WO2014049920A1 - Electromagnetic wave propagation system and electromagnetic wave interface connector - Google Patents

Electromagnetic wave propagation system and electromagnetic wave interface connector Download PDF

Info

Publication number
WO2014049920A1
WO2014049920A1 PCT/JP2013/004214 JP2013004214W WO2014049920A1 WO 2014049920 A1 WO2014049920 A1 WO 2014049920A1 JP 2013004214 W JP2013004214 W JP 2013004214W WO 2014049920 A1 WO2014049920 A1 WO 2014049920A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave propagation
interface device
shield structure
propagation sheet
Prior art date
Application number
PCT/JP2013/004214
Other languages
French (fr)
Japanese (ja)
Inventor
明 宮田
福田 浩司
聡人 野田
篠田 裕之
Original Assignee
日本電気株式会社
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立大学法人 東京大学 filed Critical 日本電気株式会社
Priority to JP2014538099A priority Critical patent/JPWO2014049920A1/en
Publication of WO2014049920A1 publication Critical patent/WO2014049920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to an electromagnetic wave propagation system and an electromagnetic wave interface connector comprising an electromagnetic wave propagation sheet and an electromagnetic wave interface device for inputting or outputting electromagnetic waves to or from the electromagnetic wave propagation sheet.
  • a two-dimensional communication system has been proposed as a system for performing communication between electronic devices via a sheet-like medium.
  • the two-dimensional communication system includes an electromagnetic wave propagation sheet and a proximity coupler.
  • the proximity coupler is an electromagnetic coupling device that inputs and outputs electromagnetic waves with the inside of the sheet using an electromagnetic field that oozes from the surface of the electromagnetic wave propagation sheet.
  • This technology can be applied not only to communication but also to power transmission.
  • high frequency AC power is injected into the seat from a power feeding coupler connected to a high frequency power supply.
  • the proximity coupler for receiving power absorbs the electromagnetic field that oozes from the sheet surface, converts it into direct current by the rectifier circuit, and supplies power to the electronic device.
  • Patent Document 1 and Patent Document 2 propose a clip-type electromagnetic wave interface device.
  • This clip-type electromagnetic wave interface device has a clip part that sandwiches the edge part of the electromagnetic wave propagation sheet from above and below, and a power supply part that inputs and outputs signals.
  • the electromagnetic wave interface device is attached to the side surface portion of the electromagnetic wave propagation sheet by the clip portion, and feeds electromagnetic waves to the electromagnetic wave propagation sheet from the side surface of the electromagnetic wave propagation sheet.
  • Patent Document 3 shows a configuration in which a plurality of electromagnetic wave interface devices are used for one electromagnetic wave propagation sheet, and the same number of high-frequency cables are connected to the plurality of electromagnetic wave interface devices in a one-to-one correspondence.
  • the electromagnetic wave interface device and the electromagnetic wave propagation sheet must come into contact with each other at the end of the side surface.
  • the contact on the side surface is not as elastic as the clip part. Therefore, when impact or vibration is applied by moving the electromagnetic wave propagation system, a gap is easily generated and the propagation characteristics of the electromagnetic wave fluctuate. It was.
  • An object of the present invention is to provide an electromagnetic wave propagation system and an electromagnetic wave interface connector capable of stabilizing the propagation characteristics of an electromagnetic wave even when the electromagnetic wave propagation sheet is moved while suppressing leakage of the electromagnetic wave.
  • An electromagnetic wave propagation system includes an electromagnetic wave interface device, an electromagnetic wave propagation sheet, and a shield structure that includes the electromagnetic wave interface device and has an opening into which the electromagnetic wave propagation sheet can be inserted.
  • the opening of the shield structure has a region that sandwiches the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet.
  • the shield structure includes a shielding member that covers a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet and shields leakage of electromagnetic waves.
  • the electromagnetic wave interface connector includes a shield structure including an electromagnetic wave interface device and having an opening into which an electromagnetic wave propagation sheet can be inserted.
  • the opening of the shield structure has a region that sandwiches the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet.
  • the shield structure includes a shielding member that covers a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet and shields leakage of electromagnetic waves.
  • an electromagnetic wave propagation system and an electromagnetic wave interface connector that can stabilize the propagation characteristics of an electromagnetic wave even when the electromagnetic wave propagation sheet is moved while suppressing leakage of the electromagnetic wave.
  • FIG. 1 is a diagram illustrating a configuration of the electromagnetic wave propagation system.
  • the electromagnetic wave propagation system includes an electromagnetic wave propagation sheet 100, a proximity coupler 200, an electromagnetic wave interface device 300, a high frequency cable 400, and a signal processing device 500.
  • the basic structure of the electromagnetic wave propagation sheet 100 is the same as that conventionally known.
  • the electromagnetic wave propagation sheet 100 includes a mesh electrode 101, a communication layer 102, and a back conductor layer 103.
  • a mesh electrode 101 is formed on the entire surface of the electromagnetic wave propagation sheet 100 over the entire surface. An electromagnetic wave leaches out from the opening of the mesh electrode 101.
  • the mesh electrode 101 refers to a state in which a plurality of openings having a regular or irregular shape are formed in addition to a regular mesh.
  • the mesh electrode 101 is typically a lattice pattern in which the shape of the opening is rectangular.
  • the shape of the opening can take various shapes such as a turtle shell shape, a rhombus, a circle, and a triangle. Since the part which is the mesh electrode 101 becomes a part which exudes electromagnetic waves outside and implement
  • the mesh electrode 101 is a conductor layer having a square mesh shape structure, for example.
  • the repeating unit of the mesh is equal to the distance between the centers of the horizontally adjacent squares.
  • the repeating unit dimension of the mesh is sufficiently shorter than the electromagnetic wave length of the communication layer 102.
  • an electromagnetic wave leaching region is formed above the mesh electrode 101.
  • the communication layer 102 is made of a dielectric.
  • the communication layer 102 is sandwiched between the mesh electrode 101 and the back conductor layer 103.
  • the material of the communication layer 102 is selected according to the purpose of use of the electromagnetic wave propagation sheet 100.
  • resin, rubber, a polymer foam, a gel material, a hollow structure, or the like can be used as the communication layer 102.
  • the back conductor layer 103 is a plane-shaped electrode provided so as to extend uniformly over the entire lower surface of the communication layer 102.
  • the back conductor layer 103 is made of, for example, a metal foil or a metal plate such as copper or aluminum.
  • the mesh electrode 101 and the back surface conductor layer 103 are arranged in a substantially parallel state, and electromagnetic waves travel through a space between the mesh electrode 101 and the back surface conductor layer 103.
  • electromagnetic waves travel in the communication layer 102.
  • an evanescent wave is leached from the mesh electrode 101 to the outside, and communication with the proximity coupler 200 is realized via the leached evanescent wave.
  • the proximity coupler 200 is a coupler-type power receiving device including a dielectric and two conductor layers (plane-shaped conductor and patch conductor) provided on both sides thereof.
  • the proximity coupler 200 is an interface device that is used by being placed on the electromagnetic wave propagation sheet 100, and transmits and receives electromagnetic waves to and from the electromagnetic wave propagation sheet 100.
  • the electromagnetic wave interface device 300 receives a high frequency signal from the signal processing device 500 via the high frequency cable 400, generates an electromagnetic wave corresponding to the high frequency signal, and supplies the electromagnetic wave to the electromagnetic wave propagation sheet 100.
  • the mesh electrode 101 and the back conductor layer 103 are insulated from the side surface of the end portion of the electromagnetic wave propagation sheet 100 at the location where the electromagnetic wave interface device 300 is connected.
  • the mesh electrode 101 and the back surface conductor layer 103 may be electrically connected to each other by a method such as through-hole, pressure bonding, and conductive paste coating except for a portion where the electromagnetic wave interface device 300 is connected.
  • FIG. 2 is a schematic view showing the electromagnetic wave propagation system according to the first embodiment of the invention
  • FIG. 3 is a perspective view including a III-III section of FIG. 4 is an exploded view of the portion shown in FIG.
  • the electromagnetic wave propagation system further includes a shield structure 600 as shown in FIG.
  • the shield structure 600 substantially includes the electromagnetic wave interface device 300. That is, the shield structure 600 surrounds and substantially houses most of the entire outer surface of the electromagnetic wave interface device 300.
  • the shield structure 600 does not completely close the electromagnetic wave interface device 300 from the outside, and the electromagnetic wave interface device 300 is provided with an opening portion 601 (see FIG. 6), and the portion is open to the outside.
  • the shield structure 600 covers the electromagnetic wave interface device 300 from the outside except for the opening 601.
  • the open part 601 is a concave part provided on one side surface parallel to the longitudinal direction, and the central part of the side surface is formed over the entire region in the longitudinal direction.
  • the electromagnetic wave propagation sheet 100 is inserted into the open part 601, and the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 are arranged so that the side surfaces of the end parts face each other.
  • the open part 601 is closed by the electromagnetic wave propagation sheet 100. Therefore, the electromagnetic wave interface device 300 is substantially closed from the outside by the shield structure 600. Is done.
  • the shield structure 600 has an electromagnetic wave interface device 300 built in substantially the center thereof. More specifically, in the shield structure 600, the electromagnetic wave interface device 300 is installed on the plate-like bottom surface portion 602. The upper surface of the electromagnetic wave interface device 300 is separated from the upper surface portion 603 of the shield structure 600 and is in an electrically non-contact state.
  • the bottom surface portion 602 of the shield structure 600 holds one end region of the electromagnetic wave propagation sheet 100 in contact with the back conductor layer 103 from below.
  • the bottom surface portion 602 and the top surface portion 603 of the shield structure 600 are supported so as to be parallel to each other via the interposition portion 604.
  • One end (rear end) of the electromagnetic wave interface device 300 is in contact with the inner surface of the interposition part 604.
  • the other end (front end) of the electromagnetic wave interface device 300 is in contact with one side surface of the electromagnetic wave propagation sheet 100.
  • the upper surface portion 603 of the shield structure 600 has the same shape as the bottom surface portion 602 on the main surface.
  • a tip portion 605 is provided at the tip of the shield structure 600.
  • the front end portion 605 holds one end region of the electromagnetic wave propagation sheet 100 in contact with the mesh electrode 101 from above.
  • the side surface portion 606 of the shield structure 600 is a surface that receives the electromagnetic wave propagation sheet 100 in the open portion 601 from the surface opposite to the side where the open portion 601 is provided in the shield structure 600 (that is, the electromagnetic wave interface device 300 and the electromagnetic wave propagation).
  • the electromagnetic wave interface device 300 is covered in a region up to the contact surface with the sheet 100).
  • the bottom surface portion 602 shields the lower surface of the electromagnetic wave interface device 300 from the outside.
  • the upper surface portion 603 shields the upper surface of the electromagnetic wave interface device 300 from the outside.
  • the interposition part 604 shields the rear surface of the electromagnetic wave interface device 300 from the outside.
  • the tip 605 shields the space above the electromagnetic wave interface device 300 from the outside.
  • the side surface portion 606 shields the side surface of the electromagnetic wave interface device 300 from the outside.
  • Each of the bottom surface portion 602, the top surface portion 603, the interposition portion 604, the distal end portion 605, and the side surface portion 606 of the shield structure 600 may be integrally formed, separately formed, mechanically, adhesive, or the like. It may be fixed with.
  • the electromagnetic wave interface device 300 includes a slot resonator electrode 310 having a rectangular opening that resonates at one-half wavelength on one surface of the dielectric substrate 303 (the surface in FIG. 5), and a slot resonator coupling line. 302.
  • a ground electrode 304 is provided on the other surface (the back surface in FIG. 5) that is the surface opposite to the surface on which the slot resonator electrode 310 and the slot resonator coupling line 302 are formed.
  • the slot resonator electrode 310 is formed so that one long side thereof shares one side that is an end of the electromagnetic wave interface device 300. Further, the long-side direction of the slot resonator electrode 310 and the side of the electromagnetic wave propagation sheet 100 whose side faces the electromagnetic wave interface device 300 are disposed substantially parallel and close to each other.
  • the slot resonator coupling line 302 traverses the center of the opening 311 of the slot resonator electrode 310, and one end of the slot resonator coupling line 302 is the length of the opening 311 of the slot resonator electrode 310 on the side where the electromagnetic wave propagation sheet 100 is present. Connected to the edge.
  • a plurality of through holes 305 are provided around each of the two short sides 312 of the slot resonator electrode 310 and the opposite long side of the electromagnetic wave propagation sheet 100 excluding a region where the slot resonator coupling line 302 transmits a signal.
  • the through hole 305 electrically connects the slot resonator electrode 310 and the ground electrode 304.
  • the ground electrode 304 is in contact with the bottom surface portion 602 of the shield structure 600.
  • the other end side of the slot resonator coupling line 302 constitutes a power feeding unit 301 of the electromagnetic wave interface device 300, and the power feeding unit 301 is connected to the signal processing device 500 in a circuit.
  • the signal processing device 500 is installed inside the shield structure 600, for example, by being mounted on the substrate of the electromagnetic wave interface device 300. However, the signal processing device 500 may be provided outside the shield structure 600 and connected to the electromagnetic wave interface device 300 via the high-frequency cable 400.
  • Fig. 6 shows the appearance of the shield structure 600.
  • the shield structure 600 including the electromagnetic wave interface device 300 is entirely made of metal so as to shield leakage of high-frequency signals from the inside.
  • the shield structure 600 may be configured by forming a metal film on a resin casing. At this time, the metal film may be formed inside, outside, or inside the resin casing.
  • the shielding member which shields the leakage of electromagnetic waves may be a material which has the same effect even if it is not a metal.
  • the shielding member that shields the leakage of the electromagnetic wave is provided at a position that covers the boundary portion between the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100, a gap is generated at the boundary portion between the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100. In addition, signal transmission degradation can be suppressed.
  • the opening portion 601 is provided in a part of the shield structure 600.
  • the shield structure 600 faces the electromagnetic wave propagation sheet 100 long side of the slot resonator electrode 310 of the electromagnetic wave interface device 300 and each part of the electromagnetic wave propagation sheet 100 so as to face up and down.
  • the electromagnetic wave propagation sheet 100 is fixed.
  • the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 face each other. That is, it is desirable that the end surface on the electromagnetic wave propagation sheet 100 side in the electromagnetic wave interface device 300 and the end surface on the electromagnetic wave interface device 300 side in the electromagnetic wave propagation sheet 100 are in contact with each other, but the shield structure 600 covers the contact region from above and below. If there is, there may be a gap between them.
  • the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 may be fixed physically using an adhesive tape or a screw.
  • the processing operation of the electromagnetic wave propagation system having the configuration as described above will be described by taking as an example a state in which the signal processing device 500 generates a signal.
  • the high-frequency signal generated by the signal processing device 500 excites the slot resonator electrode 310 via the power feeding unit 301 and the slot resonator coupling line 302.
  • the slot resonator electrode 310 resonates under the condition that the length of the long side of the electrode opening 311 is approximately a half wavelength with respect to the wavelength of the high frequency signal.
  • a strong electric field component in the short side direction of the slot resonator electrode 310 is generated in the slot resonator electrode 310 that has entered the resonance operation.
  • the length of the long side 313 of the slot resonator electrode 310 is not necessarily exactly one half of the wavelength of the high-frequency signal, and the long side 313 is shorter due to the dielectric effect of the dielectric substrate 303.
  • the length can satisfy the condition of the resonance operation, or the condition of the resonance operation can be satisfied within the band corresponding to the Q value of the resonator.
  • the electric field component in the short side direction generated in the slot resonator electrode 310 is continuously restrained by the through holes 305 arranged around the slot resonator electrode 310 while proceeding to the inside of the dielectric substrate 303, so that the slot resonance gradually increases. It propagates to the long side where the through hole 305 of the electrode 310 does not exist, and changes to an electric field component in the thickness direction of the dielectric substrate 303.
  • the electric field component in the thickness direction of the dielectric substrate 303 is equivalent to the electric field component of the main propagation mode of the electromagnetic wave propagation sheet 100.
  • the electric field component in the thickness direction of the dielectric substrate 303 is a parallel plate mode electric field that can be generated between the upper and lower metals of the shield structure 600 that fixes the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 between the upper and lower sides.
  • the ingredients are equivalent. That is, the electric field component in the cross-sectional direction of the dielectric substrate 303 generated in one side of the electromagnetic wave interface device 300 sharing one long side of the slot resonator electrode 310 is an electromagnetic wave interface device sandwiched between upper and lower metals of the shield structure 600. In the gap between 300 and the electromagnetic wave propagation sheet 100, both are combined efficiently as a parallel plate mode and further as a propagation mode in the electromagnetic wave propagation sheet 100 that is close to each other.
  • the signal generated by the signal processing device 500 propagates into the electromagnetic wave propagation sheet 100 via the power supply unit 301 and the electromagnetic wave interface device 300 in the frequency band in which the slot resonator electrode 310 generates a half-wave resonance operation. It becomes possible to do.
  • the state in which the signal processing device 500 receives a signal may be regarded as just the opposite operation due to reciprocity.
  • the high-frequency signal in the electromagnetic wave propagation sheet 100 reaches the electromagnetic wave interface device 300 to cause the slot resonator electrode 310 to resonate and is input to the signal processing device 500 from the slot resonator coupling line 302 via the power feeding unit 301.
  • FIG. 7 shows the high-frequency scattering characteristics between the two electromagnetic wave interface devices 300 when the electromagnetic wave interface device 300 having the above-described configuration is arranged at two opposite positions of the rectangular electromagnetic wave propagation sheet 100 as shown in FIG. Show.
  • the high-frequency transmission characteristic indicated by the solid line as S2, 1 in FIG. 7 is, for example, a high-frequency transmission characteristic between two electromagnetic wave interface devices 300 at a frequency of 2.463 GHz, and a connection portion between the two electromagnetic wave interface devices 300 and the electromagnetic wave propagation sheet 100. Including the propagation loss in the electromagnetic wave propagation sheet 100, it is as small as ⁇ 0.63 dB. Therefore, it can be seen that an electromagnetic wave propagation system that can satisfactorily input a high-frequency signal from the electromagnetic wave interface device 300 into the electromagnetic wave propagation sheet 100 is configured.
  • the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 can be efficiently connected in a high frequency band where the slot resonator electrode 310 resonates.
  • the electromagnetic wave interface device 300 reaches the electromagnetic wave propagation sheet 100, more preferably, the signal processing device 500 reaches the electromagnetic wave propagation sheet 100. Since all the constituent elements up to are arranged inside the shield structure 600, leakage of electromagnetic waves to the outside of the electromagnetic wave propagation system can be suppressed. For example, when a slot resonator electrode as used in the present invention is used without a shield, a part of electric power is radiated from the slot resonator electrode to the space, causing a problem of greatly leaking electromagnetic waves.
  • the gap is formed between the electromagnetic wave interface device 300 and the electromagnetic wave propagation. Deterioration of signal transmission can be suppressed as long as it is inside the shield structure 600 that sandwiches the sheet 100 vertically. Moreover, the characteristic variation by the position of the connection part of the electromagnetic wave interface apparatus 300 and the electromagnetic wave propagation sheet 100 can be reduced.
  • the electromagnetic wave interface device 300 can be manufactured only by a general printed circuit board process, which contributes to cost reduction of the electromagnetic wave interface device 300. Further, if the electromagnetic wave interface device 300 is manufactured by a general printed circuit board process, the compatibility with circuit elements such as the signal processing device 500 is increased, and not only the signal processing device 500 but also a filter circuit, a power supply circuit, and a microcomputer control. A circuit and the like can be easily integrated into the electromagnetic wave interface device 300.
  • FIG. 8 is a schematic diagram illustrating an electromagnetic wave propagation system according to the second embodiment.
  • the shield structure 600 is configured only around the electromagnetic wave interface device 300, whereas in the second embodiment, as shown in FIG.
  • the shield structure 600 is configured to cover the entire periphery of the electromagnetic wave propagation sheet 100.
  • the shield structure 600 may include not only one electromagnetic wave interface device 300 but also a plurality of electromagnetic wave interface devices 300.
  • the shield structure 600 is arranged over a wide range with respect to the side surface of the end portion of the electromagnetic wave propagation sheet 100, it corresponds to the case where array element control is applied using a plurality of electromagnetic wave interface devices as shown in Patent Document 3.
  • a plurality of electromagnetic wave interface devices 300 can be included in the shield structure 600.
  • electromagnetic wave leakage is suppressed despite the increase in the number of electromagnetic wave leakage sources as the number of electromagnetic wave interface devices 300 increases.
  • the release portion 601 of the shield structure 600 includes a region that sandwiches the electromagnetic wave interface device 300 and the end portion (edge portion) of the electromagnetic wave propagation sheet 100. This region sandwiches the end portions of the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 in the thickness direction of the electromagnetic wave propagation sheet 100. This region sandwiches the part that becomes the end surface of the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 up and down.
  • the release part 601 may be referred to as an opening part 601.
  • Electromagnetic wave propagation sheet 101 Mesh electrode 102 Communication layer 103 Back surface conductor layer 200 Proximity coupler 300 Electromagnetic wave interface device 301 Feed part 302 Slot resonator coupling line 303 Dielectric substrate 304 Ground electrode 305 Through hole 310 Slot resonator electrode 311 Opening 312 Short side 313 Long side 400 High frequency cable 500 Signal processing device 600 Shield structure 601 Opening part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

This electromagnetic wave propagation system is provided with: an electromagnetic wave interface apparatus (300); an electromagnetic wave propagation sheet (100); and a shield structure (600), which includes the electromagnetic wave interface apparatus (300), and which has an open portion into which the electromagnetic wave propagation sheet (100) can be inserted. The open portion of the shield structure (600) has a region where the electromagnetic wave interface apparatus (300) and an end portion of the electromagnetic wave propagation sheet (100) are sandwiched in the thickness direction of the electromagnetic wave propagation sheet. The shield structure (600) has a blocking member, which covers a boundary portion between the electromagnetic wave interface apparatus (300) and the electromagnetic wave propagation sheet (100), and which blocks leakage of electromagnetic waves.

Description

電磁波伝播システム及び電磁波インターフェースコネクタElectromagnetic wave propagation system and electromagnetic wave interface connector
 本発明は、電磁波伝播シートと電磁波伝播シートに対して電磁波を入力又は出力するための電磁波インターフェース装置からなる電磁波伝播システム及び電磁波インターフェースコネクタに関する。 The present invention relates to an electromagnetic wave propagation system and an electromagnetic wave interface connector comprising an electromagnetic wave propagation sheet and an electromagnetic wave interface device for inputting or outputting electromagnetic waves to or from the electromagnetic wave propagation sheet.
 シート状媒体を介して電子機器の間で通信を行うシステムとして、二次元通信システムが提案されている。二次元通信システムは、電磁波伝播シートと近接カプラから構成される。近接カプラは、電磁波伝播シートの表面から染み出す電磁界を利用してシート内部との間で電磁波の入出力を行う電磁結合デバイスである。この近接カプラを電子機器のアンテナ端子と接続してシート上に設置することによってシートの任意の位置において電子機器間の通信を実現できる。このような二次元通信システムは、電磁波伝播シートの表面上で通信が可能になることから、サーフェイス通信システムと呼ばれることもある。 A two-dimensional communication system has been proposed as a system for performing communication between electronic devices via a sheet-like medium. The two-dimensional communication system includes an electromagnetic wave propagation sheet and a proximity coupler. The proximity coupler is an electromagnetic coupling device that inputs and outputs electromagnetic waves with the inside of the sheet using an electromagnetic field that oozes from the surface of the electromagnetic wave propagation sheet. By connecting the proximity coupler to the antenna terminal of the electronic device and installing it on the sheet, communication between the electronic devices can be realized at an arbitrary position on the sheet. Such a two-dimensional communication system is sometimes called a surface communication system because communication is possible on the surface of the electromagnetic wave propagation sheet.
 この技術は、通信のみならず、電力伝送にも応用可能である。電力伝送に応用した場合には、高周波電源に接続された給電用のカプラからシート内に高周波の交流電力を注入する。そして、受電用の近接カプラは、シート表面から染み出した電磁界を吸上げて、整流回路で直流に変換し、電子機器に電力を供給する。 This technology can be applied not only to communication but also to power transmission. When applied to power transmission, high frequency AC power is injected into the seat from a power feeding coupler connected to a high frequency power supply. Then, the proximity coupler for receiving power absorbs the electromagnetic field that oozes from the sheet surface, converts it into direct current by the rectifier circuit, and supplies power to the electronic device.
 このような電磁波伝播シートに給電するための方法がいくつか提案されている。
 例えば、特許文献1や特許文献2には、クリップ型の電磁波インターフェース装置が提案されている。このクリップ型の電磁波インターフェース装置は、電磁波伝播シートの辺縁部を上下方向から挟み込むクリップ部と、信号が入出力される給電部を有している。電磁波インターフェース装置は、このクリップ部により電磁波伝播シートの側面部に取り付けられ、そして、電磁波伝播シートの側面から、電磁波を電磁波伝播シートに給電する。
Several methods for supplying power to such an electromagnetic wave propagation sheet have been proposed.
For example, Patent Document 1 and Patent Document 2 propose a clip-type electromagnetic wave interface device. This clip-type electromagnetic wave interface device has a clip part that sandwiches the edge part of the electromagnetic wave propagation sheet from above and below, and a power supply part that inputs and outputs signals. The electromagnetic wave interface device is attached to the side surface portion of the electromagnetic wave propagation sheet by the clip portion, and feeds electromagnetic waves to the electromagnetic wave propagation sheet from the side surface of the electromagnetic wave propagation sheet.
 また特許文献3には、1つの電磁波伝播シートに対して複数の電磁波インターフェース装置が用いられ、複数の電磁波インターフェース装置に同数の高周波ケーブルが一対一対応で接続される構成が図示されている。 Patent Document 3 shows a configuration in which a plurality of electromagnetic wave interface devices are used for one electromagnetic wave propagation sheet, and the same number of high-frequency cables are connected to the plurality of electromagnetic wave interface devices in a one-to-one correspondence.
特開2010-16592号公報JP 2010-16592 A 特開2011―9801号公報JP 2011-9801 A 特開2010-63212号公報JP 2010-63212 A
 特許文献1~2に記載された電磁波伝播システムのように電磁波伝播シートを上下両面から導体板で挟み込むような仕様とした場合、電磁波伝播シート表面とクリップ部の間に間隙が生じてはいけない。この間隙からは電磁波が漏洩したり、給電または伝送効率が劣化したりするためである。 When the specification is such that the electromagnetic wave propagation sheet is sandwiched between the upper and lower surfaces by the conductor plate as in the electromagnetic wave propagation system described in Patent Documents 1 and 2, there should be no gap between the electromagnetic wave propagation sheet surface and the clip portion. This is because electromagnetic waves leak from the gap, and power feeding or transmission efficiency deteriorates.
 しかしながらシートの端面において突出した形状のクリップ部を間隙なく上下両面から挟み込むようにすることは容易でないことが多い。 However, in many cases, it is not easy to sandwich the clip portion having a shape protruding from the end surface of the sheet from both the upper and lower sides without a gap.
 またクリップ部が接触するシート表面だけでなく、電磁波インターフェース装置と電磁波伝播シートはそれぞれ側面の端部にて接触しなくてはならない。しかしながら側面における接触は、クリップ部のような弾性がないために、電磁波伝播システムを移動させるなどで衝撃や振動が加わると容易に間隙が生じて、電磁波の伝搬特性が変動してしまう問題があった。 Also, not only the sheet surface with which the clip part comes into contact, but also the electromagnetic wave interface device and the electromagnetic wave propagation sheet must come into contact with each other at the end of the side surface. However, the contact on the side surface is not as elastic as the clip part. Therefore, when impact or vibration is applied by moving the electromagnetic wave propagation system, a gap is easily generated and the propagation characteristics of the electromagnetic wave fluctuate. It was.
 さらに加えて、電磁波が漏洩するのは、クリップ部のようなインターフェース装置と電磁波伝播シートの境界だけではない。インターフェース装置の給電部近傍、給電部に接続される高周波ケーブル、高周波ケーブルと信号を入出力する信号処理装置といった部分も対策を施すことが求められる重大な漏洩箇所となっている。特許文献3のようにこれら漏洩箇所の数が増えれば、当然漏洩する可能性も増大してしまう問題がある。 Furthermore, it is not only the boundary between the interface device such as the clip unit and the electromagnetic wave propagation sheet that the electromagnetic wave leaks. The vicinity of the power supply unit of the interface device, the high-frequency cable connected to the power supply unit, and the signal processing device that inputs and outputs signals to and from the high-frequency cable are also serious leak points that require countermeasures. If the number of these leaking points increases as in Patent Document 3, there is a problem that the possibility of leakage naturally increases.
 本発明の目的は、電磁波の漏洩を抑制しつつ、電磁波伝播シートを動かしたときにも電磁波の伝搬特性を安定化できる電磁波伝播システム及び電磁波インターフェースコネクタを提供することにある。 An object of the present invention is to provide an electromagnetic wave propagation system and an electromagnetic wave interface connector capable of stabilizing the propagation characteristics of an electromagnetic wave even when the electromagnetic wave propagation sheet is moved while suppressing leakage of the electromagnetic wave.
 本願発明の一態様にかかる電磁波伝播システムは、電磁波インターフェース装置と、電磁波伝播シートと、前記電磁波インターフェース装置を内含するとともに前記電磁波伝播シートが挿入可能な開口部を有するシールド構造を備える。前記シールド構造の前記開口部は、前記電磁波インターフェース装置と前記電磁波伝播シートの端部を前記電磁波伝播シートの厚み方向に挟む領域を有する。前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分を覆い、電磁波の漏洩を遮蔽する遮蔽部材を有するものである。 An electromagnetic wave propagation system according to an aspect of the present invention includes an electromagnetic wave interface device, an electromagnetic wave propagation sheet, and a shield structure that includes the electromagnetic wave interface device and has an opening into which the electromagnetic wave propagation sheet can be inserted. The opening of the shield structure has a region that sandwiches the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet. The shield structure includes a shielding member that covers a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet and shields leakage of electromagnetic waves.
 本願発明の一態様にかかる電磁波インターフェースコネクタは、電磁波インターフェース装置を内含し、かつ電磁波伝播シートが挿入可能な開口部を有するシールド構造を備える。前記シールド構造の前記開口部は、前記電磁波インターフェース装置と前記電磁波伝播シートの端部を前記電磁波伝播シートの厚み方向に挟む領域を有する。前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分を覆い、電磁波の漏洩を遮蔽する遮蔽部材を有するものである。 The electromagnetic wave interface connector according to an aspect of the present invention includes a shield structure including an electromagnetic wave interface device and having an opening into which an electromagnetic wave propagation sheet can be inserted. The opening of the shield structure has a region that sandwiches the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet. The shield structure includes a shielding member that covers a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet and shields leakage of electromagnetic waves.
 本発明によれば、電磁波の漏洩を抑制しつつ、電磁波伝播シートを動かしたときにも電磁波の伝搬特性を安定化できる電磁波伝播システム及び電磁波インターフェースコネクタを提供することができる。 According to the present invention, it is possible to provide an electromagnetic wave propagation system and an electromagnetic wave interface connector that can stabilize the propagation characteristics of an electromagnetic wave even when the electromagnetic wave propagation sheet is moved while suppressing leakage of the electromagnetic wave.
発明の実施の形態1にかかる電磁波伝播システムの外観図である。It is an external view of the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波伝播システムの特徴部分を示す外観図である。It is an external view which shows the characteristic part of the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波伝播システムの断面図である。It is sectional drawing of the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波伝播システムの分解図である。It is an exploded view of the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波インターフェース装置を示す斜視図である。It is a perspective view which shows the electromagnetic wave interface apparatus concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波伝播システムにおけるシールド構造を示す斜視図である。It is a perspective view which shows the shield structure in the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態1にかかる電磁波伝播システムにおける高周波伝達特性を示す電磁界解析結果である。It is an electromagnetic field analysis result which shows the high frequency transmission characteristic in the electromagnetic wave propagation system concerning Embodiment 1 of invention. 発明の実施の形態2にかかる電磁波伝播システムの外観図である。It is an external view of the electromagnetic wave propagation system concerning Embodiment 2 of invention.
発明の実施の形態1.
 発明の実施の形態1にかかる電磁波伝播システムについて図を用いて説明する。図1は、当該電磁波伝播システムの構成を示す図である。図に示されるように、電磁波伝播システムは、電磁波伝播シート100、近接カプラ200、電磁波インターフェース装置300、高周波ケーブル400及び信号処理装置500を備えている。
Embodiment 1 of the Invention
The electromagnetic wave propagation system concerning Embodiment 1 of invention is demonstrated using figures. FIG. 1 is a diagram illustrating a configuration of the electromagnetic wave propagation system. As shown in the figure, the electromagnetic wave propagation system includes an electromagnetic wave propagation sheet 100, a proximity coupler 200, an electromagnetic wave interface device 300, a high frequency cable 400, and a signal processing device 500.
 電磁波伝播シート100の基本的構造は、従来知られているものと同等である。電磁波伝播シート100は、メッシュ電極101、通信層102及び裏面導体層103を備えている。 The basic structure of the electromagnetic wave propagation sheet 100 is the same as that conventionally known. The electromagnetic wave propagation sheet 100 includes a mesh electrode 101, a communication layer 102, and a back conductor layer 103.
 図1に示すように、電磁波伝播シート100の表面は、ほぼ全面にわたってメッシュ電極101が構成されている。このメッシュ電極101の開口から電磁波が浸出する。 As shown in FIG. 1, a mesh electrode 101 is formed on the entire surface of the electromagnetic wave propagation sheet 100 over the entire surface. An electromagnetic wave leaches out from the opening of the mesh electrode 101.
 なお、メッシュ電極101とは、規則的な網目である状態の他、規則的又は不規則的な形状の複数の開口が形成されている状態を言う。メッシュ電極101としては、開口部の形状が矩形である格子パターンが典型的ではあるが、その他、開口部の形状としては亀甲形、菱形、円形、三角形など各種形状をとり得る。メッシュ電極101である部分は、電磁波を外部に浸出させてサーフェイス通信を実現する部分となるので、この部分をサーフェイス通信部と称する。 Note that the mesh electrode 101 refers to a state in which a plurality of openings having a regular or irregular shape are formed in addition to a regular mesh. The mesh electrode 101 is typically a lattice pattern in which the shape of the opening is rectangular. However, the shape of the opening can take various shapes such as a turtle shell shape, a rhombus, a circle, and a triangle. Since the part which is the mesh electrode 101 becomes a part which exudes electromagnetic waves outside and implement | achieves surface communication, this part is called a surface communication part.
 メッシュ電極101は、例えば、正方形のメッシュ形状の構造を有する導体層である。メッシュの繰り返し単位は、横に隣り合う正方形の中心同士の距離に等しい。メッシュの繰返しの単位寸法は、通信層102の電磁波長より十分に短い。 The mesh electrode 101 is a conductor layer having a square mesh shape structure, for example. The repeating unit of the mesh is equal to the distance between the centers of the horizontally adjacent squares. The repeating unit dimension of the mesh is sufficiently shorter than the electromagnetic wave length of the communication layer 102.
 メッシュ電極101よりエバネッセント波と呼ばれる電磁波が滲み出すことで、メッシュ電極101の上方に電磁波の浸出領域が形成される。 When an electromagnetic wave called an evanescent wave oozes out from the mesh electrode 101, an electromagnetic wave leaching region is formed above the mesh electrode 101.
 通信層102は、誘電体より構成されている。この通信層102は、メッシュ電極101と裏面導体層103により挟まれている。通信層102は、電磁波伝播シート100の使用目的等に応じて材質が選択される。例えば、通信層102としては、樹脂、ゴム、ポリマーの発泡体、ゲル材、中空の構造体等を用いることができる。 The communication layer 102 is made of a dielectric. The communication layer 102 is sandwiched between the mesh electrode 101 and the back conductor layer 103. The material of the communication layer 102 is selected according to the purpose of use of the electromagnetic wave propagation sheet 100. For example, as the communication layer 102, resin, rubber, a polymer foam, a gel material, a hollow structure, or the like can be used.
 裏面導体層103は、通信層102の下面全体に亘って一様に拡がって設けられたプレーン形状電極である。裏面導体層103は、例えば、銅やアルミニウム等の金属箔や金属板により構成される。 The back conductor layer 103 is a plane-shaped electrode provided so as to extend uniformly over the entire lower surface of the communication layer 102. The back conductor layer 103 is made of, for example, a metal foil or a metal plate such as copper or aluminum.
 メッシュ電極101と裏面導体層103は、略平行な状態で配置され、メッシュ電極101及び裏面導体層103に挟まれる狭間領域を電磁波が進行する。ここでは、シート状の通信層102の両面にそれぞれメッシュ電極101と裏面導体層103が形成されるため、通信層102内を電磁波が進行する。同時に、メッシュ電極101から外部へはエバネッセント波を浸出させており、この浸出したエバネッセント波を介して近接カプラ200との通信を実現する。 The mesh electrode 101 and the back surface conductor layer 103 are arranged in a substantially parallel state, and electromagnetic waves travel through a space between the mesh electrode 101 and the back surface conductor layer 103. Here, since the mesh electrode 101 and the back conductor layer 103 are formed on both surfaces of the sheet-like communication layer 102, electromagnetic waves travel in the communication layer 102. At the same time, an evanescent wave is leached from the mesh electrode 101 to the outside, and communication with the proximity coupler 200 is realized via the leached evanescent wave.
 近接カプラ200は、誘電体と、その両面に設けられた2層の導体層(プレーン形状導体、パッチ導体)を備えるカプラ型受電装置である。近接カプラ200は、電磁波伝播シート100に載置して使用されるインターフェース装置であり、電磁波伝播シート100との間で電磁波の送受を行う。 The proximity coupler 200 is a coupler-type power receiving device including a dielectric and two conductor layers (plane-shaped conductor and patch conductor) provided on both sides thereof. The proximity coupler 200 is an interface device that is used by being placed on the electromagnetic wave propagation sheet 100, and transmits and receives electromagnetic waves to and from the electromagnetic wave propagation sheet 100.
 電磁波インターフェース装置300は、信号処理装置500から高周波ケーブル400を介して高周波信号を入力し、この高周波信号に応じた電磁波を発生し、電磁波伝播シート100に供給する。 The electromagnetic wave interface device 300 receives a high frequency signal from the signal processing device 500 via the high frequency cable 400, generates an electromagnetic wave corresponding to the high frequency signal, and supplies the electromagnetic wave to the electromagnetic wave propagation sheet 100.
 電磁波インターフェース装置300が接続される箇所において電磁波伝播シート100の端部側面は、メッシュ電極101と裏面導体層103は絶縁されている。ただし電磁波インターフェース装置300が接続される箇所以外はメッシュ電極101と裏面導体層103がスルーホール、圧着、導電性ペースト塗布などの方法によって導通していてもよい。 The mesh electrode 101 and the back conductor layer 103 are insulated from the side surface of the end portion of the electromagnetic wave propagation sheet 100 at the location where the electromagnetic wave interface device 300 is connected. However, the mesh electrode 101 and the back surface conductor layer 103 may be electrically connected to each other by a method such as through-hole, pressure bonding, and conductive paste coating except for a portion where the electromagnetic wave interface device 300 is connected.
 図2は、発明の実施の形態1にかかる電磁波伝播システムを示す概略図を、図3は図2のIII-III断面を含む斜視図である。さらに、図4は、図3に示す部分の分解図である。 FIG. 2 is a schematic view showing the electromagnetic wave propagation system according to the first embodiment of the invention, and FIG. 3 is a perspective view including a III-III section of FIG. 4 is an exploded view of the portion shown in FIG.
 本実施の形態1にかかる電磁波伝播システムは、図2に示されるように、さらに、シールド構造600を備えている。ここで、電磁波伝播シート100と、電磁波インターフェース装置300と、シールド構造600の配置関係を説明する。シールド構造600は電磁波インターフェース装置300を略内含する。即ち、シールド構造600は電磁波インターフェース装置300の外面全体の殆どを取り囲み、実質的に収納する。 The electromagnetic wave propagation system according to the first exemplary embodiment further includes a shield structure 600 as shown in FIG. Here, the arrangement relationship among the electromagnetic wave propagation sheet 100, the electromagnetic wave interface device 300, and the shield structure 600 will be described. The shield structure 600 substantially includes the electromagnetic wave interface device 300. That is, the shield structure 600 surrounds and substantially houses most of the entire outer surface of the electromagnetic wave interface device 300.
 しかしながら、シールド構造600は、電磁波インターフェース装置300を外部と完全に閉鎖するものではなく、電磁波インターフェース装置300には開放部601(図6参照)が設けられ、その部分において外部に開放されている。言い換えれば、シールド構造600は、この開放部601を除く部分において、電磁波インターフェース装置300を外部から覆っている。開放部601は、シールド構造600において、長手方向と平行な一側面に設けられ、その側面の中央部が長手方向の全領域に亘って形成された凹部である。 However, the shield structure 600 does not completely close the electromagnetic wave interface device 300 from the outside, and the electromagnetic wave interface device 300 is provided with an opening portion 601 (see FIG. 6), and the portion is open to the outside. In other words, the shield structure 600 covers the electromagnetic wave interface device 300 from the outside except for the opening 601. In the shield structure 600, the open part 601 is a concave part provided on one side surface parallel to the longitudinal direction, and the central part of the side surface is formed over the entire region in the longitudinal direction.
 開放部601には電磁波伝播シート100が挿入され、電磁波インターフェース装置300と電磁波伝播シート100の各端部側面が面するように配置される。開放部601に電磁波伝播シート100が挿入された状態においては、開放部601は電磁波伝播シート100によって塞がれることになるため、シールド構造600によって、電磁波インターフェース装置300は、実質的に外部と閉鎖される。 The electromagnetic wave propagation sheet 100 is inserted into the open part 601, and the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 are arranged so that the side surfaces of the end parts face each other. In a state where the electromagnetic wave propagation sheet 100 is inserted into the open part 601, the open part 601 is closed by the electromagnetic wave propagation sheet 100. Therefore, the electromagnetic wave interface device 300 is substantially closed from the outside by the shield structure 600. Is done.
 図3及び図4に示されるように、シールド構造600は、その略中央部に、電磁波インターフェース装置300が内蔵されている。より具体的には、シールド構造600は、板状の底面部602上に電磁波インターフェース装置300が設置されている。電磁波インターフェース装置300の上面は、当該シールド構造600の上面部603と離間しており、電気的に非接触状態にある。 As shown in FIG. 3 and FIG. 4, the shield structure 600 has an electromagnetic wave interface device 300 built in substantially the center thereof. More specifically, in the shield structure 600, the electromagnetic wave interface device 300 is installed on the plate-like bottom surface portion 602. The upper surface of the electromagnetic wave interface device 300 is separated from the upper surface portion 603 of the shield structure 600 and is in an electrically non-contact state.
 シールド構造600の底面部602は、電磁波伝播シート100の一端領域を下側から裏面導体層103と当接して保持する。シールド構造600の底面部602と上面部603は、介在部604を介して互いに平行になるように支持されている。電磁波インターフェース装置300の一端部(後端部)は、介在部604の内側面と当接している。電磁波インターフェース装置300の他端部(前端部)は、電磁波伝播シート100の一側面と接触している。 The bottom surface portion 602 of the shield structure 600 holds one end region of the electromagnetic wave propagation sheet 100 in contact with the back conductor layer 103 from below. The bottom surface portion 602 and the top surface portion 603 of the shield structure 600 are supported so as to be parallel to each other via the interposition portion 604. One end (rear end) of the electromagnetic wave interface device 300 is in contact with the inner surface of the interposition part 604. The other end (front end) of the electromagnetic wave interface device 300 is in contact with one side surface of the electromagnetic wave propagation sheet 100.
 シールド構造600の上面部603は、底面部602と主面において同じ形状を有する。シールド構造600の先端には、先端部605が設けられている。先端部605は、電磁波伝播シート100の一端領域を上側からメッシュ電極101と当接して保持する。 The upper surface portion 603 of the shield structure 600 has the same shape as the bottom surface portion 602 on the main surface. A tip portion 605 is provided at the tip of the shield structure 600. The front end portion 605 holds one end region of the electromagnetic wave propagation sheet 100 in contact with the mesh electrode 101 from above.
 シールド構造600の側面部606は、シールド構造600において開放部601が設けられた側とは反対側の面から、開放部601において電磁波伝播シート100を受け入れる面(即ち、電磁波インターフェース装置300と電磁波伝播シート100との当接面)までの領域において、電磁波インターフェース装置300を覆う。 The side surface portion 606 of the shield structure 600 is a surface that receives the electromagnetic wave propagation sheet 100 in the open portion 601 from the surface opposite to the side where the open portion 601 is provided in the shield structure 600 (that is, the electromagnetic wave interface device 300 and the electromagnetic wave propagation). The electromagnetic wave interface device 300 is covered in a region up to the contact surface with the sheet 100).
 底面部602は、電磁波インターフェース装置300の下面を外部から遮蔽する。上面部603は、電磁波インターフェース装置300の上面を外部から遮蔽する。介在部604は、電磁波インターフェース装置300の後面を外部から遮蔽する。先端部605は、電磁波インターフェース装置300の上側の空間を外部から遮蔽する。側面部606は、電磁波インターフェース装置300の側面を外部から遮蔽する。 The bottom surface portion 602 shields the lower surface of the electromagnetic wave interface device 300 from the outside. The upper surface portion 603 shields the upper surface of the electromagnetic wave interface device 300 from the outside. The interposition part 604 shields the rear surface of the electromagnetic wave interface device 300 from the outside. The tip 605 shields the space above the electromagnetic wave interface device 300 from the outside. The side surface portion 606 shields the side surface of the electromagnetic wave interface device 300 from the outside.
 シールド構造600の底面部602、上面部603、介在部604、先端部605、側面部606のそれぞれは、一体的に構成されていてもよく、別々に構成され、機構的に、または接着剤等で固定されていてもよい。 Each of the bottom surface portion 602, the top surface portion 603, the interposition portion 604, the distal end portion 605, and the side surface portion 606 of the shield structure 600 may be integrally formed, separately formed, mechanically, adhesive, or the like. It may be fixed with.
 ここで、図5を用いて、電磁波インターフェース装置300の詳細な構成について説明する。図5に示されるように、電磁波インターフェース装置300は、誘電体基板303の一面(図5における表面)に2分の1波長で共振する長方形開口のスロット共振器電極310と、スロット共振器結合線路302を有する。また、スロット共振器電極310とスロット共振器結合線路302が形成された面と対向する面である他面(図5における裏面)にはグランド電極304が設けられている。 Here, the detailed configuration of the electromagnetic wave interface device 300 will be described with reference to FIG. As shown in FIG. 5, the electromagnetic wave interface device 300 includes a slot resonator electrode 310 having a rectangular opening that resonates at one-half wavelength on one surface of the dielectric substrate 303 (the surface in FIG. 5), and a slot resonator coupling line. 302. In addition, a ground electrode 304 is provided on the other surface (the back surface in FIG. 5) that is the surface opposite to the surface on which the slot resonator electrode 310 and the slot resonator coupling line 302 are formed.
 スロット共振器電極310は、その1長辺が電磁波インターフェース装置300の端部となる1辺を共有するように形成される。さらにスロット共振器電極310の長辺方向と、電磁波インターフェース装置300に対して側面が面している電磁波伝播シート100の辺とは、互いに略平行かつ近接して配置される。 The slot resonator electrode 310 is formed so that one long side thereof shares one side that is an end of the electromagnetic wave interface device 300. Further, the long-side direction of the slot resonator electrode 310 and the side of the electromagnetic wave propagation sheet 100 whose side faces the electromagnetic wave interface device 300 are disposed substantially parallel and close to each other.
 スロット共振器結合線路302は、スロット共振器電極310の開口311の中央を横断し、スロット共振器結合線路302の1端は電磁波伝播シート100がある側のスロット共振器電極310の開口311の長辺と接続されている。スロット共振器電極310の2短辺312と、スロット共振器結合線路302が信号を伝送する領域を除く電磁波伝播シート100の反対側長辺の各周囲は複数のスルーホール305が施される。スルーホール305は、スロット共振器電極310とグランド電極304を導電的に接続している。グランド電極304は、シールド構造600の底面部602と接触している。 The slot resonator coupling line 302 traverses the center of the opening 311 of the slot resonator electrode 310, and one end of the slot resonator coupling line 302 is the length of the opening 311 of the slot resonator electrode 310 on the side where the electromagnetic wave propagation sheet 100 is present. Connected to the edge. A plurality of through holes 305 are provided around each of the two short sides 312 of the slot resonator electrode 310 and the opposite long side of the electromagnetic wave propagation sheet 100 excluding a region where the slot resonator coupling line 302 transmits a signal. The through hole 305 electrically connects the slot resonator electrode 310 and the ground electrode 304. The ground electrode 304 is in contact with the bottom surface portion 602 of the shield structure 600.
 また、スロット共振器結合線路302の他端側は、電磁波インターフェース装置300の給電部301をなし、給電部301は回路的に信号処理装置500と接続されている。信号処理装置500は、電磁波インターフェース装置300の基板上に実装するなどによってシールド構造600の内部に設置される。ただし、信号処理装置500は、シールド構造600の外部に設け、高周波ケーブル400を介して電磁波インターフェース装置300と接続するようにしてもよい。 Further, the other end side of the slot resonator coupling line 302 constitutes a power feeding unit 301 of the electromagnetic wave interface device 300, and the power feeding unit 301 is connected to the signal processing device 500 in a circuit. The signal processing device 500 is installed inside the shield structure 600, for example, by being mounted on the substrate of the electromagnetic wave interface device 300. However, the signal processing device 500 may be provided outside the shield structure 600 and connected to the electromagnetic wave interface device 300 via the high-frequency cable 400.
 図6にシールド構造600の外観を示す。電磁波インターフェース装置300を内含するシールド構造600は内部からの高周波信号の漏洩を遮蔽するように、全体が金属により構成される。また、シールド構造600は、樹脂筐体に金属膜を形成して構成するようにしてもよい。このとき、金属膜は、樹脂筐体の内側、外側、内部のいずれに形成されていてもよい。なお、電磁波の漏洩を遮蔽する遮蔽部材は、金属でなくても、同様の効果を奏する材料であればよい。 Fig. 6 shows the appearance of the shield structure 600. The shield structure 600 including the electromagnetic wave interface device 300 is entirely made of metal so as to shield leakage of high-frequency signals from the inside. The shield structure 600 may be configured by forming a metal film on a resin casing. At this time, the metal film may be formed inside, outside, or inside the resin casing. In addition, the shielding member which shields the leakage of electromagnetic waves may be a material which has the same effect even if it is not a metal.
 電磁波の漏洩を遮蔽する遮蔽部材は、電磁波インターフェース装置300と電磁波伝播シート100の境界部分を覆う位置に設けられていれば、電磁波インターフェース装置300と電磁波伝播シート100の境界部分で間隙が生じた場合に、信号伝達の劣化を抑制できる。 If the shielding member that shields the leakage of the electromagnetic wave is provided at a position that covers the boundary portion between the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100, a gap is generated at the boundary portion between the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100. In addition, signal transmission degradation can be suppressed.
 シールド構造600の一部には、上述のように、開放部601が設けられている。
 シールド構造600は、電磁波インターフェース装置300のスロット共振器電極310の電磁波伝播シート100側長辺と、電磁波伝播シート100の各一部と上下に面するようにして、シールド構造600、電磁波インターフェース装置300、電磁波伝播シート100を固定する。
As described above, the opening portion 601 is provided in a part of the shield structure 600.
The shield structure 600 faces the electromagnetic wave propagation sheet 100 long side of the slot resonator electrode 310 of the electromagnetic wave interface device 300 and each part of the electromagnetic wave propagation sheet 100 so as to face up and down. The electromagnetic wave propagation sheet 100 is fixed.
 電磁波インターフェース装置300と電磁波伝播シート100は互いに面することが望ましい。即ち、電磁波インターフェース装置300における電磁波伝播シート100側の端面と、電磁波伝播シート100における電磁波インターフェース装置300側の端面とが互いに当接することが望ましいが、シールド構造600が上下から、当接領域を覆っている場合には、両者の間に間隙があってもよい。また、電磁波インターフェース装置300と電磁波伝播シート100の固定には、粘着テープやネジを用いて物理的に固着してもよい。 It is desirable that the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 face each other. That is, it is desirable that the end surface on the electromagnetic wave propagation sheet 100 side in the electromagnetic wave interface device 300 and the end surface on the electromagnetic wave interface device 300 side in the electromagnetic wave propagation sheet 100 are in contact with each other, but the shield structure 600 covers the contact region from above and below. If there is, there may be a gap between them. The electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 may be fixed physically using an adhesive tape or a screw.
 以上述べたような構成を有する電磁波伝播システムの処理動作について、信号処理装置500が信号を発生する状態を例に説明する。 The processing operation of the electromagnetic wave propagation system having the configuration as described above will be described by taking as an example a state in which the signal processing device 500 generates a signal.
 信号処理装置500で発生させた高周波信号は、給電部301とスロット共振器結合線路302を介してスロット共振器電極310を励振する。スロット共振器電極310は、その電極開口311の長辺の長さが高周波信号の波長に対して略2分の1波長となる条件において共振動作する。共振動作に入ったスロット共振器電極310には、スロット共振器電極310の短辺方向の強い電界成分が発生する。 The high-frequency signal generated by the signal processing device 500 excites the slot resonator electrode 310 via the power feeding unit 301 and the slot resonator coupling line 302. The slot resonator electrode 310 resonates under the condition that the length of the long side of the electrode opening 311 is approximately a half wavelength with respect to the wavelength of the high frequency signal. A strong electric field component in the short side direction of the slot resonator electrode 310 is generated in the slot resonator electrode 310 that has entered the resonance operation.
 ここで、スロット共振器電極310の長辺313の長さは、厳密に高周波信号の波長の2分の1となる必然性はなく、長辺313が誘電体基板303の誘電体の効果によってより短い長さでも共振動作の条件を満たすこともあれば、共振器のQ値に応じた帯域内で共振動作の条件を満たすことも可能となる。 Here, the length of the long side 313 of the slot resonator electrode 310 is not necessarily exactly one half of the wavelength of the high-frequency signal, and the long side 313 is shorter due to the dielectric effect of the dielectric substrate 303. The length can satisfy the condition of the resonance operation, or the condition of the resonance operation can be satisfied within the band corresponding to the Q value of the resonator.
 スロット共振器電極310に発生した短辺方向の電界成分は、続いて誘電体基板303内部に進行しつつ、スロット共振器電極310周辺に配置したスルーホール305に拘束されるために、次第にスロット共振器電極310のスルーホール305が無い長辺側に伝搬して、誘電体基板303の厚さ方向の電界成分へと変化してゆく。 The electric field component in the short side direction generated in the slot resonator electrode 310 is continuously restrained by the through holes 305 arranged around the slot resonator electrode 310 while proceeding to the inside of the dielectric substrate 303, so that the slot resonance gradually increases. It propagates to the long side where the through hole 305 of the electrode 310 does not exist, and changes to an electric field component in the thickness direction of the dielectric substrate 303.
 この誘電体基板303の厚さ方向となった電界成分は、ちょうど電磁波伝播シート100の主たる伝搬モードの電界成分と同等である。また同時に、誘電体基板303の厚さ方向となった電界成分は、電磁波インターフェース装置300と電磁波伝播シート100を上下に挟んで固定するシールド構造600の上下金属間に発生しうる平行平板モードの電界成分とも同等である。すなわち、スロット共振器電極310の1長辺を共有する電磁波インターフェース装置300の1辺内に生じた誘電体基板303断面方向の電界成分は、シールド構造600の上下金属にはさまれた電磁波インターフェース装置300と電磁波伝播シート100の間隙では平行平板モードとして、さらに近接する電磁波伝播シート100内の伝搬モードとして、ともに効率よく結合してゆく。 The electric field component in the thickness direction of the dielectric substrate 303 is equivalent to the electric field component of the main propagation mode of the electromagnetic wave propagation sheet 100. At the same time, the electric field component in the thickness direction of the dielectric substrate 303 is a parallel plate mode electric field that can be generated between the upper and lower metals of the shield structure 600 that fixes the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 between the upper and lower sides. The ingredients are equivalent. That is, the electric field component in the cross-sectional direction of the dielectric substrate 303 generated in one side of the electromagnetic wave interface device 300 sharing one long side of the slot resonator electrode 310 is an electromagnetic wave interface device sandwiched between upper and lower metals of the shield structure 600. In the gap between 300 and the electromagnetic wave propagation sheet 100, both are combined efficiently as a parallel plate mode and further as a propagation mode in the electromagnetic wave propagation sheet 100 that is close to each other.
 こうして、スロット共振器電極310が2分の1波長の共振動作を生じる周波数帯において、信号処理装置500で発生した信号は給電部301、電磁波インターフェース装置300を介して電磁波伝播シート100内へと伝搬することが可能となる。 Thus, the signal generated by the signal processing device 500 propagates into the electromagnetic wave propagation sheet 100 via the power supply unit 301 and the electromagnetic wave interface device 300 in the frequency band in which the slot resonator electrode 310 generates a half-wave resonance operation. It becomes possible to do.
 なお、信号処理装置500が信号を受信する状態は、相反性によってちょうど反対の動作をするとみなしてよい。電磁波伝播シート100内の高周波信号は、電磁波インターフェース装置300に達してスロット共振器電極310を共振動作させ、スロット共振器結合線路302から給電部301を介して信号処理装置500に入力されていく。 Note that the state in which the signal processing device 500 receives a signal may be regarded as just the opposite operation due to reciprocity. The high-frequency signal in the electromagnetic wave propagation sheet 100 reaches the electromagnetic wave interface device 300 to cause the slot resonator electrode 310 to resonate and is input to the signal processing device 500 from the slot resonator coupling line 302 via the power feeding unit 301.
 図7に、以上説明した構成を有する電磁波インターフェース装置300を図2のように方形の電磁波伝播シート100の対向する2箇所に配置した場合の、2箇所の電磁波インターフェース装置300間の高周波散乱特性を示す。 FIG. 7 shows the high-frequency scattering characteristics between the two electromagnetic wave interface devices 300 when the electromagnetic wave interface device 300 having the above-described configuration is arranged at two opposite positions of the rectangular electromagnetic wave propagation sheet 100 as shown in FIG. Show.
 図7にS2,1として実線で示す高周波伝達特性は、例えば周波数2.463GHzにおける2箇所の電磁波インターフェース装置300間の高周波伝達特性として、2箇所の電磁波インターフェース装置300と電磁波伝播シート100の接続部、および電磁波伝播シート100内の伝播損失を含んでも-0.63dBと小さい。したがって電磁波インターフェース装置300から電磁波伝播シート100内に高周波信号が良好に入力可能な電磁波伝播システムが構成されていることがわかる。 The high-frequency transmission characteristic indicated by the solid line as S2, 1 in FIG. 7 is, for example, a high-frequency transmission characteristic between two electromagnetic wave interface devices 300 at a frequency of 2.463 GHz, and a connection portion between the two electromagnetic wave interface devices 300 and the electromagnetic wave propagation sheet 100. Including the propagation loss in the electromagnetic wave propagation sheet 100, it is as small as −0.63 dB. Therefore, it can be seen that an electromagnetic wave propagation system that can satisfactorily input a high-frequency signal from the electromagnetic wave interface device 300 into the electromagnetic wave propagation sheet 100 is configured.
 このような第1の実施形態の構成を備える本実施形態によれば、次の効果を奏する。 According to the present embodiment having the configuration of the first embodiment, the following effects are obtained.
 第1に、電磁波インターフェース装置300と電磁波伝播シート100をスロット共振器電極310が共振する高周波帯域において効率よく接続することが可能となる。 First, the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 can be efficiently connected in a high frequency band where the slot resonator electrode 310 resonates.
 第2に、各構成要素やそれらの境界部分の間隙において電磁界漏洩が生じても、電磁波インターフェース装置300から電磁波伝播シート100に達するまで、より好ましくは信号処理装置500から電磁波伝播シート100に達するまでの全ての構成要素はシールド構造600内部に配置されているために、電磁波伝播システムの外部に対して電磁波を漏洩することが抑制できる。例えば本発明において用いたようなスロット共振器電極をシールド無しに用いると、スロット共振器電極から一部の電力は空間へと放射され、電磁波を大幅に漏洩させる問題を生じる。 Second, even if electromagnetic field leakage occurs in the gaps between the components and their boundary portions, the electromagnetic wave interface device 300 reaches the electromagnetic wave propagation sheet 100, more preferably, the signal processing device 500 reaches the electromagnetic wave propagation sheet 100. Since all the constituent elements up to are arranged inside the shield structure 600, leakage of electromagnetic waves to the outside of the electromagnetic wave propagation system can be suppressed. For example, when a slot resonator electrode as used in the present invention is used without a shield, a part of electric power is radiated from the slot resonator electrode to the space, causing a problem of greatly leaking electromagnetic waves.
 第3には、仮に電磁波伝播システム全体を移動させたり衝撃を受けたりして電磁波インターフェース装置300と電磁波伝播シート100の境界部分で間隙が生じても、この間隙部分が電磁波インターフェース装置300と電磁波伝播シート100を上下に挟むシールド構造600の内部にある限り信号伝達の劣化を抑制できる。また電磁波インターフェース装置300と電磁波伝播シート100の接続部の位置による特性バラつきを軽減できる。 Thirdly, even if a gap is generated at the boundary between the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 by moving the entire electromagnetic wave propagation system or receiving an impact, the gap is formed between the electromagnetic wave interface device 300 and the electromagnetic wave propagation. Deterioration of signal transmission can be suppressed as long as it is inside the shield structure 600 that sandwiches the sheet 100 vertically. Moreover, the characteristic variation by the position of the connection part of the electromagnetic wave interface apparatus 300 and the electromagnetic wave propagation sheet 100 can be reduced.
 第4には、電磁波インターフェース装置300の一面にスロット共振器電極310を設けることにより、電磁波インターフェース装置300は一般のプリント基板プロセスだけで製造できるため、電磁波インターフェース装置300の低コスト化に寄与する。さらに電磁波インターフェース装置300を一般的なプリント基板プロセスで製造すれば、信号処理装置500をはじめとする回路素子との親和性も高くなり、信号処理装置500だけでなくフィルタ回路、電源回路、マイコン制御回路なども電磁波インターフェース装置300に一体化することが容易となる。 Fourth, by providing the slot resonator electrode 310 on one surface of the electromagnetic wave interface device 300, the electromagnetic wave interface device 300 can be manufactured only by a general printed circuit board process, which contributes to cost reduction of the electromagnetic wave interface device 300. Further, if the electromagnetic wave interface device 300 is manufactured by a general printed circuit board process, the compatibility with circuit elements such as the signal processing device 500 is increased, and not only the signal processing device 500 but also a filter circuit, a power supply circuit, and a microcomputer control. A circuit and the like can be easily integrated into the electromagnetic wave interface device 300.
発明の実施の形態2.
 図8は、本実施形態2にかかる電磁波伝播システムを示す概略図である。図1に示される発明の実施の形態1では、シールド構造600が電磁波インターフェース装置300の周囲のみに対して構成されていることに対して、本実施の形態2では、図8に示されるように、シールド構造600が電磁波伝播シート100の周囲を全体に覆うように構成されている。シールド構造600の内部には、電磁波インターフェース装置300を1個だけでなく、複数内含してもよい。
Embodiment 2 of the Invention
FIG. 8 is a schematic diagram illustrating an electromagnetic wave propagation system according to the second embodiment. In the first embodiment of the invention shown in FIG. 1, the shield structure 600 is configured only around the electromagnetic wave interface device 300, whereas in the second embodiment, as shown in FIG. The shield structure 600 is configured to cover the entire periphery of the electromagnetic wave propagation sheet 100. The shield structure 600 may include not only one electromagnetic wave interface device 300 but also a plurality of electromagnetic wave interface devices 300.
 このような第2の実施形態の構成を備える本実施形態によれば、次の効果を奏する。 According to this embodiment having the configuration of the second embodiment as described above, the following effects are obtained.
 第1に電磁波インターフェース装置300や信号処理装置500からの電磁波の漏洩のみならず、電磁波伝播シート100の端部側面からの電磁波漏洩を抑圧できる点にある。これは電磁波伝播シート300の全ての端部側面がシールド構造600によって遮蔽されていることによる。 First, not only leakage of electromagnetic waves from the electromagnetic wave interface device 300 or the signal processing device 500 but also leakage of electromagnetic waves from the side surface of the electromagnetic wave propagation sheet 100 can be suppressed. This is because all side surfaces of the electromagnetic wave propagation sheet 300 are shielded by the shield structure 600.
 第2に電磁波伝播シート100の端部側面に対して広範囲にシールド構造600を配置すれば、特許文献3に示すような複数の電磁波インターフェース装置を用いてアレー素子的な制御を加える場合に対応して複数の電磁波インターフェース装置300をシールド構造600に内含することが可能となる。さらに電磁波インターフェース装置300の増加とともに電磁波漏洩源が数的に増加するにもかかわらず電磁波漏洩が抑制される。 Secondly, if the shield structure 600 is arranged over a wide range with respect to the side surface of the end portion of the electromagnetic wave propagation sheet 100, it corresponds to the case where array element control is applied using a plurality of electromagnetic wave interface devices as shown in Patent Document 3. Thus, a plurality of electromagnetic wave interface devices 300 can be included in the shield structure 600. Furthermore, electromagnetic wave leakage is suppressed despite the increase in the number of electromagnetic wave leakage sources as the number of electromagnetic wave interface devices 300 increases.
 尚、上記実施の形態は、以下のように記載することができる。シールド構造600の解放部601は、電磁波インターフェース装置300と電磁波伝播シート100の端部(辺縁部)を挟む領域を備える。この領域は、電磁波インターフェース装置300と電磁波伝播シート100の端部を電磁波伝播シート100の厚み方向に挟む。この領域は、電磁波インターフェース装置300と電磁波伝播シート100の端部表面となる部分を上下に挟む。解放部601は開口部601と称される場合がある。 The above embodiment can be described as follows. The release portion 601 of the shield structure 600 includes a region that sandwiches the electromagnetic wave interface device 300 and the end portion (edge portion) of the electromagnetic wave propagation sheet 100. This region sandwiches the end portions of the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 in the thickness direction of the electromagnetic wave propagation sheet 100. This region sandwiches the part that becomes the end surface of the electromagnetic wave interface device 300 and the electromagnetic wave propagation sheet 100 up and down. The release part 601 may be referred to as an opening part 601.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2012年9月28日に出願された日本出願特願2012-217568を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-217568 filed on September 28, 2012, the entire disclosure of which is incorporated herein.
 100 電磁波伝播シート
 101 メッシュ電極
 102 通信層
 103 裏面導体層
 200 近接カプラ
 300 電磁波インターフェース装置
 301 給電部
 302 スロット共振器結合線路
 303 誘電体基板
 304 グランド電極
 305 スルーホール
 310 スロット共振器電極
 311 開口
 312 短辺
 313 長辺
 400 高周波ケーブル
 500 信号処理装置
 600 シールド構造
 601 開放部
DESCRIPTION OF SYMBOLS 100 Electromagnetic wave propagation sheet 101 Mesh electrode 102 Communication layer 103 Back surface conductor layer 200 Proximity coupler 300 Electromagnetic wave interface device 301 Feed part 302 Slot resonator coupling line 303 Dielectric substrate 304 Ground electrode 305 Through hole 310 Slot resonator electrode 311 Opening 312 Short side 313 Long side 400 High frequency cable 500 Signal processing device 600 Shield structure 601 Opening part

Claims (10)

  1.  電磁波インターフェース装置と、電磁波伝播シートと、前記電磁波インターフェース装置を内含するとともに前記電磁波伝播シートが挿入可能な開口部を有するシールド構造を備え、
     前記シールド構造の前記開口部は、前記電磁波インターフェース装置と前記電磁波伝播シートの端部を前記電磁波伝播シートの厚み方向に挟む領域を有し、
     前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分を覆い、電磁波の漏洩を遮蔽する遮蔽部材を有する、電磁波伝播システム。
    An electromagnetic wave interface device, an electromagnetic wave propagation sheet, and a shield structure including the electromagnetic wave interface device and having an opening into which the electromagnetic wave propagation sheet can be inserted,
    The opening of the shield structure has a region sandwiching the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet,
    The electromagnetic wave propagation system, wherein the shield structure includes a shielding member that covers a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet and shields leakage of electromagnetic waves.
  2.  前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分近傍に加えて、前記電磁波インターフェース装置を覆う領域に、前記遮蔽部材を有する請求項1記載の電磁波伝播システム。 The electromagnetic wave propagation system according to claim 1, wherein the shield structure includes the shielding member in a region covering the electromagnetic wave interface device in addition to the vicinity of a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet.
  3.  前記遮蔽部材は、金属材料により構成されている請求項1又は2に記載の電磁波伝播システム。 The electromagnetic wave propagation system according to claim 1 or 2, wherein the shielding member is made of a metal material.
  4.  前記電磁波インターフェース装置と前記電磁波伝播シートは、前記電磁波インターフェース装置の一面端部にあるスロット共振器電極が前記電磁波伝播シートの端部側面と略平行且つ近接するように配置されている請求項1~3いずれかに記載の電磁波伝播システム。 The electromagnetic wave interface device and the electromagnetic wave propagation sheet are arranged such that a slot resonator electrode at one end portion of the electromagnetic wave interface device is substantially parallel to and close to the side surface of the end portion of the electromagnetic wave propagation sheet. 3. The electromagnetic wave propagation system according to any one of 3.
  5.  前記電磁波インターフェース装置には信号処理装置が回路的に接続されており、前記信号処理装置が前記シールド構造に内含される請求項1~4いずれかに記載の電磁波伝播システム。 5. The electromagnetic wave propagation system according to claim 1, wherein a signal processing device is connected to the electromagnetic wave interface device in a circuit, and the signal processing device is included in the shield structure.
  6.  前記シールド構造は、前記電磁波伝播シートの端部側面を略全体的に囲んで構成された請求項1~5いずれかに記載の電磁波伝播システム。 The electromagnetic wave propagation system according to any one of claims 1 to 5, wherein the shield structure is configured so as to substantially surround an end side surface of the electromagnetic wave propagation sheet.
  7.  前記シールド構造は、金属材料により構成されている請求項1~6いずれかに記載の電磁波伝播システム。 The electromagnetic wave propagation system according to any one of claims 1 to 6, wherein the shield structure is made of a metal material.
  8.  電磁波インターフェース装置を内含し、かつ電磁波伝播シートが挿入可能な開口部を有するシールド構造を備え、
     前記シールド構造の前記開口部は、前記電磁波インターフェース装置と前記電磁波伝播シートの端部を前記電磁波伝播シートの厚み方向に挟む領域を有し、
     前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分を覆い、電磁波の漏洩を遮蔽する遮蔽部材を有する、電磁波インターフェースコネクタ。
    Including a shield structure including an electromagnetic wave interface device and having an opening into which an electromagnetic wave propagation sheet can be inserted;
    The opening of the shield structure has a region sandwiching the electromagnetic wave interface device and an end of the electromagnetic wave propagation sheet in the thickness direction of the electromagnetic wave propagation sheet,
    The said shield structure is an electromagnetic wave interface connector which has the shielding member which covers the boundary part of the said electromagnetic wave interface apparatus and the said electromagnetic wave propagation sheet, and shields the leakage of electromagnetic waves.
  9.  前記シールド構造は、前記電磁波インターフェース装置と前記電磁波伝播シートの境界部分近傍に加えて、前記電磁波インターフェース装置を覆う領域に、前記遮蔽部材を有する請求項8記載の電磁波インターフェースコネクタ。 9. The electromagnetic wave interface connector according to claim 8, wherein the shield structure includes the shielding member in a region covering the electromagnetic wave interface device in addition to the vicinity of a boundary portion between the electromagnetic wave interface device and the electromagnetic wave propagation sheet.
  10.  前記遮蔽部材は、金属材料により構成されている請求項8又は9に記載の電磁波インターフェースコネクタ。 The electromagnetic wave interface connector according to claim 8 or 9, wherein the shielding member is made of a metal material.
PCT/JP2013/004214 2012-09-28 2013-07-08 Electromagnetic wave propagation system and electromagnetic wave interface connector WO2014049920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538099A JPWO2014049920A1 (en) 2012-09-28 2013-07-08 Electromagnetic wave propagation system and electromagnetic wave interface connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012217568 2012-09-28
JP2012-217568 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014049920A1 true WO2014049920A1 (en) 2014-04-03

Family

ID=50387375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004214 WO2014049920A1 (en) 2012-09-28 2013-07-08 Electromagnetic wave propagation system and electromagnetic wave interface connector

Country Status (2)

Country Link
JP (1) JPWO2014049920A1 (en)
WO (1) WO2014049920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123013A (en) * 2014-12-25 2016-07-07 株式会社イトーキ Antenna unit
JP2019506825A (en) * 2015-12-24 2019-03-07 エナージャス コーポレイション Near field wireless power charging antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244718A (en) * 2000-02-28 2001-09-07 Mitsumi Electric Co Ltd Antenna system
JP2011009801A (en) * 2009-06-23 2011-01-13 Serukurosu:Kk Highly efficient electromagnetic wave interface apparatus and electromagnetic wave transmission system
JP2013031001A (en) * 2011-07-28 2013-02-07 Toshiba Tec Corp Wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244718A (en) * 2000-02-28 2001-09-07 Mitsumi Electric Co Ltd Antenna system
JP2011009801A (en) * 2009-06-23 2011-01-13 Serukurosu:Kk Highly efficient electromagnetic wave interface apparatus and electromagnetic wave transmission system
JP2013031001A (en) * 2011-07-28 2013-02-07 Toshiba Tec Corp Wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123013A (en) * 2014-12-25 2016-07-07 株式会社イトーキ Antenna unit
JP2019506825A (en) * 2015-12-24 2019-03-07 エナージャス コーポレイション Near field wireless power charging antenna

Also Published As

Publication number Publication date
JPWO2014049920A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
US9882256B2 (en) High-frequency signal transmission line and electronic apparatus
CN103633426B (en) Antenna structure and mobile terminal device
JP5969816B2 (en) Structural member and communication device
KR102002874B1 (en) Antenna device for portable terminal
JP5678888B2 (en) Communication transmission device, communication coupler and impedance adjustment sheet
US20110044019A1 (en) Electromagnetic shield structure, wireless device using the structure, and method of manufacturing electromagnetic shield
WO2015122203A1 (en) Printed circuit board
KR20040081120A (en) Emc-arrangement for a device employing wireless data transfer
US20130306363A1 (en) Structure
WO2015198667A1 (en) Optical transmitter-receiver
CN105826656A (en) Shell body, antenna device and mobile terminal
WO2014049920A1 (en) Electromagnetic wave propagation system and electromagnetic wave interface connector
JP2018017861A (en) Optical module
KR20200101006A (en) Flexible flat cable and method for manufacturing the same
JP2019106690A (en) Wireless communication device
JP5601325B2 (en) Communications system
JP6320791B2 (en) Transmission line structure, casing and electronic device
JP7231047B2 (en) Antenna installation structure and electronic equipment
CN115836442A (en) Antenna device
WO2015122204A1 (en) Electronic component for noise reduction
CN108702223B (en) Power supply system and feed port for two-dimensional communication piece
WO2017138475A1 (en) Two-dimensional communication sheet
JP2013211493A (en) High frequency shield structure
KR101195034B1 (en) Shielding structure for eliminating electromagnetic wave noise
CN217363377U (en) Transmission line and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841671

Country of ref document: EP

Kind code of ref document: A1