WO2014054884A1 - Composition for hyperthermia comprising sensitization material - Google Patents

Composition for hyperthermia comprising sensitization material Download PDF

Info

Publication number
WO2014054884A1
WO2014054884A1 PCT/KR2013/008820 KR2013008820W WO2014054884A1 WO 2014054884 A1 WO2014054884 A1 WO 2014054884A1 KR 2013008820 W KR2013008820 W KR 2013008820W WO 2014054884 A1 WO2014054884 A1 WO 2014054884A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
heat
present
oxygen species
group
Prior art date
Application number
PCT/KR2013/008820
Other languages
French (fr)
Korean (ko)
Inventor
천진우
유동원
노승현
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020157015087A priority Critical patent/KR101868675B1/en
Publication of WO2014054884A1 publication Critical patent/WO2014054884A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Silver heat treatment composition comprising a sensitizer
  • the present invention relates to a composition for thermotherapy having improved sensitivity to silver heat of a target cell by including magnetic nanoparticles and a sensitizing material.
  • Nanomaterials exhibit new physical and chemical properties different from bulk materials due to their reduced size.
  • many researches on nanomaterials have made it possible to control not only the size but also the composition and shape of the material, allowing the physical and chemical properties of the nanoscale to be controlled as in the bulk domain.
  • nanomaterials are now expanding their applicability to catalysts for chemical reactions, the creation of next-generation nanodevices, new energy developments, and cancer diagnostics and treatments due to the combination of medical and life sciences (Nano Madison). In addition, it is widely used in various fields.
  • magnetic nanomaterials generate heat due to the following three phenomena when high frequency magnetic field is applied to them due to their unique magnetic properties.
  • heat generated by applying high frequency to magnetic nanomaterials is used for treating hyperthermia including cancer.
  • Hyperthermia is the use of heat in the treatment of diseases, including cancer, by taking advantage of the phenomenon that cancer cells begin to die above 42 ° C. Since high frequency magnetic field is not affected by skin tissue and there is no limit of penetration depth, nanoparticles can be selectively heated when they accumulate in cancer tissues in the body. Have been received. In principle, cancer cells may be selectively killed at a temperature of about 43 ° C. Therefore, the use of these self-thermotherapy techniques has been limited due to their low therapeutic efficiency. Accordingly, the present inventors attempted to use a sensitization strategy to dramatically increase the cancer treatment effect by the self-heat treatment technology. The sensitization strategy is to apply additional external stimuli to cancer cells and cancer tissues, making them more susceptible to thermal therapy with magnetic particles.
  • the present inventors earnestly researched to improve the sensitivity of the heat treatment of the cells forming the lesion tissue to increase the efficiency of the heat treatment technology using magnetic nanomaterials under high frequency magnetic field.
  • the present invention has been completed by discovering that stress or restraining the mechanism of resistance to heat makes it more susceptible to thermal therapy using magnetic particles, thereby achieving synergistic apoptosis.
  • Another object of the present invention to provide a composition for hyperthermia therapy.
  • Another object of the present invention is to provide a method of hyperthermia therapy.
  • the present invention provides a composition for in vivo heat release comprising:
  • sensitization substance selected from the group consisting of chemodrugs, biodrugs and radioisotopes.
  • the present inventors earnestly researched to improve the sensitivity of the heat treatment of the cells forming the lesion tissue to increase the efficiency of the thermotherapy technology using magnetic nanomaterials under high frequency magnetic field.
  • sensitizers ie, lesion cells and tissues, are subjected to additional external stimuli or to suppress heat resistance mechanisms, making them more susceptible to thermal therapy using magnetic particles, resulting in synergistic apoptosis effects. It was found that it can be harvested.
  • composition for heat release refers to itself or to external stimuli. Means a material that radiates heat to the outside.
  • composition for heat release in vivo means a substance that increases the temperature in vivo by releasing heat in vivo.
  • the heat dissipating composition of the present invention can be used to artificially raise the natural temperature in vivo for various purposes.
  • the composition for heat release of the present invention may be used for the purpose of inducing death of target cells, in which case the composition of the present invention may be defined as "composition for inducing cell death”.
  • the term "sensitization material” means a material that allows lesion cells and lesion tissues to react more sensitively to thermal stress caused by magnetic nanoparticles, thereby leading to more efficient cell death.
  • the sensitizer is a substance that causes a stress caused by an additional external stimulus or suppresses a mechanism of resistance to heat, and thus exhibits a synergistic effect with magnetic nanoparticles in apoptosis.
  • the term “chemodrugs” refers to compounds administered to treat disease such as cancer by ultimately killing lesion cells such as cancer cells or inhibiting the mechanism of resistance to heat exerted for the death of the cells. it means.
  • Chemotherapeutic agents that can be used in the present invention are cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, and phosphamide (ifosfamide), melphalan, chlorambucil, bisulfan, nitrosourea
  • the chemotherapeutic agent of the present invention is selected from the group consisting of reactive oxygen species, reactive oxygen species generating substance, reactive oxygen species generating substance and heat shock protein inhibitor (Hsp inhibitor).
  • R0S reactive oxygen species
  • the active oxygen species used in the present invention is hydrogen peroxide (), superoxide anion (0 2 —), hydroxyl radical (OH ⁇ ), lipid peroxide (lipid peroxide) ), Peroxitrite (N0 3 2 “ ), thiol peroxy radical (R-S0 2_ ), the term” ROS generator "(ROS generator) ) "Refers to a compound that generates free radicals in vivo by a radical initiation reaction using free radicals.
  • the free radical species generating material which can be used in the present invention may be various halogen molecules, azo ( azo) compounds and organic peroxides, including but not limited to all compounds capable of chemically generating free radicals in vivo using free radicals
  • the active oxygen species generating material azo compound used in the present invention, and more specifically 4,4 '-azobis (4-cyano valeric acid) (4, 4'- Azobis (4-cyanovaleric acid), hereinafter referred to as 4,4'-azobis).
  • 4,4'-azobis may be conjugated to the magnetic nanoparticles and used as a single composition.
  • 4,4'-azobis conjugated to magnetic nanoparticles, solving the technical problem of "induction of heat generation in vivo" and “killing the target cells” through it Magnetic nanoparticles and sensitizers are not administered in parallel, but rather are administered as a complex of magnetic nanoparticles-sensitizers.
  • the active oxygen species generating material including 4,4 ' ⁇ azobis, is initiated free radical generation when a high frequency magnetic field is applied, resulting in an increase in the generation efficiency of active oxygen species in vivo.
  • the composite of the nanoparticle-sensitizing material of the present invention can exert a dual apoptosis effect of increasing heat release and reactive oxygen species generation by nanoparticles by applying a high frequency magnetic field with a single stimulus.
  • active oxygen species generation inducer means a substance that induces active oxygen species generation using intracellular metabolism.
  • the reactive oxygen species generating inducer unlike the active oxygen species generating material, which directly initiates the generation of reactive oxygen species by using free radicals of its own, acts on enzymes involved in the redox metabolism of cells to generate reactive oxygen species. Promote indirectly.
  • the reactive oxygen species generating inducers that can be used in the present invention include 3,7-diaminophenothiazinium redox dye, 2- (phenyltelluryl) -3-methyl- [1,4] naphthoquinone, tria Various redox chemodrugs, including but not limited to Triapine, Varacin, Reinamycin, and ⁇ -phenylethylisothiocyinate, can be used by intracellular metabolism Any substance that can promote the production of free radicals can be used.
  • the reactive oxygen species generation inducing substance used in the present invention is anthamycin A (Antimycin A). Antamicin A promotes the production of free radical superoxide by binding to the Qi site of cytochrome C reductase and inhibiting the oxidation of ubiquinol in the oxidative phosphorylation of the electron transfer chain process.
  • heat shock protein refers to a protein that is commonly synthesized by all living organisms as a protein induced by the thermal stratification.
  • Hsp heat shock protein
  • thermal stratified proteins have molecular weights of 90,000, 70,000 and
  • Hsp90 There are 60,000 Hsp90, Hsp70 and Hsp60.
  • Heat shock proteins act as protective cells and bind to heat-damaged proteins to promote their regeneration. Therefore, cells overproducing heat shock protein by heat treatment are resistant to high temperatures.
  • Hsp inhibitor refers to a compound that inhibits the production and activity of Hsp.
  • Hsps capable of inhibiting production and activity with the compositions of the present invention include all of Hsp90, Hsp70 and Hsp60.
  • the thermal shock protein inhibitor of the present invention is geldanamycin ( ⁇ (3113 ⁇ (: ⁇ ), 17AAGC17-N-A1 lylamino-17- demethoxyge 1 danamyc in) 17-DMAG (17-di me t hy 1 am i no-ge 1 danamyc in), Pitithrin (-(2-3 ⁇ 46 16 ⁇ 1 1131 6) 1 (-437 (3-[(£;)-1,3- Benzod i oxo 1 -5-y 1 me t hy 1 ene] -2-oxopyrrol idine-l-carbaldehyde), schisandrin (schandrin) -B, quercetin (2- (3, 4-di hydr oxypheny 1)-3, 5, 7-tri hydroxy-4H-chr omen-4-one and ETB (Epolactaene Tertiary Butyl Ester) Most specifically, the heat stratified
  • the thermal stratified protein inhibitor of the present invention is conjugated to the magnetic nanoparticles with a heat sensitive linker.
  • the heat sensitive linker is 4, 4'-azobis (4-cyanovaleric acid) (4,4'-Azob i s (-cy anova 1 er i c acid)).
  • the nanoparticle-thermal shock protein inhibitor complex of the present invention may be an example of a complex of nanoparticle-sensitive materials, and may exert a dual cell death effect of inhibiting heat release and heat resistance by nanoparticles by applying a high frequency magnetic field.
  • composition for heat release in vivo of the present invention consisting of magnetic nanoparticles and thermal shock protein inhibitors is compared to the case where only the thermal stratified protein inhibitor is treated to the cells or only the magnetic nanoparticles are treated to the cells.
  • biodrug includes cytotoxic proteins, oligonucleotides, hormones and antibodies that inhibit the proliferation or survival of lesion cells, including cancer cells; It is not limited to this. More specifically, the biopharmaceutical of the present invention is an antibody.
  • antibody refers to a therapeutic antibody that specifically binds to proteins involved in the proliferation or survival of lesion cells, including cancer cells, thereby inhibiting their activity or leading to death.
  • Antibodies that can be used in the present invention include, but are not limited to, anti-VEGF antibodies, anti-CD20 antibodies, anti-Erb2 antibodies, anti-EGF antibodies, anti-CD52 antibodies, and anti-CD33 antibodies.
  • radioisotope refers to an element that emits alpha particles, beta particles, or gamma rays in the process of being decomposed into stable elements among other isotopes. More specifically, the radioisotope mentioned in the present specification means a therapeutic radioisotope for killing lesion cells including cancer cells. Rapidly dividing cells are particularly susceptible to radiation damage, and radiation is widely used to treat cancer. Radioisotopes that may be used in the present invention include, but are not limited to, 60 Co, 131 I, 192 Ir, 89 Sr, 153 Sm, 186 Re and 10 B.
  • the magnetic nanoparticles of the present invention are represented by the following general formula (1).
  • Magnetic nanoparticles of the present invention are specifically 1-500 nm, more specifically 10-200 nm, even more specifically 10-100 nm, even more specifically 10-50 nm, most specifically 10- It has a size of 20 nm.
  • a nanomaterial precursor containing a magnetic metal precursor is added to an organic solvent to prepare a mixed solution.
  • the nanomaterial precursors are metal nitrate compounds, metal sulfate-based compounds, metal acetylacetonate-based compounds, metal fluoroacetoacetate-based compounds, metal halide-based compounds, metal perchlorate-based compounds, metal An alkyl oxide-based compound, a metal walpamate-based compound, a metal styreate-based compound, or an organometallic-based compound may be used, but is not limited thereto.
  • the magnetic nanomaterial synthesized by the above-described manufacturing method may be used in an aqueous solution by phase transition using a water-soluble polyfunctional ligand.
  • the 'water-soluble polyfunctional ligand' is a ligand that binds to the nanoparticles for the solubilization and stabilization of the nanoparticles, and enables binding with biological / chemically active substances, especially the active oxygen species generating material of the present invention.
  • a water soluble polyfunctional ligand comprises (a) an attachment region (1, adhesive region), (b) an active ingredient binding region (L n , reactive region), (c) a cross linking region (L m , cross linking region), Or an active ingredient binding region-cross linking region (L n -L m ) that includes the active ingredient binding region (L n ) and the crosslinking region (L m ) at the same time.
  • the water-soluble multifunctional ligand is described in more detail below.
  • the “attachment region ()” is a part of a multifunctional ligand including a functional group capable of attaching to the nanomaterial, and specifically means a terminal of the multifunctional ligand. Therefore, the attachment region preferably includes a functional group having high affinity with the material forming the nanomaterial. In this case, the bond between the nanomaterial and the attachment region may be attached by an ionic bond, a covalent bond, a hydrogen bond, a hydrophobic bond, or a metal-ligand coordination bond. Accordingly, the attachment region of the multifunctional ligand may be variously selected depending on the material of the nanomaterial.
  • the “active ingredient binding region (L ′)” is a part of a multifunctional ligand including a functional group capable of binding to a chemical or biofunctional material, and specifically means a terminal opposite to the attachment region.
  • the functional group of the active ingredient binding region may vary depending on the type of active ingredient and its chemical formula (see Table 1).
  • cross-linking region (L m ) is a portion of a multifunctional ligand comprising a functional group capable of crosslinking with an adjacent multifunctional ligand, specifically It means the attachment attached to the center.
  • crosslinking is meant that one polyfunctional ligand is bound by an intermolecular interacting ion with another polyfunctional ligand located in close proximity.
  • the intermolecular attraction includes, but is not particularly limited to, hydrophobic attraction, hydrogen bonds, covalent bonds (eg, disulfide bonds), van der Waals bond ionic bonds, and the like. Therefore, crosslinkable functional groups can be selected in various ways depending on the kind of intermolecular attraction.
  • Specific multifunctional ligands of the invention include monomolecules, polymers, carbohydrates, proteins, peptides, nucleic acids, lipids, or amphiphilic ligands.
  • Examples of specific multifunctional ligands in the water-soluble nanomaterial according to the present invention are monomolecules containing the aforementioned functional groups as single molecules, and specifically, dimercaptosuccinic acid.
  • dimercapto succinic acid originally contains an attachment region, a cross-linking region and an active ingredient binding region. That is, one -C00H of the dimercapto succinic acid is bound to the magnetic signaling core, and -C00H and -SH at the distal end function to bind the active ingredient.
  • -SH can be a cross-linking region by forming a disulfide bond with other -SH around.
  • compounds including -C00H as the functional group of the attachment region, -C00H, -NH 2 ( or -SH as the functional group of the binding region can all be used as specific multifunctional ligands, but are not limited thereto. no.
  • water-soluble polyfunctional ligands of the present invention include polyphosphazenes, polylactides, polylactide-co-glycolides, polycaprolactones, polyanhydrides, polymalic acid, derivatives of polymalic acid, polyalkyls 1 type from the group consisting of cyanoacrylate, polyhydrooxybutylate, polycarbonate polyorthoester, polyethylene glycol, poly-L-lysine, polyglycolide, pullimethyl methacrylate and polyvinylpyridone
  • the above polymer is not limited thereto.
  • a specific multifunctional ligand in the magnetic nanoparticles according to the present invention is a peptide.
  • Peptides are oligomers / polymers consisting of amino acids. Because amino acids have -C00H or -N3 ⁇ 4 functional groups at both ends, the peptides are naturally attached and active ingredients. The coupling area is provided.
  • peptides including one or more amino acids having at least one of -SH, -C0OH, -N3 ⁇ 4, or -0H as a chain may be used as a specific water-soluble multifunctional ligand.
  • Proteins are polymers consisting of more amino acids than peptides, that is, hundreds to hundreds of thousands of amino acids. They contain -C00H and- ⁇ 2 functional groups at both ends, as well as dozens of -COOH, -N3 ⁇ 4, -SH, -OH,- C0NH 2 and the like. Therefore, the protein may naturally have an attachment region, a cross linking region, and an active ingredient binding region according to its structure, as in the above-described peptide, and thus may be usefully used as the phase change ligand of the present invention.
  • phase transfer ligands include structural proteins, storage proteins, transport proteins, hormone proteins, receptor proteins, contraction proteins, defense proteins, and enzyme proteins. More specifically, albumin, antibody, antigen, avidin (avidin), cytochrome, casein, myosin glycinin, keratin, collagen, globular protein, light protein, streptavidin, protein A, protein G, protein S, immunity Globulin, lectin, selectin, angiopoietin, anticancer protein, antibiotic protein, hormonal antagonist protein, inter leukin, interferon, growth factor protein, tumor Necrosis factor protein, endotoxin protein, lymphotoxin protein, tissue plasminogen activator, urokinase, streptokinase, protease inhibitor , Alkyl phosphochol ine, surfactants, cardiovascular pharmaceuticals, nervous system drugs (neuro phar maceuticals), gastrointestinal pharmaceuticals, and the like.
  • albumin albumin, antibody, antigen, avidin (avidin),
  • Nucleic acid is a ligolimer consisting of a large number of nucleotides, and since it has P0 4 — and -0 ⁇ functional groups at both ends, it naturally has an attachment region and an active component binding region (LrLm), or an attachment region and a cross-linking region ( L ⁇ L n ) may be usefully used as the phase change ligand of the present invention.
  • the nucleic acid is optionally modified to have a functional group of -SH, -NH 2) -C00H, -OH at the 3 'end or 5' end.
  • Another example of a specific multifunctional ligand in the water-soluble nanomaterial according to the present invention is an amphiphilic ligand having both a hydrophobic functional group and a hydrophilic functional group.
  • a ligand composed of a hydrophobic long carbon chain exists on the surface thereof.
  • the hydrophobic functional group present in the amphiphilic ligand added and the hydrophobic ligand on the surface of the nanomaterial are bonded by intermolecular attraction to stabilize the nanomaterial, and the hydrophilic functional group is exposed at the outermost side of the nanomaterial, resulting in producing a water-soluble nanomaterial.
  • the intermolecular attraction includes hydrophobic bonds, hydrogen bonds, van der Waals bonds, and the like.
  • the portion bonded by the nanomaterial and the hydrophobic attraction is an attachment region, and together with the organic component, the active component binding region (L ′) or the cross-linking region (L m ) may be introduced.
  • a polymer multi-amphiphilic ligand having a plurality of hydrophobic functional groups and a hydrophilic functional group may be used, or the amphiphilic ligand may be cross-linked with each other using a linking molecule.
  • the hydrophobic functional group is a hydrophobic molecule composed of a chain having 2 or more carbons and has a linear or branched structure, and more specifically, ethyl, n-propyl, Alkyl functional groups such as isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, nucleodecyl, aicosyl, tetracosyl, dodecyl, or cyclopentyl, cyclonuclear, and ethynyl, propenyl, Carbon-carbon double bonds such as isopropenyl, butenyl, isobutenyl, octenyl, decenyl, oleyl, or propynyl, isopropynyl, butynyl,
  • hydrophilic functional groups are neutral at certain P Hs, such as -SH, -C00H, -NH 2) -OH, -P0 3 H, -OPO4H2, -S0 3 H, -0S0 3 HN + X—, etc. At high or low pH it refers to positive or negatively charged functional groups.
  • a polymer or a block copolymer may be used as the hydrophilic group, and the unit elements used are ⁇ ethyl glycol, acrylic acid, alkyl acrylic acid, Ataconic acid, maleic acid, fumaric acid, acrylamidomethylpropanesulfonic acid, vinylsulfonic acid, vinyl phosphate, vinyllactic acid, styrenesulfonic acid, allyl ammonium, acryronitrile, N-vinylpyridone, N-vinyl Formamide, and the like, but is not limited thereto.
  • specific water soluble polyfunctional ligands in the present invention include carbohydrates. More specific examples include glucose, mannose, fucose,
  • the term “thermotherapy” means exposing body tissues to a temperature slightly above normal temperature to kill lesion cells, including cancer cells, or to make them more susceptible to radiation therapy or anticancer agents.
  • the composition of the present invention is synergistic by the effect of the thermal effect of the magnetic nanoparticles and the external stimulus using active oxygen species at the same time, even by a small number of nanoparticles and a high frequency magnetic field load for a short time has an excellent cancer cell killing effect, such effect was confirmed that all the Dex Perry commercially available nanomaterials "remarkably excellent.
  • thermotherapy composition of the present invention comprises a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers are conventionally used in the preparation of lactose, dextrose, sucrose, sorbet, manny, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cells. Loose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methyl hydroxy benzoate, propyl hydroxy benzoate, talc, magnesium stearate, or mineral oil, and the like, but not limited thereto. . Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
  • the composition for treating heat of the present invention is preferably administered parenterally.
  • parenteral administration it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, or intralesional injection, etc.
  • Suitable dosages of the composition of the present invention may be formulated, mode of administration, patient It may be prescribed by factors such as age, body weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and reaction.
  • the thermotherapy composition of the present invention comprises a therapeutically effective amount of the composition for heat release.
  • therapeutically effective amount means a subdivided amount capable of treating a disease for treatment, generally 0.0001-100 mg / kg.
  • compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, or emulsion in an oil or an aqueous medium, or may be in the form of axes, powders, granules, tablets, or capsules, and may further include a dispersing agent or a stabilizing agent.
  • composition for thermotherapy of the present invention is administered to a patient by a suitable route of administration, and then a high frequency magnetic field is added, thereby generating heat, and at the same time promoting the production of free radicals in the target cell.
  • the high frequency magnetic field may be a high frequency magnetic field having a frequency of 100 kHz to 10 MHz.
  • the disease treated with the composition for treating heat of the present invention is cancer.
  • the composition for treating heat of the present invention It is useful for treating cancers such as stomach cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer. And death of cancer cells in various cancer diseases such as ureter cancer.
  • the present invention provides a hyperthermia therapy method and cancer treatment method comprising administering the composition for heat release in vivo of the present invention.
  • the present invention provides a heat release in vivo comprising (i) magnetic nanoparticles and (ii) sensitizers selected from the group consisting of chemotherapeutic agents, biodrugs and radioisotopes. Composition; And it provides a heat treatment composition comprising the in vivo heat release composition as an active ingredient.
  • composition of the present invention shows an excellent synergistic effect on the killing of target cells, in particular cancer cells, due to the simultaneous application of heat release by external stimulation and magnetic nanoparticles.
  • composition of the present invention is composed of a composite of 'magnetic nanoparticle-sensitive material', the thermal effect and the sensitizing effect of the sensitizing material are simultaneously achieved by a single stimulus of high frequency magnetic field, which is useful for an effective therapeutic composition.
  • a single stimulus of high frequency magnetic field which is useful for an effective therapeutic composition.
  • FIG. 1 is an exemplary magnetic nanoparticle used in the present invention.
  • ZnO.4Fe2.604 is a diagram showing the results of observation using a transmission electron microscope.
  • 2 and 3 are graphs showing the results of measuring the increase in temperature under an alternating high frequency magnetic field after preparing the magnetic nanoparticles of the present invention and ferridex, which are conventionally commercialized nanoparticles, at the same concentration, respectively (FIG. 2) and This is a graph showing the heat release coefficient value calculated through the rate of change of the initial temperature of the analyte (Fig. 3).
  • FIG. 4 is a graph showing that the silver content of the cell culture was maintained at 43 ⁇ 1 ° C.
  • FIG. 5 is a 2 ', 7' - dichloro fluorescein diacetate (DCFA, Molecular Probes) is 2 ', ⁇ ' - dichloro-fluorescein (DCF) fluorescence microscope (FV1000 confocal microscope, Olympus) to oxidize observed Shows the result of confirming the generation of reactive oxygen species.
  • Figure 6 is a graph showing the cell death rate by the external magnetic field when treated only nanoparticles of the present invention.
  • FIG. 7 shows the case where no treatment (left bar), active oxygen species (3 ⁇ 40 2 ) and nanoparticles were treated and no magnetic field was applied (middle bar), and reactive oxygen species and nanoparticles were treated and magnetic fields were applied (Graph showing each cell death rate in the right bar).
  • Figure 8 shows no oxygen treatment (left bar), active oxygen species product (4, 4'-azobis) and nanoparticles treated without magnetic field (middle bar) and active oxygen species product and nano This is a graph showing the cell death rate of each of the particles treated with the magnetic field (right bar).
  • FIG. 9 shows the treatment of reactive oxygen species generating inducer (antamycin A) and the treatment of nanoparticles without any magnetic field (center bar) and the treatment of active oxygen species generating inducer and nanoparticles It is a graph showing the rate of cell death for each of the treated and magnetic field (right bar).
  • 10 is data showing that apoptosis of sensitization strategy via reactive oxygen species is effectively applied to phosphorus ⁇ .
  • FIG. 11 is a graph showing that the heat sensitive linker is decomposed when the exemplary magnetic nanoparticle-thermolayer protein inhibitor complex used in the present invention is subjected to a magnetic field, and the thermal layer protein inhibitor is effectively discharged.
  • 12 is a graph showing that the temperature of the cell culture was maintained at 43 ° C. 1 ° C.
  • FIG. 13 is a graph showing the cell death rate by an external magnetic field when treated with only the nanoparticles of the present invention (black) and a graph when the nanoparticle-thermolayer protein inhibitor complex was treated and applied with a magnetic field (red).
  • 14 is a diagram showing the results of Western blotting showing the effective inhibition of the production of Hsp90, a type of thermal stratified protein.
  • 15 is a diagram showing that the apoptosis of the sensitization strategy through thermal stratified protein inhibition is effectively applied in.
  • the magnetic nanoparticles By applying an external high frequency magnetic field, the magnetic nanoparticles The experiment was conducted to investigate the effect of heat treatment through the sensitization strategy using reactive oxygen species in killing cancer cells with heat by inducing heat release. As a control, none of the conjugated magnetic nanoparticles was used as a control to compare the difference in thermotherapy effect according to the presence or absence of reactive oxygen species.
  • the cancer cell used in the experiment was MDA-MB-231, a breast cancer cell group. To examine the effect of simultaneous cancer cell killing with each of the heat treatments using three different substances that generate or induce reactive oxygen species, only nanoparticles were applied to the cells.
  • the cancer cell survival rate When treated, cells treated with only the substance that generates or induced the generation of reactive oxygen species, the cancer cell survival rate at a temperature of about 43 ° C when the nanoparticles and reactive oxygen species were treated at the same time using the CCK-8 method
  • Quantitative analysis through. 4 is a graph showing that the temperature of the cell culture was maintained at 43 ° C. 1 ° C. by adjusting the temperature change when the external magnetic field was applied to the nanoparticles for a given time while observing the optical fiber thermometer. If the nanoparticles were only treated in the cells and no external alternating magnetic field was applied, the cancer cell death rate was 0 3 ⁇ 4 » and the cells were treated only with substances that produced or induced free radical species.
  • cancer cell death rates of 5-15% were observed due to oxidative stress by the species.
  • cancer cell death rate is about 50-% due to oxidative stress caused by reactive oxygen species as well as heat generated during the loss of magnetic history. It was confirmed that the increase to 60% level.
  • the specific experimental method is as follows. The MDA-MB-231 breast cancer cell group was incubated for 24 hours with IX 10 4 cells per well using a 96-well plate, and one group contained magnetic nanoparticles containing 200 yg / ml zinc and reactive oxygen species. The material produced or induced was treated together and the other group treated only with magnetic nanoparticles.
  • thermotherapy and sensitization strategies were classified as follows:
  • FIG. 10 is a diagram showing that apoptosis by the heat treatment using the sensitization strategy is effective even in /.
  • the composition was injected when the size of the cancerous tissue became 100 mm 3 , and an alternating magnetic field was applied for 30 minutes to maintain a temperature of 43 ° C. 14 days later, the size of the cancer was checked. You can see the cancer is completely removed with just one heat treatment. This shows that apoptosis is effectively occurred even in actual w w by the heat treatment which is enhanced by the sensitization strategy (FIG. 10).
  • Example 6 Synthesis of Magnetic Nanoparticle-Thermal Shock Protein Inhibitor Complex and Effective Release of Thermal Shock Protein Inhibitor Using Magnetic Field
  • Example 7 Effective Silver Control Using Nanoparticle-Thermal Shock Protein Complex
  • the high frequency magnetic field was adjusted according to the temperature to maintain the desired temperature. This change in temperature was observed in real time using a fiber optic thermometer (M602, Lumasense technologies, Inc. USA). As shown in Figure 12 by adjusting the high frequency magnetic field to effectively maintain the temperature of the media 43 °C 1 ° C range. It was confirmed that the temperature of the sample increased with increasing time.
  • Example 8 Experiment to confirm the effect of heat treatment through sensitization strategy using heat shock protein inhibitor
  • the application of an external high frequency magnetic field causes the magnetic nanoparticles to induce heat release through a loss of magnetic history, thereby killing cancer cells with heat.
  • Experiments were conducted to determine the effect of heat therapy through the sensitization strategy using heat stratified protein inhibitors.
  • As a control none of the non-conjugated magnetic nanoparticles was used as a control to compare the effect of heat treatment according to the presence or absence of a thermal stratified protein.
  • the cancer cells used in the experiment are MDA-MB-231, a breast cancer cell population.
  • nanoparticles - the tumor rejection at a temperature of about 43 ° C when treated with heat cheunggyeok protein inhibitor complex to cells via CCK-8 method Quantitative analysis (FIG. 13). If the nanoparticles were only treated with cells and no external alternating magnetic field, there was no toxicity and cancer cell death rate remained at 0% (black graph), and the nanoparticle-thermolayer protein complex had little toxicity. Was observed (red graph). On the other hand, when the magnetic field is applied to the complex, cancer cell death rate is weak due to the inhibition of the formation and action of thermal stratified protein as well as the heat induced during the loss of magnetic history.
  • the specific experimental method is as follows.
  • the MDA-MB-231 breast cancer cell group was incubated for 24 hours with 1 ⁇ 10 4 cells per well using a 96-well plate, and one group was treated with 100 g / ml nanoparticle-thermal stratified protein complex material and the other.
  • the group treated only magnetic nanoparticles.
  • a 500 kHz high frequency magnetic field of 37.4 kA / m intensity was added thereto while maintaining the temperature of the cell culture at 43 ° C. for 80 minutes.
  • the living cells were quantified using a CC-8 assay.
  • 13 is an experimental result showing the cell death rate with time when an external alternating magnetic field was applied up to 80 minutes.
  • cancer cells killed up to 17% due to the effect of heat treatment alone (black graph).
  • the cell death rate rapidly increased to 100% as cells were more susceptible to heat treatment.
  • FIG. 15 is a diagram showing that apoptosis by heat treatment using a sensitization strategy also occurs effectively in wVo.
  • the composition was injected when the size of the cancerous tissue became 100 mm 3 , and an alternating magnetic field was applied for 30 minutes to maintain a temperature of 43 ° C. 14 days later, the size of the cancer was checked. You can see the cancer is completely removed with just one heat treatment. This shows that apoptosis effectively occurs even in actual by the heat treatment that the effect is enhanced through the sensitization strategy (FIG. 15).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)

Abstract

The present invention relates to an in vivo heat-dissipating composition comprising a sensitization material selected from the group consisting of (i) magnetic nanoparticles and (ii) chemodrugs, biodrugs and radioisotope; and to a composition for hyperthermia, comprising the vivo heat-dissipating composition as an active ingredient. The compositions of the present invention may have heat-dissipating effects caused by both external stimuli and magnetic nanoparticles, and therefore, may exhibit superior synergistic effects in the apoptosis of target cells, in particular cancer cells. In particular, if the compositions of the present invention are made into a composite of 'magnetic nanoparticle-sensitization material', both a thermal effect by a single stimulus which is a high frequency magnetic field and a sensitization effect by a sensitization material are achieved at the same time. Thus, the compositions of the present invention can be used as effective compositions for treatment.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
민감화 물질을 포함하는 은열 치료용 조성물  Silver heat treatment composition comprising a sensitizer
【기술 분야】 [Technical field]
본 발명은 자성 나노입자와 민감화 물질을 포함함으로써 타겟 세포의 은열에 대한 민감성이 향상된 온열 치료용 조성물에 관한 것이다.  The present invention relates to a composition for thermotherapy having improved sensitivity to silver heat of a target cell by including magnetic nanoparticles and a sensitizing material.
【배경 기술】 [Background technology]
나노 물질 (nanomaterial)은 감소된 크기로 인해서 벌크물질 (bulk material)과 다른 새로운 물리적 /화학적 성질을 나타낸다. 또한 나노 물질에 대한 많은 연구로 크기 뿐만 아니라 물질의 조성이나 모양 역시 조절할 수 있게 되면서 나노영역에서의 물리적 /화학적 특성을 벌크영역에서처럼 조절할 수 있게 되었다. 이런 새로운 특성을 이용해서 현재 나노 물질은 화학반웅의 촉매, 차세대 나노 소자 제작, 새로운 에너지 개발 그리고 의 /생명 과학과의 결합 (나노 메디슨)으로 인한 암 진단 및 치료 분야까지 그 응용성을 넓혀가고 있으며, 그 외에도 다양한 분야에서 광범위하게 웅용되고 있다.  Nanomaterials exhibit new physical and chemical properties different from bulk materials due to their reduced size. In addition, many researches on nanomaterials have made it possible to control not only the size but also the composition and shape of the material, allowing the physical and chemical properties of the nanoscale to be controlled as in the bulk domain. Taking advantage of these new properties, nanomaterials are now expanding their applicability to catalysts for chemical reactions, the creation of next-generation nanodevices, new energy developments, and cancer diagnostics and treatments due to the combination of medical and life sciences (Nano Madison). In addition, it is widely used in various fields.
그 중에서도 자성 나노물질은 그들이 가진 독특한 자기적 성질로 인해서 고주파 자기장을 주변에 가하게 되면 다음의 세 가지 현상에 의해 열이 발생한다. 첫째, 액체 속에 분산되어 있는 나노물질 자체의 희전현상으로 인한 브라운 이완 (Brownian relaxation) 현상, 둘째, 나노물질 내부 스핀의 에너지 장벽으로 인해서 생기는 닐 이완 (Neel relaxation) 현상, 셋째, 외부 고주파 자기장 방향으로 자화되는 과정에서 물질 내부 스핀 도메인들의 이동에 의한 자기이력 현상으로 열이 발생한다 (/. Mater. Che . 2004, 14, 2161-2175.). 이렇게 생성된 열을 이용해서 자성 나노물질은 다양한 열 발생 장치 혹은 기술에 이용될 수 있다. 특히 의료 분야에서는 자성 나노물질에 강력한 고주파를 가하여 생성되는 열을 암을 포함한 질병 치료 (hyperthermia)에 사용하고 있다. 온열치료 (hyperthermia)는 암을 포함한 질병 치료에 열을 사용하는 것으로 42°C 이상에서 암세포가 사멸하기 시작하는 현상을 이용한 것이다. 고주파 자기장은 피부 조직에 의해 영향을 받지 않아 침투 깊이의 제한이 없기 때문에 나노 입자가 신체 내 암 조직에 축적되어 있을 때에 선택적으로 열을 가할 수 있어 자성나노입자를 이용한 은열치료의 연구는 많은 관심을 받아왔다. 원칙적으로 43°C 정도의 온도에서 암세포가 선택적으로 사멸될 수 있기 때문에 전망이 밝은 치료방법이나 이러한 자기온열 치료기술은 낮은 치료효율로 인해 실제 그 사용이 제한되어왔다. 이에 본 발명자들은 자기온열 치료기술에 의한 암치료 효을을 획기적으로 증가시키기 위해 민감화 (sensitization) 전략을 이용하고자 했다. 민감화 전략이란 암세포 및 암조직에 추가적인 외부 자극을 가함으로써 자성입자를 이용한 온열치료에 더 쉽게 영향을 받는 상태로 만드는 것이다. 민감화 전략을 취하기 위해 외부 자극제로는 화학요법약품 (chemodrugs), 바이오약품 (biodrugs), 방사성 동위원소 (radioisotope)등 다양한 세포독성물질들을 이용할 수 있다. 이러한 민감화 전략을 통해 암세포의 온열에 대한 민감도가 크게 상승하여 적은 숫자의 나노입자 및 짧은 시간 동안의 고주파 자기장 부하에 의해서도 암세포의 사멸를이 비약적으로 상승함을 확인하였다 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Among them, magnetic nanomaterials generate heat due to the following three phenomena when high frequency magnetic field is applied to them due to their unique magnetic properties. First, Brownian relaxation due to the electrolysis of the nanomaterial itself dispersed in the liquid. Second, Neil relaxation due to the energy barrier of the spin inside the nanomaterial. Third, toward the external high frequency magnetic field. In the process of magnetization, heat is generated due to the hysteresis phenomenon caused by the movement of the spin domains in the material (/. Mater. Che. 2004, 14, 2161-2175.). By using the generated heat, magnetic nanomaterials can be used in various heat generating devices or technologies. In particular, in the medical field, heat generated by applying high frequency to magnetic nanomaterials is used for treating hyperthermia including cancer. Hyperthermia is the use of heat in the treatment of diseases, including cancer, by taking advantage of the phenomenon that cancer cells begin to die above 42 ° C. Since high frequency magnetic field is not affected by skin tissue and there is no limit of penetration depth, nanoparticles can be selectively heated when they accumulate in cancer tissues in the body. Have been received. In principle, cancer cells may be selectively killed at a temperature of about 43 ° C. Therefore, the use of these self-thermotherapy techniques has been limited due to their low therapeutic efficiency. Accordingly, the present inventors attempted to use a sensitization strategy to dramatically increase the cancer treatment effect by the self-heat treatment technology. The sensitization strategy is to apply additional external stimuli to cancer cells and cancer tissues, making them more susceptible to thermal therapy with magnetic particles. External stimulants can use a variety of cytotoxic agents, including chemodrugs, biodrugs, and radioisotopes. Through this sensitization strategy, the sensitivity of cancer cells to heat is greatly increased, and thus the death of cancer cells is dramatically increased even by a small number of nanoparticles and a short time of high frequency magnetic field loading. Patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명자들은 고주파 자기장 하에서 자성 나노물질들을 이용한 온열치료 기술의 효율을 높이기 위해 병변 조직을 이루는 세포의 온열 치료에 대한 민감성올 향상시키고자 예의 연구 노력하였다. 그 결과, 민감화 물질, 즉 병변 세포 및 병변 조직에 추가적인 외부 자극을 이용한 스트레스를 가하거나 열에 대한 저항 메커니즘을 억제하여 자성입자를 이용한 온열치료에 더 쉽게 영향을 받는 상태로 만들어 상승적인 세포사멸 효과를 거둘 수 있음을 발견함으로써, 본 발명을 완성하게 되었다. The present inventors earnestly researched to improve the sensitivity of the heat treatment of the cells forming the lesion tissue to increase the efficiency of the heat treatment technology using magnetic nanomaterials under high frequency magnetic field. As a result, the use of additional external stimuli to sensitizers, ie lesion cells and lesion tissue, The present invention has been completed by discovering that stress or restraining the mechanism of resistance to heat makes it more susceptible to thermal therapy using magnetic particles, thereby achieving synergistic apoptosis.
따라서 본 발명의 목적은 생체 내 열 방출용 조성물을 제공하는 데 있다.  It is therefore an object of the present invention to provide a composition for heat release in vivo.
본 발명의 다른 목적은 온열 치료 (hyperthermia therapy)용 조성물을 제공하는 데 있다.  Another object of the present invention to provide a composition for hyperthermia therapy.
본 발명의 똔 다른 목적은 은열 치료 (hyperthermia therapy) 방법을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.  Another object of the present invention is to provide a method of hyperthermia therapy. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
【기술적 해결방법】 Technical Solution
본 발명의 일 양태에 따르면, 본 발명은 다음을 포함하는 생체 내 열 방출용 조성물을 제공한다:  According to one aspect of the present invention, the present invention provides a composition for in vivo heat release comprising:
(a) 자성 나노입자 및;  (a) magnetic nanoparticles;
(b) 화학요법약품 (chemodrug), 바이오 약품 (biodrug) 및 방사성 동위원소 (radioisotope)로 구성된 군으로부터 선택되는 하나 이상의 민감화 (sensitization) 물질. 본 발명자들은 고주파 자기장 하에서 자성 나노물질들을 이용한 온열치료 기술의 효율을 높이기 위해 병변 조직을 이루는 세포의 은열 치료에 대한 민감성을 향상시키고자 예의 연구 노력하였다. 그 결과, 민감화 물질, 즉 병변 세포 및 병변 조직에 추가적인 외부 자극을 이용한 스트레스를 가하거나 열에 대한 저항 메커니즘을 억제하여 자성입자를 이용한 온열치료에 더 쉽게 영향올 받는 상태로 만들어 상승적인 세포사멸 효과를 거둘 수 있음을 발견하였다. 본 명세서에서 용어 "열 방출용 조성물" 은 스스로 혹은 외부 자극에 의하여 외부로 열을 발산하는 물질을 의미한다. 따라서, "생체 내 열 방출용 조성물" 은 생체 내에서 열을 방출함으로써 생체 내 온도를 증가시키는 물질을 의미한다. 본 발명의 열 방출용 조성물은 다양한 목적 하에 생체 내 자연적인 온도를 인위적으로 상승시키는 데에 사용될 수 있다. 예를 들어, 본 발명의 열 방출용 조성물은 표적 세포의 사멸 유도를 목적으로 사용될 수 있으며, 이 경우 본 발명의 조성물은 "세포 사멸 유도용 조성물" 로 정의될 수도 있다. 본 명세서에서 용어 "민감화 물질 (sensitization material)" 은 병변 세포 및 병변 조직이 자성 나노입자에 의한 온열 스트레스에 더욱 민감하게 반웅하도록 함으로써 보다 효율적인 세포사멸에 이르도록 하는 물질을 의미한다. 즉, 민감화 물질은 추가적인 외부 자극으로 인한 스트레스를 유발시키거나 열에 대한 저항 메커니즘을 억제하여, 세포사멸에 있어서 자성 나노입자와 함께 상승작용 (synegic effect)를 나타내는 물질이다. 본 명세서에서 용어 "화학요법제 (chemodrugs)" 는 암세포 등의 병변세포를 사멸시키거나 병변세포 사멸을 위해 가해지는 열에 대한 저항 메커니즘을 억제하여 궁극적으로 암 등의 질환을 치료하기 위해 투여되는 화합물을 의미한다. 본 발명에서 이용될 수 있는 화학 요법제는 시스플라틴 (cisplatin), 카르보플라틴 (carboplat in) , 프로카르바진 (procarbazine), 메클로레타민 (mechlorethamine) , 시클로포스파미드 (cyclophosphamide) , 이포스파미드 (ifosfamide) , 멜팔 (melphalan) , 클로라부실 (chlorambucil), 비술판 (bisulfan) , 니트로소우레아(b) at least one sensitization substance selected from the group consisting of chemodrugs, biodrugs and radioisotopes. The present inventors earnestly researched to improve the sensitivity of the heat treatment of the cells forming the lesion tissue to increase the efficiency of the thermotherapy technology using magnetic nanomaterials under high frequency magnetic field. As a result, sensitizers, ie, lesion cells and tissues, are subjected to additional external stimuli or to suppress heat resistance mechanisms, making them more susceptible to thermal therapy using magnetic particles, resulting in synergistic apoptosis effects. It was found that it can be harvested. As used herein, the term "composition for heat release" refers to itself or to external stimuli. Means a material that radiates heat to the outside. Thus, "composition for heat release in vivo" means a substance that increases the temperature in vivo by releasing heat in vivo. The heat dissipating composition of the present invention can be used to artificially raise the natural temperature in vivo for various purposes. For example, the composition for heat release of the present invention may be used for the purpose of inducing death of target cells, in which case the composition of the present invention may be defined as "composition for inducing cell death". As used herein, the term "sensitization material" means a material that allows lesion cells and lesion tissues to react more sensitively to thermal stress caused by magnetic nanoparticles, thereby leading to more efficient cell death. In other words, the sensitizer is a substance that causes a stress caused by an additional external stimulus or suppresses a mechanism of resistance to heat, and thus exhibits a synergistic effect with magnetic nanoparticles in apoptosis. As used herein, the term “chemodrugs” refers to compounds administered to treat disease such as cancer by ultimately killing lesion cells such as cancer cells or inhibiting the mechanism of resistance to heat exerted for the death of the cells. it means. Chemotherapeutic agents that can be used in the present invention are cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, and phosphamide (ifosfamide), melphalan, chlorambucil, bisulfan, nitrosourea
(nitrosourea), 디악티노마이신 (dactinomycin), 다우노루비신 (daunorubicin) , 독소루비신 (doxorubicin), 블레오마이신 (bleomycin) , 플리코마이신 (plicomycin), 미토마이신 (mitomycin), 에토포시드 (etoposide), 탁목시펜 (tamoxifen), 택솔 (taxol), 트랜스라티눔 (transplat inum) , 5- 플루오로우라실 (5-fluorouracil), 빈크리스틴 (vincristin), 빈블라스틴 (vinblastin), 메토트렉세이트 (methotrexate), 활성 산소종 (Reactive oxygen species, R0S), 활성 산소종 생성 물질 (R0S generator), 활성 산소종 생성 유도 물질 및 열층격 단백질 억제제 (Hsp inhibitor)를 포함하나, 이에 제한되는 것은 아니다. 본 발명의 구체적인 구현예에 따르면, 본 발명의 화학요법제는 활성 산소종, 활성 산소종 생성 물질, 활성 산소종 생성 유도 물질 및 열충격 단백질 억제제 (Hsp inhibitor)로 구성된 군으로부터 선택된다. (nitrosourea), diactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, mitomycin, etoposide, table wood Tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, active oxygen Reactive oxygen species (R0S), reactive oxygen species (R0S generator), reactive oxygen species inducing substances and HSP inhibitors. Including but not limited to. According to a specific embodiment of the present invention, the chemotherapeutic agent of the present invention is selected from the group consisting of reactive oxygen species, reactive oxygen species generating substance, reactive oxygen species generating substance and heat shock protein inhibitor (Hsp inhibitor).
본 명세서에서 용어 "활성 산소종 (Reactive oxygen species, R0S)" 은 산소를 포함하면서 홑 원자가 전자 (unpaired valence shell electron)를 가져 화학적으로 높은 활성을 가지는 분자를 말한다. 활성 산소종은 산소의 정상적인 대사과정에서의 부산물로서 생성되나, 자외선이나 열 층격 등의 환경적인 스트레스에 의해 생체 내 활성 산소종은 크게 증가할 수 있고, 이에 의해 세포 구조에 중대한 손상이 생길 수 있다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 활성 산소종은 과산화수소 ( ), 초과산화이온 (superoxide anion, 02— ), 수산화 자유기 (hydroxyl radical, OH · ) , 과산화지질 (lipid peroxide), 퍼옥시니트라이트 (peroxinitrite, N03 2") , 티올 퍼옥시 자유기 (thiol peroxy radical, R-S02_)로 구성된 군으로부터 선택된다, 본 명세서에서 용어 "활성 산소종 생성 물질 (ROS generator)" 은 자유 라디칼을 이용한 라디칼 개시반웅 (radical initiation reaction)에 의하여 생체 내에서 활성 산소종을 생성하는 화합물을 의미한다. 본 발명에서 이용될 수 있는 활성 산소종 생성 물질은 다양한 할로겐 분자, 아조 (azo) 화합물 및 유기 퍼옥사이드를 포함하나, 이에 제한되지 않고 자유 라디칼을 이용하여 생체 내에서 활성 산소종을 화학적으로 생성할 수 있는 모든 화합물을 포함한다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 활성 산소종 생성 물질 아조 화합물이며, 보다 구체적으로는 4,4' -아조비스 (4-시아노발레르산) (4,4' -Azobis(4- cyanovaleric acid), 이하 4,4' -아조비스라 칭함)이다. As used herein, the term "reactive oxygen species" (R0S) refers to molecules that contain oxygen and have chemically high activity with unpaired valence shell electrons. Active oxygen species are produced as a by-product of the normal metabolism of oxygen, but due to environmental stress such as ultraviolet rays or thermal stratification, active oxygen species can be greatly increased in vivo, thereby causing significant damage to cell structure. . According to a specific embodiment of the present invention, the active oxygen species used in the present invention is hydrogen peroxide (), superoxide anion (0 2 —), hydroxyl radical (OH ·), lipid peroxide (lipid peroxide) ), Peroxitrite (N0 3 2 " ), thiol peroxy radical (R-S0 2_ ), the term" ROS generator "(ROS generator) ) "Refers to a compound that generates free radicals in vivo by a radical initiation reaction using free radicals. The free radical species generating material which can be used in the present invention may be various halogen molecules, azo ( azo) compounds and organic peroxides, including but not limited to all compounds capable of chemically generating free radicals in vivo using free radicals According to a specific embodiment of the present invention, the active oxygen species generating material azo compound used in the present invention, and more specifically 4,4 '-azobis (4-cyano valeric acid) (4, 4'- Azobis (4-cyanovaleric acid), hereinafter referred to as 4,4'-azobis).
가장 구체적으로는, 4,4' -아조비스는 상기 자성 나노입자에 컨쥬게이션 되어 단일 조성물로 사용될 수 있다. 4,4' -아조비스가 자성 나노입자에 컨쥬게이션되어 사용될 경우, "생체 내 열 발생의 유도" 및 이를 통한 "표적세포의 사멸" 이라는 본원 발명의 기술적 과제를 해결하기 위하여 자성 나노입자와 민감화 물질이 병행투여 되는 것이 아니라, 자성 나노입자-민감화 물질의 복합체 (complex)로서 투여되는 형태가 된다. 아울러, 4,4' ᅳ아조비스를 비롯한 활성 산소종 생성 물질은 고주파 자기장이 가해질 경우 자유라디칼 생성이 개시되어 결과적으로 생체 내 활성 산소종 생성 효율이 증가하게 된다. 따라서, 본 발명의 나노입자- 민감화 물질의 복합체는 단일자극으로 고주파 자기장를 가해줌으로써 나노입자에 의한 열방출 및 활성 산소종 생성 증가라는 이중의 세포사멸 효과를 발휘할 수 있다. 본 명세서에서 용어 "활성 산소종 생성 유도 물질" 은 세포 내 대사를 이용하여 활성 산소종 생성을 유도하는 물질을 의미한다. 활성 산소종 생성 유도물질은 스스로 가지고 있는 자유라디칼을 이용하여 직접 활성 산소종의 생성반웅을 개시하는 활성 산소종 생성물질과 달리, 세포 내 산화환원 대사에 관여하는 효소 등에 작용하여 활성 산소종의 생성을 간접적으로 촉진시킨다. 본 발명에서 이용될 수 있는 활성 산소종 생성 유도물질은 3,7-디아미노페노티아지늄 산화환원 염료, 2- (페닐텔루릴 )-3- 메틸 -[1,4]나프토퀴논, 트리아핀 (Triapine), 바라신 (Varacin), 레이나마이신 (Leinamycin) 및 β—페닐에틸이소티오사이나네이트등 다양한 산화환원 화학요법제 (redox chemodrug)를 포함하나, 이에 제한되지 않고 세포 내 대사를 이용하여 활성산소의 생성을 촉진할 수 있는 모든 물질을 사용할 수 있다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 활성 산소종 생성 유도 물질은 안타마이신 A(Antimycin A)이다. 안타미이신 A는 사이토크롬 C 환원효소의 Qi사이트에 결합하여 전자전달 연쇄 과정의 산화적 인산화에서 유비퀴티놀 (ubiquinol)의 산화를 억제함으로써 자유라디칼 슈퍼옥사이드의 생성을 촉진한다. Most specifically, 4,4'-azobis may be conjugated to the magnetic nanoparticles and used as a single composition. When 4,4'-azobis is used conjugated to magnetic nanoparticles, solving the technical problem of "induction of heat generation in vivo" and "killing the target cells" through it Magnetic nanoparticles and sensitizers are not administered in parallel, but rather are administered as a complex of magnetic nanoparticles-sensitizers. In addition, the active oxygen species generating material, including 4,4 'ᅳ azobis, is initiated free radical generation when a high frequency magnetic field is applied, resulting in an increase in the generation efficiency of active oxygen species in vivo. Therefore, the composite of the nanoparticle-sensitizing material of the present invention can exert a dual apoptosis effect of increasing heat release and reactive oxygen species generation by nanoparticles by applying a high frequency magnetic field with a single stimulus. As used herein, the term "active oxygen species generation inducer" means a substance that induces active oxygen species generation using intracellular metabolism. The reactive oxygen species generating inducer, unlike the active oxygen species generating material, which directly initiates the generation of reactive oxygen species by using free radicals of its own, acts on enzymes involved in the redox metabolism of cells to generate reactive oxygen species. Promote indirectly. The reactive oxygen species generating inducers that can be used in the present invention include 3,7-diaminophenothiazinium redox dye, 2- (phenyltelluryl) -3-methyl- [1,4] naphthoquinone, tria Various redox chemodrugs, including but not limited to Triapine, Varacin, Reinamycin, and β-phenylethylisothiocyinate, can be used by intracellular metabolism Any substance that can promote the production of free radicals can be used. According to a specific embodiment of the present invention, the reactive oxygen species generation inducing substance used in the present invention is anthamycin A (Antimycin A). Antamicin A promotes the production of free radical superoxide by binding to the Qi site of cytochrome C reductase and inhibiting the oxidation of ubiquinol in the oxidative phosphorylation of the electron transfer chain process.
본 명세서에서 용어 "열층격 단백질 (heat shock protein, Hsp)" 은 열층격에 의해 합성이 유도되는 단백질로서 모든 생물에 공통적으로 존재하는 단백질을 의미한다. 본 발명자들은 온열치료가 가해진 세포들이 이에 대한 저항성 (resistance)를 보여 그 치료효율이 크게 떨어진다는 점에 착안, 이러한 저항성을 제거하고자 그 저항 메커니즘의 하나인 열층격 단백질의 생성 및 활성을 억제하였다. 그 결과 병변 세포 및 병변 조직을 자성입자를 이용한 온열치료에 더 쉽게 영향을 받는 상태로 만들 수 있음을 확인하였다. As used herein, the term "heat shock protein (Hsp)" refers to a protein that is commonly synthesized by all living organisms as a protein induced by the thermal stratification. The present inventors have shown that the cells treated with heat treatment show resistance to this, and thus the treatment efficiency is greatly reduced. In light of this, in order to eliminate this resistance, the production and activity of heat-stratum protein, which is one of its resistance mechanisms, was inhibited. As a result, it was confirmed that lesion cells and lesion tissues could be more easily affected by thermal treatment using magnetic particles.
대표적인 열층격단백질로서는 분자량이 각각 90,000, 70,000 및 Representative thermal stratified proteins have molecular weights of 90,000, 70,000 and
60,000인 Hsp90, Hsp70 및 Hsp60이 있다. 열충격 단백질은 세포의 보호 작용을 하며 열에 의해 손상 받은 단백질에 결합하여 그들의 재생을 촉진하는 기능을 갖고 있다. 따라서 열처리에 의해 열충격 단백질이 과다 생산된 세포는 고온에 대해서는 저항성을 나타낸다. There are 60,000 Hsp90, Hsp70 and Hsp60. Heat shock proteins act as protective cells and bind to heat-damaged proteins to promote their regeneration. Therefore, cells overproducing heat shock protein by heat treatment are resistant to high temperatures.
본 명세서에서 용어 "열층격단백질 저해제 (Hsp inhibitor)" 는 Hsp의 생성 및 활성을 억제하는 화합물을 의미한다. 본 발명의 조성물로 생성 및 활성을 억제할 수 있는 Hsp는 Hsp90, Hsp70 및 Hsp60를 모두 포함한다. 본 발명의 구체적인 구현예에 따르면, 본 발명의 열충격단백질 저해제는 젤다나마이신(쒜(3113^(:^), 17AAGC17-N-A1 lylamino-17- demethoxyge 1 danamyc in) 17-DMAG ( 17-d i me t hy 1 am i no-ge 1 danamyc in), 피티쓰린( - (2-¾6 16 ^^1 1131 6)1( -437(3-[(£;)-1,3- Benzod i oxo 1 -5-y 1 me t hy 1 ene ] -2- oxopyrrol idine-l-carbaldehyde) , schisandrin (쉬산드린) -B, 쿼세틴 (Quercetin) ( 2- ( 3 , 4-d i hydr oxypheny 1 ) - 3 , 5 , 7-t r i hydroxy-4H-chr omen-4-one ) 및 ETB (Epolactaene Tertiary Butyl Ester)로 구성된 군으로부터 선택된다. 가장 구체적으로는, 본 발명의 열층격 단백질 억제제는 젤다나마이신 (geldanamycin)이다.  As used herein, the term "Hsp inhibitor" refers to a compound that inhibits the production and activity of Hsp. Hsps capable of inhibiting production and activity with the compositions of the present invention include all of Hsp90, Hsp70 and Hsp60. According to a specific embodiment of the present invention, the thermal shock protein inhibitor of the present invention is geldanamycin (쒜 (3113 ^ (: ^), 17AAGC17-N-A1 lylamino-17- demethoxyge 1 danamyc in) 17-DMAG (17-di me t hy 1 am i no-ge 1 danamyc in), Pitithrin (-(2-¾6 16 ^^ 1 1131 6) 1 (-437 (3-[(£;)-1,3- Benzod i oxo 1 -5-y 1 me t hy 1 ene] -2-oxopyrrol idine-l-carbaldehyde), schisandrin (schandrin) -B, quercetin (2- (3, 4-di hydr oxypheny 1)-3, 5, 7-tri hydroxy-4H-chr omen-4-one and ETB (Epolactaene Tertiary Butyl Ester) Most specifically, the heat stratified protein inhibitor of the present invention is geldanamycin to be.
본 발명의 구체적인 구현예에 따르면, 본 발명의 열층격 단백질 억제제는 상기 자성 나노입자에 열 민감성 링커로 컨쥬게이션된다. 보다 구체적으로는, 상기 열 민감성 링커는 4, 4 '-아조비스 (4-시아노발레르산) (4,4' -Azob i s ( -cy anova 1 er i c acid))이다.  According to a specific embodiment of the present invention, the thermal stratified protein inhibitor of the present invention is conjugated to the magnetic nanoparticles with a heat sensitive linker. More specifically, the heat sensitive linker is 4, 4'-azobis (4-cyanovaleric acid) (4,4'-Azob i s (-cy anova 1 er i c acid)).
열층격단백질 저해제가 나노입자에 컨쥬게이션 되어 사용될 경우, "생체 내 열 발생의 유도" 및 이를 통한 "표적세포의 사멸" 이라는 본원 발명의 기술적 과제를 해결하기 위하여 자성 나노입자와 열충격단백질 저해제가 병행투여 되는 것이 아니라, 자성 나노입자-열충격단백질의 복합체 (complex)로서 투여되는 형태가 된다. 아울러, 열에 민감한 링커는 고주파 자기장이 가해질 경우에만 분해되므로 원하는 시간에 그 작용을 개시 시킬 수 있다. 따라서, -본 발명의 나노입자-열충격단백질 저해제 복합체는 나노입자-민감화 물질의 복합체의 한 예가 될 수 있으며 고주파 자기장를 가해줌으로써 나노입자에 의한 열방출 및 열에 대한 저항성 억제라는 이중의 세포사멸 효과를 발휘할 수 있다. 하기의 실시예에서 보는 바와 같이, 자성 나노입자와 열충격단백질 저해제로 이루어진 본 발명의 생체 내 열 방출용 조성물은 열층격단백질 저해제만을 세포에 처리한 경우 또는 자성 나노입자만 세포에 처리한 경우에 비해서 비약적으로 증가된 암세포 사멸 효과를 보임으로써, 매우 효율적인 온열치료용 조성물로 사용될 수 있음이 확인되었다. When a thermal stratified protein inhibitor is used conjugated to a nanoparticle, magnetic nanoparticles and a thermal shock protein inhibitor are combined in order to solve the technical problem of the present invention, "induction of heat generation in vivo," and "killing target cells." It is not administered, but in a form administered as a complex of magnetic nanoparticle-thermal shock protein. In addition, the heat-sensitive linker It decomposes only when a high frequency magnetic field is applied so that its action can be initiated at a desired time. Therefore, the nanoparticle-thermal shock protein inhibitor complex of the present invention may be an example of a complex of nanoparticle-sensitive materials, and may exert a dual cell death effect of inhibiting heat release and heat resistance by nanoparticles by applying a high frequency magnetic field. Can be. As shown in the following examples, the composition for heat release in vivo of the present invention consisting of magnetic nanoparticles and thermal shock protein inhibitors is compared to the case where only the thermal stratified protein inhibitor is treated to the cells or only the magnetic nanoparticles are treated to the cells. By showing a dramatically increased cancer cell killing effect, it was confirmed that it can be used as a very effective heat treatment composition.
본 명세서에서 용어 "바이오 약품 (biodrug)" 은 암세포를 비롯한 병변세포의 증식 또는 생존을 저해하는 세포독성 단백질, 올리고노클레오타이드, 호르몬 및 항체를 포함하나; 이에 제한되는 것은 아니다. 보다 구체적으로는, 본 발명의 바이오 약품은 항체이다.  As used herein, the term "biodrug" includes cytotoxic proteins, oligonucleotides, hormones and antibodies that inhibit the proliferation or survival of lesion cells, including cancer cells; It is not limited to this. More specifically, the biopharmaceutical of the present invention is an antibody.
본 명세서에서 용어 "항체 (antibody)" 는 암세포를 비롯한 병변세포의 증식 또는 생존에 관여하는 단백질에 특이적으로 결합하여 그 활성을 저해하거나 사멸에 이르도록 하는 치료용 항체를 의미한다. 본 발명에서 이용될 수 있는 항체는 항 -VEGF 항체, 항 -CD20항체, 항 -Erb2 항체, 항 -EGF항체, 항 -CD52 항체 및 항 -CD33 항체를 포함하나, 이에 제한되는 것은 아니다.  As used herein, the term "antibody" refers to a therapeutic antibody that specifically binds to proteins involved in the proliferation or survival of lesion cells, including cancer cells, thereby inhibiting their activity or leading to death. Antibodies that can be used in the present invention include, but are not limited to, anti-VEGF antibodies, anti-CD20 antibodies, anti-Erb2 antibodies, anti-EGF antibodies, anti-CD52 antibodies, and anti-CD33 antibodies.
본 명세서에서 용어 "방사성 동위원소 (radioisotope)" 는 중성자 수가 다른 동위원소들 중 안정한 원소로 분해되는 과정에서 알파입자, 베타입자 또는 감마선을 방출하는 원소를 말한다. 보다 구체적으로 본 명세서에서 언급하는 방사성 동위원소는 암세포를 비롯한 병변세포를 사멸시키기 위한 치료용 방사성 동원원소 (therapeutic radioisotope)를 의미한다. 빠르게 분열하는 세포들은 특히 방사선에 의한 피해에 민감하여, 방사선은 암의 치료에 널리 이용되고 있다. 본 발명에서 이용될 수 있는 방사성 동위원소는 60Co, 131I, 192Ir, 89Sr, 153Sm, 186Re 및 10B를 포함하나, 이에 제한되지 않는다. As used herein, the term "radioisotope" refers to an element that emits alpha particles, beta particles, or gamma rays in the process of being decomposed into stable elements among other isotopes. More specifically, the radioisotope mentioned in the present specification means a therapeutic radioisotope for killing lesion cells including cancer cells. Rapidly dividing cells are particularly susceptible to radiation damage, and radiation is widely used to treat cancer. Radioisotopes that may be used in the present invention include, but are not limited to, 60 Co, 131 I, 192 Ir, 89 Sr, 153 Sm, 186 Re and 10 B.
본 발명의 구체적인 구현예에 따르면, 본 발명의 자성 나노입자는 하기 일반식 1로 표시된다. 일반식 1 According to a specific embodiment of the present invention, the magnetic nanoparticles of the present invention are represented by the following general formula (1). Formula 1
ΜχΜΊ-χΡθ2θ4(Μ = Ba, Zn, Mn, Fe, Co 및 Ni로 구성된 군으로부터 1종 이상 선택되는 금속 0<x<5, M' = Ba, Zn, Mn, Fe, Co 및 Ni로 구성된 군으로부터 1종 이상 선택되는 금속). 보다 구체적으로는, 상기 일반식 1의 M = Zn, Mn 및 Co로 구성된 군으로부터 1종 이상 선택되는 금속, 0≤x≤3, M' = Mn 및 Fe로 구성된 군으로부터 1종 이상 선택되는 금속이다. ΜχΜΊ- χ Ρθ2θ 4 (Μ = Ba, Zn, Mn, Fe, Co, and Ni with one or more metals selected from the group consisting of 0 <x <5, M '= Ba, Zn, Mn, Fe, Co, and Ni One or more metals selected from the group consisting of). More specifically, at least one metal selected from the group consisting of M = Zn, Mn and Co of the general formula 1, 0≤x≤3, M '= at least one metal selected from the group consisting of Mn and Fe to be.
가장 구체적으로는, 상기 일반식 1의 M = Zn, 0<χ≤1, Μ' = Fe 이다. 본 발명의 자성 나오입자는 구체적으로는 1-500 nm, 보다 구체적으로는 10-200 nm, 보다 더 구체적으로는 10-100 nm, 보다 더욱 구체적으로는 10-50 nm, 가장 구체적으로는 10-20 nm의 크기를 갖는다.  Most specifically, M = Zn of the general formula 1, 0 <χ≤1, Μ '= Fe. Magnetic nanoparticles of the present invention are specifically 1-500 nm, more specifically 10-200 nm, even more specifically 10-100 nm, even more specifically 10-50 nm, most specifically 10- It has a size of 20 nm.
본 발명의 자성 나노입자는 자성 금속 선구 물질을 포함하는 나노물질 선구 물질을 유기용매에 첨가하여 흔합 용액을 제조하는 단계, In the magnetic nanoparticles of the present invention, a nanomaterial precursor containing a magnetic metal precursor is added to an organic solvent to prepare a mixed solution.
(ii) 상기 흔합 용액을 고온 (예컨대, 150-500°C)으로 가열하여 상기 선구 물질을 열분해시켜 자성 금속 산화물 나노물질이 형성되도록 하는 단계 및(ii) heating the mixed solution to a high temperature (eg, 150-500 ° C.) to pyrolyze the precursor material to form a magnetic metal oxide nanomaterial and
(iii) 상기 나노물질을 분리하는 단계를 거쳐서 제조할 수 있다. 상기 나노물질 선구 물질은 금속 니트레이트 계열의 화합물, 금속 설페이트 계열의 화합물, 금속 아세틸아세토네이트 계열의 화합물, 금속 플루오르아세토아세테이트 계열의 화합물, 금속 할라이드 계열의 화합물, 금속 퍼클로로레이트 계열의 화합물, 금속 알킬옥사이드 계열의 화합물, 금속 월파메이트 계열의 화합물, 금속 스티어레이트 계열의 화합물 또는 유기 금속 계열의 화합물이 이용될 수 있지만, 이에 제한되는 것은 아니다. 또한, 상술한 제조 방법으로 합성된 자성 나노물질은 수용성 다작용기 리간드를 이용하여 상전이 함으로써 수용액 상에서 사용될 수 있다. (iii) may be prepared by the step of separating the nanomaterial. The nanomaterial precursors are metal nitrate compounds, metal sulfate-based compounds, metal acetylacetonate-based compounds, metal fluoroacetoacetate-based compounds, metal halide-based compounds, metal perchlorate-based compounds, metal An alkyl oxide-based compound, a metal walpamate-based compound, a metal styreate-based compound, or an organometallic-based compound may be used, but is not limited thereto. In addition, the magnetic nanomaterial synthesized by the above-described manufacturing method may be used in an aqueous solution by phase transition using a water-soluble polyfunctional ligand.
본 발명의 명세서에서 '수용성 다작용기 리간드' 는 나노입자와 결합하여 나노입자의 수용화 및 안정화를 꾀하며, 생물 /화학 활성 물질, 특히 본 발명의 활성 산소종 생성 물질과의 결합을 가능하게 하는 리간드이다. 수용성 다작용기 리간드는 (a) 부착영역 (1 , adhesive region)을 포함하고, (b) 활성성분 결합영역 (Ln, reactive region), (c) 교차 연결 영역 (Lm, cross linking region), 또는 상기 활성 성분 결합 영역 (Ln)과 교차연결 영역 (Lm)을 동시에 포함하는 활성 성분 결합 영역 -교차 연결 영역 (Ln-Lm)을 추가로 포함할 수 있다. 이하에서 수용성 다작용기 리간드를 보다 구체적으로 설명한다. In the present specification, the 'water-soluble polyfunctional ligand' is a ligand that binds to the nanoparticles for the solubilization and stabilization of the nanoparticles, and enables binding with biological / chemically active substances, especially the active oxygen species generating material of the present invention. to be. A water soluble polyfunctional ligand comprises (a) an attachment region (1, adhesive region), (b) an active ingredient binding region (L n , reactive region), (c) a cross linking region (L m , cross linking region), Or an active ingredient binding region-cross linking region (L n -L m ) that includes the active ingredient binding region (L n ) and the crosslinking region (L m ) at the same time. The water-soluble multifunctional ligand is described in more detail below.
상기 "부착영역 ( )" 은 나노물질와 부착할 수 있는 작용기 (functional group)를 포함하는 다작용기 리간드의 일부분으로서, 구체적으로는 다작용기 리간드의 말단을 의미한다. 따라서 부착영역은 나노물질을 이루는 물질과 친화성이 높은 작용기를 포함하는 것이 바람직하다. 이 때 나노물질과 부착 영역과의 결합은 이온결합, 공유결합, 수소결합, 소수성결합, 또는 금속-리간드 배위결합으로 부착할 수 있다. 이에 따라 다작용기 리간드의 부착영역은 나노물질을 이루는 물질에 따라 다양하게 선택될 수 있다. 예를 들어 이은결합, 공유결합, 수소결합, 금속- 리간드 배위결합을 이용한 부착영역은 -COOH, -NH2) -SH, -C0NH2> -P03H, - 0P04H2, -S03H, -0S03H, -N3, -NR3OH (R = CnH2n+i,0<n< 16) , -OH, - SS-, -N02> -CH0, -COX (X = F, CI, Br, I), -C00C0-, -C0NH-, 또는 -CN을 포함할 수 있고, 소수성 결합을 이용한 부착 영역은 탄소수 2개 이상으로 이루어진 탄화수소 체인을 포함할 수 있으나 이에 한정되는 것은 아니다. The “attachment region ()” is a part of a multifunctional ligand including a functional group capable of attaching to the nanomaterial, and specifically means a terminal of the multifunctional ligand. Therefore, the attachment region preferably includes a functional group having high affinity with the material forming the nanomaterial. In this case, the bond between the nanomaterial and the attachment region may be attached by an ionic bond, a covalent bond, a hydrogen bond, a hydrophobic bond, or a metal-ligand coordination bond. Accordingly, the attachment region of the multifunctional ligand may be variously selected depending on the material of the nanomaterial. For example, the attachment region using a silver bond, a covalent bond, a hydrogen bond, or a metal-ligand coordination bond is -COOH, -NH 2) -SH, -C0NH 2> -P0 3 H, -0P0 4 H 2 , -S0 3 H, -0S0 3 H, -N 3 , -NR3OH (R = C n H 2n + i, 0 <n <16), -OH, -SS-, -N0 2> -CH0, -COX (X = F, It may include CI, Br, I), -C00C0-, -C0NH-, or -CN, the attachment region using a hydrophobic bond may include a hydrocarbon chain consisting of two or more carbon atoms, but is not limited thereto.
상기 "활성성분 결합영역 (L„)"은 화학 또는 생체 기능성 물질과 결합할 수 있는 작용기를 포함하는 다작용기 리간드의 일부분으로서, 구체적으로는 상기 부착영역과 반대편에 위치한 말단을 의미한다. 상기 활성성분 결합영역의 작용기는 활성성분의 종류 및 이의 화학식에 따라 달라질 수 있다 (표 1 참조). 본 발명에서 활성성분 결합영역은 -SH, -CH0, -COOH, -NH2, -OH, -PO3H, -0P04H2) -S03H, -OSO3H, -NR3 +X" (R = CnHm, 0<n<16, 0<m<34, X = OH, CI, Br), -N3, -SCOCH3, -SCN, -NCS, -NC0, - CN, -F, -CI, -1, -Br, 에폭시기, 술포네이트기, 니트레이트기, 포스포네이트기, 알데히드기, 하이드라존기, -OC-, 또는 -C≡C -를 포함할 수 있지만, 이에 한정되는 것은 아니다. The “active ingredient binding region (L ′)” is a part of a multifunctional ligand including a functional group capable of binding to a chemical or biofunctional material, and specifically means a terminal opposite to the attachment region. The functional group of the active ingredient binding region may vary depending on the type of active ingredient and its chemical formula (see Table 1). In the present invention, the active ingredient binding region is -SH, -CH0, -COOH, -NH 2 , -OH, -PO3H, -0P0 4 H 2) -S0 3 H, -OSO3H, -NR 3 + X " (R = C n H m , 0 <n <16, 0 <m <34, X = OH, CI, Br), -N 3 , -SCOCH3, -SCN, -NCS, -NC0, -CN, -F, -CI , -1, -Br, epoxy group, sulfonate group, nitrate group, phosphonate group, aldehyde group, hydrazone group, -OC-, or -C≡C-may be included, but is not limited thereto.
상기 "교차연결영역 (Lm)" 은 근접한 다작용기 리간드와 교차연결할 수 있는 작용기를 포함하는 다작용기 리간드의 일부분, 구체적으로는 중심부에 부착된 결사술을 의미한다. "교차연결" 이란 한 다작용기 리간드가 근접하여 위치한 다른 다작용기 리간드와 분자간 인력 (intermolecular interact ion)으로 결합되는 것을 의미한다. 상기 분자 간 인력은, 소수성 인력, 수소 결합, 공유 결합 (예컨대, 디설파이드 결합), 반데르발스 결합 이온 결합 등이 있지만, 이에 특별히 한정되지 않는다. 따라서, 교차연결 할 수 있는 작용기는 목적으로 하는 분자간 인력의 종류에 따라 다양하게 선택될 수 있다. 교차연결영역은 예를 들면 -SH, - CHO, -C00H, -NH2) -OH, -PO3H, -0P04H2, -S03H, -OSO3H, -N¾+X_ (R = CnHm 0<n<16, 0<m<34, X = OH, CI, Br), N +X— (R = CJ 0<n<16, 0<m<34 X = OH, CI, Br), -N3, -SCOCH3, -SCN, -NCS,- NCO, -CN, -F, -CI, -I, -Br, 에폭시기, -0N02, -P0 (0H)2, -C = NNH2) —CO, 또는 -C≡C-를 작용기로서 포함할수 있지만, 이에 한정되는 것은 아니다. Said "cross-linking region (L m )" is a portion of a multifunctional ligand comprising a functional group capable of crosslinking with an adjacent multifunctional ligand, specifically It means the attachment attached to the center. By "crosslinking" is meant that one polyfunctional ligand is bound by an intermolecular interacting ion with another polyfunctional ligand located in close proximity. The intermolecular attraction includes, but is not particularly limited to, hydrophobic attraction, hydrogen bonds, covalent bonds (eg, disulfide bonds), van der Waals bond ionic bonds, and the like. Therefore, crosslinkable functional groups can be selected in various ways depending on the kind of intermolecular attraction. Cross-linking regions are for example -SH, -CHO, -C00H, -NH 2) -OH, -PO3H, -0P0 4 H 2 , -S0 3 H, -OSO 3 H, -N¾ + X _ (R = C n H m 0 <n <16, 0 <m <34, X = OH, CI, Br), N + X— (R = CJ 0 <n <16, 0 <m <34 X = OH, CI, Br), -N 3 , -SCOCH 3 , -SCN, -NCS, -NCO, -CN, -F, -CI, -I, -Br, epoxy group, -0N0 2 , -P0 (0H) 2 , -C = NNH 2) —CO, or —C≡C— may be included as a functional group, but is not limited thereto.
【표 1] [Table 1]
다작용기 리간드에 포함될 수 있는 활성성분 결합영역의 작용기의 예 Examples of functional groups of active ingredient binding regions that can be included in multifunctional ligands
Figure imgf000013_0001
(I: 다작용기 리간드의 활성성분 결합영역의 작용기, II: 활성성분, III: I과 II의 반웅에 의한 결합 예) 본 발명에서는 상기된 바와 같은 작용기를 본래 보유한 화합물을 수용성 다작용기 리간드로서 이용할 수도 있지만, 당업계에 공지된 화학반웅을 통하여 상기된 바와 같은 작용기를 구비하도록 변형 또는 제조된 화합물을 다작용기 리간드로서 이용할 수도 있다.
Figure imgf000013_0001
(I: functional group of active component binding region of polyfunctional ligand, II: active component, III: binding by reaction of I and II) In the present invention, a compound originally possessing the functional group as described above can be used as a water-soluble polyfunctional ligand. Although it is also possible, a compound modified or prepared to have a functional group as described above through chemical reactions known in the art may be used as a polyfunctional ligand.
본 발명의 구체적인 다작용기 리간드는 단분자, 고분자, 탄수화물, 단백질, 펩타이드, 핵산, 지질, 또는 양친성 리간드를 포함한다.  Specific multifunctional ligands of the invention include monomolecules, polymers, carbohydrates, proteins, peptides, nucleic acids, lipids, or amphiphilic ligands.
본 발명에 따른 수용성 나노물질에 있어서 구체적인 다작용기 리간드의 예는 단분자로 상기 앞에서 언급된 작용기를 포함하는 단분자이며, 구체적으로는 디머캡토 숙신산 (dimercaptosuccinic acid)이다. 디머캡토 숙신산은 본래 부착영역, 교차연결 영역 및 활성성분 결합 영역을 포함하고 있기 때문이다. 즉, 디머캡토 숙신산의 한쪽 -C00H는 자성 신호발생코어에 결합되며 말단부의 -C00H 및 -SH는 활성성분과 결합하는 역할을 한다. 또한, -SH의 경우 주변의 다른 -SH와 다이설파이드 결합을 이룸으로써 교차 연결 영역으로 작용이 가능하다. 상기 디머캡토 숙신산 외에도 부착 영역의 작용기로 -C00H, 활성성분, 결합영역의 작용기로 -C00H, -NH2( 또는 -SH를 포함하는 화합물은 모두 구체적인 다작용기 리간드로서 이용될 수 있지만 이에 제한되는 것은 아니다. Examples of specific multifunctional ligands in the water-soluble nanomaterial according to the present invention are monomolecules containing the aforementioned functional groups as single molecules, and specifically, dimercaptosuccinic acid. This is because dimercapto succinic acid originally contains an attachment region, a cross-linking region and an active ingredient binding region. That is, one -C00H of the dimercapto succinic acid is bound to the magnetic signaling core, and -C00H and -SH at the distal end function to bind the active ingredient. In addition, in the case of -SH can be a cross-linking region by forming a disulfide bond with other -SH around. In addition to the dimercapto succinic acid, compounds including -C00H as the functional group of the attachment region, -C00H, -NH 2 ( or -SH as the functional group of the binding region, can all be used as specific multifunctional ligands, but are not limited thereto. no.
본 발명의 구체적인 수용성 다작용기 리간드의 다른 예는 폴리포스파젠, 폴리락타이드, 폴리락티드-코-글리콜라이드, 폴리카프로락톤, 폴리안하이드라이드, 폴리말릭산, 폴리말릭산의 유도체, 폴리알킬시아노아크릴레이트, 플리하이드로옥시부틸레이트 , 폴리카르보네이트 폴리오르소에스테르, 폴리에틸렌 글리콜, 폴리 -L-라이신, 폴리글리콜라이드, 풀리메틸메타아크릴레이트 및 폴리비닐피를리돈으로 구성된 군으로부터 1종 이상의 고분자이나 이에 제한되는 것은 아니다.  Other examples of specific water-soluble polyfunctional ligands of the present invention include polyphosphazenes, polylactides, polylactide-co-glycolides, polycaprolactones, polyanhydrides, polymalic acid, derivatives of polymalic acid, polyalkyls 1 type from the group consisting of cyanoacrylate, polyhydrooxybutylate, polycarbonate polyorthoester, polyethylene glycol, poly-L-lysine, polyglycolide, pullimethyl methacrylate and polyvinylpyridone The above polymer is not limited thereto.
본 발명에 따른 자성 나노입자에 있어서 구체적인 다작용기 리간드의 다른 예는 펩타이드 (peptide)이다. 펩타이드는 아미노산으로 이루어진 올리고머 /폴리머로서, 아미노산은 양 말단에 -C00H 또는 -N¾작용기를 보유하고 있기 때문에 펩타이드는 자연적으로 부착영역과 활성성분 결합영역을 구비하게 된다. 또한 특히 결사슬로 -SH, -C0OH, -N¾또는 -0H 중 어느 하나 이상을 결사슬로 갖는 아미노산을 하나 이상 포함하는 펩타이드는 구체적인 수용성 다작용기 리간드로 사용될 수 있다. Another example of a specific multifunctional ligand in the magnetic nanoparticles according to the present invention is a peptide. Peptides are oligomers / polymers consisting of amino acids. Because amino acids have -C00H or -N¾ functional groups at both ends, the peptides are naturally attached and active ingredients. The coupling area is provided. In addition, in particular, peptides including one or more amino acids having at least one of -SH, -C0OH, -N¾, or -0H as a chain may be used as a specific water-soluble multifunctional ligand.
본 발명에 따른 자성 나노입자에 있어서 구체적인 다작용기 리간드의 다른 예는 단백질이다. 단백질은 펩타이드 보다 더 많은 아미노산, 즉 수백 내지 수십만 개의 아미노산으로 이루어진 폴리머로서, 양 말단에 -C00H와 - ^2작용기를 보유하고 있을 뿐만 아니라 수십 개의 -COOH, -N¾, -SH, -OH, -C0NH2등을 포함하고 있다. 이로 인하여 단백질은 전술한 펩타이드처럼 그 구조에 따라 자연적으로 부착영역, 교차 연결 영역, 활성성분 결합영역을 구비할 수 있어 본 발명의 상전이 리간드로 유용하게 이용될 수 있다. 상전이 리간드로 구체적인 단백질의 대표적인 예로는 구조 단백질, 저장 단백질, 운반 단백질, 호르몬 단백질, 수용체 단백질, 수축 단백질, 방어 단백질, 효소 단백질 등이 있다. 보다 자세하게는 알부민, 항체, 항원, 아비딘 (avidin), 시토크롬, 카세인, 미오신 글리시닌, 케로틴, 콜라젠, 구형 단백질, 경단백질, 스트랩타비딘 (streptavidin), 프로테인 A, 프로테인 G, 프로테인 S, 면역글로불린, 렉틴 (lectin), 셀렉틴 (selectin), 안지포이어틴 (angiopoietin), 항암 단백질, 항생 단백질, 호르몬 길항 단백질 , 인터루킨 ( inter leukin), 인터페론 (interferon), 성장인자 (growth factor) 단백질, 종양괴사인자 (tumor necrosis factor) 단백질, 엔도톡신 (endotoxin) 단백질, 림포특신 (lymphotoxin) 단백질, 조직 플라스미노겐 활성제 (tissue lasminogen activator) , 유로키나제 (urokinase), 스트렙토키나제 (streptokinase), 프로테아제 저해제 (protease inhibitor), 알킬 포스포콜린 (alkyl phosphochol ine) , 계면활성제, 심혈관계 약물 단백질 (cardiovascular pharmaceuticals), 신경계 약물 (neuro pharmaceuticals) 단백질, 위장관계 약물 단백질 (gastrointestinal pharmaceuticals) 등을 들 수 있다. Another example of a specific multifunctional ligand in the magnetic nanoparticles according to the present invention is a protein. Proteins are polymers consisting of more amino acids than peptides, that is, hundreds to hundreds of thousands of amino acids. They contain -C00H and-^ 2 functional groups at both ends, as well as dozens of -COOH, -N¾, -SH, -OH,- C0NH 2 and the like. Therefore, the protein may naturally have an attachment region, a cross linking region, and an active ingredient binding region according to its structure, as in the above-described peptide, and thus may be usefully used as the phase change ligand of the present invention. Representative examples of specific proteins as phase transfer ligands include structural proteins, storage proteins, transport proteins, hormone proteins, receptor proteins, contraction proteins, defense proteins, and enzyme proteins. More specifically, albumin, antibody, antigen, avidin (avidin), cytochrome, casein, myosin glycinin, keratin, collagen, globular protein, light protein, streptavidin, protein A, protein G, protein S, immunity Globulin, lectin, selectin, angiopoietin, anticancer protein, antibiotic protein, hormonal antagonist protein, inter leukin, interferon, growth factor protein, tumor Necrosis factor protein, endotoxin protein, lymphotoxin protein, tissue plasminogen activator, urokinase, streptokinase, protease inhibitor , Alkyl phosphochol ine, surfactants, cardiovascular pharmaceuticals, nervous system drugs (neuro phar maceuticals), gastrointestinal pharmaceuticals, and the like.
본 발명에서 구체적인 수용성 다작용기 리간드의 또 다른 양태는 핵산이다. 핵산은 다수의 뉴클레오타이드로 이루어진 을리고머로서, 양 말단에 P04—와 -0Η 작용기를 보유하고 있기 때문에 자연적으로 부착영역 및 활성성분 결합영역 (LrLm)을 구비하거나, 부착영역 및 교차연결영역 (L厂 Ln)을 구비하므로 본 발명의 상전이 리간드로 유용하게 이용될 수 있다. 핵산은 경우에 따라 3' 말단 또는 5' 말단에 -SH, -NH2) -C00H, -OH의 작용기를 갖도록 변형되는 것이 적합하다. Another aspect of the specific water soluble multifunctional ligand in the present invention is a nucleic acid. Nucleic acid is a ligolimer consisting of a large number of nucleotides, and since it has P0 4 — and -0Η functional groups at both ends, it naturally has an attachment region and an active component binding region (LrLm), or an attachment region and a cross-linking region ( L 厂 L n ) may be usefully used as the phase change ligand of the present invention. The nucleic acid is optionally modified to have a functional group of -SH, -NH 2) -C00H, -OH at the 3 'end or 5' end.
본 발명에 따른 수용성 나노물질에 있어서 구체적인 다작용기 리간드의 다른 예는 소수성 (hydrophobic) 작용기와 친수성 (hydrophi 1 ic) 작용기를 동시에 가지고 있는 양친성 (amphiphilic) 리간드이다. 유기 용매상에서 합성된 나노물질의 경우 그 표면에는 소수성의 긴 탄소 체인으로 이루어진 리간드가 존재하고 있다. 이때 부가되는 양친성 리간드에 존재하는 소수성 작용기와 나노물질 표면의 소수성 리간드가 분자간 인력에 의해 결합되어 나노물질을 안정화 시키고 나노물질의 제일 바깥쪽에는 친수성 작용기가 드러나게 되어 결과적으로 수용성 나노물질을 제조 할 수 있다. 여기서 분자간 인력은 소수성 결합, 수소 결합, 반데르발스 결합 등을 포함한다. 이때 나노물질와 소수성 인력에 의해 결합되는 부분이 부착 영역 이며 이와 함께 유기화학적인 방법으로 활성 성분 결합 영역 (L„) 또는 교차 연결 영역 (Lm)올 도입할 수 있다. 또한 수용액상에서의 안정도의 증가를 위해 여러 개의 소수성 작용기와 친수성 작용기를 갖고 있는 고분자 다중 양친성 리간드를 이용하거나, 혹은 연결 분자를 이용하여 양친성 리간드를 서로 교차 연결 시켜 줄 수 있다. 이러한 상전이 리간드로 구체적인 양친성 리간드의 예로서, 먼저 소수성 작용기에 포함되는 것은 탄소의 수가 2 이상 되는 체인으로 이루어지고 선형이거나 가지 친 구조를 가지고 있는 소수성 분자로서 더욱 구체적으로는 에틸, n- 프로필, 이소프로필, n-부틸, 이소부틸, t-부틸, 옥틸, 데실, 테트라데실, 핵사데실, 아이코실, 테트라코실, 도데실, 또는 시클로펜틸, 시클로핵실 등의 알킬작용기와 에티닐, 프로페닐, 이소프로페닐, 부테닐, 이소부테닐, 옥테닐, 데세닐, 을레일 등의 탄소 -탄소 2중 결합 또는 프로파이닐, 이소프로파이닐, 부타이닐, 이소부타이닐, 옥타이닐, 데사이닐 등의 탄소- 탄소 3중 결합을 가지는 불포화된 탄소체인을 가지는 작용기 등을 들 수 있다. 또한 친수성 작용기에 포함되는 것은 -SH, -C00H, -NH2) -OH, -P03H, -OPO4H2, -S03H, -0S03H-N +X— 등과 같이 특정 PH에서는 중성을 띠나 더 높거나 낮은 pH에서는 양전하 또는 음전하를 띠는 작용기들을 말한다. 또한 친수성 그룹으로서 고분자 또는 블록코폴리머등이 사용 될 수 있으며 여기서 사용되는 단위소는ᅤ 에틸글라이콜, 아크릴릭산, 알킬아크릴릭산, 아타코닉산, 말레익산, 퓨마릭산, 아크릴아미도메틸프로페인술폰산, 비닐술폰산, 비닐인산, 비닐락틱산, 스타이렌술폰산, 알릴암모늄, 아클릴로나이트릴, N-비닐피를리돈, N-비닐포름아마이드 등이 있으나 이에 한정되는 것은 아니다. Another example of a specific multifunctional ligand in the water-soluble nanomaterial according to the present invention is an amphiphilic ligand having both a hydrophobic functional group and a hydrophilic functional group. In the case of nanomaterials synthesized in an organic solvent, a ligand composed of a hydrophobic long carbon chain exists on the surface thereof. At this time, the hydrophobic functional group present in the amphiphilic ligand added and the hydrophobic ligand on the surface of the nanomaterial are bonded by intermolecular attraction to stabilize the nanomaterial, and the hydrophilic functional group is exposed at the outermost side of the nanomaterial, resulting in producing a water-soluble nanomaterial. Can be. The intermolecular attraction includes hydrophobic bonds, hydrogen bonds, van der Waals bonds, and the like. At this time, the portion bonded by the nanomaterial and the hydrophobic attraction is an attachment region, and together with the organic component, the active component binding region (L ′) or the cross-linking region (L m ) may be introduced. In addition, in order to increase stability in aqueous solution, a polymer multi-amphiphilic ligand having a plurality of hydrophobic functional groups and a hydrophilic functional group may be used, or the amphiphilic ligand may be cross-linked with each other using a linking molecule. As an example of a specific amphiphilic ligand as such a phase-transfer ligand, first, the hydrophobic functional group is a hydrophobic molecule composed of a chain having 2 or more carbons and has a linear or branched structure, and more specifically, ethyl, n-propyl, Alkyl functional groups such as isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, nucleodecyl, aicosyl, tetracosyl, dodecyl, or cyclopentyl, cyclonuclear, and ethynyl, propenyl, Carbon-carbon double bonds such as isopropenyl, butenyl, isobutenyl, octenyl, decenyl, oleyl, or propynyl, isopropynyl, butynyl, isobutynyl, octaynyl, desinyl, etc. And a functional group having an unsaturated carbon chain having a carbon-carbon triple bond. Also included in hydrophilic functional groups are neutral at certain P Hs, such as -SH, -C00H, -NH 2) -OH, -P0 3 H, -OPO4H2, -S0 3 H, -0S0 3 HN + X—, etc. At high or low pH it refers to positive or negatively charged functional groups. In addition, a polymer or a block copolymer may be used as the hydrophilic group, and the unit elements used are ᅤ ethyl glycol, acrylic acid, alkyl acrylic acid, Ataconic acid, maleic acid, fumaric acid, acrylamidomethylpropanesulfonic acid, vinylsulfonic acid, vinyl phosphate, vinyllactic acid, styrenesulfonic acid, allyl ammonium, acryronitrile, N-vinylpyridone, N-vinyl Formamide, and the like, but is not limited thereto.
본 발명에 있어서 구체적인 수용성 다작용기 리간드의 다른 예는 탄수화물을 포함한다. 더 구체적인 예는 글루코오스, 만노오스, 퓨코오즈, Other examples of specific water soluble polyfunctional ligands in the present invention include carbohydrates. More specific examples include glucose, mannose, fucose,
N-아세틸글루코민, N-아세틸갈락토사민, N-아세틸뉴라민산, 과당, 자일로스 솔비를, 자당, 말토오즈, 글리코알데히드, 디하이드록시아세톤ᅳ 에리드로우즈, 에리드루로즈, 아라비노우즈, 자이루로우즈, 젖당, 트레할로우즈, 멜라보우즈, 셀로비오즈, 라피노우즈, 멜레지토우즈, 말토리오즈, 스타치오즈, 스트로도우즈, 자이란, 아라반, 핵소산, 프록탄, 갈락탄, 만난, 아가로펙틴, 알긴산, 가라지난, 헤미셀를로오즈, 하이프로멜로스, 아밀로즈, 디옥시 아세톤, 글리세린알데히드, 키틴, 아가로오즈, 덱스트린, 리보즈, 리부로오즈, 갈락토즈, 카르복시 메틸셀를로오스 또는 글리코겐 덱스트란, 카르보덱스트란, 폴리사카라이드, 사이클로덱스트란, 풀루란, 셀를로오즈, 녹말, 글리코겐 등을 포함하지만 이에 한정되는 것은 아니다. 본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 생체 내 열 방출용 조성물을 유효성분으로 포함하는 온열 치료 (hyperthermia therapy)용 조성물을 제공한다. N-acetylglumine, N-acetylgalactosamine, N-acetylneuraminic acid, fructose, xylose sorbitan, sucrose, maltose, glycoaldehyde, dihydroxyacetone ᅳ erythrose, erythrorose, arabinose , Gyroulows, lactose, trehalose, melaboose, cellobiose, raffinose, melizetose, maltose, starchose, strawdogs, zairan, araban, nucleic acid, frock Tan, galactan, met, agalopectin, alginic acid, tarazane, hemicellose, hypromellose, amylose, deoxy acetone, glycerinaldehyde, chitin, agarose, dextrin, ribose, riburoose , Galactose, carboxymethylcellose or glycogen dextran, carbodextran, polysaccharide, cyclodextran, pullulan, cellulose, starch, glycogen, and the like It is not. According to another aspect of the present invention, the present invention provides a composition for hyperthermia therapy comprising the composition for heat release in vivo of the present invention as an active ingredient.
본 명세서에서 용어 "온열 치료" 는 신체 조직을 정상체온보다 조금 높은 온도에 노출시킴으로써 암세포를 비롯한 병변세포를 사멸시키거나 또는 이들 세포가 방사선 치료나 항암제 등에 대한 더 높은 민감성을 가지도록 하는 것을 의미한다 . 본 발명에 따르면, 본 발명의 조성물은 자성 나노입자에 의한 온열효과와 활성 산소종을 이용한 외부 자극이 동시에 가해짐으로써 상승 효과가 발생, 적은 수의 나노입자와 짧은 시간 동안의 고주파 자기장 부하에 의해서도 뛰어난 암세포 사멸효과를 가지며, 이러한 효과는 상용화된 나노물질인 페리덱스보다도' 현저히 우수한 것임을 확인하였다. As used herein, the term “thermotherapy” means exposing body tissues to a temperature slightly above normal temperature to kill lesion cells, including cancer cells, or to make them more susceptible to radiation therapy or anticancer agents. . According to the present invention, the composition of the present invention is synergistic by the effect of the thermal effect of the magnetic nanoparticles and the external stimulus using active oxygen species at the same time, even by a small number of nanoparticles and a high frequency magnetic field load for a short time has an excellent cancer cell killing effect, such effect was confirmed that all the Dex Perry commercially available nanomaterials "remarkably excellent.
본 발명의 온열 치료용 조성물은 통상적으로 약제학적 조성물로 제공된다. 따라서, 본 발명의 온열요법용 조성물은 약제학적으로 허용되는 담체를 포함한다. 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비틀, 만니를, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀를로스, 폴리비닐피를리돈, 샐를로스, 물, 시럽, 메틸 셀를로스, 메틸히드톡시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 또는 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. The composition for thermal treatment of the present invention is usually a pharmaceutical composition Is provided. Therefore, the thermotherapy composition of the present invention comprises a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are conventionally used in the preparation of lactose, dextrose, sucrose, sorbet, manny, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cells. Loose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methyl hydroxy benzoate, propyl hydroxy benzoate, talc, magnesium stearate, or mineral oil, and the like, but not limited thereto. . Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 온열 치료용 조성물은 비경구 방식으로 투여되는 것이 바람직하다. 비경구 투여를 하는 경우, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 또는 병변내 (intralesional) 주입 등으로 투여할 수 있다, 본 발명의 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반웅 감웅성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 온열요법용 조성물은 치료학적 유효량의 열방출용 조성물을 포함한다. 용어 "치료학적 유효량" 은 치료 목적의 질환을 치료할 수 있는 층분한 양을 의미하며, 일반적으로 0.0001-100 mg/kg이다.  The composition for treating heat of the present invention is preferably administered parenterally. In the case of parenteral administration, it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, or intralesional injection, etc. Suitable dosages of the composition of the present invention may be formulated, mode of administration, patient It may be prescribed by factors such as age, body weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and reaction. The thermotherapy composition of the present invention comprises a therapeutically effective amount of the composition for heat release. The term "therapeutically effective amount" means a subdivided amount capable of treating a disease for treatment, generally 0.0001-100 mg / kg.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및 /또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나, 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일, 또는 수성 매질중의 용액, 현탁액, 또는 유화액 형태이거나 액스제, 분말제, 과립제, 정제, 또는 캅샐제 형태일 수도 있으며, 분산제, 또는 안정화제를 추가적으로 포함할 수 있다.  The pharmaceutical compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension, or emulsion in an oil or an aqueous medium, or may be in the form of axes, powders, granules, tablets, or capsules, and may further include a dispersing agent or a stabilizing agent.
본 발명의 온열 치료용 조성물은 적합한 투여경로로 환자에게 투여된 다음, 고주파의 자기장이 부가되며 이에 의해 열이 발생되며, 동시에 표적 세포 내 활성산소의 생성을 촉진한다. 고주파 자기장은 100 kHz 내지 10 MHz의 진동수를 갖는 고주파의 자기장이 이용될 수 있다.  The composition for thermotherapy of the present invention is administered to a patient by a suitable route of administration, and then a high frequency magnetic field is added, thereby generating heat, and at the same time promoting the production of free radicals in the target cell. The high frequency magnetic field may be a high frequency magnetic field having a frequency of 100 kHz to 10 MHz.
본 발명의 구체적인 구현예에 따르면, 본 발명의 온열 치료용 조성물로 치료되는 질환은 암이다. 본 발명의 온열 치료용 조성물은 특히, 암 치료에 유용하몌 예를 들어, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 및 요관암 등과 같은 다양한 암 질환에서 암 세포의 사멸을 효과적으로 유도할 수 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 본 발명의 생체 내 열 방출용 조성물을 투여하는 단계를 포함하는 온열 치료 (hyperthermia therapy) 방법 및 암치료 방법을 제공한다. According to a specific embodiment of the present invention, the disease treated with the composition for treating heat of the present invention is cancer. In particular, the composition for treating heat of the present invention, It is useful for treating cancers such as stomach cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer. And death of cancer cells in various cancer diseases such as ureter cancer. According to another aspect of the present invention, the present invention provides a hyperthermia therapy method and cancer treatment method comprising administering the composition for heat release in vivo of the present invention.
본 발명에서 이용되는 생체 내 열 방출용 조성물, 본 발명의 조성물로 치료될 수 있는 암 등에 대해서는 이미 상술하였으므로 과도한 중복을 피하기 위하여 그 기재를 생략한다.  In vivo heat-release compositions used in the present invention, cancers that can be treated with the compositions of the present invention and the like have been described above, so that description thereof is omitted to avoid excessive duplication.
【유리한 효과】 Advantageous Effects
본 발명의 특징 및 이점을 요약하면 다음과 같다:  The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 ( i ) 자성 나노입자 및 (ii) 화학요법제 (chemodrugs), 바이오약품 (biodrugs) 및 방사성 동위원소 (radioisotope)로 구성된 군으로부터 선택되는 민감화 물질을 포함하는 생체 내 열 방출 조성물; 및 상기 생체 내 열 방출 조성물을 유효성분으로 포함하는 온열치료용 조성물을 제공한다.  (a) The present invention provides a heat release in vivo comprising (i) magnetic nanoparticles and (ii) sensitizers selected from the group consisting of chemotherapeutic agents, biodrugs and radioisotopes. Composition; And it provides a heat treatment composition comprising the in vivo heat release composition as an active ingredient.
(b) 본 발명의 조성물은 외부 자극 및 자성 나노입자에 의한 열방출 효과가 동시에 가해짐으로써 타겟 세포, 특히 암세포의 사멸에 있어 뛰어난 상승 효과를 보인다.  (b) The composition of the present invention shows an excellent synergistic effect on the killing of target cells, in particular cancer cells, due to the simultaneous application of heat release by external stimulation and magnetic nanoparticles.
(c) 특히 본 발명의 조성물이 '자성 나노입자-민감화 물질' 의 복합체로 구성될 경우 고주파 자기장이라는 단일 자극에 의하여 온열 효과 및 민감화 물질에 의한 민감화 효과가 동시에 달성되어 효율적인 치료제 조성물로 유용하게 이용될 수 있다.  (c) In particular, when the composition of the present invention is composed of a composite of 'magnetic nanoparticle-sensitive material', the thermal effect and the sensitizing effect of the sensitizing material are simultaneously achieved by a single stimulus of high frequency magnetic field, which is useful for an effective therapeutic composition. Can be.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명에서 이용된 예시적인 자성 낙노입자 (ZnO.4Fe2.604)의 형태를 투과 전자현미경을 이용하여 관찰한 결과를 나타낸 그림이다. 도 2 및 도 3은 각각 본 발명의 자성 나노입자와 기존의 상용화된 나노입자인 페리덱스를 같은 농도로 각각 준비한 뒤, 교류 고주파자기장 하에서 온도의 증가를 측정한 결과를 나타낸 그래프 (도 2) 및 이로부터 분석시료의 초기온도의 변화율을 통해 계산된 열방출 계수값을 나타낸 그래프 (도 3)이다. 도 4는 나노입자에 외부 자기장이 가해지는 동안 은도변화를 광섬유 온도계로 관찰하면서 조절함으로써 세포 배양액의 은도를 43±1°C 유지하였음을 보여주는 그래프이다. 도 5는 2' ,7' -디클로로플루오레신 디아세테이트 (DCFA, Molecular Probes)가 2'' -디클로로플루오레신 (DCF)으로 산화하는 것을 형광현미경 (FV1000 confocal microscope, Olympus)으로 관찰함으로써 활성 산소종의 발생을 확인한 결과를 나타낸 그림이다. 도 6은 본 발명의 나노입자만 처리한 경우 외부자기장에 의한 세포 사멸율을 나타낸 그래프이다. 도 7은 아무것도 처리하지 않은 경우 (왼쪽 막대), 활성 산소종 (¾02) 및 나노입자를 처리하고 자기장을 가하지 않은 경우 (가운데 막대) 및 활성 산소종 및 나노입자를 처리하고 자기장을 가한 경우 (오른쪽 막대)의 각각의 세포 사멸율을 나타낸 그래프이다. 도 8은 아무것도 처리하지 않은 경우 (왼쪽 막대), 활성 산소종 생성물질 (4, 4' -아조비스) 및 나노입자를 처리하고 자기장을 가하지 않은 경우 (가운데 막대) 및 활성 산소종 생성물질 및 나노입자를 처리하고 자기장을 가한 경우 (오른쪽 막대)의 각각의 세포 사멸율을 나타낸 그래프이다. 도 9는 아무것도 처리하지 않은 경우 (왼쪽 막대), 활성 산소종 생성 유도물질 (안타마이신 A) 및 나노입자를 처리하고 자기장을 가하지 않은 경우 (가운데 막대) 및 활성 산소종 생성 유도물질 및 나노입자를 처리하고 자기장을 가한 경우 (오른쪽 막대)의 각각의 세포 사멸율을 나타낸 그래프이다. 도 10은 활성 산소종을 통한 민감화 전략의 세포사멸이 인 ^^에서도 효과적으로 적용된다는 것을 보여주는 데이터이다. 도 11은 본 발명에서 이용된 예시적인 자성 나노입자-열층격단백질 저해제 복합체가 자기장을 가하였을 때 열에 민감한 링커가 분해되며 열층격단백질 저해제가 효과적으로 배출되는 것을 나타낸 그래프이다. 도 12는 나노입자에 외부 자기장이 가해지는 동안 온도변화를 광섬유 온도계로 관찰하면서 조절함으로써 세포 배양액의 온도를 43土 1°C 유지하였음을 보여주는 그래프이다. 도 13은 본 발명의 나노입자만 처리한 경우 외부자기장에 의한 세포 사멸율을 나타낸 그래프 (검은색)와 나노입자-열층격단백질 저해제 복합체를 처리하고 자기장을 가한 경우 (붉은색)의 그래프이다. 도 14는 열층격단백질의 일종인 Hsp90의 생성을 효과적으로 억제하는 것을 보여주는 웨스턴 블롯팅 결과를 나타낸 그림이다. 도 15는 열층격단백질 저해를 통한 민감화 전략의 세포사멸이 in 에서도 효과적으로 적용됨을 보여주는 그림이다. 1 is an exemplary magnetic nanoparticle used in the present invention. (ZnO.4Fe2.604) is a diagram showing the results of observation using a transmission electron microscope. 2 and 3 are graphs showing the results of measuring the increase in temperature under an alternating high frequency magnetic field after preparing the magnetic nanoparticles of the present invention and ferridex, which are conventionally commercialized nanoparticles, at the same concentration, respectively (FIG. 2) and This is a graph showing the heat release coefficient value calculated through the rate of change of the initial temperature of the analyte (Fig. 3). FIG. 4 is a graph showing that the silver content of the cell culture was maintained at 43 ± 1 ° C. while controlling the silver change while the external magnetic field was applied to the nanoparticles while observing the optical fiber thermometer. 5 is a 2 ', 7' - dichloro fluorescein diacetate (DCFA, Molecular Probes) is 2 ', Ί' - dichloro-fluorescein (DCF) fluorescence microscope (FV1000 confocal microscope, Olympus) to oxidize observed Shows the result of confirming the generation of reactive oxygen species. Figure 6 is a graph showing the cell death rate by the external magnetic field when treated only nanoparticles of the present invention. FIG. 7 shows the case where no treatment (left bar), active oxygen species (¾0 2 ) and nanoparticles were treated and no magnetic field was applied (middle bar), and reactive oxygen species and nanoparticles were treated and magnetic fields were applied ( Graph showing each cell death rate in the right bar). Figure 8 shows no oxygen treatment (left bar), active oxygen species product (4, 4'-azobis) and nanoparticles treated without magnetic field (middle bar) and active oxygen species product and nano This is a graph showing the cell death rate of each of the particles treated with the magnetic field (right bar). 9 shows the treatment of reactive oxygen species generating inducer (antamycin A) and the treatment of nanoparticles without any magnetic field (center bar) and the treatment of active oxygen species generating inducer and nanoparticles It is a graph showing the rate of cell death for each of the treated and magnetic field (right bar). 10 is data showing that apoptosis of sensitization strategy via reactive oxygen species is effectively applied to phosphorus ^^. FIG. 11 is a graph showing that the heat sensitive linker is decomposed when the exemplary magnetic nanoparticle-thermolayer protein inhibitor complex used in the present invention is subjected to a magnetic field, and the thermal layer protein inhibitor is effectively discharged. 12 is a graph showing that the temperature of the cell culture was maintained at 43 ° C. 1 ° C. by controlling the temperature change while observing the temperature change with an optical fiber thermometer while applying an external magnetic field to the nanoparticles. FIG. 13 is a graph showing the cell death rate by an external magnetic field when treated with only the nanoparticles of the present invention (black) and a graph when the nanoparticle-thermolayer protein inhibitor complex was treated and applied with a magnetic field (red). 14 is a diagram showing the results of Western blotting showing the effective inhibition of the production of Hsp90, a type of thermal stratified protein. 15 is a diagram showing that the apoptosis of the sensitization strategy through thermal stratified protein inhibition is effectively applied in.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 실시예 1: ZnxMi-xFe204 (M = Fe, x = 0.4)의 조성으로 이루어진 아연이 포함된 구 형태의 페라이트 나노입자의 합성 Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, It will be apparent to those skilled in the art that the scope of the invention is not limited by these examples in accordance with the spirit of the invention. EXAMPLES Example 1 Synthesis of Spherical Ferrite Nanoparticles Containing Zinc Consisting of Composition of Zn x Mi- x Fe 2 04 (M = Fe, x = 0.4)
본 명세서에서 기술된 열방출 나노입자의 예로 식 Zn ^Fes i (M = Fe, x = 0.4)의 조성을 갖는 아연이 포함된 구 형태의 페라이트 나노입자 열방출제는 다음과 같은 방법으로 합성하였다. 올레산 (Sigma, 1.068 g)을 포함하는 벤질 에테르 용액에 Zn(acac)3(Sigma, 0.276 g) , Fe(acac)3(Sigma, 0.247 g)을 1시간 동안 상온에서 반웅시키고, 이어 아르곤 (Ar) 대기 하에서 290 °C , 30분간 열분해시켜 15 nm코어 크기를 갖는 ZrixM^Fes i (M = Fe, x = 0.4) 나노입자를 합성하였다. 이렇게 만들어진 아연이 포함된 구 형태의 페라이트 나노입자는 과량의 에탄을로 침전시키고 분리한 뒤 나노입자는 다시 를루엔으로 재분산시켜 콜로이드 용액 상태로 만들었다. 이후 20 mg/ml로 를루엔 상에 분산되어 있는 나노입자를 과량의 에탄을로 침전시키고 과량의 테트라메틸암모늄 하이드록시드가 녹아 있는 부탄올 용액을 넣어 2 시간동안 반웅시킨 뒤 나노입자를 원심분리하여 분리해 낸 뒤 물에 분산시켰다. 이러한 방법으로 합성된 나노입자는 균일한 크기의 구 형태를 가지고 있으며 투과 전자현미경을 통하여 분석하였다 (도 1). 실시예 2: Zno.4Fe2.eO4의 조성으로 이루어진 물질과 페리덱스의 열방출 계수 비교 As an example of the heat-emitting nanoparticles described herein, the spherical ferrite nanoparticle heat-releasing agent containing zinc having a composition of the formula Zn ^ Fes i (M = Fe, x = 0.4) was synthesized by the following method. In a benzyl ether solution containing oleic acid (Sigma, 1.068 g), Zn (acac) 3 (Sigma, 0.276 g) and Fe (acac) 3 (Sigma, 0.247 g) were reacted at room temperature for 1 hour, followed by argon (Ar ) ZrixM ^ Fes i (M = Fe, x = 0.4) nanoparticles with 15 nm core size were synthesized by pyrolysis at 290 ° C. for 30 minutes. The spherical ferrite nanoparticles containing zinc were precipitated with excess ethane and separated, and then the nanoparticles were redispersed again with leuene to form a colloidal solution. Thereafter, the nanoparticles dispersed in toluene at 20 mg / ml were precipitated with excess ethane, and the reaction mixture was reacted for 2 hours with a butanol solution containing an excess of tetramethylammonium hydroxide, followed by centrifugation of the nanoparticles. It was separated and dispersed in water. The nanoparticles synthesized in this way have a uniform sized sphere shape and were analyzed by transmission electron microscope (FIG. 1). Example 2 Comparison of the Heat Dissipation Coefficients of Ferriteex and Materials Consisting of Zno.4Fe2.eO4
아연이 포함된 15 nm 크기의 구형 페라이트 나노입자를 합성한 뒤 기존에 상용화되어 쓰이는 구형 산화철 나노물질인 페리덱스와 함께 같은 농도로 각각 준비한 뒤, 교류 전자기장 발생장치 (HF 10K, Taeyang System Co., Korea)를 이용하여 고주파자기장 하에서 자성 나노입자로부터 발생되는 열의 방출량을 측정하였다. 두 물질의 열방출량 차이를 관찰하기 위해 다른 모든 실험조건들은 동일하게 일치시켜 주었다. 구체적인 실험방법은 다음과 같다. 2 mg/ml 농도로 물에 분산된 분석시료를 준비하고 유리 바이알에 담아서 500 kHz 코일 중앙에 위치시킨 후 코일에 교류전류를 흘려주어 30.0 kA/m 세기의 유도자기장을 발생시켰다. 이때 분석시료의 정확한 농도계산을 위해 ICP-AES 분석을 통해 나노입자를 정량하였고 분석시료의 정확한 온도측정을 위해 분석시료가 담긴 바이알과 코일 사이의 공간은 스티로폼으로 단열시켰다. 고주파 자기장을 가해준 시간에 따른 분석시료의 온도의 변화는 광섬유 은도계 (M602, Lumasense technologies, Inc. USA)를 통해 실시간으로 관측하였다. 도 2에서 보는 바와 같이 고주파 자기장을 가해주는 시간이 증가함에 따라 분석시료의 온도가 함께 증가함을 확인하였다. Zn0.4Fe2.604의 경우 자기장을 가해준 직후의 급격한 온도변화 또한 확인하였다. 온도변화 그래프로부터 분석시료의 초기온도의 변화율을 구하여 계산식에 대입함으로서 열방출 계수값을 계산할 수 있으며 이렇게 측정된 값을 도 3에 나타내었다. 실제로 아연이 포함된 15 nm 크기의 구형 페라이트 나노입자의 경우 상용화되어 쓰이는 구형 산화철 나노입자인 페리덱스보다 약 400 % 열방출 효과가 증가하였음을 확인하였다 (도 3). 실시예 3: 활성산소종 발생의 확인 15 nm sized spherical ferrite nanoparticles containing zinc were synthesized and prepared in the same concentration with ferdex, a spherical iron oxide nanomaterial that has been commercially available, and then used in an alternating electromagnetic field generator (HF 10K, Taeyang System Co., Korea) was used to measure the amount of heat emitted from magnetic nanoparticles under high frequency magnetic field. All other experimental conditions were equally matched to observe the difference in heat release between the two materials. The specific experimental method is as follows. Prepare an analytical sample dispersed in water at 2 mg / ml concentration The glass vials were placed in the center of a 500 kHz coil and an alternating current was flowed into the coil to generate an induction magnetic field of 30.0 kA / m intensity. At this time, nanoparticles were quantified by ICP-AES analysis for accurate concentration calculation of analytical samples, and the space between vials and coils containing analytical samples was insulated with styrofoam for accurate temperature measurement. The change in temperature of the sample with the time of applying the high frequency magnetic field was observed in real time using an optical fiber calibrator (M602, Lumasense technologies, Inc. USA). As shown in FIG. 2, it was confirmed that the temperature of the analytical sample increased with increasing time of applying the high frequency magnetic field. Zn 0 . 4 Fe 2 . In the case of 6 0 4 , the rapid temperature change immediately after applying the magnetic field was also confirmed. By calculating the rate of change of the initial temperature of the analytical sample from the temperature change graph and substituting it into the equation, the heat release coefficient can be calculated. The measured values are shown in FIG. 3. In fact, it was confirmed that the spherical ferrite nanoparticles of 15 nm size containing zinc increased about 400% of the heat release effect than ferdex, which is a commercially available spherical iron oxide nanoparticle (FIG. 3). Example 3: Confirmation of reactive oxygen species generation
활성산소종의 발생을 확인하기 위해 2' ,7' -디클로로플루오레신 디아세테이트 (DCFA, Molecular Probes)가 세포내 활성산소종의 존재 하에서 2' ,Τ -디클로로플루오레신 (DCF)으로 산화하는 것을 관찰하였다. 구체적인 실험 방법은 다음과 같다. MDA-MB-231 유방암 세포군에 대하여 35 隱 디쉬를 이용하여 각 웰 당 4X105개의 세포에 4,4' -azobis(cyanovaleric acid) (Sigma, 10 mM)를 처리한 뒤 24시간 동안 배양하였다. Phosphate buffered saline (PBS)로 여러 번 세포에서 4,4' -azobis(cyanovaler ic acid)를 씻어준 뒤 4 μΜ의 DCFA를 370C에서 15분동안 암실에서 배양하였다. 세포를 다시 PBS로 씻어준 뒤 바로 형광현미경 (FV1000 confocal microscope, Olympus)을 통해 DCF에 의한 녹색 형광을 세포 내에서 관찰함으로써 활성산소종의 발생을 확인하였다 (도 5). 실시예 4: 활성 산소종을 생성 또는 생성 유도하는 물질을 이용한 민감화 전략을 통한 온열치료 효과 확인 실험 To confirm the development of reactive oxygen species, 2 ', 7'-dichlorofluorescein diacetate (DCFA, Molecular Probes) was oxidized to 2 ' , Τ-dichlorofluorescein (DCF) in the presence of intracellular reactive oxygen species. Was observed. The specific experimental method is as follows. The MDA-MB-231 breast cancer cell group was treated with 4,10'-azobis (cyanovaleric acid) (Sigma, 10 mM) to 4 × 10 5 cells per well using a 35 mm 3 dish and incubated for 24 hours. Phosphate buffered saline (PBS) was washed 4,4'-azobis (cyanovaler ic acid) in the cells several times and 4 μΜ DCFA was incubated in the dark at 37 0 C for 15 minutes. After washing the cells with PBS again, the generation of reactive oxygen species was confirmed by observing green fluorescence by DCF in the cells through a fluorescence microscope (FV1000 confocal microscope, Olympus) (FIG. 5). Example 4: Experiment for confirming the effect of heat treatment through sensitization strategy using a substance generating or inducing reactive oxygen species
외부 고주파 자기장을 가하여 자성 나노입자가 자기이력 손실 과정을 통해 열방출을 유도하도록 함으로써 그 열로 암세포를 사멸시키는 데 있어 활성 산소종을 이용한 민감화 전략을 통한 온열치료 효과를 알아보기 위한 실험을 진행하였다. 아무것도 컨쥬게이션되어 있지 않은 자성 나노입자를 대조군으로 하여 활성 산소종의 발생 유무에 따른 온열치료 효과의 차이를 비교하였다. 실험에 사용한 암세포는 MDA-MB-231로써 유방암 세포군이다, 활성 산소종을 생성 또는 생성 유도하는 서로 다른 물질 세가지를 이용하여 각각의 온열치료와의 동시 암세포 사멸효과를 알아보기 위해 나노입자만 세포에 처리한 경우, 활성 산소종을 생성 또는 생성 유도하는 물질만 세포에 처리한 경우, 나노입자와 활성 산소종을 동시에 세포에 처리한 경우의 43°C 정도의 온도에서 암세포 생존율을 CCK-8 방법을 통해 정량 분석하였다. 도 4는 주어진 시간동안 나노입자에 외부 자기장을 가하였을 때의 온도변화를 광섬유 온도계로 관찰하면서 조절함으로써 세포 배양액의 온도를 43士 1°C 유지한 것을 나타낸 그래프이다. 나노입자를 세포에 처리만 하고 외부 교류자기장을 가하지 않은 경우 아무런 독성이 없기 때문에 암세포의 사멸율이 0 ¾»로 유지되었고, 활성 산소종을 생성 또는 생성 유도하는 물질만 세포에 처리한 경우 활성 산소종에 의한 산화 스트레스로 인해 5-15 %의 세포 사멸률이 관찰되었다. 반면에 활성 산소종을 생성 또는 생성 유도하는 물질과 나노입자가 함께 존재할 때 자기장을 가해준 경우 자기이력 손실과정에서 유발된 열 뿐만 아니라 활성 산소종에 의한 산화 스트레스에 의해 암세포 사멸율이 약 50-60 % 수준으로 크게 증가하는 것을 확인할 수 있었다. 구체적인 실험방법은 다음과 같다. MDA-MB-231 유방암세포군에 대하여 96-웰플레이트를 이용하여 각 웰당 IX 104개의 세포를 24시간 배양한 후 한 군에는 200 yg/ml 농도의 아연이 함유된 자성 나노입자와 활성 산소종을 생성 또는 생성 유도하는 물질을 함께 처리하고 다른 한 군에는 자성 나노입자만을 처리하였다. 이에 30 kA/m 세기의 500kHz 고주파 자기장을 30분 간 세포 배양액의 온도를 43°C로 유지하면서 가했다. 새 배양액으로 갈아준 뒤 24시간을 배양한후 살아있는 세포를 CCK- 8 분석방법을 사용하여 정량분석하였다. 도 6-9는 외부 교류자기장올 30분 가해줬을 때의 세포사멸률을 확인한 실험결과이다. 전체적으로 나노입자만 처리한 세포의 경우 온열치료만의 효과로 암세포가 최대 17 % 정도 사멸한 것에 비하여 (도 6), 활성 산소종을 생성 또는 생성 유도하는 물질을 나노입자와 함께 처리한 경우 활성 산소종에 의한 민감화 전략으로 세포가 온열치료에 더쉽게 영향을 받음에 따라 세포 사멸률이 50-60 ¾>까지 급격히 증가함을 확인하였다. 나노입자를 이용한 온열치료와 민감화 전략 조합에 따라 다음과 같이 분류했다: By applying an external high frequency magnetic field, the magnetic nanoparticles The experiment was conducted to investigate the effect of heat treatment through the sensitization strategy using reactive oxygen species in killing cancer cells with heat by inducing heat release. As a control, none of the conjugated magnetic nanoparticles was used as a control to compare the difference in thermotherapy effect according to the presence or absence of reactive oxygen species. The cancer cell used in the experiment was MDA-MB-231, a breast cancer cell group. To examine the effect of simultaneous cancer cell killing with each of the heat treatments using three different substances that generate or induce reactive oxygen species, only nanoparticles were applied to the cells. When treated, cells treated with only the substance that generates or induced the generation of reactive oxygen species, the cancer cell survival rate at a temperature of about 43 ° C when the nanoparticles and reactive oxygen species were treated at the same time using the CCK-8 method Quantitative analysis through. 4 is a graph showing that the temperature of the cell culture was maintained at 43 ° C. 1 ° C. by adjusting the temperature change when the external magnetic field was applied to the nanoparticles for a given time while observing the optical fiber thermometer. If the nanoparticles were only treated in the cells and no external alternating magnetic field was applied, the cancer cell death rate was 0 ¾ », and the cells were treated only with substances that produced or induced free radical species. Cell death rates of 5-15% were observed due to oxidative stress by the species. On the other hand, when a magnetic field is applied when a substance generating or inducing reactive oxygen species and nanoparticles are present together, cancer cell death rate is about 50-% due to oxidative stress caused by reactive oxygen species as well as heat generated during the loss of magnetic history. It was confirmed that the increase to 60% level. The specific experimental method is as follows. The MDA-MB-231 breast cancer cell group was incubated for 24 hours with IX 10 4 cells per well using a 96-well plate, and one group contained magnetic nanoparticles containing 200 yg / ml zinc and reactive oxygen species. The material produced or induced was treated together and the other group treated only with magnetic nanoparticles. A 500 kHz high frequency magnetic field of 30 kA / m intensity was added thereto while maintaining the temperature of the cell culture at 43 ° C. for 30 minutes. After culturing for 24 hours, the living cells were quantified using the CCK-8 assay. Figure 6-9 is an experimental result confirming the cell death rate when added to the external alternating magnetic field 30 minutes. In the case of cells treated only with nanoparticles as a whole, cancer cells were killed by up to 17% by the effect of heat treatment alone (FIG. 6). When treated with nanoparticles, it was confirmed that the cell death rate rapidly increased to 50-60 ¾> as cells were more susceptible to thermotherapy due to the sensitization strategy by reactive oxygen species. Depending on the combination of thermotherapy and sensitization strategies with nanoparticles, they were classified as follows:
(1) 활성 산소종 자체, (도 7);  (1) reactive oxygen species themselves, (FIG. 7);
(2) 라디칼을 이용해 활성 산소종을 생성하는 물질, 4,4' - 아조비스 (사이아노발레르산) (도 8); 및  (2) a substance that generates free radical species using radicals, 4,4′-azobis (cyanovaleric acid) (FIG. 8); and
(3) 세포내 대사를 이용해 활성 산소종 생성을 유도하는 물질, 안타마이신 A(Antimycin A) (도 9). 상기 실험조건에서 활성 산소종과 자성 나노입자의 동시 처리가 활성 산소종만 세포에 처리한 경우나 자성 나노만 세포에 처리한 경우보다 각각 약 3배 이상 증가된 암세포 사멸효과를 보임을 확인하였다. 실시예 5: 민감화전략을 통한 은열치료 효과 확인 In vivo실험  (3) substances that induce reactive oxygen species production using intracellular metabolism, Antamycin A (Antimycin A) (FIG. 9). Simultaneous treatment of reactive oxygen species and magnetic nanoparticles under the experimental conditions showed that cancer cell death was increased by about three times or more than when treated with active oxygen only cells or when treated with magnetic nanoman cells. Example 5: Confirm the effect of heat treatment through sensitization strategy In vivo experiment
도 10은 민감화 전략을 이용한 온열치료에 의한 세포사멸이 in / 에서도 효과적으로 일어남을 보여주는 그림이다. MDA-MB-231 유방암 세포를 쥐에 이식한 후 암조직의 크기가 100 mm3이 될 때 개발된 조성물을 주사한 뒤 43 °C의 온도를 유지하기 위해 교류자기장을 30분 가해줘 온열치료를 하고 14일 뒤에 암의 크기를 확인하였다. 단 한번의 온열치료만으로도 암이 완전히 제거된 것을 볼 수 있다. 이는 곧 민감화 전략을 통해 효과가 강화된 온열치료에 의해 세포사멸이 실제 in w>o에서도 효과적으로 일어남을 보여준다 (도 10). 실시예 6: 자성나노입자-열충격단백질 저해제 복합체의 합성 및 자기장을 이용한 열충격단백질 저해제의 효과적인 배출 10 is a diagram showing that apoptosis by the heat treatment using the sensitization strategy is effective even in /. After transplanting MDA-MB-231 breast cancer cells to mice, the composition was injected when the size of the cancerous tissue became 100 mm 3 , and an alternating magnetic field was applied for 30 minutes to maintain a temperature of 43 ° C. 14 days later, the size of the cancer was checked. You can see the cancer is completely removed with just one heat treatment. This shows that apoptosis is effectively occurred even in actual w w by the heat treatment which is enhanced by the sensitization strategy (FIG. 10). Example 6 Synthesis of Magnetic Nanoparticle-Thermal Shock Protein Inhibitor Complex and Effective Release of Thermal Shock Protein Inhibitor Using Magnetic Field
본 명세서에서 기술된 열방출 나노입자의 예로 식 ZnxMi-xFes^ (M = Fe, x = 0.4)의 조성을 갖는 아연이 포함된 구 형태의 페라이트 나노입자 열방출제는 다음과 같은 방법으로 합성하였다. 을레산 (Sigma, 1.068 g)을 포함하는 벤질 에테르 용액에 Zn(acac)3(Sigma, 0.276 g) , Fe(acac)3(Sigma, 0.247 g)을 1시간 동안 상온에서 반응시키고, 이어 아르곤 (Ar) 대기 하에서 290 °C , 30분간 열분해시켜 15 nm코어 크기를 갖는 Zn^hFea t (M = Fe, x = 0.4) 나노입자를 합성하였다. 이렇게 만들어진 아연이 포함된 구 형태의 페라이트 나노입자는 과량의 에탄올로 침전시키고 분리한 뒤 나노입자는 다시 를루엔으로 재분산시켜 콜로이드 용액 상태로 만들었다. 표면처리후 열에 민감한 링커인 아조비스 화합물을 컨쥬게이션 하였고 최종적으로 열충격단백질 저해제인 젤다나마이신 유도체를 도입하였다. 이렇게 합성된 복합체에 자기장을 가하여 복합체가 녹아있는 미디어의 온도를 43士 rc로 유지하였고 이때의 열층격단백질 저해제의 배출을 UV-Vis 분광기를 이용하여 확인하였다 (도 11). 자기장을 가한지 60분 안에 저해제가 모두 효과적으로 배출되는 것을 확인하였다. 실시예 7: 나노입자-열충격단백질 복합체를 이용한 효과적인 은도조절 As an example of the heat-emitting nanoparticles described herein, a spherical ferrite nanoparticle heat-releasing agent containing zinc having a composition of the formula ZnxMi-xFes ^ (M = Fe, x = 0.4) was synthesized as follows. Zn (acac) 3 (Sigma, 0.276 g) and Fe (acac) 3 (Sigma, 0.247 g) were reacted at room temperature for 1 hour in a benzyl ether solution containing Eleic acid (Sigma, 1.068 g), followed by argon ( Ar) under atmosphere Pyrolysis was performed at 290 ° C. for 30 minutes to synthesize Zn ^ h Fea t (M = Fe, x = 0.4) nanoparticles having a 15 nm core size. The spherical ferrite nanoparticles containing zinc were precipitated with excess ethanol and separated, and then the nanoparticles were redispersed again with leuene to form a colloidal solution. After surface treatment, the azobis compound, a heat-sensitive linker, was conjugated and finally a geldanamycin derivative, a thermal shock protein inhibitor, was introduced. The magnetic field was added to the synthesized composite so that the temperature of the media in which the composite was dissolved was maintained at 43 rc rc, and the release of the thermal stratified protein inhibitor was confirmed using a UV-Vis spectrometer (FIG. 11). It was confirmed that all of the inhibitors were effectively released within 60 minutes of applying the magnetic field. Example 7: Effective Silver Control Using Nanoparticle-Thermal Shock Protein Complex
상기 복합체를 합성한 뒤 교류 전자기장 발생장치 (HF 10R, Taeyang System Co., Korea)를 이용하여 고주파자기장 하에서 자성 나노입자로부터 발생되는 열을 이용 은도를 효과적으로 조절할 수 있음을 실험하였다. 0.1 mg/ml 농도로 물에 분산된 분석시료를 준비하고 유리 바이알에 담아서 500 kHz 코일 중앙에 위치시킨 후 코일에 교류전류를 흘려주어 37.4 kA/m 세기의 유도자기장을 발생시켰다. 이때 분석시료의 정확한 농도계산을 위해 ICP-AES 분석을 통해 나노입자를 정량하였고 분석시료의 정확한 온도측정을 위해 분석시료가 담긴 바이알과 코일 사이의 공간은 스티로폼으로 단열시켰다. 고주파 자기장은 온도에 따라 조절되어 원하는 온도를 유지할 수 있게 하였다. 이 온도의 변화는 광섬유 온도계 (M602, Lumasense technologies, Inc. USA)를 통해 실시간으로 관측하였다. 도 12에서 보는 바와 같이 고주파 자기장을 조절하여 미디어의 온도를 43士 1°C 범위로 효과적으로 유지하였다. 가해주는 시간이 증가함에 따라 분석시료의 온도가 함께 증가함을 확인하였다. 실시예 8: 열충격단백질 저해제를 이용한 민감화 전략을 통한 온열치료 효과 확인 실험  After synthesizing the composite, it was tested using an alternating electromagnetic field generator (HF 10R, Taeyang System Co., Korea) to effectively control the silver using heat generated from magnetic nanoparticles under high frequency magnetic fields. An analytical sample dispersed in water at a concentration of 0.1 mg / ml was prepared, placed in a glass vial, placed in the center of a 500 kHz coil, and an alternating current was flowed into the coil to generate an induction magnetic field of 37.4 kA / m intensity. At this time, nanoparticles were quantified by ICP-AES analysis for accurate concentration calculation of analytical samples, and the space between vials and coils containing analytical samples was insulated with styrofoam for accurate temperature measurement. The high frequency magnetic field was adjusted according to the temperature to maintain the desired temperature. This change in temperature was observed in real time using a fiber optic thermometer (M602, Lumasense technologies, Inc. USA). As shown in Figure 12 by adjusting the high frequency magnetic field to effectively maintain the temperature of the media 43 ℃ 1 ° C range. It was confirmed that the temperature of the sample increased with increasing time. Example 8: Experiment to confirm the effect of heat treatment through sensitization strategy using heat shock protein inhibitor
외부 고주파 자기장을 가하여 자성 나노입자가 자기이력 손실 과정을 통해 열방출을 유도하도록 함으로써 그 열로 암세포를 사멸시키는 데 있어 열층격단백질 저해제를 이용한 민감화 전략을 통한 온열치료 효과를 알아보기 위한 실험을 진행하였다. 아무것도 컨쥬게이션되어 있지 않은 자성 나노입자를 대조군으로 하여 열층격단백질 유무에 따른 온열치료 효과의 차이를 비교하였다. 실험에 사용한 암세포는 MDA-MB-231로써 유방암 세포군이다. 온열치료의 암세포 사멸효과를 알아보기 위해 나노입자만 세포에 처리한 경우, 나노입자-열층격단백질 저해제 복합체를 세포에 처리한 경우의 43 °C 정도의 온도에서 암세포 제거율을 CCK-8 방법을 통해 정량 분석하였다 (도 13). 나노입자를 세포에 처리만 하고 외부 교류자기장을 가하지 않은 경우 아무런 독성이 없기 때문에 암세포의 사멸율이 0 %로 유지되었고 (검은색 그래프), 나노입자-열층격단백질 복합체의 경우에도 독성이 거의 없음을 관찰하였다 (붉은색 그래프). 반면에 이 복합체에 자기장을 가해준 경우 자기이력 손실과정에서 유발된 열 뿐만 아니라 열층격단백질의 생성 및 작용의 저해에 의해 암세포 사멸율이 약The application of an external high frequency magnetic field causes the magnetic nanoparticles to induce heat release through a loss of magnetic history, thereby killing cancer cells with heat. Experiments were conducted to determine the effect of heat therapy through the sensitization strategy using heat stratified protein inhibitors. As a control, none of the non-conjugated magnetic nanoparticles was used as a control to compare the effect of heat treatment according to the presence or absence of a thermal stratified protein. The cancer cells used in the experiment are MDA-MB-231, a breast cancer cell population. If one to determine the cancer killing effects of heat treatment only nanoparticles processing in cells, nanoparticles - the tumor rejection at a temperature of about 43 ° C when treated with heat cheunggyeok protein inhibitor complex to cells via CCK-8 method Quantitative analysis (FIG. 13). If the nanoparticles were only treated with cells and no external alternating magnetic field, there was no toxicity and cancer cell death rate remained at 0% (black graph), and the nanoparticle-thermolayer protein complex had little toxicity. Was observed (red graph). On the other hand, when the magnetic field is applied to the complex, cancer cell death rate is weak due to the inhibition of the formation and action of thermal stratified protein as well as the heat induced during the loss of magnetic history.
100 % 수준으로 크게 증가하는 것을 확인할 수 있었다. 구체적인 실험방법은 다음과 같다. MDA-MB-231 유방암세포군에 대하여 96- 웰플레이트를 이용하여 각 웰당 1X104개의 세포를 24시간 배양한 후 한 군에는 100 g/ml 농도의 나노입자-열층격단백질 복합체 물질을 처리하고 다른 한 군에는 자성 나노입자만을 처리하였다. 이에 37.4 kA/m 세기의 500kHz 고주파 자기장을 80분 간 세포 배양액의 온도를 43°C로 유지하면서 가했다. 새 배양액으로 갈아준 뒤 24시간을 배양한 후 살아있는 세포를 CC -8 분석방법을 사용하여 정량분석하였다. 도 13은 외부 교류자기장을 80분까지 가해줬을 때 세포사멸률을 시간에 따라 나타낸 실험결과이다. 나노입자만 처리한 세포의 경우 온열치료만의 효과로 암세포가 최대 17 % 정도 사멸한 것에 비하여 (검은색 그래프), 나노입자-열층격단백질 복합체를 처리한 경우 열층격단백질의 생성 및 작용저해에 의한 민감화 전략으로 세포가 온열치료에 더쉽게 영향을 받음에 따라 세포 사멸률이 100 %까지 급격히 증가함을 확인하였다. It was confirmed that the increase significantly to the 100% level. The specific experimental method is as follows. The MDA-MB-231 breast cancer cell group was incubated for 24 hours with 1 × 10 4 cells per well using a 96-well plate, and one group was treated with 100 g / ml nanoparticle-thermal stratified protein complex material and the other. The group treated only magnetic nanoparticles. A 500 kHz high frequency magnetic field of 37.4 kA / m intensity was added thereto while maintaining the temperature of the cell culture at 43 ° C. for 80 minutes. After culturing for 24 hours, the living cells were quantified using a CC-8 assay. 13 is an experimental result showing the cell death rate with time when an external alternating magnetic field was applied up to 80 minutes. In case of cells treated with nanoparticles alone, cancer cells killed up to 17% due to the effect of heat treatment alone (black graph). As a result of the sensitization strategy, the cell death rate rapidly increased to 100% as cells were more susceptible to heat treatment.
상기 실험조건에서 민감화 전략을 통한 온열치료의 경우 자성 나노입자만 세포에 처리한 경우보다 각각 약 5배 이상 증가된 암세포 사멸효과를 보임을 확인하였다. 실시예 9: 열층격단백질 생성 저해 확인 실험 In the experimental conditions, it was confirmed that the heat treatment through the sensitization strategy showed cancer cell killing effects increased by about five times or more than when only the magnetic nanoparticles were treated with the cells. Example 9 Experiment for Confirming Inhibition of Thermal Lamellar Protein Production
도 14는 나노입자-열층격단백질 복합체가 자기장을 가하였을 때 효과적으로 HsP90의 생성을 억제하는 것을 보여주는 웨스턴 블롯팅 실험이다. 자성나노입자 (MNP)만을 처리한 경우 Hsp90의 생성이 크게 증가하나 이 복합체 (RAIN)의 경우는 열을 주지 않았을 때 세포가 가지고 있는 수준의 Hsp90의 양을 유지하는 것을 알 수 있었다. 이는 GAPDH ( g 1 y cer a 1 dehyde 3一 phosphate dehydrogenase)를 이용하여 정량화 하였는데 나노입자를 이용한 온열치료의 경우 열을 처리하지 않은 세포에 비해 Hsp90를 3배 정도 많이 생성시키며 나노입자-열층격단백질 저해제 복합체의 경우 이 Hsp90의 생성양을 열처리 후에도 증가시키지 않고 열처리하지 않은 수준으로 유지시킴을 확인하였다. 실시예 10: 민감화 전략을 통한 은열치료 효과 확인 In vivo실험 14 is a Western blotting experiment showing that the nanoparticle-thermal stratified protein complex effectively inhibits the production of Hs P 90 when subjected to a magnetic field. The treatment of magnetic nanoparticles (MNP) only increased the production of Hsp90, but the complex (RAIN) showed that the level of Hsp90 retained by the cells was maintained when no heat was applied. This was quantified using GAPDH (g 1 y cer a 1 dehyde 3 phosphate dehydrogenase). In the case of thermotherapy using nanoparticles, Hsp90 is produced three times more than cells without heat treatment. In the case of the inhibitor complex, it was confirmed that the amount of Hsp90 produced was maintained at an unheated level without increasing after heat treatment. Example 10: Confirmation of the effect of heat treatment through sensitization strategy In vivo experiment
도 15는 민감화 전략을 이용한 온열치료에 의한 세포사멸이 in wVo에서도 효과적으로 일어남을 보여주는 그림이다. MDA-MB-231 유방암 세포를 쥐에 이식한 후 암조직의 크기가 100 mm3이 될 때 개발된 조성물을 주사한 뒤 43 °C의 온도를 유지하기 위해 교류자기장을 30분 가해줘 온열치료를 하고 14일 뒤에 암의 크기를 확인하였다. 단 한번의 온열치료만으로도 암이 완전히 제거된 것을 볼 수 있다. 이는 곧 민감화 전략을 통해 효과가 강화된 온열치료에 의해 세포사멸이 실제 in 에서도 효과적으로 일어남을 보여준다 (도 15). 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 15 is a diagram showing that apoptosis by heat treatment using a sensitization strategy also occurs effectively in wVo. After transplanting MDA-MB-231 breast cancer cells to mice, the composition was injected when the size of the cancerous tissue became 100 mm 3 , and an alternating magnetic field was applied for 30 minutes to maintain a temperature of 43 ° C. 14 days later, the size of the cancer was checked. You can see the cancer is completely removed with just one heat treatment. This shows that apoptosis effectively occurs even in actual by the heat treatment that the effect is enhanced through the sensitization strategy (FIG. 15). Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the invention will be defined by the appended claims and equivalents thereof.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
다음을 포함하는 생체 내 열 방출용 조성물:  In vivo heat release composition comprising:
(a) 자성 나노입자 및 ;  (a) magnetic nanoparticles;
(b) 화학요법약품 (chemodrug), 바이오 약품 (biodrug) 및 방사성 동위원소 (radioisotope)로 구성된 군으로부터 선택되는 하나 이상의 민감화 (sensitization) 물질.  (b) at least one sensitization substance selected from the group consisting of chemodrugs, biodrugs and radioisotopes.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 자성 나노입자는 하기 일반식 1로 표시되는 것을 특징으로 하는 조성물:  The composition of claim 1, wherein the magnetic nanoparticles are represented by the following general formula (1):
일반식 1  Formula 1
MxM,i-xFe204(M = Ba, Zn, Mn, Fe, Co 및 Ni로 구성된 군으로부터 1종 이상 선택되는 금속, 0<χ<5, Μ' = Ba, Zn, Mn, Fe, Co 및 Ni로 구성된 군으로부터 1종 이상 선택되는 금속). MxM , i- x Fe 2 0 4 (M = Ba, Zn, Mn, Fe, Co, and at least one metal selected from the group consisting of Ni, 0 <χ <5, Μ '= Ba, Zn, Mn, Fe , At least one metal selected from the group consisting of Co and Ni).
【청구항 33 [Claim 33]
제 2 항에 있어서, 상기 일반식 1의 M = Zn, Mn 및 Co로 구성된 군으로부터 1종 이상 선택되는 금속, 0≤x≤3, M' = Mn 및 Fe로 구성된 군으로부터 1종 이상 선택되는 금속인 것을 특징으로 하는 조성물.  According to claim 2, wherein at least one member selected from the group consisting of M = Zn, Mn and Co of the general formula 1, 0≤x≤3, M '= at least one selected from the group consisting of Mn and Fe Composition comprising a metal.
【청구항 4】 [Claim 4]
제 3 항에 있어서, 상기 일반식 1의 M = Ζη, 0<χ<1, M' = Fe 인 것을 특징으로 하는 조성물.  The composition according to claim 3, wherein M = Ζη, 0 <χ <1, and M '= Fe in the general formula (1).
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 화학요법제는 활성 산소종, 활성 산소종 생성 물질, 활성 산소종 생성 유도 물질 및 열충격 단백질 억제제 (Hsp inhibitor)로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.  The composition of claim 1, wherein the chemotherapeutic agent is selected from the group consisting of reactive oxygen species, reactive oxygen species generating materials, reactive oxygen species generating inducing substances, and heat shock protein inhibitors (Hsp inhibitors).
[청구항 6】 제 5 항에 있어세 상기 활성 산소종은 과산화수소 (¾02), 초과산화이온 (superoxide anion, 02"), 수산화 자유기 (hydroxyl radical , ΟΗ' ), 과산화지질 (lipid peroxide), 퍼옥시니트라이트 (peroxinitrite, N03 2") , 티을 퍼옥시 자유기 (thiol peroxy radical, R-S02_)로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물. [Claim 6] According to claim 5, The reactive oxygen species is hydrogen peroxide (¾0 2 ), superoxide anion (superoxide anion, 0 2 " ), hydroxyl radical (ΟΗ '), lipid peroxide, peroxynit Light (peroxinitrite, N0 3 2 " ), thi is selected from the group consisting of peroxy radicals (R-S0 2_ ).
【청구항 7】 [Claim 7]
제 5 항에 있어서, 상기 활성 산소종 생성 물질은 4,4' -아조비스 (4- 시아노발레르산) (4,4' -Azobis(4-cyanovaleric acid))인 것을 특징으로 하는 조성물.  6. The composition according to claim 5, wherein the reactive oxygen species generating material is 4,4'-Azobis (4-cyanovaleric acid) (4,4'-Azobis (4-cyanovaleric acid)).
【청구항 8】 [Claim 8]
제 5항에 있어서, 상기 활성 산소종 생성 유도 물질은 안타마이신 A (Antimycin A)인 것을 특징으로 하는 조성물.  6. The composition of claim 5, wherein the reactive oxygen species generating inducing substance is anthamycin A.
【청구항 9】 [Claim 9]
제 7 항에 있어서, 상기 4,4 '-아조비스 (4-시아노발레르산) (4,4' - Azobis(4-cyanovaleric acid))는 상기 자성 나노입자에 컨쥬게이션된 것을 특징으로 하는 조성물.  8. The composition of claim 7, wherein the 4,4'-azobis (4-cyanovaleric acid) (4,4'-Azobis (4-cyanovaleric acid)) is conjugated to the magnetic nanoparticles. .
【청구항 10】 [Claim 10]
제 ᅳ 5 항에 있어서, 상기 열층격 단백질 억제제 (Hsp inhibitor)는 젤다나마이신 ( 1 danamyc in), 17AAG ( 17-N-A 1 lylamino-17- demethoxyge 1 danamyc in) 17—DMAG (17-di methyl ami no-gel danamyc in) , 피티쓰린 (Pifithrin)-y ^-Phenylethynesulfonamid KNK^s S-KE^-l^- Benzodioxol-S-ylmethylene]- oxopyrrol idine-l-carbaldehyde) , schi sandr in(쉬산드린) -B , 쿼세틴 (Quercet in) (2-(3, 4-dihydroxyphenyl ) - 3 , 5 , 7-t r i hydr oxy-4H-chr omen-4-one ) 및 ETB (Epolactaene Tertiary Butyl Ester)로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.  The method of claim 5, wherein the Hsp inhibitor is gel danamyc (1 danamyc in), 17AAG (17-NA 1 laminoamino-17- demethoxyge 1 danamyc in) 17-DMAG (17-di methyl ami no-gel danamyc in), Pifithrin-y ^ -Phenylethynesulfonamid KNK ^ s S-KE ^ -l ^-Benzodioxol-S-ylmethylene] -oxopyrrol idine-l-carbaldehyde), schi sandr in From the group consisting of -B, Quercet in (2- (3, 4-dihydroxyphenyl) -3, 5,7-tri hydr oxy-4H-chr omen-4-one) and ETB (Epolactaene Tertiary Butyl Ester) Selected composition.
【청구항 Π] 제 10 항에 있어서, 상기 열충격 단백질 억제제 (Hsp inhibitor)는 젤다나마이신 (geldanamycin)인 것을 특징으로 하는 조성물. [Claim claim Π] The composition of claim 10, wherein the heat shock protein inhibitor (Hsp inhibitor) is geldanamycin.
【청구항 12】 [Claim 12]
제 10 항에 있어서, 상기 열층격 단백질 억제제는 상기 자성 나노입자에 열 민감성 링커로 컨쥬게이션된 것을 특징으로 하는 조성물.  The composition of claim 10, wherein the thermal striatum protein inhibitor is conjugated to the magnetic nanoparticles with a heat sensitive linker.
【청구항 13] [Claim 13]
제 12 항에 있어서, 상기 열 민감성 링커는 4,4 '-아조비스 (4- 시아노발레르산) (4,4' -Azobis(4-cyanovaleric acid))인 것을 특징으로 하는 조성물.  13. The composition of claim 12, wherein the heat sensitive linker is 4,4'-azobis (4-cyanovaleric acid) (4,4'-Azobis (4-cyanovaleric acid)).
【청구항 14】 [Claim 14]
제 1 항에 있어서, 상기 바이오 약품은 항체인 것을 특징으로 하는 조성물.  The composition of claim 1, wherein the biopharmaceutical is an antibody.
【청구항 15】 [Claim 15]
제 1 항 내지 제 14항 중 어느 한 항의 생체 내 열 방출용 조성물을 유효성분으로 포함하는 온열 치료 (hyperthermia therapy)용 조성물.  15. A composition for hyperthermia therapy comprising the composition for in vivo heat release of any one of claims 1 to 14 as an active ingredient.
【청구항 16] [Claim 16]
제 15 항에 있어서, 상기 온열 치료용 조성물은 암 치료용 조성물인 것을 특징으로 하는 조성물.  The composition of claim 15, wherein the composition for treating heat is a composition for treating cancer.
【청구항 17】 [Claim 17]
제 1 항 내지 제 14 항 중 어느 한 항의 조성물을 투여하는 단계를 포함하는 온열 치료 (hyperthermia therapy) 방법.  15. A method of hyperthermia therapy comprising administering the composition of any one of claims 1-14.
【청구항 18】 [Claim 18]
제 1 항 내지 제 14 항 중 어느 한 항의 조성물을 투여하는 단계를 포함하는 암 치료 방법 .  A method of treating cancer, comprising administering the composition of any one of claims 1-14.
PCT/KR2013/008820 2012-10-05 2013-10-02 Composition for hyperthermia comprising sensitization material WO2014054884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157015087A KR101868675B1 (en) 2012-10-05 2013-10-02 Compositions for Hyperthermia Therapy comprising Sensitizing Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120110818 2012-10-05
KR10-2012-0110818 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054884A1 true WO2014054884A1 (en) 2014-04-10

Family

ID=50435178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008820 WO2014054884A1 (en) 2012-10-05 2013-10-02 Composition for hyperthermia comprising sensitization material

Country Status (2)

Country Link
KR (1) KR101868675B1 (en)
WO (1) WO2014054884A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231938A1 (en) 2017-06-13 2018-12-20 Houn Simon Hsia Compositions and methods for enhancing hyperthermia therapy
US10905725B2 (en) 2017-06-13 2021-02-02 Houn Simon Hsia Compositions and methods for enhancing cancer chemotherapy
US10905723B2 (en) 2017-06-13 2021-02-02 Houn Simon Hsia Compositions and methods for enhancing cancer radiotherapy
US11206861B2 (en) 2016-10-03 2021-12-28 Houn Simon Hsia Compositions and methods for enhancing cancer radiotherapy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175448B1 (en) * 2020-04-13 2020-11-06 주식회사 지티아이바이오사이언스 Heavy atom-Halogen Compound Doped Iron oxide Magnetic Nanoparticles
KR102175449B1 (en) * 2020-04-13 2020-11-06 주식회사 지티아이바이오사이언스 Iron Oxide/Heavy atom-Halogen Compound Core/Shell Magnetic Nanoparticles
EP3895734B1 (en) 2020-04-13 2023-01-25 ZTI Biosciences Co., Ltd. Iron oxide magnetic particles comprising copper(i)halides
US20230127444A1 (en) * 2021-10-21 2023-04-27 Zti Biosciences Co, Ltd. Composition comprising iron oxide magnetic particles for a treatment of liver cancer
WO2023068828A1 (en) * 2021-10-21 2023-04-27 주식회사 지티아이바이오사이언스 Method for preparing composition for treating liver cancer, comprising iron oxide magnetic particles, and composition for treating liver cancer, comprising iron oxide magnetic particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079276A2 (en) * 2005-11-01 2007-07-12 Triton Biosystems, Inc. Magnetic nanoscale particle compositions, and therapeutic methods related thereto
WO2009091597A2 (en) * 2008-01-16 2009-07-23 Nanospectra Biosciences, Inc. Treatments of disease or disorders using nanoparticles for focused hyperthermia to increase therapy efficacy
US20110165255A1 (en) * 2008-09-04 2011-07-07 Takeshi Kobayashi Malignant tumor heat therapy kit comprising anti-regulatory t cell antibody and magnetic fine particles and heat therapy method thereof
WO2012078745A1 (en) * 2010-12-07 2012-06-14 Sanford Research/USD Magnetic nanoparticle formulations, methods for making such formulations, and methods for their use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131870B1 (en) * 2007-04-12 2016-03-16 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents comprising zinc-containing magnetic metal oxide nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079276A2 (en) * 2005-11-01 2007-07-12 Triton Biosystems, Inc. Magnetic nanoscale particle compositions, and therapeutic methods related thereto
WO2009091597A2 (en) * 2008-01-16 2009-07-23 Nanospectra Biosciences, Inc. Treatments of disease or disorders using nanoparticles for focused hyperthermia to increase therapy efficacy
US20110165255A1 (en) * 2008-09-04 2011-07-07 Takeshi Kobayashi Malignant tumor heat therapy kit comprising anti-regulatory t cell antibody and magnetic fine particles and heat therapy method thereof
WO2012078745A1 (en) * 2010-12-07 2012-06-14 Sanford Research/USD Magnetic nanoparticle formulations, methods for making such formulations, and methods for their use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11206861B2 (en) 2016-10-03 2021-12-28 Houn Simon Hsia Compositions and methods for enhancing cancer radiotherapy
WO2018231938A1 (en) 2017-06-13 2018-12-20 Houn Simon Hsia Compositions and methods for enhancing hyperthermia therapy
US10905725B2 (en) 2017-06-13 2021-02-02 Houn Simon Hsia Compositions and methods for enhancing cancer chemotherapy
US10905723B2 (en) 2017-06-13 2021-02-02 Houn Simon Hsia Compositions and methods for enhancing cancer radiotherapy
US10905724B2 (en) 2017-06-13 2021-02-02 Houn Simon Hsia Compositions and methods for enhancing hyperthermia therapy
US11433105B2 (en) 2017-06-13 2022-09-06 Houn Simon Hsia Compositions and methods for enhancing hyperthermia therapy
US11896624B2 (en) 2017-06-13 2024-02-13 Houn Simon Hsia Compositions for enhancing hyperthermia therapy

Also Published As

Publication number Publication date
KR101868675B1 (en) 2018-06-18
KR20150092743A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2014054884A1 (en) Composition for hyperthermia comprising sensitization material
Wang et al. Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer
Versiani et al. Gold nanoparticles and their applications in biomedicine
Yamada et al. Therapeutic gold, silver, and platinum nanoparticles
Colombo et al. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches
Luo et al. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy
Purushotham et al. Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy
Piñeiro et al. Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications
Wang et al. Aptamer–conjugated graphene oxide–gold nanocomposites for targeted chemo-photothermal therapy of cancer cells
Hao et al. Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment
Sun et al. Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multifunctions
US8257743B2 (en) Multi-functional nanoparticles partially-deposited with gold film
Lukehart et al. Nanomaterials: Inorganic and bioinorganic perspectives
Dong et al. Multifunctionalized gold sub‐nanometer particles for sensitizing radiotherapy against glioblastoma
Yildizhan et al. Treatment strategies in cancer from past to present
Akrami et al. Potential anticancer activity of a new pro-apoptotic peptide–thioctic acid gold nanoparticle platform
Ma et al. Polyacrylic acid functionalized Co0. 85Se nanoparticles: An ultrasmall pH-responsive nanocarrier for synergistic photothermal-chemo treatment of cancer
Phalake et al. Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model
Zhang et al. The synergistic strategies for the immuno‐oncotherapy with photothermal nanoagents
Ahmad et al. Recent advances in magnetic nanoparticle design for cancer therapy
KR101043223B1 (en) Methods for Controlling Heat Generation of Magnetic Nanoparticles and Heat Generating Nanomaterials
Feng et al. Nanococktail based on supramolecular glyco-assembly for eradicating tumors in vivo
Zhu et al. Metal‐Organic Framework‐Based Nanoheater with Photo‐Triggered Cascade Effects for On‐Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy
Zhou et al. DNA-templated porous nanoplatform towards programmed “double-hit” cancer therapy via hyperthermia and immunogenicity activation
Bandyopadhyay et al. Ligand-based active targeting strategies for cancer theranostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157015087

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13844139

Country of ref document: EP

Kind code of ref document: A1