WO2014069239A1 - Power feeding device and wireless power feeding system - Google Patents

Power feeding device and wireless power feeding system Download PDF

Info

Publication number
WO2014069239A1
WO2014069239A1 PCT/JP2013/078130 JP2013078130W WO2014069239A1 WO 2014069239 A1 WO2014069239 A1 WO 2014069239A1 JP 2013078130 W JP2013078130 W JP 2013078130W WO 2014069239 A1 WO2014069239 A1 WO 2014069239A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power feeding
series
feeding
coil
Prior art date
Application number
PCT/JP2013/078130
Other languages
French (fr)
Japanese (ja)
Inventor
義久 天野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014069239A1 publication Critical patent/WO2014069239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention relates to a power supply apparatus that performs wireless power supply and a wireless power supply system having the same.
  • FIG. 8 schematically shows a set of a charger 811 and an electric device 812 as an example of a device to which the wireless power feeding system is applied.
  • 8A shows a perspective view of a state where the charger 811 and the electric device 812 are separated from each other
  • FIG. 8B shows a side view of the state where the electric device 812 is placed on the charger 811.
  • a cross-sectional view is shown.
  • the charger 811 includes a power feeding device (wireless power feeding device)
  • the electric device 812 includes a power receiving device (wireless power receiving device).
  • FIG. 8B more specifically shows a state where the charger 811 is placed on the desk and the electric device 812 is placed on the charger 811.
  • the electric device 812 it is only necessary to place the electric device 812 on the charger 811 as shown in FIG. Even if the cable connection is not performed simply by placing the cable in this way, electric power of a maximum of 5 W is wirelessly transmitted from the power feeding device to the power receiving device, and the electric device 812 can be charged.
  • Qi wireless power supply compatible devices
  • WPC Wireless Power Consortium
  • FIG. 1 An example of the internal circuit configuration of the wireless power supply system is shown in FIG.
  • the part of the power feeding device 611 quotes Figure 3-8 almost as it is, and the part of the power receiving device 612 quotes Figure 4-3 almost as it is.
  • the power of the DC power source 601 is converted into AC power by the inverter circuit 614 and supplied to the power feeding coil L611. Accordingly, electromagnetic induction occurs in the power feeding coil L611 and the power receiving coil L612, and AC power is wirelessly transmitted from the power feeding device 611 to the power receiving device 612.
  • resonant capacitors C611, C612 are inserted before and after these coils.
  • AC power received by the power receiving coil L 612 is returned to DC power by the rectifier circuit 617 and output from the output terminal 602.
  • the output power is used on the device side provided with the power receiving device 612.
  • the power supply device 611 is provided with a control circuit 613 for controlling the inverter circuit 614.
  • the control circuit 613 controls On / Off switching of each switch element (S1 to S4) in the inverter circuit 614 so that power conversion is appropriately performed.
  • the signal receiving circuit 615 is connected to the power feeding coil L611 via the capacitor C613.
  • a load modulation circuit 616 is connected to the power receiving coil L612. Thereby, communication is possible between the power feeding device 611 and the power receiving device 612.
  • FIG. 7 shows an example of the coil L600 used as the power feeding coil L611 and the power receiving coil L612, and the surrounding structure.
  • a coil L600 shown in FIG. 7 is an Al coil disclosed in section 3.2.1.1.1 of Non-Patent Document 1, and is the most common coil at present.
  • the coil L ⁇ b> 600 is a circular coil formed by winding a copper wire, and is attached to the surface of the magnetic plate 704. Further, both ends of the coil L600 are connected to wiring patterns (P711, P712) provided on the circuit board 703 by soldering.
  • ICNIRP International Commission on Non-Ionizing Radiation Protection
  • the charging base for mobile phones already on the market is a low-power device of about 5W, but if power supply technology starts to be adopted in general household appliances such as PCs, TVs, refrigerators, vacuum cleaners, washing machines, etc., 10W Increasing the output to ⁇ 100 W is inevitable, and along with this, suppression technology for unwanted magnetic field radiation becomes an important issue.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a power feeding device that can suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high output wireless power feeding system, and a wireless power feeding system having the power feeding device To do.
  • the power supply apparatus has N power supply coils from the first series to the Nth series (N is an integer of 2 or more), and has N power reception coils from the first series to the Nth series.
  • N is an integer of 2 or more
  • a power feeding device that performs wireless power feeding, in which an alternating current is passed through each of the N power feeding coils, and electromagnetic induction is generated by the power feeding coil and the power receiving coil in each series.
  • Each of the N power supply coils is disposed on substantially the same plane, and the alternating current directions between the adjacent power supply coils are always opposite to each other.
  • This configuration makes it possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system.
  • a wireless power feeding system includes the power feeding device having the above-described configuration and a power receiving device having N power receiving coils from the first series to the Nth series, and the power receiving apparatus and the power feeding device are positioned.
  • the N power receiving coils are arranged on substantially the same plane so as to face the power supply coils of the same series in the positioned state.
  • the configuration is as follows.
  • the power supply device includes N inverter circuits from the first series to the Nth series, and a control circuit that controls the operation of each of the N inverter circuits.
  • Each of the N inverter circuits is configured to convert DC power into AC power and send the AC power to the power supply coil of the same series.
  • a load modulation circuit that transmits a radio signal by load modulation is provided in the power receiving apparatus, and a signal reception circuit that receives the radio signal is provided in the power supply apparatus, and communicates between the load modulation circuit and the signal reception circuit.
  • the number of the load modulation circuits and the number of the signal reception circuits may be set to one each.
  • a predetermined power feeding start condition is satisfied using the communication at the time of standby when the wireless power feeding is not performed.
  • K is any one of 1 to N
  • the load modulation circuit is connected to the power receiving coil of the Kth series
  • the control circuit is connected to the power supply coil in the standby state. While the K-series inverter circuits are driven, the remaining N ⁇ 1 inverter circuits are stopped, and when the power supply start condition is satisfied, all the N inverter circuits may be driven. .
  • the power feeding device of the present invention it is possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system. Moreover, according to the wireless power feeding system according to the present invention, it is possible to enjoy the advantages of the power feeding device according to the present invention.
  • FIG. 1 is a configuration diagram of a wireless power feeding system according to a first embodiment. It is explanatory drawing regarding the structure of the feeding coil vicinity which concerns on 1st Embodiment. It is explanatory drawing regarding the principle by which unnecessary electromagnetic field radiation is suppressed. It is a block diagram of the wireless electric power feeding system which concerns on 2nd Embodiment. It is explanatory drawing regarding the structure of the feeding coil vicinity which concerns on 2nd Embodiment. It is a block diagram regarding the wireless power feeding system of a prior art example. It is explanatory drawing regarding the structure of the coil of a prior art example. It is explanatory drawing regarding the apparatus with which the wireless electric power feeding system was applied.
  • FIG. 1 is a configuration diagram of a wireless power feeding system 1 according to the first embodiment.
  • the wireless power feeding system 1 includes a power feeding device 111 (wireless power feeding device) and a power receiving device 112 (wireless power receiving device).
  • the wireless power supply system 1 is configured to conform to the Qi standard.
  • the power supply device 111 includes a DC power supply unit 101, the control circuit 113, the inverter circuits (114 a, 114 b), the signal receiving circuit 115, the capacitors (C1 a, C1 b, C3 ), and the feeding coil (L1 a, L1 b ).
  • the wireless power feeding system 1 has first and second power transmission mechanisms as shown in FIG. 1 as a mechanism for performing wireless power transmission from the power feeding device 111 to the power receiving device 112.
  • first series of power transmission mechanisms may be simply referred to as “first series”
  • second series of power transmission mechanisms may be simply referred to as “second series”.
  • the first series, the control circuit 113, the inverter circuit 114 a, a signal receiving circuit 115, a load modulation circuit 116, the capacitors (C1 a, C2 a, C3 ), the feeding coil L1 a, the power receiving coil L2 a, and a rectifier circuit 127 a is included.
  • the second series includes an inverter circuit 114 b , capacitors (C 1 b , C 2 b ), a feeding coil L 1 b , a receiving coil L 2 b , and a rectifier circuit 127 b .
  • the wireless power feeding system 1 has a configuration in which a first power transmission mechanism and a second power transmission mechanism are provided in parallel between the DC power supply unit 101 and the output terminal 102. .
  • the wireless power feeding system 1 is configured so that the power feeding device 111 and the power receiving device 112 are appropriately positioned (so that the power feeding coil and the power receiving coil of each series face each other).
  • the wireless power supply is possible (configuration shown in FIG. 1).
  • the wireless power feeding system 1 performs wireless power feeding, positioning is performed in this manner in advance, and wireless power feeding proceeds while maintaining the positioned state.
  • the DC power supply unit 101 is configured by, for example, a battery or an AC adapter connected to a commercial power supply, and functions as a DC power supply.
  • the DC power supply unit 101 supplies DC power to each inverter circuit (114 a , 114 b ).
  • the inverter circuit 114 a is a full-bridge inverter circuit having a plurality of switch elements (S1 a to S4 a ), and the inverter circuit 114 b is a full circuit having a plurality of switch elements (S1 b to S4 b ).
  • This is an inverter circuit having a bridge structure.
  • one end of the switch elements S1 a and S3 a is connected to the DC power supply unit 101, one end of the switching element S2 a and S4 a is grounded.
  • the other end of the switch element S1 a together with the leads directly to the other end of the switch element S2 a, is connected to one end of the feeding coil L1 a via capacitor C1 a.
  • the other end of the switch element S3 a is connected to the other ends and feeding coil L1 a switching element S4 a.
  • one end of the switch elements S1 b and S3 b is connected to the DC power supply unit 101, and one end of the switch elements S2 b and S4 b is grounded.
  • the other end of the switch element S1 b together with the leads directly to the other end of the switch element S2 b, is connected to one end of the feeding coil L1 b via the capacitor C1 b.
  • the other end of the switch element S3 b is connected to the other ends and feeding coil L1 b of the switching element S4 b.
  • Each inverter circuit (114 a , 114 b ) has the above-described configuration, and converts DC power supplied from the DC power supply unit 101 into AC power by switching each switch element on and off.
  • the inverter circuit 114 a sends a AC power generated by the conversion to the feeding coil L1 a
  • inverter circuit 114 b sends the AC power generated by the conversion to the feeding coil L1 b.
  • each switch element in each inverter circuit (114 a , 114 b ) is controlled by the control circuit 113. That control circuit 113, as the inverter circuits (114 a, 114 b) to work properly, generating and outputting the control signals (G1 ⁇ G4) for performing an on / off switch to the switching elements To do. For example, when each switch element is an FET, the control circuit 113 generates a pulse signal in which H level and L level appear alternately as each control signal (G1 to G4), and outputs it to the gate of each FET.
  • the control circuit 113 is connected to the switch elements S1 a and S1 b via the same wiring, and outputs a control signal G1 to these switch elements via the wiring.
  • the control circuit 113 is connected via the same wiring to the switch element S2 a and S2 b, and outputs a control signal G2 via the wiring for these switch elements.
  • the control circuit 113 is connected via the same wiring to the switching element S3 a and S3 b, and outputs a control signal G3 through the wiring for these switch elements.
  • the control circuit 113 is connected via the same wiring to the switch element S4 a and S4 b, and outputs a control signal G4 via the wiring for the switch elements.
  • the pair of switch elements S1 a and S1 b , the pair of switch elements S2 a and S2 b , the pair of switch elements S3 a and S3 b , and the pair of switch elements S4 a and S4 b operate in synchronization with each other. Will do. Therefore the inverter circuits (114 a, 114 b) will output the AC power of the same phase in synchronization with each other.
  • the signal receiving circuit 115 is connected to the feeding coil L1 a via the capacitor C3, and receives the radio signal Sr from the power receiving device 112 side (load modulation circuit 116). Note that as the driving power of the signal receiving circuit 115, a part of the transmission power in the first series is used, but other forms may be used.
  • One end of the power receiving coil L2 a via capacitor C2 a is connected to one input terminal of the rectifier circuit 127 a.
  • the other end of the power receiving coil L2 a is connected to the other input ends of the rectifier circuit 127 a.
  • One end of the power receiving coil L2 b via the capacitor C2 b is connected to one input terminal of the rectifier circuit 127 b.
  • the other end of the power receiving coil L2 b is connected to the other input ends of the rectifier circuit 127 b.
  • Each capacitor (C1 a , C1 b , C2 a , C2 b ) is a resonant capacitor inserted before and after the power feeding / receiving coil in order to improve performance.
  • the load modulation circuit 116 is connected to the power receiving coil L2 a through capacitor C2 a, it transmits a radio signal Sr due to load modulation. Note that as the driving power of the load modulation circuit 116, a part of the transmission power in the first series is used, but other forms may be used.
  • the radio signal Sr is received by the signal receiving circuit 115 on the power feeding apparatus 111 side. Accordingly, communication related to wireless power feeding between the power feeding device 111 and the power receiving device 112 is possible. Since the configuration of the signal receiving circuit 115 and the load modulation circuit 116 and the specific form of the communication are well known, detailed description is omitted here.
  • the rectifier circuit 127 a converts AC power sent from the power receiving coil L ⁇ b > 2 a into DC power, and sends the DC power to the output terminal 102.
  • the rectifier circuit 127 b converts the AC power sent from the power receiving coil L ⁇ b > 2 b into DC power, and sends the DC power to the output terminal 102.
  • the output terminal 102 is connected to the secondary battery in an electrical equipment having a power receiving device 112 (not shown), and outputs the synthesized power received from each rectifier circuit (127 a, 127 b).
  • the DC power sent from each rectifier circuit (127 a , 127 b ) is supplied to the secondary battery via the single output terminal 102, and is used as drive power for the electric device or the like.
  • the output power from the output terminal 102 is supplied to the secondary battery, but the supply destination of the output power is not limited to such a form.
  • FIG. 2 illustrates a structure (mounting form) in the vicinity of each power supply coil (L1 a , L1 b ) in the power supply apparatus 111.
  • Each of the feeding coils (L1 a , L1 b ) is a circular coil formed by winding a copper wire in the same direction, and is attached to the surface of the magnetic plate 304 so as to be substantially adjacent on the same plane. Closely arranged. Further, both ends of each of the power feeding coils (L1 a , L1 b ) are soldered and connected to wiring patterns (P311, P312, P321, P322) provided on the circuit board 303.
  • Wiring patterns P311 leads between the switch element S3 a and S4 a, the wiring pattern P312 is connected to one end of the capacitor C1 a.
  • Wiring patterns P321 leads to one end of the capacitor C1 b, the wiring pattern P322 is connected between the switching element S3 b and S4 b.
  • the three wiring patterns (P311, P312 and P321) are arranged on the front surface side of the circuit board 303, while the remaining wiring patterns P322 are arranged on the back surface side of the circuit board 303 so as to cross three-dimensionally with the wiring pattern P321.
  • the reason for adopting such a three-dimensional intersection is that the alternating currents flowing in the respective feeding coils (L1 a , L1 b ) are in opposite directions (the significance of the reverse directions will be clarified in the following description). ).
  • Each power receiving coil (L2 a , L2 b ) is arranged on substantially the same plane so as to face the same series of power feeding coils in a state where the power receiving device 112 and the power feeding device 111 are positioned as described above.
  • the power receiving device 112 and the power supply device 111 is positioned, when the power feeding is performed in the wireless power supply system 1, the control circuit 113, the inverter circuits (114 a, 114 b) are the control signals so as to drive (G1 ⁇ G4) Is output.
  • the power receiving coil generates an electromotive force by an alternating magnetic field generated by the feeding coil (that is, by electromagnetic induction), and generates alternating current power. That is, electric power is transmitted from the feeding coil to the receiving coil by mutual induction magnetic field coupling. In this manner, wireless power feeding from the power feeding device 111 to the power receiving device 112 is realized.
  • the wireless power feeding system 1 of the present embodiment has a feature that it is inexpensive and easy to obtain a high output (hereinafter referred to as “first feature”) and a feature that unnecessary magnetic field radiation can be suppressed (hereinafter referred to as “first”). 2 features ”). Hereinafter, these features will be specifically described.
  • the wireless power feeding system 1 has a plurality of power transmission mechanisms of the first series and the second series in parallel, and the power receiving apparatus 112 combines the power transmitted by these power transmission mechanisms to output terminals. 102 to output. Therefore, even if the power transmission amount in each power transmission mechanism is small, it is possible to easily obtain a high output by combining the transmitted power. For example, when an equivalent power transmission mechanism is applied to each series, it is basically possible to obtain N times the output by providing N series.
  • the wireless power feeding system 1 compared with a case where only one power transmission mechanism is provided, a power transmission amount required for each power transmission mechanism is small. Therefore, it is possible to use inexpensive parts with low power durability performance as parts constituting each of the power transmission mechanisms, and the manufacturing cost of the wireless power feeding system 1 can be suppressed.
  • control circuit 113 the signal reception circuit 115, and the load modulation circuit 116 are provided only in the first series for cost reduction and synchronization control, and are not provided in the second series. . Therefore, the number of parts can be reduced and the configuration can be simplified as compared with the case where these circuits (113, 115, 116) are also provided in the second series.
  • this embodiment is not a form in which a plurality of wireless power supply systems illustrated in FIG. 6 are simply bundled, and the manufacturing cost can be further reduced by omitting overlapping circuit components.
  • the wireless power feeding system 1 has the first feature.
  • the waveform of the alternating current flowing in the feeding coil L1 a and the waveform of the alternating current flowing in the feeding coil L1 b are synchronized and opposite in phase. It becomes the relationship. It should be noted that in the portions (proximity portion CS shown in FIG. 2) where the respective feeding coils (L1 a , L1 b ) are close to each other, the directions of the alternating currents of the respective feeding coils (L1 a , L1 b ) are always substantially the same direction. It becomes.
  • the directions of the alternating currents between the adjacent feeding coils are always opposite to each other. Therefore, the feeding coil is based on the same principle as the invention of the prior application (Japanese Patent Application No. 2012-121741) by the present applicant. And unnecessary magnetic field radiation (unnecessary electromagnetic field radiation) leaking from the receiving coil (power supply / receiving coil) to the surroundings is suppressed.
  • the first power feeding / receiving coil (L1 a , L2 a ) and the second power feeding / receiving coil (L1 b , L2 b ) absorb each other's magnetic field lines so that the magnetic field lines are compactly folded. It is suppressed from spreading far away.
  • FIG. 3 schematically shows the positional relationship among the power receiving coils (L2 a , L2 b ), the current Ia flowing through the power feeding coil L1 a , and the current Ib flowing through the power feeding coil L1 b .
  • the strength of the low frequency magnetic field attenuates in inverse proportion to the square of the distance. For example, at the point A in the vicinity of the power receiving coil, the distance from the current Ia and the distance from the current Ib are significantly unbalanced. Therefore, at point A, the magnetic field strength is determined only by the current Ia that is substantially closer, so that strong magnetic field coupling occurs.
  • the wireless power feeding system 1 has the second feature.
  • the direction of the alternating current between adjacent feeding coils in the present invention is preferably completely “always opposite to each other”, but an error within a range not departing from the main point of obtaining the second feature (for example, There may be things that do not reverse each other for a very short time.
  • FIG. 4 is a configuration diagram of the wireless power feeding system 1 according to the second embodiment.
  • the wireless power feeding system 1 includes a power feeding device 111 (wireless power feeding device) and a power receiving device 112 (wireless power receiving device).
  • the wireless power supply system 1 is configured to conform to the Qi standard.
  • the power supply device 111 includes a DC power supply unit 101, the control circuit 113, the inverter circuits (114 a ⁇ 114 c), the signal receiving circuit 115, a switch circuit 123, the capacitors (C1 a ⁇ C1 c, C3 ), and the feeding coil (L1 a to L1 c ).
  • the power receiving device 112 includes an output terminal 102, a load modulation circuit 116, each rectifier circuit (127 a to 127 c ), each power receiving coil (L2 a to L2 c ), and each capacitor (C2 a to C2 c ). .
  • the wireless power feeding system 1 has first to third power transmission mechanisms as shown in FIG. 4 as a mechanism for performing wireless power transmission from the power feeding device 111 to the power receiving device 112.
  • first series power transmission mechanism is simply referred to as “first series”
  • second series power transmission mechanism is simply referred to as “second series”
  • third series power transmission mechanism is simply referred to as “third series”. May be called.
  • the first series, the control circuit 113, the inverter circuit 114 a, a signal receiving circuit 115, a load modulation circuit 116, the capacitors (C1 a, C2 a, C3 ), the feeding coil L1 a, the power receiving coil L2 a, and a rectifier circuit 127 a is included.
  • the second series includes an inverter circuit 114 b , capacitors (C 1 b , C 2 b ), a feeding coil L 1 b , a receiving coil L 2 b , and a rectifier circuit 127 b .
  • the third series includes an inverter circuit 114 c , capacitors (C1 c , C2 c ), a feeding coil L1 c , a receiving coil L2 c , and a rectifier circuit 127 c .
  • the wireless power feeding system 1 has a configuration in which the first to third power transmission mechanisms are provided in parallel between the DC power supply unit 101 and the output terminal 102.
  • the wireless power feeding system 1 is configured so that the power feeding device 111 and the power receiving device 112 are appropriately positioned (so that the power feeding coil and the power receiving coil of each series face each other).
  • the wireless power feeding is possible (configuration shown in FIG. 4).
  • the wireless power feeding system 1 performs wireless power feeding, positioning is performed in this manner in advance, and wireless power feeding proceeds while maintaining the positioned state.
  • the DC power supply unit 101 is configured by, for example, a battery or an AC adapter connected to a commercial power supply, and functions as a DC power supply.
  • the DC power supply unit 101 supplies DC power to each inverter circuit (114 a to 114 c ).
  • the inverter circuit 114 a is an inverter circuit of the full bridge structure having a plurality of switching elements (S1 a ⁇ S4 a).
  • the inverter circuit 114 b is a full-bridge inverter circuit having a plurality of switch elements (S1 b to S4 b ).
  • the inverter circuit 114 c is a full-bridge inverter circuit having a plurality of switch elements (S1 c to S4 c ).
  • one end of the switch elements S1 a and S3 a is connected to the DC power supply unit 101, one end of the switching element S2 a and S4 a is grounded.
  • the other end of the switch element S1 a together with the leads directly to the other end of the switch element S2 a, is connected to one end of the feeding coil L1 a via capacitor C1 a.
  • the other end of the switch element S3 a is connected to the other ends and feeding coil L1 a switching element S4 a.
  • one end of the switch elements S1 b and S3 b is connected to the DC power supply unit 101, and one end of the switch elements S2 b and S4 b is grounded.
  • the other end of the switch element S1 b together with the leads directly to the other end of the switch element S2 b, is connected to one end of the feeding coil L1 b via the capacitor C1 b.
  • the other end of the switch element S3 b is connected to the other ends and feeding coil L1 b of the switching element S4 b.
  • one end of the switch elements S1 c and S3 c is connected to the DC power supply unit 101, and one end of the switch elements S2 c and S4 c is grounded.
  • the other end of the switch element S1 c together with the leads directly to the other end of the switch element S2 c, is connected to one end of the feeding coil L1 c via the capacitor C1 c.
  • the other end of the switch element S3 c is connected to the other ends and feeding coil L1 c of the switching element S4 c.
  • Each inverter circuit (114 a to 114 c ) has the above-described configuration, and converts DC power supplied from the DC power supply unit 101 into AC power by switching each switch element on and off.
  • the inverter circuit 114 a sends the AC power generated by the conversion to the feeding coil L1 a
  • the inverter circuit 114 b sends the AC power generated by the conversion to the feeding coil L1 b
  • the inverter circuit 114 c Sends the AC power generated by the conversion to the feeding coil L1 c .
  • each switch element in each inverter circuit (114 a to 114 c ) is controlled by the control circuit 113. That control circuit 113, so that each inverter circuit (114 a ⁇ 114 c) to work properly, generating and outputting the control signals (G1 ⁇ G4) for performing an on / off switch to the switching elements To do.
  • the control circuit 113 when each switch element is an FET, the control circuit 113 generates a pulse signal in which H level and L level appear alternately as each control signal (G1 to G4), and outputs it to the gate of each FET.
  • the control circuit 113 is connected to the switch elements S1 a , S2 b , and S1 c via the same wiring, and outputs a control signal G1 to these switch elements via the wiring.
  • the control circuit 113 is connected to the switch elements S2 a , S1 b , and S2 c via the same wiring, and outputs a control signal G2 to these switch elements via the wiring.
  • the control circuit 113 is connected to the switch elements S3 a , S4 b , and S3 c via the same wiring, and outputs a control signal G3 to these switch elements via the wiring.
  • the control circuit 113 is connected to the switch elements S4 a , S3 b , and S4 c via the same wiring, and outputs a control signal G4 to these switch elements via the wiring.
  • the inverter circuit 114 a and the inverter circuit 114 c will output the AC power in-phase to each other. However inverter circuit 114 b will output the AC power of the reverse phase to the other inverter circuit (114 a, 114 c). The reason for this is that the direction of the alternating current flowing through the feeding coil L1 b is opposite to the alternating current flowing through the other feeding coils (L1 a , L1 c ).
  • the signal receiving circuit 115 is connected to the feeding coil L1 a via the capacitor C3, and receives the radio signal Sr from the power receiving device 112 side (load modulation circuit 116). Note that as the driving power of the signal receiving circuit 115, a part of the transmission power in the first series is used, but other forms may be used.
  • the switch circuit 123 has a function of switching conduction / cutoff of the wiring in the middle of the wiring for transmitting the control signals (G1 to G4).
  • the control signals (G1 ⁇ G4) is the inverter circuit 114 a of the first sequence is transmitted, a second series and a third series the inverter circuit (114 b, 114 c) are not transmitted.
  • One end of the power receiving coil L2 a via capacitor C2 a is connected to one input terminal of the rectifier circuit 127 a.
  • the other end of the power receiving coil L2 a is connected to the other input ends of the rectifier circuit 127 a.
  • One end of the power receiving coil L2 b via the capacitor C2 b is connected to one input terminal of the rectifier circuit 127 b.
  • the other end of the power receiving coil L2 b is connected to the other input ends of the rectifier circuit 127 b.
  • One end of the power receiving coil L2 c via the capacitor C2 c is connected to one input terminal of the rectifier circuit 127 c.
  • the other end of the power receiving coil L2 c is connected to the other input end of the rectifier circuit 127 c .
  • Each of the capacitors (C1 a to C1 c , C2 a to C2 c ) is a resonant capacitor inserted before and after the power feeding / receiving coil in order to improve performance
  • the load modulation circuit 116 is connected to the power receiving coil L2 a through capacitor C2 a, it transmits a radio signal Sr due to load modulation. Note that as the driving power of the load modulation circuit 116, a part of the transmission power in the first series is used, but other forms may be used. As described above, the radio signal Sr is received by the signal receiving circuit 115 on the power feeding apparatus 111 side. Accordingly, communication related to wireless power feeding between the power feeding device 111 and the power receiving device 112 is possible.
  • the rectifier circuit 127 a converts AC power sent from the power receiving coil L ⁇ b > 2 a into DC power, and sends the DC power to the output terminal 102.
  • the rectifier circuit 127 b converts the AC power sent from the power receiving coil L ⁇ b > 2 b into DC power, and sends the DC power to the output terminal 102.
  • the rectifier circuit 127 c converts the AC power sent from the power receiving coil L2 c into DC power, and sends the DC power to the output terminal 102.
  • the output terminal 102 is connected to the secondary battery in an electrical equipment having a power receiving device 112 (not shown), and outputs the synthesized power received from each rectifier circuit (127 a ⁇ 127 c).
  • the DC power sent from each of the rectifier circuits (127 a to 127 c ) is supplied to the secondary battery via the single output terminal 102, and is used as drive power for the electric device.
  • the output power from the output terminal 102 is supplied to the secondary battery, but the supply destination of the output power is not limited to such a form.
  • FIG. 5 illustrates a structure (mounting form) in the vicinity of each of the power supply coils (L1 a to L1 c ) in the power supply apparatus 111.
  • Each of the feeding coils (L1 a to L1 c ) is a circular coil formed by winding a copper wire in the same direction, and is disposed on substantially the same plane by being attached to the surface of the magnetic plate 504.
  • the feeding coils (L1 a to L1 c ) are arranged in the order of L1 a , L1 b , L1 c , the feeding coils L1 a and L1 b are close to each other and are close to each other, and the feeding coil L1 b L1 c are arranged to approach substantially as adjacent. Further, both ends of each of the power feeding coils (L1 a to L1 c ) are soldered and connected to wiring patterns (P511, P512, P521, P522, P531, and P532) provided on the circuit board 503.
  • Wiring patterns P511 leads between the switch element S3 a and S4 a, the wiring pattern P512 is connected to one end of the capacitor C1 a.
  • Wiring patterns P521 leads between the switch element S3 b and S4 b, the wiring pattern P522 is connected to one end of the capacitor C1 b.
  • Wiring patterns P531 leads between the switch element S3 c and S4 c, the wiring patterns P532 is connected to one end of the capacitor C1 c.
  • each wiring pattern (P511, P512, P521, P522, P531, P532) is arranged on the surface side of the circuit board 503. Unlike the case of the first embodiment, the three-dimensional intersection between the wiring patterns is not adopted.
  • Each of the power receiving coils (L2 a to L2 c ) is arranged on substantially the same plane so as to face the same series of power feeding coils in a state where the power receiving device 112 and the power feeding device 111 are positioned as described above.
  • the control circuit 113, the inverter circuits (114 a ⁇ 114 c) outputs the control signals (G1 ⁇ G4) to drive.
  • the power receiving coil generates an electromotive force by an AC magnetic field generated by the feeding coil (that is, by electromagnetic induction), and generates AC power. That is, electric power is transmitted from the feeding coil to the receiving coil by mutual induction magnetic field coupling. In this manner, wireless power feeding from the power feeding device 111 to the power receiving device 112 is realized.
  • the signal reception circuit 115 monitors whether or not a predetermined power supply start condition is satisfied using communication with the load modulation circuit 116.
  • the power supply start condition is a condition set in advance so as to be satisfied when preparation for power supply start is completed. For example, the power supply start condition is satisfied when a power receiving device (Qi standard) to be supplied is appropriately positioned and the power supply condition is determined based on the communication result.
  • the control circuit 113 sends the control signals (G1 ⁇ G4) for thus driving the inverter circuit 114 a.
  • the control signals (G1 ⁇ G4) is not sent to the inverter circuit of the second series and the third series (114 b, 114 c), these The inverter circuits (114 b and 114 c ) are stopped. That is, during standby, the power feeding device 111 drives the first series of inverter circuits 114 a while stopping the remaining two inverter circuits (114 b and 114 c ). As a result, the power feeding device 111 can eliminate unnecessary driving of the inverter circuit and suppress standby power as much as possible.
  • the power supply apparatus 111 shifts from the standby state to the normal operation state. In other words, the power feeding device 111 releases the cutoff state of the switch circuit 123 and drives all the inverter circuits (114 a to 114 c ) so that appropriate wireless power feeding to the power receiving device 112 is performed.
  • the wireless power feeding system 1 of the second embodiment also has the first feature that it is easy to obtain a high output at a low cost, and the second feature that unnecessary magnetic field radiation is suppressed, as in the case of the first embodiment. It has the features of
  • the feeding coil L1 b and the power supply coil L1 c are adjacent to each other. Therefore, in the second embodiment, the directions of the alternating currents in the feeding coil L1 a and the feeding coil L1 b are always opposite to each other, and the directions of the alternating currents in the feeding coil L1 b and the feeding coil L1 c are always mutually different. It is considered to be the reverse direction.
  • the waveform of the alternating current flowing in the feeding coil L1 a and the waveform of the alternating current flowing in the feeding coil L1 b are synchronized and opposite in phase. Furthermore, the waveform of the alternating current flowing through the feeding coil L1 b and the waveform of the alternating current flowing through the feeding coil L1 c are in a relationship of synchronization and antiphase with each other.
  • the second embodiment there are a plurality of pairs of adjacent feeding coils (here, two pairs of L1 a and L1 b and L1 b and L1 c ).
  • the directions of the alternating currents are always opposite to each other. Therefore, unnecessary magnetic field radiation can be suppressed as much as possible.
  • the power feeding device 111 of each embodiment has N power supply coils from the first series to the Nth series, and has N power receiving coils from the first series to the Nth series. Wireless power feeding is performed on the 112. More specifically, the power feeding device 111 performs the wireless power feeding by causing an alternating current to flow through each of the N power feeding coils and causing electromagnetic induction by the power feeding coil and the power receiving coil in each series.
  • each of the N power supply coils is arranged on substantially the same plane, and the directions of the alternating currents between adjacent power supply coils are always opposite to each other. Therefore, according to the power feeding device 111, it is possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system.
  • the wireless power feeding system 1 of each embodiment includes a power feeding device 111 and a power receiving device 112 having N power receiving coils from the first series to the Nth series, and the power receiving device 112 and the power feeding device 111 are positioned.
  • the wireless power supply is performed in a state where Each of the N power receiving coils is disposed on substantially the same plane so as to face the power supply coils of the same series in the positioned state.
  • the power feeding apparatus 111 includes N inverter circuits from the first series to the Nth series, and a control circuit 113 that controls the operation of each of the N inverter circuits.
  • Each of the inverter circuits is configured to convert DC power into AC power and send the AC power to the power supply coils of the same series.
  • the power receiving device 112 further includes N rectifier circuits from the first series to the Nth series and an output terminal 102, and each of the N rectifier circuits receives AC power received from the power receiving coil of the same series. It is configured to convert to DC power and send the DC power to the output terminal.
  • a load modulation circuit 116 that transmits a radio signal by load modulation is provided in the power receiving apparatus 112, and a signal reception circuit 115 that receives the radio signal is provided in the power supply apparatus 111. Communication is performed between the modulation circuit 116 and the signal reception circuit 115. Accordingly, information transmission regarding wireless power feeding can be performed between the power feeding apparatus 111 and the power receiving apparatus 112. Further, the number of the load modulation circuits 116 and the number of the signal reception circuits 115 are one, thereby simplifying the configuration.
  • the wireless power feeding system 1 monitors whether or not a predetermined power feeding start condition is satisfied by using the communication during standby when the wireless power feeding is not performed.
  • the signal receiving circuit 115 is connected to the power supply coil of the Kth series, and the load modulation circuit 116 is connected to the power reception coil of the Kth series.
  • K 1, but K can be any number from 1 to N.
  • control circuit 113 of the second embodiment drives the K-th series of inverter circuits at the time of standby, and stops the remaining N ⁇ 1 inverter circuits, so that the power supply start condition is satisfied. In this case, all the N inverter circuits are driven. Thereby, standby power can be suppressed as much as possible.
  • the wireless power supply system 1 is suitable for portable electric devices, for example.
  • the electrical device includes a power receiving device 112 and a secondary battery (connected to the output terminal 102), and is configured to be driven using electric power charged in the secondary battery.
  • the power feeding device 111 is provided in a charger corresponding to the electric device. According to this aspect, it is possible to charge the secondary battery in the electric device by bringing the electric device close to the charger (for example, placing the electric device on the charger).
  • the application target of the wireless power feeding system 1 is not limited to such a form.
  • the present invention can be used for an electromagnetic induction type wireless power supply system or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power feeding device having N power feeding coils from a first system to an Nth system (N is an integer no less than two) to wirelessly feed power to a power receiving device having N power receiving coils from a first system to an Nth system, the power feeding device performing the wireless power feeding by allowing AC current to flow in each of the N power feeding coils and generating electromagnetic induction in each system due to the power feeding coils and the power receiving coils. The N power feeding coils are each arranged substantially on the same plane, and the directions of the AC currents flowing in the adjoining power feeding coils are continuously flowing in the reverse of each other.

Description

給電装置およびワイヤレス給電システムPower supply device and wireless power supply system
 本発明は、無線給電を行う給電装置、およびこれを有するワイヤレス給電システムに関する。 The present invention relates to a power supply apparatus that performs wireless power supply and a wireless power supply system having the same.
 近年、コイル間の電磁結合により非接触で電力伝送を行う、いわゆるワイヤレス給電技術が普及しつつある。2011年8月に発売された「AQUOS PHONE(登録商標)SH-13C」を皮切りに、携帯電話分野で推進されている「おくだけ充電(登録商標)」に関する技術はその代表である。 In recent years, so-called wireless power feeding technology that performs non-contact power transmission by electromagnetic coupling between coils is becoming widespread. The technology related to “Okudashi Charging (registered trademark)” promoted in the field of mobile phones, starting with “AQUOS PHONE (registered trademark) SH-13C” released in August 2011, is representative.
 図8は、ワイヤレス給電システムが適用された機器の一例として、充電器811と電気機器812のセットを模式的に示している。図8(a)は、充電器811と電気機器812が離れた状態の斜視図を示し、図8(b)は、電気機器812が充電器811の上に置かれた状態の側方視点の断面図を示す。なお充電器811は、給電装置(ワイヤレス給電装置)を備えており、電気機器812は、受電装置(ワイヤレス受電装置)を備えている。 FIG. 8 schematically shows a set of a charger 811 and an electric device 812 as an example of a device to which the wireless power feeding system is applied. 8A shows a perspective view of a state where the charger 811 and the electric device 812 are separated from each other, and FIG. 8B shows a side view of the state where the electric device 812 is placed on the charger 811. A cross-sectional view is shown. Note that the charger 811 includes a power feeding device (wireless power feeding device), and the electric device 812 includes a power receiving device (wireless power receiving device).
 なお図8(b)は、より具体的には、充電器811が机の上に置かれており、更に電気機器812が充電器811の上に置かれた状態を示している。電気機器812の充電に際しては、本図に示すように電気機器812を充電器811の上に置くだけで良い。このように置くだけでケーブル接続等を行わなくても、給電装置から受電装置へ最大5Wの電力が無線送電され、電気機器812の充電が可能である。 Note that FIG. 8B more specifically shows a state where the charger 811 is placed on the desk and the electric device 812 is placed on the charger 811. When charging the electric device 812, it is only necessary to place the electric device 812 on the charger 811 as shown in FIG. Even if the cable connection is not performed simply by placing the cable in this way, electric power of a maximum of 5 W is wirelessly transmitted from the power feeding device to the power receiving device, and the electric device 812 can be charged.
 現在市販されているワイヤレス給電対応機器の大半は、業界団体であるWPC(Wireless Power Consortium)が定めた規格(通称“Qi”であり、以下、「Qi規格」と称する)に従って設計されている。Qi規格の詳細は規格書(非特許文献1)に開示されており、給電装置と受電装置の内部回路構成の概略も規定されている。 Most of the wireless power supply compatible devices currently on the market are designed in accordance with a standard (commonly known as “Qi”, hereinafter referred to as “Qi standard”) defined by an industry group, WPC (Wireless Power Consortium). Details of the Qi standard are disclosed in a standard document (Non-Patent Document 1), and outlines of internal circuit configurations of a power feeding device and a power receiving device are also defined.
 ワイヤレス給電システムの内部回路構成の一例を、図6に示す。給電装置611の部分はFigure 3-8をほぼそのまま引用しており、受電装置612の部分はFigure 4-3をほぼそのまま引用している。 An example of the internal circuit configuration of the wireless power supply system is shown in FIG. The part of the power feeding device 611 quotes Figure 3-8 almost as it is, and the part of the power receiving device 612 quotes Figure 4-3 almost as it is.
 給電装置611の中では、直流電源601の電力がインバータ回路614により交流電力に変換され、給電コイルL611に供給される。これにより、給電コイルL611と受電コイルL612において電磁誘導が生じ、給電装置611から受電装置612へ交流電力が無線送電される。 In the power feeding device 611, the power of the DC power source 601 is converted into AC power by the inverter circuit 614 and supplied to the power feeding coil L611. Accordingly, electromagnetic induction occurs in the power feeding coil L611 and the power receiving coil L612, and AC power is wirelessly transmitted from the power feeding device 611 to the power receiving device 612.
 なお性能向上のため、これらのコイルの前後には共振キャパシタ(C611、C612)が挿入されている。受電装置612の中では、受電コイルL612が受取った交流電力が、整流回路617によって直流電力に戻され、出力端子602から出力される。出力された電力は、受電装置612を備えた機器側で利用される。 In order to improve performance, resonant capacitors (C611, C612) are inserted before and after these coils. In the power receiving device 612, AC power received by the power receiving coil L 612 is returned to DC power by the rectifier circuit 617 and output from the output terminal 602. The output power is used on the device side provided with the power receiving device 612.
 また給電装置611には、インバータ回路614を制御する制御回路613が設けられている。制御回路613は、電力変換が適切に行われるように、インバータ回路614における各スイッチ素子(S1~S4)のOn/Off切替を制御する。 Further, the power supply device 611 is provided with a control circuit 613 for controlling the inverter circuit 614. The control circuit 613 controls On / Off switching of each switch element (S1 to S4) in the inverter circuit 614 so that power conversion is appropriately performed.
 また給電装置611と受電装置612の間においては、Qi規格に沿った制御情報の通信が必要である。そのため給電装置611においては、給電コイルL611にキャパシタC613を介して信号受信回路615が接続されている。また受電装置612においては、受電コイルL612に負荷変調回路616が接続されている。これにより、給電装置611と受電装置612の間において通信が可能となっている。 In addition, communication of control information in accordance with the Qi standard is necessary between the power feeding device 611 and the power receiving device 612. Therefore, in the power feeding device 611, the signal receiving circuit 615 is connected to the power feeding coil L611 via the capacitor C613. In the power receiving device 612, a load modulation circuit 616 is connected to the power receiving coil L612. Thereby, communication is possible between the power feeding device 611 and the power receiving device 612.
 また図7は、給電コイルL611や受電コイルL612として用いられるコイルL600、およびその周辺の構造の一例を示している。図7に示すコイルL600は、非特許文献1の3.2.1.1.1節において開示されているAlコイルであり、現在最も一般的となっているコイルである。図7に示すように、コイルL600は銅線を巻いて形成した円形コイルとなっており、磁性体板704の表面に貼り付けられている。またコイルL600の両端は、回路基板703に設けられた配線パターン(P711、P712)に、半田付けによって接続されている。 FIG. 7 shows an example of the coil L600 used as the power feeding coil L611 and the power receiving coil L612, and the surrounding structure. A coil L600 shown in FIG. 7 is an Al coil disclosed in section 3.2.1.1.1 of Non-Patent Document 1, and is the most common coil at present. As shown in FIG. 7, the coil L <b> 600 is a circular coil formed by winding a copper wire, and is attached to the surface of the magnetic plate 704. Further, both ends of the coil L600 are connected to wiring patterns (P711, P712) provided on the circuit board 703 by soldering.
特開2010-187495号公報JP 2010-187495 A
 上述した従来のワイヤレス給電システムであっても、当初のQi規格において想定されていた5W程度の小電力を出力する限りでは、特段の問題が生じることはなかった。しかしQi規格の普及とともに高出力化の傾向が高まり、比較的大きな電力の出力が求められるようになると、従来のワイヤレス給電システムでは主に二つの問題が生じる。 Even with the above-described conventional wireless power supply system, no particular problem has occurred as long as a low power of about 5 W, which was assumed in the original Qi standard, is output. However, when the trend toward higher output increases with the spread of the Qi standard and a relatively large power output is required, the conventional wireless power supply system has two main problems.
 まず大電力に耐え得る仕様とするため、ワイヤレス給電システムの構成部品を、耐電力性能の高い高価な部品とする必要がある。そのため、ワイヤレス給電システムの製造コストが著しく増大するという問題が、第1の問題として挙げられる。 First, in order to make the specifications capable of withstanding high power, it is necessary to make the components of the wireless power supply system expensive parts with high power durability. Therefore, the problem that the manufacturing cost of the wireless power supply system increases remarkably is cited as a first problem.
 また大電力の出力によって、ワイヤレス給電システムの周辺に漏れる不要磁界放射が増大してしまう。そのため周囲の機器や人体等が、不要磁界放射による悪影響を受け易くなるという問題が、第2の問題として挙げられる。 Moreover, unnecessary magnetic field radiation that leaks to the periphery of the wireless power feeding system increases due to the high power output. For this reason, the second problem is that surrounding devices and human bodies are easily affected by unwanted magnetic field radiation.
 なお大電力の交流磁場を受けると、周囲の電子機器の場合は、誤動作を起こしたり、ラジオなどの無線機器の場合は感度劣化を起こしたりする危険がある。また人体の場合は、強い磁界によって刺激作用等を受けることが知られており、健康への悪影響が懸念される。そのため、国際非電離放射線防護委員会(ICNIRP)では健康へ悪影響を及ぼさない磁界強度のガイドラインを定めており、これを遵守することが必須である。 If a high-power AC magnetic field is received, there is a risk of causing malfunctions in the case of surrounding electronic devices and deterioration of sensitivity in the case of wireless devices such as radios. In the case of the human body, it is known that a strong magnetic field causes a stimulating action and the like, and there is a concern about adverse health effects. Therefore, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for magnetic field strengths that do not adversely affect health, and it is essential to comply with them.
 このような不要磁界放射の問題は、当然ながらワイヤレス給電装置の出力電力を大きくするほど深刻になる。既に市場に流通している携帯電話向け充電台は5W程度の小電力機器だが、今後もしパソコン・テレビ・冷蔵庫・掃除機・洗濯機等の一般家電製品にもワイヤレス給電技術が採用され始めると10W~100Wへの高出力化が不可避であり、それに伴って不要磁界放射の抑圧技術が重要課題となる。 This problem of unnecessary magnetic field radiation becomes more serious as the output power of the wireless power feeder is increased. The charging base for mobile phones already on the market is a low-power device of about 5W, but if power supply technology starts to be adopted in general household appliances such as PCs, TVs, refrigerators, vacuum cleaners, washing machines, etc., 10W Increasing the output to ˜100 W is inevitable, and along with this, suppression technology for unwanted magnetic field radiation becomes an important issue.
 本発明は上述した問題に鑑み、安価で高出力なワイヤレス給電システムの実現を容易としながらも、不要磁界放射を抑えることが可能となる給電装置、およびこれを有するワイヤレス給電システムの提供を目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a power feeding device that can suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high output wireless power feeding system, and a wireless power feeding system having the power feeding device To do.
 本発明に係る給電装置は、第1系列から第N系列(Nは2以上の整数)のN個の給電コイルを有し、第1系列から第N系列のN個の受電コイルを有する受電装置に対して、無線給電を行う給電装置であって、前記N個の給電コイルの各々に交流電流を流し、各系列において前記給電コイルと前記受電コイルによる電磁誘導を生じさせることにより、前記無線給電を行うものであり、前記N個の給電コイルの各々は、略同一平面上に配置されており、隣合う前記給電コイル同士における前記交流電流の方向を、常時互いに逆回りとする構成とする。 The power supply apparatus according to the present invention has N power supply coils from the first series to the Nth series (N is an integer of 2 or more), and has N power reception coils from the first series to the Nth series. On the other hand, a power feeding device that performs wireless power feeding, in which an alternating current is passed through each of the N power feeding coils, and electromagnetic induction is generated by the power feeding coil and the power receiving coil in each series. Each of the N power supply coils is disposed on substantially the same plane, and the alternating current directions between the adjacent power supply coils are always opposite to each other.
 本構成によれば、安価で高出力なワイヤレス給電システムの実現を容易としながらも、不要磁界放射を抑えることが可能となる。 This configuration makes it possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system.
 また本発明に係るワイヤレス給電システムは、上記構成の給電装置と、第1系列から第N系列のN個の受電コイルを有する受電装置と、を有し、前記受電装置と前記給電装置が位置決めされた状態で前記無線給電を行うワイヤレス給電システムであって、前記N個の受電コイルの各々は、前記位置決めされた状態で同系列の前記給電コイルと向き合うように、略同一平面上に配置されている構成とする。 A wireless power feeding system according to the present invention includes the power feeding device having the above-described configuration and a power receiving device having N power receiving coils from the first series to the Nth series, and the power receiving apparatus and the power feeding device are positioned. The N power receiving coils are arranged on substantially the same plane so as to face the power supply coils of the same series in the positioned state. The configuration is as follows.
 また上記構成としてより具体的には、前記給電装置は、第1系列から第N系列のN個のインバータ回路と、前記N個のインバータ回路の各々の動作を制御する制御回路と、を備え、前記N個のインバータ回路の各々が、直流電力を交流電力に変換し、該交流電力を同系列の前記給電コイルへ送出するように形成されており、前記受電装置は、第1系列から第N系列のN個の整流回路と、出力端子と、を備え、前記N個の整流回路の各々が、同系列の前記受電コイルから受ける交流電力を直流電力に変換し、該直流電力を前記出力端子へ送出するように形成されている構成としてもよい。 More specifically, the power supply device includes N inverter circuits from the first series to the Nth series, and a control circuit that controls the operation of each of the N inverter circuits. Each of the N inverter circuits is configured to convert DC power into AC power and send the AC power to the power supply coil of the same series. A series of N rectifier circuits and an output terminal, wherein each of the N rectifier circuits converts AC power received from the power receiving coil of the same series into DC power, and the DC power is converted to the output terminal. It is good also as a structure currently formed so that it may send out to.
 また負荷変調により無線信号を送信する負荷変調回路が前記受電装置に、前記無線信号を受信する信号受信回路が前記給電装置に、それぞれ設けられ、前記負荷変調回路と前記信号受信回路の間で通信が行われる、上記構成のワイヤレス給電システムにおいて、前記負荷変調回路の個数および前記信号受信回路の個数を、それぞれ1個とした構成としてもよい。 In addition, a load modulation circuit that transmits a radio signal by load modulation is provided in the power receiving apparatus, and a signal reception circuit that receives the radio signal is provided in the power supply apparatus, and communicates between the load modulation circuit and the signal reception circuit. In the wireless power feeding system configured as described above, the number of the load modulation circuits and the number of the signal reception circuits may be set to one each.
 また前記無線給電が行われていない待機時において、前記通信を用いて既定の給電開始条件が満たされたか否かを監視する、上記構成のワイヤレス給電システムにおいて、前記信号受信回路は、第K系列(Kは1~Nの何れか)の前記給電コイルに接続されており、前記負荷変調回路は、第K系列の前記受電コイルに接続されており、前記制御回路は、前記待機時において、第K系列の前記インバータ回路を駆動させる一方、残りのN-1個の前記インバータ回路を停止させ、前記給電開始条件が満たされた場合に、前記N個のインバータ回路を全て駆動させる構成としてもよい。 In the wireless power feeding system configured as described above, whether or not a predetermined power feeding start condition is satisfied using the communication at the time of standby when the wireless power feeding is not performed. (K is any one of 1 to N) connected to the power supply coil, the load modulation circuit is connected to the power receiving coil of the Kth series, and the control circuit is connected to the power supply coil in the standby state. While the K-series inverter circuits are driven, the remaining N−1 inverter circuits are stopped, and when the power supply start condition is satisfied, all the N inverter circuits may be driven. .
 本発明に係る給電装置によれば、安価で高出力なワイヤレス給電システムの実現を容易としながらも、不要磁界放射を抑えることが可能となる。また本発明に係るワイヤレス給電システムによれば、本発明に係る給電装置の利点を享受することが可能となる。 According to the power feeding device of the present invention, it is possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system. Moreover, according to the wireless power feeding system according to the present invention, it is possible to enjoy the advantages of the power feeding device according to the present invention.
第1実施形態に係るワイヤレス給電システムの構成図である。1 is a configuration diagram of a wireless power feeding system according to a first embodiment. 第1実施形態に係る給電コイル付近の構造に関する説明図である。It is explanatory drawing regarding the structure of the feeding coil vicinity which concerns on 1st Embodiment. 不要電磁場放射が抑制される原理に関する説明図である。It is explanatory drawing regarding the principle by which unnecessary electromagnetic field radiation is suppressed. 第2実施形態に係るワイヤレス給電システムの構成図である。It is a block diagram of the wireless electric power feeding system which concerns on 2nd Embodiment. 第2実施形態に係る給電コイル付近の構造に関する説明図である。It is explanatory drawing regarding the structure of the feeding coil vicinity which concerns on 2nd Embodiment. 従来例のワイヤレス給電システムに関する構成図である。It is a block diagram regarding the wireless power feeding system of a prior art example. 従来例のコイルの構造に関する説明図である。It is explanatory drawing regarding the structure of the coil of a prior art example. ワイヤレス給電システムが適用された機器に関する説明図である。It is explanatory drawing regarding the apparatus with which the wireless electric power feeding system was applied.
 本発明の実施形態について、第1実施形態および第2実施形態を例に挙げて以下に説明する。 Embodiments of the present invention will be described below by taking the first embodiment and the second embodiment as examples.
1.第1実施形態
[ワイヤレス給電システムの全体構成]
 まず第1実施形態について説明する。図1は、第1実施形態に係るワイヤレス給電システム1の構成図である。図1に示すように、ワイヤレス給電システム1は給電装置111(ワイヤレス給電装置)と受電装置112(ワイヤレス受電装置)を有している。ワイヤレス給電システム1は、Qi規格に適合するよう構成されている。
1. First Embodiment [Overall Configuration of Wireless Power Supply System]
First, the first embodiment will be described. FIG. 1 is a configuration diagram of a wireless power feeding system 1 according to the first embodiment. As shown in FIG. 1, the wireless power feeding system 1 includes a power feeding device 111 (wireless power feeding device) and a power receiving device 112 (wireless power receiving device). The wireless power supply system 1 is configured to conform to the Qi standard.
 給電装置111は、直流電源部101、制御回路113、各インバータ回路(114a、114b)、信号受信回路115、各キャパシタ(C1a、C1b、C3)、および各給電コイル(L1a、L1b)を備えている。受電装置112は、出力端子102、負荷変調回路116、各整流回路(127a、127b)、各受電コイル(L2a、L2b)、および各キャパシタ(C2a、C2b)を備えている。 The power supply device 111 includes a DC power supply unit 101, the control circuit 113, the inverter circuits (114 a, 114 b), the signal receiving circuit 115, the capacitors (C1 a, C1 b, C3 ), and the feeding coil (L1 a, L1 b ). The power receiving device 112, an output terminal 102, the load modulation circuit 116, and a respective rectifier circuits (127 a, 127 b), each receiving coil (L2 a, L2 b), and each capacitor (C2 a, C2 b) .
 またワイヤレス給電システム1は、給電装置111から受電装置112への無線送電を行う機構として、図1に示すように、第1系列と第2系列の送電機構を有している。以下の説明では、第1系列の送電機構を単に「第1系列」と称し、第2系列の送電機構を単に「第2系列」と称することがある。 Further, the wireless power feeding system 1 has first and second power transmission mechanisms as shown in FIG. 1 as a mechanism for performing wireless power transmission from the power feeding device 111 to the power receiving device 112. In the following description, the first series of power transmission mechanisms may be simply referred to as “first series”, and the second series of power transmission mechanisms may be simply referred to as “second series”.
 第1系列には、制御回路113、インバータ回路114a、信号受信回路115、負荷変調回路116、各キャパシタ(C1a、C2a、C3)、給電コイルL1a、受電コイルL2a、および整流回路127aが含まれる。第2系列には、インバータ回路114b、各キャパシタ(C1b、C2b)、給電コイルL1b、受電コイルL2b、および整流回路127bが含まれる。 The first series, the control circuit 113, the inverter circuit 114 a, a signal receiving circuit 115, a load modulation circuit 116, the capacitors (C1 a, C2 a, C3 ), the feeding coil L1 a, the power receiving coil L2 a, and a rectifier circuit 127 a is included. The second series includes an inverter circuit 114 b , capacitors (C 1 b , C 2 b ), a feeding coil L 1 b , a receiving coil L 2 b , and a rectifier circuit 127 b .
 なお引用符に「a」または「b」の添え字が有る要素は、基本的に同等のものが第1系列と第2系列の両方に設けられており、「a」の添え字が第1系列のものであることを表し、「b」の添え字が第2系列のものであることを表す。図1から明らかである通り、ワイヤレス給電システム1は、直流電源部101と出力端子102の間において、第1系列の送電機構と第2系列の送電機構が並列に設けられた形態となっている。 In addition, elements having a subscript “a” or “b” in the quotation marks are basically provided in both the first series and the second series, and the subscript “a” is the first. This means that the subscript is of the series, and the subscript “b” is that of the second series. As is clear from FIG. 1, the wireless power feeding system 1 has a configuration in which a first power transmission mechanism and a second power transmission mechanism are provided in parallel between the DC power supply unit 101 and the output terminal 102. .
 給電装置111と受電装置112は構造的に互いに分離しているが、これらが適切に(各系列の給電コイルと受電コイルが近接して向き合うように)位置決めされることによって、ワイヤレス給電システム1は無線給電の可能な状態(図1に示す構成)となる。ワイヤレス給電システム1に無線給電を行わせる際には、予めこのように位置決めがなされ、位置決めされた状態を保ったまま無線給電が進められることになる。 Although the power feeding device 111 and the power receiving device 112 are structurally separated from each other, the wireless power feeding system 1 is configured so that the power feeding device 111 and the power receiving device 112 are appropriately positioned (so that the power feeding coil and the power receiving coil of each series face each other). The wireless power supply is possible (configuration shown in FIG. 1). When the wireless power feeding system 1 performs wireless power feeding, positioning is performed in this manner in advance, and wireless power feeding proceeds while maintaining the positioned state.
 直流電源部101は、例えば電池、或いは、商用電源に繋がったACアダプタ等によって構成されており、直流電源として機能する。直流電源部101は、直流電力を各インバータ回路(114a、114b)に供給する。 The DC power supply unit 101 is configured by, for example, a battery or an AC adapter connected to a commercial power supply, and functions as a DC power supply. The DC power supply unit 101 supplies DC power to each inverter circuit (114 a , 114 b ).
 インバータ回路114aは、複数のスイッチ素子(S1a~S4a)を有したフルブリッジ構造のインバータ回路であり、インバータ回路114bは、複数のスイッチ素子(S1b~S4b)を有したフルブリッジ構造のインバータ回路である。 The inverter circuit 114 a is a full-bridge inverter circuit having a plurality of switch elements (S1 a to S4 a ), and the inverter circuit 114 b is a full circuit having a plurality of switch elements (S1 b to S4 b ). This is an inverter circuit having a bridge structure.
 またインバータ回路114aにおいて、スイッチ素子S1aおよびS3aの一端は直流電源部101に接続されており、スイッチ素子S2aおよびS4aの一端は接地されている。スイッチ素子S1aの他端は、スイッチ素子S2aの他端に直接繋がるとともに、キャパシタC1aを介して給電コイルL1aの一端に接続されている。スイッチ素子S3aの他端は、スイッチ素子S4aの他端および給電コイルL1aの他端に接続されている。 In the inverter circuit 114 a, one end of the switch elements S1 a and S3 a is connected to the DC power supply unit 101, one end of the switching element S2 a and S4 a is grounded. The other end of the switch element S1 a, together with the leads directly to the other end of the switch element S2 a, is connected to one end of the feeding coil L1 a via capacitor C1 a. The other end of the switch element S3 a is connected to the other ends and feeding coil L1 a switching element S4 a.
 またインバータ回路114bにおいて、スイッチ素子S1bおよびS3bの一端は直流電源部101に接続されており、スイッチ素子S2bおよびS4bの一端は接地されている。スイッチ素子S1bの他端は、スイッチ素子S2bの他端に直接繋がるとともに、キャパシタC1bを介して給電コイルL1bの一端に接続されている。スイッチ素子S3bの他端は、スイッチ素子S4bの他端および給電コイルL1bの他端に接続されている。 In the inverter circuit 114 b , one end of the switch elements S1 b and S3 b is connected to the DC power supply unit 101, and one end of the switch elements S2 b and S4 b is grounded. The other end of the switch element S1 b, together with the leads directly to the other end of the switch element S2 b, is connected to one end of the feeding coil L1 b via the capacitor C1 b. The other end of the switch element S3 b is connected to the other ends and feeding coil L1 b of the switching element S4 b.
 各インバータ回路(114a、114b)は上述した構成を有し、各スイッチ素子のオン/オフ切替によって、直流電源部101から供給された直流電力を交流電力に変換する。インバータ回路114aは、当該変換により生成された交流電力を給電コイルL1aへ送出し、インバータ回路114bは、当該変換により生成された交流電力を給電コイルL1bへ送出する。 Each inverter circuit (114 a , 114 b ) has the above-described configuration, and converts DC power supplied from the DC power supply unit 101 into AC power by switching each switch element on and off. The inverter circuit 114 a sends a AC power generated by the conversion to the feeding coil L1 a, inverter circuit 114 b sends the AC power generated by the conversion to the feeding coil L1 b.
 各インバータ回路(114a、114b)における各スイッチ素子のオン/オフ切替は、制御回路113によって制御される。すなわち制御回路113は、各インバータ回路(114a、114b)が適切に動作するように、各スイッチ素子にオン/オフ切替を行わせるための各制御信号(G1~G4)を生成して出力する。例えば各スイッチ素子がFETである場合、制御回路113は、各制御信号(G1~G4)としてHレベルとLレベルが交互に現れるパルス信号を生成し、各FETのゲートに出力する。 On / off switching of each switch element in each inverter circuit (114 a , 114 b ) is controlled by the control circuit 113. That control circuit 113, as the inverter circuits (114 a, 114 b) to work properly, generating and outputting the control signals (G1 ~ G4) for performing an on / off switch to the switching elements To do. For example, when each switch element is an FET, the control circuit 113 generates a pulse signal in which H level and L level appear alternately as each control signal (G1 to G4), and outputs it to the gate of each FET.
 なお制御回路113は、スイッチ素子S1aとS1bに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G1を出力する。また制御回路113は、スイッチ素子S2aとS2bに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G2を出力する。また制御回路113は、スイッチ素子S3aとS3bに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G3を出力する。また制御回路113は、スイッチ素子S4aとS4bに同一配線を介して繋がっており、これらスイッチ素子に対しては当該配線を介して制御信号G4を出力する。 The control circuit 113 is connected to the switch elements S1 a and S1 b via the same wiring, and outputs a control signal G1 to these switch elements via the wiring. The control circuit 113 is connected via the same wiring to the switch element S2 a and S2 b, and outputs a control signal G2 via the wiring for these switch elements. The control circuit 113 is connected via the same wiring to the switching element S3 a and S3 b, and outputs a control signal G3 through the wiring for these switch elements. The control circuit 113 is connected via the same wiring to the switch element S4 a and S4 b, and outputs a control signal G4 via the wiring for the switch elements.
 以上により、スイッチ素子S1aとS1bのペア、スイッチ素子S2aとS2bのペア、スイッチ素子S3aとS3bのペア、およびスイッチ素子S4aとS4bのペアは、それぞれ同期して動作することになる。そのため各インバータ回路(114a、114b)は、互いに同期して同相の交流電力を出力することになる。 As described above, the pair of switch elements S1 a and S1 b , the pair of switch elements S2 a and S2 b , the pair of switch elements S3 a and S3 b , and the pair of switch elements S4 a and S4 b operate in synchronization with each other. Will do. Therefore the inverter circuits (114 a, 114 b) will output the AC power of the same phase in synchronization with each other.
 信号受信回路115は、キャパシタC3を介して給電コイルL1aに接続されており、受電装置112側(負荷変調回路116)から無線信号Srを受信する。なお信号受信回路115の駆動電力としては、第1系列における送電電力の一部が用いられるが、他の形態となっていても構わない。 The signal receiving circuit 115 is connected to the feeding coil L1 a via the capacitor C3, and receives the radio signal Sr from the power receiving device 112 side (load modulation circuit 116). Note that as the driving power of the signal receiving circuit 115, a part of the transmission power in the first series is used, but other forms may be used.
 受電コイルL2aの一端は、キャパシタC2aを介して、整流回路127aの一方の入力端に接続されている。また受電コイルL2aの他端は、整流回路127aの他方の入力端に接続されている。受電コイルL2bの一端は、キャパシタC2bを介して、整流回路127bの一方の入力端に接続されている。また受電コイルL2bの他端は、整流回路127bの他方の入力端に接続されている。なお各キャパシタ(C1a、C1b、C2a、C2b)は、性能向上のために、給電・受電コイルの前後に挿入された共振キャパシタである。 One end of the power receiving coil L2 a via capacitor C2 a, is connected to one input terminal of the rectifier circuit 127 a. The other end of the power receiving coil L2 a is connected to the other input ends of the rectifier circuit 127 a. One end of the power receiving coil L2 b via the capacitor C2 b, is connected to one input terminal of the rectifier circuit 127 b. The other end of the power receiving coil L2 b is connected to the other input ends of the rectifier circuit 127 b. Each capacitor (C1 a , C1 b , C2 a , C2 b ) is a resonant capacitor inserted before and after the power feeding / receiving coil in order to improve performance.
 負荷変調回路116は、キャパシタC2aを介して受電コイルL2aに接続されており、負荷変調による無線信号Srを発信する。なお負荷変調回路116の駆動電力としては、第1系列における送電電力の一部が用いられるが、他の形態となっていても構わない。 The load modulation circuit 116 is connected to the power receiving coil L2 a through capacitor C2 a, it transmits a radio signal Sr due to load modulation. Note that as the driving power of the load modulation circuit 116, a part of the transmission power in the first series is used, but other forms may be used.
 先述した通り、無線信号Srは給電装置111側の信号受信回路115によって受信される。これにより、給電装置111と受電装置112の間における無線給電に関する通信が可能である。なお信号受信回路115や負荷変調回路116の構成および当該通信の具体的形態などについては公知であるため、ここでは詳細な説明を省略する。 As described above, the radio signal Sr is received by the signal receiving circuit 115 on the power feeding apparatus 111 side. Accordingly, communication related to wireless power feeding between the power feeding device 111 and the power receiving device 112 is possible. Since the configuration of the signal receiving circuit 115 and the load modulation circuit 116 and the specific form of the communication are well known, detailed description is omitted here.
 整流回路127aは、受電コイルL2aから送られてきた交流電力を直流電力に変換し、当該直流電力を出力端子102へ送出する。また整流回路127bは、受電コイルL2bから送られてきた交流電力を直流電力に変換し、当該直流電力を出力端子102へ送出する。 The rectifier circuit 127 a converts AC power sent from the power receiving coil L < b > 2 a into DC power, and sends the DC power to the output terminal 102. The rectifier circuit 127 b converts the AC power sent from the power receiving coil L < b > 2 b into DC power, and sends the DC power to the output terminal 102.
 出力端子102は、受電装置112を有した電気機器内の二次電池(不図示)に接続され、各整流回路(127a、127b)から受ける電力を合成して出力する。これにより、各整流回路(127a、127b)から送出される直流電力は、単一の出力端子102を介して当該二次電池に供給され、当該電気機器の駆動電力等として利用される。なお本実施形態では、出力端子102からの出力電力は二次電池へ供給されるようになっているが、当該出力電力の供給先等はこのような形態に限られない。 The output terminal 102 is connected to the secondary battery in an electrical equipment having a power receiving device 112 (not shown), and outputs the synthesized power received from each rectifier circuit (127 a, 127 b). Thereby, the DC power sent from each rectifier circuit (127 a , 127 b ) is supplied to the secondary battery via the single output terminal 102, and is used as drive power for the electric device or the like. In the present embodiment, the output power from the output terminal 102 is supplied to the secondary battery, but the supply destination of the output power is not limited to such a form.
 図2は、給電装置111における各給電コイル(L1a、L1b)付近の構造(実装形態)を例示している。各給電コイル(L1a、L1b)は、銅線を同じ方向に巻いて形成した円形コイルであり、磁性体板304の表面に貼り付けられることにより、略同一平面上でほぼ隣接するように接近して配置されている。また各給電コイル(L1a、L1b)の両端は、回路基板303に設けられた配線パターン(P311、P312、P321、P322)に半田付け接続されている。 FIG. 2 illustrates a structure (mounting form) in the vicinity of each power supply coil (L1 a , L1 b ) in the power supply apparatus 111. Each of the feeding coils (L1 a , L1 b ) is a circular coil formed by winding a copper wire in the same direction, and is attached to the surface of the magnetic plate 304 so as to be substantially adjacent on the same plane. Closely arranged. Further, both ends of each of the power feeding coils (L1 a , L1 b ) are soldered and connected to wiring patterns (P311, P312, P321, P322) provided on the circuit board 303.
 配線パターンP311は、スイッチ素子S3aとS4aの間に繋がり、配線パターンP312は、キャパシタC1aの一端に繋がっている。配線パターンP321は、キャパシタC1bの一端に繋がり、配線パターンP322は、スイッチ素子S3bとS4bの間に繋がっている。 Wiring patterns P311 leads between the switch element S3 a and S4 a, the wiring pattern P312 is connected to one end of the capacitor C1 a. Wiring patterns P321 leads to one end of the capacitor C1 b, the wiring pattern P322 is connected between the switching element S3 b and S4 b.
 また3個の配線パターン(P311、P312、P321)は回路基板303の表面側に配置されている一方、残りの配線パターンP322は、配線パターンP321と立体交差するように回路基板303の裏面側に配置されている。このような立体交差を採用する理由は、各給電コイル(L1a、L1b)に流れる交流電流を互いに逆向きとすることにある(逆向きとする意義については、後述の説明により明らかとなる)。 The three wiring patterns (P311, P312 and P321) are arranged on the front surface side of the circuit board 303, while the remaining wiring patterns P322 are arranged on the back surface side of the circuit board 303 so as to cross three-dimensionally with the wiring pattern P321. Has been placed. The reason for adopting such a three-dimensional intersection is that the alternating currents flowing in the respective feeding coils (L1 a , L1 b ) are in opposite directions (the significance of the reverse directions will be clarified in the following description). ).
 また各受電コイル(L2a、L2b)は、先述したように受電装置112と給電装置111が位置決めされた状態で、同系列の給電コイルと向き合うように略同一平面上に配置されている。 Each power receiving coil (L2 a , L2 b ) is arranged on substantially the same plane so as to face the same series of power feeding coils in a state where the power receiving device 112 and the power feeding device 111 are positioned as described above.
 受電装置112と給電装置111が位置決めされ、ワイヤレス給電システム1において給電が行われるときには、制御回路113は、各インバータ回路(114a、114b)が駆動するように各制御信号(G1~G4)を出力する。 The power receiving device 112 and the power supply device 111 is positioned, when the power feeding is performed in the wireless power supply system 1, the control circuit 113, the inverter circuits (114 a, 114 b) are the control signals so as to drive (G1 ~ G4) Is output.
 これにより第1系列および第2系列の各々において、受電コイルは、給電コイルが発生させる交流磁場によって(つまり電磁誘導によって)起電力が生じ、交流電力を発生させる。すなわち給電コイルから受電コイルへ、相互誘導磁界結合により電力が伝達される。このようにして、給電装置111から受電装置112への無線給電が実現される。 Thereby, in each of the first series and the second series, the power receiving coil generates an electromotive force by an alternating magnetic field generated by the feeding coil (that is, by electromagnetic induction), and generates alternating current power. That is, electric power is transmitted from the feeding coil to the receiving coil by mutual induction magnetic field coupling. In this manner, wireless power feeding from the power feeding device 111 to the power receiving device 112 is realized.
[本実施形態の特長について]
 本実施形態のワイヤレス給電システム1は、安価で高出力を得ることが容易であるという特長(以下、「第1の特長」とする)と、不要磁界放射が抑えられるという特長(以下、「第2の特長」とする)を有している。以下、これらの特長について具体的に説明する。
[Features of this embodiment]
The wireless power feeding system 1 of the present embodiment has a feature that it is inexpensive and easy to obtain a high output (hereinafter referred to as “first feature”) and a feature that unnecessary magnetic field radiation can be suppressed (hereinafter referred to as “first”). 2 features ”). Hereinafter, these features will be specifically described.
 まず第1の特長について説明する。既に説明した通りワイヤレス給電システム1は、第1系列と第2系列の複数の送電機構を並列に有しており、受電装置112は、これらの送電機構により送電された電力を合成して出力端子102から出力する。そのため、個々の送電機構における送電量が小さくても、送電された電力の合成によって容易に高出力を得ることが可能である。例えば、各系列に同等の送電機構を適用する場合、N個の系列を設けるようにすれば、基本的にはN倍の出力を得ることが可能である。 First, the first feature will be explained. As already described, the wireless power feeding system 1 has a plurality of power transmission mechanisms of the first series and the second series in parallel, and the power receiving apparatus 112 combines the power transmitted by these power transmission mechanisms to output terminals. 102 to output. Therefore, even if the power transmission amount in each power transmission mechanism is small, it is possible to easily obtain a high output by combining the transmitted power. For example, when an equivalent power transmission mechanism is applied to each series, it is basically possible to obtain N times the output by providing N series.
 またワイヤレス給電システム1によれば、送電機構を一つしか備えない場合に比べて、個々の送電機構に求められる送電量は小さくて済む。そのため送電機構の各々を構成する部品として、耐電力性能が低い安価な部品を使うことが可能となり、ワイヤレス給電システム1の製造コストを抑えることが可能である。 In addition, according to the wireless power feeding system 1, compared with a case where only one power transmission mechanism is provided, a power transmission amount required for each power transmission mechanism is small. Therefore, it is possible to use inexpensive parts with low power durability performance as parts constituting each of the power transmission mechanisms, and the manufacturing cost of the wireless power feeding system 1 can be suppressed.
 またワイヤレス給電システム1において、制御回路113、信号受信回路115、および負荷変調回路116は、低コスト化と同期制御のため第1系列にのみ設けられており、第2系列には設けられていない。そのため、これらの回路(113、115、116)が第2系列にも設けられる場合に比べて部品点数を減らし、構成を簡略化することが出来る。 In the wireless power feeding system 1, the control circuit 113, the signal reception circuit 115, and the load modulation circuit 116 are provided only in the first series for cost reduction and synchronization control, and are not provided in the second series. . Therefore, the number of parts can be reduced and the configuration can be simplified as compared with the case where these circuits (113, 115, 116) are also provided in the second series.
 すなわち本実施形態は、図6に例示するワイヤレス給電システムを単純に複数個束ねたような形態ではなく、重複する回路部品の省略によって、製造コストをより一層抑えることが可能となっている。以上に説明した理由により、ワイヤレス給電システム1は第1の特長を有している。 That is, this embodiment is not a form in which a plurality of wireless power supply systems illustrated in FIG. 6 are simply bundled, and the manufacturing cost can be further reduced by omitting overlapping circuit components. For the reasons described above, the wireless power feeding system 1 has the first feature.
 次に第2の特長について説明する。ここで給電コイルに流れる交流電流の向きに着目すると、給電コイルL1aと給電コイルL1b(隣合う給電コイル同士)における交流電流の方向は、常時互いに逆回りとなる。 Next, the second feature will be described. When attention is paid to the direction of the alternating current flowing through the power supply coil, the directions of the alternating current in the power supply coil L1 a and the power supply coil L1 b (adjacent power supply coils) are always opposite to each other.
 すなわち、例えば左回りの方向(右回りの方向でも同様)に流れる電流を基準として、給電コイルL1aに流れる交流電流の波形と給電コイルL1bに流れる交流電流の波形は、互いに同期・逆位相の関係となる。なお各給電コイル(L1a、L1b)が近接している部分(図2に示す近接部分CS)において、各給電コイル(L1a、L1b)の交流電流の向きは、常時互いに略同一方向となる。 That is, for example, with reference to the current flowing in the counterclockwise direction (the same applies to the clockwise direction), the waveform of the alternating current flowing in the feeding coil L1 a and the waveform of the alternating current flowing in the feeding coil L1 b are synchronized and opposite in phase. It becomes the relationship. It should be noted that in the portions (proximity portion CS shown in FIG. 2) where the respective feeding coils (L1 a , L1 b ) are close to each other, the directions of the alternating currents of the respective feeding coils (L1 a , L1 b ) are always substantially the same direction. It becomes.
 このように本実施形態では、隣合う給電コイル同士における交流電流の方向が常時互いに逆回りとなるため、本出願人による先行出願(特願2012-121741)の発明と同様の原理により、給電コイルや受電コイル(給電・受電コイル)から周囲に漏れる不要磁界放射(不要電磁場放射)が抑制される。 As described above, in this embodiment, the directions of the alternating currents between the adjacent feeding coils are always opposite to each other. Therefore, the feeding coil is based on the same principle as the invention of the prior application (Japanese Patent Application No. 2012-121741) by the present applicant. And unnecessary magnetic field radiation (unnecessary electromagnetic field radiation) leaking from the receiving coil (power supply / receiving coil) to the surroundings is suppressed.
 すなわち給電装置111から受電装置112への給電が行われる際には、第1系統の給電・受電コイル(L1a、L2a)から出た磁力線の一部(例えば、数分の一程度)は、進路を曲げられて第2系統の給電・受電コイル(L1b、L2b)に吸い込まれ、第2系統の給電・受電コイル(L1b、L2b)から出た磁力線の一部(例えば、数分の一程度)は、進路を曲げられて第1系統の給電・受電コイル(L1a、L2a)に吸い込まれる。その結果、第1系統の給電・受電コイル(L1a、L2a)と第2系統の給電・受電コイル(L1b、L2b)が互いの磁力線を吸収し合うことで当該磁力線はコンパクトに折り畳まれ、遠くまで広がることは抑制される。 In other words, when power is supplied from the power supply device 111 to the power reception device 112, a part of the magnetic field lines (for example, about a fraction) of the first system power supply / power reception coils (L1 a , L2 a ) , is sucked into the feed-receiving coil of the second system bent the path (L1 b, L2 b), a part of the magnetic field lines exiting from the feeding-receiving coil of the second system (L1 b, L2 b) (e.g., The course is bent and the path is bent and sucked into the power feeding / receiving coils (L1 a , L2 a ) of the first system. As a result, the first power feeding / receiving coil (L1 a , L2 a ) and the second power feeding / receiving coil (L1 b , L2 b ) absorb each other's magnetic field lines so that the magnetic field lines are compactly folded. It is suppressed from spreading far away.
 また別の観点による不要電磁場放射が抑制される原理について、図3を参照しながら説明する。なお図3においては、各受電コイル(L2a、L2b)、給電コイルL1aに流れる電流Ia、および給電コイルL1bに流れる電流Ibの位置関係が、模式的に示されている。 Further, the principle of suppressing unnecessary electromagnetic field radiation from another viewpoint will be described with reference to FIG. FIG. 3 schematically shows the positional relationship among the power receiving coils (L2 a , L2 b ), the current Ia flowing through the power feeding coil L1 a , and the current Ib flowing through the power feeding coil L1 b .
 低周波磁界については、距離の2乗に反比例して強度が減衰することが知られている。例えば受電コイル近傍の点Aでは、電流Iaからの距離と電流Ibからの距離が著しくアンバランスである。そのため点Aでは、ほぼ近い方の電流Iaのみによって磁界強度が決定するため、強い磁界結合が発生する。 It is known that the strength of the low frequency magnetic field attenuates in inverse proportion to the square of the distance. For example, at the point A in the vicinity of the power receiving coil, the distance from the current Ia and the distance from the current Ib are significantly unbalanced. Therefore, at point A, the magnetic field strength is determined only by the current Ia that is substantially closer, so that strong magnetic field coupling occurs.
 しかし例えば遠方の点Bでは、電流Iaからの距離と電流Ibからの距離がほぼ等しい。従って点Bでは、ほぼ等強度で逆位相の2つの磁界がキャンセルし合うため、磁界強度が低く抑えられる。このように本実施形態では、受電コイル近傍での強い磁界結合と遠方での急激な減衰という、矛盾した要求が同時に満たされる。 However, at a distant point B, for example, the distance from the current Ia is almost equal to the distance from the current Ib. Therefore, at point B, the two magnetic fields having substantially the same intensity and opposite phases cancel each other, so that the magnetic field intensity can be kept low. As described above, in the present embodiment, contradictory demands of strong magnetic field coupling near the power receiving coil and abrupt attenuation in the distance are simultaneously satisfied.
 以上に説明した理由により、ワイヤレス給電システム1は第2の特長を有している。周囲に漏れる不要磁界放射が抑制されることにより、周囲の電子機器に対する電磁妨害や周囲の人体に対する磁界曝露を、軽減させることが可能である。なお本発明での隣合う給電コイル同士における交流電流の方向は、完全に「常時互いに逆回り」であることが望ましいが、第2の特長を得るという主旨を逸脱しない範囲での誤差(例えば、ごく一時的に、互いに逆回りとはならないこと)があっても構わない。 For the reasons described above, the wireless power feeding system 1 has the second feature. By suppressing unnecessary magnetic field radiation that leaks to the surroundings, it is possible to reduce electromagnetic interference to surrounding electronic devices and magnetic field exposure to surrounding human bodies. The direction of the alternating current between adjacent feeding coils in the present invention is preferably completely “always opposite to each other”, but an error within a range not departing from the main point of obtaining the second feature (for example, There may be things that do not reverse each other for a very short time.
 なお複数系統の送電機構を単純に並列に並べると、一般的には複数の給電コイル間で寄生結合が起こり、動作が阻害される問題が知られている。上述した第2の特長は、この寄生結合を逆手に取って利用し、不要磁界放射の抑圧効果を得るようにしたものと見ることも出来る。 In addition, when a plurality of power transmission mechanisms are simply arranged in parallel, there is generally a problem that parasitic coupling occurs between a plurality of power feeding coils and the operation is hindered. The second feature described above can also be regarded as an effect of suppressing unwanted magnetic field radiation by taking advantage of this parasitic coupling.
2.第2実施形態
[ワイヤレス給電システムの全体構成]
 次に第2実施形態について説明する。図4は、第2実施形態に係るワイヤレス給電システム1の構成図である。図4に示すように、ワイヤレス給電システム1は給電装置111(ワイヤレス給電装置)と受電装置112(ワイヤレス受電装置)を有している。ワイヤレス給電システム1は、Qi規格に適合するよう構成されている。
2. Second Embodiment [Overall Configuration of Wireless Power Supply System]
Next, a second embodiment will be described. FIG. 4 is a configuration diagram of the wireless power feeding system 1 according to the second embodiment. As illustrated in FIG. 4, the wireless power feeding system 1 includes a power feeding device 111 (wireless power feeding device) and a power receiving device 112 (wireless power receiving device). The wireless power supply system 1 is configured to conform to the Qi standard.
 給電装置111は、直流電源部101、制御回路113、各インバータ回路(114a~114c)、信号受信回路115、スイッチ回路123、各キャパシタ(C1a~C1c、C3)、および各給電コイル(L1a~L1c)を備えている。受電装置112は、出力端子102、負荷変調回路116、各整流回路(127a~127c)、各受電コイル(L2a~L2c)、および各キャパシタ(C2a~C2c)を備えている。 The power supply device 111 includes a DC power supply unit 101, the control circuit 113, the inverter circuits (114 a ~ 114 c), the signal receiving circuit 115, a switch circuit 123, the capacitors (C1 a ~ C1 c, C3 ), and the feeding coil (L1 a to L1 c ). The power receiving device 112 includes an output terminal 102, a load modulation circuit 116, each rectifier circuit (127 a to 127 c ), each power receiving coil (L2 a to L2 c ), and each capacitor (C2 a to C2 c ). .
 またワイヤレス給電システム1は、給電装置111から受電装置112への無線送電を行う機構として、図4に示すように、第1系列~第3系列の送電機構を有している。以下の説明では、第1系列の送電機構を単に「第1系列」と称し、第2系列の送電機構を単に「第2系列」と称し、第3系列の送電機構を単に「第3系列」と称することがある。 Further, the wireless power feeding system 1 has first to third power transmission mechanisms as shown in FIG. 4 as a mechanism for performing wireless power transmission from the power feeding device 111 to the power receiving device 112. In the following description, the first series power transmission mechanism is simply referred to as “first series”, the second series power transmission mechanism is simply referred to as “second series”, and the third series power transmission mechanism is simply referred to as “third series”. May be called.
 第1系列には、制御回路113、インバータ回路114a、信号受信回路115、負荷変調回路116、各キャパシタ(C1a、C2a、C3)、給電コイルL1a、受電コイルL2a、および整流回路127aが含まれる。第2系列には、インバータ回路114b、各キャパシタ(C1b、C2b)、給電コイルL1b、受電コイルL2b、および整流回路127bが含まれる。第3系列には、インバータ回路114c、各キャパシタ(C1c、C2c)、給電コイルL1c、受電コイルL2c、および整流回路127cが含まれる。 The first series, the control circuit 113, the inverter circuit 114 a, a signal receiving circuit 115, a load modulation circuit 116, the capacitors (C1 a, C2 a, C3 ), the feeding coil L1 a, the power receiving coil L2 a, and a rectifier circuit 127 a is included. The second series includes an inverter circuit 114 b , capacitors (C 1 b , C 2 b ), a feeding coil L 1 b , a receiving coil L 2 b , and a rectifier circuit 127 b . The third series includes an inverter circuit 114 c , capacitors (C1 c , C2 c ), a feeding coil L1 c , a receiving coil L2 c , and a rectifier circuit 127 c .
 また引用符に「a」~「c」の添え字が有る要素は、同等のものが第1系列~第3系列の何れにも設けられており、「a」の添え字が第1系列のものであることを表し、「b」の添え字が第2系列のものであることを表し、「c」の添え字が第3系列のものであることを表す。図4から明らかである通り、ワイヤレス給電システム1は、直流電源部101と出力端子102の間において、第1系列~第3系列の各送電機構が並列に設けられた形態となっている。 In addition, for elements having subscripts “a” to “c” in the quotation marks, the equivalents are provided in any of the first to third series, and the subscript “a” is the first series. The subscript “b” represents the second series, and the “c” subscript represents the third series. As is clear from FIG. 4, the wireless power feeding system 1 has a configuration in which the first to third power transmission mechanisms are provided in parallel between the DC power supply unit 101 and the output terminal 102.
 給電装置111と受電装置112は構造的に互いに分離しているが、これらが適切に(各系列の給電コイルと受電コイルが近接して向き合うように)位置決めされることによって、ワイヤレス給電システム1は無線給電の可能な状態(図4に示す構成)となる。ワイヤレス給電システム1に無線給電を行わせる際には、予めこのように位置決めがなされ、位置決めされた状態を保ったまま無線給電が進められることになる。 Although the power feeding device 111 and the power receiving device 112 are structurally separated from each other, the wireless power feeding system 1 is configured so that the power feeding device 111 and the power receiving device 112 are appropriately positioned (so that the power feeding coil and the power receiving coil of each series face each other). The wireless power feeding is possible (configuration shown in FIG. 4). When the wireless power feeding system 1 performs wireless power feeding, positioning is performed in this manner in advance, and wireless power feeding proceeds while maintaining the positioned state.
 直流電源部101は、例えば電池、或いは、商用電源に繋がったACアダプタ等によって構成されており、直流電源として機能する。直流電源部101は、直流電力を各インバータ回路(114a~114c)に供給する。 The DC power supply unit 101 is configured by, for example, a battery or an AC adapter connected to a commercial power supply, and functions as a DC power supply. The DC power supply unit 101 supplies DC power to each inverter circuit (114 a to 114 c ).
 インバータ回路114aは、複数のスイッチ素子(S1a~S4a)を有したフルブリッジ構造のインバータ回路である。インバータ回路114bは、複数のスイッチ素子(S1b~S4b)を有したフルブリッジ構造のインバータ回路である。インバータ回路114cは、複数のスイッチ素子(S1c~S4c)を有したフルブリッジ構造のインバータ回路である。 The inverter circuit 114 a is an inverter circuit of the full bridge structure having a plurality of switching elements (S1 a ~ S4 a). The inverter circuit 114 b is a full-bridge inverter circuit having a plurality of switch elements (S1 b to S4 b ). The inverter circuit 114 c is a full-bridge inverter circuit having a plurality of switch elements (S1 c to S4 c ).
 またインバータ回路114aにおいて、スイッチ素子S1aおよびS3aの一端は直流電源部101に接続されており、スイッチ素子S2aおよびS4aの一端は接地されている。スイッチ素子S1aの他端は、スイッチ素子S2aの他端に直接繋がるとともに、キャパシタC1aを介して給電コイルL1aの一端に接続されている。スイッチ素子S3aの他端は、スイッチ素子S4aの他端および給電コイルL1aの他端に接続されている。 In the inverter circuit 114 a, one end of the switch elements S1 a and S3 a is connected to the DC power supply unit 101, one end of the switching element S2 a and S4 a is grounded. The other end of the switch element S1 a, together with the leads directly to the other end of the switch element S2 a, is connected to one end of the feeding coil L1 a via capacitor C1 a. The other end of the switch element S3 a is connected to the other ends and feeding coil L1 a switching element S4 a.
 またインバータ回路114bにおいて、スイッチ素子S1bおよびS3bの一端は直流電源部101に接続されており、スイッチ素子S2bおよびS4bの一端は接地されている。スイッチ素子S1bの他端は、スイッチ素子S2bの他端に直接繋がるとともに、キャパシタC1bを介して給電コイルL1bの一端に接続されている。スイッチ素子S3bの他端は、スイッチ素子S4bの他端および給電コイルL1bの他端に接続されている。 In the inverter circuit 114 b , one end of the switch elements S1 b and S3 b is connected to the DC power supply unit 101, and one end of the switch elements S2 b and S4 b is grounded. The other end of the switch element S1 b, together with the leads directly to the other end of the switch element S2 b, is connected to one end of the feeding coil L1 b via the capacitor C1 b. The other end of the switch element S3 b is connected to the other ends and feeding coil L1 b of the switching element S4 b.
 またインバータ回路114cにおいて、スイッチ素子S1cおよびS3cの一端は直流電源部101に接続されており、スイッチ素子S2cおよびS4cの一端は接地されている。スイッチ素子S1cの他端は、スイッチ素子S2cの他端に直接繋がるとともに、キャパシタC1cを介して給電コイルL1cの一端に接続されている。スイッチ素子S3cの他端は、スイッチ素子S4cの他端および給電コイルL1cの他端に接続されている。 In the inverter circuit 114 c , one end of the switch elements S1 c and S3 c is connected to the DC power supply unit 101, and one end of the switch elements S2 c and S4 c is grounded. The other end of the switch element S1 c, together with the leads directly to the other end of the switch element S2 c, is connected to one end of the feeding coil L1 c via the capacitor C1 c. The other end of the switch element S3 c is connected to the other ends and feeding coil L1 c of the switching element S4 c.
 各インバータ回路(114a~114c)は上述した構成を有し、各スイッチ素子のオン/オフ切替によって、直流電源部101から供給された直流電力を交流電力に変換する。インバータ回路114aは、当該変換により生成された交流電力を給電コイルL1aへ送出し、インバータ回路114bは、当該変換により生成された交流電力を給電コイルL1bへ送出し、インバータ回路114cは、当該変換により生成された交流電力を給電コイルL1cへ送出する。 Each inverter circuit (114 a to 114 c ) has the above-described configuration, and converts DC power supplied from the DC power supply unit 101 into AC power by switching each switch element on and off. The inverter circuit 114 a sends the AC power generated by the conversion to the feeding coil L1 a , and the inverter circuit 114 b sends the AC power generated by the conversion to the feeding coil L1 b , and the inverter circuit 114 c Sends the AC power generated by the conversion to the feeding coil L1 c .
 各インバータ回路(114a~114c)における各スイッチ素子のオン/オフ切替は、制御回路113によって制御される。すなわち制御回路113は、各インバータ回路(114a~114c)が適切に動作するように、各スイッチ素子にオン/オフ切替を行わせるための各制御信号(G1~G4)を生成して出力する。例えば各スイッチ素子がFETである場合、制御回路113は、各制御信号(G1~G4)としてHレベルとLレベルが交互に現れるパルス信号を生成し、各FETのゲートに出力する。 On / off switching of each switch element in each inverter circuit (114 a to 114 c ) is controlled by the control circuit 113. That control circuit 113, so that each inverter circuit (114 a ~ 114 c) to work properly, generating and outputting the control signals (G1 ~ G4) for performing an on / off switch to the switching elements To do. For example, when each switch element is an FET, the control circuit 113 generates a pulse signal in which H level and L level appear alternately as each control signal (G1 to G4), and outputs it to the gate of each FET.
 なお制御回路113は、スイッチ素子S1a、S2b、およびS1cに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G1を出力する。また制御回路113は、スイッチ素子S2a、S1b、およびS2cに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G2を出力する。また制御回路113は、スイッチ素子S3a、S4b、およびS3cに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G3を出力する。また制御回路113は、スイッチ素子S4a、S3b、およびS4cに同一配線を介して繋がっており、これらのスイッチ素子に対しては当該配線を介して制御信号G4を出力する。 The control circuit 113 is connected to the switch elements S1 a , S2 b , and S1 c via the same wiring, and outputs a control signal G1 to these switch elements via the wiring. The control circuit 113 is connected to the switch elements S2 a , S1 b , and S2 c via the same wiring, and outputs a control signal G2 to these switch elements via the wiring. The control circuit 113 is connected to the switch elements S3 a , S4 b , and S3 c via the same wiring, and outputs a control signal G3 to these switch elements via the wiring. The control circuit 113 is connected to the switch elements S4 a , S3 b , and S4 c via the same wiring, and outputs a control signal G4 to these switch elements via the wiring.
 以上により、各スイッチ素子(S1a、S2b、S1c)の組、各スイッチ素子(S2a、S1b、S2c)の組、各スイッチ素子(S3a、S4b、S3c)の組、および各スイッチ素子(S4a、S3b、S4c)の組は、それぞれ同期して動作することになる。そのため各インバータ回路(114a~114c)は、互いに同期して交流電力を出力することになる。 Thus, a set of each switch element (S1 a , S2 b , S1 c ), a set of each switch element (S2 a , S1 b , S2 c ), a set of each switch element (S3 a , S4 b , S3 c ) , And the switch elements (S4 a , S3 b , S4 c ) operate in synchronization with each other. Therefore, the inverter circuits (114 a to 114 c ) output AC power in synchronization with each other.
 またインバータ回路114aとインバータ回路114cは、互いに同相の交流電力を出力することになる。但しインバータ回路114bは、その他のインバータ回路(114a、114c)とは逆相の交流電力を出力することになる。このようにする理由は、給電コイルL1bに流れる交流電流の向きを、その他の給電コイル(L1a、L1c)に流れる交流電流とは逆向きとすることにある。 The inverter circuit 114 a and the inverter circuit 114 c will output the AC power in-phase to each other. However inverter circuit 114 b will output the AC power of the reverse phase to the other inverter circuit (114 a, 114 c). The reason for this is that the direction of the alternating current flowing through the feeding coil L1 b is opposite to the alternating current flowing through the other feeding coils (L1 a , L1 c ).
 信号受信回路115は、キャパシタC3を介して給電コイルL1aに接続されており、受電装置112側(負荷変調回路116)から無線信号Srを受信する。なお信号受信回路115の駆動電力としては、第1系列における送電電力の一部が用いられるが、他の形態となっていても構わない。 The signal receiving circuit 115 is connected to the feeding coil L1 a via the capacitor C3, and receives the radio signal Sr from the power receiving device 112 side (load modulation circuit 116). Note that as the driving power of the signal receiving circuit 115, a part of the transmission power in the first series is used, but other forms may be used.
 またスイッチ回路123は、各制御信号(G1~G4)を伝送する配線の途中において、当該配線の導通/遮断を切替える機能を有する。スイッチ回路123が当該配線を遮断している状態(遮断状態)では、各制御信号(G1~G4)は、第1系列のインバータ回路114aには伝送されるが、第2系列および第3系列のインバータ回路(114b、114c)には伝送されない。 The switch circuit 123 has a function of switching conduction / cutoff of the wiring in the middle of the wiring for transmitting the control signals (G1 to G4). In state (disconnected state) in which the switch circuit 123 is cut off the wire, the control signals (G1 ~ G4) is the inverter circuit 114 a of the first sequence is transmitted, a second series and a third series the inverter circuit (114 b, 114 c) are not transmitted.
 受電コイルL2aの一端は、キャパシタC2aを介して、整流回路127aの一方の入力端に接続されている。また受電コイルL2aの他端は、整流回路127aの他方の入力端に接続されている。受電コイルL2bの一端は、キャパシタC2bを介して、整流回路127bの一方の入力端に接続されている。また受電コイルL2bの他端は、整流回路127bの他方の入力端に接続されている。受電コイルL2cの一端は、キャパシタC2cを介して、整流回路127cの一方の入力端に接続されている。また受電コイルL2cの他端は、整流回路127cの他方の入力端に接続されている。なお各キャパシタ(C1a~C1c、C2a~C2c)は、性能向上のために、給電・受電コイルの前後に挿入された共振キャパシタである。 One end of the power receiving coil L2 a via capacitor C2 a, is connected to one input terminal of the rectifier circuit 127 a. The other end of the power receiving coil L2 a is connected to the other input ends of the rectifier circuit 127 a. One end of the power receiving coil L2 b via the capacitor C2 b, is connected to one input terminal of the rectifier circuit 127 b. The other end of the power receiving coil L2 b is connected to the other input ends of the rectifier circuit 127 b. One end of the power receiving coil L2 c via the capacitor C2 c, is connected to one input terminal of the rectifier circuit 127 c. The other end of the power receiving coil L2 c is connected to the other input end of the rectifier circuit 127 c . Each of the capacitors (C1 a to C1 c , C2 a to C2 c ) is a resonant capacitor inserted before and after the power feeding / receiving coil in order to improve performance.
 負荷変調回路116は、キャパシタC2aを介して受電コイルL2aに接続されており、負荷変調による無線信号Srを発信する。なお負荷変調回路116の駆動電力としては、第1系列における送電電力の一部が用いられるが、他の形態となっていても構わない。先述した通り、無線信号Srは給電装置111側の信号受信回路115によって受信される。これにより、給電装置111と受電装置112の間における無線給電に関する通信が可能である。 The load modulation circuit 116 is connected to the power receiving coil L2 a through capacitor C2 a, it transmits a radio signal Sr due to load modulation. Note that as the driving power of the load modulation circuit 116, a part of the transmission power in the first series is used, but other forms may be used. As described above, the radio signal Sr is received by the signal receiving circuit 115 on the power feeding apparatus 111 side. Accordingly, communication related to wireless power feeding between the power feeding device 111 and the power receiving device 112 is possible.
 整流回路127aは、受電コイルL2aから送られてきた交流電力を直流電力に変換し、当該直流電力を出力端子102へ送出する。また整流回路127bは、受電コイルL2bから送られてきた交流電力を直流電力に変換し、当該直流電力を出力端子102へ送出する。また整流回路127cは、受電コイルL2cから送られてきた交流電力を直流電力に変換し、当該直流電力を出力端子102へ送出する。 The rectifier circuit 127 a converts AC power sent from the power receiving coil L < b > 2 a into DC power, and sends the DC power to the output terminal 102. The rectifier circuit 127 b converts the AC power sent from the power receiving coil L < b > 2 b into DC power, and sends the DC power to the output terminal 102. The rectifier circuit 127 c converts the AC power sent from the power receiving coil L2 c into DC power, and sends the DC power to the output terminal 102.
 出力端子102は、受電装置112を有した電気機器内の二次電池(不図示)に接続され、各整流回路(127a~127c)から受ける電力を合成して出力する。これにより、各整流回路(127a~127c)から送出される直流電力は、単一の出力端子102を介して当該二次電池に供給され、当該電気機器の駆動電力等として利用される。なお本実施形態では、出力端子102からの出力電力は二次電池へ供給されるようになっているが、当該出力電力の供給先等はこのような形態に限られない。 The output terminal 102 is connected to the secondary battery in an electrical equipment having a power receiving device 112 (not shown), and outputs the synthesized power received from each rectifier circuit (127 a ~ 127 c). As a result, the DC power sent from each of the rectifier circuits (127 a to 127 c ) is supplied to the secondary battery via the single output terminal 102, and is used as drive power for the electric device. In the present embodiment, the output power from the output terminal 102 is supplied to the secondary battery, but the supply destination of the output power is not limited to such a form.
 図5は、給電装置111における各給電コイル(L1a~L1c)付近の構造(実装形態)を例示している。各給電コイル(L1a~L1c)は、銅線を同じ方向に巻いて形成した円形コイルであり、磁性体板504の表面に貼り付けられることにより、略同一平面上に配置されている。なお各給電コイル(L1a~L1c)は、L1a、L1b、L1cの順に並んでおり、給電コイルL1aとL1bがほぼ隣接するように接近し、かつ、給電コイルL1bとL1cがほぼ隣接するように接近するように配置されている。また各給電コイル(L1a~L1c)の両端は、回路基板503に設けられた配線パターン(P511、P512、P521、P522、P531、P532)に半田付け接続されている。 FIG. 5 illustrates a structure (mounting form) in the vicinity of each of the power supply coils (L1 a to L1 c ) in the power supply apparatus 111. Each of the feeding coils (L1 a to L1 c ) is a circular coil formed by winding a copper wire in the same direction, and is disposed on substantially the same plane by being attached to the surface of the magnetic plate 504. The feeding coils (L1 a to L1 c ) are arranged in the order of L1 a , L1 b , L1 c , the feeding coils L1 a and L1 b are close to each other and are close to each other, and the feeding coil L1 b L1 c are arranged to approach substantially as adjacent. Further, both ends of each of the power feeding coils (L1 a to L1 c ) are soldered and connected to wiring patterns (P511, P512, P521, P522, P531, and P532) provided on the circuit board 503.
 配線パターンP511は、スイッチ素子S3aとS4aの間に繋がり、配線パターンP512は、キャパシタC1aの一端に繋がっている。配線パターンP521は、スイッチ素子S3bとS4bの間に繋がり、配線パターンP522は、キャパシタC1bの一端に繋がっている。配線パターンP531は、スイッチ素子S3cとS4cの間に繋がり、配線パターンP532は、キャパシタC1cの一端に繋がっている。 Wiring patterns P511 leads between the switch element S3 a and S4 a, the wiring pattern P512 is connected to one end of the capacitor C1 a. Wiring patterns P521 leads between the switch element S3 b and S4 b, the wiring pattern P522 is connected to one end of the capacitor C1 b. Wiring patterns P531 leads between the switch element S3 c and S4 c, the wiring patterns P532 is connected to one end of the capacitor C1 c.
 また各配線パターン(P511、P512、P521、P522、P531、P532)は回路基板503の表面側に配置されている。第1実施形態の場合と異なり、配線パターン同士の立体交差は採用されていない。 Further, each wiring pattern (P511, P512, P521, P522, P531, P532) is arranged on the surface side of the circuit board 503. Unlike the case of the first embodiment, the three-dimensional intersection between the wiring patterns is not adopted.
 また各受電コイル(L2a~L2c)は、先述したように受電装置112と給電装置111が位置決めされた状態で、同系列の給電コイルと向き合うように略同一平面上に配置されている。 Each of the power receiving coils (L2 a to L2 c ) is arranged on substantially the same plane so as to face the same series of power feeding coils in a state where the power receiving device 112 and the power feeding device 111 are positioned as described above.
 ワイヤレス給電システム1において給電が行われるときには、制御回路113は、各インバータ回路(114a~114c)が駆動するように各制御信号(G1~G4)を出力する。これにより第1系列~第3系列の各々において、受電コイルは、給電コイルが発生させる交流磁場によって(つまり電磁誘導によって)起電力が生じ、交流電力を発生させる。すなわち給電コイルから受電コイルへ、相互誘導磁界結合により電力が伝達される。このようにして、給電装置111から受電装置112への無線給電が実現される。 When the power feeding is performed in the wireless power supply system 1, the control circuit 113, the inverter circuits (114 a ~ 114 c) outputs the control signals (G1 ~ G4) to drive. As a result, in each of the first to third series, the power receiving coil generates an electromotive force by an AC magnetic field generated by the feeding coil (that is, by electromagnetic induction), and generates AC power. That is, electric power is transmitted from the feeding coil to the receiving coil by mutual induction magnetic field coupling. In this manner, wireless power feeding from the power feeding device 111 to the power receiving device 112 is realized.
 また給電装置111から受電装置112への無線給電が行われていない待機時において、信号受信回路115は、負荷変調回路116との通信を用いて既定の給電開始条件が満たされたか否かを監視する。当該給電開始条件は、給電開始の準備が整ったら満たされるように予め設定された条件である。例えば、給電対象となる(Qi規格の)受電装置が適切に位置決めされ、かつ、通信結果に基づいて給電条件が確定したときに、給電開始条件が満たされる。 In a standby state where the wireless power supply from the power supply apparatus 111 to the power reception apparatus 112 is not performed, the signal reception circuit 115 monitors whether or not a predetermined power supply start condition is satisfied using communication with the load modulation circuit 116. To do. The power supply start condition is a condition set in advance so as to be satisfied when preparation for power supply start is completed. For example, the power supply start condition is satisfied when a power receiving device (Qi standard) to be supplied is appropriately positioned and the power supply condition is determined based on the communication result.
 なお給電装置111は上述した監視(負荷変調回路116との通信)を可能とするため、待機時においても、インバータ回路114a(信号受信回路115が接続されている第1系列のインバータ回路)をある程度駆動させる必要がある。そこで待機時において、制御回路113は、このようにインバータ回路114aを駆動させるための各制御信号(G1~G4)を送出する。 Note for the power supply device 111 that enables the above-mentioned monitor (communication with the load modulation circuit 116), even during standby, the inverter circuit 114 a (inverter circuit of a first series signal receiving circuit 115 is connected) It needs to be driven to some extent. Therefore, in the standby, the control circuit 113 sends the control signals (G1 ~ G4) for thus driving the inverter circuit 114 a.
 但し待機時においては、スイッチ回路123が遮断状態とされることにより、第2系列と第3系列のインバータ回路(114b、114c)には制御信号(G1~G4)が送られず、これらのインバータ回路(114b、114c)は停止する。すなわち待機時において、給電装置111は、第1系列のインバータ回路114aを駆動させる一方、残りの2個のインバータ回路(114b、114c)を停止させる。これにより給電装置111は、インバータ回路の無駄な駆動を無くし、待機電力を出来るだけ抑えることが可能となっている。 However, in the standby state, by the switching circuit 123 is the cut-off state, the control signals (G1 ~ G4) is not sent to the inverter circuit of the second series and the third series (114 b, 114 c), these The inverter circuits (114 b and 114 c ) are stopped. That is, during standby, the power feeding device 111 drives the first series of inverter circuits 114 a while stopping the remaining two inverter circuits (114 b and 114 c ). As a result, the power feeding device 111 can eliminate unnecessary driving of the inverter circuit and suppress standby power as much as possible.
 そして給電開始条件が満たされると、給電装置111は、待機時の状態から通常の動作状態に移行する。すなわち給電装置111は、スイッチ回路123の遮断状態を解除させ、受電装置112への適切な無線給電が行われるように、全てのインバータ回路(114a~114c)を駆動させる。 When the power supply start condition is satisfied, the power supply apparatus 111 shifts from the standby state to the normal operation state. In other words, the power feeding device 111 releases the cutoff state of the switch circuit 123 and drives all the inverter circuits (114 a to 114 c ) so that appropriate wireless power feeding to the power receiving device 112 is performed.
 また第2実施形態のワイヤレス給電システム1も、第1実施形態の場合と同様に、安価で高出力を得ることが容易であるという第1の特長、および、不要磁界放射が抑えられるという第2の特長を有している。 The wireless power feeding system 1 of the second embodiment also has the first feature that it is easy to obtain a high output at a low cost, and the second feature that unnecessary magnetic field radiation is suppressed, as in the case of the first embodiment. It has the features of
 なお第2の特長に関して、第2実施形態の場合には、給電コイルL1aと給電コイルL1bが隣合っているとともに、給電コイルL1bと給電コイルL1cが隣合っている。そのため第2実施形態では、給電コイルL1aと給電コイルL1bにおける交流電流の方向が、常時互いに逆回りとされ、更に、給電コイルL1bと給電コイルL1cにおける交流電流の方向が、常時互いに逆回りとされている。 Note with respect to the second feature, in the case of the second embodiment, together with the power supply coil L1 a feeding coil L1 b are adjacent to each other, the feeding coil L1 b and the power supply coil L1 c are adjacent to each other. Therefore, in the second embodiment, the directions of the alternating currents in the feeding coil L1 a and the feeding coil L1 b are always opposite to each other, and the directions of the alternating currents in the feeding coil L1 b and the feeding coil L1 c are always mutually different. It is considered to be the reverse direction.
 すなわち、例えば左回りの方向(右回りの方向でも同様)に流れる電流を基準として、給電コイルL1aに流れる交流電流の波形と給電コイルL1bに流れる交流電流の波形が、互いに同期・逆位相の関係とされ、更に、給電コイルL1bに流れる交流電流の波形と給電コイルL1cに流れる交流電流の波形が、互いに同期・逆位相の関係とされている。 That is, for example, based on the current flowing in the counterclockwise direction (the same applies to the clockwise direction), the waveform of the alternating current flowing in the feeding coil L1 a and the waveform of the alternating current flowing in the feeding coil L1 b are synchronized and opposite in phase. Furthermore, the waveform of the alternating current flowing through the feeding coil L1 b and the waveform of the alternating current flowing through the feeding coil L1 c are in a relationship of synchronization and antiphase with each other.
 なお各給電コイル(L1a、L1b)が近接している部分(図5に示す近接部分CS1)において、各給電コイル(L1a、L1b)の交流電流の向きは、常時互いに略同一方向となる。また各給電コイル(L1b、L1c)が近接している部分(図5に示す近接部分CS2)において、各給電コイル(L1b、L1c)の交流電流の向きは、常時互いに略同一方向となる。 Note that in the portions where the feeding coils (L1 a , L1 b ) are close to each other (proximity portion CS1 shown in FIG. 5), the directions of the alternating currents of the feeding coils (L1 a , L1 b ) are always substantially the same direction. It becomes. Moreover, in the part (proximity part CS2 shown in FIG. 5) in which each feeding coil (L1 b , L1 c ) is close, the direction of the alternating current of each feeding coil (L1 b , L1 c ) is always substantially the same direction. It becomes.
 このように第2実施形態では、隣合う給電コイルのペアが複数組(ここでは、L1aとL1bのペア、およびL1bとL1cのペアの二組)存在しているが、全てのペアについて、交流電流の方向が常時互いに逆回りとされている。そのため不要磁界放射を極力抑えることが可能となっている。 As described above, in the second embodiment, there are a plurality of pairs of adjacent feeding coils (here, two pairs of L1 a and L1 b and L1 b and L1 c ). For the pair, the directions of the alternating currents are always opposite to each other. Therefore, unnecessary magnetic field radiation can be suppressed as much as possible.
3.その他
 以上に説明した通り、各実施形態の給電装置111は、第1系列から第N系列のN個の給電コイルを有し、第1系列から第N系列のN個の受電コイルを有する受電装置112に対して、無線給電を行う。より具体的には、給電装置111は前記N個の給電コイルの各々に交流電流を流し、各系列において前記給電コイルと前記受電コイルによる電磁誘導を生じさせることにより、前記無線給電を行う。なお第1実施形態の例ではN=2であり、第2実施形態の例ではN=3であるが、各実施形態に準じた構成を採用してNを4以上とすることも可能である。
3. Others As described above, the power feeding device 111 of each embodiment has N power supply coils from the first series to the Nth series, and has N power receiving coils from the first series to the Nth series. Wireless power feeding is performed on the 112. More specifically, the power feeding device 111 performs the wireless power feeding by causing an alternating current to flow through each of the N power feeding coils and causing electromagnetic induction by the power feeding coil and the power receiving coil in each series. Note that N = 2 in the example of the first embodiment and N = 3 in the example of the second embodiment, but it is also possible to adopt a configuration according to each embodiment and make N 4 or more. .
 更に給電装置111では、前記N個の給電コイルの各々は、略同一平面上に配置されており、隣合う給電コイル同士における交流電流の方向が、常時互いに逆回りとされる。そのため給電装置111によれば、安価で高出力なワイヤレス給電システムの実現を容易としながらも、不要磁界放射を抑えることが可能となっている。 Further, in the power supply device 111, each of the N power supply coils is arranged on substantially the same plane, and the directions of the alternating currents between adjacent power supply coils are always opposite to each other. Therefore, according to the power feeding device 111, it is possible to suppress unnecessary magnetic field radiation while facilitating the realization of an inexpensive and high-power wireless power feeding system.
 また各実施形態のワイヤレス給電システム1は、給電装置111と、第1系列から第N系列のN個の受電コイルを有する受電装置112と、を有し、受電装置112と給電装置111が位置決めされた状態で前記無線給電を行う。そして前記N個の受電コイルの各々は、前記位置決めされた状態で同系列の前記給電コイルと向き合うように、略同一平面上に配置されている。 In addition, the wireless power feeding system 1 of each embodiment includes a power feeding device 111 and a power receiving device 112 having N power receiving coils from the first series to the Nth series, and the power receiving device 112 and the power feeding device 111 are positioned. The wireless power supply is performed in a state where Each of the N power receiving coils is disposed on substantially the same plane so as to face the power supply coils of the same series in the positioned state.
 より具体的には、給電装置111は、第1系列から第N系列のN個のインバータ回路と、前記N個のインバータ回路の各々の動作を制御する制御回路113と、を備え、前記N個のインバータ回路の各々が、直流電力を交流電力に変換し、該交流電力を同系列の前記給電コイルへ送出するように形成されている。 More specifically, the power feeding apparatus 111 includes N inverter circuits from the first series to the Nth series, and a control circuit 113 that controls the operation of each of the N inverter circuits. Each of the inverter circuits is configured to convert DC power into AC power and send the AC power to the power supply coils of the same series.
 また受電装置112は、第1系列から第N系列のN個の整流回路と、出力端子102と、を備え、前記N個の整流回路の各々が、同系列の前記受電コイルから受ける交流電力を直流電力に変換し、該直流電力を前記出力端子へ送出するように形成されている。 The power receiving device 112 further includes N rectifier circuits from the first series to the Nth series and an output terminal 102, and each of the N rectifier circuits receives AC power received from the power receiving coil of the same series. It is configured to convert to DC power and send the DC power to the output terminal.
 また各実施形態のワイヤレス給電システム1は、負荷変調により無線信号を送信する負荷変調回路116が受電装置112に、前記無線信号を受信する信号受信回路115が給電装置111に、それぞれ設けられ、負荷変調回路116と信号受信回路115の間で通信が行われる。これにより、給電装置111と受電装置112の間において、無線給電に関する情報伝送が可能となっている。また負荷変調回路116の個数および信号受信回路115の個数をそれぞれ1個としたことにより、構成の簡略化が図られている。 In the wireless power supply system 1 of each embodiment, a load modulation circuit 116 that transmits a radio signal by load modulation is provided in the power receiving apparatus 112, and a signal reception circuit 115 that receives the radio signal is provided in the power supply apparatus 111. Communication is performed between the modulation circuit 116 and the signal reception circuit 115. Accordingly, information transmission regarding wireless power feeding can be performed between the power feeding apparatus 111 and the power receiving apparatus 112. Further, the number of the load modulation circuits 116 and the number of the signal reception circuits 115 are one, thereby simplifying the configuration.
 また第2実施形態のワイヤレス給電システム1は、前記無線給電が行われていない待機時において、前記通信を用いて既定の給電開始条件が満たされたか否かを監視する。また信号受信回路115は、第K系列の前記給電コイルに接続されており、負荷変調回路116は、第K系列の前記受電コイルに接続されている。なお第2実施形態の例ではK=1であるが、Kは1~Nの任意とすることができる。 In addition, the wireless power feeding system 1 according to the second embodiment monitors whether or not a predetermined power feeding start condition is satisfied by using the communication during standby when the wireless power feeding is not performed. The signal receiving circuit 115 is connected to the power supply coil of the Kth series, and the load modulation circuit 116 is connected to the power reception coil of the Kth series. In the example of the second embodiment, K = 1, but K can be any number from 1 to N.
 そして第2実施形態の制御回路113は、前記待機時において、第K系列の前記インバータ回路を駆動させる一方、残りのN-1個の前記インバータ回路を停止させ、前記給電開始条件が満たされた場合に、前記N個のインバータ回路を全て駆動させる。これにより、待機電力を出来るだけ抑えられる。 Then, the control circuit 113 of the second embodiment drives the K-th series of inverter circuits at the time of standby, and stops the remaining N−1 inverter circuits, so that the power supply start condition is satisfied. In this case, all the N inverter circuits are driven. Thereby, standby power can be suppressed as much as possible.
 またワイヤレス給電システム1は、例えば携帯型の電気機器に好適である。この場合、当該電気機器は受電装置112および二次電池(出力端子102に接続される)を備え、当該二次電池に充電された電力を用いて駆動するように構成される。また給電装置111は、当該電気機器に対応した充電器に備えられる。この形態によれば、電気機器を充電器に近づけて(例えば電気機器を充電器の上に乗せて)当該電気機器内の二次電池を充電することが可能である。但しワイヤレス給電システム1の適用対象等は、このような形態に限られない。 The wireless power supply system 1 is suitable for portable electric devices, for example. In this case, the electrical device includes a power receiving device 112 and a secondary battery (connected to the output terminal 102), and is configured to be driven using electric power charged in the secondary battery. The power feeding device 111 is provided in a charger corresponding to the electric device. According to this aspect, it is possible to charge the secondary battery in the electric device by bringing the electric device close to the charger (for example, placing the electric device on the charger). However, the application target of the wireless power feeding system 1 is not limited to such a form.
 また本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。 In addition to the above-described embodiment, the configuration of the present invention can be variously modified without departing from the spirit of the invention. That is, the above-described embodiment is an example in all respects, and should be considered not restrictive. The technical scope of the present invention is shown not by the above description of the embodiment but by the scope of the claims, and it should be understood that all modifications within the meaning and scope equivalent to the scope of the claims are included. It is.
 本発明は、電磁誘導方式のワイヤレス給電システム等に利用可能である。 The present invention can be used for an electromagnetic induction type wireless power supply system or the like.
   1        ワイヤレス給電システム
   101      直流電源部
   102      出力端子
   111      給電装置
   112      受電装置
   113      制御回路
   114a~114c  インバータ回路
   115      信号受信回路
   116      負荷変調回路
   123      スイッチ回路
   127a~127c  整流回路
   303、503  回路基板
   304、504  磁性体板
   L1a~L1c    給電コイル
   L2a~L2c    受電コイル
 C1a~C1c、C2a~C2c、C3 キャパシタ
 S1a~S4a、S1b~S4b、S1c~S4c スイッチ素子
 P311、P312、P321、P322 配線パターン
 P511、P512、P521、P522、P531、P532 配線パターン
1 wireless power supply system 101 DC power supply 102 output 111 feeding apparatus 112 receiving apparatus 113 the control circuit 114 a ~ 114 c inverter circuit 115 signal receiving circuit 116 load modulator 123 switching circuits 127 a ~ 127 c rectifying circuit 303, 503 circuit board 304, 504 Magnetic plate L1 a to L1 c Feeding coil L2 a to L2 c Power receiving coil C1 a to C1 c , C2 a to C2 c , C3 Capacitors S1 a to S4 a , S1 b to S4 b , S1 c to S4 c switch element P311, P312, P321, P322 wiring pattern P511, P512, P521, P522, P531, P532 wiring pattern

Claims (5)

  1.  第1系列から第N系列(Nは2以上の整数)のN個の給電コイルを有し、
     第1系列から第N系列のN個の受電コイルを有する受電装置に対して、無線給電を行う給電装置であって、
     前記N個の給電コイルの各々に交流電流を流し、各系列において前記給電コイルと前記受電コイルによる電磁誘導を生じさせることにより、前記無線給電を行うものであり、
     前記N個の給電コイルの各々は、略同一平面上に配置されており、
     隣合う前記給電コイル同士における前記交流電流の方向を、常時互いに逆回りとすることを特徴とする給電装置。
    N feed coils of the first to Nth series (N is an integer of 2 or more),
    A power feeding device that performs wireless power feeding to a power receiving device having N power receiving coils of the first to Nth series,
    The wireless power feeding is performed by causing an alternating current to flow through each of the N feeding coils and causing electromagnetic induction by the feeding coil and the receiving coil in each series.
    Each of the N feeding coils is disposed on substantially the same plane,
    The power feeding device characterized in that the directions of the alternating currents in the adjacent power feeding coils are always opposite to each other.
  2.  請求項1に記載の給電装置と、
     第1系列から第N系列のN個の受電コイルを有する受電装置と、を有し、
     前記受電装置と前記給電装置が位置決めされた状態で前記無線給電を行うワイヤレス給電システムであって、
     前記N個の受電コイルの各々は、
     前記位置決めされた状態で同系列の前記給電コイルと向き合うように、略同一平面上に配置されていることを特徴とするワイヤレス給電システム。
    A power feeding device according to claim 1;
    A power receiving device having N power receiving coils of the first to Nth series,
    A wireless power feeding system that performs the wireless power feeding with the power receiving device and the power feeding device positioned,
    Each of the N power receiving coils is
    A wireless power feeding system, wherein the wireless power feeding system is arranged on substantially the same plane so as to face the power feeding coils of the same series in the positioned state.
  3.  前記給電装置は、
     第1系列から第N系列のN個のインバータ回路と、
     前記N個のインバータ回路の各々の動作を制御する制御回路と、を備え、
     前記N個のインバータ回路の各々が、直流電力を交流電力に変換し、該交流電力を同系列の前記給電コイルへ送出するように形成されており、
     前記受電装置は、
     第1系列から第N系列のN個の整流回路と、
     出力端子と、を備え、
     前記N個の整流回路の各々が、同系列の前記受電コイルから受ける交流電力を直流電力に変換し、該直流電力を前記出力端子へ送出するように形成されていることを特徴とする請求項2に記載のワイヤレス給電システム。
    The power supply device
    N inverter circuits from the first series to the N-th series;
    A control circuit for controlling the operation of each of the N inverter circuits,
    Each of the N inverter circuits is configured to convert DC power into AC power and send the AC power to the power supply coil of the same series,
    The power receiving device is:
    N rectifier circuits from the first series to the N-th series;
    An output terminal,
    Each of the N rectifier circuits is configured to convert AC power received from the power receiving coil of the same series into DC power and send the DC power to the output terminal. 2. The wireless power supply system according to 2.
  4.  負荷変調により無線信号を送信する負荷変調回路が前記受電装置に、前記無線信号を受信する信号受信回路が前記給電装置に、それぞれ設けられ、
     前記負荷変調回路と前記信号受信回路の間で通信が行われる請求項3に記載のワイヤレス給電システムであって、
     前記負荷変調回路の個数および前記信号受信回路の個数を、それぞれ1個としたことを特徴とするワイヤレス給電システム。
    A load modulation circuit for transmitting a radio signal by load modulation is provided in the power receiving device, and a signal receiving circuit for receiving the radio signal is provided in the power feeding device, respectively.
    The wireless power feeding system according to claim 3, wherein communication is performed between the load modulation circuit and the signal receiving circuit.
    A wireless power feeding system, wherein the number of the load modulation circuits and the number of the signal reception circuits are one each.
  5.  前記無線給電が行われていない待機時において、前記通信を用いて既定の給電開始条件が満たされたか否かを監視する請求項4に記載のワイヤレス給電システムであって、
     前記信号受信回路は、第K系列(Kは1~Nの何れか)の前記給電コイルに接続されており、
     前記負荷変調回路は、第K系列の前記受電コイルに接続されており、
     前記制御回路は、
     前記待機時において、第K系列の前記インバータ回路を駆動させる一方、残りのN-1個の前記インバータ回路を停止させ、
     前記給電開始条件が満たされた場合に、
     前記N個のインバータ回路を全て駆動させることを特徴とするワイヤレス給電システム。
    The wireless power feeding system according to claim 4, wherein during standby when the wireless power feeding is not performed, the communication is used to monitor whether a predetermined power feeding start condition is satisfied,
    The signal receiving circuit is connected to the feeding coil of the Kth series (K is any one of 1 to N),
    The load modulation circuit is connected to the power receiving coil of the Kth series,
    The control circuit includes:
    In the standby time, the inverter circuit of the K-th series is driven, while the remaining N−1 inverter circuits are stopped,
    When the power supply start condition is satisfied,
    A wireless power feeding system that drives all of the N inverter circuits.
PCT/JP2013/078130 2012-10-30 2013-10-17 Power feeding device and wireless power feeding system WO2014069239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012238916 2012-10-30
JP2012-238916 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014069239A1 true WO2014069239A1 (en) 2014-05-08

Family

ID=50627152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078130 WO2014069239A1 (en) 2012-10-30 2013-10-17 Power feeding device and wireless power feeding system

Country Status (2)

Country Link
TW (1) TW201429110A (en)
WO (1) WO2014069239A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001692A (en) * 2014-06-12 2016-01-07 株式会社デンソー Structure for arrangement of pad for power transmission and non-contact power transmission system
WO2016135893A1 (en) * 2015-02-25 2016-09-01 株式会社 東芝 Control device, power transmission device, power reception device, wireless power transmission device, and control method
EP3654490A1 (en) * 2015-11-11 2020-05-20 Daihen Corporation Contactless power transmission system
KR20200136083A (en) * 2019-05-27 2020-12-07 삼성전자주식회사 Display apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164525A1 (en) * 2016-03-22 2017-09-28 엘지이노텍(주) Wireless charging system and device therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277356A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
JPH06277357A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
JPH06277358A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Feed device for electrical drive means on movable body
JPH08149723A (en) * 1994-11-21 1996-06-07 Tdk Corp Noncontact power transmitter
JPH08194443A (en) * 1995-01-17 1996-07-30 Kensuke Hasegawa Stereoscopic display device
JP2000215282A (en) * 1999-01-21 2000-08-04 Denso Corp Transmission/reception device for id tag
JP2008259392A (en) * 2007-03-09 2008-10-23 Mitsubishi Heavy Ind Ltd Power supply system
JP2010088143A (en) * 2008-09-29 2010-04-15 Murata Mfg Co Ltd Non-contact power reception circuit and non-contact power transmission system
WO2011118404A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Power-feed device
WO2011122348A1 (en) * 2010-03-30 2011-10-06 パナソニック電工 株式会社 Wireless power supply system
JP2012196031A (en) * 2011-03-16 2012-10-11 Hitachi Consumer Electronics Co Ltd Non-contact power transmission system, power reception device, and power transmission device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277356A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
JPH06277357A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Competition game device
JPH06277358A (en) * 1993-03-29 1994-10-04 Etou Denki Kk Feed device for electrical drive means on movable body
JPH08149723A (en) * 1994-11-21 1996-06-07 Tdk Corp Noncontact power transmitter
JPH08194443A (en) * 1995-01-17 1996-07-30 Kensuke Hasegawa Stereoscopic display device
JP2000215282A (en) * 1999-01-21 2000-08-04 Denso Corp Transmission/reception device for id tag
JP2008259392A (en) * 2007-03-09 2008-10-23 Mitsubishi Heavy Ind Ltd Power supply system
JP2010088143A (en) * 2008-09-29 2010-04-15 Murata Mfg Co Ltd Non-contact power reception circuit and non-contact power transmission system
WO2011118404A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Power-feed device
JP2011200052A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Power supply device
WO2011122348A1 (en) * 2010-03-30 2011-10-06 パナソニック電工 株式会社 Wireless power supply system
JP2012196031A (en) * 2011-03-16 2012-10-11 Hitachi Consumer Electronics Co Ltd Non-contact power transmission system, power reception device, and power transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001692A (en) * 2014-06-12 2016-01-07 株式会社デンソー Structure for arrangement of pad for power transmission and non-contact power transmission system
WO2016135893A1 (en) * 2015-02-25 2016-09-01 株式会社 東芝 Control device, power transmission device, power reception device, wireless power transmission device, and control method
JPWO2016135893A1 (en) * 2015-02-25 2017-04-27 株式会社東芝 Control device, power transmission device, power reception device, wireless power transmission device, and control method
EP3654490A1 (en) * 2015-11-11 2020-05-20 Daihen Corporation Contactless power transmission system
KR20200136083A (en) * 2019-05-27 2020-12-07 삼성전자주식회사 Display apparatus
EP3958436A4 (en) * 2019-05-27 2022-06-29 Samsung Electronics Co., Ltd. Display device
KR102650122B1 (en) 2019-05-27 2024-03-21 삼성전자주식회사 Display apparatus

Also Published As

Publication number Publication date
TW201429110A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
KR102457541B1 (en) Coil module, wireless charging and discharging device, receiving device, system and terminal
JP6038385B2 (en) Dual mode choke coil, high-frequency filter using the same, in-vehicle motor integrated electric power steering, and in-vehicle charging device
WO2014069239A1 (en) Power feeding device and wireless power feeding system
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
JP5550785B2 (en) Circuit of contactless inductive power transmission system
JP6168193B2 (en) Electronic equipment
JP5952091B2 (en) Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical equipment
US9682631B2 (en) Non-contact electricity supply device
WO2017156499A1 (en) Bi-plane wireless power transmission pad
US20120049994A1 (en) Inductor core for power factor correction circuit
JP7319352B2 (en) Apparatus and method for wireless power transfer
CN106575927B (en) Power conversion device
WO2016046933A1 (en) Power receiving device and power transmission system
JP5896161B2 (en) Non-contact transformer system
JP6652841B2 (en) Non-contact power receiving device
WO2008080405A1 (en) A headset with a rechargeable battery, a base unit adapted to charge a rechargeable battery and a communications unit
JP2014150698A (en) Wireless power supply system
JP3910807B2 (en) Power supply
JP6133153B2 (en) Electromagnetic field suppressor and wireless power transmission system using the same
CN208369472U (en) A kind of dual output power adapter
EP4060862A1 (en) Wireless charge receiving apparatus, transmission apparatus, and wireless charging system
JP6569799B2 (en) Power receiver and power transmission system
Hu et al. A Planar Orthogonal Receiver for Multi-degree of Freedom Wireless Power Transfer
JP2020167832A (en) Transmission coil for wireless electric power supply, transmission antenna, wireless power transmission device, and charger
JP2016185041A (en) Transmission device and power reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP