WO2014054497A1 - Method for manufacturing target for x-ray generation and target for x-ray generation - Google Patents

Method for manufacturing target for x-ray generation and target for x-ray generation Download PDF

Info

Publication number
WO2014054497A1
WO2014054497A1 PCT/JP2013/076043 JP2013076043W WO2014054497A1 WO 2014054497 A1 WO2014054497 A1 WO 2014054497A1 JP 2013076043 W JP2013076043 W JP 2013076043W WO 2014054497 A1 WO2014054497 A1 WO 2014054497A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
ray generation
supercritical fluid
substrate
metal
Prior art date
Application number
PCT/JP2013/076043
Other languages
French (fr)
Japanese (ja)
Inventor
直三 杉本
康敏 梅原
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2014054497A1 publication Critical patent/WO2014054497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • Various aspects and embodiments of the present invention relate to a method for manufacturing an X-ray generation target and an X-ray generation target.
  • the X-ray generators are used in various fields such as X-ray non-destructive inspection.
  • the X-ray generator includes a filament part that emits electrons and an X-ray generation target that is irradiated with electrons emitted from the filament part.
  • the X-ray generator irradiates the outside with X-rays by colliding electrons emitted from the filament part with an X-ray generation target.
  • the target for X-ray generation includes a substrate and a target portion embedded in the substrate.
  • FIB ion beam
  • a bottomed hole is formed in the substrate by irradiating the substrate with an ion beam and performing sputtering. Then, by irradiating the hole of the substrate with an ion beam while flowing the material gas of the target for X-ray generation near the hole of the substrate, metal is deposited in the hole to form the target portion.
  • the above-described conventional technique has a problem that the target portion is not properly formed.
  • a VOID void or void
  • the metal accumulated in the target part may contain impurities.
  • a VOID void, void
  • the holes formed by ion beam sputtering are finely processed, so that the hole diameter is small and the hole aspect ratio is large. As a result, the material gas does not easily flow into the hole, and the concentration of the material gas tends to decrease toward the bottom of the hole.
  • holes formed by sputtering with an ion beam have a hole diameter that decreases toward the bottom, and the side wall of the hole may be formed in a tapered shape.
  • the ion beam may collide with the tapered side wall before reaching the bottom of the hole. Then, the ion beam is more likely to react with the material gas on the tapered side wall than the bottom of the hole, so that the metal is deposited on the side wall before the metal is deposited on the bottom of the hole. As a result, the VOID is formed on the bottom of the hole. There is a risk of formation.
  • the metal accumulated in the target part contains impurities. It has been found that when a target portion is formed using an ion beam, impurities implanted as a gas may be mixed with the metal. As a result, in the method of creating a target portion using an ion beam, it is difficult to increase the purity of the metal as a result of impurities contained in the metal accumulated in the target portion.
  • the disclosed X-ray generation target manufacturing method includes an addition step of adding a metal precursor of a metal, which is a material of the X-ray generation target, to the supercritical fluid, and a bottomed hole is formed in one example of the embodiment A deposition step of depositing the metal in the hole by bringing the formed substrate into contact with the supercritical fluid.
  • FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
  • FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
  • FIG. 4 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the FIB apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the supercritical fluid device according to the first embodiment.
  • FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
  • FIG. 3 is a diagram for explaining a cross-section
  • FIG. 7 is a flowchart for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
  • FIG. 8 is a diagram for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the X-ray generator in the first embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a mold power supply unit in the first embodiment.
  • FIG. 11 is a diagram illustrating an example of an X-ray generation target in which a plurality of holes are formed in a substrate.
  • a method for manufacturing an X-ray generation target according to the first embodiment includes an addition step of adding a metal precursor of a metal, which is a material of the X-ray generation target, to the supercritical fluid, A deposition step of bringing the metal into the hole by bringing the substrate having the hole in the shape into contact with the supercritical fluid.
  • a method for producing an X-ray generation target forms a liner layer on a substrate before depositing metal in the hole by bringing the substrate into contact with a supercritical fluid. It further includes a forming step.
  • the method for producing an X-ray generation target according to the first embodiment further includes a reduction step of reducing the metal precursor after bringing the substrate into contact with the supercritical fluid.
  • the method for manufacturing an X-ray generation target according to the first embodiment performs a reduction process by heating while supplying H2 gas to a supercritical fluid in the reduction step.
  • the manufacturing method of the target for X-ray generation which concerns on 1st Embodiment further includes the grinding
  • the target for X-ray generation according to the first embodiment is superposed on a contact step in which the material of the target for X-ray generation is brought into contact with a supercritical fluid, and a substrate having a bottomed hole. And a deposition step of depositing the material of the target for X-ray generation in the hole by contacting the critical fluid.
  • FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
  • the X-ray generation target T1 includes a substrate 1 and a target unit 10 as shown in FIGS.
  • the substrate 1 is made of diamond and is formed into a disk shape.
  • substrate 1 has the one surface 1a of a plate surface, and the back surface 1b on the opposite side of a plate surface.
  • substrate 1 is not restricted to a disk shape, You may form in other shapes, for example, a square plate shape.
  • the thickness of the substrate 1 is set to about 100 ⁇ m, for example.
  • the outer diameter of the substrate 1 is set to about 3 mm, for example.
  • a bottomed hole 3 is formed in the substrate 1 from the surface 1a side.
  • the hole 3 has an inner space formed by the bottom surface 3a and the side wall surface 3b.
  • the inner space of the hole 3 is formed in a cylindrical shape, for example.
  • the inner space of the hole 3 is not limited to the cylindrical shape, and may be any shape such as a prismatic shape.
  • the inner diameter of the hole 3 is set to about 100 nm, for example.
  • the depth of the hole 3 is set to about 1 ⁇ m, for example.
  • the hole 3 is formed with a small hole diameter and a large aspect ratio of the hole.
  • the target unit 10 is disposed in the hole 3 formed in the substrate 1.
  • the target portion 10 is made of metal and has a cylindrical shape corresponding to the inner space of the hole 3.
  • the target unit 10 has a first end surface 10a, a second end surface 10b, and an outer surface 10c.
  • Examples of the metal constituting the target unit 10 include copper, tungsten, gold, and platinum.
  • the target portion 10 is formed by depositing metal from the bottom surface 3a of the hole 3 toward the surface 1a side. As a result, the entire first end surface 10 a of the target unit 10 is in close contact with the bottom surface 3 a of the hole 3. The entire outer surface 10 c of the target unit 10 is in close contact with the side wall surface 3 b of the hole 3.
  • the target portion 10 is formed corresponding to the shape of the inner space of the hole 3.
  • the axial length of the columnar shape is, for example, about 1 ⁇ m.
  • the length of the cylindrical shape in the radial direction is, for example, about 100 nm.
  • FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
  • FIG. 4 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment.
  • the X-ray generation target T ⁇ b> 1 may include a conductive layer 12.
  • the conductive layer 12 is formed in a film shape on the surface 1 a side of the substrate 1.
  • the conductive layer 12 is formed of, for example, diamond doped with impurities (for example, boron or the like).
  • the thickness of the conductive layer 12 is, for example, about 50 nm.
  • the conductive layer 12 shown in FIG. 3 is formed on the surface 1a so as to cover the surface 1a of the substrate 1 and the second end face 10b of the target unit 10.
  • the conductive layer 12 shown in FIG. 4 is formed on the surface 1a so that the second end face 10b of the target unit 10 is exposed.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the FIB apparatus.
  • the FIB apparatus shown in FIG. 5 is an example, and the FIB apparatus used in manufacturing the X-ray generation target according to the embodiment is not limited to the FIB apparatus shown in FIG. An apparatus may be used.
  • the FIB apparatus 100 includes a liquid metal ion source storage unit 112, a blanker 114, an aperture 116, a scanning electrode 118, and an objective lens 120 in a first housing 110.
  • the FIB apparatus 100 also includes a mounting table 132 and a gas gun 134 in a second casing 130 connected to the first casing 110.
  • the FIB apparatus 100 includes a pump 136 connected to the second housing 130.
  • the liquid metal ion source storage unit 112 stores, for example, a Ga liquid metal ion source.
  • the blanker 114 is a deflector that deflects the ion beam irradiated from the liquid metal ion source storage unit 112. For example, when the blanker 114 irradiates the ion beam, the ion beam is deflected from the state in which the ion beam is applied to the hole 3 (ON state), thereby not irradiating the hole 3 with the ion beam (OFF). Switch to (status).
  • the aperture 116 selectively restricts the current of the ion beam irradiated from the liquid metal ion source storage unit 112 by the aperture hole.
  • the scanning electrode 118 scans (scans) the ion beam irradiated from the liquid metal ion source storage unit 112 according to, for example, the diameter of the hole 3 of the substrate 1.
  • the objective lens 120 focuses the ion beam irradiated from the liquid metal ion source storage unit 112.
  • the mounting table 132 mounts an X-ray generation target T1.
  • the pump 136 keeps the inside of the first housing 110 and the second housing 130 in a predetermined vacuum state by performing vacuum exhaust.
  • FIB apparatus 100 irradiates ion beam 122 from liquid metal ion source storage unit 112 to target T1 for X-ray generation via blanker 114, aperture 116, scanning electrode 118, and objective lens 120.
  • the FIB apparatus 100 forms the hole 3 by irradiating the substrate 1 with the ion beam 122 and performing sputtering while scanning.
  • FIG. 6 is a diagram illustrating an example of an outline of a supercritical fluid device.
  • the supercritical fluid device 200 includes a reaction vessel 210, a supply device 220, and an exhaust device 230.
  • the supercritical fluid device 200 shown in FIG. 6 is an example, and the supercritical fluid device 200 used for manufacturing the target for X-ray generation according to the embodiment is limited to the supercritical fluid device 200 shown in FIG. Any supercritical fluid device may be used as long as the substrate and the supercritical fluid can be brought into contact with each other.
  • the reaction vessel 210 accommodates an object to be processed inside. Specifically, the reaction vessel 210 accommodates the substrate 1 in which the bottomed hole 3 is formed.
  • the reaction vessel 210 is provided with a mantle heater 211 for adjusting the internal temperature of the reaction vessel 210 around the reaction vessel 210.
  • the mantle heater 211 has two heaters, for example, an upper mantle heater 211a that heats the inside of the reaction vessel 210 from above and a lower mantle heater 211b that heats the inside of the reaction vessel 210 from below.
  • the upper mantle heater 211a and the lower mantle heater 211b operate independently of each other, for example, and individually heat the inside of the reaction vessel 210 from the upper part or the lower part. However, it is not limited to this,
  • the mantle heater 211 may have only one mantle heater.
  • the supply device 220 supplies a supercritical fluid into the reaction vessel 210. Specifically, the supply device 220 supplies a supercritical fluid to which a metal precursor of a metal that is a material for an X-ray generation target is added. As a result, inside the reaction vessel 210, a metal that is a material of the target for X-ray generation is deposited in the bottomed hole of the substrate using the supercritical fluid.
  • the supply device 220 includes a supercritical fluid supply device 221, a metal precursor supply device 222, and a hydrogen supply device 223.
  • the supercritical fluid supply device 221, the metal precursor supply device 222, and the hydrogen supply device 223 may be operated independently of each other.
  • the supercritical fluid supply device 221 includes a supercritical fluid storage device 221a, a liquefaction device 221b, and a supercritical fluid delivery device 221c.
  • the supercritical fluid supply device 221 is provided at the most upstream part in the supercritical fluid flow path in the supercritical fluid device 200 that goes from the supply device 220 to the exhaust device 230 through the reaction vessel 210.
  • the supercritical fluid supply device 221 supplies the raw material of the supercritical fluid toward the reaction vessel 210.
  • the supercritical fluid supply device 221 supplies carbon dioxide, water, acetone, hexane, ammonia, and the like.
  • Carbon dioxide becomes a super critical fluid (Super Critical Fluid) which is a kind of fluid in an atmosphere of about 7.4 MPa at about 31 degrees.
  • Supercritical fluids are indistinguishable from gas phase (gas) and liquid phase (liquid), and have both gas phase and liquid phase properties.
  • gas phase gas
  • liquid phase liquid
  • the supercritical fluid which consists of carbon dioxide is used is demonstrated to an example, it is not limited to this.
  • the supercritical fluid storage device 221a is, for example, a siphon cylinder.
  • the supercritical fluid delivery device 221c is, for example, a high pressure pump.
  • the supercritical fluid storage device 221a stores carbon dioxide in a substantially liquid state.
  • the carbon dioxide taken out from the supercritical fluid storage device 221a is cooled and liquefied by the liquefying device 221b.
  • the liquefied carbon dioxide is pressurized by the supercritical fluid delivery device 221c and sent toward the reaction vessel 210.
  • the supercritical fluid delivery device 221c pressurizes liquid carbon dioxide to 10 MPa.
  • the metal precursor supply device 222 includes a metal precursor storage device 222a, a metal precursor delivery device 222b, and a metal precursor delivery valve 222c.
  • the metal precursor supply device 222 is connected to the supercritical fluid flow path of the supercritical fluid device 200 upstream of the reaction vessel 210 and downstream of the supercritical fluid supply device 221.
  • the metal precursor supply apparatus 222 supplies a metal precursor of a metal, which is a material for the target for X-ray generation, dissolved in a supercritical fluid.
  • the auxiliary solvent may be used together with the metal precursor to facilitate the addition of the metal precursor to the supercritical fluid.
  • the cosolvent may be any solvent that dissolves with the metal precursor, for example, an organic solvent.
  • the metal precursor storage device 222a stores the metal precursor.
  • the metal precursor storage device 222a uses, for example, Cu (hfac) 2, Cu (dpm) 2, Cu (hfac) (butyne), bis (2,2,6,6-tetramethyl-3,5) as metal precursors. -Heptanededato) copper etc. are stored.
  • the metal precursor storage device 222a stores the metal precursor dissolved in an auxiliary solvent.
  • the metal precursor delivery device 222b is, for example, a pump.
  • the metal precursor stored in the metal precursor storage device 222a is taken out from the metal precursor storage device 222a while being dissolved in the auxiliary solvent by the metal precursor delivery device 222b.
  • the metal precursor taken out from the metal precursor storage device 222a is added to the supercritical fluid sent from the supercritical fluid supply device 221 by opening the metal precursor delivery valve 222c. That is, the metal precursor is further dissolved in the supercritical fluid while being dissolved in the auxiliary solvent.
  • the metal precursor is supplied toward the inside of the reaction vessel 210 together with the supercritical fluid, which is a metal precursor of the X-ray generation target.
  • the hydrogen supply device 223 includes a hydrogen storage device 223a and a mixing device 223b.
  • the hydrogen supply device 223 is connected to the supercritical fluid flow path of the supercritical fluid device 200 upstream of the metal precursor supply device 222 and downstream of the supercritical fluid supply device 221.
  • the hydrogen supply device 223 supplies a reaction accelerator that promotes metal deposition from the metal precursor into the supercritical fluid.
  • the hydrogen supply device 223 supplies hydrogen as a reaction accelerator.
  • the present invention is not limited to this, and an arbitrary substance may be used.
  • the hydrogen storage device 223a is, for example, a siphon cylinder. Hydrogen stored in the hydrogen storage device 223a is mixed into the supercritical fluid by the mixing device 223b provided at the connection between the hydrogen supply device 223 and the supercritical fluid flow path from the supercritical fluid supply device 221 to the reaction vessel 210. Is done.
  • the supercritical fluid device 200 has a supercritical fluid delivery valve 250 in the flow path, upstream of the metal precursor supply device 222 and downstream of the mixing device 223b. By opening the supercritical fluid delivery valve 250, the supercritical fluid or the supercritical fluid to which hydrogen is added is supplied toward the inside of the reaction vessel 210.
  • the exhaust device 230 has a pressure gauge 231, a pressure control valve 232, a pressure regulator (Back Pressure Regulator: BPR) 233 and a separator 234.
  • the exhaust device 230 discharges the supercritical fluid from the inside of the reaction vessel 210 to the outside.
  • the pressure gauge 231 monitors the pressure in the flow path downstream from the reaction vessel 210, and the pressure regulating valve 232 and the pressure regulating device 233 control the pressure based on the pressure obtained by the pressure gauge 231. To do.
  • the supercritical fluid discharged from the reaction vessel 210 is sent to a separator (separator) 234 provided on the downstream side of the pressure adjusting device 233.
  • the separator 234 collects the unreacted metal precursor contained in the supercritical fluid by separating it.
  • the flow path of the supercritical fluid from the connection between the supercritical fluid supply device 221 and the hydrogen supply device 223 to the reaction vessel 210 is provided inside the temperature adjustment device 240.
  • the temperature adjustment device 240 adjusts the temperature of carbon dioxide, which is a raw material of the supercritical fluid, to a temperature at which the supercritical state can be maintained. Considering that carbon dioxide is in a supercritical state at about 31 ° C., the temperature adjustment device 240 keeps the inside at 40 degrees, for example.
  • FIG. 7 is a flowchart for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
  • FIG. 8 is a diagram for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
  • the substrate 1 is placed on the mounting table 132 of the FIB apparatus 100 (step S101). Then, the FIB apparatus 100 forms the hole 3 in the substrate 1 (step S102). Specifically, the FIB apparatus 100 forms a bottomed hole 3 in the substrate 1.
  • the FIB apparatus 100 irradiates the substrate 1 with an ion beam 122 such as Ga + to sputter from the surface 1a side, thereby forming the hole 3 as shown in FIG.
  • the FIB apparatus 100 forms a hole 3 having a diameter of 100 nm and a depth of 600 nm in the substrate 1.
  • the present invention is not limited to this, and the diameter of the hole 3 may be smaller than 100 nm and the depth may be deeper than 600 nm as long as the supercritical fluid penetrates inside.
  • the hole 3 formed by sputtering the substrate 1 with the ion beam 122 has a diameter that decreases toward the bottom surface 3a, and the side wall surface 3b may be tapered.
  • the case where the side wall surface 3b is formed perpendicular to the bottom surface 3a is shown as an example.
  • the formation process which forms liner layer 4 is performed (Step S103). Specifically, as shown in FIG. 8B, the liner layer 4 is formed on the substrate 1 before the metal is deposited in the hole 3 by bringing the substrate 1 into contact with the supercritical fluid.
  • the liner layer 4 is preferably formed using a material having a lattice spacing close to that of the deposited metal from the viewpoint of improving the adhesion between the deposited metal and the substrate 1.
  • Ru ruthenium
  • WCN ruthenium
  • a WCN layer and a Ru layer may be formed on the eye plane of the substrate 1 by about 4 nm and 20 nm, respectively. These serve as a Glue layer for improving the adhesion between the deposited metal and the substrate 1.
  • the liner layer 4 may be formed using an arbitrary method, for example, using an ALD (Atomic Layer Deposition) method, or using a supercritical fluid.
  • ALD Advanced Deposition
  • the liner layer 4 is formed on the substrate 1 after the substrate 1 is placed in the reaction vessel 210 and before performing step S104 described later.
  • the metal used as the material of the liner layer and the target for X-ray generation can be continuously formed in the same reaction vessel.
  • the supercritical fluid device 200 executes an addition process of adding a metal precursor of a metal that is a material of the target for X-ray generation to the supercritical fluid (step S104).
  • the metal precursor delivery device 222b takes out the metal precursor stored in the metal precursor storage device 222a from the metal precursor storage device 222a.
  • the metal precursor delivery valve 222c is opened, the metal precursor delivery device 222b allows the metal precursor taken out from the metal precursor storage device 222a to be sent from the supercritical fluid supply device 221. Add into the fluid.
  • the metal precursor supply device 222 receives Cu (hfac) (butyne) and bis (2,2,6,6-tetramethyl-3,5-heptanedionato) copper from the supercritical fluid supply device 221. Add to carbon dioxide supercritical fluid.
  • the supercritical fluid device 200 performs a deposition process for depositing metal in the hole 3 by bringing the substrate 1 having the bottomed hole into contact with the supercritical fluid (step S105). Specifically, the substrate 1 and the supercritical fluid are brought into contact with each other by supplying the supercritical fluid to which the metal precursor is added into the reaction vessel 210. As a result, as shown in FIG. 8C, a metal that is a material for the target for X-ray generation is deposited on the substrate 1. For example, when the metal precursor comes into contact with the substrate 1, it is reduced by the substrate 1 to deposit metal, or the metal precursor itself is deposited.
  • the metal to be deposited is deposited not only on the hole 3 of the substrate 1 but also on the surface of the substrate 1.
  • the supercritical fluid device 200 performs the reduction treatment of the metal precursor after bringing the substrate 1 into contact with the supercritical fluid (step S106). Specifically, the supercritical fluid device 200 performs a reduction process by heating while supplying H2 gas to the supercritical fluid.
  • the mixing device 223b of the hydrogen supply device 223 introduces the hydrogen gas into the reaction vessel 210 by mixing the hydrogen gas stored in the hydrogen storage device 223a with the supercritical fluid.
  • the pressure and temperature inside the reaction vessel 210 are set higher than those in the deposition step. For example, the pressure inside the reaction vessel 210 is set to 9.5 MPa, and the temperature is heated from 40 degrees to 220 degrees at a temperature increase rate of 4.5 degrees per minute.
  • the metal is reduced from the metal precursor added to the supercritical fluid, and the deposition of the metal on the substrate 1 can be promoted.
  • the organic functional group portion can be removed from the metal precursor, and the purity can be improved.
  • the metal precursor is CuL2
  • the removal of L that becomes an organic functional group portion is expressed by the following mechanism.
  • a polishing process is performed to remove the metal deposited on the surface 1a of the substrate 1 by polishing the surface of the substrate 1 (step S107).
  • the surface 1a of the substrate 1 is polished using a CMP (Chemical Mechanical Polishing) apparatus.
  • An arbitrary apparatus may be used as the CMP apparatus.
  • the metal is removed from the surface 1a of the substrate 1 as shown in FIG.
  • the conductive layer 12 is formed (step S108).
  • the conductive layer 12 is formed so as to cover the surface 1 a of the substrate 1 and the upper part of the metal deposited in the hole 3.
  • the conductive layer 12 is formed using, for example, a known microwave plasma CVD apparatus.
  • the conductive layer 12 uses a microwave plasma CVD apparatus to generate and grow diamond particles on the surface 1a and the metal by microwave plasma CVD while doping boron. Is formed.
  • a conductive layer 12 is formed on the surface 1a of the substrate 1 as shown in FIG.
  • processing procedure of the manufacturing method described with reference to FIGS. 7 and 8 is not limited to the above order, and may be appropriately changed within a range in which the processing contents are not contradictory.
  • the above step S103 may be omitted, and S106 and S105 may be performed simultaneously.
  • FIG. 9 is a diagram illustrating an example of a cross-sectional configuration of an X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of a mold power supply unit of the X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment.
  • the X-ray generator described with reference to FIGS. 9 and 10 is an example, and the present invention is not limited to this.
  • the X-ray generation device 21 is an open type, and unlike a closed type for disposable use, a vacuum state can be arbitrarily created, and filament parts F and X-rays that are consumables.
  • the generation target T1 can be exchanged.
  • the X-ray generator 21 has a cylindrical stainless steel cylindrical portion 22 that is in a vacuum state during operation.
  • the cylindrical part 22 is divided into two parts by a fixing part 23 located on the lower side and an attaching / detaching part 24 located on the upper side, and the attaching / detaching part 24 is attached to the fixing part 23 via a hinge part 25. Therefore, the upper part of the fixing part 23 can be opened by rotating the detachable part 24 so as to lie down via the hinge part 25, and the filament part (cathode) accommodated in the fixing part 23. Enable access to F.
  • a pair of upper and lower cylindrical coil portions 26, 27 that function as an electromagnetic deflection lens are provided in the detachable portion 24, and an electron path is provided in the longitudinal direction of the cylindrical portion 22 so as to pass through the centers of the coil portions 26, 27. 28 extends, and the electron passage 28 is surrounded by the coil portions 26 and 27.
  • a disk plate 29 is fixed to the lower end of the detachable portion 24 so as to cover it, and an electron introduction hole 29 a is formed in the center of the disk plate 29 so as to coincide with the lower end side of the electron passage 28.
  • the upper end of the attaching / detaching portion 24 is formed in a truncated cone, and an X-ray generation target T1 that forms an electron transmission type X-ray emission window located on the upper end side of the electron passage 28 is attached to the top portion.
  • the X-ray generation target T1 is accommodated in a detachable rotary cap 31 in a grounded state. Therefore, the removal of the rotary cap portion 31 enables the replacement of the X-ray generation target T1 which is a consumable item.
  • the filament part F is accommodated in the cap part 30 which can be attached or detached, and replacement
  • the vacuum pump 32 is fixed to the fixing part 23.
  • the vacuum pump 32 is for making the inside of the cylindrical part 22 into a high vacuum state. That is, when the X-ray generator 21 is equipped with the vacuum pump 32, the filament part F and the X-ray generation target T1 which are consumables can be replaced.
  • a mold power supply unit 34 that is integrated with the electron gun 36 is fixed to the proximal end side of the cylindrical portion 22.
  • the mold power supply 34 is molded with an electrically insulating resin (for example, epoxy resin) and is housed in a metal case 40. And the lower end (base end) of the fixing
  • a high voltage generator having a transformer configured to generate a high voltage is formed in the mold power supply unit 34.
  • a high voltage for example, a maximum of ⁇ 160 kV when the X-ray generation target T1 is grounded
  • the mold power supply unit 34 includes a block-shaped power supply main body 34a that is positioned on the lower side and forms a rectangular parallelepiped shape, and a columnar neck portion that protrudes upward from the power supply main body 34a into the fixing unit 23. 34b. Since the high voltage generator 35 is a heavy component, it is preferably enclosed in the power supply main body 34a and arranged as low as possible from the weight balance of the entire X-ray generator 21.
  • an electron gun 36 is mounted so as to face the X-ray generation target T1 so as to sandwich the electron passage 28.
  • an electron emission control unit 51 that is electrically connected to the high voltage generation unit 35 is enclosed in the power supply main body 34 a of the mold power supply unit 34. Controls the timing of discharge and tube current.
  • the electron emission control unit 51 is connected to the grid terminal 38 and the filament terminal 50 via the grid connection wiring 52 and the filament connection wiring 53, respectively, and each connection wiring 52, 53 is applied to a high voltage. Therefore, it is enclosed in the neck portion 34b.
  • the power supply main body 34 a is accommodated in a metal case 40.
  • a high voltage control unit 41 is disposed between the power supply main body 34 a and the case 40.
  • a power supply terminal 43 for connection to an external power supply is fixed to the case 40, and the high voltage control unit 41 is connected to the power supply terminal 43, and the high voltage generation unit 35 and the electron emission control in the mold power supply unit 34. It is connected to the part 51 via wirings 44 and 45, respectively.
  • the high voltage control unit 41 controls the voltage that can be generated by the high voltage generation unit 35 constituting the transformer from a high voltage (for example, 160 kV) to a low voltage (0 V).
  • the electron emission control unit 51 controls electron emission timing, tube current, and the like.
  • power and control signals are respectively transmitted from the high voltage control unit 41 in the case 40 to the high voltage generation unit 35 and the electron emission control unit 51 of the mold power supply unit 34 based on the control of a controller (not shown). Supplied.
  • power is supplied to the coil portions 26 and 27.
  • an electron beam is emitted from the filament portion F with an appropriate acceleration, the electron beam is appropriately converged by the controlled coil portions 26 and 27, and the electron beam is irradiated to the X-ray generation target T1.
  • the irradiated electron beam collides with the X-ray generation target T1, so that the X-ray is irradiated to the outside.
  • the X-ray generator high resolution can be obtained by accelerating the electron beam with a high voltage (for example, about 50 to 150 keV) and focusing on a fine focus on the target.
  • a high voltage for example, about 50 to 150 keV
  • X-rays so-called bremsstrahlung X-rays
  • the focal spot size is almost determined by the spot size of the irradiated electron beam.
  • the electron beam may be converged to a small spot.
  • the amount of electron beams may be increased.
  • the spot size of the electron beam and the amount of current are in a contradictory relationship, and a large current cannot flow through a small spot.
  • the target may be easily consumed due to heat generation.
  • the X-ray generation target T1 includes the substrate 1 made of diamond and the target portion 10 that is in close contact with the bottom surface 3a and the side wall surface 3b of the hole 3, and thus heat radiation.
  • the X-ray generation target T1 can be prevented from being consumed even under the above-described circumstances.
  • the target portion 10 is nano-sized, even when electrons are irradiated with the high acceleration voltage (for example, about 50 to 150 keV) as described above, The line focal spot diameter does not widen, and degradation of resolution is suppressed. Further, the X-ray dose can be increased by increasing the depth of the target unit 10. That is, a resolution determined by the size of the target unit 10 is obtained. Therefore, the X-ray generation apparatus 21 using the X-ray generation target T1 can obtain nano-order (several tens to several hundreds of nanometers) resolution while increasing the X-ray dose.
  • the high acceleration voltage for example, about 50 to 150 keV
  • the metal precursor of the metal used as the material for the X-ray generation target is added to the supercritical fluid, and the substrate 1 and the supercritical fluid in which the bottomed hole 3 is formed. Since the X-ray generation target T1 is manufactured by depositing metal in the hole 3, the X-ray generation target portion can be appropriately formed.
  • a VOID void or void
  • a VOID void or void
  • depositing metal in the hole 3 using a fluid it becomes possible to prevent the formation of VOID (voids, voids), and it is possible to easily increase the aspect ratio compared to the method using an ion beam. is there. That is, it is possible to manufacture an X-ray generation target portion having no VOID and having a minute pillar.
  • the supercritical fluid penetrates into the hole 3 even if the diameter of the hole 3 is about 20 nm.
  • the diameter of the hole 3 it is possible to set the diameter of the hole 3 to 100 nm and the depth to 1000 nm.
  • the diameter of the hole 3 can be reduced, the depth can be increased, formation of VOID can be prevented, and the purity of the metal can be improved as compared with the technique of depositing using an ion beam.
  • the hole 3 can be made smaller as compared with the method of depositing using an ion beam. As a result, the X-rays become thinner and the resolution can be improved.
  • the depth of the hole 3 can be increased as compared with the technique of depositing using an ion beam, and X-ray generation It becomes possible to increase the X-rays irradiated by the apparatus.
  • the outer shape of the substrate 1 is about 3 mm, and it can be applied even if the reaction vessel 210 of the supercritical fluid device 200 is small. Since the inside of the supercritical fluid processing apparatus 200 has a very high pressure, it is difficult to increase the size of the apparatus.
  • impurities implanted as a gas may be mixed with the metal, and it is assumed that the purity cannot be increased.
  • the implanted impurities are not mixed, and the purity can be improved.
  • the method further includes forming the liner layer 4 on the substrate before depositing the metal in the hole by bringing the substrate into contact with the supercritical fluid.
  • the method further includes forming the liner layer 4 on the substrate before depositing the metal in the hole by bringing the substrate into contact with the supercritical fluid.
  • the method further includes a reduction step of performing a reduction treatment of the metal precursor after bringing the substrate into contact with the supercritical fluid.
  • a reduction step of performing a reduction treatment of the metal precursor after bringing the substrate into contact with the supercritical fluid.
  • the reduction process is performed by heating while supplying H2 gas to the supercritical fluid. As a result, the reduction process can be easily performed continuously from the deposition process.
  • the method further includes a polishing step of removing metal deposited on the surface of the substrate by polishing the surface of the substrate.
  • a metal is deposited using a supercritical fluid, the metal is deposited not only on the hole 3 but also on the surface 1 a of the substrate 1. In consideration of this, by polishing the surface of the substrate and removing the metal from the surface 1a, it is possible to manufacture an X-ray generation target portion without an extra layer.
  • FIG. 11 is a diagram illustrating an example of an X-ray generation target in which a plurality of holes are formed in a substrate.
  • the case where the substrate 1 has the holes 3-1 to 3-9 is shown.
  • the case where the substrate 1 has nine holes 3 is shown as an example.
  • the substrate 1 has a plurality of holes 3, and metal is deposited in each of the plurality of holes 3 to function as an X-ray generation target, so that one substrate 1 can be used for a long time.
  • metal is deposited in each of the plurality of holes 3 to function as an X-ray generation target, so that one substrate 1 can be used for a long time.
  • the substrate 1 has a plurality of holes 3, it is possible to deposit metal in each of the plurality of holes 3 using the same manufacturing method as described in the first embodiment.
  • the manufacturing method according to the embodiment it is possible to easily create a plurality of X-ray generation targets.
  • the present invention is not limited to this, and any metal that can be deposited using a supercritical fluid is used.
  • W tungsten
  • Pt platinum
  • Au gold
  • the metal precursor may be W (CO) 6.
  • Pt the metal precursor may be Pt (COD) (CH3) 2 or Pt (hfac) 2.
  • Au acac (CH3) 2 may be used as a metal precursor.
  • Liner layer 4 For example, in the first embodiment, the case where the liner layer 4 is provided has been described as an example, but the present invention is not limited to this.
  • metal may be deposited without forming the liner layer 4.
  • the liner layer 4 When the liner layer 4 is formed, it may be formed in a supercritical fluid, or the substrate 1 on which the liner layer 4 has been previously formed may be brought into contact with the supercritical fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • X-Ray Techniques (AREA)

Abstract

This method for manufacturing a target for x-ray generation is characterized by including an addition step in which a metal precursor for a metal that forms material for a target for x-ray generation is added to a supercritical fluid and a deposition step in which the supercritical fluid is brought into contact with a substrate (1) in which a hole (3) with a bottom is formed and a metal (10) is deposited in the hole (3). Thus, a method for manufacturing a target for x-ray generation in which a target part can be suitably formed and a target for x-ray generation can be achieved.

Description

X線発生用ターゲットの製造方法及びX線発生用ターゲットX-ray generation target manufacturing method and X-ray generation target
 本発明の種々の側面及び実施形態は、X線発生用ターゲットの製造方法及びX線発生用ターゲットに関するものである。 Various aspects and embodiments of the present invention relate to a method for manufacturing an X-ray generation target and an X-ray generation target.
 X線発生装置は、X線非破壊検査など様々な分野で用いられている。X線発生装置は、電子を出射するフィラメント部と、フィラメント部から出射された電子が照射されるX線発生用ターゲットとを備える。X線発生装置は、フィラメント部から出射された電子をX線発生用ターゲットに衝突させることで、X線を外部に照射する。 X-ray generators are used in various fields such as X-ray non-destructive inspection. The X-ray generator includes a filament part that emits electrons and an X-ray generation target that is irradiated with electrons emitted from the filament part. The X-ray generator irradiates the outside with X-rays by colliding electrons emitted from the filament part with an X-ray generation target.
 ここで、X線発生用ターゲットは、基板と、基板に埋設されたターゲット部とを備える。例えば、イオンビーム(Focused Ion Beam:FIB)加工装置を用いてX線発生用ターゲットを製造する手法がある。 Here, the target for X-ray generation includes a substrate and a target portion embedded in the substrate. For example, there is a method of manufacturing an X-ray generation target using an ion beam (FIB) processing apparatus.
 具体的には、イオンビームを基板に照射してスパッタすることで、基板に有底状の穴を形成する。そして、基板の穴付近にX線発生用ターゲットの材料ガスを流しながら基板の穴にイオンビームを照射することで、穴に金属を堆積させてターゲット部を形成する。 Specifically, a bottomed hole is formed in the substrate by irradiating the substrate with an ion beam and performing sputtering. Then, by irradiating the hole of the substrate with an ion beam while flowing the material gas of the target for X-ray generation near the hole of the substrate, metal is deposited in the hole to form the target portion.
特開2011-77027号公報JP 2011-77027 A
 しかしながら、上述の従来技術では、ターゲット部が適切に形成されないという問題がある。例えば、基板の穴底部にVOID(ボイド、空隙)が形成されることがある。また、例えば、ターゲット部に蓄積される金属に不純物が含まれることがある。 However, the above-described conventional technique has a problem that the target portion is not properly formed. For example, a VOID (void or void) may be formed at the hole bottom of the substrate. Further, for example, the metal accumulated in the target part may contain impurities.
 基板の穴底部にVOID(ボイド、空隙)が形成される点について説明する。イオンビームによるスパッタで形成された穴は、微細に加工されているので、穴径が小さく、かつ、穴のアスペクト比が大きい。これにより、材料ガスは穴の内部まで流れ難く、穴の底部ほど材料ガスの濃度が低くなる傾向にある。これに加えて、イオンビームによるスパッタで形成された穴は、底に向かうにしたがって穴径が小さくなり、穴の側壁がテーパー状に形成される場合がある。 The point that a VOID (void, void) is formed at the hole bottom of the substrate will be described. The holes formed by ion beam sputtering are finely processed, so that the hole diameter is small and the hole aspect ratio is large. As a result, the material gas does not easily flow into the hole, and the concentration of the material gas tends to decrease toward the bottom of the hole. In addition, holes formed by sputtering with an ion beam have a hole diameter that decreases toward the bottom, and the side wall of the hole may be formed in a tapered shape.
 ここで、材料ガスを流しながらイオンビームを穴径方向にスキャンしながら照射すると、イオンビームが穴の底に到達する前にテーパー状の側壁に衝突する場合がある。すると、穴の底部よりもテーパー状の側壁においてイオンビームが材料ガスと反応しやすくなることで、穴の底に金属が堆積する前に側壁に金属が堆積し、この結果、穴底にVOIDが形成されるおそれがある。 Here, if the ion beam is irradiated while flowing the material gas while scanning in the radial direction of the hole, the ion beam may collide with the tapered side wall before reaching the bottom of the hole. Then, the ion beam is more likely to react with the material gas on the tapered side wall than the bottom of the hole, so that the metal is deposited on the side wall before the metal is deposited on the bottom of the hole. As a result, the VOID is formed on the bottom of the hole. There is a risk of formation.
 また、例えばイオンビームをスキャンせず穴の中央部に固定して照射することも考えられる。この場合、底部の材料ガスの濃度が低くなると、堆積した金属がイオンビームによって切削される結果、金属の堆積が進まない。 Also, for example, it is conceivable to irradiate with fixing the ion beam at the center of the hole without scanning. In this case, when the concentration of the material gas at the bottom is lowered, the deposited metal is cut by the ion beam, so that the metal deposition does not proceed.
 ターゲット部に蓄積される金属に不純物が含まれる点について説明する。イオンビームを用いてターゲット部を作成する場合には、ガスとして打ち込まれた不純物が金属に混じることがあることがわかった。この結果、イオンビームを用いてターゲット部を作成する手法では、ターゲット部に蓄積される金属に不純物が含まれる結果、金属の純度を高くすることが難しい。 The point that the metal accumulated in the target part contains impurities will be described. It has been found that when a target portion is formed using an ion beam, impurities implanted as a gas may be mixed with the metal. As a result, in the method of creating a target portion using an ion beam, it is difficult to increase the purity of the metal as a result of impurities contained in the metal accumulated in the target portion.
 開示するX線発生用ターゲットの製造方法は、実施形態の一例において、X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体に添加する添加工程と、有底状の穴が形成された基板と前記超臨界流体とを接触させることで、前記金属を前記穴に堆積させる堆積工程とを含む。 The disclosed X-ray generation target manufacturing method includes an addition step of adding a metal precursor of a metal, which is a material of the X-ray generation target, to the supercritical fluid, and a bottomed hole is formed in one example of the embodiment A deposition step of depositing the metal in the hole by bringing the formed substrate into contact with the supercritical fluid.
 本発明の種々の側面及び実施形態によれば、ターゲット部を適切に形成可能となるX線発生用ターゲットの製造方法、及びX線発生用ターゲットを実現することができる。 According to various aspects and embodiments of the present invention, it is possible to realize an X-ray generation target manufacturing method and an X-ray generation target capable of appropriately forming a target portion.
図1は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment. 図2は、第1の実施形態に係るX線発生用ターゲットの分解斜視図である。FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment. 図3は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment. 図4は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。FIG. 4 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment. 図5は、第1の実施形態におけるFIB装置の構成の概略の一例を示す図である。FIG. 5 is a diagram illustrating an example of a schematic configuration of the FIB apparatus according to the first embodiment. 図6は、第1の実施形態における超臨界流体装置の構成の概略の一例を示す図である。FIG. 6 is a diagram illustrating an example of a schematic configuration of the supercritical fluid device according to the first embodiment. 図7は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment. 図8は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するための図である。FIG. 8 is a diagram for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment. 図9は、第1の実施形態におけるX線発生装置の断面構成を示す図である。FIG. 9 is a diagram showing a cross-sectional configuration of the X-ray generator in the first embodiment. 図10は、第1の実施形態におけるモールド電源部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a mold power supply unit in the first embodiment. 図11は、基板に複数の穴が形成されるX線発生用ターゲットの一例を示す図である。FIG. 11 is a diagram illustrating an example of an X-ray generation target in which a plurality of holes are formed in a substrate.
(第1の実施形態)
 第1の実施形態に係るX線発生用ターゲットの製造方法は、1つの実施形態において、X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体に添加する添加工程と、有底状の穴が形成された基板と超臨界流体とを接触させることで、金属を穴に堆積させる堆積工程とを含む。
(First embodiment)
In one embodiment, a method for manufacturing an X-ray generation target according to the first embodiment includes an addition step of adding a metal precursor of a metal, which is a material of the X-ray generation target, to the supercritical fluid, A deposition step of bringing the metal into the hole by bringing the substrate having the hole in the shape into contact with the supercritical fluid.
 第1の実施形態に係るX線発生用ターゲットの製造方法は、1つの実施形態において、基板と超臨界流体とを接触させることで穴に金属を堆積させる前に、基板にライナー層を形成する形成工程をさらに含む。 In one embodiment, a method for producing an X-ray generation target according to a first embodiment forms a liner layer on a substrate before depositing metal in the hole by bringing the substrate into contact with a supercritical fluid. It further includes a forming step.
 第1の実施形態に係るX線発生用ターゲットの製造方法は、1つの実施形態において、基板と超臨界流体とを接触させた後、金属前駆体の還元処理を行う還元工程をさらに含む。 In one embodiment, the method for producing an X-ray generation target according to the first embodiment further includes a reduction step of reducing the metal precursor after bringing the substrate into contact with the supercritical fluid.
 第1の実施形態に係るX線発生用ターゲットの製造方法は、1つの実施形態において、還元工程では、超臨界流体にH2ガスを供給しつつ加熱することで還元処理を行う。 In one embodiment, the method for manufacturing an X-ray generation target according to the first embodiment performs a reduction process by heating while supplying H2 gas to a supercritical fluid in the reduction step.
 第1の実施形態に係るX線発生用ターゲットの製造方法は、1つの実施形態において、基板の表面を研磨することで、基板の表面に堆積した金属を除去する研磨工程をさらに含む。 The manufacturing method of the target for X-ray generation which concerns on 1st Embodiment further includes the grinding | polishing process which removes the metal deposited on the surface of the board | substrate by grind | polishing the surface of a board | substrate in one embodiment.
 第1の実施形態に係るX線発生用ターゲットは、1つの実施形態において、X線発生用ターゲットの材料を超臨界流体と接触させる接触工程と、有底状の穴が形成された基板に超臨界流体を接触させることで、X線発生用ターゲットの材料を穴に堆積させる堆積工程とを有する方法によって製造される。 In one embodiment, the target for X-ray generation according to the first embodiment is superposed on a contact step in which the material of the target for X-ray generation is brought into contact with a supercritical fluid, and a substrate having a bottomed hole. And a deposition step of depositing the material of the target for X-ray generation in the hole by contacting the critical fluid.
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付す。 Hereinafter, various embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 図1及び図2を参照して、第1の実施形態に係るX線発生用ターゲットT1について説明する。図1は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。図2は、第1の実施形態に係るX線発生用ターゲットの分解斜視図である。 The X-ray generation target T1 according to the first embodiment will be described with reference to FIG. 1 and FIG. FIG. 1 is a diagram for explaining a cross-sectional configuration of an X-ray generation target according to the first embodiment. FIG. 2 is an exploded perspective view of the target for X-ray generation according to the first embodiment.
 X線発生用ターゲットT1は、図1及び図2に示されるように、基板1と、ターゲット部10とを有する。 The X-ray generation target T1 includes a substrate 1 and a target unit 10 as shown in FIGS.
 基板1は、ダイヤモンドで形成され、円板形状に形成される。基板1は、板面の一方の表面1aと、板面の反対側の裏面1bを有する。基板1は、円板形状に限られず、他の形状、例えば角板形状に形成されていても良い。基板1の厚みは、例えば、100μm程度に設定される。基板1の外径は、例えば、3mm程度に設定される。 The substrate 1 is made of diamond and is formed into a disk shape. The board | substrate 1 has the one surface 1a of a plate surface, and the back surface 1b on the opposite side of a plate surface. The board | substrate 1 is not restricted to a disk shape, You may form in other shapes, for example, a square plate shape. The thickness of the substrate 1 is set to about 100 μm, for example. The outer diameter of the substrate 1 is set to about 3 mm, for example.
 このように、穴3がダイヤモンドに形成されることで、X線発生用時にでる熱を効率良く拡散することが可能となり、大きな電流をかけることが可能となる。 Thus, by forming the hole 3 in diamond, it is possible to efficiently diffuse the heat generated when generating X-rays, and a large current can be applied.
 基板1には、表面1a側から有底状の穴3が形成される。穴3は、底面3aと側壁面3bとで形成される内側空間を有する。穴3の内側空間は、例えば、円柱体形状に形成される。ただし、穴3の内側空間は円柱体形状に限定されるものではなく、角柱体形状など任意の形状であっても良い。穴3の内径は、例えば、100nm程度に設定される。穴3の深さは、例えば、1μm程度に設定される。このように、穴3は、穴径が小さく形成されるとともに、穴のアスペクト比が大きく形成される。 A bottomed hole 3 is formed in the substrate 1 from the surface 1a side. The hole 3 has an inner space formed by the bottom surface 3a and the side wall surface 3b. The inner space of the hole 3 is formed in a cylindrical shape, for example. However, the inner space of the hole 3 is not limited to the cylindrical shape, and may be any shape such as a prismatic shape. The inner diameter of the hole 3 is set to about 100 nm, for example. The depth of the hole 3 is set to about 1 μm, for example. Thus, the hole 3 is formed with a small hole diameter and a large aspect ratio of the hole.
 ターゲット部10は、基板1に形成されている穴3内に配置される。ターゲット部10は、金属で形成され、穴3の内側空間に対応した円柱体形状に形成される。ターゲット部10は、第1の端面10a、第2の端面10b、及び外側面10cを有する。ターゲット部10を構成する金属としては、例えば、銅、タングステン、金、白金等である。 The target unit 10 is disposed in the hole 3 formed in the substrate 1. The target portion 10 is made of metal and has a cylindrical shape corresponding to the inner space of the hole 3. The target unit 10 has a first end surface 10a, a second end surface 10b, and an outer surface 10c. Examples of the metal constituting the target unit 10 include copper, tungsten, gold, and platinum.
 ターゲット部10は、穴3の底面3aから表面1a側に向かって金属が堆積されることで形成される。この結果、ターゲット部10の第1の端面10aは、その全体が穴3の底面3aと密着している。ターゲット部10の外側面10cは、その全体が穴3の側壁面3bと密着している。 The target portion 10 is formed by depositing metal from the bottom surface 3a of the hole 3 toward the surface 1a side. As a result, the entire first end surface 10 a of the target unit 10 is in close contact with the bottom surface 3 a of the hole 3. The entire outer surface 10 c of the target unit 10 is in close contact with the side wall surface 3 b of the hole 3.
 ターゲット部10は、穴3の内側空間の形状に対応して形成される。円柱形状の軸方向の長さは、例えば、1μm程度となる。円柱形状の径方向の長さは、例えば、100nm程度となる。 The target portion 10 is formed corresponding to the shape of the inner space of the hole 3. The axial length of the columnar shape is, for example, about 1 μm. The length of the cylindrical shape in the radial direction is, for example, about 100 nm.
 図3は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。図4は、第1の実施形態に係るX線発生用ターゲットの断面構成を説明するための図である。図3及び図4に示されるように、X線発生用ターゲットT1は、導電層12を備えていても良い。導電層12は、基板1の表面1a側に膜状に形成される。導電層12は、例えば、不純物(例えば、ボロン等)をドープしたダイヤモンドで形成される。導電層12の厚みは、例えば50nm程度である。 FIG. 3 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment. FIG. 4 is a diagram for explaining a cross-sectional configuration of the X-ray generation target according to the first embodiment. As shown in FIGS. 3 and 4, the X-ray generation target T <b> 1 may include a conductive layer 12. The conductive layer 12 is formed in a film shape on the surface 1 a side of the substrate 1. The conductive layer 12 is formed of, for example, diamond doped with impurities (for example, boron or the like). The thickness of the conductive layer 12 is, for example, about 50 nm.
 図3に示された導電層12は、基板1の表面1a及びターゲット部10の第2の端面10bを覆うように、表面1a上に形成される。図4に示された導電層12は、ターゲット部10の第2の端面10bが露出するように、表面1a上に形成される。 The conductive layer 12 shown in FIG. 3 is formed on the surface 1a so as to cover the surface 1a of the substrate 1 and the second end face 10b of the target unit 10. The conductive layer 12 shown in FIG. 4 is formed on the surface 1a so that the second end face 10b of the target unit 10 is exposed.
 続いて、X線発生用ターゲットT1に穴3を形成するためのFIB装置の一例について説明する。図5は、FIB装置の構成の概略の一例を示す図である。なお、図5に示すFIB装置は、一例であり、実施形態に係るX線発生用ターゲットを製造する上で用いるFIB装置は、図5に示すFIB装置に限定されるものではなく、任意のFIB装置を用いて良い。 Subsequently, an example of the FIB apparatus for forming the hole 3 in the target T1 for generating X-rays will be described. FIG. 5 is a diagram illustrating an example of a schematic configuration of the FIB apparatus. The FIB apparatus shown in FIG. 5 is an example, and the FIB apparatus used in manufacturing the X-ray generation target according to the embodiment is not limited to the FIB apparatus shown in FIG. An apparatus may be used.
 図5に示すように、FIB装置100は、第1の筐体110内に、液体金属イオン源貯蔵部112、ブランカ114、アパーチャ116、走査電極118、及び対物レンズ120を備える。また、FIB装置100は、第1の筐体110に接続された第2の筐体130内に、載置台132、及びガス銃134を備える。また、FIB装置100は、第2の筐体130に接続されたポンプ136を備える。 As shown in FIG. 5, the FIB apparatus 100 includes a liquid metal ion source storage unit 112, a blanker 114, an aperture 116, a scanning electrode 118, and an objective lens 120 in a first housing 110. The FIB apparatus 100 also includes a mounting table 132 and a gas gun 134 in a second casing 130 connected to the first casing 110. The FIB apparatus 100 includes a pump 136 connected to the second housing 130.
 液体金属イオン源貯蔵部112は、例えば、Ga液体金属イオン源を貯蔵する。ブランカ114は、液体金属イオン源貯蔵部112から照射されるイオンビームを偏向させる偏向器である。ブランカ114は、例えば、イオンビームを照射する場合に、イオンビームを穴3に照射している状態(ON状態)からイオンビームを偏向させることでイオンビームを穴3に照射していない状態(OFF状態)に切り替える。 The liquid metal ion source storage unit 112 stores, for example, a Ga liquid metal ion source. The blanker 114 is a deflector that deflects the ion beam irradiated from the liquid metal ion source storage unit 112. For example, when the blanker 114 irradiates the ion beam, the ion beam is deflected from the state in which the ion beam is applied to the hole 3 (ON state), thereby not irradiating the hole 3 with the ion beam (OFF). Switch to (status).
 アパーチャ116は、液体金属イオン源貯蔵部112から照射されたイオンビームの電流を絞り穴によって選択的に制限する。走査電極118は、液体金属イオン源貯蔵部112から照射されたイオンビームを、例えば基板1の穴3の径に応じてスキャン(走査)する。対物レンズ120は、液体金属イオン源貯蔵部112から照射されたイオンビームを集束する。 The aperture 116 selectively restricts the current of the ion beam irradiated from the liquid metal ion source storage unit 112 by the aperture hole. The scanning electrode 118 scans (scans) the ion beam irradiated from the liquid metal ion source storage unit 112 according to, for example, the diameter of the hole 3 of the substrate 1. The objective lens 120 focuses the ion beam irradiated from the liquid metal ion source storage unit 112.
 載置台132は、X線発生用ターゲットT1を載置する。ポンプ136は、真空排気を行うことで、第1の筐体110及び第2の筐体130内を所定の真空状態に保つ。 The mounting table 132 mounts an X-ray generation target T1. The pump 136 keeps the inside of the first housing 110 and the second housing 130 in a predetermined vacuum state by performing vacuum exhaust.
 FIB装置100は、液体金属イオン源貯蔵部112から、ブランカ114、アパーチャ116、走査電極118、対物レンズ120を介してX線発生用ターゲットT1へイオンビーム122を照射する。 FIB apparatus 100 irradiates ion beam 122 from liquid metal ion source storage unit 112 to target T1 for X-ray generation via blanker 114, aperture 116, scanning electrode 118, and objective lens 120.
 ここで、FIB装置100は、スキャンしながら基板1にイオンビーム122を照射してスパッタすることで、穴3を形成する。 Here, the FIB apparatus 100 forms the hole 3 by irradiating the substrate 1 with the ion beam 122 and performing sputtering while scanning.
 X線発生用ターゲットT1を製造するための超臨界流体装置200の一例について説明する。図6は、超臨界流体装置の概略の一例を示す図である。図6に示す例では、超臨界流体装置200は、反応容器210と、供給装置220と、排気装置230とを有する。なお、図6に示す超臨界流体装置200は、一例であり、実施形態に係るX線発生用ターゲットを製造する上で用いる超臨界流体装置200は、図6に示す超臨界流体装置200に限定されるものではなく、基板と超臨界流体とを接触させることができれば任意の超臨界流体装置であって良い。 An example of a supercritical fluid device 200 for manufacturing the target T1 for generating X-rays will be described. FIG. 6 is a diagram illustrating an example of an outline of a supercritical fluid device. In the example illustrated in FIG. 6, the supercritical fluid device 200 includes a reaction vessel 210, a supply device 220, and an exhaust device 230. The supercritical fluid device 200 shown in FIG. 6 is an example, and the supercritical fluid device 200 used for manufacturing the target for X-ray generation according to the embodiment is limited to the supercritical fluid device 200 shown in FIG. Any supercritical fluid device may be used as long as the substrate and the supercritical fluid can be brought into contact with each other.
 反応容器210は、処理対象となる被処理体を内部に収容する。具体的には、反応容器210は、有底状の穴3が形成された基板1を収容する。反応容器210は、周囲に、反応容器210の内部温度を調節するためのマントルヒータ211が設けられる。マントルヒータ211は、例えば、反応容器210の内部を上方から加熱する上部マントルヒータ211aと、反応容器210の内部を下方から加熱する下部マントルヒータ211bの2つのヒータを有する。上部マントルヒータ211a及び下部マントルヒータ211bは、例えば、互いに独立に作動し、反応容器210の内部を上部又は下部から個別に加熱する。ただし、これに限定されるものではなく、マントルヒータ211は、1つのマントルヒータのみを有しても良い。 The reaction vessel 210 accommodates an object to be processed inside. Specifically, the reaction vessel 210 accommodates the substrate 1 in which the bottomed hole 3 is formed. The reaction vessel 210 is provided with a mantle heater 211 for adjusting the internal temperature of the reaction vessel 210 around the reaction vessel 210. The mantle heater 211 has two heaters, for example, an upper mantle heater 211a that heats the inside of the reaction vessel 210 from above and a lower mantle heater 211b that heats the inside of the reaction vessel 210 from below. The upper mantle heater 211a and the lower mantle heater 211b operate independently of each other, for example, and individually heat the inside of the reaction vessel 210 from the upper part or the lower part. However, it is not limited to this, The mantle heater 211 may have only one mantle heater.
 供給装置220は、反応容器210の内部に超臨界流体を供給する。具体的には、供給装置220は、X線発生用ターゲットの材料となる金属の金属前駆体が添加された超臨界流体を供給する。この結果、反応容器210の内部において、基板の有底状の穴に超臨界流体を用いてX線発生用ターゲットの材料となる金属を堆積させる。 The supply device 220 supplies a supercritical fluid into the reaction vessel 210. Specifically, the supply device 220 supplies a supercritical fluid to which a metal precursor of a metal that is a material for an X-ray generation target is added. As a result, inside the reaction vessel 210, a metal that is a material of the target for X-ray generation is deposited in the bottomed hole of the substrate using the supercritical fluid.
 供給装置220は、超臨界流体供給装置221、金属前駆体供給装置222及び水素供給装置223を有する。超臨界流体供給装置221、金属前駆体供給装置222及び水素供給装置223は、互いに独立して作動させて良い。 The supply device 220 includes a supercritical fluid supply device 221, a metal precursor supply device 222, and a hydrogen supply device 223. The supercritical fluid supply device 221, the metal precursor supply device 222, and the hydrogen supply device 223 may be operated independently of each other.
 超臨界流体供給装置221は、超臨界流体貯蔵装置221a、液化装置221b及び超臨界流体送出装置221cとを有する。超臨界流体供給装置221は、供給装置220から反応容器210を経て排気装置230へと向かう超臨界流体装置200における超臨界流体の流路において、最上流部に設けられる。超臨界流体供給装置221は、超臨界流体の原料を反応容器210に向けて供給する。例えば、超臨界流体供給装置221は、二酸化炭素、水、アセトン、ヘキサン、アンモニアなどを供給する。 The supercritical fluid supply device 221 includes a supercritical fluid storage device 221a, a liquefaction device 221b, and a supercritical fluid delivery device 221c. The supercritical fluid supply device 221 is provided at the most upstream part in the supercritical fluid flow path in the supercritical fluid device 200 that goes from the supply device 220 to the exhaust device 230 through the reaction vessel 210. The supercritical fluid supply device 221 supplies the raw material of the supercritical fluid toward the reaction vessel 210. For example, the supercritical fluid supply device 221 supplies carbon dioxide, water, acetone, hexane, ammonia, and the like.
 ここで、二酸化炭素は、約31度で約7.4MPaの雰囲気下において、流体の一種である超臨界流体(Super Critical Fluid)となる。超臨界流体は、気相(気体)とも液相(液体)とも区別がつかず、気相及び液相の両方の性質を併せ持つ。以下では、二酸化炭素からなる超臨界流体を用いる場合を例に説明するが、これに限定されるものではない。 Here, carbon dioxide becomes a super critical fluid (Super Critical Fluid) which is a kind of fluid in an atmosphere of about 7.4 MPa at about 31 degrees. Supercritical fluids are indistinguishable from gas phase (gas) and liquid phase (liquid), and have both gas phase and liquid phase properties. Below, although the case where the supercritical fluid which consists of carbon dioxide is used is demonstrated to an example, it is not limited to this.
 超臨界流体貯蔵装置221aは、例えば、サイホン式ボンベである。超臨界流体送出装置221cは、例えば、高圧ポンプである。超臨界流体貯蔵装置221aは、例えば、二酸化炭素を略液体の状態で貯蔵する。超臨界流体貯蔵装置221aから取り出された二酸化炭素は、液化装置221bにより冷却されて液化される。そして、液化された二酸化炭素は、超臨界流体送出装置221cにより昇圧されて反応容器210に向けて送液される。超臨界流体送出装置221cは、例えば、液体状の二酸化炭素を10MPaまで昇圧する。 The supercritical fluid storage device 221a is, for example, a siphon cylinder. The supercritical fluid delivery device 221c is, for example, a high pressure pump. For example, the supercritical fluid storage device 221a stores carbon dioxide in a substantially liquid state. The carbon dioxide taken out from the supercritical fluid storage device 221a is cooled and liquefied by the liquefying device 221b. The liquefied carbon dioxide is pressurized by the supercritical fluid delivery device 221c and sent toward the reaction vessel 210. For example, the supercritical fluid delivery device 221c pressurizes liquid carbon dioxide to 10 MPa.
 金属前駆体供給装置222は、金属前駆体貯蔵装置222a、金属前駆体送出装置222b及び金属前駆体送出バルブ222cを有する。金属前駆体供給装置222は、超臨界流体装置200の超臨界流体の流路に対して、反応容器210よりも上流、かつ、超臨界流体供給装置221よりも下流で接続される。金属前駆体供給装置222は、X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体中に溶解させて供給する。なお、その際には、補助溶媒を金属前駆体と併せて用いることで、金属前駆体を超臨界流体中に添加しやすくしても良い。補助溶媒は、金属前駆体と溶解する任意の溶媒を用いて良く、例えば、有機溶媒である。 The metal precursor supply device 222 includes a metal precursor storage device 222a, a metal precursor delivery device 222b, and a metal precursor delivery valve 222c. The metal precursor supply device 222 is connected to the supercritical fluid flow path of the supercritical fluid device 200 upstream of the reaction vessel 210 and downstream of the supercritical fluid supply device 221. The metal precursor supply apparatus 222 supplies a metal precursor of a metal, which is a material for the target for X-ray generation, dissolved in a supercritical fluid. In that case, the auxiliary solvent may be used together with the metal precursor to facilitate the addition of the metal precursor to the supercritical fluid. The cosolvent may be any solvent that dissolves with the metal precursor, for example, an organic solvent.
 金属前駆体貯蔵装置222aは、金属前駆体を貯蔵する。金属前駆体貯蔵装置222aは、金属前駆体として、例えば、Cu(hfac)2やCu(dpm)2、Cu(hfac)(butyne)、bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copperなどを貯蔵する。金属前駆体貯蔵装置222aは、例えば、金属前駆体を補助溶媒に溶解させられた状態にて貯蔵する。金属前駆体送出装置222bは、例えば、ポンプである。 The metal precursor storage device 222a stores the metal precursor. The metal precursor storage device 222a uses, for example, Cu (hfac) 2, Cu (dpm) 2, Cu (hfac) (butyne), bis (2,2,6,6-tetramethyl-3,5) as metal precursors. -Heptanededato) copper etc. are stored. For example, the metal precursor storage device 222a stores the metal precursor dissolved in an auxiliary solvent. The metal precursor delivery device 222b is, for example, a pump.
 例えば、金属前駆体貯蔵装置222aに貯蔵されている金属前駆体は、金属前駆体送出装置222bにより補助溶媒中に溶解させられたままの状態で金属前駆体貯蔵装置222a内から取り出される。そして、金属前駆体送出バルブ222cを開くことで、金属前駆体貯蔵装置222a内から取り出された金属前駆体は、超臨界流体供給装置221から送られてくる超臨界流体中に添加される。すなわち、金属前駆体は、補助溶媒に溶解させられた状態でさらに超臨界流体中に溶解させられる。この結果、金属前駆体は、X線発生用ターゲットの材料となる金属の金属前駆体が超臨界流体とともに反応容器210の内部に向けて供給される。 For example, the metal precursor stored in the metal precursor storage device 222a is taken out from the metal precursor storage device 222a while being dissolved in the auxiliary solvent by the metal precursor delivery device 222b. The metal precursor taken out from the metal precursor storage device 222a is added to the supercritical fluid sent from the supercritical fluid supply device 221 by opening the metal precursor delivery valve 222c. That is, the metal precursor is further dissolved in the supercritical fluid while being dissolved in the auxiliary solvent. As a result, the metal precursor is supplied toward the inside of the reaction vessel 210 together with the supercritical fluid, which is a metal precursor of the X-ray generation target.
 また、水素供給装置223は、水素貯蔵装置223a及び混合装置223bから構成される。水素供給装置223は、超臨界流体装置200の超臨界流体の流路に対して、金属前駆体供給装置222よりも上流、かつ、超臨界流体供給装置221よりも下流で接続される。水素供給装置223は、金属前駆体から金属の析出を促進させる反応促進剤を超臨界流体中に供給する。例えば、水素供給装置223は、反応促進剤として水素を供給する。ただし、これに限定されるものではなく、任意の物質を用いて良い。 The hydrogen supply device 223 includes a hydrogen storage device 223a and a mixing device 223b. The hydrogen supply device 223 is connected to the supercritical fluid flow path of the supercritical fluid device 200 upstream of the metal precursor supply device 222 and downstream of the supercritical fluid supply device 221. The hydrogen supply device 223 supplies a reaction accelerator that promotes metal deposition from the metal precursor into the supercritical fluid. For example, the hydrogen supply device 223 supplies hydrogen as a reaction accelerator. However, the present invention is not limited to this, and an arbitrary substance may be used.
 水素貯蔵装置223aは、例えば、サイホン式ボンベである。水素貯蔵装置223aに貯蔵された水素は、水素供給装置223と超臨界流体供給装置221から反応容器210に向かう超臨界流体の流路との接続部に設けられる混合装置223bにより超臨界流体に混入される。 The hydrogen storage device 223a is, for example, a siphon cylinder. Hydrogen stored in the hydrogen storage device 223a is mixed into the supercritical fluid by the mixing device 223b provided at the connection between the hydrogen supply device 223 and the supercritical fluid flow path from the supercritical fluid supply device 221 to the reaction vessel 210. Is done.
 また、超臨界流体装置200は、流路において、金属前駆体供給装置222よりも上流、かつ、混合装置223bよりも下流に、超臨界流体送出バルブ250を有する。超臨界流体送出バルブ250を開くことで、超臨界流体又は水素が添加された超臨界流体が反応容器210の内部に向けて供給される。 Also, the supercritical fluid device 200 has a supercritical fluid delivery valve 250 in the flow path, upstream of the metal precursor supply device 222 and downstream of the mixing device 223b. By opening the supercritical fluid delivery valve 250, the supercritical fluid or the supercritical fluid to which hydrogen is added is supplied toward the inside of the reaction vessel 210.
 排気装置230は、圧力計231、圧力調節バルブ232、圧力調整装置(Back Pressure Regulator:BPR)233及び分離器234を有する。排気装置230は、反応容器210の内部から外部に超臨界流体を排出する。具体的には、排気装置230では、圧力調節バルブ232を開くとともに圧力調整装置233を作動させることで、超臨界流体装置における超臨界流体の流路のうち反応容器210から下流側の流路の圧力を反応容器210の内部圧力よりも低くする。この結果、反応容器210の内部から外部に超臨界流体が排出される。ここで、例えば、圧力計231は、反応容器210から下流側の流路の圧力を監視し、圧力調節バルブ232及び圧力調整装置233が、圧力計231により得られた圧力に基づいて圧力を制御する。 The exhaust device 230 has a pressure gauge 231, a pressure control valve 232, a pressure regulator (Back Pressure Regulator: BPR) 233 and a separator 234. The exhaust device 230 discharges the supercritical fluid from the inside of the reaction vessel 210 to the outside. Specifically, in the exhaust device 230, by opening the pressure adjustment valve 232 and operating the pressure adjustment device 233, the flow passages downstream of the reaction vessel 210 among the supercritical fluid passages in the supercritical fluid device are operated. The pressure is set lower than the internal pressure of the reaction vessel 210. As a result, the supercritical fluid is discharged from the inside of the reaction vessel 210 to the outside. Here, for example, the pressure gauge 231 monitors the pressure in the flow path downstream from the reaction vessel 210, and the pressure regulating valve 232 and the pressure regulating device 233 control the pressure based on the pressure obtained by the pressure gauge 231. To do.
 反応容器210から排出された超臨界流体は、圧力調整装置233の下流側に設けられている分離器(セパレータ)234に送られる。分離器234は、超臨界流体に含まれている未反応の金属前駆体を分離することで回収する。 The supercritical fluid discharged from the reaction vessel 210 is sent to a separator (separator) 234 provided on the downstream side of the pressure adjusting device 233. The separator 234 collects the unreacted metal precursor contained in the supercritical fluid by separating it.
 また、超臨界流体供給装置221と水素供給装置223との接続部から反応容器210までの超臨界流体の流路は、温度調整装置240の内側に設けられる。温度調整装置240は、超臨界流体の原料である二酸化炭素の温度を超臨界状態を保持できる温度に調節する。二酸化炭素は約31℃で超臨界状態となることを踏まえ、温度調整装置240は、例えば、内部を40度に保持する。 Also, the flow path of the supercritical fluid from the connection between the supercritical fluid supply device 221 and the hydrogen supply device 223 to the reaction vessel 210 is provided inside the temperature adjustment device 240. The temperature adjustment device 240 adjusts the temperature of carbon dioxide, which is a raw material of the supercritical fluid, to a temperature at which the supercritical state can be maintained. Considering that carbon dioxide is in a supercritical state at about 31 ° C., the temperature adjustment device 240 keeps the inside at 40 degrees, for example.
(製造方法の流れの一例)
 図7は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するためのフローチャートである。図8は、第1の実施形態に係るX線発生用ターゲットの製造方法の一例を説明するための図である。
(Example of manufacturing method flow)
FIG. 7 is a flowchart for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment. FIG. 8 is a diagram for explaining an example of a method for manufacturing an X-ray generation target according to the first embodiment.
 図7に示すように、第1の実施形態に係るX線発生用ターゲットT1の製造方法では、FIB装置100の載置台132の上に基板1を配置する(ステップS101)。そして、FIB装置100は、基板1に穴3を形成する(ステップS102)。具体的には、FIB装置100は、基板1に有底状の穴3を形成する。例えば、FIB装置100は、Ga+のようなイオンビーム122を基板1に照射することで表面1a側からスパッタし、図8の(a)のように穴3を形成する。例えば、FIB装置100は、基板1に、径が100nmであって深さが600nmとなる穴3を形成する。ただし、これに限定されるものではなく、超臨界流体が内部に浸透する範囲において、穴3の径を100nmより小さくしても良く、深さを600nmより深くしても良い。 As shown in FIG. 7, in the method for manufacturing the target T1 for generating X-rays according to the first embodiment, the substrate 1 is placed on the mounting table 132 of the FIB apparatus 100 (step S101). Then, the FIB apparatus 100 forms the hole 3 in the substrate 1 (step S102). Specifically, the FIB apparatus 100 forms a bottomed hole 3 in the substrate 1. For example, the FIB apparatus 100 irradiates the substrate 1 with an ion beam 122 such as Ga + to sputter from the surface 1a side, thereby forming the hole 3 as shown in FIG. For example, the FIB apparatus 100 forms a hole 3 having a diameter of 100 nm and a depth of 600 nm in the substrate 1. However, the present invention is not limited to this, and the diameter of the hole 3 may be smaller than 100 nm and the depth may be deeper than 600 nm as long as the supercritical fluid penetrates inside.
 ここで、イオンビーム122によって基板1をスパッタして形成された穴3は、底面3aに向かうにつれて径が小さくなり、側壁面3bがテーパー状に形成されることがある。なお、図8の(a)に示す例では、記載の便宜上、側壁面3bが底面3aから垂直に形成される場合を例に示した。 Here, the hole 3 formed by sputtering the substrate 1 with the ion beam 122 has a diameter that decreases toward the bottom surface 3a, and the side wall surface 3b may be tapered. In the example shown in FIG. 8A, for the sake of convenience, the case where the side wall surface 3b is formed perpendicular to the bottom surface 3a is shown as an example.
 そして、ライナー層4を形成する形成工程を実行する(ステップS103)。具体的には、図8の(b)に示すように、基板1と超臨界流体とを接触させることで穴3に金属を堆積させる前に、基板1にライナー層4を形成する。ライナー層4を設けることで、穴3に堆積される金属と基板1との密着性を向上させることが可能となる。ライナー層4は、堆積させる金属と基板1との密着性を向上させるという観点から、堆積させる金属と格子間隔が近い材料を用いて形成するのが好ましい。例えば、銅を堆積させる場合には、Ru(ルテニウム)やWCNを用いるのが好ましい。より詳細な一例をあげて説明すると、基板1は、基板1の画眼面に、WCN層とRu層とが、それぞれ4nm、20nm程度成膜されても良い。これらは、堆積させる金属と基板1との密着性を向上させるためのGlue層となる。 And the formation process which forms liner layer 4 is performed (Step S103). Specifically, as shown in FIG. 8B, the liner layer 4 is formed on the substrate 1 before the metal is deposited in the hole 3 by bringing the substrate 1 into contact with the supercritical fluid. By providing the liner layer 4, the adhesion between the metal deposited in the hole 3 and the substrate 1 can be improved. The liner layer 4 is preferably formed using a material having a lattice spacing close to that of the deposited metal from the viewpoint of improving the adhesion between the deposited metal and the substrate 1. For example, when copper is deposited, it is preferable to use Ru (ruthenium) or WCN. A more detailed example will be described. In the substrate 1, a WCN layer and a Ru layer may be formed on the eye plane of the substrate 1 by about 4 nm and 20 nm, respectively. These serve as a Glue layer for improving the adhesion between the deposited metal and the substrate 1.
 ライナー層4は、任意の手法を用いて形成して良く、例えば、ALD(Atomic Layer Deposition)法を用いても良く、超臨界流体を用いて形成しても良い。なお、超臨界流体を用いてライナー層4を形成する場合には、基板1を反応容器210内に配置した後、後述のステップS104を実行する前に、ライナー層4を基板1に形成する。この場合においては、同一反応容器内でライナー層とX線発生用ターゲットの材料となる金属を連続して成膜することができる。 The liner layer 4 may be formed using an arbitrary method, for example, using an ALD (Atomic Layer Deposition) method, or using a supercritical fluid. When the liner layer 4 is formed using a supercritical fluid, the liner layer 4 is formed on the substrate 1 after the substrate 1 is placed in the reaction vessel 210 and before performing step S104 described later. In this case, the metal used as the material of the liner layer and the target for X-ray generation can be continuously formed in the same reaction vessel.
 そして、超臨界流体装置200は、X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体に添加する添加工程を実行する(ステップS104)。例えば、超臨界流体装置200では、金属前駆体供給装置222において、金属前駆体送出装置222bが、金属前駆体貯蔵装置222aに貯蔵されている金属前駆体を金属前駆体貯蔵装置222a内から取り出す。そして、金属前駆体送出バルブ222cが開かれることで、金属前駆体送出装置222bは、金属前駆体貯蔵装置222a内から取り出した金属前駆体を、超臨界流体供給装置221から送られてくる超臨界流体中に添加する。例えば、金属前駆体供給装置222は、Cu(hfac)(butyne)、bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copperを、超臨界流体供給装置221から送られてくる二酸化炭素の超臨界流体に添加する。 Then, the supercritical fluid device 200 executes an addition process of adding a metal precursor of a metal that is a material of the target for X-ray generation to the supercritical fluid (step S104). For example, in the supercritical fluid device 200, in the metal precursor supply device 222, the metal precursor delivery device 222b takes out the metal precursor stored in the metal precursor storage device 222a from the metal precursor storage device 222a. When the metal precursor delivery valve 222c is opened, the metal precursor delivery device 222b allows the metal precursor taken out from the metal precursor storage device 222a to be sent from the supercritical fluid supply device 221. Add into the fluid. For example, the metal precursor supply device 222 receives Cu (hfac) (butyne) and bis (2,2,6,6-tetramethyl-3,5-heptanedionato) copper from the supercritical fluid supply device 221. Add to carbon dioxide supercritical fluid.
 そして、超臨界流体装置200は、有底状の穴が形成された基板1と超臨界流体とを接触させることで、金属を穴3に堆積させる堆積工程を実行する(ステップS105)。具体的には、金属前駆体が添加された超臨界流体が反応容器210の内部に供給されることで、基板1と超臨界流体とを接触させる。この結果、図8の(c)に示すように、基板1にX線発生用ターゲットの材料となる金属が堆積される。例えば、金属前駆体が基板1と接触すると、基板1により還元されて金属が堆積したり、金属前駆体そのものが堆積したりする。 Then, the supercritical fluid device 200 performs a deposition process for depositing metal in the hole 3 by bringing the substrate 1 having the bottomed hole into contact with the supercritical fluid (step S105). Specifically, the substrate 1 and the supercritical fluid are brought into contact with each other by supplying the supercritical fluid to which the metal precursor is added into the reaction vessel 210. As a result, as shown in FIG. 8C, a metal that is a material for the target for X-ray generation is deposited on the substrate 1. For example, when the metal precursor comes into contact with the substrate 1, it is reduced by the substrate 1 to deposit metal, or the metal precursor itself is deposited.
 ここで、金属前駆体が添加された超臨界流体は、基板1の穴3だけでなくその他の外面にも接触する結果、図8の(d)に示すように、X線発生用ターゲットの材料となる金属は、基板1の穴3だけでなく、基板1の表面にも堆積される。 Here, as a result of the supercritical fluid added with the metal precursor contacting not only the hole 3 of the substrate 1 but also the other outer surface, as shown in FIG. The metal to be deposited is deposited not only on the hole 3 of the substrate 1 but also on the surface of the substrate 1.
 また、超臨界流体装置200は、基板1と超臨界流体とを接触させた後、金属前駆体の還元処理を行う(ステップS106)。具体的には、超臨界流体装置200は、超臨界流体にH2ガスを供給しつつ加熱することで還元処理を行う。水素供給装置223の混合装置223bは、水素貯蔵装置223aに貯蔵された水素ガスを超臨界流体に混入することで、水素ガスを反応容器210内に導入する。また、反応容器210の内部の圧力と温度を堆積工程よりも高くする。例えば、反応容器210の内部の圧力を9.5MPaにし、温度を40度から220度まで、毎分4.5度の昇温速度で加熱する。このように、水素ガスを供給しつつ加熱することで、超臨界流体に添加された金属前駆体から金属が還元され、基板1への金属の堆積を促進することが可能となる。 Further, the supercritical fluid device 200 performs the reduction treatment of the metal precursor after bringing the substrate 1 into contact with the supercritical fluid (step S106). Specifically, the supercritical fluid device 200 performs a reduction process by heating while supplying H2 gas to the supercritical fluid. The mixing device 223b of the hydrogen supply device 223 introduces the hydrogen gas into the reaction vessel 210 by mixing the hydrogen gas stored in the hydrogen storage device 223a with the supercritical fluid. Further, the pressure and temperature inside the reaction vessel 210 are set higher than those in the deposition step. For example, the pressure inside the reaction vessel 210 is set to 9.5 MPa, and the temperature is heated from 40 degrees to 220 degrees at a temperature increase rate of 4.5 degrees per minute. Thus, by heating while supplying the hydrogen gas, the metal is reduced from the metal precursor added to the supercritical fluid, and the deposition of the metal on the substrate 1 can be promoted.
 また、還元処理を行うことで、金属前駆体が穴3に堆積していたとしても、金属前駆体のうち、有機官能基部分を除去することができ、純度を向上することが可能である。例えば、金属前駆体をCuL2とすると、有機官能基部分となるLの除去は以下のメカニズムで表される。 Also, by performing the reduction treatment, even if the metal precursor is deposited in the hole 3, the organic functional group portion can be removed from the metal precursor, and the purity can be improved. For example, when the metal precursor is CuL2, the removal of L that becomes an organic functional group portion is expressed by the following mechanism.
 CuL2+H2→Cu+2HL CuL2 + H2 → Cu + 2HL
 その後、基板1の表面を研磨することで、基板1の表面1aに堆積した金属を除去する研磨工程を行う(ステップS107)。例えば、CMP(Chemical Mechanical Polishing)装置を用いて基板1の表面1aを研磨する。CMP装置は、任意の装置を用いて良い。この結果、図8の(d)に示すように、基板1の表面1aから金属が除去される。 Thereafter, a polishing process is performed to remove the metal deposited on the surface 1a of the substrate 1 by polishing the surface of the substrate 1 (step S107). For example, the surface 1a of the substrate 1 is polished using a CMP (Chemical Mechanical Polishing) apparatus. An arbitrary apparatus may be used as the CMP apparatus. As a result, the metal is removed from the surface 1a of the substrate 1 as shown in FIG.
 そして、導電層12を形成する(ステップS108)。導電層12は、基板1の表面1a及び穴3に堆積された金属の上部を覆うように形成される。導電層12は、例えば、既知のマイクロ波プラズマCVD装置を用いて形成される。より詳細な一例をあげて説明すると、導電層12は、マイクロ波プラズマCVD装置を用い、表面1a及び金属の上部に、マイクロ波プラズマCVD法により、ボロンをドーピングしながらダイヤモンド粒子を生成及び成長させることで形成される。この結果、図8の(e)に示すように、基板1の表面1aに導電層12が形成される。 Then, the conductive layer 12 is formed (step S108). The conductive layer 12 is formed so as to cover the surface 1 a of the substrate 1 and the upper part of the metal deposited in the hole 3. The conductive layer 12 is formed using, for example, a known microwave plasma CVD apparatus. Explaining with a more detailed example, the conductive layer 12 uses a microwave plasma CVD apparatus to generate and grow diamond particles on the surface 1a and the metal by microwave plasma CVD while doping boron. Is formed. As a result, a conductive layer 12 is formed on the surface 1a of the substrate 1 as shown in FIG.
 なお、図7及び図8を用いて説明した製造方法の処理手順は、上記の順番に限定されるものではなく、処理内容を矛盾させない範囲で適宜変更しても良い。例えば、上記のステップS103を省略しても良く、S106とS105とを同時に行っても良い。 Note that the processing procedure of the manufacturing method described with reference to FIGS. 7 and 8 is not limited to the above order, and may be appropriately changed within a range in which the processing contents are not contradictory. For example, the above step S103 may be omitted, and S106 and S105 may be performed simultaneously.
(X線発生装置の一例)
 X線発生用ターゲットT1を用いたX線発生装置について説明する。図9は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置の断面構成の一例を示す図である。図10は、第1の実施形態に係るX線発生用ターゲットT1を用いたX線発生装置のモールド電源部の一例を示す図である。なお、図9及び図10を用いて説明するX線発生装置は、一例であり、これに限定されるものではない。
(Example of X-ray generator)
An X-ray generation apparatus using the X-ray generation target T1 will be described. FIG. 9 is a diagram illustrating an example of a cross-sectional configuration of an X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment. FIG. 10 is a diagram illustrating an example of a mold power supply unit of the X-ray generation apparatus using the X-ray generation target T1 according to the first embodiment. The X-ray generator described with reference to FIGS. 9 and 10 is an example, and the present invention is not limited to this.
 図9に示されるように、X線発生装置21は、開放型であり、使い捨てに供される閉鎖型と異なり、真空状態を任意に作り出すことができ、消耗品であるフィラメント部FやX線発生用ターゲットT1の交換を可能にしている。X線発生装置21は、動作時に真空状態になる円筒形状のステンレス製の筒状部22を有する。筒状部22は、下側に位置する固定部23と上側に位置する着脱部24とで2分割され、着脱部24はヒンジ部25を介して固定部23に取り付けられている。したがって、着脱部24が、ヒンジ部25を介して横倒しになるように回動することで、固定部23の上部を開放させることができ、固定部23内に収容されているフィラメント部(カソード)Fへのアクセスを可能にする。 As shown in FIG. 9, the X-ray generation device 21 is an open type, and unlike a closed type for disposable use, a vacuum state can be arbitrarily created, and filament parts F and X-rays that are consumables. The generation target T1 can be exchanged. The X-ray generator 21 has a cylindrical stainless steel cylindrical portion 22 that is in a vacuum state during operation. The cylindrical part 22 is divided into two parts by a fixing part 23 located on the lower side and an attaching / detaching part 24 located on the upper side, and the attaching / detaching part 24 is attached to the fixing part 23 via a hinge part 25. Therefore, the upper part of the fixing part 23 can be opened by rotating the detachable part 24 so as to lie down via the hinge part 25, and the filament part (cathode) accommodated in the fixing part 23. Enable access to F.
 着脱部24内には、電磁偏向レンズとして機能する上下一対の筒状のコイル部26,27が設けられると共に、コイル部26,27の中心を通るよう、筒状部22の長手方向に電子通路28が延在し、電子通路28はコイル部26,27で包囲される。着脱部24の下端にはディスク板29が蓋をするように固定され、ディスク板29の中心には、電子通路28の下端側に一致させる電子導入孔29aが形成される。 A pair of upper and lower cylindrical coil portions 26, 27 that function as an electromagnetic deflection lens are provided in the detachable portion 24, and an electron path is provided in the longitudinal direction of the cylindrical portion 22 so as to pass through the centers of the coil portions 26, 27. 28 extends, and the electron passage 28 is surrounded by the coil portions 26 and 27. A disk plate 29 is fixed to the lower end of the detachable portion 24 so as to cover it, and an electron introduction hole 29 a is formed in the center of the disk plate 29 so as to coincide with the lower end side of the electron passage 28.
 着脱部24の上端は円錐台に形成され、頂部には、電子通路28の上端側に位置して電子透過型のX線出射窓を形成するX線発生用ターゲットT1が装着される。X線発生用ターゲットT1は、着脱自在な回転式キャップ部31内にアースさせた状態で収容される。したがって、回転式キャップ部31の取り外しによって、消耗品であるX線発生用ターゲットT1の交換も可能になる。また、フィラメント部Fは、着脱自在なキャップ部30内に収容され、キャップ部30の取り外しによって、フィラメント部Fの交換も可能になる。 The upper end of the attaching / detaching portion 24 is formed in a truncated cone, and an X-ray generation target T1 that forms an electron transmission type X-ray emission window located on the upper end side of the electron passage 28 is attached to the top portion. The X-ray generation target T1 is accommodated in a detachable rotary cap 31 in a grounded state. Therefore, the removal of the rotary cap portion 31 enables the replacement of the X-ray generation target T1 which is a consumable item. Moreover, the filament part F is accommodated in the cap part 30 which can be attached or detached, and replacement | exchange of the filament part F is also attained by removal of the cap part 30. FIG.
 固定部23には真空ポンプ32が固定される。真空ポンプ32は筒状部22内全体を高真空状態にするためのものである。すなわち、X線発生装置21が真空ポンプ32を装備することによって、消耗品であるフィラメント部FやX線発生用ターゲットT1の交換が可能になっている。 The vacuum pump 32 is fixed to the fixing part 23. The vacuum pump 32 is for making the inside of the cylindrical part 22 into a high vacuum state. That is, when the X-ray generator 21 is equipped with the vacuum pump 32, the filament part F and the X-ray generation target T1 which are consumables can be replaced.
 筒状部22の基端側には、電子銃36との一体化が図られたモールド電源部34が固定される。モールド電源部34は、電気絶縁性の樹脂(例えば、エポキシ樹脂)でモールド成形させたものであると共に、金属製のケース40内に収容される。そして、筒状部22の固定部23の下端(基端)は、ケース40の上板40bに対し、シールさせた状態でネジ止め等によりしっかりと固定される。 A mold power supply unit 34 that is integrated with the electron gun 36 is fixed to the proximal end side of the cylindrical portion 22. The mold power supply 34 is molded with an electrically insulating resin (for example, epoxy resin) and is housed in a metal case 40. And the lower end (base end) of the fixing | fixed part 23 of the cylindrical part 22 is firmly fixed to the upper board 40b of case 40 by the screwing etc. in the sealed state.
 モールド電源部34内には、図10に示されるように、高電圧(例えば、X線発生用ターゲットT1をアースさせる場合には最大-160kV)を発生させるようなトランスを構成させた高圧発生部35が封入される。具体的に、モールド電源部34は、下側に位置して直方体形状をなすブロック状の電源本体部34aと、電源本体部34aから上方に向けて固定部23内に突出する円柱状のネック部34bとからなる。高圧発生部35は、重い部品であるから電源本体部34a内に封入され、X線発生装置21全体の重量バランスから、できるだけ下側に配置させることが好ましい。 As shown in FIG. 10, a high voltage generator having a transformer configured to generate a high voltage (for example, a maximum of −160 kV when the X-ray generation target T1 is grounded) is formed in the mold power supply unit 34. 35 is enclosed. Specifically, the mold power supply unit 34 includes a block-shaped power supply main body 34a that is positioned on the lower side and forms a rectangular parallelepiped shape, and a columnar neck portion that protrudes upward from the power supply main body 34a into the fixing unit 23. 34b. Since the high voltage generator 35 is a heavy component, it is preferably enclosed in the power supply main body 34a and arranged as low as possible from the weight balance of the entire X-ray generator 21.
 ネック部34bの先端部には、電子通路28を挟むように、X線発生用ターゲットT1に対峙させるよう配置させた電子銃36が装着される。 At the tip of the neck portion 34b, an electron gun 36 is mounted so as to face the X-ray generation target T1 so as to sandwich the electron passage 28.
 図10に示されるように、モールド電源部34の電源本体部34a内には、高圧発生部35に電気的に接続させた電子放出制御部51が封入され、電子放出制御部51によって、電子の放出のタイミングや管電流などを制御している。電子放出制御部51が、グリッド用端子38及びフィラメント用端子50に対し、グリッド接続配線52及びフィラメント接続配線53を介してそれぞれ接続され、各接続配線52,53は、供に高電圧に印加されるゆえにネック部34b内に封入される。 As shown in FIG. 10, an electron emission control unit 51 that is electrically connected to the high voltage generation unit 35 is enclosed in the power supply main body 34 a of the mold power supply unit 34. Controls the timing of discharge and tube current. The electron emission control unit 51 is connected to the grid terminal 38 and the filament terminal 50 via the grid connection wiring 52 and the filament connection wiring 53, respectively, and each connection wiring 52, 53 is applied to a high voltage. Therefore, it is enclosed in the neck portion 34b.
 電源本体部34aは、金属製のケース40内に収容される。電源本体部34aとケース40との間に、高電圧制御部41が配置される。ケース40には、外部電源に接続させるための電源用端子43が固定され、高電圧制御部41は電源用端子43に接続されると共に、モールド電源部34内の高圧発生部35及び電子放出制御部51に対してそれぞれ配線44,45を介して接続される。外部からの制御信号に基づき、高電圧制御部41によって、トランスを構成する高圧発生部35で発生させ得る電圧を、高電圧(例えば160kV)から低電圧(0V)までコントロールしている。電子放出制御部51により、電子の放出のタイミングや管電流などをコントロールする。 The power supply main body 34 a is accommodated in a metal case 40. A high voltage control unit 41 is disposed between the power supply main body 34 a and the case 40. A power supply terminal 43 for connection to an external power supply is fixed to the case 40, and the high voltage control unit 41 is connected to the power supply terminal 43, and the high voltage generation unit 35 and the electron emission control in the mold power supply unit 34. It is connected to the part 51 via wirings 44 and 45, respectively. Based on an external control signal, the high voltage control unit 41 controls the voltage that can be generated by the high voltage generation unit 35 constituting the transformer from a high voltage (for example, 160 kV) to a low voltage (0 V). The electron emission control unit 51 controls electron emission timing, tube current, and the like.
 X線発生装置21では、コントローラ(不図示)の制御に基づき、ケース40内の高電圧制御部41から、モールド電源部34の高圧発生部35及び電子放出制御部51に電力及び制御信号がそれぞれ供給される。それと同時に、コイル部26,27にも給電される。この結果、フィラメント部Fから適切な加速度をもって電子線が出射され、制御させたコイル部26,27で電子線を適切に収束させ、X線発生用ターゲットT1に電子線が照射される。照射された電子線がX線発生用ターゲットT1に衝突することで、X線が外部に照射される。 In the X-ray generator 21, power and control signals are respectively transmitted from the high voltage control unit 41 in the case 40 to the high voltage generation unit 35 and the electron emission control unit 51 of the mold power supply unit 34 based on the control of a controller (not shown). Supplied. At the same time, power is supplied to the coil portions 26 and 27. As a result, an electron beam is emitted from the filament portion F with an appropriate acceleration, the electron beam is appropriately converged by the controlled coil portions 26 and 27, and the electron beam is irradiated to the X-ray generation target T1. The irradiated electron beam collides with the X-ray generation target T1, so that the X-ray is irradiated to the outside.
 ところで、X線発生装置において、高い分解能は、電子線を高い電圧(例えば、50~150keV程度)で加速し、ターゲット上で微小な焦点へフォーカスすることで、得ることができる。電子がターゲット中でエネルギーを失う際に、X線、いわゆる制動放射X線が発生する。この際、焦点サイズは、照射される電子線のスポットサイズでほぼ決まることとなる。 By the way, in the X-ray generator, high resolution can be obtained by accelerating the electron beam with a high voltage (for example, about 50 to 150 keV) and focusing on a fine focus on the target. X-rays, so-called bremsstrahlung X-rays, are generated when electrons lose energy in the target. At this time, the focal spot size is almost determined by the spot size of the irradiated electron beam.
 X線の微細な焦点サイズを得るためには、電子線を小さなスポットに収束させれば良い。発生するX線の量を増やすためには、電子線の量を増やせば良い。しかしながら、空間電荷効果により、電子線のスポットサイズと電流量は相反する関係にあり、小さなスポットに大きな電流を流すことはできない。そして、小さなスポットに大きな電流を流すと発熱によりターゲットが消耗しやすくなるおそれが生じてしまう。 In order to obtain a fine focal spot size of X-rays, the electron beam may be converged to a small spot. In order to increase the amount of generated X-rays, the amount of electron beams may be increased. However, due to the space charge effect, the spot size of the electron beam and the amount of current are in a contradictory relationship, and a large current cannot flow through a small spot. When a large current is passed through a small spot, the target may be easily consumed due to heat generation.
 本実施形態では、上述したように、X線発生用ターゲットT1は、ダイヤモンドからなる基板1と、穴3の底面3aと側壁面3bとに密着したターゲット部10とを備えていることから、放熱性に極めて優れており、上述した状況下においても、X線発生用ターゲットT1の消耗を防ぐことができる。 In the present embodiment, as described above, the X-ray generation target T1 includes the substrate 1 made of diamond and the target portion 10 that is in close contact with the bottom surface 3a and the side wall surface 3b of the hole 3, and thus heat radiation. The X-ray generation target T1 can be prevented from being consumed even under the above-described circumstances.
 また、ターゲット部10がナノサイズとされていることから、上述した高い加速電圧(例えば、50~150keV程度)で電子を照射して、ターゲット部10付近で電子が拡がってしまった場合でも、X線焦点径が拡がるようなことはなく、分解能の劣化が抑制される。また、ターゲット部10の深さを深くすることで、X線量を増やすことが可能となる。すなわち、ターゲット部10のサイズで決まる分解能が得られることとなる。したがって、X線発生用ターゲットT1を用いたX線発生装置21では、X線量を増やしつつ、ナノオーダー(数十~数百nm)での分解能を得ることができる。 In addition, since the target portion 10 is nano-sized, even when electrons are irradiated with the high acceleration voltage (for example, about 50 to 150 keV) as described above, The line focal spot diameter does not widen, and degradation of resolution is suppressed. Further, the X-ray dose can be increased by increasing the depth of the target unit 10. That is, a resolution determined by the size of the target unit 10 is obtained. Therefore, the X-ray generation apparatus 21 using the X-ray generation target T1 can obtain nano-order (several tens to several hundreds of nanometers) resolution while increasing the X-ray dose.
 このように、上述した実施形態によれば、X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体に添加し、有底状の穴3が形成された基板1と超臨界流体とを接触させることで、金属を穴3に堆積させることでX線発生用ターゲットT1を製造するので、X線発生用ターゲット部を適切に形成可能となる。 As described above, according to the above-described embodiment, the metal precursor of the metal used as the material for the X-ray generation target is added to the supercritical fluid, and the substrate 1 and the supercritical fluid in which the bottomed hole 3 is formed. Since the X-ray generation target T1 is manufactured by depositing metal in the hole 3, the X-ray generation target portion can be appropriately formed.
 例えば、イオンビームによりX線発生用ターゲットを形成する手法では、基板1の穴底部にVOID(ボイド、空隙)が形成されることがあるのに対して、上述の実施形態によれば、超臨界流体を用いて金属を穴3に堆積することで、VOID(ボイド、空隙)の形成を防止することが可能となり、イオンビームを用いる手法と比較して簡単にアスペクト比を大きくすることが可能である。つまり、VOIDがなく、微少なピラーを有するX線発生用ターゲット部を製造可能となる。 For example, in the method of forming a target for X-ray generation using an ion beam, a VOID (void or void) may be formed at the hole bottom of the substrate 1, whereas according to the above-described embodiment, supercriticality is achieved. By depositing metal in the hole 3 using a fluid, it becomes possible to prevent the formation of VOID (voids, voids), and it is possible to easily increase the aspect ratio compared to the method using an ion beam. is there. That is, it is possible to manufacture an X-ray generation target portion having no VOID and having a minute pillar.
 例えば、超臨界流体を用いた場合、穴3の径が20nm程度であっても、穴3の中に超臨界流体が浸透する。例えば、穴3の径を100nmとし、深さを1000nmとすることも可能となる。この結果、イオンビームを用いて堆積する手法と比較して、穴3の径を細くでき、深さを深くすることができ、VOIDの形成を防止でき、金属の純度を向上可能となる。第1の実施形態に係る製造方法により製造されたX線発生用ターゲットを用いることで、イオンビームを用いて堆積する手法と比較して、より穴3が小さくできる結果、X線発生装置により照射されるX線がより細くなって分解能を向上することが可能となる。また、第1の実施形態に係る製造方法により製造されたX線発生用ターゲットを用いることで、イオンビームを用いて堆積する手法と比較して、穴3の深さを深くでき、X線発生装置により照射されるX線を増やすことが可能となる。 For example, when a supercritical fluid is used, the supercritical fluid penetrates into the hole 3 even if the diameter of the hole 3 is about 20 nm. For example, it is possible to set the diameter of the hole 3 to 100 nm and the depth to 1000 nm. As a result, the diameter of the hole 3 can be reduced, the depth can be increased, formation of VOID can be prevented, and the purity of the metal can be improved as compared with the technique of depositing using an ion beam. By using the target for X-ray generation manufactured by the manufacturing method according to the first embodiment, the hole 3 can be made smaller as compared with the method of depositing using an ion beam. As a result, the X-rays become thinner and the resolution can be improved. In addition, by using the X-ray generation target manufactured by the manufacturing method according to the first embodiment, the depth of the hole 3 can be increased as compared with the technique of depositing using an ion beam, and X-ray generation It becomes possible to increase the X-rays irradiated by the apparatus.
 また、上述したように、基板1の外形は3mm程度であり、超臨界流体装置200の反応容器210が小型であっても適用することが可能である。超臨界流体処理装置200内部は非常に高圧になるため、装置の大型化は困難なのである。 Further, as described above, the outer shape of the substrate 1 is about 3 mm, and it can be applied even if the reaction vessel 210 of the supercritical fluid device 200 is small. Since the inside of the supercritical fluid processing apparatus 200 has a very high pressure, it is difficult to increase the size of the apparatus.
 また、例えば、イオンビームによりX線発生用ターゲットを形成する手法では、ガスとして打ち込まれた不純物が金属に混じることがあり、純度を高くできないことが想定される。これに対して、上述の実施形態によれば、イオンビームを用いていた場合には打ち込まれていた不純物が混入せず、純度を向上することが可能である。 Also, for example, in the method of forming an X-ray generation target by an ion beam, impurities implanted as a gas may be mixed with the metal, and it is assumed that the purity cannot be increased. On the other hand, according to the above-described embodiment, when the ion beam is used, the implanted impurities are not mixed, and the purity can be improved.
 また、上述した実施形態によれば、基板と超臨界流体とを接触させることで穴に金属を堆積させる前に、基板にライナー層4を形成する形成工程をさらに含む。この結果、基板に金属を効率良く堆積させることが可能となる。すなわち、基板として用いられるダイヤモンドの導電性は他の物質の導電性と比較して高くない。このことを踏まえ、予めライナー層4を形成しておくことで、金属を効率良く堆積可能となる。 In addition, according to the above-described embodiment, the method further includes forming the liner layer 4 on the substrate before depositing the metal in the hole by bringing the substrate into contact with the supercritical fluid. As a result, it is possible to efficiently deposit metal on the substrate. That is, the conductivity of diamond used as a substrate is not high compared to the conductivity of other substances. In consideration of this, the metal can be efficiently deposited by forming the liner layer 4 in advance.
 また、上述した実施形態によれば、基板と超臨界流体とを接触させた後、金属前駆体の還元処理を行う還元工程をさらに含む。この結果、金属の堆積を促進するとともに、基板1に堆積していた金属前駆体から有機官能基を除去することで、穴3に堆積された金属の純度を向上可能となる。 In addition, according to the above-described embodiment, the method further includes a reduction step of performing a reduction treatment of the metal precursor after bringing the substrate into contact with the supercritical fluid. As a result, it is possible to improve the purity of the metal deposited in the hole 3 by promoting the deposition of the metal and removing the organic functional group from the metal precursor deposited on the substrate 1.
 また、上述した実施形態によれば、還元工程では、超臨界流体にH2ガスを供給しつつ加熱することで還元処理を行う。この結果、堆積工程から連続して簡単に還元工程を実行可能となる。 Further, according to the above-described embodiment, in the reduction process, the reduction process is performed by heating while supplying H2 gas to the supercritical fluid. As a result, the reduction process can be easily performed continuously from the deposition process.
 また、上述した実施形態によれば、基板の表面を研磨することで、基板の表面に堆積した金属を除去する研磨工程をさらに含む。超臨界流体を用いて金属を堆積する場合には、穴3だけでなく、基板1の表面1aにも金属が堆積してしまう。このことを踏まえ、基板の表面を研磨して表面1aから金属を除去することで、余計な層のないX線発生用ターゲット部を製造可能となる。 Further, according to the above-described embodiment, the method further includes a polishing step of removing metal deposited on the surface of the substrate by polishing the surface of the substrate. When a metal is deposited using a supercritical fluid, the metal is deposited not only on the hole 3 but also on the surface 1 a of the substrate 1. In consideration of this, by polishing the surface of the substrate and removing the metal from the surface 1a, it is possible to manufacture an X-ray generation target portion without an extra layer.
(その他の実施形態)
 さて、これまで、第1の実施形態について説明したが、上述した実施形態以外にも、その他の実施形態にて実施されても良い。そこで、以下では、その他の実施形態について説明する。
(Other embodiments)
The first embodiment has been described so far, but other embodiments may be implemented in addition to the above-described embodiment. Therefore, other embodiments will be described below.
(基板に設けられた穴の数)
 例えば、第1の実施形態では、基板1が穴3を1つ有する場合を例に示したが、これに限定されるものではなく、複数の穴3を有しても良い。図11は、基板に複数の穴が形成されるX線発生用ターゲットの一例を示す図である。図11に示す例では、基板1が、穴3-1~穴3-9を有する場合を示した。言い換えると、基板1が9つの穴3を有する場合を例に示した。
(Number of holes provided on the board)
For example, in the first embodiment, the case where the substrate 1 has one hole 3 has been described as an example. FIG. 11 is a diagram illustrating an example of an X-ray generation target in which a plurality of holes are formed in a substrate. In the example shown in FIG. 11, the case where the substrate 1 has the holes 3-1 to 3-9 is shown. In other words, the case where the substrate 1 has nine holes 3 is shown as an example.
 このように、基板1が複数の穴3を有し、複数の穴3それぞれに金属が堆積されてX線発生用ターゲットとして機能することで、一枚の基板1を長く使用することが可能となる。例えば、基板1に設けられた1つのX線発生用ターゲットが使えなくなったとしても、別のX線発生用ターゲットを用いることができ、1つの基板を長く使用することが可能となる。 In this way, the substrate 1 has a plurality of holes 3, and metal is deposited in each of the plurality of holes 3 to function as an X-ray generation target, so that one substrate 1 can be used for a long time. Become. For example, even if one X-ray generation target provided on the substrate 1 cannot be used, another X-ray generation target can be used, and one substrate can be used for a long time.
 また、基板1が複数の穴3を有していたとしても、第1の実施形態にて説明したのと同一の製造方法を用いて、複数の穴3各々に金属を堆積することが可能であり、実施形態に係る製造方法によれば、複数のX線発生用ターゲットを簡単に作成することが可能である。 Even if the substrate 1 has a plurality of holes 3, it is possible to deposit metal in each of the plurality of holes 3 using the same manufacturing method as described in the first embodiment. In addition, according to the manufacturing method according to the embodiment, it is possible to easily create a plurality of X-ray generation targets.
(金属)
 また、第1の実施形態では、金属として銅が穴3に堆積される場合を例に示したが、これに限定されるものではなく、超臨界流体を用いて堆積可能な任意の金属であって良い。例えば、W(タングステン)、Pt(プラチナ)、Au(金)を用いても良く、任意の重金属を用いて良い。例えば、Wを用いる場合には金属前駆体はW(CO)6でも良い。Ptを用いる場合には、金属前駆体は、Pt(COD)(CH3)2や、Pt(hfac)2を用いて良い。Auを用いる場合には、金属前駆体としてAu(acac)(CH3)2を用いて良い。
(metal)
In the first embodiment, the case where copper is deposited as the metal in the hole 3 is described as an example. However, the present invention is not limited to this, and any metal that can be deposited using a supercritical fluid is used. Good. For example, W (tungsten), Pt (platinum), Au (gold) may be used, and any heavy metal may be used. For example, when W is used, the metal precursor may be W (CO) 6. In the case of using Pt, the metal precursor may be Pt (COD) (CH3) 2 or Pt (hfac) 2. When using Au, Au (acac) (CH3) 2 may be used as a metal precursor.
(イオンドープ)
 また、第1の実施形態では、基板1にライナー層4を形成する場合を例に説明したが、これに限定されるものではなく、ライナー層4を形成しなくても良く、ライナー層4の代わりにイオンドープを行っても良い。
(Ion dope)
In the first embodiment, the case where the liner layer 4 is formed on the substrate 1 has been described as an example. However, the present invention is not limited to this, and the liner layer 4 may not be formed. Instead, ion doping may be performed.
(ライナー層4)
 また、例えば、第1の実施形態では、ライナー層4を有する場合を例に示したが、これに限定されるものではない。例えば、ライナー層4を形成することなく、金属を堆積しても良い。また、ライナー層4を形成する場合には、超臨界流体中にて形成しても良く、予めライナー層4を形成した基板1を超臨界流体と接触させても良い。
(Liner layer 4)
For example, in the first embodiment, the case where the liner layer 4 is provided has been described as an example, but the present invention is not limited to this. For example, metal may be deposited without forming the liner layer 4. When the liner layer 4 is formed, it may be formed in a supercritical fluid, or the substrate 1 on which the liner layer 4 has been previously formed may be brought into contact with the supercritical fluid.
1   基板
1a  表面
1b  裏面
10  ターゲット部
10  金属
12  導電層
T1  X線発生用ターゲット
DESCRIPTION OF SYMBOLS 1 Board | substrate 1a Front surface 1b Back surface 10 Target part 10 Metal 12 Conductive layer T1 Target for X-ray generation

Claims (7)

  1.  X線発生用ターゲットの材料となる金属の金属前駆体を超臨界流体に添加する添加工程と、
     有底状の穴が形成された基板と前記超臨界流体とを接触させることで、前記金属を前記穴に堆積させる堆積工程と
     を含むことを特徴とするX線発生用ターゲットの製造方法。
    An addition step of adding a metal precursor of a metal, which is a material for the target for X-ray generation, to the supercritical fluid;
    A method for producing an X-ray generation target, comprising: depositing the metal in the hole by bringing the supercritical fluid into contact with the substrate on which a bottomed hole is formed.
  2.  前記基板と前記超臨界流体とを接触させることで前記穴に前記金属を堆積させる前に、前記基板にライナー層を形成する形成工程をさらに含むことを特徴とする請求項1に記載のX線発生用ターゲットの製造方法。 The X-ray according to claim 1, further comprising forming a liner layer on the substrate before depositing the metal in the hole by bringing the substrate into contact with the supercritical fluid. A method for producing a target for generation.
  3.  前記基板と前記超臨界流体とを接触させた後、前記金属前駆体の還元処理を行う還元工程をさらに含むことを特徴とする請求項1に記載のX線発生用ターゲットの製造方法。 The method for producing a target for X-ray generation according to claim 1, further comprising a reduction step of reducing the metal precursor after bringing the substrate into contact with the supercritical fluid.
  4.  前記還元工程では、前記超臨界流体にH2ガスを供給しつつ加熱することで還元処理を行うことを特徴とする請求項3に記載のX線発生用ターゲットの製造方法。 4. The method of manufacturing a target for X-ray generation according to claim 3, wherein in the reduction step, the reduction process is performed by heating the supercritical fluid while supplying H2 gas.
  5.  前記基板の表面を研磨することで、前記基板の表面に堆積した前記金属を除去する研磨工程をさらに含むことを特徴とする請求項1に記載のX線発生用ターゲットの製造方法。 The method for producing a target for X-ray generation according to claim 1, further comprising a polishing step of removing the metal deposited on the surface of the substrate by polishing the surface of the substrate.
  6.  前記基板に前記穴が複数形成されていることを特徴とする請求項1~5のいずれか1項に記載のX線発生用ターゲットの製造方法。 6. The method for producing a target for X-ray generation according to claim 1, wherein a plurality of the holes are formed in the substrate.
  7.  X線発生用ターゲットの材料を超臨界流体と接触させる接触工程と、
     有底状の穴が形成された基板に前記超臨界流体を接触させることで、X線発生用ターゲットの材料を前記穴に堆積させる堆積工程と
     を有する方法によって製造されたX線発生用ターゲット。
    A contact step of bringing the material of the target for X-ray generation into contact with the supercritical fluid;
    An X-ray generation target manufactured by a method comprising: depositing a material of an X-ray generation target in the hole by bringing the supercritical fluid into contact with a substrate having a bottomed hole formed therein.
PCT/JP2013/076043 2012-10-04 2013-09-26 Method for manufacturing target for x-ray generation and target for x-ray generation WO2014054497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222452 2012-10-04
JP2012222452 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054497A1 true WO2014054497A1 (en) 2014-04-10

Family

ID=50434825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076043 WO2014054497A1 (en) 2012-10-04 2013-09-26 Method for manufacturing target for x-ray generation and target for x-ray generation

Country Status (2)

Country Link
TW (1) TW201421524A (en)
WO (1) WO2014054497A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092924A1 (en) * 2013-09-04 2015-04-02 Wenbing Yun Structured targets for x-ray generation
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
WO2020094824A1 (en) * 2018-11-08 2020-05-14 Koninklijke Philips N.V. X-ray source system and x-ray imaging system having a conversion structure for compensating conversion efficiency
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195961A (en) * 2000-12-25 2002-07-10 Shimadzu Corp X-ray image pickup apparatus
JP2003505845A (en) * 1999-07-26 2003-02-12 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ X-ray anode and method for producing the same
JP2006150350A (en) * 2004-11-04 2006-06-15 Tokyo Electron Ltd Method and apparatus for atomic layer deposition
JP2011077027A (en) * 2009-09-04 2011-04-14 Tokyo Electron Ltd Target for x-ray generation, x-ray generator, and manufacturing method of target for x-ray generation
JP2011178642A (en) * 2010-03-03 2011-09-15 Nippon Sheet Glass Co Ltd Method for producing glass sheet with through-electrode, and electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505845A (en) * 1999-07-26 2003-02-12 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ X-ray anode and method for producing the same
JP2002195961A (en) * 2000-12-25 2002-07-10 Shimadzu Corp X-ray image pickup apparatus
JP2006150350A (en) * 2004-11-04 2006-06-15 Tokyo Electron Ltd Method and apparatus for atomic layer deposition
JP2011077027A (en) * 2009-09-04 2011-04-14 Tokyo Electron Ltd Target for x-ray generation, x-ray generator, and manufacturing method of target for x-ray generation
JP2011178642A (en) * 2010-03-03 2011-09-15 Nippon Sheet Glass Co Ltd Method for producing glass sheet with through-electrode, and electronic component

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092924A1 (en) * 2013-09-04 2015-04-02 Wenbing Yun Structured targets for x-ray generation
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
WO2020094824A1 (en) * 2018-11-08 2020-05-14 Koninklijke Philips N.V. X-ray source system and x-ray imaging system having a conversion structure for compensating conversion efficiency
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Also Published As

Publication number Publication date
TW201421524A (en) 2014-06-01

Similar Documents

Publication Publication Date Title
WO2014054497A1 (en) Method for manufacturing target for x-ray generation and target for x-ray generation
EP3029708A1 (en) Target for x-ray generation and x-ray generation device
JP5670111B2 (en) X-ray generation target, X-ray generation apparatus, and method for manufacturing X-ray generation target
US10796876B2 (en) Low work function electron beam filament assembly
JP2016225139A (en) Plasma generation device and thermionic emission part
CN110085499B (en) Phosphorous or arsenic ion implantation using enhanced source technology
JP2006265079A (en) Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
JP4930918B2 (en) Diamond manufacturing method
JP2015149156A (en) Method of manufacturing target for x-ray generation and target for x-ray generation
JP4813040B2 (en) Diamond layer forming method and multilayer hard carbon film forming method using the same
JP4456442B2 (en) Method for producing carbon nitride
KR20220025942A (en) Ion implantation processes and apparatus using gallium
WO2014027624A1 (en) Method for manufacturing target for x-ray emission, and target for x-ray emission
JP2020161262A (en) Emitter fabrication method, emitter, and focused ion beam device
JP2001143894A (en) Plasma generator and apparatus for producing thin film
TWI575548B (en) Ion source
JP5006737B2 (en) Rotating anti-cathode X-ray generator and X-ray generation method
JP7155895B2 (en) 3D printer
JP3937411B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JP2008308730A (en) Film-forming method using plasma in liquid, and film-forming apparatus using plasma in liquid
JP6203648B2 (en) Negative ion source device and method for replacing plasma generation unit in negative ion source device
JP2005293866A (en) Plasma generator and thin-film formation device
JP2003007240A (en) Plasma generator and thin-film forming device
JP2006009055A (en) Method for feeding source gas for gas deposition process, and feeding apparatus therefor
JP2005276501A (en) Ion source, processing unit, and processing method using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP