WO2014078644A2 - Control of transmission to a target device with a cloud-based architecture - Google Patents

Control of transmission to a target device with a cloud-based architecture Download PDF

Info

Publication number
WO2014078644A2
WO2014078644A2 PCT/US2013/070276 US2013070276W WO2014078644A2 WO 2014078644 A2 WO2014078644 A2 WO 2014078644A2 US 2013070276 W US2013070276 W US 2013070276W WO 2014078644 A2 WO2014078644 A2 WO 2014078644A2
Authority
WO
WIPO (PCT)
Prior art keywords
target device
transmission
cloud
elapsed time
part via
Prior art date
Application number
PCT/US2013/070276
Other languages
French (fr)
Other versions
WO2014078644A3 (en
Inventor
Richard T. Lord
Robert W. Lord
Craig J. Mundie
Clarence T. Tegreene
Original Assignee
Elwha Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/678,082 external-priority patent/US20130298199A1/en
Priority claimed from US13/707,261 external-priority patent/US9148331B2/en
Priority claimed from US13/729,802 external-priority patent/US20130297725A1/en
Application filed by Elwha Llc filed Critical Elwha Llc
Priority to EP13854491.1A priority Critical patent/EP2920944A4/en
Publication of WO2014078644A2 publication Critical patent/WO2014078644A2/en
Publication of WO2014078644A3 publication Critical patent/WO2014078644A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal

Definitions

  • the present application is related to and/or claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the "Priority Applications”), if any, listed below (e.g., ciaims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC ⁇ 1 19(e) for provisional patent applications, for any and ail parent, grandparent, great-grandparent, etc. applications of the Priority App!ication(s)).
  • United States Patent Application No. 13/678,082 entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W, Lord; Craig J. Mundie; and Clarence T. Tegreene as inventors; filed 15 November 2012.
  • United States Patent Application No. 13/707,261 entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W. Lord; Craig J. Mundie; and Clarence T, Tegreene as inventors; filed 8 December 2012.
  • Systems, methods, computer-readable storage mediums including computer- readable instructions and/or circuitry for control of transmission to a target device with a cloud-based architecture may implement operations including, but not limited to: detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device; comparing, at least in part via a cloud- based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
  • FIG. 1 shows a high-level block diagram of an operational environment.
  • FIG. 2 shows a high-level block diagram of an operational environment.
  • FIG. 3 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 4 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 5 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 6 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 7 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 8 shows operations for control of transmission to a target device with a cloud-based architecture.
  • FIG. 1 is a block diagram of a cloud-based computing system 100 employing a cloud-based architecture.
  • the cloud-based computing system 100 may include a variety of computing devices 101 connected via a network 102.
  • the network 102 may be the Internet, a Local Area Network (LAN), a wireless network (such as a wireless LAN or WLAN), or other network, or a combination of networks.
  • the cloud-based computing system 100 may further include a cloud-based server 103, operably coupled to the computing devices 101 via the network 102.
  • the computing devices 101 may each be any type of computer or computing device, such as a desktop computer, laptop computer, netbook, tablet computer, mobile computing device (such as a cell phone, smartphone.
  • the computing devices 101 may include one or more of a user input/output devices such as a display, keyboard, and a pointing device (such as a track bail, mouse, touch pad, touch screen or other pointing device).
  • a user input/output devices such as a display, keyboard, and a pointing device (such as a track bail, mouse, touch pad, touch screen or other pointing device).
  • the computing devices 101 may include memory to store data and software/computer instructions, a processor for executing software/computer instructions and providing overall control to the computer.
  • the computing devices 101 may each include an operating system (OS) stored in memory and executed at startup, for example.
  • OS operating system
  • the computing devices 101 may execute or run a web browser application 104 configured to access data maintained on one or more other computing devices 101 and/or the cloud-based server 103 via the network 102.
  • the cloud-based server 103 (which may include a processor and memory) may run one or more applications, such as server application 105 to provide a cloud-based service (or a cloud-based computing service) where cloud-based server 103 (and/or other servers associated with the cloud-based service) may provide resources, such as software, data, media (e.g., video, audio files) and other information, and management of such resources, to computing devices 101 via the network 102.
  • applications such as server application 105 to provide a cloud-based service (or a cloud-based computing service) where cloud-based server 103 (and/or other servers associated with the cloud-based service) may provide resources, such as software, data, media (e.g., video, audio files) and other information, and management of such resources, to computing devices 101 via the network 102.
  • computing resources such as application programs and file storage may be remotely provided by the cloud-based service (e.g., by cloud-based server 103) to a computing device 101 over the network 102 through the web browser application 104 running on the computing device 101.
  • a client computing device 101 may include the web browser application 104 running applications (e.g., Java applets or other applications), which may include application programming interfaces ("API's") to more sophisticated applications (such as server application 105) running on remote servers that provide the cloud-based service (cloud- based server 103), as an example embodiment.
  • applications e.g., Java applets or other applications
  • API's application programming interfaces
  • a user can use a computing device 101 to log on to cloud-based services (e.g., by the web browser application 104 communicating with cloud-based server 103 of the cloud-based computing system 100) to access a server application 105.
  • cloud-based services e.g., by the web browser application 104 communicating with cloud-based server 103 of the cloud-based computing system 100
  • the user may create, edit, save and delete files on cloud-based server 103, and may establish (set up) or change/edit various options, such as user preferences and/or system settings, and/or may receive or download software (e.g., operating system or other software) or software updates, various data files or media files, user preferences and/or system settings, and other information previously stored on the cloud-based server 103, via the server application 105 running on the cloud- based server 103.
  • software e.g., operating system or other software
  • a user of a first computing device 101 may compose a message 108 (e.g. an e-mail message, text message, instant message, or any other data transmission) for transmission to a target computing device 101 (e.g. computing device 10V) via the cloud-based computing system 100.
  • the first computing device 101 may access a message creation server application 105 running on cloud-based server 103 to compose the message 106 and the message 106 may be stored to a message storage queue 107 maintained in memory by the cloud- based server 103.
  • the cloud-based server 103 may, in turn, employ a message transmission server application 105' to transmit one or more messages 106 stored in the message storage queue 107 to the target computing device 101 '.
  • the determination of when to transmit messages 106 stored in the message storage queue 107 to the target computing device 101 ' may carried out solely by the cloud- based server 103 architecture and not at the direction of either the transmitting computing device 101 or the target computing device 101 '. Rather, the cloud-based server 103 may direct the transmission of messages 106 to the target computing device 101 ' according to one or more cloud-based server-defined parameters.
  • the cloud-based server-defined parameter may be an elapsed time since a prior authorization to transmit a message 108 to a target device.
  • the message transmission server application 105' running on the cloud-based server 103 may be configured to authorize the transmission of messages 108 to the target computing device 101 ' only at fixed time intervals (e.g. every 15 minutes). Specifically, the message transmission server application 105' may detect an elapsed time since a prior attempted transmission of at least one message 108 and, if the elapsed time exceeds a threshold transmission interval 108 maintained by a server data store 109, the message transmission server application 105' may authorize the transmission of one or more messages 108 created by the user of the first computing device 101 (if any) during the time elapsed since a prior authorization to transmit messages 106 (e.g. a batch-type transmission of according to the server-maintained threshold transmission interval 108. The initiation of such transmissions by the message transmission server application 105' may be wholly independent of any action by the computing device 101 or the target computing device 101 '.
  • the c!oud-based server-defined parameter may be a transmission practicability index computed by the cloud-based server 103 and associated with the practicability of successfully transmitting one or more messages 106 to a target computing device 101 '.
  • the message transmission server application 105" may be configured to authorize the transmission of messages 106 to the target computing device 101 ' only when a transmission practicability index computed from localized context information associated with the target computing device 101 ' complies with one or more threshold metrics maintained as a threshold transmission practicability index 1 10 maintained by the server data store 109.
  • the cloud-based server 103 may receive localized context information associated with the target computing device 101 ' including, but not limited to, at least one of a serial number of the target computing device 101 ", a model number of the target computing device 101 ', a network address of the target computing device 101 ', a geographical identifier of the target computing device 101 ', a power indicator of the target computing device 101 ', a bandwidth indicator of the target computing device 101 ', an inertial signal associated with the target computing device 101 ', an imaging signal associated with the target computing device 101 '.
  • the message transmission server application 105' may compare a transmission practicability index computed from the localized context information associated with the target computing device 101 ' to the threshold transmission practicability index 1 10 and, if the transmission practicability index computed from the localized context information associated with the target computing device 101 ' complies with the threshold transmission practicability index 1 10, transmit a message 108 to the target computing device 101. Otherwise, the message 108 is retained in the message storage queue 107 until the transmission practicability index computed from the localized context information associated with the target computing device 101 ' complies with the threshold transmission practicability index 1 10, if ever.
  • the cloud-based server-defined parameter may be a historical average transmission parameter 1 1 1.
  • the message transmission server application 105' of the cloud-based server 103 may be configured to authorize the transmission of messages 108 to the target computing device 101 ' only when various message parameters correspond to historical averages for those message parameters.
  • the cloud-based server 103 may determine a historical average message transmission length (e.g. an average amount of time required to transmit a message 106, a bit length of a message 108, etc.) associated with one or more messages 108 transmitted to the target computing device 101 ' by the cloud-based server 103.
  • the message transmission server application 105' may compare a historical average message transmission length to a message transmission length of a message 108 in the message storage queue 107 and, if the currently transmission length of the message 108 corresponds to the historical average message transmission length (e.g. is within a tolerance range of the historical average message transmission length), transmit the message 108 to the target computing device 101 '. Otherwise, the message 106 is retained in the message storage queue 107 until the transmission length of the message 106 complies with the historical average message transmission length, if ever.
  • FIG. 3 and the following figures include various examples of operational flows, discussions and explanations may be provided with respect to the above-described exemplary environment of FIGS. 1 -2.
  • FIG. 3 illustrates an operational procedure 300 for practicing aspects of the present disclosure including operations 302, 304 and 306.
  • Operation 302 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device.
  • the message transmission server application 105' running on the cloud-based server 103 may detect an authorization (e.g. detecting the setting of a flag by the message transmission server application 105' indicative of an authorization, detecting the actual transmission of one or more messages 108 by the message transmission server application 105', etc.) of a transmission of a message 106 to a target computing device 101 ' and store a time-stamp associated with that transmission to the server data store 109.
  • an authorization e.g. detecting the setting of a flag by the message transmission server application 105' indicative of an authorization, detecting the actual transmission of one or more messages 108 by the message transmission server application 105', etc.
  • the message transmission server application 105' running on the cloud-based server 103 may then determine an elapsed time since the prior authorization of the first transmission of a message 106 (e.g. comparing a current value of an internal system clock to the stored time-stamp associated with that prior transmission).
  • Operation 304 illustrates comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 (e.g. a 15 minute threshold transmission interval) associated with (e.g. mapped to in a look-up table having entries for one or more computing devices 101 ) the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • a threshold transmission interval 108 e.g. a 15 minute threshold transmission interval
  • Operation 308 illustrates authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison. For example, as shown in FIGs. 1 -2, upon a determination that the threshold transmission interval has elapsed since a prior authorization of a transmission to the target computing device 101 ', the message transmission server application 105' may authorize (e.g. set a flag indicative of an authorization, transmit one or more messages 108, etc.) a transmission to the target device.
  • the message transmission server application 105' may authorize (e.g. set a flag indicative of an authorization, transmit one or more messages 108, etc.) a transmission to the target device.
  • FIG. 4 illustrates an example embodiment where operation 302 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 402 and/or 404.
  • Operation 402 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission.
  • a user of the computing device 101 may employ the message creation server application 105 to create a message 108 for transmission to the target computing device 101 '.
  • the message 106 may be enqueued in the message storage queue 107,
  • the message transmission server application 105' running on the cloud-based server 103 may determine an elapsed time since a prior authorization of a transmission of a message 108 (e.g. comparing a current value of an internal system clock to the stored time-stamp associated with that prior transmission).
  • Operation 404 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission.
  • a user of the computing device 101 may employ the message creation server application 105 to create a number of messages 106 for transmission to the target computing device 101 '.
  • the message 106 may be enqueued in the message storage queue 107. Over time, the message storage queue 107 may accumulate a number of messages 106 for transmission to the target computing device 101 '.
  • the message transmission server application 105' running on the cloud- based server 103 may determine an elapsed time since a prior authorization of transmission of one or more messages 106 (e.g. comparing a current value of an internal system dock to a stored time-stamp associated with a prior transmission).
  • F!G. 5 illustrates an example embodiment where operation 304 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 502, 504 and/or 506.
  • Operation 502 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a serial number of at least one computing device. For example, as shown in FSGs.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on their respective device performance characteristics, bandwidth usage, usage histories, etc. (e.g.
  • the server data store 109 may maintain a device !D database 1 12.
  • the device ID database 112 may include one or more serial numbers assigned to target computing devices 101 '.
  • One or more serial numbers assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105" may query the target computing device 101 ' for its serial number, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 " according to the mapping between the serial number for that target computing device 101 ' in the device ID database 1 12 and the threshold transmission interval 108.
  • Operation 504 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a model identifier of at least one computing device. For example, as shown in FIGs.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for groups of target computing devices 101 ' based on their respective device performance characteristics, bandwidth usage (e.g.
  • the device ID database 112 may include one or more model identifiers (e.g. a model identifier associate with a vendor of target computing devices 101 ' such as Apple 1® , Sony ® , Samsung ®' , Google ® , HTC ® and/or device-specific model identifiers) associated with the target computing devices 101 '.
  • One or more model identifiers assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105' may query the target computing device 101 ' for its model identifier, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 " according to the mapping between the model identifier for that target computing device 101 ' in the device ID database 1 12 and the threshold transmission interval 108.
  • Operation 508 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a network address of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the network connectivity for various branches of network 102 (e.g. transmissions of messages 108 to target computing devices 101 ' in connected to a portion of the network 102 may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' on a wired portion of the network 102).
  • the device ID database 1 12 may include one or more network addresses (e.g. IP addresses for a LAN, WAN, the Internet, etc.) associated with the target computing devices 101 ' connected to network 102.
  • One or more network addresses assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105' may query the target computing device 101 ' for its network address or extract the destination network address from the message 108 itself, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the network address for that target computing device 101 ' in the device ID database 112 and the threshold transmission interval 108.
  • FIG. 8 illustrates an example embodiment where operation 304 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 802.
  • Operation 602 illustrates comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 " as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between varying local environments and/or network connectivity parameters based on context data (e.g. location data, connection data, environmental data) associated with a given target computing device 101 '.
  • context data e.g. location data, connection data, environmental data
  • reference context data 1 13 may be maintained in the server data store 109.
  • the reference context data 1 13 may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include one or more context sensors 1 14.
  • the message transmission server application 105' may query one or more of the context sensors 1 14 of the target computing device 101 ' to obtain context data associated with the target computing device 101 '.
  • the appropriate threshold transmission interval 108 for that target computing device 101 ' may be determined according to the mapping between the reference context data 1 13 corresponding to the context data received from the context sensors 1 14 and the threshold transmission interval 108.
  • FIG. 6 further illustrates an example embodiment where operation 802 of example operational flow 300 of F!G. 6 may include at least one additional operation. Additional operations may include an operation 804, 608 and/or 808.
  • Operation 604 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a geographical identifier of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 108 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the respective geographic locations of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' in a first geographic location may occur on a different time scale than transmission of messages 108 to target computing devices 101 ' in a second geographic location).
  • the reference context data 1 13 may include one or more geographic locations associated with target computing devices 101 ' connected to network 102, One or more geographic locations may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include a global positioning system sensor 1 15.
  • the message transmission server application 105' may query the global positioning system sensor 1 15 of the target computing device 101 ' for the geographic location of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the geographic location of that target computing device 101 ' as determined by the global positioning system sensor 1 15 in the reference context data 1 13 and the threshold transmission interval 108.
  • Operation 806 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a power indicator of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the performance characteristics, system status, remaining battery life etc. (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of remaining battery life may occur on a time scale shorter than transmission of messages 106 to target computing devices 101 ' having a low level of remaining battery life).
  • the reference context data 1 13 may include one or more power level ranges associated with target computing devices 101 ' connected to network 102.
  • One or more power level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include a power level sensor 1 16.
  • the message transmission server application 105' may query the power level sensor 116 of the target computing device 101 ' for its current power level and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the power level ranges in the reference context data 1 13 and the threshold transmission interval 108.
  • Operation 808 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an inertia! signal of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on a usage profile of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of device usage may occur on a time scale shorter than transmission of messages 108 to target computing devices 101 ' having a low level of usage).
  • the reference context data 1 13 may include one or more usage level ranges associated with target computing devices 101 ' connected to network 102.
  • One or more usage level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include an inertia! sensor 1 17 configured to detect motion of the target computing device 101 ' indicative of use of the target computing device 101 ', Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query the inertia! sensor 1 17 of the target computing device 101 ' for an indication of usage of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the usage level ranges in the reference context data 1 13 and the threshold transmission interval 108,
  • FIG. 7 illustrates an example embodiment where operation 802 of example operational flow 300 of FIG. 6 may include at least one additional operation. Additional operations may include an operation 702 and/or 704.
  • Operation 702 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an imaging signal of at least one computing device. For example, as shown in FIGs.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the respective environment or geographic locations of the target computing devices 101 ' (e.g.
  • the reference context data 113 may include one or more environments associated with target computing devices 101 ' connected to network 102. One or more environments may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include a image capture sensor 1 18.
  • the message transmission server application 105' may query the image capture sensor 1 18 of the target computing device 101 ' to obtain an image of the current environment of the target computing device 101 '.
  • the image of the environment may be analyzed (e.g. by image recognition software running on the cloud-based server 103) to determine the current environment so as to obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the current environment of that target computing device 101 ' (as determined by the image capture sensor 1 18 and/or image recognition software) in the reference context data 1 13 and the threshold transmission interval 108.
  • Operation 704 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a user-input'output of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on a usage profile of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of device usage may occur on a time scale shorter than transmission of messages 106 to target computing devices 101 ' having a low level of usage).
  • the reference context data 1 13 may include one or more usage level ranges associated with target computing devices 101 ' connected to network 102.
  • One or more usage level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • a target computing device 101 ' may include a user input/output device 1 19 (e.g. a touchscreen, a keypad, a display, a microphone, a speaker, etc.) configured to receive/provide user input/output of the target computing device 101 '. Such user input/output may be indicative of use of the target computing device 101 '.
  • a user input/output device 1 19 e.g. a touchscreen, a keypad, a display, a microphone, a speaker, etc.
  • the message transmission server application 105' may query the target computing device 101 ' for an indication of a number of user inputs/outputs having occurred via the user input/output device 1 19 of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the usage level ranges in the reference context data 1 13 and the threshold transmission interval 108.
  • FIG. 8 illustrates an example embodiment where operation 802 of example operational flow 300 of FIG. 6 may include at least one additional operation. Additional operations may include an operation 802, 804 and/or 808.
  • Operation 802 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a signal strength of at least one computing device.
  • the message transmission server appiication 105' may compare that elapsed time since the prior authorization of the transmission of a message 108 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 106 to target computing devices 101 ' via a network 102 connection having a first signal strength may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' via a network 102 connection having a second signal strength).
  • the reference context data 1 13 may include one or more signal strength ranges associated with communications signal strengths for target computing devices 101 ' connected to network 102. One or more signal strength ranges may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the signal strength between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the signal strength ranges of the reference context data 1 13 and the threshold transmission interval 108.
  • Operation 804 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a bandwidth of at least one computing device.
  • the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 108 to target computing devices 101 ' via a network 102 connection having a first bandwidth may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' via a network 102 connection having a second bandwidth).
  • the reference context data 1 13 may include one or more bandwidth ranges associated with communications bandwidths for target computing devices 101 ' connected to network 102. One or more bandwidth ranges may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the bandwidth between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the bandwidth ranges of the reference context data 1 13 and the threshold transmission interval 108.
  • Operation 806 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a connection type of at least one computing device. For example, as shown in F!Gs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
  • the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 106 to target computing devices 101 ' via a wired network 102 connection type may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' having a wireless network 102 connection type).
  • the reference context data 1 13 may include one or more network connection types for target computing devices 101 ' connected to network 102.
  • One or more network connection types may be mapped to at least one threshold transmission interval 108 in the server data store 109.
  • the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the network connection type between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between a network connection type of the reference context data 1 13 and the threshold transmission interval 108.
  • an imp!ementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
  • any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
  • Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
  • a signal bearing medium examples include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • electrical circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment
  • a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities).
  • a typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateab!e and/or physically interacting components and/or wireiessly inferactabie and/or wirelessiy interacting components and/or logically interacting and/or logically inferactabie components.

Abstract

Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with a cloud-based architecture may implement operations including, but not limited to: detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device; comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.

Description

Craig J. Wlundie
Clarence T. Tegreene
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application is related to and/or claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the "Priority Applications"), if any, listed below (e.g., ciaims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 1 19(e) for provisional patent applications, for any and ail parent, grandparent, great-grandparent, etc. applications of the Priority App!ication(s)).
Priority Applications:
[0002] United States Patent Application No. 13/678,010; entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W, Lord; Craig J. Mundie; and Clarence T. Tegreene as inventors; filed 15 November 2012.
[0003] United States Patent Application No. 13/678,082; entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W, Lord; Craig J. Mundie; and Clarence T. Tegreene as inventors; filed 15 November 2012. [0004] United States Patent Application No. 13/707,261 ; entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W. Lord; Craig J. Mundie; and Clarence T, Tegreene as inventors; filed 8 December 2012.
[0005] United States Patent Application No. 13/729,802; entitled CONTROL OF TRANSMISSION TO A TARGET DEVICE WITH A CLOUD-BASED ARCHITECTURE; naming Richard T. Lord; Robert W. Lord; Craig J. Mundie; and Clarence T. Tegreene as inventors; filed 28 December 2012,
[0006] Ail subject matter of the Priority Applications and the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Priority Applications and the Related Applications, including any priority claims, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
SUMMARY
[0007] Systems, methods, computer-readable storage mediums including computer- readable instructions and/or circuitry for control of transmission to a target device with a cloud-based architecture may implement operations including, but not limited to: detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device; comparing, at least in part via a cloud- based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
[0008] The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference lfcr U ¾ Kir I !U J Ur 1 rib ri sU
[0009] FIG. 1 shows a high-level block diagram of an operational environment.
[0010] FIG. 2 shows a high-level block diagram of an operational environment. [0011] FIG. 3 shows operations for control of transmission to a target device with a cloud-based architecture.
[0012] FIG. 4 shows operations for control of transmission to a target device with a cloud-based architecture.
[0013] FIG. 5 shows operations for control of transmission to a target device with a cloud-based architecture.
[0014] FIG. 6 shows operations for control of transmission to a target device with a cloud-based architecture.
[0015] FIG. 7 shows operations for control of transmission to a target device with a cloud-based architecture.
FIG. 8 shows operations for control of transmission to a target device with a cloud-based architecture.
DETAILED DESCRIPTION
[0016] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
[0017] FIG. 1 is a block diagram of a cloud-based computing system 100 employing a cloud-based architecture. The cloud-based computing system 100 may include a variety of computing devices 101 connected via a network 102. The network 102 may be the Internet, a Local Area Network (LAN), a wireless network (such as a wireless LAN or WLAN), or other network, or a combination of networks. The cloud-based computing system 100 may further include a cloud-based server 103, operably coupled to the computing devices 101 via the network 102. [0018] The computing devices 101 may each be any type of computer or computing device, such as a desktop computer, laptop computer, netbook, tablet computer, mobile computing device (such as a cell phone, smartphone. personal digital assistant or other mobile or handheld or wireless computing device), or any other computer/computing device. The computing devices 101 may include one or more of a user input/output devices such as a display, keyboard, and a pointing device (such as a track bail, mouse, touch pad, touch screen or other pointing device).
[0Q19] The computing devices 101 may include memory to store data and software/computer instructions, a processor for executing software/computer instructions and providing overall control to the computer. The computing devices 101 may each include an operating system (OS) stored in memory and executed at startup, for example.
[002Q] Referring to FIG. 2, the computing devices 101 may execute or run a web browser application 104 configured to access data maintained on one or more other computing devices 101 and/or the cloud-based server 103 via the network 102.
[0Q21] The cloud-based server 103 (which may include a processor and memory) may run one or more applications, such as server application 105 to provide a cloud-based service (or a cloud-based computing service) where cloud-based server 103 (and/or other servers associated with the cloud-based service) may provide resources, such as software, data, media (e.g., video, audio files) and other information, and management of such resources, to computing devices 101 via the network 102.
[0Q22] According to an example embodiment, computing resources such as application programs and file storage may be remotely provided by the cloud-based service (e.g., by cloud-based server 103) to a computing device 101 over the network 102 through the web browser application 104 running on the computing device 101. For example, a client computing device 101 may include the web browser application 104 running applications (e.g., Java applets or other applications), which may include application programming interfaces ("API's") to more sophisticated applications (such as server application 105) running on remote servers that provide the cloud-based service (cloud- based server 103), as an example embodiment.
[0023] In an example embodiment, through the web browser application 104, a user can use a computing device 101 to log on to cloud-based services (e.g., by the web browser application 104 communicating with cloud-based server 103 of the cloud-based computing system 100) to access a server application 105. After logging-on to the server application 105, the user may create, edit, save and delete files on cloud-based server 103, and may establish (set up) or change/edit various options, such as user preferences and/or system settings, and/or may receive or download software (e.g., operating system or other software) or software updates, various data files or media files, user preferences and/or system settings, and other information previously stored on the cloud-based server 103, via the server application 105 running on the cloud- based server 103.
[0Q24] In an example embodiment, as shown in FIG. 2, a user of a first computing device 101 may compose a message 108 (e.g. an e-mail message, text message, instant message, or any other data transmission) for transmission to a target computing device 101 (e.g. computing device 10V) via the cloud-based computing system 100. The first computing device 101 may access a message creation server application 105 running on cloud-based server 103 to compose the message 106 and the message 106 may be stored to a message storage queue 107 maintained in memory by the cloud- based server 103. The cloud-based server 103 may, in turn, employ a message transmission server application 105' to transmit one or more messages 106 stored in the message storage queue 107 to the target computing device 101 '. It will be noted that the determination of when to transmit messages 106 stored in the message storage queue 107 to the target computing device 101 ' may carried out solely by the cloud- based server 103 architecture and not at the direction of either the transmitting computing device 101 or the target computing device 101 '. Rather, the cloud-based server 103 may direct the transmission of messages 106 to the target computing device 101 ' according to one or more cloud-based server-defined parameters. [0025] In an exemplary embodiment, the cloud-based server-defined parameter may be an elapsed time since a prior authorization to transmit a message 108 to a target device. For example, the message transmission server application 105' running on the cloud-based server 103 may be configured to authorize the transmission of messages 108 to the target computing device 101 ' only at fixed time intervals (e.g. every 15 minutes). Specifically, the message transmission server application 105' may detect an elapsed time since a prior attempted transmission of at least one message 108 and, if the elapsed time exceeds a threshold transmission interval 108 maintained by a server data store 109, the message transmission server application 105' may authorize the transmission of one or more messages 108 created by the user of the first computing device 101 (if any) during the time elapsed since a prior authorization to transmit messages 106 (e.g. a batch-type transmission of according to the server-maintained threshold transmission interval 108. The initiation of such transmissions by the message transmission server application 105' may be wholly independent of any action by the computing device 101 or the target computing device 101 '.
[0028] In another exemplary embodiment, the c!oud-based server-defined parameter may be a transmission practicability index computed by the cloud-based server 103 and associated with the practicability of successfully transmitting one or more messages 106 to a target computing device 101 '. For example, the message transmission server application 105" may be configured to authorize the transmission of messages 106 to the target computing device 101 ' only when a transmission practicability index computed from localized context information associated with the target computing device 101 ' complies with one or more threshold metrics maintained as a threshold transmission practicability index 1 10 maintained by the server data store 109. Specifically, the cloud-based server 103 may receive localized context information associated with the target computing device 101 ' including, but not limited to, at least one of a serial number of the target computing device 101 ", a model number of the target computing device 101 ', a network address of the target computing device 101 ', a geographical identifier of the target computing device 101 ', a power indicator of the target computing device 101 ', a bandwidth indicator of the target computing device 101 ', an inertial signal associated with the target computing device 101 ', an imaging signal associated with the target computing device 101 '. or a user input-Output indicator associated with the target computing device 1 Q1 \ The message transmission server application 105' may compare a transmission practicability index computed from the localized context information associated with the target computing device 101 ' to the threshold transmission practicability index 1 10 and, if the transmission practicability index computed from the localized context information associated with the target computing device 101 ' complies with the threshold transmission practicability index 1 10, transmit a message 108 to the target computing device 101. Otherwise, the message 108 is retained in the message storage queue 107 until the transmission practicability index computed from the localized context information associated with the target computing device 101 ' complies with the threshold transmission practicability index 1 10, if ever.
[0027] In another exemplary embodiment, the cloud-based server-defined parameter may be a historical average transmission parameter 1 1 1. For example, the message transmission server application 105' of the cloud-based server 103 may be configured to authorize the transmission of messages 108 to the target computing device 101 ' only when various message parameters correspond to historical averages for those message parameters. Specifically, the cloud-based server 103 may determine a historical average message transmission length (e.g. an average amount of time required to transmit a message 106, a bit length of a message 108, etc.) associated with one or more messages 108 transmitted to the target computing device 101 ' by the cloud-based server 103. The message transmission server application 105' may compare a historical average message transmission length to a message transmission length of a message 108 in the message storage queue 107 and, if the currently transmission length of the message 108 corresponds to the historical average message transmission length (e.g. is within a tolerance range of the historical average message transmission length), transmit the message 108 to the target computing device 101 '. Otherwise, the message 106 is retained in the message storage queue 107 until the transmission length of the message 106 complies with the historical average message transmission length, if ever. [0028] FIG. 3 and the following figures include various examples of operational flows, discussions and explanations may be provided with respect to the above-described exemplary environment of FIGS. 1 -2. However, it should be understood that the operational flows may be executed in a number of other environments and contexts, and/or in modified versions of FIGS. 1 -2. In addition, although the various operational flows are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in different sequential orders other than those which are illustrated, or may be performed concurrently.
[0029] Further, in the following figures that depict various flow processes, various operations may be depicted in a box-within-a-box manner. Such depictions may indicate that an operation in an internal box may comprise an optional example embodiment of the operational step illustrated in one or more external boxes. However, it should be understood that internal box operations may be viewed as independent operations separate from any associated external boxes and may be performed in any sequence with respect to ail other illustrated operations, or may be performed concurrently.
[0030] FIG. 3 illustrates an operational procedure 300 for practicing aspects of the present disclosure including operations 302, 304 and 306.
[0031] Operation 302 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device. For example, as shown in FIGs. 1 -2, the message transmission server application 105' running on the cloud-based server 103 may detect an authorization (e.g. detecting the setting of a flag by the message transmission server application 105' indicative of an authorization, detecting the actual transmission of one or more messages 108 by the message transmission server application 105', etc.) of a transmission of a message 106 to a target computing device 101 ' and store a time-stamp associated with that transmission to the server data store 109. The message transmission server application 105' running on the cloud-based server 103 may then determine an elapsed time since the prior authorization of the first transmission of a message 106 (e.g. comparing a current value of an internal system clock to the stored time-stamp associated with that prior transmission).
[0032] Operation 304 illustrates comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 (e.g. a 15 minute threshold transmission interval) associated with (e.g. mapped to in a look-up table having entries for one or more computing devices 101 ) the target computing device 101 ' and maintained by the server data store 109 of the server data store 109.
[0Q33] Operation 308 illustrates authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison. For example, as shown in FIGs. 1 -2, upon a determination that the threshold transmission interval has elapsed since a prior authorization of a transmission to the target computing device 101 ', the message transmission server application 105' may authorize (e.g. set a flag indicative of an authorization, transmit one or more messages 108, etc.) a transmission to the target device.
[0034] FIG. 4 illustrates an example embodiment where operation 302 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 402 and/or 404.
[0Q35] Operation 402 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission. For example, as shown in FIGs. 1 -2, a user of the computing device 101 may employ the message creation server application 105 to create a message 108 for transmission to the target computing device 101 '. When the message 108 is ready for transmission, the message 106 may be enqueued in the message storage queue 107, In response to the enqueuing of the message 108 for transmission to the target computing device 101 ', the message transmission server application 105' running on the cloud-based server 103 may determine an elapsed time since a prior authorization of a transmission of a message 108 (e.g. comparing a current value of an internal system clock to the stored time-stamp associated with that prior transmission).
[0036] Operation 404 illustrates detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission. For example, as shown in FIGs. 1 -2, a user of the computing device 101 may employ the message creation server application 105 to create a number of messages 106 for transmission to the target computing device 101 '. When a message 108 is ready for transmission, the message 106 may be enqueued in the message storage queue 107. Over time, the message storage queue 107 may accumulate a number of messages 106 for transmission to the target computing device 101 '. In response to the enqueuing of a threshold number of messages 108 for transmission to the target computing device 101 ' (e.g. a threshold number stored in server data store 109, a threshold number set according to a user setting, etc.), the message transmission server application 105' running on the cloud- based server 103 may determine an elapsed time since a prior authorization of transmission of one or more messages 106 (e.g. comparing a current value of an internal system dock to a stored time-stamp associated with a prior transmission).
[0037] F!G. 5 illustrates an example embodiment where operation 304 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 502, 504 and/or 506.
[0038] Operation 502 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a serial number of at least one computing device. For example, as shown in FSGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on their respective device performance characteristics, bandwidth usage, usage histories, etc. (e.g. transmissions of messages 106 to a target computing device 101 ' having a first serial number may occur on a different time scale than transmission of messages 106 to a target computing device 101 ' having a second serial number). In one embodiment, the server data store 109 may maintain a device !D database 1 12. The device ID database 112 may include one or more serial numbers assigned to target computing devices 101 '. One or more serial numbers assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105" may query the target computing device 101 ' for its serial number, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 " according to the mapping between the serial number for that target computing device 101 ' in the device ID database 1 12 and the threshold transmission interval 108.
[0039] Operation 504 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a model identifier of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for groups of target computing devices 101 ' based on their respective device performance characteristics, bandwidth usage (e.g. transmissions of messages 106 to target computing device 101 ' models having a multi-core processor may occur on a different time scale than transmission of messages 108 to target computing device 101 ' models having a single-core processor). For example, the device ID database 112 may include one or more model identifiers (e.g. a model identifier associate with a vendor of target computing devices 101 ' such as Apple, Sony®, Samsung®', Google®, HTC® and/or device-specific model identifiers) associated with the target computing devices 101 '. One or more model identifiers assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the target computing device 101 ' for its model identifier, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 " according to the mapping between the model identifier for that target computing device 101 ' in the device ID database 1 12 and the threshold transmission interval 108.
[0040] Operation 508 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a network address of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 " as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. it may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the network connectivity for various branches of network 102 (e.g. transmissions of messages 108 to target computing devices 101 ' in connected to a portion of the network 102 may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' on a wired portion of the network 102). For example, the device ID database 1 12 may include one or more network addresses (e.g. IP addresses for a LAN, WAN, the Internet, etc.) associated with the target computing devices 101 ' connected to network 102. One or more network addresses assigned to respective target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query the target computing device 101 ' for its network address or extract the destination network address from the message 108 itself, and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the network address for that target computing device 101 ' in the device ID database 112 and the threshold transmission interval 108.
[0041] FIG. 8 illustrates an example embodiment where operation 304 of example operational flow 300 of FIG. 3 may include at least one additional operation. Additional operations may include an operation 802.
[0042] Operation 602 illustrates comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 " as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. If may be the case that the message transmission server application 105' may discriminate between varying local environments and/or network connectivity parameters based on context data (e.g. location data, connection data, environmental data) associated with a given target computing device 101 '. For example, reference context data 1 13 may be maintained in the server data store 109. The reference context data 1 13 may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include one or more context sensors 1 14. Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query one or more of the context sensors 1 14 of the target computing device 101 ' to obtain context data associated with the target computing device 101 '. Upon receipt of the context data from the context sensors 1 14, the appropriate threshold transmission interval 108 for that target computing device 101 ' may be determined according to the mapping between the reference context data 1 13 corresponding to the context data received from the context sensors 1 14 and the threshold transmission interval 108.
[0043] FIG. 6 further illustrates an example embodiment where operation 802 of example operational flow 300 of F!G. 6 may include at least one additional operation. Additional operations may include an operation 804, 608 and/or 808.
[0044] Operation 604 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a geographical identifier of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 108 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the respective geographic locations of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' in a first geographic location may occur on a different time scale than transmission of messages 108 to target computing devices 101 ' in a second geographic location). For example, the reference context data 1 13 may include one or more geographic locations associated with target computing devices 101 ' connected to network 102, One or more geographic locations may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include a global positioning system sensor 1 15. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the global positioning system sensor 1 15 of the target computing device 101 ' for the geographic location of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the geographic location of that target computing device 101 ' as determined by the global positioning system sensor 1 15 in the reference context data 1 13 and the threshold transmission interval 108.
[0045] Operation 806 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a power indicator of at least one computing device. For example, as shown in F!Gs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 " as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the performance characteristics, system status, remaining battery life etc. (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of remaining battery life may occur on a time scale shorter than transmission of messages 106 to target computing devices 101 ' having a low level of remaining battery life). For example, the reference context data 1 13 may include one or more power level ranges associated with target computing devices 101 ' connected to network 102. One or more power level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include a power level sensor 1 16. Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query the power level sensor 116 of the target computing device 101 ' for its current power level and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the power level ranges in the reference context data 1 13 and the threshold transmission interval 108.
[0048] Operation 808 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an inertia! signal of at least one computing device. For example, as shown in F!Gs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on a usage profile of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of device usage may occur on a time scale shorter than transmission of messages 108 to target computing devices 101 ' having a low level of usage). For example, the reference context data 1 13 may include one or more usage level ranges associated with target computing devices 101 ' connected to network 102. One or more usage level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include an inertia! sensor 1 17 configured to detect motion of the target computing device 101 ' indicative of use of the target computing device 101 ', Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query the inertia! sensor 1 17 of the target computing device 101 ' for an indication of usage of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the usage level ranges in the reference context data 1 13 and the threshold transmission interval 108,
[0047] FIG. 7 illustrates an example embodiment where operation 802 of example operational flow 300 of FIG. 6 may include at least one additional operation. Additional operations may include an operation 702 and/or 704.
[0Q48] Operation 702 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an imaging signal of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109, It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on the respective environment or geographic locations of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' in a first environment or location (e.g. an office during the daytime) may occur on a different time scale than transmission of messages 108 to target computing devices 101 ' in a second environment or location (e.g. a home at during the night)). For example, the reference context data 113 may include one or more environments associated with target computing devices 101 ' connected to network 102. One or more environments may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include a image capture sensor 1 18. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the image capture sensor 1 18 of the target computing device 101 ' to obtain an image of the current environment of the target computing device 101 '. The image of the environment may be analyzed (e.g. by image recognition software running on the cloud-based server 103) to determine the current environment so as to obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the current environment of that target computing device 101 ' (as determined by the image capture sensor 1 18 and/or image recognition software) in the reference context data 1 13 and the threshold transmission interval 108.
[0049] Operation 704 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a user-input'output of at least one computing device. For example, as shown in F!Gs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between multiple target computing devices 101 ' and maintain distinct threshold transmission intervals for each target computing device 101 ' or groups of target computing devices 101 ' based on a usage profile of the target computing devices 101 ' (e.g. transmissions of messages 106 to target computing devices 101 ' having a high level of device usage may occur on a time scale shorter than transmission of messages 106 to target computing devices 101 ' having a low level of usage). For example, the reference context data 1 13 may include one or more usage level ranges associated with target computing devices 101 ' connected to network 102. One or more usage level ranges associated with target computing devices 101 ' may be mapped to at least one threshold transmission interval 108 in the server data store 109. A target computing device 101 ' may include a user input/output device 1 19 (e.g. a touchscreen, a keypad, a display, a microphone, a speaker, etc.) configured to receive/provide user input/output of the target computing device 101 '. Such user input/output may be indicative of use of the target computing device 101 '. Upon enqueuing of a message 108 intended for a given target computing device 101 ', the message transmission server application 105' may query the target computing device 101 ' for an indication of a number of user inputs/outputs having occurred via the user input/output device 1 19 of the target computing device 101 ' and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the usage level ranges in the reference context data 1 13 and the threshold transmission interval 108.
[0050] FIG. 8 illustrates an example embodiment where operation 802 of example operational flow 300 of FIG. 6 may include at least one additional operation. Additional operations may include an operation 802, 804 and/or 808.
[0051] Operation 802 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a signal strength of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server appiication 105' may compare that elapsed time since the prior authorization of the transmission of a message 108 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 106 to target computing devices 101 ' via a network 102 connection having a first signal strength may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' via a network 102 connection having a second signal strength). For example, the reference context data 1 13 may include one or more signal strength ranges associated with communications signal strengths for target computing devices 101 ' connected to network 102. One or more signal strength ranges may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the signal strength between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the signal strength ranges of the reference context data 1 13 and the threshold transmission interval 108.
[0052] Operation 804 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a bandwidth of at least one computing device. For example, as shown in FIGs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 108 to target computing devices 101 ' via a network 102 connection having a first bandwidth may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' via a network 102 connection having a second bandwidth). For example, the reference context data 1 13 may include one or more bandwidth ranges associated with communications bandwidths for target computing devices 101 ' connected to network 102. One or more bandwidth ranges may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the bandwidth between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between the bandwidth ranges of the reference context data 1 13 and the threshold transmission interval 108.
[0Q53] Operation 806 illustrates comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a connection type of at least one computing device. For example, as shown in F!Gs. 1 -2, upon the computation of an elapsed time since a prior authorization of a transmission to a target computing device 101 ' as described with respect to operation 302, the message transmission server application 105' may compare that elapsed time since the prior authorization of the transmission of a message 106 to a threshold transmission interval 108 associated with the target computing device 101 ' and maintained by the server data store 109 of the server data store 109. It may be the case that the message transmission server application 105' may discriminate between target computing devices 101 ' having differing network connectivity (e.g. transmissions of messages 106 to target computing devices 101 ' via a wired network 102 connection type may occur on a different time scale than transmission of messages 106 to target computing devices 101 ' having a wireless network 102 connection type). For example, the reference context data 1 13 may include one or more network connection types for target computing devices 101 ' connected to network 102. One or more network connection types may be mapped to at least one threshold transmission interval 108 in the server data store 109. Upon enqueuing of a message 106 intended for a given target computing device 101 ', the message transmission server application 105' may query the network 102 and/or the target computing device 101 ' for the network connection type between the target computing device 101 ' and the network 102 and obtain the appropriate threshold transmission interval 108 for that target computing device 101 ' according to the mapping between a network connection type of the reference context data 1 13 and the threshold transmission interval 108. [0054] Those having skill in the art will recognize thai the state of the art has progressed to the point where there is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware an d software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an imp!ementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
[0055] The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalent^ implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
[0056] In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of "electrical circuitry." Consequently, as used herein "electrical circuitry" includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof,
[0Q57] Those having skill in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
[0058] The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected", or "operably coupled", to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable", to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateab!e and/or physically interacting components and/or wireiessly inferactabie and/or wirelessiy interacting components and/or logically interacting and/or logically inferactabie components.
[0Q59] It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," etc.). If will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should typically be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations.
[0060] In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., " a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
[0061] In those instances where a convention analogous to "at least one of A, B, or C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., " a system having at least one of A, B, or C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "ΕΓ or "A and B."
[0062] While particular aspects of the present subject matter described herein have been shown and described, if will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims.

Claims

CLAIMS What is claimed is:
1. A method comprising:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device:
comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
2. The method of claim 1 , wherein the cloud-based architecture comprises:
a cloud-based server in communication with at least one message generating computing device and at least one target device via a communications network.
3. The method of claim 1 , wherein the detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission.
4. The method of claim 3, wherein the detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a threshold number of transmissions.
5. The method of claim 1 , wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a serial number of at least one computing device,
6. The method of claim 1. wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a model identifier of at least one computing device,
7. The method of claim 1. wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a network address of at least one computing device,
8. The method of claim 1 , wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device.
9. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a geographical identifier of at least one computing device.
10. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a power indicator of at least one computing device.
1 1. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an Inertia! signal of at least one computing device.
12. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an imaging signal of at least one computing device.
13. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a user-input/output of at least one computing device.
14. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a signal strength of at least one computing device.
15. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a bandwidth of at least one computing device,
16. The method of claim 8, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a connection type of at least one computing device.
17. A system comprising:
at least one target device configured for receiving data transmitted from a cloud- based server device; and
a cloud-based server device configured for:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device; comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and
authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
18. The system of claim 17, wherein the detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission.
19. The system of claim 17, wherein the detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a threshold number of transmissions.
20. The system of claim 17, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a serial number of at least one computing device.
21. The system of claim 17, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a model identifier of at least one computing device.
22. The system of claim 17, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a network address of at least one computing device,
23. The method of claim 17, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device.
24. The system of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a geographical identifier of at least one computing device.
25. The system of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a power indicator of at least one computing device.
28. The system of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an inertia! signal of at least one computing device,
27. The system of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an imaging signal of at least one computing device,
28. The system of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a user-input/output of at least one computing device,
29. The method of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a signal strength of at least one computing device,
30. The method of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a bandwidth of at least one computing device,
31. The method of claim 23, wherein the comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a connection type of at least one computing device,
32. A system comprising:
means for detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device;
means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and means for authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
33. The system of claim 32, wherein the means for detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes: means for delecting, at least in part via a cioud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a transmission,
34, The system of claim 32, wherein the means for defecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device includes:
means for detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device in response to an enqueuing of a threshold number of transmissions.
35, The system of claim 32, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a serial number of at least one computing device.
38, The system of claim 32, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a model identifier of at least one computing device.
37, The system of claim 32, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes: means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a network address of at least one computing device.
38. The method of claim 32, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device.
39. The system of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a geographical identifier of at least one computing device.
40. The system of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a power indicator of at least one computing device.
41. The system of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an inertia! signal of at least one computing device.
42. The system of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with an imaging signal of at least one computing device.
43. The system of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a user-input/output of at least one computing device.
44. The method of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes: means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a signal strength of at least one computing device.
45. The method of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a bandwidth of at least one computing device.
48. The method of claim 38, wherein the means for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with context data associated with a target device includes:
means for comparing, at least in part via a cloud architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a connection type of at least one computing device.
47. A system comprising:
circuitry for detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device;
circuitry for comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and
circuitry for authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
48. A computer-readable medium including computer-readable instructions for execution of a method on a computing device, the method comprising:
detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device;
comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
PCT/US2013/070276 2012-11-15 2013-11-15 Control of transmission to a target device with a cloud-based architecture WO2014078644A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13854491.1A EP2920944A4 (en) 2012-11-15 2013-11-15 Control of transmission to a target device with a cloud-based architecture

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US13/678,082 2012-11-15
US13/678,010 2012-11-15
US13/678,082 US20130298199A1 (en) 2012-05-02 2012-11-15 Control of Transmission to a Target Device with a Cloud-Based Architecture
US13/678,010 US10250638B2 (en) 2012-05-02 2012-11-15 Control of transmission to a target device with a cloud-based architecture
US13/707,261 2012-12-06
US13/707,261 US9148331B2 (en) 2012-05-02 2012-12-06 Control of transmission to a target device with a cloud-based architecture
US13/729,802 US20130297725A1 (en) 2012-05-02 2012-12-28 Control of Transmission to a Target Device with a Cloud-Based Architecture
US13/729,802 2012-12-28

Publications (2)

Publication Number Publication Date
WO2014078644A2 true WO2014078644A2 (en) 2014-05-22
WO2014078644A3 WO2014078644A3 (en) 2014-11-20

Family

ID=50731828

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/070319 WO2014078662A2 (en) 2012-11-15 2013-11-15 Control of transmission to a target device with a cloud-based architecture
PCT/US2013/070276 WO2014078644A2 (en) 2012-11-15 2013-11-15 Control of transmission to a target device with a cloud-based architecture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/070319 WO2014078662A2 (en) 2012-11-15 2013-11-15 Control of transmission to a target device with a cloud-based architecture

Country Status (3)

Country Link
EP (2) EP2920944A4 (en)
DE (2) DE202013012254U1 (en)
WO (2) WO2014078662A2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233933B2 (en) * 2001-06-28 2007-06-19 Microsoft Corporation Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability
US20050255833A1 (en) * 2004-05-13 2005-11-17 Mobile (R&D) Ltd. Message aggregation system and method for a mobile communication device
US7400578B2 (en) * 2004-12-16 2008-07-15 International Business Machines Corporation Method and system for throttling network transmissions using per-receiver bandwidth control at the application layer of the transmitting server
US7707276B2 (en) * 2005-07-28 2010-04-27 Cisco Technology, Inc. Remote configuration and management via electronic mail
WO2007113516A1 (en) * 2006-03-30 2007-10-11 British Telecommunications Public Limited Company Routing communications to devices with likely presence of user
US8763071B2 (en) * 2008-07-24 2014-06-24 Zscaler, Inc. Systems and methods for mobile application security classification and enforcement
US8281027B2 (en) * 2008-09-19 2012-10-02 Yahoo! Inc. System and method for distributing media related to a location
US9357024B2 (en) * 2010-08-05 2016-05-31 Qualcomm Incorporated Communication management utilizing destination device user presence probability
US8417823B2 (en) * 2010-11-22 2013-04-09 Seven Network, Inc. Aligning data transfer to optimize connections established for transmission over a wireless network
US20140025747A1 (en) * 2011-04-01 2014-01-23 San Diego State University Research Foundation Electronic devices, systems and methods for data exchange
JP5834150B2 (en) * 2012-02-07 2015-12-16 アップル インコーポレイテッド Network-assisted fraud detection apparatus and method
US8874671B2 (en) * 2012-02-10 2014-10-28 Blackberry Limited Electronic message metering and traffic management in a networked environment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2920944A4 *

Also Published As

Publication number Publication date
WO2014078662A3 (en) 2014-07-17
EP2920707A2 (en) 2015-09-23
DE202013012283U1 (en) 2016-01-13
EP2920707A4 (en) 2016-06-22
DE202013012254U1 (en) 2015-11-11
WO2014078644A3 (en) 2014-11-20
EP2920944A4 (en) 2016-06-15
EP2920944A2 (en) 2015-09-23
WO2014078662A2 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US10250638B2 (en) Control of transmission to a target device with a cloud-based architecture
US9733695B2 (en) Battery life management in portable terminal
US9699625B2 (en) Push notification middleware
US10771533B2 (en) Adaptive communication control device
US11095717B2 (en) Minimizing data loss in a computer storage environment with non-guaranteed continuous network connectivity
US10437581B1 (en) Internet of things platform for handling firmware transfer on machine-to-machine devices
US10171291B2 (en) Tenant-specific log for events related to a cloud-based service
US9769012B2 (en) Notification normalization
JP6788501B2 (en) Methods, systems, and computer programs for collecting usage data to determine user availability on multiple communication devices.
CA2923896C (en) Email webclient notification queuing
JP2014534485A (en) Network communication and cost awareness
US10425475B2 (en) Distributed data management
CN111434130B (en) Backup of emergency call services using device user plane communications
US9942116B2 (en) Interconnecting electronic devices for reporting device status
US20150358388A1 (en) Network-specific data downloading to a mobile device
US20160094937A1 (en) Local Peer-to-Peer Network for Providing Recommendations and Enforcing Security Policies
US9148331B2 (en) Control of transmission to a target device with a cloud-based architecture
US9164810B2 (en) Allocating an application computation between a first and a second information handling system based on user's context, device battery state, and computational capabilities
US20130297725A1 (en) Control of Transmission to a Target Device with a Cloud-Based Architecture
WO2014078644A2 (en) Control of transmission to a target device with a cloud-based architecture
US10863526B2 (en) System and method for prioritizing data traffic
CN104978214B (en) A kind of component loading method, device and terminal
US10623430B2 (en) Risk area determination in communication network
KR102653510B1 (en) Method and electronic device for providing a push noitification
US11928079B1 (en) Intelligently associating a file with an application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854491

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013854491

Country of ref document: EP