WO2014057924A1 - Transmission apparatus, reception apparatus, transmission method, reception method and chips - Google Patents

Transmission apparatus, reception apparatus, transmission method, reception method and chips Download PDF

Info

Publication number
WO2014057924A1
WO2014057924A1 PCT/JP2013/077307 JP2013077307W WO2014057924A1 WO 2014057924 A1 WO2014057924 A1 WO 2014057924A1 JP 2013077307 W JP2013077307 W JP 2013077307W WO 2014057924 A1 WO2014057924 A1 WO 2014057924A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ofdm
transmission
pilot signal
pilot
Prior art date
Application number
PCT/JP2013/077307
Other languages
French (fr)
Japanese (ja)
Inventor
慎悟 朝倉
研一 村山
誠 田口
拓也 蔀
澁谷 一彦
Original Assignee
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本放送協会 filed Critical 日本放送協会
Publication of WO2014057924A1 publication Critical patent/WO2014057924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a transmission device, a reception device, a transmission method, a reception method, and a chip that transmit an OFDM (Orthogonal Frequency Division Multiplexing) signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • high-definition broadcasting (or multiple standard-definition broadcasting) for fixed receivers is realized by ISDB-T (Integrated Services Digital Broadcasting-Terrestrial), which is a terrestrial digital broadcasting system.
  • ISDB-T Integrated Services Digital Broadcasting-Terrestrial
  • 3D high-definition broadcasting and super high-definition with 16 times the resolution of high-definition instead of conventional high-definition. Therefore, the required C / N reduction by the data capacity expansion and the error correction technique is a problem.
  • MIMO Multi Input Multi Output
  • the interference wave component cannot be removed by a filter or the like because it is the same channel.
  • the current terrestrial digital broadcasting uses the UHF band nationwide, and if the UHF band is used in broadcasting by other systems such as the next generation terrestrial digital broadcasting system, the same channel interference between both broadcasts is a problem. Become.
  • pilot signals are inserted at the same frequency interval in an ISDB-T OFDM frame and another OFDM frame, the pilot signal continues to receive interference.
  • the pilot signal receives interference the pilot signal of the interference wave is recognized as the pilot signal of the desired wave and is equalized as a false multipath, so that transmission characteristics such as bit error rate (BER) are deteriorated.
  • BER bit error rate
  • the first feature is that a mapping unit that generates a carrier modulation signal by mapping a transmission signal to an IQ plane according to a predetermined modulation scheme for each subcarrier, and insertion and reverse of a pilot signal with respect to the carrier modulation signal
  • a transmission apparatus comprising: an output processing unit that generates an OFDM signal by performing a Fourier transform process and adding a guard interval; and a transmission timing adjustment unit that adjusts a transmission timing of the OFDM signal.
  • the OFDM symbol length of the first OFDM signal, the arrangement of the pilot signal, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, the arrangement of the pilot signal, And the pilot signal code sequence, and the transmission timing And a transmission timing of the pilot signal included in the first OFDM signal so that a transmission timing of the pilot signal included in the first OFDM signal does not match a transmission timing of the pilot signal included in the second OFDM signal.
  • the gist is to provide a time difference with the transmission timing of the pilot signal included in the second OFDM signal.
  • a second feature is a receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus, and a guard interval for the OFDM signal ,
  • An orthogonal demodulation process and a Fourier transform process to extract a pilot signal and an input processing unit for extracting a pilot signal, the OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of the pilot signal, and the pilot signal Is the same as the OFDM symbol length of the second OFDM signal generated by the second transmitter, the arrangement of the pilot signal, and the code sequence of the pilot signal, and the transmission timing of the pilot signal included in the first OFDM signal Does not match the transmission timing of the pilot signal included in the second OFDM signal Sea urchin, and summarized in that a time difference is provided between the transmission timing of the pilot signal included in the first 2OFDM signal transmission timing of the pilot signals included in the 1OFDM signal.
  • a third feature is a transmission method applied to a transmission apparatus, wherein the carrier modulation signal is generated by mapping a transmission signal to an IQ plane according to a predetermined modulation method for each subcarrier, and the carrier modulation Step B for generating an OFDM signal by inserting a pilot signal, inverse Fourier transform processing, and addition of a guard interval to the signal, and Step C for adjusting the transmission timing of the OFDM signal,
  • the OFDM symbol length of the first OFDM signal generated by the apparatus, the arrangement of the pilot signal, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, and the pilot signal And the code sequence of the pilot signal,
  • the transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal do not coincide with the transmission timing of the pilot signal included in the second OFDM signal.
  • the gist is to include a step of providing a time difference with the transmission timing of the pilot signal included in
  • a fourth feature is a reception method configured to be able to receive an OFDM signal transmitted from a first transmission device or a second transmission device different from the first transmission device, and a guard interval for the OFDM signal.
  • Quadrature demodulation processing, and Fourier transform processing to extract a pilot signal and includes a step A for extracting the pilot signal, the OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of the pilot signal, and the pilot signal
  • the code sequence is the same as the OFDM symbol length of the second OFDM signal generated by the second transmission device, the arrangement of the pilot signal, and the code sequence of the pilot signal, and the transmission timing of the pilot signal included in the first OFDM signal;
  • the transmission timing of the pilot signal included in the second OFDM signal does not match Sea urchin, and summarized in that a time difference is provided between the transmission timing of the pilot signal included in the first 2OFDM signal transmission timing of the pilot signals included in the 1OFDM signal.
  • a fifth feature is a chip mounted on a receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus,
  • an input processing unit for extracting a pilot signal by performing guard interval removal, quadrature demodulation processing, and Fourier transform processing is provided, and the OFDM symbol length of the first OFDM signal generated by the first transmission device, the pilot signal
  • the arrangement and the code sequence of the pilot signal are the same as the OFDM symbol length of the second OFDM signal generated by the second transmission device, the arrangement of the pilot signal, and the code sequence of the pilot signal, and are included in the first OFDM signal.
  • Transmission timing of pilot signal and transmission timing of pilot signal included in the second OFDM signal As grayed and does not match, it is summarized in that a time difference between a transmission timing of the pilot signal included in the first 2OFDM signal and the transmission timing of the pilot signal included in the first 1OFDM signal is provided.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 1 of FIG.
  • FIG. 3 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 2 of FIG.
  • FIG. 4 is a block diagram illustrating a configuration of a receiving device corresponding to the transmitting device 1 of FIG.
  • FIG. 5 is a diagram for explaining processing in the transmission path response calculation unit of the receiving apparatus.
  • FIG. 6 is a diagram for explaining the operation of the transmission timing adjustment unit in the transmission apparatus according to the embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 1 of FIG.
  • FIG. 3 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 2 of FIG.
  • FIG. 4 is a block diagram illustrating
  • FIG. 7 is a diagram illustrating a simulation result by the transmission apparatus according to the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a case where the transmission apparatus 2 of FIG. 1 transmits a signal obtained by time-division multiplexing OFDM signals of different modes.
  • the transmission apparatus aims to suppress co-channel interference between a plurality of OFDM signals having the same symbol length, pilot signal arrangement, and pilot signal code sequence, and different data signals.
  • the first transmission device generates the first OFDM signal based on the first data signal
  • the second transmission device different from the first transmission device is based on the second data signal different from the first data signal.
  • the second OFDM signal is generated.
  • the receiving device is configured to receive an OFDM signal transmitted from the first transmitting device or the second transmitting device.
  • the combination of the first OFDM signal and the second OFDM signal includes (1) OFDM signals transmitted by the ISDB-T system, (2) Next-generation digital terrestrial broadcasting system (hereinafter referred to as “next-generation system”) ), And (3) OFDM signals transmitted by the next generation method and OFDM signals transmitted by the ISDB-T method.
  • Next-generation system Next-generation digital terrestrial broadcasting system
  • (3) co-channel interference in the OFDM signal transmitted by the next generation method and the OFDM signal transmitted by the ISDB-T method will be described as an example.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to the first embodiment of the present invention, in which a transmission apparatus 1 that transmits an OFDM signal by a next generation method and a transmission that transmits an OFDM signal by an ISDB-T system Device 2 is shown.
  • a transmission apparatus 1 that transmits an OFDM signal by a next generation method and a transmission that transmits an OFDM signal by an ISDB-T system Device 2 is shown.
  • FIG. 1 shows a transmission apparatus 1 that performs polarization MIMO transmission, which is assumed as one mode of the next generation method, but the transmission method of the next generation method is not limited to this.
  • the transmission apparatus 1 includes an error correction coding unit 11, a bit interleaving unit 12, a mapping unit 13, a time interleaving unit 14, a frequency interleaving unit 15, and an output processing unit 16 (16- 1 and 16-2), a transmission timing adjustment unit 17 (17-1 and 17-2), and a transmission antenna 18 (18-1 and 18-2).
  • the bit interleaving unit 12, the time interleaving unit 14, and the frequency interleaving unit 15 are provided in order to perform the interleaving process, but these are not essential, and only one or two of them are included. The structure provided may be sufficient.
  • the transmission device 1 transmits an OFDM signal via a plurality of transmission antennas 18. In the present embodiment, the number of transmission antennas is two.
  • only the transmission device 1 has the transmission timing adjustment unit 17, but only the transmission device 2 may have the transmission timing adjustment unit, and the transmission device 1 and the transmission device 2 each have a transmission timing. It is good also as a structure which has an adjustment part.
  • the error correction encoding unit 11 generates an error correction code by encoding an input transmission signal using a predetermined error correction method so that a transmission error can be corrected on the receiving side, and outputs the error correction code to the bit interleaving unit 12 .
  • the error correction code is, for example, a BCH code or an LDPC code.
  • the bit interleaving unit 12 rearranges each bit of the error correction code generated by the error correction encoding unit 11 and outputs it to the mapping unit 13.
  • the mapping unit 13 performs mapping on the IQ plane of the data rearranged by the bit interleaving unit 12 as m bits / symbol, and generates a carrier modulation signal (carrier symbol) that has been subjected to carrier modulation in accordance with the multilevel modulation scheme. Generate and output to the time interleave unit 14.
  • the time interleaving unit 14 rearranges the order of the carrier modulation signals generated by the mapping unit 13 in the time direction and outputs the rearranged signals to the frequency interleaving unit 15.
  • the frequency interleaving unit 15 rearranges the order of the carrier modulation signals interleaved in the time direction by the time interleaving unit 14 between the frequency direction and the transmission antennas, and generates interleaved data for each transmission antenna 18 for output.
  • the data is output to the processing unit 16.
  • the frequency interleaving unit 15 When the number of transmission antennas 18 is two, the frequency interleaving unit 15 generates two systems of signals for the output processing units 16-1 and 16-2.
  • the transmission apparatus 1 includes two frequency interleaving units 15, one frequency interleaving unit 15 generates a signal for the output processing unit 16-1, and the other frequency interleaving unit 15 is used for the output processing unit 16-2. A signal may be generated.
  • the output processing unit 16 generates an OFDM signal obtained by adding a guard interval to a signal obtained by inserting a pilot signal or the like into the signal generated by the frequency interleaving unit 15 and performing inverse Fourier transform.
  • the output processing unit 16 includes an OFDM frame configuration unit 161 (161-1 and 161-2), an IFFT (Inverse Fast Fourier Transform) unit 162 (162-1 and 162-2). 2) and a GI (Guard interval) adding unit 163 (163-1 and 163-2).
  • the OFDM frame configuration unit 161 inserts a pilot signal (SP signal, CP signal), a TMCC signal indicating control information, and an AC signal indicating additional information into the signal generated by the frequency interleaving unit 15, and sets all carriers to 1 OFDM.
  • a pilot signal SP signal, CP signal
  • TMCC signal indicating control information
  • AC signal AC signal indicating additional information
  • an OFDM frame is composed of a predetermined number of OFDM symbol blocks, and is output to IFFT section 162.
  • the IFFT unit 162 performs an IFFT process on the OFDM symbol generated by the OFDM frame configuration unit 161 to generate a time-domain effective symbol signal, and outputs it to the GI adding unit 163.
  • GI adding section 163 inserts a guard interval obtained by copying the latter half of the effective symbol signal at the beginning of the effective symbol signal generated by IFFT section 162, and generates an OFDM signal subjected to orthogonal modulation processing and D / A conversion To do.
  • a guard interval ratio (GIR) representing a ratio of the guard interval length to the effective symbol length is set to 1/8, for example.
  • the transmission timing adjustment unit 17 adjusts the transmission timing of the OFDM signal generated by the GI addition unit 163 and transmits it to the transmission station 3. Details of the transmission timing adjustment unit 17 will be described later.
  • the transmitting station 3 performs MIMO transmission by space division multiplexing (SDM) via the transmitting antennas 18-1 and 18-2.
  • SDM space division multiplexing
  • the transmission antenna 18 is a horizontally polarized antenna and a vertically polarized antenna, or a right-handed circularly polarized antenna and a left-handed circularly polarized antenna. is there.
  • FIG. 2 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 1.
  • the right direction is the frequency direction (carrier direction), and the downward direction is the time direction (symbol direction).
  • a circle with x means a null pilot signal with no signal, and a double circle means a pilot signal.
  • Others mean non-pilot signals such as data signals and control signals.
  • the transmission apparatus 1 transmits an OFDM signal having a pilot pattern shown in FIG. 2A via one transmission antenna 18 and transmits an OFDM signal having a pilot pattern shown in FIG. 2B via the other transmission antenna 18. Send.
  • the transmission apparatus 2 includes an error correction encoding unit 21, a bit interleaving unit 22, a mapping unit 23, a time interleaving unit 24, a frequency interleaving unit 25, an output processing unit 26, A transmission antenna 27.
  • the bit interleaving unit 22, the time interleaving unit 24, and the frequency interleaving unit 25 are not essential, and may be configured to include only one or two of them.
  • the transmission device 2 is different from the transmission device 1 in that it has only one output system, and therefore includes only one output processing unit 26 and a transmission antenna 27 and does not include a transmission timing adjustment unit. Since other points are the same as those of the transmission device 1, the description thereof is omitted.
  • FIG. 3 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 2.
  • a double circle signifies a pilot signal, and the other signifies a non-pilot signal such as a data signal or a control signal.
  • pilot signals are inserted once every 12 carriers in the frequency direction (carrier direction) and once every 4 symbols in the time direction (symbol direction).
  • the insertion interval in the frequency direction when the pilot signal is interpolated in the time direction is 3 carriers.
  • FIG. 4 is a block diagram illustrating a configuration of a receiving device corresponding to the transmitting device 1.
  • the receiving device 4 includes a receiving antenna 41 (41-1 and 41-2), an input processing unit 42 (42-1 and 42-2), a transmission path response calculating unit 43, a MIMO A detection unit (transmission signal estimation unit) 44, a first frequency deinterleave unit 45, a noise variance calculation unit 46, a second frequency deinterleave unit 47, a likelihood ratio calculation unit 48, a time deinterleave unit 49, A bit deinterleaving unit 50 and an error correction code decoding unit 51.
  • the receiving device 4 does not need to include the bit deinterleaving unit 50 when the transmitting device 1 does not include the bit interleaving unit 12, and the time deinterleaving unit when the transmitting device 1 does not include the time interleaving unit 14. 49 does not need to be provided, and when the transmission apparatus 1 does not include the frequency interleave unit 15, it is not necessary to include the first frequency deinterleave unit 45 and the second frequency deinterleave unit 47.
  • the input processing unit 42 (42-1 and 42-2) receives the OFDM signal transmitted from the transmission device 1 corresponding to the reception device 4 via the reception antenna 41 (41-1 and 41-2), The received OFDM signal is subjected to orthogonal demodulation processing and Fourier transform processing to generate a complex baseband signal.
  • the input processing unit 42 includes a GI removal unit 421 (421-1 and 421-2), a Fourier transform unit 422 (4222-1 and 422-2), and a pilot signal extraction unit 423 (423-1 and 423-2). And comprising.
  • the GI removal unit 421 generates a baseband signal by performing orthogonal demodulation processing on the received OFDM signal, and generates a digital signal by A / D conversion. Subsequently, the GI removal unit 421 extracts the effective symbol signal by removing the guard interval. Then, the effective symbol signal is output to Fourier transform section 422.
  • the Fourier transform unit 422 performs FFT (Fast Fourier Transform) processing on the effective symbol signal extracted by the GI removal unit 421 to generate complex baseband signals y i1 and y i2 in the frequency domain. Then, complex baseband signals y i1 and y i2 are output to pilot signal extraction section 423 and MIMO detection section 44.
  • the Fourier transform unit 422-1 generates the complex baseband signal y i1 by performing an FFT process on the OFDM signal received from the reception antenna 41-1, and outputs the complex baseband signal y i1 to the pilot signal extraction unit 423-1 and the MIMO detection unit 44. To do.
  • FFT Fast Fourier Transform
  • the Fourier transform unit 422-2 performs an FFT process on the OFDM signal received from the reception antenna 41-2 to generate a complex baseband signal y i2 and outputs the complex baseband signal y i2 to the pilot signal extraction unit 423-2 and the MIMO detection unit 44.
  • the pilot signal extraction unit 423 extracts a known pilot signal included in the complex baseband signals y i1 and y i2 generated by the Fourier transform unit 422. Then, the pilot signal is output to the transmission path response calculation unit 43.
  • the transmission path response calculation unit 43 calculates the transmission path response H i for each carrier from the delay profile of the pilot signal extracted by the pilot signal extraction unit 423, and outputs it to the MIMO detection unit 44.
  • FIG. 5 is a diagram for explaining the processing in the transmission path response calculation unit 43 of the reception device 4.
  • FIG. 5A shows a pilot signal for every three carriers obtained by accumulating OFDM signals for 8 symbols and linearly interpolating the amplitude response of the pilot signal in the time direction.
  • the transmission path response calculation unit 43 first performs inverse Fourier transform on the pilot signal for every three carriers to calculate a time-domain pilot signal.
  • the transmission path response calculation unit 43 arranges the interpolation filter F as shown in FIG. 5B, and extracts only the real signal that is not the return signal.
  • Time width F w of the interpolation filter F is represented by the effective symbol length T and the product of the guard interval ratio GIR of OFDM signals. If the delay time of the delay wave is smaller than F w it may be to equalize the multipath components.
  • the transmission line response calculation part 43 acquires the transmission line response for every carrier as shown in FIG.5 (c) by carrying out the Fourier transform again of the pilot signal extracted by the filter process. White circles represent interpolated transmission line responses.
  • the channel response H i of 2 ⁇ 2 MIMO transmission is It can be expressed as.
  • Each element h i11 , h i12 , h i21 , h i22 of the transmission line response H is a complex number.
  • h i11 represents the state of the transmission path from the transmission antenna 18-1 to the reception antenna 41-1
  • h i12 represents the state of the transmission path from the transmission antenna 18-2 to the reception antenna 41-1
  • h i21 represents transmission.
  • the state of the transmission path from the antenna 18-1 to the reception antenna 41-2 is represented
  • h i22 represents the state of the transmission path from the transmission antenna 18-2 to the reception antenna 41-2.
  • h i11 and h i22 are parallel transmission path components
  • h i12 and h i21 are interference components.
  • the MIMO detection unit 44 uses the complex baseband signals y i1 and y i2 generated by the Fourier transform unit 422 and the transmission path response H i calculated by the transmission path response calculation unit 43 to perform ZF (Zero Forcing),
  • ZF Zero Forcing
  • MMSE Minimum Mean Squared Error
  • the data streams received by the plurality of receiving antennas 41 are separated to generate the estimated values x ⁇ i1 and x ⁇ i2 of the transmission signals.
  • the estimated values x ⁇ i1 and x ⁇ i2 of the transmission signal are output to the first frequency deinterleave unit 45 and the noise variance calculation unit 46.
  • the first frequency deinterleaving unit 45 performs deinterleaving processing in the frequency direction on the estimated values x ⁇ i1 and x ⁇ i2 of the transmission signals generated by the MIMO detection unit 44. Then, estimated values x ⁇ i1 and x ⁇ i2 of the deinterleaved transmission signal are output to likelihood ratio calculation section 48.
  • the deinterleaving process in the frequency direction is a process for returning the data rearranged in the frequency direction by the frequency interleaving unit 15 of the transmission device 1 to the original order.
  • the noise variance calculation unit 46 calculates the noise variances ⁇ i1 2 and ⁇ i2 2 of the received OFDM signal using the estimated values x ⁇ i1 and x ⁇ i2 of the transmission signal generated by the MIMO detection unit 44. Then, the noise variances ⁇ i1 2 and ⁇ i2 2 are output to the second frequency deinterleave unit 47.
  • the second frequency deinterleaving unit 47 performs deinterleaving processing on the noise variances ⁇ i1 2 and ⁇ i2 2 calculated by the noise variance calculating unit 46.
  • the deinterleaved noise variances ⁇ i1 2 and ⁇ i2 2 are output to the likelihood ratio calculation unit 48.
  • the likelihood ratio calculation unit 48 estimates the transmission signals x ⁇ i1 and x ⁇ i2 deinterleaved by the first frequency deinterleaver 45 and the noise variance ⁇ i1 input from the second frequency deinterleaver 47. 2 and ⁇ i2 2 are used to calculate the likelihood ratio ⁇ of the received signal. Then, the likelihood ratio ⁇ is output to the time deinterleave unit 49. The likelihood ratio ⁇ is calculated for each bit of the error correction code and represents the probabilistic reliability information of the received signal.
  • the time deinterleaving unit 49 performs a deinterleaving process in the time direction on the likelihood ratio ⁇ calculated by the likelihood ratio calculating unit 48. Then, the likelihood ratio ⁇ that has been subjected to the deinterleaving process is output to the bit deinterleaving unit 50.
  • the deinterleaving process in the time direction is a process for returning the data rearranged in the time direction by the time interleaving unit 14 of the transmission apparatus 1 to the original order.
  • the bit deinterleaving unit 50 performs a deinterleaving process in the bit direction on the likelihood ratio ⁇ calculated by the time deinterleaving unit 49. Then, the likelihood ratio ⁇ subjected to the deinterleaving process is output to the error correction code decoding unit 51.
  • the deinterleaving process in the bit direction is a process for returning the data rearranged in the bit direction by the bit interleaving unit 12 of the transmission device 1 to the original order.
  • the error correction code decoding unit 51 decodes the error correction code using the likelihood ratio ⁇ deinterleaved by the bit deinterleaving unit 50, and outputs an estimated value of the bit transmitted from the transmission device 1.
  • the transmission timing adjustment unit 17 sets the delay difference from the interference wave so that the interference wave is located outside the interpolation filter, thereby suppressing the influence of the interference wave and improving the transmission characteristics.
  • FIG. 6 is a diagram for explaining the operation of the transmission timing adjustment unit 17 of the transmission device 1.
  • the transmission apparatus 1 uses the transmission timing adjustment unit 17 so that the OFDM signal transmitted from the transmission apparatus 1 does not match the timing of the pilot signal with the OFDM signal transmitted from the transmission apparatus 2.
  • Adjust the transmission timing By adjusting the time difference (delay difference) between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave) transmitted from the transmission apparatus 2, an interference wave is generated in the delay profile of the pilot signal. Can be adjusted.
  • FIG. 6B shows a delay profile in the pilot signal when the time difference between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave) transmitted from the transmission apparatus 2 is ⁇ . Show.
  • the receiving device 4 can calculate the transmission path response with high accuracy by the transmission path response calculation unit 43.
  • a time domain t in which the interpolation filter F is arranged within one OFDM symbol length is expressed by the following equation (1).
  • n is a period in the frequency direction when the pilot signal is interpolated in the time direction
  • k is an integer from 1 to n-1.
  • the time width F w of the interpolation filter F is expressed by the product of the guard interval ratio GIR of the effective symbol length T and OFDM signal of the OFDM signal.
  • the data carrier of the desired wave is the pilot of the interference wave regardless of the time ⁇ . It is affected by the signal. Since the pilot signal has periodicity in the time direction, the time difference ⁇ also has periodicity in the time direction.
  • a pilot signal has a higher power than a data signal (for example, boosted 4/3 times in the ISDB-T system), so how much energy of the pilot signal of the interference wave becomes the pilot signal of the desired wave.
  • the BER characteristic changes depending on whether the collision occurs.
  • FIG. 7 is a diagram showing a BER characteristic by simulation when the transmission timing is adjusted by the transmission device 1.
  • the horizontal axis represents the time difference ⁇ between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave, ISDB-T mode 3) transmitted from the transmission apparatus 2, and the vertical axis represents BER.
  • the time difference ⁇ is indicated by the number of FFT samples.
  • the FFT size is 8K (8192 samples), that is, the effective symbol length T of the OFDM signal is 8192 samples.
  • the GI ratio is 1/8, the desired wave carrier modulation scheme is 1024 QAM, the interference wave carrier modulation scheme is 64 QAM, the D / U ratio is 26.0 dB, and the C / N ratio is 29.0 dB.
  • the pattern shown in FIG. 2 was used as the pilot pattern of the desired wave, and the pattern shown in FIG. 3 was used as the pilot pattern of the interference wave.
  • the insertion interval n in the frequency direction when the pilot signal is interpolated in the time direction is 3 carriers. Under this condition, the range of the delay time ⁇ satisfying the equation (3) is expressed by the following equation (5).
  • FIG. 8 shows a case where the OFDM signal (interference wave) transmitted from the transmission apparatus 2 is a signal obtained by time division multiplexing of OFDM signals of different modes (mode 2 and mode 3) in the ISDB-T system. .
  • the OFDM symbol length is the same in mode 3, so that co-channel interference occurs. Therefore, even when the symbol lengths of only a part of the OFDM signal match in this way, by appropriately setting the time difference ⁇ as shown in FIG. 8B, the deterioration of transmission characteristics due to co-channel interference is suppressed. can do.
  • the transmission timing adjustment unit 17 uses the pilot length and the pilot signal arrangement, the pilot signal code sequences, and other OFDM signals having different data signals and the pilot signal. Since adjustment is performed so that the signal transmission timings do not coincide with each other, it is possible to suppress deterioration in transmission characteristics due to co-channel interference.
  • co-channel interference between the next-generation OFDM signal transmitted by the transmission apparatus 1 and the ISDB-T OFDM signal transmitted by the transmission apparatus 2 has been described.
  • the transmission timing adjustment unit provided in the transmission apparatus 1 adjusts the time difference between the OFDM signals, thereby causing the same channel interference. Deterioration of transmission characteristics can be suppressed.
  • a computer can be suitably used to function as a transmission device, and such a computer stores a program describing processing contents for realizing each function of the transmission device in a storage unit of the computer. It can be realized by reading and executing this program by the CPU of the computer.
  • a program for causing a computer to execute each process performed by the transmission device 1 and the reception device 4 may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured by a memory that stores a program for executing each process performed by the transmission device 1 and the reception device 4 and a processor that executes the program stored in the memory may be provided.
  • deterioration of transmission characteristics due to co-channel interference can be suppressed, which is useful for any application for transmitting OFDM signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Abstract

A transmission apparatus (1) comprises: an output processing unit (16) that generates an OFDM signal; and a transmission timing adjusting unit (17) that adjusts the transmission timing of the OFDM signal. The OFDM symbol length of a first OFDM signal generated by the transmission apparatus (1), the arrangement of a pilot signal and the code sequence of this pilot signal are the same as the OFDM symbol length of a second OFDM signal generated by a transmission apparatus (2), the arrangement of a pilot signal and the code sequence of this pilot signal, respectively. The transmission timing adjusting unit (17) establishes a temporal difference between the transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal such that the transmission timing of the pilot signal included in the first OFDM signal is not coincident with the transmission timing of the pilot signal included in the second OFDM signal.

Description

送信装置、受信装置、送信方法、受信方法及びチップTransmitting device, receiving device, transmitting method, receiving method, and chip
 本発明は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)信号を送信する送信装置、受信装置、送信方法、受信方法及びチップに関する。 The present invention relates to a transmission device, a reception device, a transmission method, a reception method, and a chip that transmit an OFDM (Orthogonal Frequency Division Multiplexing) signal.
 日本では地上デジタル放送方式であるISDB-T(Integrated Services Digital Broadcasting - Terrestrial)方式により、固定受信機向けにハイビジョン放送(又は複数標準画質放送)を実現している。次世代の地上デジタル放送方式では、従来のハイビジョンに変わり、3Dハイビジョン放送やハイビジョンの16倍の解像度を持つスーパーハイビジョンなど、さらに情報量の多いサービスを提供することが求められている。そのため、データ容量拡大や誤り訂正技術による所要C/N低減が課題となっている。 In Japan, high-definition broadcasting (or multiple standard-definition broadcasting) for fixed receivers is realized by ISDB-T (Integrated Services Digital Broadcasting-Terrestrial), which is a terrestrial digital broadcasting system. In the next-generation terrestrial digital broadcasting system, it is required to provide services with a larger amount of information such as 3D high-definition broadcasting and super high-definition with 16 times the resolution of high-definition instead of conventional high-definition. Therefore, the required C / N reduction by the data capacity expansion and the error correction technique is a problem.
 そこで、無線によるデータ伝送容量を拡大するための手法として、水平偏波及び垂直偏波を送受信アンテナに同時に用いる2×2の偏波MIMO伝送が提案されている(例えば、非特許文献1参照)。MIMO(Multi Input Multi Output)伝送は、OFDM変調方式と組み合わせて、マルチパスに対して高耐性の大容量伝送を実現することができる。 Therefore, as a technique for expanding the data transmission capacity by radio, 2 × 2 polarization MIMO transmission in which horizontal polarization and vertical polarization are simultaneously used for transmitting and receiving antennas has been proposed (for example, see Non-Patent Document 1). . MIMO (Multi Input Multi Output) transmission can be combined with an OFDM modulation method to realize large capacity transmission highly resistant to multipath.
 MIMO伝送により大容量伝送を実現することが可能になるが、希望波と同一チャンネルの干渉波が存在する場合には、同一チャンネルであることからフィルタなどで干渉波成分を除去することができない。例えば、現在の地上デジタル放送は全国でUHF帯を使用しており、次世代の地上デジタル放送方式などの他方式による放送においてもUHF帯を使用した場合、両放送間で同一チャンネル干渉が問題となる。 Although it is possible to realize large-capacity transmission by MIMO transmission, when an interference wave of the same channel as the desired wave exists, the interference wave component cannot be removed by a filter or the like because it is the same channel. For example, the current terrestrial digital broadcasting uses the UHF band nationwide, and if the UHF band is used in broadcasting by other systems such as the next generation terrestrial digital broadcasting system, the same channel interference between both broadcasts is a problem. Become.
 ISDB-T方式のOFDMフレームと他方式のOFDMフレームに同じ周波数間隔でパイロット信号が挿入されている場合には、パイロット信号が干渉を受け続けることとなる。パイロット信号が干渉を受けると、干渉波のパイロット信号が希望波のパイロット信号として認識され、偽のマルチパスとして等化されるため、ビット誤り率(BER)などの伝送特性が劣化する。 If pilot signals are inserted at the same frequency interval in an ISDB-T OFDM frame and another OFDM frame, the pilot signal continues to receive interference. When the pilot signal receives interference, the pilot signal of the interference wave is recognized as the pilot signal of the desired wave and is equalized as a false multipath, so that transmission characteristics such as bit error rate (BER) are deteriorated.
 第1の特徴は、送信信号をサブキャリアごとに所定の変調方式に応じてIQ平面へマッピングしてキャリア変調信号を生成するマッピング部と、前記キャリア変調信号に対して、パイロット信号の挿入、逆フーリエ変換処理及びガードインターバルの付加を行うことによって、OFDM信号を生成する出力処理部と、前記OFDM信号の送信タイミングを調整する送信タイミング調整部とを備える送信装置であって、前記送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記送信装置とは異なる他の送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、前記送信タイミング調整部は、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差を設けることを要旨とする。 The first feature is that a mapping unit that generates a carrier modulation signal by mapping a transmission signal to an IQ plane according to a predetermined modulation scheme for each subcarrier, and insertion and reverse of a pilot signal with respect to the carrier modulation signal A transmission apparatus comprising: an output processing unit that generates an OFDM signal by performing a Fourier transform process and adding a guard interval; and a transmission timing adjustment unit that adjusts a transmission timing of the OFDM signal. The OFDM symbol length of the first OFDM signal, the arrangement of the pilot signal, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, the arrangement of the pilot signal, And the pilot signal code sequence, and the transmission timing And a transmission timing of the pilot signal included in the first OFDM signal so that a transmission timing of the pilot signal included in the first OFDM signal does not match a transmission timing of the pilot signal included in the second OFDM signal. The gist is to provide a time difference with the transmission timing of the pilot signal included in the second OFDM signal.
 第2の特徴は、第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信装置であって、OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出する入力処理部を備え、前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを要旨とする。 A second feature is a receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus, and a guard interval for the OFDM signal , An orthogonal demodulation process and a Fourier transform process to extract a pilot signal and an input processing unit for extracting a pilot signal, the OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of the pilot signal, and the pilot signal Is the same as the OFDM symbol length of the second OFDM signal generated by the second transmitter, the arrangement of the pilot signal, and the code sequence of the pilot signal, and the transmission timing of the pilot signal included in the first OFDM signal Does not match the transmission timing of the pilot signal included in the second OFDM signal Sea urchin, and summarized in that a time difference is provided between the transmission timing of the pilot signal included in the first 2OFDM signal transmission timing of the pilot signals included in the 1OFDM signal.
 第3の特徴は、送信装置に適用する送信方法であって、送信信号をサブキャリアごとに所定の変調方式に応じてIQ平面へマッピングしてキャリア変調信号を生成するステップAと、前記キャリア変調信号に対して、パイロット信号の挿入、逆フーリエ変換処理及びガードインターバルの付加を行うことによって、OFDM信号を生成するステップBと、前記OFDM信号の送信タイミングを調整するステップCとを備え、前記送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記送信装置とは異なる他の送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、前記ステップCは、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差を設けるステップを含むことを要旨とする。 A third feature is a transmission method applied to a transmission apparatus, wherein the carrier modulation signal is generated by mapping a transmission signal to an IQ plane according to a predetermined modulation method for each subcarrier, and the carrier modulation Step B for generating an OFDM signal by inserting a pilot signal, inverse Fourier transform processing, and addition of a guard interval to the signal, and Step C for adjusting the transmission timing of the OFDM signal, The OFDM symbol length of the first OFDM signal generated by the apparatus, the arrangement of the pilot signal, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, and the pilot signal And the code sequence of the pilot signal, The transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal do not coincide with the transmission timing of the pilot signal included in the second OFDM signal. The gist is to include a step of providing a time difference with the transmission timing of the pilot signal included in the second OFDM signal.
 第4の特徴は、第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信方法であって、OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出するステップAを備え、前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを要旨とする。 A fourth feature is a reception method configured to be able to receive an OFDM signal transmitted from a first transmission device or a second transmission device different from the first transmission device, and a guard interval for the OFDM signal. , Quadrature demodulation processing, and Fourier transform processing to extract a pilot signal, and includes a step A for extracting the pilot signal, the OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of the pilot signal, and the pilot signal The code sequence is the same as the OFDM symbol length of the second OFDM signal generated by the second transmission device, the arrangement of the pilot signal, and the code sequence of the pilot signal, and the transmission timing of the pilot signal included in the first OFDM signal; The transmission timing of the pilot signal included in the second OFDM signal does not match Sea urchin, and summarized in that a time difference is provided between the transmission timing of the pilot signal included in the first 2OFDM signal transmission timing of the pilot signals included in the 1OFDM signal.
 第5の特徴は、第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信装置に搭載されるチップであって、OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出する入力処理部を備え、前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを要旨とする。 A fifth feature is a chip mounted on a receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus, On the other hand, an input processing unit for extracting a pilot signal by performing guard interval removal, quadrature demodulation processing, and Fourier transform processing is provided, and the OFDM symbol length of the first OFDM signal generated by the first transmission device, the pilot signal The arrangement and the code sequence of the pilot signal are the same as the OFDM symbol length of the second OFDM signal generated by the second transmission device, the arrangement of the pilot signal, and the code sequence of the pilot signal, and are included in the first OFDM signal. Transmission timing of pilot signal and transmission timing of pilot signal included in the second OFDM signal As grayed and does not match, it is summarized in that a time difference between a transmission timing of the pilot signal included in the first 2OFDM signal and the transmission timing of the pilot signal included in the first 1OFDM signal is provided.
図1は、本発明の一実施形態に係る送信装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to an embodiment of the present invention. 図2は、図1の送信装置1が送信するOFDM信号のパイロットパターンの例を示す図である。FIG. 2 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 1 of FIG. 図3は、図1の送信装置2が送信するOFDM信号のパイロットパターンの例を示す図である。FIG. 3 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 2 of FIG. 図4は、図1の送信装置1に対応する受信装置の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of a receiving device corresponding to the transmitting device 1 of FIG. 図5は、受信装置の伝送路応答算出部における処理について説明する図である。FIG. 5 is a diagram for explaining processing in the transmission path response calculation unit of the receiving apparatus. 図6は、本発明の一実施形態に係る送信装置における送信タイミング調整部の動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the transmission timing adjustment unit in the transmission apparatus according to the embodiment of the present invention. 図7は、本発明の一実施形態に係る送信装置によるシミュレーション結果を示す図である。FIG. 7 is a diagram illustrating a simulation result by the transmission apparatus according to the embodiment of the present invention. 図8は、図1の送信装置2が異なるモードのOFDM信号を時分割多重した信号を送信する場合を示す図である。FIG. 8 is a diagram illustrating a case where the transmission apparatus 2 of FIG. 1 transmits a signal obtained by time-division multiplexing OFDM signals of different modes.
 実施形態に係る送信装置は、シンボル長、パイロット信号の配置、及びパイロット信号の符号系列が等しく、データ信号が異なる複数のOFDM信号間の同一チャンネル干渉を抑制することを目的とする。ここで、第1送信装置は、第1データ信号に基づいて第1OFDM信号を生成し、第1送信装置とは異なる第2送信装置は、第1データ信号とは異なる第2データ信号に基づいて第2OFDM信号を生成することに留意すべきである。受信装置には、第1送信装置又は第2送信装置から送信されるOFDM信号を受信可能に構成されることに留意すべきである。 第1のOFDM信号及び第2のOFDM信号の組み合わせとしては、(1)ISDB-T方式で伝送されるOFDM信号同士、(2)次世代の地上デジタル放送方式(以下、「次世代方式」という)で伝送されるOFDM信号同士、(3)次世代方式で伝送されるOFDM信号とISDB-T方式で伝送されるOFDM信号、が想定される。本実施形態では、上記(3)次世代方式で伝送されるOFDM信号とISDB-T方式で伝送されるOFDM信号における同一チャンネル干渉を例に説明する。 The transmission apparatus according to the embodiment aims to suppress co-channel interference between a plurality of OFDM signals having the same symbol length, pilot signal arrangement, and pilot signal code sequence, and different data signals. Here, the first transmission device generates the first OFDM signal based on the first data signal, and the second transmission device different from the first transmission device is based on the second data signal different from the first data signal. Note that the second OFDM signal is generated. It should be noted that the receiving device is configured to receive an OFDM signal transmitted from the first transmitting device or the second transmitting device. The combination of the first OFDM signal and the second OFDM signal includes (1) OFDM signals transmitted by the ISDB-T system, (2) Next-generation digital terrestrial broadcasting system (hereinafter referred to as “next-generation system”) ), And (3) OFDM signals transmitted by the next generation method and OFDM signals transmitted by the ISDB-T method. In the present embodiment, (3) co-channel interference in the OFDM signal transmitted by the next generation method and the OFDM signal transmitted by the ISDB-T method will be described as an example.
 [送信装置]
 図1は、本発明の第1の実施形態に係る送信装置の構成を示すブロック図であり、次世代方式でOFDM信号を送信する送信装置1と、ISDB-T方式でOFDM信号を送信する送信装置2を示している。送信装置1及び送信装置2が同一の送信局3を使用する例を示しているが、送信装置1及び2が異なる場所から送信する場合には、それぞれ異なる送信局を使用する。また、図1には次世代方式の一態様として想定される偏波MIMO伝送を行う送信装置1を示しているが、次世代方式の伝送方法はこれに限定されるものではない。
[Transmitter]
FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to the first embodiment of the present invention, in which a transmission apparatus 1 that transmits an OFDM signal by a next generation method and a transmission that transmits an OFDM signal by an ISDB-T system Device 2 is shown. Although an example in which the transmission device 1 and the transmission device 2 use the same transmission station 3 is shown, when the transmission devices 1 and 2 transmit from different locations, different transmission stations are used. Further, FIG. 1 shows a transmission apparatus 1 that performs polarization MIMO transmission, which is assumed as one mode of the next generation method, but the transmission method of the next generation method is not limited to this.
 図1に示すように、送信装置1は、誤り訂正符号化部11と、ビットインターリーブ部12と、マッピング部13と、時間インターリーブ部14と、周波数インターリーブ部15と、出力処理部16(16-1及び16-2)と、送信タイミング調整部17(17-1及び17-2)と、送信アンテナ18(18-1及び18-2)と、を備える。本構成例では、インターリーブ処理を行うためにビットインターリーブ部12、時間インターリーブ部14、及び周波数インターリーブ部15を備えているが、これらは必須ではなく、また、これらのうちの1又は2つのみを備える構成であってもよい。送信装置1は、OFDM信号を複数本の送信アンテナ18を介して送信する。本実施形態では、送信アンテナ数を2本とする。 As shown in FIG. 1, the transmission apparatus 1 includes an error correction coding unit 11, a bit interleaving unit 12, a mapping unit 13, a time interleaving unit 14, a frequency interleaving unit 15, and an output processing unit 16 (16- 1 and 16-2), a transmission timing adjustment unit 17 (17-1 and 17-2), and a transmission antenna 18 (18-1 and 18-2). In this configuration example, the bit interleaving unit 12, the time interleaving unit 14, and the frequency interleaving unit 15 are provided in order to perform the interleaving process, but these are not essential, and only one or two of them are included. The structure provided may be sufficient. The transmission device 1 transmits an OFDM signal via a plurality of transmission antennas 18. In the present embodiment, the number of transmission antennas is two.
 本実施形態では、送信装置1のみが送信タイミング調整部17を有する構成としているが、送信装置2のみが送信タイミング調整部を有する構成としてもよいし、送信装置1及び送信装置2がそれぞれ送信タイミング調整部を有する構成としてもよい。 In the present embodiment, only the transmission device 1 has the transmission timing adjustment unit 17, but only the transmission device 2 may have the transmission timing adjustment unit, and the transmission device 1 and the transmission device 2 each have a transmission timing. It is good also as a structure which has an adjustment part.
 誤り訂正符号化部11は、受信側で伝送誤りを訂正可能とするために、入力される送信信号を所定の誤り訂正方式により符号化して誤り訂正符号を生成し、ビットインターリーブ部12に出力する。誤り訂正符号は、例えば、BCH符号やLDPC符号などである。 The error correction encoding unit 11 generates an error correction code by encoding an input transmission signal using a predetermined error correction method so that a transmission error can be corrected on the receiving side, and outputs the error correction code to the bit interleaving unit 12 . The error correction code is, for example, a BCH code or an LDPC code.
 ビットインターリーブ部12は、誤り訂正符号化部11により生成された誤り訂正符号の各ビットを並べ替え、マッピング部13に出力する。 The bit interleaving unit 12 rearranges each bit of the error correction code generated by the error correction encoding unit 11 and outputs it to the mapping unit 13.
 マッピング部13は、ビットインターリーブ部12により並べ替えられたデータを、mビット/シンボルとしてIQ平面へのマッピングを行い、多値変調方式に応じてキャリア変調を施したキャリア変調信号(キャリアシンボル)を生成し、時間インターリーブ部14に出力する。 The mapping unit 13 performs mapping on the IQ plane of the data rearranged by the bit interleaving unit 12 as m bits / symbol, and generates a carrier modulation signal (carrier symbol) that has been subjected to carrier modulation in accordance with the multilevel modulation scheme. Generate and output to the time interleave unit 14.
 時間インターリーブ部14は、マッピング部13により生成されたキャリア変調信号の順序を、時間方向に並べ替え、周波数インターリーブ部15に出力する。 The time interleaving unit 14 rearranges the order of the carrier modulation signals generated by the mapping unit 13 in the time direction and outputs the rearranged signals to the frequency interleaving unit 15.
 周波数インターリーブ部15は、時間インターリーブ部14により時間方向にインターリーブ処理されたキャリア変調信号の順序を、周波数方向及び送信アンテナ間で並べ替え、インターリーブ処理されたデータを送信アンテナ18ごとに生成し、出力処理部16に出力する。送信アンテナ18の数が2本の場合、周波数インターリーブ部15は、出力処理部16-1及び16-2用の2系統の信号を生成する。なお、送信装置1は周波数インターリーブ部15を2つ備え、一方の周波数インターリーブ部15が出力処理部16-1用の信号を生成し、他方の周波数インターリーブ部15が出力処理部16-2用の信号を生成するようにしてもよい。 The frequency interleaving unit 15 rearranges the order of the carrier modulation signals interleaved in the time direction by the time interleaving unit 14 between the frequency direction and the transmission antennas, and generates interleaved data for each transmission antenna 18 for output. The data is output to the processing unit 16. When the number of transmission antennas 18 is two, the frequency interleaving unit 15 generates two systems of signals for the output processing units 16-1 and 16-2. The transmission apparatus 1 includes two frequency interleaving units 15, one frequency interleaving unit 15 generates a signal for the output processing unit 16-1, and the other frequency interleaving unit 15 is used for the output processing unit 16-2. A signal may be generated.
 出力処理部16は、周波数インターリーブ部15により生成された信号に対してパイロット信号等を挿入して逆フーリエ変換した信号に、ガードインターバルを付加したOFDM信号を生成する。図1に示すように、出力処理部16は、OFDMフレーム構成部161(161-1及び161-2)と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部162(162-1及び162-2)と、GI(Guard interval)付加部163(163-1及び163-2)と、を備える。 The output processing unit 16 generates an OFDM signal obtained by adding a guard interval to a signal obtained by inserting a pilot signal or the like into the signal generated by the frequency interleaving unit 15 and performing inverse Fourier transform. As shown in FIG. 1, the output processing unit 16 includes an OFDM frame configuration unit 161 (161-1 and 161-2), an IFFT (Inverse Fast Fourier Transform) unit 162 (162-1 and 162-2). 2) and a GI (Guard interval) adding unit 163 (163-1 and 163-2).
 OFDMフレーム構成部161は、周波数インターリーブ部15により生成された信号にパイロット信号(SP信号、CP信号)、制御情報を示すTMCC信号、及び付加情報を示すAC信号を挿入し、全キャリアを1 OFDMシンボルとして、所定数のOFDMシンボルのブロックでOFDMフレームを構成し、IFFT部162に出力する。 The OFDM frame configuration unit 161 inserts a pilot signal (SP signal, CP signal), a TMCC signal indicating control information, and an AC signal indicating additional information into the signal generated by the frequency interleaving unit 15, and sets all carriers to 1 OFDM. As a symbol, an OFDM frame is composed of a predetermined number of OFDM symbol blocks, and is output to IFFT section 162.
 IFFT部162は、OFDMフレーム構成部161により生成されたOFDMシンボルに対して、IFFT処理を施して時間領域の有効シンボル信号を生成し、GI付加部163に出力する。 The IFFT unit 162 performs an IFFT process on the OFDM symbol generated by the OFDM frame configuration unit 161 to generate a time-domain effective symbol signal, and outputs it to the GI adding unit 163.
 GI付加部163は、IFFT部162により生成された有効シンボル信号の先頭に、有効シンボル信号の後半部分をコピーしたガードインターバルを挿入し、直交変調処理及びD/A変換を施したOFDM信号を生成する。有効シンボル長に対するガードインターバル長の比率を表すガードインターバル比(GIR)は、例えば1/8に設定される。 GI adding section 163 inserts a guard interval obtained by copying the latter half of the effective symbol signal at the beginning of the effective symbol signal generated by IFFT section 162, and generates an OFDM signal subjected to orthogonal modulation processing and D / A conversion To do. A guard interval ratio (GIR) representing a ratio of the guard interval length to the effective symbol length is set to 1/8, for example.
 送信タイミング調整部17は、GI付加部163により生成されたOFDM信号の送信タイミングを調整し、送信局3に送信する。送信タイミング調整部17の詳細については後述する。 The transmission timing adjustment unit 17 adjusts the transmission timing of the OFDM signal generated by the GI addition unit 163 and transmits it to the transmission station 3. Details of the transmission timing adjustment unit 17 will be described later.
 送信局3は、送信アンテナ18-1及び18-2を介して空間分割多重(SDM:Space Division Multiplexing)によるMIMO伝送を行う。 The transmitting station 3 performs MIMO transmission by space division multiplexing (SDM) via the transmitting antennas 18-1 and 18-2.
 送信アンテナ18は、例えば偏波間の直交性を利用した偏波MIMOの場合には、水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナである。 For example, in the case of polarization MIMO using orthogonality between polarizations, the transmission antenna 18 is a horizontally polarized antenna and a vertically polarized antenna, or a right-handed circularly polarized antenna and a left-handed circularly polarized antenna. is there.
 図2は、送信装置1が送信するOFDM信号のパイロットパターンの例を示す図である。図中のOFDM信号は、右方向が周波数方向(キャリア方向)であり、下方向が時間方向(シンボル方向)である。×付きの丸印は無信号のヌルパイロット信号であることを意味し、二重丸印はパイロット信号であることを意味する。その他は、データ信号や制御信号などの非パイロット信号を意味する。送信装置1は、一方の送信アンテナ18を介して図2(a)に示すパイロットパターンのOFDM信号を送信し、他方の送信アンテナ18を介して図2(b)に示すパイロットパターンのOFDM信号を送信する。 FIG. 2 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 1. In the OFDM signal in the figure, the right direction is the frequency direction (carrier direction), and the downward direction is the time direction (symbol direction). A circle with x means a null pilot signal with no signal, and a double circle means a pilot signal. Others mean non-pilot signals such as data signals and control signals. The transmission apparatus 1 transmits an OFDM signal having a pilot pattern shown in FIG. 2A via one transmission antenna 18 and transmits an OFDM signal having a pilot pattern shown in FIG. 2B via the other transmission antenna 18. Send.
 再び図1を参照するに、送信装置2は、誤り訂正符号化部21と、ビットインターリーブ部22と、マッピング部23と、時間インターリーブ部24と、周波数インターリーブ部25と、出力処理部26と、送信アンテナ27と、を備える。送信装置1と同様に、ビットインターリーブ部22、時間インターリーブ部24、及び周波数インターリーブ部25は必須ではなく、また、これらのうちの1又は2つのみを備える構成であってもよい。 Referring to FIG. 1 again, the transmission apparatus 2 includes an error correction encoding unit 21, a bit interleaving unit 22, a mapping unit 23, a time interleaving unit 24, a frequency interleaving unit 25, an output processing unit 26, A transmission antenna 27. Similarly to the transmission apparatus 1, the bit interleaving unit 22, the time interleaving unit 24, and the frequency interleaving unit 25 are not essential, and may be configured to include only one or two of them.
 送信装置2は、送信装置1と比較して、出力系統が1系統であるため、出力処理部26及び送信アンテナ27を1つのみ備える点、及び送信タイミング調整部を備えない点が相違する。その他の点は送信装置1と同様であるため、説明を省略する。 The transmission device 2 is different from the transmission device 1 in that it has only one output system, and therefore includes only one output processing unit 26 and a transmission antenna 27 and does not include a transmission timing adjustment unit. Since other points are the same as those of the transmission device 1, the description thereof is omitted.
 図3は、送信装置2が送信するOFDM信号のパイロットパターンの例を示す図である。二重丸印はパイロット信号であることを意味し、その他はデータ信号や制御信号などの非パイロット信号を意味する。ISDB-T方式では、図3に示すように、パイロット信号は周波数方向(キャリア方向)に12キャリアに1回、時間方向(シンボル方向)に4シンボルに1回の割合で挿入される。パイロット信号を時間方向に補間したときの周波数方向の挿入間隔は3キャリアとなる。 FIG. 3 is a diagram illustrating an example of a pilot pattern of an OFDM signal transmitted by the transmission apparatus 2. A double circle signifies a pilot signal, and the other signifies a non-pilot signal such as a data signal or a control signal. In the ISDB-T system, as shown in FIG. 3, pilot signals are inserted once every 12 carriers in the frequency direction (carrier direction) and once every 4 symbols in the time direction (symbol direction). The insertion interval in the frequency direction when the pilot signal is interpolated in the time direction is 3 carriers.
 [受信装置]
 次に、本発明に係る送信装置の理解を助けるために、送信装置1に対応する受信装置の実施形態について説明する。
[Receiver]
Next, in order to help understanding of the transmission apparatus according to the present invention, an embodiment of a reception apparatus corresponding to the transmission apparatus 1 will be described.
 図4は、送信装置1に対応する受信装置の構成を示すブロック図である。図4に示すように、受信装置4は、受信アンテナ41(41-1及び41-2)と、入力処理部42(42-1及び42-2)と、伝送路応答算出部43と、MIMO検出部(送信信号推定部)44と、第1周波数デインターリーブ部45と、雑音分散算出部46と、第2周波数デインターリーブ部47と、尤度比算出部48と、時間デインターリーブ部49と、ビットデインターリーブ部50と、誤り訂正符号復号部51と、を備える。なお、受信装置4は、送信装置1がビットインターリーブ部12を備えない場合にはビットデインターリーブ部50を備える必要はなく、送信装置1が時間インターリーブ部14を備えない場合には時間デインターリーブ部49を備える必要はなく、送信装置1が周波数インターリーブ部15を備えない場合は、第1周波数デインターリーブ部45及び第2周波数デインターリーブ部47を備える必要はない。 FIG. 4 is a block diagram illustrating a configuration of a receiving device corresponding to the transmitting device 1. As shown in FIG. 4, the receiving device 4 includes a receiving antenna 41 (41-1 and 41-2), an input processing unit 42 (42-1 and 42-2), a transmission path response calculating unit 43, a MIMO A detection unit (transmission signal estimation unit) 44, a first frequency deinterleave unit 45, a noise variance calculation unit 46, a second frequency deinterleave unit 47, a likelihood ratio calculation unit 48, a time deinterleave unit 49, A bit deinterleaving unit 50 and an error correction code decoding unit 51. The receiving device 4 does not need to include the bit deinterleaving unit 50 when the transmitting device 1 does not include the bit interleaving unit 12, and the time deinterleaving unit when the transmitting device 1 does not include the time interleaving unit 14. 49 does not need to be provided, and when the transmission apparatus 1 does not include the frequency interleave unit 15, it is not necessary to include the first frequency deinterleave unit 45 and the second frequency deinterleave unit 47.
 入力処理部42(42-1及び42-2)は、受信装置4に対応する送信装置1から送信されるOFDM信号を、受信アンテナ41(41-1及び41-2)を介して受信し、受信したOFDM信号を直交復調処理及びフーリエ変換処理して、複素ベースバンド信号を生成する。入力処理部42は、GI除去部421(421-1及び421-2)と、フーリエ変換部422(422-1及び422-2)と、パイロット信号抽出部423(423-1及び423-2)と、を備える。 The input processing unit 42 (42-1 and 42-2) receives the OFDM signal transmitted from the transmission device 1 corresponding to the reception device 4 via the reception antenna 41 (41-1 and 41-2), The received OFDM signal is subjected to orthogonal demodulation processing and Fourier transform processing to generate a complex baseband signal. The input processing unit 42 includes a GI removal unit 421 (421-1 and 421-2), a Fourier transform unit 422 (4222-1 and 422-2), and a pilot signal extraction unit 423 (423-1 and 423-2). And comprising.
 GI除去部421は、受信したOFDM信号を直交復調処理してベースバンド信号を生成し、A/D変換によりデジタル信号を生成する。続いて、GI除去部421は、ガードインターバルを除去して有効シンボル信号を抽出する。そして、有効シンボル信号をフーリエ変換部422に出力する。 The GI removal unit 421 generates a baseband signal by performing orthogonal demodulation processing on the received OFDM signal, and generates a digital signal by A / D conversion. Subsequently, the GI removal unit 421 extracts the effective symbol signal by removing the guard interval. Then, the effective symbol signal is output to Fourier transform section 422.
 フーリエ変換部422は、GI除去部421により抽出された有効シンボル信号に対して、FFT(Fast Fourier Transform:高速フーリエ変換)処理を施して周波数領域の複素ベースバンド信号yi1,yi2生成する。そして、複素ベースバンド信号yi1,yi2をパイロット信号抽出部423、及びMIMO検出部44に出力する。つまり、フーリエ変換部422-1は、受信アンテナ41-1から受信したOFDM信号をFFT処理して複素ベースバンド信号yi1を生成し、パイロット信号抽出部423-1、及びMIMO検出部44に出力する。フーリエ変換部422-2は、受信アンテナ41-2から受信したOFDM信号をFFT処理して複素ベースバンド信号yi2を生成し、パイロット信号抽出部423-2、及びMIMO検出部44に出力する。 The Fourier transform unit 422 performs FFT (Fast Fourier Transform) processing on the effective symbol signal extracted by the GI removal unit 421 to generate complex baseband signals y i1 and y i2 in the frequency domain. Then, complex baseband signals y i1 and y i2 are output to pilot signal extraction section 423 and MIMO detection section 44. In other words, the Fourier transform unit 422-1 generates the complex baseband signal y i1 by performing an FFT process on the OFDM signal received from the reception antenna 41-1, and outputs the complex baseband signal y i1 to the pilot signal extraction unit 423-1 and the MIMO detection unit 44. To do. The Fourier transform unit 422-2 performs an FFT process on the OFDM signal received from the reception antenna 41-2 to generate a complex baseband signal y i2 and outputs the complex baseband signal y i2 to the pilot signal extraction unit 423-2 and the MIMO detection unit 44.
 パイロット信号抽出部423は、フーリエ変換部422により生成された複素ベースバンド信号yi1,yi2に含まれる既知のパイロット信号を抽出する。そして、パイロット信号を伝送路応答算出部43に出力する。 The pilot signal extraction unit 423 extracts a known pilot signal included in the complex baseband signals y i1 and y i2 generated by the Fourier transform unit 422. Then, the pilot signal is output to the transmission path response calculation unit 43.
 伝送路応答算出部43は、パイロット信号抽出部423により抽出されたパイロット信号の遅延プロファイルからキャリアごとの伝送路応答Hを算出し、MIMO検出部44に出力する。 The transmission path response calculation unit 43 calculates the transmission path response H i for each carrier from the delay profile of the pilot signal extracted by the pilot signal extraction unit 423, and outputs it to the MIMO detection unit 44.
 図5は、受信装置4の伝送路応答算出部43における処理について説明する図である。図5(a)は、8シンボル分のOFDM信号を蓄積して、パイロット信号の振幅応答を時間方向に1次補間することにより得られる、3キャリアごとのパイロット信号を示している。伝送路応答算出部43は、パイロット信号を補間するために、まず、3キャリアごとのパイロット信号を逆フーリエ変換し、時間領域のパイロット信号を算出する。nキャリアごとのパイロット信号を逆フーリエ変換すると、パイロット信号間のデータが0補間されているために折り返しが発生し、1OFDMシンボル長内に同じ波形がn回繰り返し現れる。本実施形態ではn=3であるため、図5(b)に示すようにパイロット信号の時間領域(遅延プロファイル)では、1OFDMシンボル長内に同じ波形が3回繰り返し現れる。 FIG. 5 is a diagram for explaining the processing in the transmission path response calculation unit 43 of the reception device 4. FIG. 5A shows a pilot signal for every three carriers obtained by accumulating OFDM signals for 8 symbols and linearly interpolating the amplitude response of the pilot signal in the time direction. In order to interpolate the pilot signal, the transmission path response calculation unit 43 first performs inverse Fourier transform on the pilot signal for every three carriers to calculate a time-domain pilot signal. When the pilot signal for every n carriers is subjected to inverse Fourier transform, the data between the pilot signals is interpolated to 0, so that aliasing occurs, and the same waveform repeatedly appears n times within one OFDM symbol length. Since n = 3 in this embodiment, the same waveform repeatedly appears three times within one OFDM symbol length in the time domain (delay profile) of the pilot signal as shown in FIG. 5B.
 次に、伝送路応答算出部43は、図5(b)に示すように補間フィルタFを配置し、折り返し信号ではない実信号のみを抽出する。補間フィルタFの時間幅Fは、OFDM信号の有効シンボル長Tとガードインターバル比GIRの積で表される。遅延波の遅延時間がFよりも小さい場合には、マルチパス成分を等化することができる。そして、伝送路応答算出部43は、フィルタ処理により抽出したパイロット信号を再度フーリエ変換することで、図5(c)に示すようにキャリアごとの伝送路応答を取得する。白丸は補間された伝送路応答を表している。 Next, the transmission path response calculation unit 43 arranges the interpolation filter F as shown in FIG. 5B, and extracts only the real signal that is not the return signal. Time width F w of the interpolation filter F is represented by the effective symbol length T and the product of the guard interval ratio GIR of OFDM signals. If the delay time of the delay wave is smaller than F w it may be to equalize the multipath components. And the transmission line response calculation part 43 acquires the transmission line response for every carrier as shown in FIG.5 (c) by carrying out the Fourier transform again of the pilot signal extracted by the filter process. White circles represent interpolated transmission line responses.
 2×2MIMO伝送の伝送路応答H
Figure JPOXMLDOC01-appb-M000002
 
と表すことができる。伝送路応答Hの各要素hi11,hi12,hi21,hi22は複素数である。hi11は送信アンテナ18-1から受信アンテナ41-1への伝送路の状態を表し、hi12は送信アンテナ18-2から受信アンテナ41-1への伝送路の状態を表し、hi21は送信アンテナ18-1から受信アンテナ41-2への伝送路の状態を表し、hi22は送信アンテナ18-2から受信アンテナ41-2への伝送路の状態を表す。ここで、hi11,hi22が並列伝送路成分であり、hi12,hi21が干渉成分となる。
The channel response H i of 2 × 2 MIMO transmission is
Figure JPOXMLDOC01-appb-M000002

It can be expressed as. Each element h i11 , h i12 , h i21 , h i22 of the transmission line response H is a complex number. h i11 represents the state of the transmission path from the transmission antenna 18-1 to the reception antenna 41-1, h i12 represents the state of the transmission path from the transmission antenna 18-2 to the reception antenna 41-1, and h i21 represents transmission. The state of the transmission path from the antenna 18-1 to the reception antenna 41-2 is represented, and h i22 represents the state of the transmission path from the transmission antenna 18-2 to the reception antenna 41-2. Here, h i11 and h i22 are parallel transmission path components, and h i12 and h i21 are interference components.
 MIMO検出部44は、フーリエ変換部422により生成された複素ベースバンド信号yi1,yi2、及び伝送路応答算出部43により算出された伝送路応答Hを用いて、ZF(Zero Forcing)、MMSE(Minimum Mean Squared Error)などの既知の手法により、複数の受信アンテナ41により受信したデータストリームを分離して送信信号の推定値x^i1,x^i2を生成する。そして、送信信号の推定値x^i1,x^i2を第1周波数デインターリーブ部45及び雑音分散算出部46に出力する。 The MIMO detection unit 44 uses the complex baseband signals y i1 and y i2 generated by the Fourier transform unit 422 and the transmission path response H i calculated by the transmission path response calculation unit 43 to perform ZF (Zero Forcing), By using a known method such as MMSE (Minimum Mean Squared Error), the data streams received by the plurality of receiving antennas 41 are separated to generate the estimated values x ^ i1 and x ^ i2 of the transmission signals. Then, the estimated values x ^ i1 and x ^ i2 of the transmission signal are output to the first frequency deinterleave unit 45 and the noise variance calculation unit 46.
 第1周波数デインターリーブ部45は、MIMO検出部44により生成された送信信号の推定値x^i1,x^i2に対し、周波数方向にデインターリーブ処理を行う。そして、デインターリーブ処理された送信信号の推定値x^i1,x^i2を尤度比算出部48に出力する。周波数方向のデインターリーブ処理とは、送信装置1の周波数インターリーブ部15により周波数方向に並べ替えられたデータを、元の順序に戻す処理である。 The first frequency deinterleaving unit 45 performs deinterleaving processing in the frequency direction on the estimated values x ^ i1 and x ^ i2 of the transmission signals generated by the MIMO detection unit 44. Then, estimated values x ^ i1 and x ^ i2 of the deinterleaved transmission signal are output to likelihood ratio calculation section 48. The deinterleaving process in the frequency direction is a process for returning the data rearranged in the frequency direction by the frequency interleaving unit 15 of the transmission device 1 to the original order.
 雑音分散算出部46は、MIMO検出部44により生成された送信信号の推定値x^i1,x^i2を用いて、受信したOFDM信号の雑音分散σi1 ,σi2 を算出する。そして、雑音分散σi1 ,σi2 を第2周波数デインターリーブ部47に出力する。 The noise variance calculation unit 46 calculates the noise variances σ i1 2 and σ i2 2 of the received OFDM signal using the estimated values x ^ i1 and x ^ i2 of the transmission signal generated by the MIMO detection unit 44. Then, the noise variances σ i1 2 and σ i2 2 are output to the second frequency deinterleave unit 47.
 第2周波数デインターリーブ部47は、雑音分散算出部46により算出された雑音分散σi1 ,σi2 に対し、デインターリーブ処理を行う。そして、デインターリーブ処理された雑音分散σi1 ,σi2 を尤度比算出部48に出力する。 The second frequency deinterleaving unit 47 performs deinterleaving processing on the noise variances σ i1 2 and σ i2 2 calculated by the noise variance calculating unit 46. The deinterleaved noise variances σ i1 2 and σ i2 2 are output to the likelihood ratio calculation unit 48.
 尤度比算出部48は、第1周波数デインターリーブ部45によりデインターリーブ処理された送信信号の推定値x^i1,x^i2と、第2周波数デインターリーブ部47から入力される雑音分散σi1 ,σi2 とを用いて、受信信号の尤度比λを算出する。そして、尤度比λを時間デインターリーブ部49に出力する。尤度比λは誤り訂正符号の各ビットについて算出されるものであり、受信信号の確率的な信頼度情報を表す。 The likelihood ratio calculation unit 48 estimates the transmission signals x ^ i1 and x ^ i2 deinterleaved by the first frequency deinterleaver 45 and the noise variance σi1 input from the second frequency deinterleaver 47. 2 and σ i2 2 are used to calculate the likelihood ratio λ of the received signal. Then, the likelihood ratio λ is output to the time deinterleave unit 49. The likelihood ratio λ is calculated for each bit of the error correction code and represents the probabilistic reliability information of the received signal.
 時間デインターリーブ部49は、尤度比算出部48により算出された尤度比λに対し、時間方向にデインターリーブ処理を行う。そして、デインターリーブ処理された尤度比λを、ビットデインターリーブ部50に出力する。時間方向のデインターリーブ処理とは、送信装置1の時間インターリーブ部14により時間方向に並べ替えられたデータを、元の順序に戻す処理である。 The time deinterleaving unit 49 performs a deinterleaving process in the time direction on the likelihood ratio λ calculated by the likelihood ratio calculating unit 48. Then, the likelihood ratio λ that has been subjected to the deinterleaving process is output to the bit deinterleaving unit 50. The deinterleaving process in the time direction is a process for returning the data rearranged in the time direction by the time interleaving unit 14 of the transmission apparatus 1 to the original order.
 ビットデインターリーブ部50は、時間デインターリーブ部49により算出された尤度比λに対し、ビット方向にデインターリーブ処理を行う。そして、デインターリーブ処理された尤度比λを、誤り訂正符号復号部51に出力する。ビット方向のデインターリーブ処理とは、送信装置1のビットインターリーブ部12によりビット方向に並べ替えられたデータを、元の順序に戻す処理である。 The bit deinterleaving unit 50 performs a deinterleaving process in the bit direction on the likelihood ratio λ calculated by the time deinterleaving unit 49. Then, the likelihood ratio λ subjected to the deinterleaving process is output to the error correction code decoding unit 51. The deinterleaving process in the bit direction is a process for returning the data rearranged in the bit direction by the bit interleaving unit 12 of the transmission device 1 to the original order.
 誤り訂正符号復号部51は、ビットデインターリーブ部50によりデインターリーブ処理された尤度比λを用いて、誤り訂正符号の復号を行い、送信装置1から送信されたビットの推定値を出力する。 The error correction code decoding unit 51 decodes the error correction code using the likelihood ratio λ deinterleaved by the bit deinterleaving unit 50, and outputs an estimated value of the bit transmitted from the transmission device 1.
 [送信タイミング調整部]
 次に、送信装置1の送信タイミング調整部17の動作を詳細に説明する。
[Transmission timing adjustment unit]
Next, the operation of the transmission timing adjustment unit 17 of the transmission device 1 will be described in detail.
 干渉波として、希望波とシンボル長、パイロット信号の配置、及びパイロット信号の符号系列(例えば、PN符号系列)が等しいOFDM信号が存在する場合には、希望波と干渉波のパイロット信号は完全に等しい信号となる。この場合、受信装置4の伝送路応答算出部43は、データ信号が異なる場合であっても、干渉波を希望波と同一信号の遅延波とみなして等化処理を施すこととなる。そのため、伝送路応答算出部43において伝送路応答を精度良く求めることができず、伝送特性が劣化してしまう。そこで、送信タイミング調整部17は、干渉波が補間フィルタ外に位置するように、干渉波との遅延差を設定することで、干渉波による影響を抑えて伝送特性を改善する。 When there is an OFDM signal having the same desired signal and symbol length, pilot signal arrangement, and pilot signal code sequence (for example, PN code sequence) as an interference wave, the desired signal and the pilot signal of the interference signal are completely The signals are equal. In this case, even if the data signal is different, the transmission line response calculation unit 43 of the receiving device 4 regards the interference wave as a delayed wave of the same signal as the desired wave and performs equalization processing. For this reason, the transmission line response calculation unit 43 cannot accurately obtain the transmission line response, and transmission characteristics deteriorate. Therefore, the transmission timing adjustment unit 17 sets the delay difference from the interference wave so that the interference wave is located outside the interpolation filter, thereby suppressing the influence of the interference wave and improving the transmission characteristics.
 図6は、送信装置1の送信タイミング調整部17の動作を説明する図である。図6(a)に示すように、送信装置1は送信タイミング調整部17により、送信装置1から送信されるOFDM信号が送信装置2から送信されるOFDM信号とパイロット信号のタイミングが一致しないように、送信タイミングを調整する。送信装置1から送信されるOFDM信号(希望波)と送信装置2から送信されるOFDM信号(干渉波)との時間差(遅延差)を調整することで、パイロット信号における遅延プロファイルにて、干渉波の配置を調整することができる。 FIG. 6 is a diagram for explaining the operation of the transmission timing adjustment unit 17 of the transmission device 1. As illustrated in FIG. 6A, the transmission apparatus 1 uses the transmission timing adjustment unit 17 so that the OFDM signal transmitted from the transmission apparatus 1 does not match the timing of the pilot signal with the OFDM signal transmitted from the transmission apparatus 2. , Adjust the transmission timing. By adjusting the time difference (delay difference) between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave) transmitted from the transmission apparatus 2, an interference wave is generated in the delay profile of the pilot signal. Can be adjusted.
 図6(b)は、送信装置1から送信されるOFDM信号(希望波)と送信装置2から送信されるOFDM信号(干渉波)との時間差がτであるときの、パイロット信号における遅延プロファイルを示している。このように、干渉波が補間フィルタF外に配置されると、受信装置4は伝送路応答算出部43にて伝送路応答を精度良く算出することができる。 FIG. 6B shows a delay profile in the pilot signal when the time difference between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave) transmitted from the transmission apparatus 2 is τ. Show. Thus, when the interference wave is arranged outside the interpolation filter F, the receiving device 4 can calculate the transmission path response with high accuracy by the transmission path response calculation unit 43.
 1OFDMシンボル長内で補間フィルタFが配置される時間領域tは、次式(1)で表される。ここで、nはパイロット信号を時間方向に補間したときの周波数方向の周期であり、kは1からn-1までの整数である。また、補間フィルタFの時間幅Fは、次式(2)に示すように、OFDM信号の有効シンボル長TとOFDM信号のガードインターバル比GIRの積で表される。 A time domain t in which the interpolation filter F is arranged within one OFDM symbol length is expressed by the following equation (1). Here, n is a period in the frequency direction when the pilot signal is interpolated in the time direction, and k is an integer from 1 to n-1. Also, the time width F w of the interpolation filter F, as shown in the following equation (2) is expressed by the product of the guard interval ratio GIR of the effective symbol length T and OFDM signal of the OFDM signal.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 よって、補間フィルタF外に干渉波を配置するには、時間差τを、次式(3)に示す範囲内に設定する必要がある。 Therefore, in order to place the interference wave outside the interpolation filter F, it is necessary to set the time difference τ within the range shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 なお、パイロット信号の符号系列の初期値が異なったり符号系列の生成多項式が異なったりするなど、パイロット信号間の相関が十分低い場合は、時間τによらず希望波のデータキャリアは干渉波のパイロット信号の影響を受ける。また、パイロット信号は時間方向に周期性を持つため、時間差τも時間方向に周期性を持つ。 If the correlation between pilot signals is sufficiently low, such as when the initial value of the code sequence of the pilot signal is different or the generation polynomial of the code sequence is different, the data carrier of the desired wave is the pilot of the interference wave regardless of the time τ. It is affected by the signal. Since the pilot signal has periodicity in the time direction, the time difference τ also has periodicity in the time direction.
 BER特性を最も良くするために、特に時間差τを式(3)においてk=1としたときの範囲内に設定するのが好適である。このときの時間差τは次式(4)で表される。 In order to obtain the best BER characteristics, it is particularly preferable to set the time difference τ within the range when k = 1 in the equation (3). The time difference τ at this time is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 k=1とするのが好適である理由を以下に示す。時間差τを0から少しずつ大きくしていくと、k=1のときに最初に干渉波が補間フィルタ外に位置することになる。このとき、干渉波のパイロット信号のエネルギー成分のほとんどが希望波のパイロット信号にぶつかる。時間差τを更に大きくしていくと、k=2のときに再び干渉波が補間フィルタ外に位置することになるが、干渉波のパイロット信号のエネルギー成分はk=1のときほどは希望波のパイロット信号にあたらない。一般にOFDMにおいてパイロット信号はデータ信号に比べて電力が大きい(例えば、ISDB-T方式では4/3倍にブーストされている)ため、干渉波のパイロット信号のエネルギーがどれだけ希望波のパイロット信号にぶつかるかにより、BER特性が変化する。なるべく多くの干渉波のパイロット信号のエネルギーが希望波のパイロット信号にぶつかった方が、希望波のデータ信号に与える影響が少なくなる。そのため、k=1のときに、最もBER特性が良くなる。 The reason why k = 1 is preferable is shown below. When the time difference τ is gradually increased from 0, the interference wave is first located outside the interpolation filter when k = 1. At this time, most of the energy components of the pilot signal of the interference wave collide with the pilot signal of the desired wave. When the time difference τ is further increased, the interference wave is again located outside the interpolation filter when k = 2. However, the energy component of the pilot signal of the interference wave is higher than that of the desired wave when k = 1. Does not hit the pilot signal. In general, in OFDM, a pilot signal has a higher power than a data signal (for example, boosted 4/3 times in the ISDB-T system), so how much energy of the pilot signal of the interference wave becomes the pilot signal of the desired wave. The BER characteristic changes depending on whether the collision occurs. When the energy of the pilot signal of as many interference waves as possible collides with the pilot signal of the desired wave, the influence on the data signal of the desired wave is reduced. Therefore, the BER characteristic is the best when k = 1.
 図7は、送信装置1により送信タイミングを調整した場合のシミュレーションによるBER特性を示す図である。横軸は送信装置1から送信されるOFDM信号(希望波)と送信装置2から送信されるOFDM信号(干渉波、ISDB-Tモード3)との時間差τであり、縦軸はBERである。ここでは時間差τをFFTのサンプル数で示している。このシミュレーション例では、FFTサイズを8K(8192サンプル)、すなわちOFDM信号の有効シンボル長Tを8192サンプルとしている。また、GI比を1/8、希望波のキャリア変調方式を1024QAM、干渉波のキャリア変調方式を64QAMとし、D/U比を26.0dB、C/N比を29.0dBとしている。 FIG. 7 is a diagram showing a BER characteristic by simulation when the transmission timing is adjusted by the transmission device 1. The horizontal axis represents the time difference τ between the OFDM signal (desired wave) transmitted from the transmission apparatus 1 and the OFDM signal (interference wave, ISDB-T mode 3) transmitted from the transmission apparatus 2, and the vertical axis represents BER. Here, the time difference τ is indicated by the number of FFT samples. In this simulation example, the FFT size is 8K (8192 samples), that is, the effective symbol length T of the OFDM signal is 8192 samples. The GI ratio is 1/8, the desired wave carrier modulation scheme is 1024 QAM, the interference wave carrier modulation scheme is 64 QAM, the D / U ratio is 26.0 dB, and the C / N ratio is 29.0 dB.
 希望波のパイロットパターンは図2に示したパターンを用い、干渉波のパイロットパターンは図3に示したパターンを用いた。図2,3のパイロットパターンでは、パイロット信号を時間方向に補間したときの周波数方向の挿入間隔nは3キャリアである。この条件下では、式(3)を満たす遅延時間τの範囲は、次式(5)で表される。 The pattern shown in FIG. 2 was used as the pilot pattern of the desired wave, and the pattern shown in FIG. 3 was used as the pilot pattern of the interference wave. In the pilot patterns of FIGS. 2 and 3, the insertion interval n in the frequency direction when the pilot signal is interpolated in the time direction is 3 carriers. Under this condition, the range of the delay time τ satisfying the equation (3) is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 OFDM信号の有効シンボル長Tが8192のときに式(5)を満たす時間差τの範囲は、504<τ<2227(k=1)、3235<τ<4957(k=2)、5965<τ<7688(k=3)となる。シミュレーション結果からも、遅延時間τがこの範囲であり、特にk=1のときにBER低くなり、伝送特性が良くなっていることが分かる。 When the effective symbol length T of the OFDM signal is 8192, the range of the time difference τ satisfying the equation (5) is 504 <τ <2227 (k = 1), 3235 <τ <4957 (k = 2), 5965 <τ <. 7688 (k = 3). The simulation results also show that the delay time τ is in this range, and particularly when k = 1, the BER is lowered and the transmission characteristics are improved.
 図8は、送信装置2から送信されるOFDM信号(干渉波)が、ISDB-T方式における異なるモード(モード2及びモード3)のOFDM信号が時分割多重された信号である場合を示している。図8(a)に示すように時間差τ=0の場合には、モード3のときにOFDMシンボル長が同一となるので同一チャンネル干渉が発生する。よって、このように、OFDM信号の一部のみシンボル長が一致する場合においても、図8(b)に示すように時間差τを適切に設定することで、同一チャンネル干渉による伝送特性の劣化を抑制することができる。 FIG. 8 shows a case where the OFDM signal (interference wave) transmitted from the transmission apparatus 2 is a signal obtained by time division multiplexing of OFDM signals of different modes (mode 2 and mode 3) in the ISDB-T system. . As shown in FIG. 8A, when the time difference τ = 0, the OFDM symbol length is the same in mode 3, so that co-channel interference occurs. Therefore, even when the symbol lengths of only a part of the OFDM signal match in this way, by appropriately setting the time difference τ as shown in FIG. 8B, the deterioration of transmission characteristics due to co-channel interference is suppressed. can do.
 以上のように、本実施形態の送信装置1は、送信タイミング調整部17により、シンボル長、パイロット信号の配置、及びパイロット信号の符号系列が等しく、且つデータ信号が異なる他のOFDM信号と、パイロット信号の送信タイミングが一致しないように調整するので、同一チャンネル干渉による伝送特性の劣化を抑制することができる。 As described above, in the transmission apparatus 1 according to the present embodiment, the transmission timing adjustment unit 17 uses the pilot length and the pilot signal arrangement, the pilot signal code sequences, and other OFDM signals having different data signals and the pilot signal. Since adjustment is performed so that the signal transmission timings do not coincide with each other, it is possible to suppress deterioration in transmission characteristics due to co-channel interference.
 上述した実施形態では、送信装置1が送信する次世代方式のOFDM信号と送信装置2が送信するISDB-T方式のOFDM信号との同一チャンネル干渉について説明したが、送信装置1が送信する次世代方式のOFDM信号同士の同一チャンネル干渉についても同様に、送信装置1が備える送信タイミング調整部によりOFDM信号同士の時間差を調整することで、同一チャンネル干渉による伝送特性の劣化を抑制することができる。また、送信装置2が送信するISDB-T方式のOFDM信号同士の同一チャンネル干渉についても同様に、送信装置2が備える送信タイミング調整部によりOFDM信号同士の時間差を調整することで、同一チャンネル干渉による伝送特性の劣化を抑制することができる。 In the embodiment described above, co-channel interference between the next-generation OFDM signal transmitted by the transmission apparatus 1 and the ISDB-T OFDM signal transmitted by the transmission apparatus 2 has been described. Similarly, with respect to co-channel interference between OFDM signals of the system, similarly, by adjusting the time difference between the OFDM signals by the transmission timing adjustment unit provided in the transmission apparatus 1, it is possible to suppress deterioration in transmission characteristics due to co-channel interference. Similarly, for the same channel interference between ISDB-T OFDM signals transmitted by the transmission apparatus 2, the transmission timing adjustment unit provided in the transmission apparatus 2 adjusts the time difference between the OFDM signals, thereby causing the same channel interference. Deterioration of transmission characteristics can be suppressed.
 なお、送信装置として機能させるためにコンピュータを好適に用いることができ、そのようなコンピュータは、送信装置の各機能を実現する処理内容を記述したプログラムを、当該コンピュータの記憶部に格納しておき、当該コンピュータのCPUによってこのプログラムを読み出して実行させることで実現することができる。 Note that a computer can be suitably used to function as a transmission device, and such a computer stores a program describing processing contents for realizing each function of the transmission device in a storage unit of the computer. It can be realized by reading and executing this program by the CPU of the computer.
 実施形態では特に触れていないが、送信装置1及び受信装置4が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。 Although not particularly mentioned in the embodiment, a program for causing a computer to execute each process performed by the transmission device 1 and the reception device 4 may be provided. The program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
 或いは、送信装置1及び受信装置4が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されてもよい。 Alternatively, a chip configured by a memory that stores a program for executing each process performed by the transmission device 1 and the reception device 4 and a processor that executes the program stored in the memory may be provided.
 なお、日本国特許出願第2012-226248号(2012年10月11日出願)の全内容が、参照により、本願明細書に組み込まれている。
Note that the entire content of Japanese Patent Application No. 2012-226248 (filed on Oct. 11, 2012) is incorporated herein by reference.
 このように、本発明によれば、同一チャンネル干渉による伝送特性の劣化を抑制することができるので、OFDM信号を送信する任意の用途に有用である。 Thus, according to the present invention, deterioration of transmission characteristics due to co-channel interference can be suppressed, which is useful for any application for transmitting OFDM signals.

Claims (7)

  1.  送信装置であって、
     送信信号をサブキャリアごとに所定の変調方式に応じてIQ平面へマッピングしてキャリア変調信号を生成するマッピング部と、
     前記キャリア変調信号に対して、パイロット信号の挿入、逆フーリエ変換処理及びガードインターバルの付加を行うことによって、OFDM信号を生成する出力処理部と、
     前記OFDM信号の送信タイミングを調整する送信タイミング調整部とを備え、
     前記送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記送信装置とは異なる他の送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、
     前記送信タイミング調整部は、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差を設けることを特徴とする送信装置。
    A transmitting device,
    A mapping unit that maps a transmission signal to an IQ plane according to a predetermined modulation scheme for each subcarrier to generate a carrier modulation signal;
    An output processing unit for generating an OFDM signal by performing pilot signal insertion, inverse Fourier transform processing and guard interval addition to the carrier modulation signal;
    A transmission timing adjustment unit for adjusting the transmission timing of the OFDM signal,
    The OFDM symbol length of the first OFDM signal generated by the transmitting apparatus, the arrangement of pilot signals, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, It is the same as the pilot signal arrangement and the pilot signal code sequence,
    The transmission timing adjustment unit transmits the pilot signal included in the first OFDM signal so that the transmission timing of the pilot signal included in the first OFDM signal does not match the transmission timing of the pilot signal included in the second OFDM signal. A transmission apparatus characterized in that a time difference is provided between a timing and a transmission timing of a pilot signal included in the second OFDM signal.
  2.  前記送信タイミング調整部は、前記OFDM信号の有効シンボル長をT、前記パイロット信号を時間方向に補間したときの周波数方向の周期をn、前記OFDM信号のガードインターバル比をGIR、1から前記n-1までの整数をkとしたとき、前記時間差τを、次式
    Figure JPOXMLDOC01-appb-M000001
     
    を満たすように設定することを特徴とする、請求項1に記載の送信装置。
    The transmission timing adjustment unit is configured such that the effective symbol length of the OFDM signal is T, the period of the frequency direction when the pilot signal is interpolated in the time direction is n, the guard interval ratio of the OFDM signal is GIR, 1 to the n− When the integer up to 1 is k, the time difference τ is expressed by the following equation:
    Figure JPOXMLDOC01-appb-M000001

    The transmission device according to claim 1, wherein the transmission device is set so as to satisfy.
  3.  前記kの値は1であることを特徴とする、請求項2に記載の送信装置。 3. The transmission apparatus according to claim 2, wherein the value of k is 1.
  4.  第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信装置であって、
     OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出する入力処理部を備え、
     前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、
     前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを特徴とする受信装置。
    A receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus,
    The OFDM signal includes an input processing unit that extracts a pilot signal by performing guard interval removal, orthogonal demodulation processing, and Fourier transform processing,
    The OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of pilot signals, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by the second transmission device, and the pilot signal The same as the arrangement and the code sequence of the pilot signal,
    The transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal so that the transmission timing of the pilot signal included in the first OFDM signal does not match the transmission timing of the pilot signal included in the second OFDM signal. A receiving apparatus, wherein a time difference is provided between transmission timings of included pilot signals.
  5.  送信装置に適用する送信方法であって、
     送信信号をサブキャリアごとに所定の変調方式に応じてIQ平面へマッピングしてキャリア変調信号を生成するステップAと、
     前記キャリア変調信号に対して、パイロット信号の挿入、逆フーリエ変換処理及びガードインターバルの付加を行うことによって、OFDM信号を生成するステップBと、
     前記OFDM信号の送信タイミングを調整するステップCとを備え、
     前記送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記送信装置とは異なる他の送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、
     前記ステップCは、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差を設けるステップを含むことを特徴とする送信方法。
    A transmission method applied to a transmission device,
    Mapping the transmission signal to the IQ plane according to a predetermined modulation scheme for each subcarrier to generate a carrier modulation signal; and
    Step B for generating an OFDM signal by performing insertion of a pilot signal, inverse Fourier transform processing and addition of a guard interval to the carrier modulation signal;
    Adjusting the transmission timing of the OFDM signal,
    The OFDM symbol length of the first OFDM signal generated by the transmitting apparatus, the arrangement of pilot signals, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by another transmitting apparatus different from the transmitting apparatus, It is the same as the pilot signal arrangement and the pilot signal code sequence,
    The step C includes a transmission timing of a pilot signal included in the first OFDM signal so that a transmission timing of a pilot signal included in the first OFDM signal does not match a transmission timing of a pilot signal included in the second OFDM signal. A transmission method comprising a step of providing a time difference with a transmission timing of a pilot signal included in the second OFDM signal.
  6.  第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信装置に適用する受信方法であって、
     OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出するステップAを備え、
     前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、
     前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを特徴とする受信方法。
    A receiving method applied to a receiving apparatus configured to be able to receive an OFDM signal transmitted from a first transmitting apparatus or a second transmitting apparatus different from the first transmitting apparatus,
    Step A for extracting a pilot signal by performing guard interval removal, orthogonal demodulation processing and Fourier transform processing on the OFDM signal,
    The OFDM symbol length of the first OFDM signal generated by the first transmission apparatus, the pilot signal arrangement, and the pilot signal code sequence are the OFDM symbol length of the second OFDM signal, the pilot signal arrangement, and the pilot signal code sequence. Is the same as
    The transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal so that the transmission timing of the pilot signal included in the first OFDM signal does not match the transmission timing of the pilot signal included in the second OFDM signal. A reception method, wherein a time difference is provided between transmission timings of included pilot signals.
  7.  第1送信装置又は前記第1送信装置とは異なる第2送信装置から送信されるOFDM信号を受信可能に構成される受信装置に搭載されるチップであって、
     OFDM信号に対して、ガードインターバルの除去、直交復調処理及びフーリエ変換処理を行って、パイロット信号を抽出する入力処理部を備え、
     前記第1送信装置によって生成される第1OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列は、前記第2送信装置によって生成される第2OFDM信号のOFDMシンボル長、パイロット信号の配置、及びパイロット信号の符号系列と同じであり、
     前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとが一致しないように、前記第1OFDM信号に含まれるパイロット信号の送信タイミングと前記第2OFDM信号に含まれるパイロット信号の送信タイミングとの間に時間差が設けられていることを特徴とするチップ。
     
    A chip mounted on a receiver configured to be able to receive an OFDM signal transmitted from a first transmitter or a second transmitter different from the first transmitter;
    An OFDM signal is provided with an input processing unit that extracts a pilot signal by performing guard interval removal, orthogonal demodulation processing, and Fourier transform processing,
    The OFDM symbol length of the first OFDM signal generated by the first transmission device, the arrangement of pilot signals, and the code sequence of the pilot signal are the OFDM symbol length of the second OFDM signal generated by the second transmission device, and the pilot signal The same as the arrangement and the code sequence of the pilot signal,
    The transmission timing of the pilot signal included in the first OFDM signal and the transmission timing of the pilot signal included in the second OFDM signal so that the transmission timing of the pilot signal included in the first OFDM signal does not match the transmission timing of the pilot signal included in the second OFDM signal. A chip characterized in that a time difference is provided between transmission timings of included pilot signals.
PCT/JP2013/077307 2012-10-11 2013-10-08 Transmission apparatus, reception apparatus, transmission method, reception method and chips WO2014057924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226248 2012-10-11
JP2012226248 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057924A1 true WO2014057924A1 (en) 2014-04-17

Family

ID=50477391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077307 WO2014057924A1 (en) 2012-10-11 2013-10-08 Transmission apparatus, reception apparatus, transmission method, reception method and chips

Country Status (2)

Country Link
JP (1) JP6228419B2 (en)
WO (1) WO2014057924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121798A1 (en) * 2018-12-10 2020-06-18 ソニー株式会社 Transmission device, transmission method, receiving device, and receiving method
TWI741420B (en) * 2018-12-10 2021-10-01 日商索尼股份有限公司 Transmission device, transmission method, reception device and reception method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3068513C (en) 2015-01-05 2022-07-12 Lg Electronics Inc. Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
CN109039467A (en) * 2018-06-26 2018-12-18 天津师范大学 The permanent envelope light ofdm signal modulation demodulation system of standard and its modulation-demo-demodulation method based on I/Q modulator
JP7186062B2 (en) * 2018-10-29 2022-12-08 株式会社日立製作所 Wireless system and wireless communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075733A1 (en) * 2005-01-17 2006-07-20 Sharp Kabushiki Kaisha Communication apparatus
WO2010076854A1 (en) * 2009-01-05 2010-07-08 富士通株式会社 Communication device, mobile station, and communication control method
JP2012034211A (en) * 2010-07-30 2012-02-16 Panasonic Corp Base station device and transmission power control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4038114B2 (en) * 2002-10-29 2008-01-23 松下電器産業株式会社 Wireless transmission apparatus and wireless transmission method
JP4243558B2 (en) * 2004-03-09 2009-03-25 日本放送協会 OFDM signal transmitter
JP4783337B2 (en) * 2007-07-24 2011-09-28 日本放送協会 MIMO receiver
WO2009075104A1 (en) * 2007-12-11 2009-06-18 Panasonic Corporation Pilot transmission method, mimo transmission device, mimo reception device which performs communication with mimo transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075733A1 (en) * 2005-01-17 2006-07-20 Sharp Kabushiki Kaisha Communication apparatus
WO2010076854A1 (en) * 2009-01-05 2010-07-08 富士通株式会社 Communication device, mobile station, and communication control method
JP2012034211A (en) * 2010-07-30 2012-02-16 Panasonic Corp Base station device and transmission power control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121798A1 (en) * 2018-12-10 2020-06-18 ソニー株式会社 Transmission device, transmission method, receiving device, and receiving method
JP2020096231A (en) * 2018-12-10 2020-06-18 ソニー株式会社 Transmission device, transmission method, reception device, and reception method
TWI741420B (en) * 2018-12-10 2021-10-01 日商索尼股份有限公司 Transmission device, transmission method, reception device and reception method
US11463136B2 (en) 2018-12-10 2022-10-04 Sony Group Corporation Transmission device, transmission method, reception device, and reception method
JP7268343B2 (en) 2018-12-10 2023-05-08 ソニーグループ株式会社 Transmitting device, transmitting method, receiving device, and receiving method

Also Published As

Publication number Publication date
JP6228419B2 (en) 2017-11-08
JP2014096790A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US20140321575A1 (en) Transmission device, reception device, transmission method, and reception method
JP6228419B2 (en) Transmitting apparatus and program
KR102143466B1 (en) Transmitter, receiver and controlling method thereof
KR101400240B1 (en) System for generating space frequency block code relay signal and method thereof
US9350472B2 (en) Apparatus and method for transmitting and receiving broadcast signals
US8509328B2 (en) Reception apparatus, reception method, program, and reception system
CN101707574A (en) Channel estimation method and device
TW200934254A (en) Platform noise estimation and mitigation
CN103944852A (en) Impulsive noise estimation and elimination method and device based on compressed sensing
US9203656B2 (en) Receiver and method of estimating frequency response of transmission path by receiver
EP2084872A1 (en) Subblock-wise frequency domain equalizer
CN102687440B (en) OFDM receiver,OFDM reception circuit,OFDM reception method
CN102263725A (en) Mobile ofdm receiver
JP6029417B2 (en) Receiving apparatus and program
JP6006562B2 (en) Receiving apparatus and program
CN104954310B (en) Impulse noise removing method and device
CN101540750B (en) Method for removing narrow pulse interference in OFDM system
EP2555479A1 (en) Apparatus and method for estimating a channel coefficient of a data subchannel of a radio channel
Taguchi et al. Large-capacity wireless transmission technology
JP5845127B2 (en) Receiving apparatus and program
US9847898B2 (en) Method for transmitting broadcast signal, method for receiving broadcast signal, apparatus for transmitting broadcast signal, and apparatus for receiving broadcast signal
JP6417178B2 (en) OFDM transmitter
JP5973779B2 (en) Transmission device, reception device, and program
JP6412535B2 (en) OFDM transmitter
JP6875896B2 (en) OFDM transmitter and OFDM receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844775

Country of ref document: EP

Kind code of ref document: A1