bits
  • An 8B / 10B converter (8B / 10B) 311 that converts a signal into a signal in units of 10 bits when a signal in units of 10 bits is input, an FEC encoder 312 that performs error correction encoding on the input signal, and 313, an FEC decoder 314 that performs error correction of the input signal, interleavers 315 and 316 that rearrange the input signal,
  • a deinterleaver 317 that returns the input signals rearranged by interleaving to the original order (order before the interleaving
  • the overall operation of the OCU 30 having the above configuration will be described by dividing it into an operation in the downlink direction (direction from the OLT 10 to the ONU 20) and an operation in the uplink direction.
  • the optical transmission / reception unit 301 receives 10G-EPON data (consisting of a control frame and a data frame) that is a downlink signal transmitted from the OLT 10, and the parallel / serial conversion unit 302 converts the received 10G-EPON data to a 66-bit length. Expand to data.
  • the descrambler 303 descrambles the data after being expanded into 66-bit length data, and the FEC decoder 305 performs error correction on the descrambled data.
  • the 64B / 66B conversion unit 307 performs 66B / 64B code conversion on the data after error correction, and as a result, 64-bit data (64-bit data) is obtained.
  • the parser 308 confirms the preamble and distributes the transmission path to the control path and the data path. Specifically, if information indicating a control frame is given to the preamble, it is determined as a control path (control frame) and stored in the control signal buffer 309. Otherwise, a data path (data frame) is stored. Is stored in the data signal buffer 310.
  • the buffer 309 is a fixed-delay FIFO (First-In First-Out) buffer
  • the buffer 310 is a variable-delay FIFO buffer.
  • the 8B / 10B conversion unit 311 reads signals from the buffers 309 and 310 at a predetermined timing, and executes 8B / 10B code conversion.
  • the control signal read from the buffer 309 and subjected to the 8B / 10B code conversion is passed to the FEC encoder 312.
  • the FEC encoder 312 performs error correction coding on the control signal.
  • the interleaver 315 interleaves the control signal after error correction coding.
  • the data signal read from the buffer 310 and subjected to the 8B / 10B code conversion is transferred to the FEC encoder 313, and the FEC encoder 313 performs error correction coding on the data signal.
  • the interleaver 316 interleaves the data signal after error correction coding.
  • the code modulation unit 318 individually performs code modulation on the interleaved control signal and data signal.
  • the IFFT unit 320 performs inverse Fourier transform on each of the control signal and the data signal after the code modulation is performed.
  • the transmission unit 322 transmits the control signal and the data signal after the inverse Fourier transform, which are OFDM signals output from the IFFT unit 320, to the CNU 40.
  • the control signal is transmitted on the control channel, and the data signal is transmitted on the data channel. Note that the control channel and data channel transmitted on the coaxial line may have different modulation methods and FEC coding rates.
  • the upstream operation is the reverse of the above-described downward operation. However, the processing is performed without distinguishing between the control signal and the data signal.
  • the receiving unit 323 receives an uplink signal (consisting of a control signal and a data signal) transmitted from the CNU 40, and the FFT unit 321 performs a Fourier transform on the received signal from the CNU 40.
  • the code demodulator 319 performs code demodulation on the signal after Fourier transform.
  • the deinterleaver 317 deinterleaves and rearranges the signals after code demodulation, and returns the signal to the state before being interleaved by the transmission source CNU 40.
  • the FEC decoder 314 performs error correction on the deinterleaved signal.
  • the 8B / 10B converter 311 performs 10B / 8B code conversion on the error-corrected signal, and this signal is stored in the buffer 324 and then converted to 64B / 66B converter 307 as 64-bit data.
  • the 64B / 66B conversion unit 307 performs the 64B / 66B encoding on the 64-bit data.
  • the buffer 324 classifies each signal with the same CNU 40 as the transmission source and holds the signal. Further, the buffer 324 absorbs a transmission speed difference between the optical fiber section and the coaxial cable section.
  • the 66-bit data after 64B / 66B encoding is error correction encoded by the FEC encoder 306, further scrambled (encrypted) by the scrambler 304, and converted into serial data by the parallel / serial converter 302. Thereafter, the optical transmission / reception unit 301 transmits the optical burst signal as a 10G-EPON signal onto the optical fiber.
  • the burst control signal generation unit 325 detects that there is a valid signal input from the coaxial cable (CNU 40 side) using the output signal of the FEC decoder 314, and bursts on the coaxial cable. After receiving the data (after detecting the input of a valid signal), a burst control signal is generated for the optical transmitter / receiver 301 after a predetermined time has elapsed. The optical transceiver 301 transmits an optical signal according to the generation timing of the burst control signal.
  • the OCU 30 By configuring the OCU 30 in such a configuration, it is possible to separate a downstream control frame transferred in-band in the optical fiber section into a control channel dedicated to the control frame in the coaxial cable section.
  • the OLT 10 since the OLT 10 transmits the control frame at an effective rate of the control channel of the OCU 30 or less, the delay amount of the control frame in the OCU 30 can be suppressed and relaying with a fixed delay can be realized.
  • an LLID (Logical Link ID) filter can be mounted on the parser 308 of the OCU 30 so that irrelevant data and control messages that are not destined for the CNU 40 connected to the own OCU 30 can be discarded.
  • the OCU 30 transfers only the downlink broadcast LLID at startup, and then transmits the downlink frame having the LLID stored in the received uplink frame every time an uplink frame is received thereafter. Change the filter settings. By doing so, it is possible to effectively use the bandwidth and to obtain the effects that the capacity of the control channel can be minimized.
  • FIG. 4 is a functional block diagram of the OCU 30.
  • the OCU 30 includes a downlink frame relay unit 30A that realizes a downlink frame relay function and an uplink frame relay unit 30B that realizes an uplink frame relay function.
  • the downlink frame relay unit 30A includes a downlink frame reception unit 31, a frame type determination unit 32, a control frame transmission unit 33, and a data frame transmission unit 34.
  • the downstream frame reception unit 31 receives the downstream frame transmitted from the OLT 10, and the frame type determination unit 32 determines whether or not the received frame is a control frame.
  • the frame determined as the control frame is transferred from the frame type determination unit 32 to the control frame transmission unit 33 and broadcast to each CNU 40 through the control channel.
  • a data frame which is a frame determined not to be a control channel, is transferred to the data frame transmission unit 34 and broadcast to each CNU 40 through the data channel.
  • the control frame transmission unit 33 and the data frame transmission unit 34 transmit frames to the CNU 40 by OFDM.
  • the downstream frame reception unit 31 is realized by, for example, the optical transmission / reception unit 301, the parallel / serial conversion unit 302, the descrambler 303, the FEC decoder 305, and the 64B / 66B conversion unit 307 illustrated in FIG.
  • the frame type determination unit 32 is realized by, for example, the parser 308 illustrated in FIG.
  • the control frame transmission unit 33 includes, for example, the buffers 309 and 310, the 8B / 10B conversion unit 311, the FEC encoders 312 and 313, the interleavers 315 and 316, the code modulation unit 318, the IFFT unit 320, and the transmission unit 322 illustrated in FIG. Realized.
  • the upstream frame relay unit 30B includes, for example, the optical transmission / reception unit 301, the parallel / serial conversion unit 302, the scrambler 304, the FEC encoder 306, the 64B / 66B conversion unit 307, the 8B / 10B conversion unit 311, and the FEC decoder illustrated in FIG. 314, deinterleaver 317, code demodulator 319, FFT unit 321, receiver 323, buffer 324 and burst control signal generator 325.
  • the CNU 40 includes a signal processing path for receiving a downlink control channel and a data channel, and a signal processing path for transmitting an uplink signal.
  • FIG. 5 is a diagram illustrating a configuration example of the CNU 40.
  • the CNU 40 receives a transmission unit (Coax Tx) 401 that transmits an upstream signal addressed to the OLT 10 to the coaxial cable, and receives a downstream signal transmitted from the OLT 10 and relayed by the OCU 30 from the coaxial cable.
  • a transmission unit Coax Tx
  • IFFT unit 403 that performs IFFT on the input signal
  • code modulation unit 404 that performs code modulation on the input signal
  • interleaver 405 that rearranges the input signal
  • FEC encoder 406 that performs error correction coding
  • filter 407 that performs filtering on the input signal
  • FFT units 408 and 409 that perform FFT on the input signal
  • FEC decoders 414 and 415 that perform error correction of the input signal
  • an 8-bit unit signal is input, the signal is converted into a 10-bit unit signal
  • an 8B / 10B conversion unit (8B / 10B) 416 that converts the signal into an 8-bit unit signal
  • a time stamp acquisition unit 417 that acquires time stamp
  • the receiving unit 402 receives a signal transmitted from the OCU 30 via a coaxial cable.
  • the filter 407 performs a filtering process on the signal received by the receiving unit 402 and separates the signal into a control signal (control frame) and a data signal (data frame). Further, the control signal is output to the FFT unit 408 and the data signal is output to the FFT unit 409.
  • the FFT unit 408, the code demodulation unit 410, the deinterleaver 412 and the FEC decoder 414 perform Fourier transform, code demodulation, deinterleaving, and error correction on the control signal, respectively.
  • the FFT unit 409, the code demodulator 411, the deinterleaver 413, and the FEC decoder 415 perform Fourier transform, code demodulation, deinterleave, and error correction on the data signal, respectively.
  • the 8B / 10B conversion unit 416 performs 10B / 8B code conversion on the output signal (control signal) from the FEC decoder 414 and the output signal (data signal) from the FEC decoder 415, and the control signal is sent to the time stamp acquisition unit 417.
  • the data signal is output to the buffer 419.
  • the time stamp acquisition unit 417 reads the time stamp value stamped on the control data, and then outputs the control data to the buffer 418.
  • the frame end unit 421 has a synchronization timer, and the time stamp acquisition unit 417 loads the time stamp value read from the control data into the synchronization timer of the frame end unit 421.
  • the time stamp can be loaded into the synchronization timer of the frame end unit 421 without being affected by the delay fluctuation that occurs when the data frame and the control frame are multiplexed, and time synchronization with the OLT 10 can be performed. realizable. That is, it is possible to avoid the PON control breakdown (uplink signals collide in the optical fiber section) due to the delay fluctuation of the control frame.
  • control signal stored in the buffer 418 and the data signal stored in the buffer 419 are combined (multiplexed) by the multiplexer 420 and output to the frame termination unit 421.
  • the frame termination unit 421 When the frame termination unit 421 generates a control frame or a data frame to be transmitted to the OLT 10, the frame termination unit 421 outputs it to the 8B / 10B conversion unit 416.
  • the 8B / 10B conversion unit 416 performs 8B / 10B code conversion on the signal received from the frame termination unit 421.
  • FEC encoder section 406, interleaver 405, code modulation section 404, and IFFT section 403 perform error correction coding, interleaving, code modulation, and inverse Fourier transform on the signal after 8B / 10B code conversion, respectively. .
  • the transmission unit 401 transmits the signal output from the IFFT unit 403 to the OCU 30.
  • communication (communication in a coaxial cable section) between the OCU 30 and the CNU 40 will be described.
  • communication is performed using OFDM for downlink and OFDMA for uplink (see FIG. 6).
  • the OLT 10 determines the transmission timing of each device. Therefore, the OCU 30 classifies the upstream signals transmitted from the CNUs 40 according to the same transmission source, temporarily holds them in the buffer 324 (see FIG. 3), and according to the timing designated by the OLT 10 for each CNU 40, An upstream signal is transmitted to the OLT 10.
  • a method for the OCU 30 to recognize the timing instructed to each CNU 40 by the OLT 10 is not particularly defined.
  • the transmission timing information (transmission start time) of each CNU 40 is used.
  • the CNU 40 adds transmission timing information to an uplink signal and notifies the OCU 30 of the transmission time information.
  • the CNU 40 considers the bandwidth allocated to itself in the optical fiber section (transmission start time and duration specified from the OLT 10), and the OCU 30 retains the frames (all frames held at the start of burst transmission 1).
  • the control frame and the data frame are transmitted at a transmission rate that does not occur in the burst transmission until the next burst transmission opportunity.
  • the OLT 10 adds information to the preamble and transmits it.
  • the control frame may be identified using other methods.
  • the control frame may be identified from the destination MAC address, EtherType value, or Opcode value stored in the control frame, or the control frame may be identified from a combination of these pieces of information.
  • the OLT adds information indicating a control frame to the preamble of the control frame and transmits the information, and the OCU that relays the frame between the OLT and the CNU transmits the information from the OLT.
  • the received frames are classified into control frames and data frames and transmitted to the CNU using different bands (channels).
  • the OLT transmits the control frame in consideration of being equal to or less than the effective transmission rate of communication using the band for transmitting the control frame secured between the OCU and the CNU.
  • the control frame is relayed by the OCU.
  • the OCU and the CNU communicate with the downlink by OFDM and the uplink by OFDMA, so that the transmission speed in this section can be increased.
  • the communication system is a PON system.
  • any communication system that needs to fix the transmission delay of a control signal in a relay device connected to two transmission paths having different transmission speeds. Applicable.
  • a master station device and a relay device are connected using one of two types of communication media having different transmission speeds, and a relay device and a plurality of slave station devices are connected using the other. This is useful for realizing a communication system having a connected configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)

Abstract

The present invention is a relay device (OCU) (30) for relaying signals between a station-side optical communication device (OLT) (10) and a user-side optical communication device (CNU) (40), the relay device being connected to the station-side optical communication device (10) via a first transmission path and connected to the user-side optical communication device (40) via a second transmission path slower in transmission speed than the first transmission path; wherein signals addressed to the user-side optical communication device (40) received from the station-side optical communication device (10) are separated into control signals and data signals, and different bandwidths are used to transmit the control signals and data signals to the user-side optical communication device (40).

Description

中継装置、親局装置、通信システムおよび通信方法Relay device, master station device, communication system, and communication method
 本発明は、中継装置、親局装置、通信システムおよび通信方法に関するものであり、特に、親局装置と中継装置が光ファイバ等の光伝送路で接続され、中継装置を介して親局装置と子局装置が通信を行う形態の通信システムに関する。 The present invention relates to a relay device, a master station device, a communication system, and a communication method, and in particular, the master station device and the relay device are connected by an optical transmission line such as an optical fiber, and The present invention relates to a communication system in which a slave station device performs communication.
 通信システムの一つである従来のPON(Passive Optical Network)システムは、通信速度が一定な通信媒体(光ファイバ)で接続された子局装置と親局装置とを含んで構成されている。親局装置は、自身に接続されている各子局装置の識別情報やレンジング(距離)情報を取得し、各子局装置に向けた方向である下り方向は同報、上り方向は時分割多重(TDMA:Time Division Multiple Access)制御を実施して、Point-to-Multipoint制御を実現する(たとえば、非特許文献1,非特許文献2)。 A conventional PON (Passive Optical Network) system, which is one of communication systems, includes a slave station device and a master station device connected by a communication medium (optical fiber) having a constant communication speed. The master station device acquires identification information and ranging (distance) information of each slave station device connected to the master station device. The downlink direction, which is the direction toward each slave station device, is broadcast, and the uplink direction is time-division multiplexed. (TDMA: Time Division Multiple Access) control is performed to realize point-to-multipoint control (for example, Non-Patent Document 1, Non-Patent Document 2).
 一方、特許文献1に示すように光ファイバと同軸ケーブルを中継装置を介して接続し、親局装置と子局装置との間でPONのTDMA制御を行うような方式(EPoC(EPON Protocol over a Coax)方式)が提案され、現在、IEEE(The Institute of Electrical and Electronics Engineers)のP802.3bnタスクフォースで標準化が進められている。 On the other hand, as shown in Patent Document 1, an optical fiber and a coaxial cable are connected via a relay device, and a PON TDMA control is performed between a master station device and a slave station device (EPoC (EPON Protocol over a (Coax) method) has been proposed, and standardization is currently underway in the P802.3bn task force of IEEE (The Institute of Electrical and Electronics Engineers).
米国特許出願公開第2011/0058813号明細書US Patent Application Publication No. 2011/0058813
 EPoCシステムでは、光ファイバと同軸ケーブルが中継装置を介して接続され、Point-to-Multipoint制御を実現することを目的としているが、一般的に光ファイバよりも同軸ケーブルの方が伝送速度が遅く、特に下り方向で中継装置での遅延時間が固定とならないことにより、制御(MPCP:Multi-Point Control Protocol)フレームが固定遅延で転送できない。そのため、一般にはEPoCシステムでは、RTT(Round Trip Time)を正確に測定することが難しく、PON特有の上りTDMA制御が実現できないという課題がある。これを回避するために、光ファイバの伝送速度を同軸ケーブルの伝送速度に合わせる、中継装置であるOCU(Optical Concentration Unit)をONU(従来のPONシステムの子局装置)+CLT(Coax Line Terminal、同軸用の局側装置)とする、などの対策が考えられるが、前者を採用した場合は光ファイバ上の伝送速度を同軸ケーブル上の伝送速度に合わせて使用するため、光ファイバの帯域を十分活用できないという問題が発生し、後者を採用した場合にはOCUの構成が複雑になるため、装置コストが上昇してしまうという問題が発生する。 In the EPoC system, an optical fiber and a coaxial cable are connected via a relay device and the purpose is to realize point-to-multipoint control. However, in general, a coaxial cable has a lower transmission speed than an optical fiber. In particular, since the delay time in the relay device is not fixed in the downstream direction, the control (MPCP: Multi-Point Control Protocol) frame cannot be transferred with a fixed delay. Therefore, in general, in an EPoC system, it is difficult to accurately measure RTT (Round Trip Time), and there is a problem that PON-specific uplink TDMA control cannot be realized. In order to avoid this, the repeater OCU (Optical Concentration Unit) that matches the transmission speed of the optical fiber with the transmission speed of the coaxial cable is turned ONU (a slave station device of a conventional PON system) + CLT (Coax Line Terminal, coaxial However, if the former is used, the transmission speed on the optical fiber is matched to the transmission speed on the coaxial cable, so the bandwidth of the optical fiber is fully utilized. When the latter is adopted, the configuration of the OCU becomes complicated, and thus the problem that the apparatus cost increases is caused.
 本発明は、上記に鑑みてなされたものであって、制御フレームを受信した伝送路と中継先の伝送路の伝送速度が異なる場合であっても固定遅延で制御フレームを中継することが可能な中継装置を得ることを目的とする。 The present invention has been made in view of the above, and is capable of relaying a control frame with a fixed delay even when the transmission speed of the transmission path receiving the control frame is different from the transmission speed of the relay destination transmission path. The purpose is to obtain a relay device.
 上述した課題を解決し、目的を達成するために、本発明は、第1の伝送路を介して親局装置に接続されるとともに、前記第1の伝送路よりも伝送速度が遅い第2の伝送路を介して子局装置に接続され、前記親局装置と前記子局装置との間で信号を中継する中継装置であって、前記親局装置から受信した前記子局装置宛の信号を制御信号とデータ信号に分離し、制御信号とデータ信号をそれぞれ異なる帯域を使用して前記子局装置へ送信することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is connected to the master station device via the first transmission path, and has a second transmission speed lower than that of the first transmission path. A relay device connected to a slave station device via a transmission path and relaying a signal between the master station device and the slave station device, wherein a signal addressed to the slave station device received from the master station device A control signal and a data signal are separated, and the control signal and the data signal are transmitted to the slave station device using different bands.
 本発明によれば、制御フレームの中継処理で発生する伝送遅延を固定化することが可能な中継装置を得ることができるという効果を奏する。 According to the present invention, there is an effect that it is possible to obtain a relay device capable of fixing a transmission delay generated in the control frame relay processing.
図1は、本発明にかかる通信システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention. 図2は、下り方向のフレーム送信動作を示す図である。FIG. 2 is a diagram illustrating a frame transmission operation in the downlink direction. 図3は、OCUの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the OCU. 図4は、OCUの機能ブロック図である。FIG. 4 is a functional block diagram of the OCU. 図5は、CNUの構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a CNU. 図6は、通信システムの同軸ケーブル区間における上りOFDMA通信の様子を示す図である。FIG. 6 is a diagram illustrating a state of uplink OFDMA communication in the coaxial cable section of the communication system.
 以下に、本発明にかかる中継装置、親局装置、通信システムおよび通信方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a relay apparatus, a master station apparatus, a communication system, and a communication method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明にかかる通信システムの構成例を示す図である。本実施の形態では通信システムについて、PON(Passive Optical Network)システムを例にとり説明するが、発明をPONシステムに限定するものではない。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a communication system according to the present invention. In the present embodiment, the communication system will be described by taking a PON (Passive Optical Network) system as an example, but the invention is not limited to the PON system.
 図1に示すように、PONシステムは、親局装置として動作する局側光通信装置("Optical Line Terminal"とも言い、以降「OLT」と称す)10と、光ファイバを介してOLT10に接続され、子局装置として動作する利用者側光通信装置("Optical Network Unit"とも言い、以降「ONU」と称す)20と、光ファイバと同軸ケーブルが接続され、これらの伝送路上で送受信される信号を中継する中継装置("Optical Concentration Unit"とも言い、以降「OCU」と称す)30と、同軸ケーブルを介してOCU30に接続され、子局装置として動作する利用者側通信装置("Coax Network Unit"とも言い、以降「CNU」と称す)40とを備える。図1のPONシステムは、OLT10とONU20およびCNU40との間でPoint-to-Multipoint制御(PON制御)を行う構成となっている。 As shown in FIG. 1, the PON system is connected to the OLT 10 via an optical fiber and a station-side optical communication device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) that operates as a master station device. A user-side optical communication device (also referred to as “Optical Network Unit”, hereinafter referred to as “ONU”) 20 that operates as a slave station device, an optical fiber and a coaxial cable are connected, and signals are transmitted and received on these transmission lines. A relay device (also referred to as “Optical Concentration Unit”, hereinafter referred to as “OCU”) 30 and a user side communication device (“Coax Network Unit”) connected to the OCU 30 via a coaxial cable and operating as a slave station device. ", Also referred to as" CNU "hereinafter) 40. The PON system in FIG. 1 is configured to perform point-to-multipoint control (PON control) between the OLT 10 and the ONU 20 and CNU 40.
 なお、図1に示した構成ではONT10に対して1台のONU20および2台のOCU30がスプリッタ50を介して分岐された光ファイバにて接続されているが、OLT10に対して1台以上のOCU30が接続されていればよい。また、ONU20は接続されていなくても構わない。OCU30には1台以上のCNU40が接続されている。 In the configuration shown in FIG. 1, one ONU 20 and two OCUs 30 are connected to the ONT 10 by optical fibers branched via the splitter 50, but one or more OCUs 30 are connected to the OLT 10. Need only be connected. The ONU 20 may not be connected. One or more CNUs 40 are connected to the OCU 30.
 図1に示した通信システムにおいて、OLT10とこれに接続されているONU20及びOCU30との間のフレームフォーマットは、基本的にIEEE802.3avやIEEE802.3に規定されるG-EPON(Gigabit Ethernet-Passive Optical Network)や10G-EPONのフレームフォーマットに準拠し、通信方式もこれらの規定に準拠するものとする。OCU30とCNU40の間の区間である同軸ケーブル区間においては、G-EPONや10G-EPONのフレームを下り方向の通信はOFDM(Orthogonal Frequency Division Multiplexing)で、上り方向の通信はOFDMA(Orthogonal Frequency Division Multiple Access)で行うものとする。 In the communication system shown in FIG. 1, the frame format between the OLT 10 and the ONU 20 and the OCU 30 connected to the OLT 10 is basically G-EPON (Gigabit Ethernet-Passive) defined in IEEE 802.3av and IEEE 802.3. Optical Network) and 10G-EPON frame formats, and the communication system shall comply with these regulations. In the coaxial cable section between the OCU 30 and the CNU 40, G-EPON and 10G-EPON frames are transmitted using OFDM (Orthogonal Frequency Division Multiplexing) for downstream communication and OFDMA (Orthogonal Frequency Division Multiple for upstream communication). Access).
 具体的には、OLT10とONU20やOCU30の間の光ファイバ区間は、図1に示したように、下り波長λ1および上り波長λ2のWDM(Wavelength Division Multiplexing)で、下り方向の信号はONU20及びOCU30に同報され、上り方向の信号は各ONU20やOCU30からの信号が衝突しないようにTDMA(Time Division Multiple Access)制御される。同軸ケーブル区間の信号は、下りのOFDM信号はすべてのCNU40に対して同報され、上りの信号は、TDMA/OFDMAハイブリッドによる制御で通信を行う。TDMA/OFDMAハイブリッドによる制御とは、同じサブキャリアに割り当てられた複数のCNU40から送信された信号が衝突しないようにTDMA制御することをいう。OCU30では、下り方向の光の信号を受信するとOFDMの信号にマッピングしてCNU40へ送信し、OFDMAで受信した上り方向の信号については光信号に変換し、同じOLT10に接続されているONU20から送信された光信号と衝突しないように送信する。すなわち、OCU30は、光ファイバ経由でOLT10から受信した信号を同軸ケーブル区間に適用された通信方式の信号に変換して各CNU30へ転送し、同軸ケーブル経由で各CNU30から受信した信号を光ファイバ区間に適用された通信方式の信号に変換してOLT10へ転送する。なお、光ファイバにおける伝送速度が同軸ケーブルにおける伝送速度よりも速いものとする。図1の例では、光ファイバにおける伝送速度を10Gb/s、同軸ケーブルにおける伝送速度を1Gb/sとしている。 Specifically, as shown in FIG. 1, the optical fiber section between the OLT 10 and the ONU 20 or the OCU 30 is a WDM (Wavelength Division Multiplexing) of the downstream wavelength λ1 and the upstream wavelength λ2, and the downstream signals are the ONU 20 and the OCU 30. The upstream signals are controlled by TDMA (Time Division Multiple Access) so that signals from the ONUs 20 and the OCUs 30 do not collide with each other. As for the signal in the coaxial cable section, the downlink OFDM signal is broadcast to all the CNUs 40, and the uplink signal communicates under the control of the TDMA / OFDMA hybrid. Control by TDMA / OFDMA hybrid refers to TDMA control so that signals transmitted from a plurality of CNUs 40 allocated to the same subcarrier do not collide. When receiving a downstream optical signal, the OCU 30 maps the signal to an OFDM signal and transmits it to the CNU 40. The upstream signal received by the OFDMA is converted into an optical signal and transmitted from the ONU 20 connected to the same OLT 10. So as not to collide with the received optical signal. That is, the OCU 30 converts a signal received from the OLT 10 via an optical fiber into a communication method signal applied to the coaxial cable section, transfers the signal to each CNU 30, and transmits a signal received from each CNU 30 via the coaxial cable to the optical fiber section. Is converted to a signal of the communication method applied to the above and transferred to the OLT 10. It is assumed that the transmission speed in the optical fiber is faster than the transmission speed in the coaxial cable. In the example of FIG. 1, the transmission speed in the optical fiber is 10 Gb / s, and the transmission speed in the coaxial cable is 1 Gb / s.
 このような通信システムにおいて、光ファイバ区間および同軸ケーブル区間のいずれにおいても上りの信号が衝突しないように制御するためには、OLT10はONU20およびCNU40のRTT(Round Trip Time)を正確に測定する必要がある。RTTを測定するための同期タイマとして、G-EPONシステムや10G-EPONシステムでは16ns毎にインクリメントする32bitタイマを使用している。本実施の形態の通信システムにおいても同様に、制御フレームを使用してOLT10とONU20およびCNU40のタイマを同期させOLT10にてRTTを測定する。 In such a communication system, the OLT 10 needs to accurately measure the RTT (Round Trip Time) of the ONU 20 and the CNU 40 in order to control the upstream signal so that it does not collide both in the optical fiber section and the coaxial cable section. There is. As a synchronous timer for measuring the RTT, the G-EPON system and the 10G-EPON system use a 32-bit timer that increments every 16 ns. Similarly, in the communication system according to the present embodiment, the OLT 10 and the timers of the ONU 20 and the CNU 40 are synchronized using the control frame, and the RTT is measured by the OLT 10.
 OLT10は利用者側の各装置(ONU20,CNU40)のRTTを測定することで、ONU20やCNU40からの信号が同軸ケーブル区間でも光ファイバ区間でも衝突しないように制御することができる。しかし、既に説明したように異速度媒体を接続した場合は、OCU30にてフレームの滞留が発生すると制御フレームに遅延揺らぎが生じ、OLT10とCNU40間のタイマが同期できず、上りTDMA制御が破たんするという課題がある。 The OLT 10 can control so that signals from the ONU 20 and the CNU 40 do not collide with each other in the coaxial cable section or the optical fiber section by measuring the RTT of each device (ONU 20, CNU 40) on the user side. However, when a different speed medium is connected as described above, if a frame stays in the OCU 30, a delay fluctuation occurs in the control frame, the timer between the OLT 10 and the CNU 40 cannot be synchronized, and the uplink TDMA control is broken. There is a problem.
 この課題を解決するために、本実施の形態のOLT10は従来のPONシステムのOLTとは異なり、ONU20およびOCU30へ送信する制御フレームであるMPCPフレームのプリアンブルの空き領域に、制御フレームであることを示す情報を格納する。また、OLT10はOCU30と各CNU40の間に確立された制御チャネルの実効レート情報を取得して、OCU30の制御チャネルと等しいかそれ以下の伝送レートで制御フレームを送信することにより、OCU30内での滞留時間による制御フレームの遅延揺らぎが発生しないようにする。 In order to solve this problem, the OLT 10 of the present embodiment is different from the OLT of the conventional PON system in that it is a control frame in an empty area of the preamble of the MPCP frame that is a control frame transmitted to the ONU 20 and the OCU 30. Stores the information indicated. Further, the OLT 10 acquires the effective rate information of the control channel established between the OCU 30 and each CNU 40, and transmits a control frame at a transmission rate equal to or lower than the control channel of the OCU 30, so that the OLT 30 The delay fluctuation of the control frame due to the residence time is prevented from occurring.
 一方、OCU30は、自身に接続されている各CNU40との間で以下のように動作する。すなわち、OCU30は、自身に接続された複数のCNU40との間で制御チャネルとデータチャネルを確立する。そして、OCU30では、図2に示すように、下りフレームを同軸側のインタフェースに送出する際に、OLT10が格納したプリアンブル情報(制御フレームであることを示す情報)の有無に基づいて、OLT10から受信したフレームを制御チャネルとデータチャネルに振り分ける。この結果、同軸ケーブル区間では、制御情報(制御フレーム)は制御チャネルで送信され、データ(データフレーム)はデータチャネルで送信される。なお、光ファイバ区間では、従来のPONシステムにおけるOLTとONUの通信と同様に、制御フレームとデータフレームがインチャネルで(すなわち、同じチャネルを使用して)OLT10からOCU30へ送信される。 On the other hand, the OCU 30 operates as follows with each CNU 40 connected to itself. That is, the OCU 30 establishes a control channel and a data channel with a plurality of CNUs 40 connected to the OCU 30. As shown in FIG. 2, the OCU 30 receives the downlink frame from the OLT 10 based on the presence / absence of the preamble information (information indicating that it is a control frame) stored in the OLT 10 when sending the downstream frame to the coaxial interface. The processed frames are distributed to the control channel and the data channel. As a result, in the coaxial cable section, control information (control frame) is transmitted on the control channel, and data (data frame) is transmitted on the data channel. In the optical fiber section, the control frame and the data frame are transmitted from the OLT 10 to the OCU 30 in-channel (that is, using the same channel) as in the communication between the OLT and the ONU in the conventional PON system.
 なお、制御フレームにプリアンブル情報を付加するのではなく、データフレームにプリアンブル情報(データフレームであることを示す情報)を付加するようにしてもよい。 Note that the preamble information (information indicating a data frame) may be added to the data frame instead of adding the preamble information to the control frame.
 図3は、OCU30の構成例を示す図であり、OLT側が10G-EPONのインタフェース、CNU側が1GbpsのEPoCインタフェースである場合の構成例を示している。 FIG. 3 is a diagram showing a configuration example of the OCU 30, and shows a configuration example when the OLT side is a 10 G-EPON interface and the CNU side is a 1 Gbps EPoC interface.
 図3に示したように、OCU30は、OLT10との間で光信号を送受信する光送受信部(10G-EPON TRx)301と、パラレル信号が入力されるとシリアル信号に変換し、シリアル信号が入力されるとパラレル信号に入力するパラレル/シリアル変換部(SER DES)302と、暗号化された状態の信号が入力されるとこれを復号するデスクランブラ303と、入力信号に対して暗号化を行うスクランブラ304と、入力信号の誤り訂正を行うFECデコーダ305と、入力信号に対して誤り訂正符号化を行うFECエンコーダ306と、64ビット単位の信号が入力されると66ビット単位の信号に変換し、一方、66ビット単位の信号が入力されると64ビット単位の信号に変換する64B/66B変換部(64B/66B)307と、入力信号を解析して制御信号とデータ信号のいずれに該当するかを判別するパーサ(Parser)308と、64ビット単位の制御信号を受け取って保持しておき、8ビット単位で出力するバッファ(FIFO)309と、64ビット単位のデータ信号を受け取って保持しておき、8ビット単位で出力するバッファ(FIFO)310と、8ビット単位の信号が入力されると10ビット単位の信号に変換し、一方、10ビット単位の信号が入力されると8ビット単位の信号に変換する8B/10B変換部(8B/10B)311と、入力信号を誤り訂正符号化するFECエンコーダ312および313と、入力信号の誤り訂正を行うFECデコーダ314と、入力信号を並べ替えるインタリーバ315および316と、インタリーブにより並べ替えられた状態の入力信号を元の並び順(インタリーブが実行される前の並び順)に戻すデインタリーバ317と、入力信号に対して符号変調を行う符号変調部318と、符号変調された状態の入力信号を復調する符号復調部319と、入力信号に対してIFFT(Inverse Fast Fourier Transform)を行うIFFT部320と、入力信号に対してFFT(Fast Fourier Transform)を行うFFT部321と、CNU40に対して信号を送信する送信部(Coax Tx)322と、CNU40から送信された信号を受信する受信部(Coax Rx)323と、8ビット単位の信号を受け取って保持しておき、64ビット単位で出力するバッファ(FIFO)324と、光送受信部301に対して送信タイミングを指示するためのバースト制御信号を生成するバースト制御信号生成部325と、を備える。 As shown in FIG. 3, the OCU 30 converts an optical transmission / reception unit (10G-EPON TRx) 301 that transmits / receives an optical signal to / from the OLT 10 and converts a parallel signal into a serial signal. Then, the parallel / serial converter (SER DES) 302 that inputs the parallel signal, the descrambler 303 that decrypts the encrypted signal when it is input, and the input signal are encrypted. A scrambler 304, an FEC decoder 305 that performs error correction of the input signal, an FEC encoder 306 that performs error correction coding on the input signal, and converts a signal of 66 bits when a signal of 64 bits is input On the other hand, when a 66-bit unit signal is input, a 64B / 66B conversion unit (64B / 66B) converts the signal into a 64-bit unit. 6B) 307, a parser (Parser) 308 that analyzes the input signal to determine whether it corresponds to a control signal or a data signal, and receives and holds a control signal in 64-bit units, and in 8-bit units A buffer (FIFO) 309 for output and a data signal in units of 64 bits are received and held, and a buffer (FIFO) 310 for output in units of 8 bits and a signal in units of 8 bits are input in units of 10 bits An 8B / 10B converter (8B / 10B) 311 that converts a signal into a signal in units of 10 bits when a signal in units of 10 bits is input, an FEC encoder 312 that performs error correction encoding on the input signal, and 313, an FEC decoder 314 that performs error correction of the input signal, interleavers 315 and 316 that rearrange the input signal, A deinterleaver 317 that returns the input signals rearranged by interleaving to the original order (order before the interleaving is performed), a code modulation unit 318 that performs code modulation on the input signals, and code modulation Code demodulator 319 that demodulates the input signal in the state of being input, IFFT unit 320 that performs IFFT (Inverse Fast Fourier Transform) on the input signal, and FFT unit 321 that performs FFT (Fast Fourier Transform) on the input signal A transmission unit (Coax Tx) 322 that transmits a signal to the CNU 40, a reception unit (Coax Rx) 323 that receives a signal transmitted from the CNU 40, and receives and holds an 8-bit unit signal, In order to instruct the transmission timing to the buffer (FIFO) 324 that outputs in 64-bit units and the optical transceiver 301 It comprises a burst control signal generating unit 325 for generating a burst control signal.
 以下、上記構成のOCU30の全体動作について、下り方向(OLT10からONU20への方向)の動作と上り方向の動作に分けて説明する。 Hereinafter, the overall operation of the OCU 30 having the above configuration will be described by dividing it into an operation in the downlink direction (direction from the OLT 10 to the ONU 20) and an operation in the uplink direction.
(OCU30の下り方向の動作)
 光送受信部301は、OLT10から送信された下り信号である10G-EPONデータ(制御フレームとデータフレームからなる)を受信し、受信した10G-EPONデータをパラレル/シリアル変換部302が66ビット長のデータに展開する。デスクランブラ303は、66ビット長のデータに展開された後のデータをデスクランブリングし、FECデコーダ305はデスクランブリング後のデータに対して誤り訂正を行う。64B/66B変換部307は、誤り訂正後のデータに対して66B/64Bコード変換を実行し、この結果、64ビット長のデータ(64ビットデータ)が得られる。パーサ308は、プリアンブルを確認し、伝送パスを制御パスとデータパスに振り分ける。具体的には、制御フレームであることを示す情報がプリアンブルに付与されていれば制御パス(制御フレーム)と判断して制御信号用のバッファ309に格納し、そうでなければデータパス(データフレーム)と判断してデータ信号用のバッファ310に格納する。ここで、バッファ309は固定遅延FIFO(First-In First-Out)バッファ、バッファ310は可変遅延FIFOバッファである。
(Downward operation of OCU 30)
The optical transmission / reception unit 301 receives 10G-EPON data (consisting of a control frame and a data frame) that is a downlink signal transmitted from the OLT 10, and the parallel / serial conversion unit 302 converts the received 10G-EPON data to a 66-bit length. Expand to data. The descrambler 303 descrambles the data after being expanded into 66-bit length data, and the FEC decoder 305 performs error correction on the descrambled data. The 64B / 66B conversion unit 307 performs 66B / 64B code conversion on the data after error correction, and as a result, 64-bit data (64-bit data) is obtained. The parser 308 confirms the preamble and distributes the transmission path to the control path and the data path. Specifically, if information indicating a control frame is given to the preamble, it is determined as a control path (control frame) and stored in the control signal buffer 309. Otherwise, a data path (data frame) is stored. Is stored in the data signal buffer 310. Here, the buffer 309 is a fixed-delay FIFO (First-In First-Out) buffer, and the buffer 310 is a variable-delay FIFO buffer.
 8B/10B変換部311は、バッファ309および310から所定のタイミングで信号を読み出し、8B/10Bコード変換を実行する。バッファ309から読み出され、8B/10Bコード変換が実行された制御信号はFECエンコーダ312に渡され、FECエンコーダ312は、制御信号を誤り訂正符号化する。インタリーバ315は、誤り訂正符号化後の制御信号をインタリーブする。同様に、バッファ310から読み出され、8B/10Bコード変換が実行されたデータ信号はFECエンコーダ313に渡され、FECエンコーダ313は、データ信号を誤り訂正符号化する。インタリーバ316は、誤り訂正符号化後のデータ信号をインタリーブする。 The 8B / 10B conversion unit 311 reads signals from the buffers 309 and 310 at a predetermined timing, and executes 8B / 10B code conversion. The control signal read from the buffer 309 and subjected to the 8B / 10B code conversion is passed to the FEC encoder 312. The FEC encoder 312 performs error correction coding on the control signal. The interleaver 315 interleaves the control signal after error correction coding. Similarly, the data signal read from the buffer 310 and subjected to the 8B / 10B code conversion is transferred to the FEC encoder 313, and the FEC encoder 313 performs error correction coding on the data signal. The interleaver 316 interleaves the data signal after error correction coding.
 符号変調部318は、インタリーブ後の制御信号およびデータ信号に対して、個別に符号変調を行う。IFFT部320は、符号変調が実施された後の制御信号およびデータ信号のそれぞれに対して逆フーリエ変換を実行する。送信部322は、IFFT部320から出力されたOFDM信号である、逆フーリエ変換後の制御信号およびデータ信号をCNU40へ送信する。制御信号は制御チャネルにて送信され、データ信号はデータチャネルにて送信される。なお、同軸回線上に送出される制御チャネルとデータチャネルの変調方法やFEC符号化率は異なる方法であってもよい。 The code modulation unit 318 individually performs code modulation on the interleaved control signal and data signal. The IFFT unit 320 performs inverse Fourier transform on each of the control signal and the data signal after the code modulation is performed. The transmission unit 322 transmits the control signal and the data signal after the inverse Fourier transform, which are OFDM signals output from the IFFT unit 320, to the CNU 40. The control signal is transmitted on the control channel, and the data signal is transmitted on the data channel. Note that the control channel and data channel transmitted on the coaxial line may have different modulation methods and FEC coding rates.
(OCU30の上り方向の動作)
 上り方向の動作は、上述した下り方向の動作と逆の動作となる。ただし、制御信号とデータ信号を区別することなく処理を行う。
(Upward operation of OCU 30)
The upstream operation is the reverse of the above-described downward operation. However, the processing is performed without distinguishing between the control signal and the data signal.
 受信部323は、CNU40から送信された上り信号(制御信号とデータ信号からなる)を受信し、FFT部321は、CNU40からの受信信号に対してフーリエ変換を行う。符号復調部319は、フーリエ変換後の信号を符号復調する。デインタリーバ317は、符号復調後の信号をデインタリーブして並べ替え、送信元のCNU40でインタリーブされる前の状態に戻す。FECデコーダ314は、デインタリーブ後の信号に対して誤り訂正を行う。 The receiving unit 323 receives an uplink signal (consisting of a control signal and a data signal) transmitted from the CNU 40, and the FFT unit 321 performs a Fourier transform on the received signal from the CNU 40. The code demodulator 319 performs code demodulation on the signal after Fourier transform. The deinterleaver 317 deinterleaves and rearranges the signals after code demodulation, and returns the signal to the state before being interleaved by the transmission source CNU 40. The FEC decoder 314 performs error correction on the deinterleaved signal.
 その後、誤り訂正された後の信号に対して8B/10B変換部311が10B/8Bコード変換を実行し、この信号はバッファ324に格納された後、64ビットデータとして64B/66B変換部307に読み出され、64B/66B変換部307は、64ビットデータに対して64B/66B符号化を実行する。なお、バッファ324は、送信元のCNU40が同じ信号ごとに分類して信号を保持する。また、このバッファ324において、光ファイバ区間と同軸ケーブル区間における伝送速度差を吸収する。64B/66B符号化された後の66ビットデータはFECエンコーダ306で誤り訂正符号化され、さらに、スクランブラ304でスクランブリング(暗号化)され、パラレル/シリアル変換部302でシリアルデータに変換された後、10G-EPONの光バースト信号として、光送受信部301から光ファイバ上に送信される。 Thereafter, the 8B / 10B converter 311 performs 10B / 8B code conversion on the error-corrected signal, and this signal is stored in the buffer 324 and then converted to 64B / 66B converter 307 as 64-bit data. The 64B / 66B conversion unit 307 performs the 64B / 66B encoding on the 64-bit data. Note that the buffer 324 classifies each signal with the same CNU 40 as the transmission source and holds the signal. Further, the buffer 324 absorbs a transmission speed difference between the optical fiber section and the coaxial cable section. The 66-bit data after 64B / 66B encoding is error correction encoded by the FEC encoder 306, further scrambled (encrypted) by the scrambler 304, and converted into serial data by the parallel / serial converter 302. Thereafter, the optical transmission / reception unit 301 transmits the optical burst signal as a 10G-EPON signal onto the optical fiber.
 なお、図3中において、バースト制御信号生成部325は、同軸ケーブル(CNU40側)からの有効な信号入力があったことをFECデコーダ314の出力信号を利用して検出し、同軸ケーブル上のバーストデータを受信後(有効な信号の入力を検出した後)、一定時間が経過後に光送受信部301に対してバースト制御信号を生成する。光送受信部301は、バースト制御信号の生成タイミングに従って光信号を送信する。 In FIG. 3, the burst control signal generation unit 325 detects that there is a valid signal input from the coaxial cable (CNU 40 side) using the output signal of the FEC decoder 314, and bursts on the coaxial cable. After receiving the data (after detecting the input of a valid signal), a burst control signal is generated for the optical transmitter / receiver 301 after a predetermined time has elapsed. The optical transceiver 301 transmits an optical signal according to the generation timing of the burst control signal.
 OCU30をこのような構成にすることで、光ファイバ区間をインバンドで転送されてくる下りの制御フレームを同軸ケーブル区間では制御フレーム専用の制御チャネルに分離することができる。ここで、先述のように、OLT10はOCU30の制御チャネルの実効レート以下で制御フレームを送信するようにしているため、OCU30での制御フレームの遅延量を抑え、固定遅延での中継を実現できる。 By configuring the OCU 30 in such a configuration, it is possible to separate a downstream control frame transferred in-band in the optical fiber section into a control channel dedicated to the control frame in the coaxial cable section. Here, as described above, since the OLT 10 transmits the control frame at an effective rate of the control channel of the OCU 30 or less, the delay amount of the control frame in the OCU 30 can be suppressed and relaying with a fixed delay can be realized.
 さらに、OCU30のパーサ308にLLID(Logical Link ID)フィルタを実装し、自OCU30に接続されているCNU40宛のものではない無関係なデータや制御メッセージは廃棄することも可能である。具体的には、OCU30は、起動時は下りブロードキャストLLIDのみを転送し、その後、上りフレームを受信するごとに、受信した上りフレームに格納されているLLIDをもつ下りフレームを透過するように、LLIDフィルタの設定を変更する。このようにすることで、帯域が有効利用でき、制御チャネルの容量が必要最低限で済むという効果が得られる。 Furthermore, an LLID (Logical Link ID) filter can be mounted on the parser 308 of the OCU 30 so that irrelevant data and control messages that are not destined for the CNU 40 connected to the own OCU 30 can be discarded. Specifically, the OCU 30 transfers only the downlink broadcast LLID at startup, and then transmits the downlink frame having the LLID stored in the received uplink frame every time an uplink frame is received thereafter. Change the filter settings. By doing so, it is possible to effectively use the bandwidth and to obtain the effects that the capacity of the control channel can be minimized.
 図4は、OCU30の機能ブロック図である。図4に示したように、OCU30は、下りフレームの中継機能を実現する下りフレーム中継部30Aと、上りフレームの中継機能を実現する上りフレーム中継部30Bとを含んでいる。下りフレーム中継部30Aは、下りフレーム受信部31、フレーム種別判定部32、制御フレーム送信部33およびデータフレーム送信部34からなる。 FIG. 4 is a functional block diagram of the OCU 30. As shown in FIG. 4, the OCU 30 includes a downlink frame relay unit 30A that realizes a downlink frame relay function and an uplink frame relay unit 30B that realizes an uplink frame relay function. The downlink frame relay unit 30A includes a downlink frame reception unit 31, a frame type determination unit 32, a control frame transmission unit 33, and a data frame transmission unit 34.
 下りフレーム中継部30Aでは、OLT10から送信されてきた下りフレームを下りフレーム受信部31が受信し、受信したフレームが制御フレームか否かをフレーム種別判定部32が判定する。制御フレームと判定されたフレームはフレーム種別判定部32から制御フレーム送信部33に渡され、制御チャネルを通じて各CNU40へ同報される。一方、制御チャネルではないと判定されたフレームであるデータフレームはデータフレーム送信部34に渡され、データチャネルを通じて各CNU40へ同報される。なお、制御フレーム送信部33およびデータフレーム送信部34は、CNU40に対してOFDMにてフレームを送信する。 In the downstream frame relay unit 30A, the downstream frame reception unit 31 receives the downstream frame transmitted from the OLT 10, and the frame type determination unit 32 determines whether or not the received frame is a control frame. The frame determined as the control frame is transferred from the frame type determination unit 32 to the control frame transmission unit 33 and broadcast to each CNU 40 through the control channel. On the other hand, a data frame, which is a frame determined not to be a control channel, is transferred to the data frame transmission unit 34 and broadcast to each CNU 40 through the data channel. The control frame transmission unit 33 and the data frame transmission unit 34 transmit frames to the CNU 40 by OFDM.
 下りフレーム受信部31は、例えば、図3に示した光送受信部301、パラレル/シリアル変換部302、デスクランブラ303、FECデコーダ305および64B/66B変換部307により実現される。フレーム種別判定部32は、例えば、図3に示したパーサ308により実現される。制御フレーム送信部33は、例えば、図3に示したバッファ309,310、8B/10B変換部311、FECエンコーダ312,313、インタリーバ315,316、符号変調部318、IFFT部320および送信部322により実現される。上りフレーム中継部30Bは、例えば、図3に示した光送受信部301、パラレル/シリアル変換部302、スクランブラ304、FECエンコーダ306、64B/66B変換部307、8B/10B変換部311、FECデコーダ314、デインタリーバ317、符号復調部319、FFT部321、受信部323、バッファ324およびバースト制御信号生成部325により実現される。 The downstream frame reception unit 31 is realized by, for example, the optical transmission / reception unit 301, the parallel / serial conversion unit 302, the descrambler 303, the FEC decoder 305, and the 64B / 66B conversion unit 307 illustrated in FIG. The frame type determination unit 32 is realized by, for example, the parser 308 illustrated in FIG. The control frame transmission unit 33 includes, for example, the buffers 309 and 310, the 8B / 10B conversion unit 311, the FEC encoders 312 and 313, the interleavers 315 and 316, the code modulation unit 318, the IFFT unit 320, and the transmission unit 322 illustrated in FIG. Realized. The upstream frame relay unit 30B includes, for example, the optical transmission / reception unit 301, the parallel / serial conversion unit 302, the scrambler 304, the FEC encoder 306, the 64B / 66B conversion unit 307, the 8B / 10B conversion unit 311, and the FEC decoder illustrated in FIG. 314, deinterleaver 317, code demodulator 319, FFT unit 321, receiver 323, buffer 324 and burst control signal generator 325.
 つづいて、本実施の形態のCNU40について説明する。CNU40は下り方向の制御チャネルとデータチャネルを受信する信号処理パスと上り方向の信号を送信するための信号処理パスを具備する。図5は、CNU40の構成例を示す図である。 Subsequently, the CNU 40 of the present embodiment will be described. The CNU 40 includes a signal processing path for receiving a downlink control channel and a data channel, and a signal processing path for transmitting an uplink signal. FIG. 5 is a diagram illustrating a configuration example of the CNU 40.
 図5に示したように、CNU40は、OLT10宛の上り信号を同軸ケーブルへ送信する送信部(Coax Tx)401と、OLT10から送信され、OCU30により中継された下り信号を同軸ケーブルから受信する受信部(Coax Rx)402と、入力信号に対してIFFTを行うIFFT部403と、入力信号に対して符号変調を行う符号変調部404と、入力信号を並べ替えるインタリーバ405と、入力信号に対して誤り訂正符号化を行うFECエンコーダ406と、入力信号に対してフィルタリング処理を行うフィルタ407と、入力信号に対してFFTを行うFFT部408および409と、符号変調された状態の入力信号を復調する符号復調部410および411と、インタリーブにより並べ替えられた状態の入力信号を元の並び順に戻すデインタリーバ412および413と、入力信号の誤り訂正を行うFECデコーダ414および415と、8ビット単位の信号が入力されると10ビット単位の信号に変換し、一方、10ビット単位の信号が入力されると8ビット単位の信号に変換する8B/10B変換部(8B/10B)416と、入力信号からタイムスタンプ情報を取得するタイムスタンプ取得部417と、入力信号を一時的に保持するバッファ(FIFO)418および419と、2系統の入力信号を合成して1系統の信号として出力するマルチプレクサ(MUX)420と、OLT10との間で送受信されるフレームを終端するフレーム終端部(OCU PON MAC)421と、を備える。なお、フレーム終端部421にはGMII(Gigabit Media Independent Interface)が接続されている。 As shown in FIG. 5, the CNU 40 receives a transmission unit (Coax Tx) 401 that transmits an upstream signal addressed to the OLT 10 to the coaxial cable, and receives a downstream signal transmitted from the OLT 10 and relayed by the OCU 30 from the coaxial cable. Unit (Coax Rx) 402, IFFT unit 403 that performs IFFT on the input signal, code modulation unit 404 that performs code modulation on the input signal, interleaver 405 that rearranges the input signal, and input signal FEC encoder 406 that performs error correction coding, filter 407 that performs filtering on the input signal, FFT units 408 and 409 that perform FFT on the input signal, and demodulates the input signal that has been code-modulated Code demodulator 410 and 411 and input in rearranged state by interleaving Deinterleavers 412 and 413 that return the signals to their original order, FEC decoders 414 and 415 that perform error correction of the input signal, and when an 8-bit unit signal is input, the signal is converted into a 10-bit unit signal, When a bit unit signal is input, an 8B / 10B conversion unit (8B / 10B) 416 that converts the signal into an 8-bit unit signal, a time stamp acquisition unit 417 that acquires time stamp information from the input signal, and the input signal temporarily Buffer (FIFO) 418 and 419 to be held, a multiplexer (MUX) 420 that combines two input signals and outputs as one signal, and a frame termination that terminates a frame transmitted and received between the OLT 10 (OCU PON MAC) 421. Note that a GMII (Gigabit Media Independent Interface) is connected to the frame termination unit 421.
 以下、上記構成のCNU40の全体動作について、下り方向の動作と上り方向の動作に分けて説明する。 Hereinafter, the overall operation of the CNU 40 having the above configuration will be described by dividing it into a downlink operation and an uplink operation.
(CNU40の下り方向の動作)
 受信部402は、同軸ケーブルを介してOCU30から送信されてきた信号を受信する。フィルタ407は、受信部402で受信された信号に対してフィルタリング処理を行い、制御信号(制御フレーム)とデータ信号(データフレーム)に分離する。また、制御信号をFFT部408へ、データ信号をFFT部409へ出力する。FFT部408、符号復調部410、デインタリーバ412およびFECデコーダ414は、制御信号を対象として、フーリエ変換、符号復調、デインタリーブおよび誤り訂正をそれぞれ行う。一方、FFT部409、符号復調部411、デインタリーバ413およびFECデコーダ415は、データ信号を対象として、フーリエ変換、符号復調、デインタリーブおよび誤り訂正をそれぞれ行う。
(Downward operation of CNU40)
The receiving unit 402 receives a signal transmitted from the OCU 30 via a coaxial cable. The filter 407 performs a filtering process on the signal received by the receiving unit 402 and separates the signal into a control signal (control frame) and a data signal (data frame). Further, the control signal is output to the FFT unit 408 and the data signal is output to the FFT unit 409. The FFT unit 408, the code demodulation unit 410, the deinterleaver 412 and the FEC decoder 414 perform Fourier transform, code demodulation, deinterleaving, and error correction on the control signal, respectively. On the other hand, the FFT unit 409, the code demodulator 411, the deinterleaver 413, and the FEC decoder 415 perform Fourier transform, code demodulation, deinterleave, and error correction on the data signal, respectively.
 8B/10B変換部416は、FECデコーダ414からの出力信号(制御信号)およびFECデコーダ415からの出力信号(データ信号)に対して10B/8Bコード変換し、制御信号はタイムスタンプ取得部417へ、データ信号はバッファ419へ出力する。タイムスタンプ取得部417は、制御データに打刻されているタイムスタンプ値を読み出した後、制御データをバッファ418へ出力する。ここで、フレーム終端部421は同期タイマを有しており、タイムスタンプ取得部417は、制御データから読み出したタイムスタンプ値をフレーム終端部421の同期タイマにロードする。このようにすることで、データフレームと制御フレームを多重するときに発生する遅延揺らぎの影響を受けずにタイムスタンプをフレーム終端部421の同期タイマにロードすることができ、OLT10との時刻同期が実現できる。すなわち、制御フレームの遅延揺らぎによるPON制御の破たん(光ファイバ区間において上り信号同士が衝突すること)を回避できる。 The 8B / 10B conversion unit 416 performs 10B / 8B code conversion on the output signal (control signal) from the FEC decoder 414 and the output signal (data signal) from the FEC decoder 415, and the control signal is sent to the time stamp acquisition unit 417. The data signal is output to the buffer 419. The time stamp acquisition unit 417 reads the time stamp value stamped on the control data, and then outputs the control data to the buffer 418. Here, the frame end unit 421 has a synchronization timer, and the time stamp acquisition unit 417 loads the time stamp value read from the control data into the synchronization timer of the frame end unit 421. In this way, the time stamp can be loaded into the synchronization timer of the frame end unit 421 without being affected by the delay fluctuation that occurs when the data frame and the control frame are multiplexed, and time synchronization with the OLT 10 can be performed. realizable. That is, it is possible to avoid the PON control breakdown (uplink signals collide in the optical fiber section) due to the delay fluctuation of the control frame.
 バッファ418に格納されている制御信号およびバッファ419に格納されているデータ信号はマルチプレクサ420において合成(多重)されてフレーム終端部421へ出力される。 The control signal stored in the buffer 418 and the data signal stored in the buffer 419 are combined (multiplexed) by the multiplexer 420 and output to the frame termination unit 421.
(CNU40の上り方向の動作)
 フレーム終端部421は、OLT10へ送信する制御フレームやデータフレームを生成すると8B/10B変換部416へ出力する。8B/10B変換部416は、フレーム終端部421から受け取った信号に対して8B/10Bコード変換を実行する。FECエンコーダ部406、インタリーバ405、符号変調部404およびIFFT部403は、8B/10Bコード変換が行われた後の信号に対して、誤り訂正符号化、インタリーブ、符号変調および逆フーリエ変換をそれぞれ行う。送信部401は、IFFT部403から出力された信号をOCU30へ送信する。
(Upward operation of CNU 40)
When the frame termination unit 421 generates a control frame or a data frame to be transmitted to the OLT 10, the frame termination unit 421 outputs it to the 8B / 10B conversion unit 416. The 8B / 10B conversion unit 416 performs 8B / 10B code conversion on the signal received from the frame termination unit 421. FEC encoder section 406, interleaver 405, code modulation section 404, and IFFT section 403 perform error correction coding, interleaving, code modulation, and inverse Fourier transform on the signal after 8B / 10B code conversion, respectively. . The transmission unit 401 transmits the signal output from the IFFT unit 403 to the OCU 30.
 次に、OCU30とCNU40の間の通信(同軸ケーブル区間における通信)について説明する。上述したように、同軸ケーブル区間においては、下りがOFDM、上りがOFDMAで通信を行う(図6参照)。一方、OLT10とOCU30の間(光ファイバ区間)においては、各機器(OCU、ONU)からの上り信号が衝突しないようにする必要があり、OLT10が各機器の送信タイミングを決定している。そのため、OCU30は、各CNU40から送信されてきた上り信号を送信元が同じものごとに分類してバッファ324(図3参照)で一旦保持し、OLT10が各CNU40に対して指定したタイミングに従い、各上り信号をOLT10へ送信する。OLT10が各CNU40に指示したタイミングをOCU30が認識する方法については特に規定しないが、例えば、OCU30は、制御フレーム(GATEフレーム)をCNU40へ転送する際に、各CNU40の送信タイミング情報(送信開始時刻と継続時間)を取得する方法、CNU40が上り信号に送信タイミング情報を付加してOCU30へ通知する方法、などが考えられる。また、CNU40は、光ファイバ区間において自身に割り当てられた帯域(OLT10から指定された送信開始時刻と継続時間)を考慮し、OCU30でフレームの滞留(バースト送信開始時に保持している全フレームを1回のバースト送信で送信することが出来ずに次のバースト送信機会までフレームが滞留すること)が発生することのない伝送レートで制御フレームおよびデータフレームを送信する。 Next, communication (communication in a coaxial cable section) between the OCU 30 and the CNU 40 will be described. As described above, in the coaxial cable section, communication is performed using OFDM for downlink and OFDMA for uplink (see FIG. 6). On the other hand, between the OLT 10 and the OCU 30 (optical fiber section), it is necessary to prevent uplink signals from each device (OCU, ONU) from colliding, and the OLT 10 determines the transmission timing of each device. Therefore, the OCU 30 classifies the upstream signals transmitted from the CNUs 40 according to the same transmission source, temporarily holds them in the buffer 324 (see FIG. 3), and according to the timing designated by the OLT 10 for each CNU 40, An upstream signal is transmitted to the OLT 10. A method for the OCU 30 to recognize the timing instructed to each CNU 40 by the OLT 10 is not particularly defined. For example, when the OCU 30 transfers a control frame (GATE frame) to the CNU 40, the transmission timing information (transmission start time) of each CNU 40 is used. For example, a method in which the CNU 40 adds transmission timing information to an uplink signal and notifies the OCU 30 of the transmission time information. Also, the CNU 40 considers the bandwidth allocated to itself in the optical fiber section (transmission start time and duration specified from the OLT 10), and the OCU 30 retains the frames (all frames held at the start of burst transmission 1). The control frame and the data frame are transmitted at a transmission rate that does not occur in the burst transmission until the next burst transmission opportunity.
 なお、上記説明では、制御フレームを識別するために、OLT10がプリアンブルに情報を追加して送信することとしたが、他の方法を使用して制御フレームを識別するようにしてもよい。例えば、制御フレームに格納される宛先MACアドレス、EtherType値またはOpcode値から制御フレームを識別してもよいし、これらの情報の組み合わせから制御フレームを識別してもよい。 In the above description, in order to identify the control frame, the OLT 10 adds information to the preamble and transmits it. However, the control frame may be identified using other methods. For example, the control frame may be identified from the destination MAC address, EtherType value, or Opcode value stored in the control frame, or the control frame may be identified from a combination of these pieces of information.
 このように、本実施の形態の通信システムにおいて、OLTは、制御フレームを示す情報を制御フレームのプリアンブルに付加して送信し、OLTとCNUとの間でフレームを中継するOCUは、OLTからの受信フレームを制御フレームとデータフレームに分類し、それぞれ異なる帯域(チャネル)を使用してCNUへ送信することとした。また、OLTは、OCUとCNUの間で確保されている制御フレーム送信用の帯域を使用した通信の実効伝送レート以下となるように考慮して制御フレームを送信することとした。これにより、OLTとOCUを接続している第1の伝送路における伝送速度がOCUとCNUを接続している第2の伝送路における伝送速度よりも大きい通信システムにおいて、OCUによる制御フレームの中継処理で発生する伝送遅延(処理遅延)を固定化することができ、RTTを正確に測定することができる。また、同軸ケーブル区間において、OCUとCNUは、下りをOFDM、上りをOFDMAで通信するので、この区間における伝送速度を高速化できる。 As described above, in the communication system according to the present embodiment, the OLT adds information indicating a control frame to the preamble of the control frame and transmits the information, and the OCU that relays the frame between the OLT and the CNU transmits the information from the OLT. The received frames are classified into control frames and data frames and transmitted to the CNU using different bands (channels). In addition, the OLT transmits the control frame in consideration of being equal to or less than the effective transmission rate of communication using the band for transmitting the control frame secured between the OCU and the CNU. As a result, in the communication system in which the transmission speed in the first transmission path connecting the OLT and the OCU is higher than the transmission speed in the second transmission path connecting the OCU and the CNU, the control frame is relayed by the OCU. Can fix the transmission delay (processing delay) generated in, and accurately measure the RTT. In the coaxial cable section, the OCU and the CNU communicate with the downlink by OFDM and the uplink by OFDMA, so that the transmission speed in this section can be increased.
 本実施の形態では、通信システムがPONシステムの場合について説明したが、伝送速度の異なる2つの伝送路に接続された中継装置における制御信号の伝送遅延を固定化する必要がある通信システムであれば適用可能である。 In the present embodiment, the case where the communication system is a PON system has been described. However, any communication system that needs to fix the transmission delay of a control signal in a relay device connected to two transmission paths having different transmission speeds. Applicable.
 以上のように、本発明は、伝送速度が異なる2種類の通信媒体のうち、一方を利用して親局装置と中継装置が接続され、他方を利用して中継装置と複数の子局装置が接続された構成の通信システムを実現する場合に有用である。 As described above, according to the present invention, a master station device and a relay device are connected using one of two types of communication media having different transmission speeds, and a relay device and a plurality of slave station devices are connected using the other. This is useful for realizing a communication system having a connected configuration.
 10 局側光通信装置(OLT)、20 利用者側光通信装置(ONU)、30 中継装置(OCU)、30A 下りフレーム中継部、30B 上りフレーム中継部、31 下りフレーム受信部、32 フレーム種別判定部、33 制御フレーム送信部、34 データフレーム送信部、40 利用者側通信装置(CNU)、50 スプリッタ、301 光送受信部(10G-EPON TRx)、302 パラレル/シリアル変換部(SER DES)、303 デスクランブラ、304 スクランブラ、305,314,414,415 FECデコーダ、306,312,313,406 FECエンコーダ、307 64B/66B変換部(64B/66B)、308 パーサ(Parser)、309,310,324,418,419 バッファ(FIFO)、311,416 8B/10B変換部(8B/10B)、315,316,405 インタリーバ、317,412,413 デインタリーバ、318,404 符号変調部、319,410,411 符号復調部、320,403 IFFT部、321,408,409 FFT部、322 送信部(Coax Tx)、323 受信部(Coax Rx)、325 バースト制御信号生成部、401 送信部(Coax Tx)、402 受信部(Coax Rx)、407 フィルタ、417 タイムスタンプ取得部、420 マルチプレクサ(MUX)、421 フレーム終端部(OCU PON MAC)。 10 station side optical communication device (OLT), 20 user side optical communication device (ONU), 30 relay device (OCU), 30A downstream frame relay unit, 30B upstream frame relay unit, 31 downstream frame reception unit, 32 frame type determination Unit, 33 control frame transmission unit, 34 data frame transmission unit, 40 user side communication device (CNU), 50 splitter, 301 optical transmission / reception unit (10G-EPON TRx), 302 parallel / serial conversion unit (SER DES), 303 Descrambler, 304 Scrambler, 305, 314, 414, 415 FEC decoder, 306, 312, 313, 406 FEC encoder, 307 64B / 66B converter (64B / 66B), 308 Parser, 309, 310, 324 418, 19 buffer (FIFO), 311, 416 8B / 10B converter (8B / 10B), 315, 316, 405 interleaver, 317, 412, 413 deinterleaver, 318, 404 code modulator, 319, 410, 411 code demodulator 320, 403 IFFT unit, 321, 408, 409 FFT unit, 322 transmission unit (Coax Tx), 323 reception unit (Coax Rx), 325 burst control signal generation unit, 401 transmission unit (Coax Tx), 402 reception unit ( Coax Rx), 407 filter, 417 time stamp acquisition unit, 420 multiplexer (MUX), 421 frame termination unit (OCU PON MAC).

Claims (11)

  1.  第1の伝送路を介して親局装置に接続されるとともに、前記第1の伝送路よりも伝送速度が遅い第2の伝送路を介して子局装置に接続され、前記親局装置と前記子局装置との間で信号を中継する中継装置であって、
     前記親局装置から受信した前記子局装置宛の信号を制御信号とデータ信号に分離し、制御信号とデータ信号をそれぞれ異なる帯域を使用して前記子局装置へ送信することを特徴とする中継装置。
    The master station apparatus is connected to the master station apparatus via the first transmission path, and is connected to the slave station apparatus via a second transmission path having a transmission speed slower than that of the first transmission path. A relay device that relays signals to and from slave station devices,
    A relay that separates a signal addressed to the slave station device received from the master station device into a control signal and a data signal, and transmits the control signal and the data signal to the slave station device using different bands, respectively. apparatus.
  2.  前記子局装置への信号送信をOFDMで行うことを特徴とする請求項1に記載の中継装置。 The relay apparatus according to claim 1, wherein signal transmission to the slave station apparatus is performed by OFDM.
  3.  前記親局装置から信号を受信すると、過去に子局装置から受信した信号に付加されていた、送信元の子局装置を一意に示す管理情報と同じ管理情報またはブロードキャストを示す管理情報が付加されているか否かを確認し、付加されている場合に信号中継処理を実行することを特徴とする請求項1または2に記載の中継装置。 When a signal is received from the master station device, the same management information as the management information uniquely indicating the source slave device that was added to the signal received from the slave station device in the past or the management information indicating broadcast is added. 3. The relay device according to claim 1, wherein a signal relay process is executed when the information is added.
  4.  子局装置宛の信号を受信し、当該信号に含まれている制御信号とデータ信号をそれぞれ異なる帯域を使用して子局装置へ転送する中継装置、とともに通信システムを構成し、前記中継装置を介して子局装置と通信する親局装置であって、
     制御信号の受信を前記中継装置が検知できるように、信号の種別を示す情報を前記子局装置宛の制御信号に付加して送信することを特徴とする親局装置。
    A relay device that receives a signal addressed to the slave station device and transfers a control signal and a data signal included in the signal to the slave station device using different bands, and constitutes a communication system; A master station device that communicates with the slave station device via
    A master station apparatus, wherein information indicating a signal type is added to a control signal addressed to the slave station apparatus and transmitted so that the relay apparatus can detect reception of a control signal.
  5.  前記中継装置から前記子局装置への制御信号送信で使用されている帯域幅を考慮した伝送レートで前記子局装置宛の制御信号を送信することを特徴とする請求項4に記載の親局装置。 5. The master station according to claim 4, wherein a control signal addressed to the slave station apparatus is transmitted at a transmission rate that takes into account a bandwidth used in transmission of a control signal from the relay apparatus to the slave station apparatus. apparatus.
  6.  前記子局装置宛の制御信号が前記中継装置で滞留することのない伝送レートで前記制御信号を送信することを特徴とする請求項5に記載の親局装置。 6. The master station device according to claim 5, wherein the control signal is transmitted at a transmission rate such that a control signal addressed to the slave station device does not stay in the relay device.
  7.  前記信号の種別を示す情報を、前記制御信号である制御フレームのプリアンブルに付加することを特徴とする請求項3、4または5に記載の親局装置。 6. The master station apparatus according to claim 3, 4 or 5, wherein information indicating the type of the signal is added to a preamble of a control frame that is the control signal.
  8.  親局装置と、
     第1の伝送路を介して前記親局装置に接続された中継装置と、
     前記第1の伝送路よりも伝送速度が遅い第2の伝送路を介して前記中継装置に接続された子局装置と、
     を備え、
     前記親局装置は、前記子局装置宛の制御信号およびデータ信号を共通の帯域を使用して前記中継装置へ送信し、
     前記中継装置は、前記親局装置から受信した前記子局装置宛の信号を制御信号とデータ信号に分離し、制御信号とデータ信号をそれぞれ異なる帯域を使用して前記子局装置へ送信する、
     ことを特徴とする通信システム。
    A master station device;
    A relay device connected to the master station device via a first transmission path;
    A slave station device connected to the relay device via a second transmission line having a transmission speed slower than that of the first transmission line;
    With
    The master station device transmits a control signal and a data signal addressed to the slave station device to the relay device using a common band,
    The relay device separates the signal addressed to the slave station device received from the master station device into a control signal and a data signal, and transmits the control signal and the data signal to the slave station device using different bands,
    A communication system characterized by the above.
  9.  前記親局装置は、子局装置宛の信号を送信してから応答信号を受信するまでの所要時間であるRTTに基づいて、各子局装置からの送信信号が前記第1の伝送路上で衝突しないよう、各子局装置に対して送信開始時刻と送信継続時間を指示することを特徴とする請求項8に記載の通信システム。 The master station apparatus collides with the transmission signal from each slave station apparatus on the first transmission path based on the RTT, which is the time required from receiving the signal addressed to the slave station apparatus to receiving the response signal. The communication system according to claim 8, wherein a transmission start time and a transmission continuation time are instructed to each slave station apparatus so as not to be transmitted.
  10.  前記子局装置から前記中継装置への通信はOFDMAで行い、
     前記中継装置は、子局装置から受信した信号を、送信元の子局装置が前記親局装置から指示された送信開始時刻および送信継続時間に従って前記親局装置へ送信することを特徴とする請求項9に記載の通信システム。
    Communication from the slave station device to the relay device is performed by OFDMA,
    The relay device transmits a signal received from a slave station device to the master station device according to a transmission start time and a transmission duration time instructed by the master station device from a slave station device of a transmission source. Item 10. The communication system according to Item 9.
  11.  親局装置と、第1の伝送路を介して前記親局装置に接続された中継装置と、前記第1の伝送路よりも伝送速度が遅い第2の伝送路を介して前記中継装置に接続された子局装置と、を備えた通信システムにおける通信方法であって、
     前記親局装置が、前記子局装置宛の制御信号およびデータ信号を共通の帯域を使用して前記中継装置へ送信するステップと、
     前記中継装置が、前記親局装置から受信した前記子局装置宛の信号を制御信号とデータ信号に分離し、制御信号とデータ信号をそれぞれ異なる帯域を使用して前記子局装置へ送信するステップと、
     を含むことを特徴とする通信方法。
    Connected to the relay station via a master station apparatus, a relay apparatus connected to the master station apparatus via a first transmission path, and a second transmission path whose transmission speed is slower than the first transmission path A communication method in a communication system comprising:
    The master station device transmits a control signal and a data signal addressed to the slave station device to the relay device using a common band;
    The relay device separates a signal addressed to the slave station device received from the master station device into a control signal and a data signal, and transmits the control signal and the data signal to the slave station device using different bands, respectively. When,
    A communication method comprising:
PCT/JP2013/065028 2012-11-20 2013-05-30 Relay device, master station device, communication system, and communication method WO2014080653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254222A JP2016027680A (en) 2012-11-20 2012-11-20 Relay device, master station device, communication system, and communication method
JP2012-254222 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080653A1 true WO2014080653A1 (en) 2014-05-30

Family

ID=50775846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065028 WO2014080653A1 (en) 2012-11-20 2013-05-30 Relay device, master station device, communication system, and communication method

Country Status (2)

Country Link
JP (1) JP2016027680A (en)
WO (1) WO2014080653A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157291A1 (en) * 2017-02-28 2018-09-07 华为技术有限公司 Method for communication in passive optical network system, optical line terminal and optical network unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506750A (en) * 1993-12-15 1997-06-30 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Passive optical network for video on demand
JP2005073267A (en) * 2003-08-26 2005-03-17 Samsung Electronics Co Ltd Optical subscriber network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506750A (en) * 1993-12-15 1997-06-30 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Passive optical network for video on demand
JP2005073267A (en) * 2003-08-26 2005-03-17 Samsung Electronics Co Ltd Optical subscriber network system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN MIZUGUCHI ET AL.: "Examination in optical consolidating PON system", IEICE TECHNICAL REPORT, vol. 110, no. 441, 24 February 2011 (2011-02-24), pages 109 - 112 *
KOICHI IKUMI: "VoD Gijutsu no Doko", NEC TECHNICAL JOURNAL, vol. 51, no. 8, 25 August 1998 (1998-08-25), pages 6 - 10 *

Also Published As

Publication number Publication date
JP2016027680A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
KR101116719B1 (en) Method and device for providing uplink burst data in passive optical network system
US8885652B2 (en) Hybrid orthogonal frequency division multiplexing time domain multiplexing passive optical network
US8989577B2 (en) Methods and systems for implementing time-division duplexing in the physical layer
US20130232537A1 (en) Packet filtering at a media converter in a network with optical and coaxial components
KR20160035925A (en) OFDM signal transmitting apparatus and method for OFDM-PON
US20140313951A1 (en) Physical-layer control channel structure
US9071358B2 (en) Repeater fiber-coax units
US20140003308A1 (en) Physical-layer device configurable for time-division duplexing and frequency-division duplexing
WO2014080653A1 (en) Relay device, master station device, communication system, and communication method
JP5293107B2 (en) Communication apparatus and communication method
JP4429988B2 (en) Station side communication apparatus for passive optical network system and upstream burst optical signal transmission timing control method
CN105578316B (en) OCDMA and OFDM mixed passive optical network system
JP5456547B2 (en) Optical communication system and optical communication method
JP2014146889A (en) Master station device, repeating device, and communication system
KR101435415B1 (en) Method for discontinuously transferring data in a point-to-multipoint access network, central unit, and networking termination unit
JP5632805B2 (en) Optical transmission / reception system and optical transmission / reception method
KR100694228B1 (en) Epon system and method for reducing rf noise therein
WO2007141508A1 (en) Framing of analog communication
KR20020093294A (en) Data process apparatus and method for transmission convergence layer of Passive Optical Network
WO2011107659A1 (en) Optical system for a passive optical network
JP2014204368A (en) Master station device, control device, communication system and band control method
Wang et al. TDM-PON
WO2014026182A1 (en) TIME DIVISION DUPLEXING FOR EPoC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP