WO2014041965A1 - Display device, and driving circuit and driving method therefor - Google Patents

Display device, and driving circuit and driving method therefor Download PDF

Info

Publication number
WO2014041965A1
WO2014041965A1 PCT/JP2013/072175 JP2013072175W WO2014041965A1 WO 2014041965 A1 WO2014041965 A1 WO 2014041965A1 JP 2013072175 W JP2013072175 W JP 2013072175W WO 2014041965 A1 WO2014041965 A1 WO 2014041965A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning signal
voltage
scanning
signal line
pixel
Prior art date
Application number
PCT/JP2013/072175
Other languages
French (fr)
Japanese (ja)
Inventor
田中 学
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014041965A1 publication Critical patent/WO2014041965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines

Definitions

  • the present invention relates to a display device such as an active matrix type liquid crystal display device having a plurality of scanning signal lines and a plurality of data signal lines crossing the scanning signal lines. More specifically, the selection order of the plurality of scanning signal lines, that is, the scanning direction.
  • the present invention relates to an active matrix display device capable of switching between the two, a driving circuit and a driving method thereof.
  • An active matrix liquid crystal display device is arranged in a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting with the data signal lines, the plurality of data signal lines and the plurality of scanning signal lines.
  • a plurality of pixel formation portions are provided, and each pixel formation portion includes a pixel capacitor and a switching element.
  • the switching element a thin film transistor (hereinafter referred to as “TFT”) is usually used.
  • TFT thin film transistor
  • the pixel capacitance in each pixel formation portion is formed by a pixel electrode and a common electrode (also referred to as “counter electrode”) opposite to the pixel electrode with the liquid crystal in between, and the pixel electrode serves as the switching element.
  • the corresponding data signal line is connected through the TFT, and the corresponding scanning signal line is connected to the gate terminal of the TFT.
  • AC driving is performed to prevent deterioration of the liquid crystal. That is, in order to make the voltage applied to the liquid crystal alternating, a positive voltage and a negative voltage are alternately applied to the pixel electrode with reference to the voltage applied to the common electrode. These positive voltage and negative voltage constitute a data signal to be applied to each data signal line. Therefore, a voltage corresponding to the center value of the data signal may be applied to the common electrode.
  • the voltage change of the corresponding scanning signal line (change from the gate voltage Von for turning on the TFT to the voltage Voff for turning off the TFT) ) Affects the voltage of the pixel electrode through the parasitic capacitance. That is, for example, when the TFT as the switching element is an N-channel type, the voltage applied to the pixel electrode when the TFT is in the ON state decreases by ⁇ Vp when the TFT transitions from the ON state to the OFF state. .
  • This voltage ⁇ Vp (> 0) is called “push-down voltage”, “pull-in voltage”, “field-through voltage” or the like.
  • a voltage to be applied to the common electrode (hereinafter referred to as “opposite voltage”, hereinafter referred to as “opposite DC voltage” since it is assumed to be a DC voltage) is to change the voltage applied to the liquid crystal to AC, It is determined in consideration of such a pull-in voltage ⁇ Vp.
  • Japanese Patent Application Laid-Open No. 2009-58595 is a case where there is an inter-pixel parasitic capacitance.
  • an invention of an active matrix display device that can improve image quality is described.
  • the driving of the scanning signal line is devised so that the influence of the inter-pixel parasitic capacitance is suppressed.
  • Japanese Patent Laid-Open No. 2009-25667 also outputs to the data bus line according to the detection result of the panel temperature by the temperature detecting means for the purpose of setting the counter voltage to an optimum value even if the panel temperature fluctuates.
  • a liquid crystal display device having a voltage level median value setting means for setting a median value of a range of voltage levels of a data signal is disclosed.
  • the scanning signal line scanning direction (scanning) is used for the purpose of, for example, displaying an image with the correct orientation to the viewer even when the screen is arranged upside down.
  • the signal line selection order may be changed.
  • the voltage applied to the liquid crystal may not be properly converted into an alternating current and a direct current component may be applied. In this case, flicker occurs in the display image in the liquid crystal display device, and there is a possibility that an image sticking or afterimage may occur due to deterioration of the liquid crystal.
  • an object of the present invention is to provide an active matrix display device that can perform AC drive correctly even if the scanning direction corresponding to the selection order of the scanning signal lines is changed, and a driving circuit and driving method thereof.
  • a first aspect of the present invention is a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and the plurality of data signal lines and the plurality of scanning signal lines.
  • a plurality of pixel electrodes arranged in a shape, a common electrode arranged so as to face the plurality of pixel electrodes, and a pixel electrode provided for each pixel electrode to connect each pixel electrode to a corresponding data signal line
  • a drive circuit for an alternating current drive type display device including a switching element having a control terminal connected to a scanning signal line, A data signal line driver that applies a plurality of data signals representing an image to be displayed to the plurality of data signal lines;
  • a scanning signal that sequentially activates the plurality of scanning signal lines and can switch a scanning direction corresponding to the activation order of the plurality of scanning signal lines between a first direction and a second direction that are opposite to each other.
  • a line driver A counter voltage supply unit that outputs a counter voltage to be applied to the common electrode; Select one of the first direction and the second direction as the scanning direction, and set the scanning signal line driver to activate the plurality of scanning signals in the order corresponding to the selected scanning direction.
  • the counter voltage corresponding to the selected scanning direction is output from two different counter voltages including the first counter voltage for the first direction and the second counter voltage for the second direction.
  • a control unit for controlling the counter voltage supply unit.
  • the scanning signal line driving unit drives the plurality of scanning signal lines such that periods in which adjacent scanning signal lines are activated partially overlap each other.
  • the scanning signal line driving unit includes: When the first direction is selected as the scanning direction, the first scanning signal connected to the control terminal of the switching element corresponding to the pixel electrode among the two scanning signal lines adjacent to each pixel electrode. Before activating the line, activate the second scanning signal line that is not connected to the control terminal of the switching element among the two scanning signal lines, When the second direction is selected as the scanning direction, the second scanning signal line is activated after activating the first scanning signal line;
  • the first counter voltage includes a voltage change amount in the first scanning signal line when the first scanning signal line changes from an activated state to an inactivated state, and the first scanning signal line and the first scanning signal line.
  • the second counter voltage includes a voltage change amount in the second scanning signal line when the second scanning signal line changes from an activated state to an inactivated state, and the second scanning signal line and the second scanning signal line.
  • the voltage is obtained by increasing or decreasing the first counter voltage according to the parasitic capacitance between the pixel electrode and the pixel electrode.
  • the scanning signal line drive unit displays the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode, and the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed.
  • a period consisting of a main charging period to be applied to the electrode and a pre-charging period that is a predetermined period immediately before the main charging period it is continuously activated.
  • the data signal line driver generates the plurality of data signals so that the polarities of the plurality of data signals do not change within the same frame period.
  • the counter voltage supply unit includes: A voltage generator for generating the first and second counter voltages; And a selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit.
  • the counter voltage supply unit includes a selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit.
  • a seventh aspect of the present invention is a display device, and includes a drive circuit according to any one of the first to fourth aspects of the present invention.
  • the switching element is a thin film transistor including a channel layer formed of an oxide semiconductor.
  • a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, a matrix corresponding to the plurality of data signal lines and the plurality of scanning signal lines are provided.
  • a driving method of an AC driving type display device including a switching element having a control terminal connected to a scanning signal line, A data signal line driving step of applying a plurality of data signals representing an image to be displayed to the plurality of data signal lines; A scanning signal line driving step for sequentially activating the plurality of scanning signal lines; A counter voltage supply step of outputting a counter voltage to be applied to the common electrode;
  • the first counter voltage is applied to the common electrode when scanning is performed in the first direction
  • the second counter voltage is applied when scanning is performed in the second direction. Is applied. That is, the counter voltage applied to the common electrode is switched according to the scanning direction corresponding to the activation order of the scanning signal lines.
  • the display device is appropriately AC driven, and the DC component in the voltage applied between each pixel electrode and the common electrode is suppressed. Is done. As a result, occurrence of flicker in the display image can be suppressed, and deterioration of the liquid crystal can be prevented when the present invention is applied to a liquid crystal display device.
  • two periods in which two adjacent scanning signal lines are activated partially overlap each other, and therefore, due to a voltage change in the scanning signal line adjacent to each pixel electrode.
  • the influence on the voltage of each pixel electrode (the voltage held in the capacitor formed by each pixel electrode and the common electrode) differs depending on the activation order (scanning direction) of the scanning signal lines. That is, there is a parasitic capacitance between each pixel electrode and two adjacent scanning signal lines, and one of the two scanning signal lines is connected to the control terminal of the switching element corresponding to the pixel electrode. However, the other is not connected to the control terminal, and the influence of the voltage change in the other scanning signal line on the voltage of the pixel electrode is which of the two scanning signal lines is activated first.
  • the voltage to be applied to the common electrode for correct AC driving varies depending on the scanning direction.
  • the first and second counter voltages are set to values in consideration of such differences depending on the scanning direction, so that any of the first and second directions is set. Even when scanning is performed, the display device is appropriately AC driven, and the DC component in the voltage applied between each pixel electrode and the common electrode is suppressed.
  • the first counter voltage applied to the common electrode when scanning in the first direction changes from the activated state to the deactivated state of the first scanning signal line.
  • the second counter voltage applied to the common electrode when scanning in the second direction is the voltage on the second scanning signal line when the second scanning signal line changes from the activated state to the inactivated state.
  • This is a voltage obtained by increasing or decreasing the first counter voltage according to the amount of change and the parasitic capacitance between the second scanning signal line and the pixel electrode.
  • the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode receives the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed.
  • the preliminary period immediately before that is activated.
  • Each data signal is generated so that the polarity of each data signal does not change within the same frame period. For this reason, the polarity of the voltage applied to each pixel electrode from the corresponding data signal line via the corresponding switching element during the preliminary charging period is determined from the data signal line via the switching element during the main charging period immediately thereafter.
  • the fourth aspect of the present invention has the same configuration as the second or third aspect of the present invention, so that the display device has the effect of improving the charging rate by driving as described above. There is also an effect that the direct current component in the voltage applied between each pixel electrode and the common electrode is suppressed appropriately and the direct current component is suppressed.
  • the first and second counter voltages are generated in the counter voltage supply unit, and scanning is performed in the first direction based on the control signal from the control unit.
  • the second counter voltage is selected.
  • the display device is appropriately AC driven, and the DC component in the applied voltage between each pixel electrode and the common electrode is suppressed.
  • At least one of the first and second counter voltages is input from the outside, and one of the first and second counter voltages is selected based on a control signal from the control unit.
  • a display device having the same effects as any one of the first to fourth aspects of the present invention.
  • the switching element provided for each pixel electrode is a thin film transistor including a channel layer formed of an oxide semiconductor, and since the off-leakage current is small, each switching element is interposed via the switching element.
  • the voltage applied to the pixel electrode can be reliably held in the capacitor formed by the pixel electrode and the common electrode.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • 4 is a timing chart for explaining an operation during forward scanning of the liquid crystal display device according to the first embodiment.
  • 6 is a timing chart for explaining an operation during backward scanning of the liquid crystal display device according to the first embodiment. It is a figure which shows typically the structure of the pixel circuit of the TFT substrate in the said 1st Embodiment.
  • FIG. 6 is a signal waveform diagram (A to D) for explaining the relationship between the scanning direction and the counter DC voltage in the liquid crystal display device according to the first embodiment.
  • It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention.
  • It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device includes a liquid crystal panel 100 as a display panel, a source driver 300 as a data signal line driver, a gate driver 400 as a scanning signal line driver, and a counter voltage supply unit.
  • a common electrode driving circuit 500 and a display control circuit 200 As a common electrode driving circuit 500 and a display control circuit 200.
  • a backlight for irradiating light on the back surface is necessary, and this liquid crystal display device also includes such a backlight (not shown).
  • the source driver 300, the gate driver 400, the common electrode driving circuit 500, and the display control circuit 200 constitute a driving circuit for the liquid crystal display device according to the present embodiment.
  • the liquid crystal panel 100 includes an insulating first substrate called a TFT substrate, an insulating second substrate called a CF substrate, and a liquid crystal layer sandwiched between the first and second substrates.
  • the TFT substrate and the CF substrate are typically glass substrates.
  • the TFT substrate intersects the source lines SL1 to SLM as a plurality (M) of data signal lines and the plurality (M) of source lines Ls.
  • Gate lines GL0 to GLN as a plurality of (N + 1) scanning signal lines, and a plurality (N ⁇ M) arranged in a matrix along the plurality of source lines SL1 to SLM and the plurality of gate lines GL1 to GLN Pixel circuits are formed.
  • each pixel circuit corresponds to one of the plurality of source lines SL1 to SLM and also corresponds to one of the plurality of gate lines GL1 to GLN, and corresponds to the corresponding source line SLj and corresponding gate line GLi. It is connected to the.
  • Each pixel circuit 110 includes a pixel electrode Ep (see FIG. 4 described later), and the pixel electrodes Ep of the N ⁇ M pixel circuits 110 in the liquid crystal panel 100 correspond to the pixels constituting the image to be displayed, respectively. It corresponds.
  • the gate line GL0 is provided so that the influence of the parasitic capacitance on the voltage of the pixel electrode does not vary depending on the pixel circuit (details will be described later).
  • a common electrode COM is formed on the CF substrate, and color filters corresponding to primary colors for color display (for example, red, green, and blue color filters that are three primary colors) and various optical compensation films (polarized light).
  • color filters corresponding to primary colors for color display for example, red, green, and blue color filters that are three primary colors
  • various optical compensation films polarized light
  • the pixel forming portion Px for forming each pixel of an image to be displayed on the liquid crystal panel 100 includes a pixel circuit formed on the TFT substrate, the liquid crystal layer, the common electrode COM, and the color. It consists of color filters for display. However, the liquid crystal layer and the common electrode COM are provided in common to the plurality (N ⁇ M) of pixel forming portions Px.
  • the N ⁇ M pixel forming portions Px are pixel circuits included in the N ⁇ M pixel forming portions Px in correspondence with the N gate lines GL1 to GLN and the M data signal lines SL1 to SLM, respectively. The same applies to the pixel electrode Ep included in each of the N ⁇ M pixel circuits 110.
  • FIG. 4 schematically shows the configuration of the pixel circuit 110 formed on the TFT substrate.
  • the pixel circuit 110 includes an N-channel TFT 10 as a switching element and a pixel electrode Ep corresponding to a pixel of an image to be displayed.
  • the pixel electrode Ep is a corresponding source line via the TFT 10.
  • the gate terminal of the TFT 10 is connected to the corresponding gate line GLi.
  • the first parasitic capacitance Cgd1 is between the corresponding gate line (hereinafter referred to as “corresponding adjacent gate line”) GLi and the pixel electrode Ep.
  • non-corresponding adjacent gate line there is a second parasitic capacitance Cgd2 between the other gate line (hereinafter referred to as “non-corresponding adjacent gate line”) GLi-1 and the pixel electrode Ep.
  • the pixel capacitor Cp for holding a voltage indicating the pixel (its luminance) is a liquid crystal capacitor Clc formed between the pixel electrode Ep and the common electrode COM on the CF substrate.
  • an auxiliary capacitance line is formed on the TFT substrate to hold the voltage more reliably
  • an auxiliary capacitance Ccs is formed between the pixel electrode Ep and the auxiliary capacitance line, and the auxiliary capacitance Ccs is also a pixel capacitance. Included in Cp. Since the auxiliary capacitor Ccs is not directly related to the present invention, description and illustration regarding the auxiliary capacitor Ccs will be omitted below.
  • FIG. 1 also shows the electrical configuration of the pixel formation portion Px in the liquid crystal panel 100.
  • the pixel formation portions corresponding to the gate line GLi and the source line SLj may be indicated by the symbol “Px (i, j)” instead of the symbol “Px”.
  • the pixel forming portion Px (i, j) includes a pixel circuit (see FIG. 4) on the TFT substrate, a liquid crystal layer, a common electrode COM on the CF substrate, a color filter, and the like. Electrically, as shown in FIG.
  • the TFT 10 includes a pixel capacitor Cp (liquid crystal capacitor Clc), and first and second parasitic capacitors Cgd1 and Cgd2, and the pixel electrode Ep passes through the pixel capacitor Cp. Not only connected to the common electrode COM but also capacitively coupled to the corresponding adjacent gate line GLi via the first parasitic capacitance Cgd1 and non-corresponding adjacent gate line via the second parasitic capacitance Cgd2. It is also capacitively coupled to GLi-1.
  • the gate line GL0 that does not correspond to any pixel circuit 110 is formed on the TFT substrate as a non-corresponding adjacent gate line for the pixel electrode Ep of each pixel circuit corresponding to the first gate line GL1. .
  • the display control circuit 200 receives an image signal Dv representing an image to be displayed and a timing control signal Ct from the outside, and a source driver control signal Sct comprising an image data signal based on the image signal Dv and a timing control signal for a source driver. Is generated and supplied to the source driver 300, and a gate driver control signal Gct is generated and supplied to the gate driver 400.
  • the display control circuit 200 generates a direction designation signal Cud for designating a scanning direction corresponding to the selection order (activation order) of the gate lines GL0 to GLN, and supplies it to the gate driver 400 and the common electrode drive circuit 500.
  • the value of the direction designation signal Cud, that is, which one of the forward direction scanning and the reverse direction scanning is designated is determined based on, for example, a signal supplied to the display control circuit 200 from the outside. Can do.
  • a changeover switch for setting the scanning direction is provided in the liquid crystal display device according to the present embodiment, and the value of the direction designation signal Cud is determined by operating this switch. It may be. In the following, it is assumed that forward direction scanning is designated when the direction designation signal Cud is at a high level (H level), and reverse direction scanning is designated when the direction designation signal Cud is at a low level (L level).
  • the source driver 300 Based on the source driver control signal Sct, the source driver 300 generates analog voltages for driving the liquid crystal panel 100 as the data signals S1, S2,..., SM, and generates these M sources in the liquid crystal panel 100. Apply to lines SL1 to SLM, respectively.
  • the gate driver 400 has a built-in bidirectional shift register, and is configured so that the order in which the gate lines GL0 to GLN are activated can be switched by using the bidirectional shift register. And backward scanning are possible.
  • the gate driver 400 generates scanning signals G0, G1,..., GN based on the gate driver control signal Gct and the direction control signal Cud, and outputs them to N + 1 gate lines GL0, GL1,. , GLN, the N + 1 gate lines GL0 to GLN are selectively activated in a predetermined period (in this embodiment, every two horizontal periods) in the order indicated by the direction designation signal Cud.
  • the common electrode drive circuit 500 includes a first counter voltage generation circuit 51 that generates a first counter voltage VcomA that is a counter DC voltage for forward scanning, and a counter DC voltage for reverse scanning.
  • the direction designation signal Cud is received from the display control circuit 200 as a control signal for the changeover switch 54.
  • the changeover switch 54 selects the first counter voltage VcomA when the direction designation signal Cud is at the H level, and selects the second counter voltage VcomB when the direction designation signal Cud is at the L level.
  • the counter DC voltage selected in this way is output from the common electrode drive circuit 500 as the selected counter DC voltage Vcom and is applied to the common electrode COM of the liquid crystal panel 100.
  • the data signals S1 to SM based on the image signal Dv input from the outside are applied to the source lines SL1 to SLM, and scanning specified by the direction specifying signal Cud from the display control circuit 200 is performed.
  • Scan signals G0 to GN corresponding to the directions are applied to the gate lines GL0 to GLN.
  • the selected counter DC voltage Vcom corresponding to the scanning direction designated by the direction designation signal Cud is applied to the common electrode COM from the common electrode driving circuit 500 to the common electrode COM.
  • each pixel forming portion Px (i, j) in the liquid crystal panel 100 when the corresponding gate line GLi is activated, the data signal Sj of the corresponding source line SLj (of the corresponding source line SLj). Voltage) is taken in via the TFT 10 and applied to the pixel capacitor Cp. Thereafter, when the corresponding gate line GLi is deactivated, the voltage corresponding to the data signal Sj is applied to the pixel capacitor Cp as it is until the corresponding gate line GLi is activated again in the next frame period. Retained.
  • the voltage corresponding to the data signal Sj is applied to and held in each pixel capacitor Cp, so that the liquid crystal panel 100 is applied with a voltage corresponding to the image signal Dv to the liquid crystal layer, thereby transmitting light.
  • the image represented by the image signal Dv is displayed.
  • the source driver 300, the gate driver 400, and the common electrode driving circuit 500 are separate components from the liquid crystal panel 100.
  • 300, the gate driver 400, and the common electrode drive circuit 500 may be configured to be formed integrally with the pixel circuit using the TFT on the TFT substrate of the liquid crystal panel 100 (simultaneously in the same process).
  • the gate driver 400 may be configured to use a gate driver monolithic panel that is a liquid crystal panel formed integrally with a pixel circuit on a TFT substrate.
  • FIG. 2 is a timing chart for explaining the operation of the liquid crystal display device according to the present embodiment when the direction designation signal Cud is at the H level, that is, when the forward scanning is designated.
  • the voltage that is, the voltage indicating the pixel to be formed by the pixel forming unit Px (i, j) is output as the data signal Sj, and the polarity of the output data signal Sj is inverted every frame period, and in each frame period
  • the polarities of the data signals S1 to SM are inverted for each source line (data signals Sj-1 and Sj having different polarities are applied to two adjacent source lines SLj-1 and SLj).
  • the data signal Sj corresponding to the voltage to be taken in by each pixel forming unit Px (i, j) is activated in the corresponding gate line GLi in each frame period. This is applied to the corresponding source line SLj in the latter one horizontal period of the two horizontal periods.
  • FIG. 3 is a timing chart for explaining the operation of the liquid crystal display device according to the present embodiment when the direction designation signal Cud is at L level, that is, when reverse scanning is designated.
  • the gate driver 400 sequentially sets the scanning signals G0 to GN to the H level by two horizontal periods in the opposite direction to the case of forward scanning (FIG. 2) at intervals of one horizontal period in each frame period.
  • the data signal Sj corresponding to the voltage to be taken in by each pixel forming unit Px (i, j) is activated in the corresponding gate line GLi in each frame period. This is applied to the corresponding source line SLj in the latter one horizontal period of the two horizontal periods.
  • the gate driver 400 has a pulse with a width corresponding to two horizontal periods for each scanning signal Gi, and two adjacent gate lines GLi ⁇ .
  • the scanning signals G0 to GN are generated so that the pulses overlap each other for one horizontal period between the two scanning signals Gi-1 and Gi to be applied to 1 and GLi, respectively.
  • the polarity of the data signals S1 to SM is inverted every frame period, but the polarity of the data signals S1 to SM is not changed within the same frame period (in the example shown in FIGS. 2 and 3).
  • a so-called “source inversion drive” or “column inversion drive” is used.
  • the source driver 300 generates data signals S1 to SM corresponding to such inversion driving.
  • the width of the pulse included in each scanning signal Gi is twice that of the conventional one (two horizontal periods), and each data signal Sj has the same polarity during this pulse width period. That is, the gate lines G0 to GN of the liquid crystal panel 100 are sequentially set to 1 in the forward direction or the reverse direction so that each pixel forming unit Px (i, j) takes in the voltage of the corresponding source line SLj as the pixel value of the image to be displayed. Not only the horizontal period is activated, but also the gate line GLj is activated in one horizontal period immediately before the one horizontal period in the activated state (hereinafter referred to as “main charging period”).
  • the voltage polarity of the source line SLj in the period is the same as the voltage polarity of the source line SLj in one horizontal period as the main charging period. Therefore, the first horizontal period of the two horizontal periods in which the gate line GLj is activated in the immediately preceding horizontal period, that is, each frame period, functions as a preliminary charging period. Thereby, the charging rate of the pixel capacitance Cp can be improved.
  • FIG. 5 is a signal waveform diagram for explaining the relationship between the scanning direction and the counter DC voltage in the liquid crystal display device according to the present embodiment.
  • the setting of the counter DC voltage according to the scanning direction of the gate lines GL0 to GLN will be described below with reference to FIG. 5 together with FIG. 4 schematically showing the configuration of the pixel circuit.
  • the waveforms of the scanning signals Gi ⁇ 1, Gi and the voltage of the pixel electrode Ep (hereinafter referred to as “pixel voltage Vp (i, j)”) when applied to the electrode Ep are schematically shown.
  • the scanning signal hereinafter referred to as “non-corresponding adjacent scanning signal” Gi ⁇ 1 of the non-corresponding adjacent gate line GL i-1 is changed from the L level.
  • the scanning signal Gi (hereinafter referred to as “corresponding scanning signal”) Gi of the corresponding adjacent gate line GLi changes from L level to H level.
  • the corresponding adjacent gate line GLi is activated, and the voltage of the corresponding source line SLj (the voltage of the data signal Sj) is applied to the pixel electrode Ep.
  • the non-corresponding adjacent gate line GLi ⁇ A voltage indicating a pixel to be formed in the pixel forming portion Px (i ⁇ 1, j) corresponding to 1 is applied to the corresponding source line SLj.
  • the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated.
  • the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2.
  • the corresponding scanning signal Gi is at the H level and the TFT 10 is in the ON state, this influence only lowers the pixel voltage Vp (i, j) temporarily.
  • the data signal Sj indicating the pixel to be formed by the pixel formation portion Px (i, j) is applied to the corresponding source line SLj.
  • the voltage of the data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. That is, the main charging period for the pixel capacitance Cp of the pixel formation portion Px (i, j) is started.
  • the change of the corresponding scanning signal Gi from the H level to the L level at the end of the main charging period affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by ⁇ Vp (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level.
  • This reduced voltage ⁇ Vp is called a pull-in voltage or the like, and the magnitude thereof is the amount of voltage change of the gate line GLi and the first parasitic capacitance Cgd1 when the corresponding scanning signal Gi changes from the H level to the L level. It depends on.
  • the pixel voltage Vp (i, j) is the pixel immediately before the end of the main charging period until the corresponding scanning signal Gi becomes H level again in the next frame period (until the corresponding gate line GLi is activated again).
  • the voltage (VwP ⁇ Vp), which is reduced from the voltage Vp (i, j) VwP by the pull-in voltage ⁇ Vp, is maintained.
  • the waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown.
  • the pixel voltage Vp (i, j) is applied to the pixel forming portion Px (i, j) in one horizontal period (main charging period) of the latter half of the two horizontal periods in which the corresponding scanning signal Gi is at the H level.
  • a data signal Sj indicating a pixel to be formed is applied to the corresponding source line SLj.
  • the voltage of the negative data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10.
  • the corresponding scanning signal Gi changes from the H level to the L level, and this change affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by the pull-in voltage ⁇ Vp (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level.
  • the magnitude of the pull-in voltage ⁇ Vp is the same as when the positive data signal Sj is applied to the pixel electrode Ep of the pixel formation portion Px (i, j) (FIG. 5A).
  • the voltage Vcen corresponding to the center in the voltage range that the data signal Sj can take (hereinafter referred to as “source center voltage” or “center voltage of the data signal”) Vcen.
  • source center voltage or “center voltage of the data signal”
  • Vcen the voltage applied to the common electrode COM as the counter DC voltage
  • the liquid crystal panel 100 is not correctly AC driven due to the pull-in voltage ⁇ Vp, and a DC component is included in the voltage applied to the liquid crystal of the liquid crystal panel 100.
  • flicker occurs in the displayed image, and the liquid crystal may be deteriorated.
  • the counter DC voltage applied to the common electrode COM corresponds to the source center voltage Vcen in accordance with the pull-in voltage ⁇ p (> 0). Is set to a reduced voltage.
  • the waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown.
  • the corresponding scanning signal Gi which is the scanning signal of the corresponding adjacent gate line GLi, changes from the L level to the H level, and is H for two horizontal periods. The level is maintained, and the corresponding adjacent gate line GLi is activated in the two horizontal periods.
  • One horizontal period in the first half of these two horizontal periods is a preliminary charging period, and in this preliminary charging period, pixels to be formed by the pixel forming portion Px (i + 1, j) corresponding to the i + 1-th gate line GLi + 1.
  • the voltage shown is applied to the corresponding source line SLj.
  • the non-corresponding adjacent scanning signal Gi-1 changes from the L level to the H level, and the non-corresponding adjacent gate line GLi-1. Is activated.
  • the change from the L level to the H level of the non-corresponding adjacent scanning signal Gi affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2.
  • the corresponding scanning signal Gi is at the H level and the TFT 10 is in the ON state, this influence only raises the pixel voltage Vp (i, j) temporarily.
  • the data signal Sj indicating the pixel to be formed by the pixel formation portion Px (i, j) is applied to the corresponding source line SLj.
  • the voltage of the data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. That is, the main charging period for the pixel capacitance Cp of the pixel formation portion Px (i, j) is started.
  • the change of the corresponding scanning signal Gi from the H level to the L level at the end of the main charging period affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by ⁇ Vp1 (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level.
  • the magnitude of this reduced voltage hereinafter referred to as “first pull-in voltage”) ⁇ Vp1 is the amount of voltage change of the gate line GLi and the first parasitic when the corresponding scanning signal Gi changes from H level to L level. It depends on the capacitance Cgd1 and the like.
  • the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated.
  • the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. That is, the pixel voltage Vp (i, j) further decreases by ⁇ Vp2 (> 0) in accordance with the change of the non-corresponding adjacent scanning signal Gi-1 from the H level to the L level.
  • the magnitude of this reduced voltage (hereinafter referred to as “second pull-in voltage”) ⁇ Vp2 is the voltage change of the gate line GLi-1 when the non-corresponding adjacent scanning signal Gi-1 changes from H level to L level. It depends on the quantity, the second parasitic capacitance Cgd2, etc.
  • the voltage (VwP ⁇ Vp1 ⁇ Vp2) decreased by the pull-in voltage ⁇ Vp1 and the second pull-in voltage ⁇ Vp2 is maintained.
  • the waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown.
  • the pixel voltage Vp (i, j) is applied to the pixel forming portion Px (i, j) in one horizontal period (main charging period) of the latter half of the two horizontal periods in which the corresponding scanning signal Gi is at the H level.
  • a data signal Sj indicating a pixel to be formed is applied to the corresponding source line SLj.
  • the voltage of the negative data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10.
  • the corresponding scanning signal Gi changes from the H level to the L level, and this change affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by the first pull-in voltage ⁇ Vp1 (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level.
  • the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated.
  • the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. That is, the pixel voltage Vp (i, j) further decreases by the second pull-in voltage ⁇ Vp2 (> 0) in accordance with the change of the non-corresponding adjacent scanning signal Gi-1 from the H level to the L level.
  • the voltage (VwN ⁇ Vp1 ⁇ Vp2) decreased by the first pulling voltage ⁇ Vp1 and the second pulling voltage ⁇ Vp2 is maintained.
  • the forward scanning is performed. It is equal to the aforementioned pull-in voltage ⁇ Vp in the designated case (see FIGS. 5A and 5B). Therefore, as can be seen from FIGS. 5C and 5D, when reverse scanning is designated, the pixel forming portion Px (i, j) substantially forms the pixel electrode Ep in order to form a pixel. The voltage applied to is lower by the second pull-in voltage ⁇ Vp2 than when the forward scanning is designated.
  • the counter DC voltage that is, the second counter voltage VcomB, is set to a voltage obtained by reducing the first counter voltage VcomA according to the second pull-in voltage ⁇ p2 (> 0).
  • the counter DC voltage applied to the common electrode COM is set to a voltage value obtained by lowering the source center voltage Vcen according to the pull-in voltage ⁇ Vp (FIGS. 5A and 5B), and reverse scanning is specified (reverse direction DirB
  • the counter DC voltage applied to the common electrode COM when the gate lines GL0 to GLN are scanned at the same time, that is, the second counter voltage VcomB is a voltage obtained by reducing the first counter voltage VcomA according to the second pull-in voltage ⁇ Vp2. Is set to a value (FIG.
  • the DC component contained in the voltage applied to the liquid crystal can be suppressed.
  • the order in which the corresponding adjacent gate line is activated after the non-corresponding adjacent gate line is activated (FIG. 4).
  • the counter DC voltage applied to the common electrode COM is set to a voltage value obtained by lowering the source center voltage Vcen according to the pull-in voltage ⁇ p (> 0).
  • the counter DC voltage applied to the common electrode COM when the scanning is performed in the order in which the non-corresponding adjacent gate line is activated after activation of the gate line (direction DirB in FIG. 4) is the source center voltage Vcen may be set to a voltage value reduced according to the first pull-in voltage ⁇ Vp1 and the second pull-in voltage ⁇ Vp2.
  • the voltage of the data signal Sj (the voltage of the source line SLj) indicating the pixel to be formed in each pixel formation portion Px (i, j) in the image to be displayed is the pixel formation.
  • the corresponding gate line GLi is not only activated in one horizontal period, but also activated in the immediately preceding horizontal period (FIGS. 2 and 2). 3). That is, in each frame period, the scanning signals G0 to GN are sequentially set to the H level for every two horizontal periods at intervals of one horizontal period.
  • driving of the gate lines GL0 to GLN by the scanning signals G0 to GN is referred to as “overlapping continuous gate pulse driving”).
  • the pixel forming portion Px in the first horizontal period of the two horizontal periods since source inversion driving is adopted as the inversion driving method of the liquid crystal panel 100 (FIGS. 2 and 3), the pixel forming portion Px in the first horizontal period of the two horizontal periods.
  • the voltage applied to the pixel electrode Ep of (i, j) is the voltage applied to the pixel electrode Ep of the pixel formation portion Px (i, j) in the latter one horizontal period, that is, the pixel formation portion Px (i, j).
  • the value of the voltage of the data signal Sj indicating the pixel to be formed is not necessarily the same, but the polarity is the same.
  • the first horizontal period of the two horizontal periods functions as a preliminary charging period.
  • the charging rate of the pixel capacitance Cp in each pixel forming portion Px (i, j) can be improved, and insufficient charging can be prevented even if the liquid crystal panel 100 is increased in size or resolution.
  • the voltage to be applied to the common electrode COM (hereinafter referred to as “optimum counter DC voltage”) so that the voltage applied to the liquid crystal is correctly converted to AC
  • the counter DC voltage Vcom to be applied to the common electrode COM the first counter voltage VcomA corresponding to the optimal counter DC voltage in the case where the forward scanning is performed and the reverse scanning are performed.
  • the second counter voltage VcomB corresponding to the optimum counter DC voltage is generated, and when the forward scan is performed based on the direction designation signal Cud, the first counter voltage VcomA is applied to the common electrode COM, and the reverse scan is performed. Is performed, the second counter voltage VcomA is applied to the common electrode COM.
  • the liquid crystal panel 100 is correctly AC driven so that the DC component is suppressed in the voltage applied to the liquid crystal regardless of whether the scanning is in the forward direction or the backward direction.
  • FIG. 6 is a block diagram showing a configuration of a liquid crystal display device according to the second embodiment of the present invention.
  • the same or corresponding components as those in the first embodiment are given the same reference numerals.
  • the common electrode drive circuit 502 in this embodiment includes the first counter voltage generation circuit 51, but does not include the second counter voltage generation circuit, and in this respect, the first embodiment described above. This is different from the common electrode driving circuit 500 in FIG. 1 (see FIG. 1).
  • a first counter voltage VcomA corresponding to the optimal counter DC voltage in the case of forward scanning is supplied from the first counter voltage generation circuit 51 to the changeover switch 54 as a selector in the common electrode drive circuit 502.
  • a second counter voltage VcomB corresponding to the optimum counter DC voltage in the case of reverse scanning is applied from the outside of the liquid crystal display device.
  • the changeover switch 54 selects the first counter voltage VcomA during forward scanning and the second counter voltage VcomB during reverse scanning. The counter DC voltage selected in this manner is applied to the common electrode COM of the liquid crystal panel 100.
  • preliminary charging is performed by overlapping continuous gate pulse driving on the premise of source inversion driving, and the counter DC voltage applied to the common electrode COM corresponds to the first counter voltage according to the scanning direction. It is switched between VcomA and the second counter voltage VcomB. Therefore, according to the present embodiment, as in the first embodiment described above, insufficient charging can be prevented even when the liquid crystal panel 100 is increased in size or resolution, and both the forward scan and the reverse scan are possible. However, it is possible to suppress the occurrence of flicker in the display image and to prevent the deterioration of the liquid crystal.
  • the first counter voltage VcomA is generated in the liquid crystal display device (the common electrode driving circuit 502), and the second counter voltage VcomB is input from the outside of the liquid crystal display device.
  • the first counter voltage VcomA may be input from the outside of the liquid crystal display device, and the second counter voltage VcomB may be generated in the liquid crystal display device (the common electrode drive circuit 502).
  • the counter DC voltage input from the outside has a high degree of freedom in setting the value. Therefore, considering this point, the first and second counter voltages VcomA , VcomB may be determined from the outside.
  • FIG. 7 is a block diagram showing a configuration of a liquid crystal display device according to the third embodiment of the present invention.
  • the same or corresponding components as those in the first embodiment are denoted by the same reference numerals.
  • the common electrode driving circuit 503 in the present embodiment includes only the changeover switch 54 as a selector without including either the first counter voltage generation circuit or the second counter voltage generation circuit.
  • both the first counter voltage VcomA corresponding to the optimal counter DC voltage in the case of forward scanning and the second counter voltage VcomB corresponding to the optimal counter DC voltage in the case of reverse scanning are both liquid crystal. Input from outside the display device.
  • the changeover switch 54 selects the first counter voltage VcomA during forward scanning and the second counter voltage VcomB during reverse scanning. The counter DC voltage selected in this manner is applied to the common electrode COM of the liquid crystal panel 100.
  • preliminary charging is performed by overlapping continuous gate pulse driving on the premise of source inversion driving, and the counter DC voltage applied to the common electrode COM corresponds to the first counter voltage according to the scanning direction. It is switched between VcomA and the second counter voltage VcomB. Therefore, according to the present embodiment, as in the first embodiment described above, insufficient charging can be prevented even when the liquid crystal panel 100 is increased in size or resolution, and both the forward scan and the reverse scan are possible. However, it is possible to suppress the occurrence of flicker in the display image and to prevent the deterioration of the liquid crystal.
  • the first counter voltage VcomA corresponding to the optimum counter DC voltage in the case of forward scanning and the second counter voltage VcomB corresponding to the optimum counter DC voltage in the case of backward scanning are both external to the liquid crystal display device. Therefore, the degree of freedom in setting the value of the counter DC voltage is high in both cases of forward scanning and backward scanning.
  • a circuit for changing the values of the first and second corresponding voltages VcomA and VcomB according to the ambient temperature of the liquid crystal display device can be provided outside.
  • preliminary charging by overlapping continuous gate pulse driving based on source inversion driving is performed, and one horizontal period immediately before the main charging period is set as the preliminary charging period (see FIG. 2 and FIG. 3), the length of the preliminary charging period is not limited to this, and for example, a preliminary charging period of two horizontal periods or more may be provided.
  • source inversion driving is adopted as the inversion driving method (FIGS. 2 and 3), but the present invention is not limited to this, and the same source is used in the same frame period.
  • frame inversion driving may be employed instead of source inversion driving.
  • overlapping continuous gate pulse driving is performed.
  • the forward scanning and the reverse direction are performed.
  • the optimum counter DC voltage may differ between scans. Accordingly, in such a case, the values of the first counter voltage VcomA and the second counter voltage VcomB are set based on the structure of the liquid crystal panel and the voltage VcomA applied to the common electrode COM is set according to the scanning direction. And VcomB may be switched.
  • the pixel electrodes Ep of the pixel formation portions corresponding to the first gate line GL1, that is, the pixel formation portions (1, j) (j 1 to M) in the first row.
  • the 0th gate line GL0 is formed on the TFT substrate (FIGS. 1, 6, and 7).
  • the present invention does not limit the structure or material of the thin film transistor (TFT) that constitutes the pixel circuit 110 or the like formed on the TFT substrate, and the TFT is N as in the first to third embodiments.
  • a channel-type MOS (Metal-Oxide-Semiconductor) structure or a P-channel type MOS structure may be used.
  • the gate line GLi is inactivated when the scanning signal Gi is at H level, and the gate line GLi is activated when the scanning signal Gi is at L level. It becomes a state.
  • the pull-in voltage generated due to the first and second parasitic capacitances Cgd1 and Cgd2 increases the pixel voltage Vp (i, j). Therefore, in this case, the first counter voltage VcomA applied to the common electrode COM when the forward scan is designated has a voltage value obtained by raising the source center voltage Vcen according to the pull-in voltage ⁇ Vp (> 0).
  • the second counter voltage VcomB applied to the common electrode COM when the reverse scan is set is a voltage obtained by increasing the first counter voltage VcomA according to the second pull-in voltage ⁇ Vp2 (> 0). Will be set to the value.
  • the first counter voltage VcomA is determined by the corresponding adjacent gate line.
  • the center voltage of the data signal is increased or decreased according to the voltage change amount in the corresponding adjacent gate line and the parasitic capacitance between the corresponding adjacent gate line and the pixel electrode when the active state changes to the inactive state.
  • the second counter voltage VcomB is obtained when the non-corresponding adjacent gate line changes from the activated state to the non-activated state, and the voltage change amount in the non-corresponding adjacent gate line and the non-corresponding adjacent Obtained by increasing or decreasing the first counter voltage VcomA according to the parasitic capacitance between the gate line and the pixel electrode. It is the voltage.
  • a TFT constituting a pixel circuit or the like formed on a TFT substrate may be manufactured using, for example, amorphous silicon, polysilicon, or an oxide semiconductor. May be produced.
  • the channel layer is formed of InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components, for example.
  • oxide semiconductors other than InGaZnOx include indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb).
  • An oxide semiconductor containing at least one of them can be used.
  • a TFT using such an oxide semiconductor for a channel layer has an advantage that off-leakage current is extremely small as compared with a TFT using amorphous silicon or the like for a channel layer.
  • the liquid crystal display device has been described as an example.
  • the present invention is not limited to this, and an active matrix type that has a common electrode and is driven by alternating current based on the voltage of the common electrode.
  • the present invention can be applied to any display device.
  • the present invention can be applied to an AC drive type active matrix display device capable of switching the scanning direction, and its drive circuit and drive method.
  • Ep pixel electrode
  • Cp pixel capacitance
  • Cgd1 first parasitic capacitance
  • Cgd2 second parasitic capacitance
  • Vcom selected counter DC voltage
  • VcomA first counter voltage
  • VcomB second counter voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

Provided are an active matrix type display device and so forth capable of performing a correct AC drive even when a scanning direction corresponding to the selection order for gate lines changes. In a display device wherein gate lines (GL0 to GLN) are driven such that the activated periods in mutually adjoining gate lines (GLi-1, GLi) are partially overlapped with each other, the values of a first counter voltage (VcomA) for forward scanning and a second counter voltage (VcomB) for backward scanning are set taking into consideration the difference in the magnitude of pull-in voltage in a pixel voltage (Vp) in accordance with the scanning direction (selection order for the gate lines). A common electrode driving circuit (500) switches the counter voltage applied to a common electrode (COM) of a liquid crystal panel (100) between the first counter voltage (VcomA) and the second counter voltage (VcomB) in accordance with the scanning direction on the basis of a direction designation signal (Cud) for designating the scanning direction.

Description

表示装置ならびにその駆動回路および駆動方法Display device, driving circuit and driving method thereof
 本発明は、複数の走査信号線とそれらに交差する複数のデータ信号線を備えるアクティブマトリクス型の液晶表示装置等の表示装置に関し、更に詳しくは、当該複数の走査信号線の選択順すなわち走査方向を切り換えることができるアクティブマトリクス型表示装置およびその駆動回路および駆動方法に関する。 The present invention relates to a display device such as an active matrix type liquid crystal display device having a plurality of scanning signal lines and a plurality of data signal lines crossing the scanning signal lines. More specifically, the selection order of the plurality of scanning signal lines, that is, the scanning direction. The present invention relates to an active matrix display device capable of switching between the two, a driving circuit and a driving method thereof.
 アクティブマトリクス型の液晶表示装置は、複数のデータ信号線と、それらに交差する複数の走査信号線と、当該複数のデータ信号線および当該複数の走査信号線に対応してマトリクス状に配置された複数の画素形成部とを備えており、各画素形成部は、画素容量とスイッチング素子とを含んでいる。ここで、スイッチング素子としては、通常、薄膜トランジスタ(以下「TFT」という)が使用される。各画素形成部における画素容量は、画素電極と、液晶を挟んでその画素電極と対向する共通電極(「対向電極」ともいう)とによって形成されており、当該画素電極は、上記スイッチング素子としてのTFTを介して対応するデータ信号線に接続され、そのTFTのゲート端子には対応する走査信号線が接続される。 An active matrix liquid crystal display device is arranged in a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting with the data signal lines, the plurality of data signal lines and the plurality of scanning signal lines. A plurality of pixel formation portions are provided, and each pixel formation portion includes a pixel capacitor and a switching element. Here, as the switching element, a thin film transistor (hereinafter referred to as “TFT”) is usually used. The pixel capacitance in each pixel formation portion is formed by a pixel electrode and a common electrode (also referred to as “counter electrode”) opposite to the pixel electrode with the liquid crystal in between, and the pixel electrode serves as the switching element. The corresponding data signal line is connected through the TFT, and the corresponding scanning signal line is connected to the gate terminal of the TFT.
 液晶表示装置では、液晶の劣化を防止するために交流駆動が行われる。すなわち、液晶への印加電圧を交流化するために、共通電極に与えられる電圧を基準として正極性の電圧と負極性の電圧とが交互に画素電極に与えられる。これら正極性の電圧と負極性の電圧は各データ信号線に印加すべきデータ信号を構成する。したがって、データ信号の中心値に相当する電圧を共通電極に与えればよいことになる。 In the liquid crystal display device, AC driving is performed to prevent deterioration of the liquid crystal. That is, in order to make the voltage applied to the liquid crystal alternating, a positive voltage and a negative voltage are alternately applied to the pixel electrode with reference to the voltage applied to the common electrode. These positive voltage and negative voltage constitute a data signal to be applied to each data signal line. Therefore, a voltage corresponding to the center value of the data signal may be applied to the common electrode.
 しかし、各画素形成部におけるスイッチング素子としてのTFTがON状態からOFF状態へと遷移するときの対応する走査信号線の電圧変化(TFTをオンさせるゲート電圧VonからTFTをオフさせる電圧Voffへの変化)が寄生容量を介して画素電極の電圧に影響を与える。すなわち、例えば上記スイッチング素子としてのTFTがNチャネル形である場合、そのTFTがON状態のときに画素電極に与えられる電圧が、TFTがON状態からOFF状態へと遷移したときにΔVpだけ低下する。この電圧ΔVp(>0)は「突き下げ電圧」、「引き込み電圧」、または「フィールドスルー電圧」等と呼ばれる。液晶表示装置において共通電極に与えるべき電圧(以下「対向電圧」といい、以下では直流電圧であるものとすることから「対向DC電圧」ともいう)は、液晶への印加電圧を交流化すべく、このような引き込み電圧ΔVpを考慮して決定される。 However, when the TFT as a switching element in each pixel formation portion transitions from the ON state to the OFF state, the voltage change of the corresponding scanning signal line (change from the gate voltage Von for turning on the TFT to the voltage Voff for turning off the TFT) ) Affects the voltage of the pixel electrode through the parasitic capacitance. That is, for example, when the TFT as the switching element is an N-channel type, the voltage applied to the pixel electrode when the TFT is in the ON state decreases by ΔVp when the TFT transitions from the ON state to the OFF state. . This voltage ΔVp (> 0) is called “push-down voltage”, “pull-in voltage”, “field-through voltage” or the like. In the liquid crystal display device, a voltage to be applied to the common electrode (hereinafter referred to as “opposite voltage”, hereinafter referred to as “opposite DC voltage” since it is assumed to be a DC voltage) is to change the voltage applied to the liquid crystal to AC, It is determined in consideration of such a pull-in voltage ΔVp.
 なお、寄生容量のために他の信号線の電圧変化が画素電極の電圧に影響するという問題に関連する発明として、特開2009-58595号公報には、画素間寄生容量が存在する場合であっても画質を向上することができるアクティブマトリクス型表示装置の発明が記載されている。この発明では、画素間寄生容量の影響が抑制されるように走査信号ラインの駆動が工夫された構成となっている。 As an invention related to the problem that the voltage change of other signal lines affects the voltage of the pixel electrode due to the parasitic capacitance, Japanese Patent Application Laid-Open No. 2009-58595 is a case where there is an inter-pixel parasitic capacitance. However, an invention of an active matrix display device that can improve image quality is described. In the present invention, the driving of the scanning signal line is devised so that the influence of the inter-pixel parasitic capacitance is suppressed.
 また、特開2009-25667号公報には、パネル温度が変動しても対向電圧を最適値に設定することを目的として、温度検出手段によるパネル温度の検出結果に応じて、データバスラインに出力するデータ信号の電圧レベルの範囲の中央値を設定する電圧レベル中央値設定手段を備えた液晶表示装置が開示されている。 Japanese Patent Laid-Open No. 2009-25667 also outputs to the data bus line according to the detection result of the panel temperature by the temperature detecting means for the purpose of setting the counter voltage to an optimum value even if the panel temperature fluctuates. A liquid crystal display device having a voltage level median value setting means for setting a median value of a range of voltage levels of a data signal is disclosed.
日本国特開2009-58595号公報Japanese Unexamined Patent Publication No. 2009-58595 日本国特開2009-25667号公報Japanese Unexamined Patent Publication No. 2009-25667
 アクティブマトリクス型の表示装置では、その画面の上下方向が逆になるように配置されても視聴者に正しい向きの画像を表示できるようにすること等を目的として、走査信号線の走査方向(走査信号線の選択順)を変更できるように構成されることがある。しかし、この構成では、走査信号線の走査方向によっては液晶への印加電圧が正しく交流化されずに直流成分が印加される場合がある。この場合、液晶表示装置における表示画像にフリッカーが発生し、液晶の劣化によって焼き付きやが残像が生じるおそれがある。 In an active matrix display device, the scanning signal line scanning direction (scanning) is used for the purpose of, for example, displaying an image with the correct orientation to the viewer even when the screen is arranged upside down. The signal line selection order may be changed. However, in this configuration, depending on the scanning direction of the scanning signal line, the voltage applied to the liquid crystal may not be properly converted into an alternating current and a direct current component may be applied. In this case, flicker occurs in the display image in the liquid crystal display device, and there is a possibility that an image sticking or afterimage may occur due to deterioration of the liquid crystal.
 そこで本発明では、走査信号線の選択順に対応する走査方向を変更しても正しく交流駆動を行うことができるアクティブマトリクス型の表示装置ならびにその駆動回路および駆動方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an active matrix display device that can perform AC drive correctly even if the scanning direction corresponding to the selection order of the scanning signal lines is changed, and a driving circuit and driving method thereof.
 本発明の第1の局面は、複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極と対向するように配置された共通電極と、各画素電極を対応するデータ信号線に接続するために画素電極毎に設けられ対応する走査信号線に接続された制御端子を有するスイッチング素子とを含む交流駆動方式の表示装置の駆動回路であって、
 表示すべき画像を表す複数のデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動部と、
 前記複数の走査信号線を順次活性化し、かつ、前記複数の走査信号線の活性化順に対応する走査方向を互いに逆方向である第1方向と第2方向との間で切り替えることができる走査信号線駆動部と、
 前記共通電極に印加すべき対向電圧を出力する対向電圧供給部と、
 前記走査方向として前記第1方向と前記第2方向のうちいずれかを選択し、当該選択された走査方向に応じた順に前記複数の走査信号が活性化されるように前記走査信号線駆動部を制御し、前記第1方向用の第1対向電圧と前記第2方向用の第2対向電圧とからなる2つの異なる対向電圧のうち当該選択された走査方向に応じた対向電圧が出力されるように前記対向電圧供給部を制御する制御部とを備えることを特徴とする。
A first aspect of the present invention is a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and the plurality of data signal lines and the plurality of scanning signal lines. A plurality of pixel electrodes arranged in a shape, a common electrode arranged so as to face the plurality of pixel electrodes, and a pixel electrode provided for each pixel electrode to connect each pixel electrode to a corresponding data signal line A drive circuit for an alternating current drive type display device including a switching element having a control terminal connected to a scanning signal line,
A data signal line driver that applies a plurality of data signals representing an image to be displayed to the plurality of data signal lines;
A scanning signal that sequentially activates the plurality of scanning signal lines and can switch a scanning direction corresponding to the activation order of the plurality of scanning signal lines between a first direction and a second direction that are opposite to each other. A line driver;
A counter voltage supply unit that outputs a counter voltage to be applied to the common electrode;
Select one of the first direction and the second direction as the scanning direction, and set the scanning signal line driver to activate the plurality of scanning signals in the order corresponding to the selected scanning direction. The counter voltage corresponding to the selected scanning direction is output from two different counter voltages including the first counter voltage for the first direction and the second counter voltage for the second direction. And a control unit for controlling the counter voltage supply unit.
 本発明の第2の局面は、本発明の第1の局面において、
 前記走査信号線駆動部は、互いに隣接する走査信号線がそれぞれ活性化される期間が部分的に重複するように前記複数の走査信号線を駆動することを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
The scanning signal line driving unit drives the plurality of scanning signal lines such that periods in which adjacent scanning signal lines are activated partially overlap each other.
 本発明の第3の局面は、本発明の第2の局面において、
 前記走査信号線駆動部は、
  前記第1方向が前記走査方向として選択されている場合には、各画素電極に隣接する2つの走査信号線のうち当該画素電極に対応するスイッチング素子の制御端子に接続された第1の走査信号線を活性化する前に当該2つの走査信号線のうち当該スイッチング素子の制御端子に接続されていない第2の走査信号線を活性化し、
  前記第2方向が前記走査方向として選択されている場合には、前記第1の走査信号線を活性化した後に前記第2の走査信号線を活性化し、
 前記第1対向電圧は、前記第1の走査信号線が活性化状態から非活性化状態へと変化する時の前記第1の走査信号線における電圧変化量および前記第1の走査信号線と前記画素電極との間における寄生容量に応じて前記データ信号の中心電圧を増減することにより得られる電圧であり、
 前記第2対向電圧は、前記第2の走査信号線が活性化状態から非活性化状態へと変化する時の前記第2の走査信号線における電圧変化量および前記第2の走査信号線と前記画素電極との間の寄生容量に応じて前記第1対向電圧を増減することにより得られる電圧であることを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention,
The scanning signal line driving unit includes:
When the first direction is selected as the scanning direction, the first scanning signal connected to the control terminal of the switching element corresponding to the pixel electrode among the two scanning signal lines adjacent to each pixel electrode. Before activating the line, activate the second scanning signal line that is not connected to the control terminal of the switching element among the two scanning signal lines,
When the second direction is selected as the scanning direction, the second scanning signal line is activated after activating the first scanning signal line;
The first counter voltage includes a voltage change amount in the first scanning signal line when the first scanning signal line changes from an activated state to an inactivated state, and the first scanning signal line and the first scanning signal line. It is a voltage obtained by increasing or decreasing the center voltage of the data signal according to the parasitic capacitance between the pixel electrode,
The second counter voltage includes a voltage change amount in the second scanning signal line when the second scanning signal line changes from an activated state to an inactivated state, and the second scanning signal line and the second scanning signal line. The voltage is obtained by increasing or decreasing the first counter voltage according to the parasitic capacitance between the pixel electrode and the pixel electrode.
 本発明の第4の局面は、本発明の第2または第3の局面において、
 前記走査信号線駆動部は、各画素電極に対応するスイッチング素子の制御端子に接続された走査信号線を、前記表示すべき画像のうち当該画素電極に対応する画素を示す前記データ信号を当該画素電極に印加すべき本充電期間と当該本充電期間の直前の所定期間である予備充電期間とからなる期間において連続的に活性化状態とし、
 前記データ信号線駆動部は、前記複数のデータ信号のそれぞれの極性が同一フレーム期間内では変化しないように前記複数のデータ信号を生成することを特徴とする。
According to a fourth aspect of the present invention, in the second or third aspect of the present invention,
The scanning signal line drive unit displays the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode, and the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed. In a period consisting of a main charging period to be applied to the electrode and a pre-charging period that is a predetermined period immediately before the main charging period, it is continuously activated.
The data signal line driver generates the plurality of data signals so that the polarities of the plurality of data signals do not change within the same frame period.
 本発明の第5の局面は、本発明の第1から第4の局面のいずれかにおいて、
 前記対向電圧供給部は、
  前記第1および第2対向電圧を生成する電圧生成器と、
  前記制御部からの制御信号に基づき、前記共通電極に印加すべき対向電圧として前記第1および第2対向電圧のいずれかを選択する選択器とを含むことを特徴とする。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention,
The counter voltage supply unit includes:
A voltage generator for generating the first and second counter voltages;
And a selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit.
 本発明の第6の局面は、本発明の第1から第4の局面のいずれかにおいて、
 前記第1および第2対向電圧の少なくとも一方は外部から入力され、
 前記対向電圧供給部は、前記制御部からの制御信号に基づき、前記共通電極に印加すべき対向電圧として前記第1および第2対向電圧のいずれかを選択する選択器を含むことを特徴とする。
According to a sixth aspect of the present invention, in any one of the first to fourth aspects of the present invention,
At least one of the first and second counter voltages is input from the outside,
The counter voltage supply unit includes a selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit. .
 本発明の第7の局面は、表示装置であって、本発明の第1から第4の局面のいずれかの局面に係る駆動回路を備えることを特徴とする。 A seventh aspect of the present invention is a display device, and includes a drive circuit according to any one of the first to fourth aspects of the present invention.
 本発明の第8の局面は、本発明の第7の局面において、
 前記スイッチング素子は、酸化物半導体により形成されたチャネル層を含む薄膜トランジスタであることを特徴とする。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The switching element is a thin film transistor including a channel layer formed of an oxide semiconductor.
 本発明の第9の局面は、複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極と対向するように配置された共通電極と、各画素電極を対応するデータ信号線に接続するために画素電極毎に設けられ対応する走査信号線に接続された制御端子を有するスイッチング素子とを含む交流駆動方式の表示装置の駆動方法であって、
 表示すべき画像を表す複数のデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動ステップと、
 前記複数の走査信号線を順次活性化する走査信号線駆動ステップと、
 前記共通電極に印加すべき対向電圧を出力する対向電圧供給ステップと、
 前記複数の走査信号線の活性化順に対応する走査方向として、互いに逆方向である第1方向と第2方向のうちいずれかを選択する走査方向選択ステップと
を備え、
 前記走査信号線駆動ステップでは、前記走査方向選択ステップで選択された走査方向に応じた順に前記複数の走査信号が活性化され、
 前記対向電圧供給ステップでは、前記第1方向用の第1対向電圧と前記第2方向用の第2対向電圧とからなる2つの異なる対向電圧のうち前記走査方向選択ステップで選択された走査方向に応じた対向電圧が出力されることを特徴とする。
According to a ninth aspect of the present invention, a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, a matrix corresponding to the plurality of data signal lines and the plurality of scanning signal lines are provided. A plurality of pixel electrodes arranged in a shape, a common electrode arranged so as to face the plurality of pixel electrodes, and a pixel electrode provided for each pixel electrode to connect each pixel electrode to a corresponding data signal line A driving method of an AC driving type display device including a switching element having a control terminal connected to a scanning signal line,
A data signal line driving step of applying a plurality of data signals representing an image to be displayed to the plurality of data signal lines;
A scanning signal line driving step for sequentially activating the plurality of scanning signal lines;
A counter voltage supply step of outputting a counter voltage to be applied to the common electrode;
A scanning direction selection step of selecting one of a first direction and a second direction that are opposite to each other as a scanning direction corresponding to the activation order of the plurality of scanning signal lines;
In the scanning signal line driving step, the plurality of scanning signals are activated in the order corresponding to the scanning direction selected in the scanning direction selection step,
In the counter voltage supply step, the scanning direction selected in the scanning direction selection step is selected from two different counter voltages including the first counter voltage for the first direction and the second counter voltage for the second direction. A counter voltage corresponding to the output is output.
 本発明の他の局面については、本発明の上記局面および下記実施形態についての説明から明らかとなるので、説明を省略する。 Since other aspects of the present invention will be apparent from the description of the above aspect of the present invention and the following embodiments, description thereof will be omitted.
 本発明の第1の局面によれば、共通電極に対し、第1方向に走査が行われる場合には第1対向電圧が印加され、第2方向に走査が行われる場合には第2対向電圧が印加される。すなわち、共通電極に印加される対向電圧が、走査信号線の活性化順に対応する走査方向に応じて切り替えられる。これにより、第1および第2方向のいずれの方向に走査が行われる場合であっても、表示装置が適切に交流駆動され、各画素電極と共通電極の間への印加電圧における直流成分が抑制される。その結果、表示画像におけるフリッカーの発生を抑えることができ、本発明が液晶表示装置に適用される場合には液晶の劣化を防止することができる。 According to the first aspect of the present invention, the first counter voltage is applied to the common electrode when scanning is performed in the first direction, and the second counter voltage is applied when scanning is performed in the second direction. Is applied. That is, the counter voltage applied to the common electrode is switched according to the scanning direction corresponding to the activation order of the scanning signal lines. As a result, even when scanning is performed in any one of the first and second directions, the display device is appropriately AC driven, and the DC component in the voltage applied between each pixel electrode and the common electrode is suppressed. Is done. As a result, occurrence of flicker in the display image can be suppressed, and deterioration of the liquid crystal can be prevented when the present invention is applied to a liquid crystal display device.
 本発明の第2の局面によれば、隣接する2本の走査信号線がそれぞれ活性化される2つの期間が部分的に重複することから、各画素電極に隣接する走査信号線における電圧変化による各画素電極の電圧(各画素電極と共通電極とによって形成される容量に保持される電圧)に対する影響が走査信号線の活性化順(走査方向)によって異なる。すなわち、各画素電極とそれに隣接する2つの走査信号線との間にはそれぞれ寄生容量が存在し、当該2つの走査信号線のうち一方は当該画素電極に対応するスイッチング素子の制御端子に接続されているが他方は当該制御端子には接続されず、当該他方の走査信号線における電圧変化による当該画素電極の電圧に対する影響は、当該2つの走査信号線のうちいずれが先に活性化されるかによって異なる(図5参照)。このため、正しく交流駆動するために共通電極に印加すべき電圧が走査方向によって異なる。これに対し本発明の第2の局面では、第1および第2対向電圧をこのような走査方向による相違を考慮した値にそれぞれ設定しておくことにより、第1および第2方向のいずれの方向に走査が行われる場合であっても、表示装置が適切に交流駆動され、各画素電極と共通電極の間への印加電圧における直流成分が抑制される。 According to the second aspect of the present invention, two periods in which two adjacent scanning signal lines are activated partially overlap each other, and therefore, due to a voltage change in the scanning signal line adjacent to each pixel electrode. The influence on the voltage of each pixel electrode (the voltage held in the capacitor formed by each pixel electrode and the common electrode) differs depending on the activation order (scanning direction) of the scanning signal lines. That is, there is a parasitic capacitance between each pixel electrode and two adjacent scanning signal lines, and one of the two scanning signal lines is connected to the control terminal of the switching element corresponding to the pixel electrode. However, the other is not connected to the control terminal, and the influence of the voltage change in the other scanning signal line on the voltage of the pixel electrode is which of the two scanning signal lines is activated first. Depends on (see FIG. 5). For this reason, the voltage to be applied to the common electrode for correct AC driving varies depending on the scanning direction. On the other hand, in the second aspect of the present invention, the first and second counter voltages are set to values in consideration of such differences depending on the scanning direction, so that any of the first and second directions is set. Even when scanning is performed, the display device is appropriately AC driven, and the DC component in the voltage applied between each pixel electrode and the common electrode is suppressed.
 本発明の第3の局面によれば、第1方向に走査される場合に共通電極に印加される第1対向電圧は、第1の走査信号線が活性化状態から非活性化状態へと変化する時の第1の走査信号線における電圧変化量および第1の走査信号線と画素電極との間における寄生容量に応じてデータ信号の中心電圧を増減することにより得られる電圧であり、また、第2方向に走査される場合に共通電極に印加される第2対向電圧は、第2の走査信号線が活性化状態から非活性化状態へと変化する時の第2の走査信号線における電圧変化量および第2の走査信号線と画素電極との間における寄生容量に応じて第1対向電圧を増減することにより得られる電圧である。これにより、第1および第2方向のいずれの方向に走査が行われる場合であっても、表示装置が適切に交流駆動され、各画素電極と共通電極の間への印加電圧における直流成分が抑制される。 According to the third aspect of the present invention, the first counter voltage applied to the common electrode when scanning in the first direction changes from the activated state to the deactivated state of the first scanning signal line. A voltage obtained by increasing or decreasing the center voltage of the data signal in accordance with the amount of voltage change in the first scanning signal line and the parasitic capacitance between the first scanning signal line and the pixel electrode, The second counter voltage applied to the common electrode when scanning in the second direction is the voltage on the second scanning signal line when the second scanning signal line changes from the activated state to the inactivated state. This is a voltage obtained by increasing or decreasing the first counter voltage according to the amount of change and the parasitic capacitance between the second scanning signal line and the pixel electrode. As a result, even when scanning is performed in any one of the first and second directions, the display device is appropriately AC driven, and the DC component in the voltage applied between each pixel electrode and the common electrode is suppressed. Is done.
 本発明の第4の局面によれば、各画素電極に対応するスイッチング素子の制御端子に接続された走査信号線は、表示すべき画像のうち当該画素電極に対応する画素を示すデータ信号を当該画素電極に印加すべき本充電期間(すなわち当該画素電極と共通電極とによって形成される容量を当該データ信号の電圧で充電するための期間)で活性化状態となるだけでなく、その直前の予備充電期間においても活性化状態となり、これに加えて、各データ信号の極性が同一フレーム期間内では変化しないように各データ信号が生成される。このため、各画素電極に対しその予備充電期間に対応データ信号線から対応スイッチング素子を介して与えられる電圧の極性は、その直後の本充電期間に当該データ信号線から当該スイッチング素子を介して当該画素電極に与えられる電圧(当該画素電極に対応する画素を示す電圧)の極性と一致する。これにより、各画素電極と共通電極とによって形成される容量の本充電期間での充電率を向上させ、表示画面の大型化または高解像度化が進んでも充電不足を防止することができる。また、本発明の第4の局面は、本発明の第2または3の局面と同様の構成も有しているので、上記のような駆動による充電率の向上という効果を奏しつつ、表示装置が適切に交流駆動され各画素電極と共通電極の間への印加電圧における直流成分が抑制されるという効果も奏する。 According to the fourth aspect of the present invention, the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode receives the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed. In addition to being activated in the main charging period to be applied to the pixel electrode (that is, the period for charging the capacitor formed by the pixel electrode and the common electrode with the voltage of the data signal), the preliminary period immediately before that is activated. Each data signal is generated so that the polarity of each data signal does not change within the same frame period. For this reason, the polarity of the voltage applied to each pixel electrode from the corresponding data signal line via the corresponding switching element during the preliminary charging period is determined from the data signal line via the switching element during the main charging period immediately thereafter. This coincides with the polarity of a voltage applied to the pixel electrode (a voltage indicating a pixel corresponding to the pixel electrode). Thereby, the charging rate in the main charging period of the capacitance formed by each pixel electrode and the common electrode can be improved, and insufficient charging can be prevented even if the display screen is increased in size or resolution. In addition, the fourth aspect of the present invention has the same configuration as the second or third aspect of the present invention, so that the display device has the effect of improving the charging rate by driving as described above. There is also an effect that the direct current component in the voltage applied between each pixel electrode and the common electrode is suppressed appropriately and the direct current component is suppressed.
 本発明の第5の局面によれば、対向電圧供給部において、第1および第2対向電圧が生成され、制御部からの制御信号に基づき、第1方向に走査が行われる場合には第1対向電圧が選択され、第2方向に走査が行われる場合には第2対向電圧が選択される。このようにして選択された対向電圧が共通電極に印加されることにより、表示装置が適切に交流駆動され各画素電極と共通電極の間への印加電圧における直流成分が抑制される。 According to the fifth aspect of the present invention, the first and second counter voltages are generated in the counter voltage supply unit, and scanning is performed in the first direction based on the control signal from the control unit. When the counter voltage is selected and scanning is performed in the second direction, the second counter voltage is selected. When the counter voltage selected in this way is applied to the common electrode, the display device is appropriately AC driven, and the DC component in the applied voltage between each pixel electrode and the common electrode is suppressed.
 本発明の第6の局面によれば、第1および第2対向電圧の少なくとも一方は外部から入力され、制御部からの制御信号に基づき、これら第1および第2対向電圧のいずれかが選択される。このようにして選択された対向電圧が共通電極に印加されることにより、表示装置が適切に交流駆動され各画素電極と共通電極の間への印加電圧における直流成分が抑制される。 According to the sixth aspect of the present invention, at least one of the first and second counter voltages is input from the outside, and one of the first and second counter voltages is selected based on a control signal from the control unit. The When the counter voltage selected in this way is applied to the common electrode, the display device is appropriately AC driven, and the DC component in the applied voltage between each pixel electrode and the common electrode is suppressed.
 本発明の第7の局面によれば、本発明の第1から4の局面のいずれかと同様の効果を奏する表示装置が提供される。 According to the seventh aspect of the present invention, there is provided a display device having the same effects as any one of the first to fourth aspects of the present invention.
 本発明の第8の局面によれば、画素電極毎に設けられるスイッチング素子は、酸化物半導体により形成されたチャネル層を含む薄膜トランジスタであり、そのオフリーク電流は小さいので、当該スイッチング素子を介して各画素電極に与えられた電圧を当該画素電極と共通電極により形成される容量に確実に保持することができる。 According to the eighth aspect of the present invention, the switching element provided for each pixel electrode is a thin film transistor including a channel layer formed of an oxide semiconductor, and since the off-leakage current is small, each switching element is interposed via the switching element. The voltage applied to the pixel electrode can be reliably held in the capacitor formed by the pixel electrode and the common electrode.
 本発明の第9の局面によれば、本発明の第1の局面と同様の効果を奏する。 According to the ninth aspect of the present invention, the same effects as in the first aspect of the present invention are achieved.
 本発明の他の局面の効果については、本発明の上記局面の効果および下記実施形態についての説明から明らかであるので、説明を省略する。 Since the effects of other aspects of the present invention are clear from the effects of the above aspects of the present invention and the description of the following embodiments, the description thereof will be omitted.
本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention. 上記第1の実施形態に係る液晶表示装置の正方向走査時の動作を説明するためのタイミングチャートである。4 is a timing chart for explaining an operation during forward scanning of the liquid crystal display device according to the first embodiment. 上記第1の実施形態に係る液晶表示装置の逆方向走査時の動作を説明するためのタイミングチャートである。6 is a timing chart for explaining an operation during backward scanning of the liquid crystal display device according to the first embodiment. 上記第1の実施形態におけるTFT基板の画素回路の構成を模式的に示す図である。It is a figure which shows typically the structure of the pixel circuit of the TFT substrate in the said 1st Embodiment. 上記第1の実施形態に係る液晶表示装置における走査方向と対向DC電圧との関係を説明するための信号波形図(A~D)である。FIG. 6 is a signal waveform diagram (A to D) for explaining the relationship between the scanning direction and the counter DC voltage in the liquid crystal display device according to the first embodiment. 本発明の第2の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 3rd Embodiment of this invention.
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図1は、本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。図1に示すように、この液晶表示装置は、表示パネルとしての液晶パネル100と、データ信号線駆動部としてのソースドライバ300と、走査信号線駆動部としてのゲートドライバ400と、対向電圧供給部としての共通電極駆動回路500と、表示制御回路200とを備えている。また、液晶パネル100において画像を表示するにはその背面に光を照射するためのバックライトが必要であり、この液晶表示装置は、このようなバックライト(不図示)も備えている。なお、ソースドライバ300とゲートドライバ400と共通電極駆動回路500と表示制御回路200とは、本実施形態に係る液晶表示装置の駆動回路を構成する。
<1. First Embodiment>
<1.1 Overall configuration and operation overview>
FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the first embodiment of the present invention. As shown in FIG. 1, the liquid crystal display device includes a liquid crystal panel 100 as a display panel, a source driver 300 as a data signal line driver, a gate driver 400 as a scanning signal line driver, and a counter voltage supply unit. As a common electrode driving circuit 500 and a display control circuit 200. Further, in order to display an image on the liquid crystal panel 100, a backlight for irradiating light on the back surface is necessary, and this liquid crystal display device also includes such a backlight (not shown). The source driver 300, the gate driver 400, the common electrode driving circuit 500, and the display control circuit 200 constitute a driving circuit for the liquid crystal display device according to the present embodiment.
 液晶パネル100は、TFT基板と呼ばれる絶縁性の第1の基板とCF基板と呼ばれる絶縁性の第2の基板と、それら第1および第2の基板の間に挟持された液晶層とを含む。TFT基板およびCF基板は典型的にはガラス基板であり、TFT基板には、複数(M本)のデータ信号線としてのソースラインSL1~SLMと、当該複数(M本)のソースラインLsと交差する複数(N+1本)の走査信号線としてのゲートラインGL0~GLNと、当該複数のソースラインSL1~SLMおよび複数のゲートラインGL1~GLNに沿ってマトリクス状に配置された複数(N×M)個の画素回路とが形成されている。ここで、各画素回路は、上記複数のソースラインSL1~SLMのいずれかに対応すると共に、上記複数のゲートラインGL1~GLNのいずれかに対応し、対応するソースラインSLjおよび対応するゲートラインGLiに接続されている。各画素回路110には画素電極Epが含まれており(後述の図4参照)、液晶パネル100におけるN×M個の画素回路110の画素電極Epは、表示すべき画像を構成する画素にそれぞれ対応している。なお、ゲートラインGL0は、画素電極の電圧に対する寄生容量による影響が画素回路によって異ならないようにするために設けられたものである(詳細は後述)。 The liquid crystal panel 100 includes an insulating first substrate called a TFT substrate, an insulating second substrate called a CF substrate, and a liquid crystal layer sandwiched between the first and second substrates. The TFT substrate and the CF substrate are typically glass substrates. The TFT substrate intersects the source lines SL1 to SLM as a plurality (M) of data signal lines and the plurality (M) of source lines Ls. Gate lines GL0 to GLN as a plurality of (N + 1) scanning signal lines, and a plurality (N × M) arranged in a matrix along the plurality of source lines SL1 to SLM and the plurality of gate lines GL1 to GLN Pixel circuits are formed. Here, each pixel circuit corresponds to one of the plurality of source lines SL1 to SLM and also corresponds to one of the plurality of gate lines GL1 to GLN, and corresponds to the corresponding source line SLj and corresponding gate line GLi. It is connected to the. Each pixel circuit 110 includes a pixel electrode Ep (see FIG. 4 described later), and the pixel electrodes Ep of the N × M pixel circuits 110 in the liquid crystal panel 100 correspond to the pixels constituting the image to be displayed, respectively. It corresponds. The gate line GL0 is provided so that the influence of the parasitic capacitance on the voltage of the pixel electrode does not vary depending on the pixel circuit (details will be described later).
 一方、CF基板には、共通電極COMが形成されると共に、カラー表示のための各原色に対応するカラーフィルタ(例えば3原色である赤、緑、青のカラーフィルタ)や各種光学補償フィルム(偏光板等)が貼り付けられている。 On the other hand, a common electrode COM is formed on the CF substrate, and color filters corresponding to primary colors for color display (for example, red, green, and blue color filters that are three primary colors) and various optical compensation films (polarized light). A plate or the like).
 このような液晶パネル100において表示すべき画像の各画素を形成するための画素形成部Pxは、上記TFT基板に形成された画素回路、上記の液晶層、上記の共通電極COM、および、上記カラー表示のためのカラーフィルタ等から構成されている。ただし、上記の液晶層および共通電極COMは、上記複数(N×M)個の画素形成部Pxに共通的に設けられている。N×M個の画素形成部Pxは、N本のゲートラインGL1~GLNおよびM本のデータ信号線SL1~SLMとの対応関係についてはN×M個の画素形成部Pxにそれぞれ含まれる画素回路110と同様であり、また、N×M個の画素回路110にそれぞれ含まれる画素電極Epとも同様である。 The pixel forming portion Px for forming each pixel of an image to be displayed on the liquid crystal panel 100 includes a pixel circuit formed on the TFT substrate, the liquid crystal layer, the common electrode COM, and the color. It consists of color filters for display. However, the liquid crystal layer and the common electrode COM are provided in common to the plurality (N × M) of pixel forming portions Px. The N × M pixel forming portions Px are pixel circuits included in the N × M pixel forming portions Px in correspondence with the N gate lines GL1 to GLN and the M data signal lines SL1 to SLM, respectively. The same applies to the pixel electrode Ep included in each of the N × M pixel circuits 110.
 図4は、上記TFT基板に形成された画素回路110の構成を模式的に示している。図4に示すように画素回路110は、スイッチング素子としてのNチャネル形のTFT10と、表示すべき画像の画素に対応する画素電極Epとを含み、画素電極EpはTFT10を介して対応するソースラインSLjに接続され、TFT10のゲート端子は対応するゲートラインGLiに接続されている。また、画素電極Epに隣接する2つのゲートラインGLi-1,GLiのうち、対応するゲートライン(以下「対応隣接ゲートライン」という)GLiと画素電極Epとの間に第1の寄生容量Cgd1が存在すると共に、他方のゲートライン(以下「非対応隣接ゲートライン」という)GLi-1と画素電極Epとの間にも第2の寄生容量Cgd2が存在する。なお、画素(の輝度)を示す電圧を保持するための画素容量Cpは、画素電極EpとCF基板における共通電極COMとの間に形成される液晶容量Clcからなる。ただし、当該電圧をより確実に保持すべくTFT基板に補助容量線が形成される場合には、画素電極Epと補助容量線との間に補助容量Ccsが形成され、この補助容量Ccsも画素容量Cpに含まれる。この補助容量Ccsは本発明には直接的には関係しないので、以下では補助容量Ccsに関する記載や図示を省略するものとする。 FIG. 4 schematically shows the configuration of the pixel circuit 110 formed on the TFT substrate. As shown in FIG. 4, the pixel circuit 110 includes an N-channel TFT 10 as a switching element and a pixel electrode Ep corresponding to a pixel of an image to be displayed. The pixel electrode Ep is a corresponding source line via the TFT 10. The gate terminal of the TFT 10 is connected to the corresponding gate line GLi. Of the two gate lines GLi-1 and GLi adjacent to the pixel electrode Ep, the first parasitic capacitance Cgd1 is between the corresponding gate line (hereinafter referred to as “corresponding adjacent gate line”) GLi and the pixel electrode Ep. In addition, there is a second parasitic capacitance Cgd2 between the other gate line (hereinafter referred to as “non-corresponding adjacent gate line”) GLi-1 and the pixel electrode Ep. Note that the pixel capacitor Cp for holding a voltage indicating the pixel (its luminance) is a liquid crystal capacitor Clc formed between the pixel electrode Ep and the common electrode COM on the CF substrate. However, when an auxiliary capacitance line is formed on the TFT substrate to hold the voltage more reliably, an auxiliary capacitance Ccs is formed between the pixel electrode Ep and the auxiliary capacitance line, and the auxiliary capacitance Ccs is also a pixel capacitance. Included in Cp. Since the auxiliary capacitor Ccs is not directly related to the present invention, description and illustration regarding the auxiliary capacitor Ccs will be omitted below.
 図1では、液晶パネル100における画素形成部Pxの電気的構成も描かれている。なお以下では、ゲートラインGLiおよびソースラインSLjに対応する画素形成部を記号“Px”に代えて記号“Px(i,j)”で示すことがある。画素形成部Px(i,j)は、既述のように、TFT基板上の画素回路(図4参照)、液晶層、CF基板上の共通電極COM、および、カラーフィルタ等から構成されるが、電気的には図1に示すように、TFT10と、画素容量Cp(液晶容量Clc)と、第1および第2の寄生容量Cgd1,Cgd2とを含み、画素電極Epは、画素容量Cpを介して共通電極COMに接続されるだけでなく、第1の寄生容量Cgd1を介して対応隣接ゲートラインGLiと容量的に結合していると共に、第2の寄生容量Cgd2を介して非対応隣接ゲートラインGLi-1とも容量的に結合している。なお本実施形態では、いずれの画素回路110にも対応しないゲートラインGL0が1番目のゲートラインGL1に対応する各画素回路の画素電極Epについての非対応隣接ゲートラインとしてTFT基板に形成されている。その結果、1番目のゲートラインGL1に対応する各画素回路においても画素電極Epと対応隣接ゲートラインGL1との間に第1の寄生容量Cgd1が存在するだけでなく、当該画素電極と非対応隣接ゲートラインGL0との間に第2の寄生容量Cgd2が存在する。これにより、すべての画素回路において画素電極Epの電圧は、第1の寄生容量Cgd1を介して対応隣接ゲートラインGLiの電圧変化の影響を受けるだけでなく、第2の寄生容量Cgd2を介して非対応隣接ゲートラインGLi-1の電圧変化の影響も受ける。 FIG. 1 also shows the electrical configuration of the pixel formation portion Px in the liquid crystal panel 100. Hereinafter, the pixel formation portions corresponding to the gate line GLi and the source line SLj may be indicated by the symbol “Px (i, j)” instead of the symbol “Px”. As described above, the pixel forming portion Px (i, j) includes a pixel circuit (see FIG. 4) on the TFT substrate, a liquid crystal layer, a common electrode COM on the CF substrate, a color filter, and the like. Electrically, as shown in FIG. 1, the TFT 10 includes a pixel capacitor Cp (liquid crystal capacitor Clc), and first and second parasitic capacitors Cgd1 and Cgd2, and the pixel electrode Ep passes through the pixel capacitor Cp. Not only connected to the common electrode COM but also capacitively coupled to the corresponding adjacent gate line GLi via the first parasitic capacitance Cgd1 and non-corresponding adjacent gate line via the second parasitic capacitance Cgd2. It is also capacitively coupled to GLi-1. In this embodiment, the gate line GL0 that does not correspond to any pixel circuit 110 is formed on the TFT substrate as a non-corresponding adjacent gate line for the pixel electrode Ep of each pixel circuit corresponding to the first gate line GL1. . As a result, in each pixel circuit corresponding to the first gate line GL1, not only the first parasitic capacitance Cgd1 exists between the pixel electrode Ep and the corresponding adjacent gate line GL1, but also the adjacent non-corresponding to the pixel electrode. A second parasitic capacitance Cgd2 exists between the gate line GL0. As a result, in all the pixel circuits, the voltage of the pixel electrode Ep is not only influenced by the voltage change of the corresponding adjacent gate line GLi via the first parasitic capacitance Cgd1, but is not affected via the second parasitic capacitance Cgd2. It is also affected by the voltage change of the corresponding adjacent gate line GLi-1.
 表示制御回路200は、表示すべき画像を表す画像信号Dvとタイミング制御信号Ctとを外部から受け取り、その画像信号Dvに基づく画像データ信号およびソースドライバ用のタイミング制御信号からなるソースドライバ制御信号Sctを生成してソースドライバ300に与えると共に、ゲートドライバ制御信号Gctを生成してゲートドライバ400に与える。また、表示制御回路200は、ゲートラインGL0~GLNの選択順(活性化順)に対応する走査方向を指定するための方向指定信号Cudを生成しゲートドライバ400および共通電極駆動回路500に与える。ここで、方向指定信号Cudは、ゲートラインGLiをi=0,1,2,…,Nの順に所定期間ずつ活性化する走査すなわちゲートラインGLiを昇順に選択する走査(以下「正方向走査」という)と、ゲートラインGLiをi=N,N-1,…,1,0の順に所定期間ずつ活性化する走査すなわちゲートラインGLiを降順に選択する走査(以下「逆方向走査」という)のうちのいずれかを指定する。この方向指定信号Cudの値すなわち正方向走査と逆方向走査のうちいずれの走査方向を指定するかは、例えば、外部から表示制御回路200に与えられる信号に基づいて決定されるように構成することができる。また、これに代えて、走査方向を設定するするための切替スイッチを本実施形態に係る液晶表示装置に設けておき、このスイッチの操作により方向指定信号Cudの値が決定されるように構成されていてもよい。以下では、方向指定信号Cudがハイレベル(Hレベル)のときには正方向走査が指定され、方向指定信号Cudがローレベル(Lレベル)のときには逆方向走査が指定されているものとする。 The display control circuit 200 receives an image signal Dv representing an image to be displayed and a timing control signal Ct from the outside, and a source driver control signal Sct comprising an image data signal based on the image signal Dv and a timing control signal for a source driver. Is generated and supplied to the source driver 300, and a gate driver control signal Gct is generated and supplied to the gate driver 400. In addition, the display control circuit 200 generates a direction designation signal Cud for designating a scanning direction corresponding to the selection order (activation order) of the gate lines GL0 to GLN, and supplies it to the gate driver 400 and the common electrode drive circuit 500. Here, the direction designation signal Cud is a scan for activating the gate line GLi for a predetermined period in order of i = 0, 1, 2,..., N, that is, a scan for selecting the gate line GLi in ascending order (hereinafter “forward scan”). Scanning for activating the gate line GLi in a predetermined period in the order of i = N, N-1,..., 1, 0, that is, scanning for selecting the gate line GLi in descending order (hereinafter referred to as “reverse scanning”). Specify one of them. The value of the direction designation signal Cud, that is, which one of the forward direction scanning and the reverse direction scanning is designated is determined based on, for example, a signal supplied to the display control circuit 200 from the outside. Can do. Alternatively, a changeover switch for setting the scanning direction is provided in the liquid crystal display device according to the present embodiment, and the value of the direction designation signal Cud is determined by operating this switch. It may be. In the following, it is assumed that forward direction scanning is designated when the direction designation signal Cud is at a high level (H level), and reverse direction scanning is designated when the direction designation signal Cud is at a low level (L level).
 ソースドライバ300は、上記のソースドライバ用制御信号Sctに基づき、液晶パネル100を駆動するためのアナログ電圧をデータ信号S1,S2,…,SMとして生成し、これらを液晶パネル100におけるM本のソースラインSL1~SLMにそれぞれ印加する。 Based on the source driver control signal Sct, the source driver 300 generates analog voltages for driving the liquid crystal panel 100 as the data signals S1, S2,..., SM, and generates these M sources in the liquid crystal panel 100. Apply to lines SL1 to SLM, respectively.
 ゲートドライバ400は、双方向シフトレジスタを内蔵しており、この双方向シフトレジスタを使用して、ゲートラインGL0~GLNを活性化する順序を切り替えることができるように構成されており、正方向走査と逆方向走査との双方が可能である。このゲートドライバ400は、上記のゲートドライバ用制御信号Gctおよび方向制御信号Cudに基づき走査信号G0,G1,…,GNを生成し、これらを液晶パネル100におけるN+1本のゲートラインGL0,GL1,…,GLNにそれぞれ印加することにより、方向指定信号Cudが示す順に、当該N+1本のゲートラインGL0~GLNを所定期間ずつ(本実施形態では2水平期間ずつ)選択的に活性化する。 The gate driver 400 has a built-in bidirectional shift register, and is configured so that the order in which the gate lines GL0 to GLN are activated can be switched by using the bidirectional shift register. And backward scanning are possible. The gate driver 400 generates scanning signals G0, G1,..., GN based on the gate driver control signal Gct and the direction control signal Cud, and outputs them to N + 1 gate lines GL0, GL1,. , GLN, the N + 1 gate lines GL0 to GLN are selectively activated in a predetermined period (in this embodiment, every two horizontal periods) in the order indicated by the direction designation signal Cud.
 共通電極駆動回路500は、図1に示すように、正方向走査用の対向DC電圧である第1対向電圧VcomAを生成する第1対向電圧生成回路51と、逆方向走査用の対向DC電圧である第2対向電圧VcomBを生成する第2対向電圧生成回路52と、第1対向電圧VcomAと第2対向電圧VcomBのうちいずれかを選択するための選択器としての切替スイッチ54とを含んでおり、切替スイッチ54の制御信号として表示制御回路200から方向指定信号Cudを受け取る。この切替スイッチ54は、方向指定信号CudがHレベルのときには第1対向電圧VcomAを選択し、方向指定信号CudがLレベルのときには第2対向電圧VcomBを選択する。このようにして選択された対向DC電圧は、選定対向DC電圧Vcomとして共通電極駆動回路500から出力され、液晶パネル100の共通電極COMに与えられる。 As shown in FIG. 1, the common electrode drive circuit 500 includes a first counter voltage generation circuit 51 that generates a first counter voltage VcomA that is a counter DC voltage for forward scanning, and a counter DC voltage for reverse scanning. A second counter voltage generation circuit 52 for generating a second counter voltage VcomB, and a changeover switch 54 as a selector for selecting one of the first counter voltage VcomA and the second counter voltage VcomB. The direction designation signal Cud is received from the display control circuit 200 as a control signal for the changeover switch 54. The changeover switch 54 selects the first counter voltage VcomA when the direction designation signal Cud is at the H level, and selects the second counter voltage VcomB when the direction designation signal Cud is at the L level. The counter DC voltage selected in this way is output from the common electrode drive circuit 500 as the selected counter DC voltage Vcom and is applied to the common electrode COM of the liquid crystal panel 100.
 上記のようにして液晶パネル100では、外部から入力された画像信号Dvに基づくデータ信号S1~SMがソースラインSL1~SLMに印加され、表示制御回路200からの方向指定信号Cudで指定される走査方向に対応した走査信号G0~GNがゲートラインGL0~GLNに印加される。また、共通電極COMには、方向指定信号Cudで指定される走査方向に対応した選定対向DC電圧Vcomが共通電極駆動回路500から共通電極COMに印加される。これにより、液晶パネル100における各画素形成部Px(i,j)は、それに対応するゲートラインGLiが活性化されているときに、それに対応するソースラインSLjのデータ信号Sj(当該ソースラインSLjの電圧)をTFT10を介して取り込み、画素容量Cpに与える。その後、その対応ゲートラインGLiが非活性化されると、このデータ信号Sjに相当する電圧は、次のフレーム期間においてその対応するゲートラインGLiが再び活性化されるまで、そのまま当該画素容量Cpに保持される。このようにしてデータ信号Sjに相当する電圧が各画素容量Cpに与えられて保持されることにより、液晶パネル100は、上記画像信号Dvに応じた電圧を液晶層に印加されて光の透過率を変化させ、上記画像信号Dvの表す画像を表示する。 As described above, in the liquid crystal panel 100, the data signals S1 to SM based on the image signal Dv input from the outside are applied to the source lines SL1 to SLM, and scanning specified by the direction specifying signal Cud from the display control circuit 200 is performed. Scan signals G0 to GN corresponding to the directions are applied to the gate lines GL0 to GLN. Further, the selected counter DC voltage Vcom corresponding to the scanning direction designated by the direction designation signal Cud is applied to the common electrode COM from the common electrode driving circuit 500 to the common electrode COM. As a result, each pixel forming portion Px (i, j) in the liquid crystal panel 100, when the corresponding gate line GLi is activated, the data signal Sj of the corresponding source line SLj (of the corresponding source line SLj). Voltage) is taken in via the TFT 10 and applied to the pixel capacitor Cp. Thereafter, when the corresponding gate line GLi is deactivated, the voltage corresponding to the data signal Sj is applied to the pixel capacitor Cp as it is until the corresponding gate line GLi is activated again in the next frame period. Retained. In this way, the voltage corresponding to the data signal Sj is applied to and held in each pixel capacitor Cp, so that the liquid crystal panel 100 is applied with a voltage corresponding to the image signal Dv to the liquid crystal layer, thereby transmitting light. The image represented by the image signal Dv is displayed.
 なお、図1に示した液晶表示装置では、ソースドライバ300や、ゲートドライバ400、共通電極駆動回路500は、液晶パネル100とは別個の構成要素とされているが、これに代えて、ソースドライバ300、ゲートドライバ400、および共通電極駆動回路500の少なくとも一部が液晶パネル100のTFT基板上にTFTを用いて画素回路と一体的に(同一プロセスで同時に)形成された構成であってもよい。例えば、ゲートドライバ400がTFT基板上に画素回路と一体的に形成された液晶パネルであるゲートドライバモノリシックパネルを使用した構成であってもよい。 In the liquid crystal display device shown in FIG. 1, the source driver 300, the gate driver 400, and the common electrode driving circuit 500 are separate components from the liquid crystal panel 100. 300, the gate driver 400, and the common electrode drive circuit 500 may be configured to be formed integrally with the pixel circuit using the TFT on the TFT substrate of the liquid crystal panel 100 (simultaneously in the same process). . For example, the gate driver 400 may be configured to use a gate driver monolithic panel that is a liquid crystal panel formed integrally with a pixel circuit on a TFT substrate.
<1.2 動作>
 図2は、方向指定信号CudがHレベルの場合すなわち正方向走査が指定されている場合の本実施形態に係る液晶表示装置の動作を説明するためのタイミングチャートである。この場合、ゲートドライバ400は、各フレーム期間において走査信号G0~GNを1水平期間間隔で順次Hレベルとし、Hレベルとした走査信号Gi(i=0~N)を2水平期間だけHレベルに維持した後にLレベルとし、その後、次のフレーム期間で再びHレベルとするまでLレベルに維持する。これにより、N+1本のゲートラインGLiは各フレーム期間においてi=0,1,…,N-1,Nの順に1水平期間間隔で順次活性化され、活性化されたゲートラインGLiは、2水平期間だけ活性化状態を維持した後に非活性化され、その後、次のフレーム期間で再び活性化されるまで非アクティブ状態に維持される。
<1.2 Operation>
FIG. 2 is a timing chart for explaining the operation of the liquid crystal display device according to the present embodiment when the direction designation signal Cud is at the H level, that is, when the forward scanning is designated. In this case, the gate driver 400 sequentially sets the scanning signals G0 to GN to the H level at intervals of one horizontal period in each frame period, and sets the scanning signal Gi (i = 0 to N) at the H level to the H level for two horizontal periods. After being maintained, it is set to L level, and then maintained at L level until it is again set to H level in the next frame period. Thus, N + 1 gate lines GLi are sequentially activated at intervals of one horizontal period in order of i = 0, 1,..., N−1, N in each frame period. After being kept in the activated state for a period, it is deactivated, and then kept in the inactive state until it is activated again in the next frame period.
 また、この場合、ソースドライバ300は、図2に示すように、各ソースラインSLj(j=1~M)に対し、それに接続される画素形成部Px(i,j)が取り込んで保持すべき電圧すなわち当該画素形成部Px(i,j)が形成すべき画素を示す電圧をデータ信号Sjとして出力し、出力されるデータ信号Sjの極性を1フレーム期間毎に反転すると共に、各フレーム期間におけるデータ信号S1~SMの極性を1ソースライン毎に反転する(隣接する2つのソースラインSLj-1,SLjには互いに異なる極性のデータ信号Sj-1,Sjが印加される)。なお、図2に示すデータ信号S1~S4のタイミングチャートはそれぞれ上下2段から構成されており、上段はそのデータ信号Sjの極性を示し、下段はそのデータ信号Sjの値を示しており、dij(i=1,2,…,N;j=1,2,…,M)は、画素形成部Px(i,j)が取り込んで保持すべき電圧に相当する値を表している(データ信号S1~S4のタイミングチャートについてのこのような表記法は、以下で言及する他の図のタイミングチャートにおいても同様である)。図2に示すデータ信号S1~S4からわかるように、各画素形成部Px(i,j)が取り込むべき電圧に相当するデータ信号Sjは、対応するゲートラインGLiが各フレーム期間で活性化状態となる2水平期間のうち後半の1水平期間に、対応するソースラインSLjに印加される。 In this case, as shown in FIG. 2, the source driver 300 should capture and hold each source line SLj (j = 1 to M) by the pixel formation portion Px (i, j) connected thereto. The voltage, that is, the voltage indicating the pixel to be formed by the pixel forming unit Px (i, j) is output as the data signal Sj, and the polarity of the output data signal Sj is inverted every frame period, and in each frame period The polarities of the data signals S1 to SM are inverted for each source line (data signals Sj-1 and Sj having different polarities are applied to two adjacent source lines SLj-1 and SLj). The timing chart of the data signals S1 to S4 shown in FIG. 2 is composed of two upper and lower stages, the upper stage shows the polarity of the data signal Sj, the lower stage shows the value of the data signal Sj, and dij (I = 1, 2,..., N; j = 1, 2,..., M) represents a value corresponding to a voltage to be captured and held by the pixel forming portion Px (i, j) (data signal). Such a notation for the timing charts of S1 to S4 is the same in the timing charts of other figures referred to below). As can be seen from the data signals S1 to S4 shown in FIG. 2, the data signal Sj corresponding to the voltage to be taken in by each pixel forming unit Px (i, j) is activated in the corresponding gate line GLi in each frame period. This is applied to the corresponding source line SLj in the latter one horizontal period of the two horizontal periods.
 また、この場合、共通電極駆動回路500は、切替スイッチ54により第1対向電圧VcomAを選択し、これを選定対向DC電圧Vcomとして液晶パネル100の共通電極COMに印加する。したがって、各画素形成部Pix(i,j)では、この選定対向DC電圧Vcom=VcomAを基準とした電圧極性で、画素電極Epに印加されるデータ信号Sjの電圧と選定対向DC電圧Vcomとの差に相当する電圧が液晶に印加される。 In this case, the common electrode driving circuit 500 selects the first counter voltage VcomA by the changeover switch 54 and applies it to the common electrode COM of the liquid crystal panel 100 as the selected counter DC voltage Vcom. Accordingly, in each pixel forming unit Pix (i, j), the voltage of the data signal Sj applied to the pixel electrode Ep and the selected counter DC voltage Vcom with a voltage polarity based on the selected counter DC voltage Vcom = VcomA. A voltage corresponding to the difference is applied to the liquid crystal.
 図3は、方向指定信号CudがLレベルの場合すなわち逆方向走査が指定されている場合の本実施形態に係る液晶表示装置の動作を説明するためのタイミングチャートである。この場合、ゲートドライバ400は、各フレーム期間において走査信号G0~GNを1水平期間間隔で正方向走査(図2)の場合とは逆の方向に2水平期間ずつ順次Hレベルとする。これにより、N+1本のゲートラインGLiは、各フレーム期間においてi=N,N-1,…,1,0の順に1水平期間間隔で2水平期間ずつ活性化される。 FIG. 3 is a timing chart for explaining the operation of the liquid crystal display device according to the present embodiment when the direction designation signal Cud is at L level, that is, when reverse scanning is designated. In this case, the gate driver 400 sequentially sets the scanning signals G0 to GN to the H level by two horizontal periods in the opposite direction to the case of forward scanning (FIG. 2) at intervals of one horizontal period in each frame period. As a result, N + 1 gate lines GLi are activated by two horizontal periods at intervals of one horizontal period in the order of i = N, N−1,..., 0 in each frame period.
 また、この場合、ソースドライバ300は、図3に示すように、各ソースラインSLj(j=1~M)に対し、それに接続される画素形成部Px(i,j)(i=1~N)が取り込んで保持すべき電圧をデータ信号Sjとして出力し、出力されるデータ信号Sjの極性を1フレーム期間毎に反転すると共に、各フレーム期間におけるデータ信号S1~SMの極性を1ソースライン毎に反転する。図3に示すデータ信号S1~S4からわかるように、各画素形成部Px(i,j)が取り込むべき電圧に相当するデータ信号Sjは、対応するゲートラインGLiが各フレーム期間で活性化状態となる2水平期間のうち後半の1水平期間に、対応するソースラインSLjに印加される。 Further, in this case, the source driver 300, as shown in FIG. 3, for each source line SLj (j = 1 to M), the pixel formation portion Px (i, j) (i = 1 to N) connected thereto. Is output as a data signal Sj, the polarity of the output data signal Sj is inverted every frame period, and the polarity of the data signals S1 to SM in each frame period is changed for each source line. Invert to. As can be seen from the data signals S1 to S4 shown in FIG. 3, the data signal Sj corresponding to the voltage to be taken in by each pixel forming unit Px (i, j) is activated in the corresponding gate line GLi in each frame period. This is applied to the corresponding source line SLj in the latter one horizontal period of the two horizontal periods.
 また、この場合、共通電極駆動回路500は、切替スイッチ54により第2対向電圧VcomBを選択し、これを選定対向DC電圧Vcomとして液晶パネル100の共通電極COMに印加する。したがって、各画素形成部Pix(i,j)では、この選定対向DC電圧Vcom=VcomBを基準とした電圧極性で、画素電極Epに印加されるデータ信号Sjの電圧と選定対向DC電圧Vcomとの差に相当する電圧が液晶に印加される。 In this case, the common electrode driving circuit 500 selects the second counter voltage VcomB by the changeover switch 54 and applies it to the common electrode COM of the liquid crystal panel 100 as the selected counter DC voltage Vcom. Therefore, in each pixel forming unit Pix (i, j), the voltage polarity based on the selected counter DC voltage Vcom = VcomB is used as a reference between the voltage of the data signal Sj applied to the pixel electrode Ep and the selected counter DC voltage Vcom. A voltage corresponding to the difference is applied to the liquid crystal.
 図2および図3に示す走査信号G1~G4からわかるように、ゲートドライバ400は、各走査信号Giが2水平期間に相当する幅のパルスを有し、かつ、隣接する2つのゲートラインGLi-1とGLiにそれぞれ印加すべき2つの走査信号Gi-1とGiとの間でパルスが1水平期間だけ重なるように、走査信号G0~GNを生成する。また、本実施形態では、1フレーム期間毎にデータ信号S1~SMの極性が反転するが同一フレーム期間内ではデータ信号S1~SMの極性が変化しない反転駆動(図2および図3に示す例ではいわゆる「ソース反転駆動」または「カラム反転駆動」と呼ばれる反転駆動方式)が採用されている。ソースドライバ300は、このような反転駆動に対応したデータ信号S1~SMを生成する。 As can be seen from the scanning signals G1 to G4 shown in FIGS. 2 and 3, the gate driver 400 has a pulse with a width corresponding to two horizontal periods for each scanning signal Gi, and two adjacent gate lines GLi−. The scanning signals G0 to GN are generated so that the pulses overlap each other for one horizontal period between the two scanning signals Gi-1 and Gi to be applied to 1 and GLi, respectively. In the present embodiment, the polarity of the data signals S1 to SM is inverted every frame period, but the polarity of the data signals S1 to SM is not changed within the same frame period (in the example shown in FIGS. 2 and 3). A so-called “source inversion drive” or “column inversion drive” is used. The source driver 300 generates data signals S1 to SM corresponding to such inversion driving.
 このような構成によれば、各走査信号Giに含まれるパルスの幅が従来の2倍(2水平期間)となり、このパルス幅の期間では各データ信号Sjが同一極性となる。すなわち、各画素形成部Px(i,j)が対応ソースラインSLjの電圧を表示すべき画像の画素値として取り込むように液晶パネル100のゲートラインG0~GNが正方向または逆方向に順次に1水平期間ずつ活性化されだけでなく、活性化状態の当該1水平期間(以下「本充電期間」という)の直前の1水平期間においてもゲートラインGLjが活性化され、しかも、当該直前の1水平期間におけるソースラインSLjの電圧極性は、本充電期間としての1水平期間におけるソースラインSLjの電圧極性と同じである。したがって、当該直前の1水平期間すなわち各フレーム期間においてゲートラインGLjが活性化状態となる2水平期間のうち前半の1水平期間は、予備充電期間として機能する。これにより、画素容量Cpの充電率を向上させることができる。 According to such a configuration, the width of the pulse included in each scanning signal Gi is twice that of the conventional one (two horizontal periods), and each data signal Sj has the same polarity during this pulse width period. That is, the gate lines G0 to GN of the liquid crystal panel 100 are sequentially set to 1 in the forward direction or the reverse direction so that each pixel forming unit Px (i, j) takes in the voltage of the corresponding source line SLj as the pixel value of the image to be displayed. Not only the horizontal period is activated, but also the gate line GLj is activated in one horizontal period immediately before the one horizontal period in the activated state (hereinafter referred to as “main charging period”). The voltage polarity of the source line SLj in the period is the same as the voltage polarity of the source line SLj in one horizontal period as the main charging period. Therefore, the first horizontal period of the two horizontal periods in which the gate line GLj is activated in the immediately preceding horizontal period, that is, each frame period, functions as a preliminary charging period. Thereby, the charging rate of the pixel capacitance Cp can be improved.
<1.3 対向DC電圧の設定>
 図5は、本実施形態に係る液晶表示装置における走査方向と対向DC電圧との関係を説明するための信号波形図である。以下、画素回路の構成を模式的に示す図4と共にこの図5を参照して、ゲートラインGL0~GLNの走査方向に応じた対向DC電圧の設定について説明する。
<1.3 Counter DC voltage setting>
FIG. 5 is a signal waveform diagram for explaining the relationship between the scanning direction and the counter DC voltage in the liquid crystal display device according to the present embodiment. The setting of the counter DC voltage according to the scanning direction of the gate lines GL0 to GLN will be described below with reference to FIG. 5 together with FIG. 4 schematically showing the configuration of the pixel circuit.
 図5(A)は、正方向走査が指定されている場合(方向指定信号Cud=Hの場合)において正極性のデータ信号Sjが画素形成部Px(i,j)(画素回路110)の画素電極Epに印加されるときの走査信号Gi-1,Giおよび当該画素電極Epの電圧(以下「画素電圧Vp(i,j)」という)の波形を模式的に示している。このとき、画素形成部Px(i,j)の当該画素電極Epに着目すると、非対応隣接ゲートラインGLi-1の走査信号(以下「非対応隣接走査信号」という)Gi-1がLレベルからHレベルへと変化した時点から1水平期間だけ経過すると、対応隣接ゲートラインGLiの走査信号(以下「対応走査信号」という)GiがLレベルからHレベルへと変化する。これにより対応隣接ゲートラインGLiが活性化し、対応ソースラインSLjの電圧(データ信号Sjの電圧)が画素電極Epに印加される。ここで、対応隣接ゲートラインGLiが活性化状態となる2水平期間(走査信号GiがHレベルとなる2水平期間)のうち前半の1水平期間すなわち予備充電期間では、非対応隣接ゲートラインGLi-1に対応する画素形成部Px(i-1,j)で形成すべき画素を示す電圧が対応ソースラインSLjに印加される。 FIG. 5A shows that when positive direction scanning is designated (when the direction designation signal Cud = H), the positive data signal Sj is a pixel of the pixel formation portion Px (i, j) (pixel circuit 110). The waveforms of the scanning signals Gi−1, Gi and the voltage of the pixel electrode Ep (hereinafter referred to as “pixel voltage Vp (i, j)”) when applied to the electrode Ep are schematically shown. At this time, when paying attention to the pixel electrode Ep of the pixel formation portion Px (i, j), the scanning signal (hereinafter referred to as “non-corresponding adjacent scanning signal”) Gi−1 of the non-corresponding adjacent gate line GL i-1 is changed from the L level. When one horizontal period elapses from the time when the level changes to H level, the scanning signal Gi (hereinafter referred to as “corresponding scanning signal”) Gi of the corresponding adjacent gate line GLi changes from L level to H level. As a result, the corresponding adjacent gate line GLi is activated, and the voltage of the corresponding source line SLj (the voltage of the data signal Sj) is applied to the pixel electrode Ep. Here, in the first horizontal period, that is, the preliminary charging period, of the two horizontal periods in which the corresponding adjacent gate line GLi is activated (two horizontal periods in which the scanning signal Gi is at the H level), the non-corresponding adjacent gate line GLi− A voltage indicating a pixel to be formed in the pixel forming portion Px (i−1, j) corresponding to 1 is applied to the corresponding source line SLj.
 対応走査信号GiがLレベルからHレベルへと変化した時点から1水平期間が経過すると、非対応隣接走査信号Gi-1はHレベルからLレベルへと変化し、非対応隣接ゲートラインGLi-1は非活性化される。このとき非対応隣接走査信号Gi-1のHレベルからLレベルへの変化は、第2の寄生容量Cgd2を介して画素電圧Vp(i,j)に影響を与える。しかし、この時点では対応走査信号GiはHレベルであってTFT10はオン状態であるので、この影響は画素電圧Vp(i,j)を一時的に低下させるだけである。そして、このとき対応ソースラインSLjには、画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjが印加される。これにより、当該画素を示すデータ信号Sjの電圧が対応ソースラインSLjからTFT10を介して画素形成部Px(i,j)の画素電極Epに与えられる。すなわち、画素形成部Px(i,j)の画素容量Cpに対する本充電期間が開始される。その後、非対応隣接走査信号Gi-1がHレベルからLレベルへと変化した時点から1水平期間が経過すると、対応走査信号GiがHレベルからLレベルへと変化し、対応ゲートラインGLiは非活性化される。これにより本充電期間が終了する。 When one horizontal period elapses from when the corresponding scanning signal Gi changes from the L level to the H level, the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated. At this time, the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. However, at this time, since the corresponding scanning signal Gi is at the H level and the TFT 10 is in the ON state, this influence only lowers the pixel voltage Vp (i, j) temporarily. At this time, the data signal Sj indicating the pixel to be formed by the pixel formation portion Px (i, j) is applied to the corresponding source line SLj. As a result, the voltage of the data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. That is, the main charging period for the pixel capacitance Cp of the pixel formation portion Px (i, j) is started. Thereafter, when one horizontal period elapses after the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, the corresponding scanning signal Gi changes from the H level to the L level, and the corresponding gate line GLi becomes non- Activated. Thereby, the main charging period ends.
 この本充電期間の終了時における対応走査信号GiのHレベルからLレベルへの変化は、第1の寄生容量Cgd1を介して画素電圧Vp(i,j)に影響を与える。すなわち、この対応走査信号GiのHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)がΔVp(>0)だけ低下する。この低下分の電圧ΔVpは引き込み電圧等と呼ばれ、その大きさは、この対応走査信号GiのHレベルからLレベルへの変化時におけるゲートラインGLiの電圧変化量および第1の寄生容量Cgd1等によって決まる。この後、画素電圧Vp(i,j)は、次のフレーム期間で対応走査信号Giが再びHレベルとなるまで(対応ゲートラインGLiが再び活性化されるまで)、本充電期間終了直前の画素電圧Vp(i,j)=VwPから引き込み電圧ΔVpだけ低下した電圧(VwP-ΔVp)を維持する。 The change of the corresponding scanning signal Gi from the H level to the L level at the end of the main charging period affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by ΔVp (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level. This reduced voltage ΔVp is called a pull-in voltage or the like, and the magnitude thereof is the amount of voltage change of the gate line GLi and the first parasitic capacitance Cgd1 when the corresponding scanning signal Gi changes from the H level to the L level. It depends on. Thereafter, the pixel voltage Vp (i, j) is the pixel immediately before the end of the main charging period until the corresponding scanning signal Gi becomes H level again in the next frame period (until the corresponding gate line GLi is activated again). The voltage (VwP−ΔVp), which is reduced from the voltage Vp (i, j) = VwP by the pull-in voltage ΔVp, is maintained.
 図5(B)は、正方向走査が指定されている場合(方向指定信号Cud=Hの場合)において負極性のデータ信号Sjが画素形成部Px(i,j)(画素回路110)の画素電極Epに印加されるときの走査信号Gi-1,Giおよび画素電圧Vp(i,j)の波形を模式的に示している。このときも、画素電圧Vp(i,j)は、対応走査信号GiがHレベルである2水平期間のうちの後半の1水平期間(本充電期間)において、画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjが対応ソースラインSLjに印加される。これにより、当該画素を示す負極性のデータ信号Sjの電圧が対応ソースラインSLjからTFT10を介して画素形成部Px(i,j)の画素電極Epに与えられる。そして、この本充電期間の終了時に対応走査信号GiがHレベルからLレベルへと変化し、この変化は第1の寄生容量Cgd1を介して画素電圧Vp(i,j)に影響を与える。すなわち、この対応走査信号GiのHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)が引き込み電圧ΔVp(>0)だけ低下する。この後、画素電圧Vp(i,j)は、次のフレーム期間で対応走査信号Giが再びHレベルとなるまで、本充電期間終了直前の画素電圧Vp(i,j)=VwN(<0)から引き込み電圧ΔVpだけ低下した電圧(VwN-ΔVp)を維持する。この引き込み電圧ΔVpの大きさは、正極性のデータ信号Sjが画素形成部Px(i,j)の画素電極Epに印加されるときと同じである(図5(A))。 FIG. 5B shows a case where the negative direction data signal Sj is the pixel of the pixel formation portion Px (i, j) (pixel circuit 110) when the forward direction scanning is designated (when the direction designation signal Cud = H). The waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown. Also at this time, the pixel voltage Vp (i, j) is applied to the pixel forming portion Px (i, j) in one horizontal period (main charging period) of the latter half of the two horizontal periods in which the corresponding scanning signal Gi is at the H level. A data signal Sj indicating a pixel to be formed is applied to the corresponding source line SLj. As a result, the voltage of the negative data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. Then, at the end of the main charging period, the corresponding scanning signal Gi changes from the H level to the L level, and this change affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by the pull-in voltage ΔVp (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level. Thereafter, the pixel voltage Vp (i, j) is equal to the pixel voltage Vp (i, j) = VwN (<0) immediately before the end of the main charging period until the corresponding scanning signal Gi becomes H level again in the next frame period. Is maintained at a voltage (VwN−ΔVp) lowered by the pull-in voltage ΔVp. The magnitude of the pull-in voltage ΔVp is the same as when the positive data signal Sj is applied to the pixel electrode Ep of the pixel formation portion Px (i, j) (FIG. 5A).
 したがって、図5(A)および図5(B)からわかるように、データ信号Sjが取り得る電圧範囲における中心に相当する電圧(以下「ソースセンター電圧」または「データ信号の中心電圧」という)Vcenを対向DC電圧として共通電極COMに与えると、上記引き込み電圧ΔVpのために液晶パネル100が正しく交流駆動されず、液晶パネル100の液晶に印加される電圧に直流成分が含まれる。その結果、表示画像においてフリッカーが発生し、液晶が劣化するおそれがある。 Therefore, as can be seen from FIGS. 5A and 5B, the voltage Vcen corresponding to the center in the voltage range that the data signal Sj can take (hereinafter referred to as “source center voltage” or “center voltage of the data signal”) Vcen. Is applied to the common electrode COM as the counter DC voltage, the liquid crystal panel 100 is not correctly AC driven due to the pull-in voltage ΔVp, and a DC component is included in the voltage applied to the liquid crystal of the liquid crystal panel 100. As a result, flicker occurs in the displayed image, and the liquid crystal may be deteriorated.
 そこで本実施形態では、正方向走査が指定されている場合に共通電極COMに印加される対向DC電圧すなわち第1対向電圧VcomAは、ソースセンター電圧Vcenを上記の引き込み電圧Δp(>0)に応じて低下させた電圧に設定されている。 Therefore, in the present embodiment, the counter DC voltage applied to the common electrode COM, that is, the first counter voltage VcomA when the forward scanning is designated, corresponds to the source center voltage Vcen in accordance with the pull-in voltage Δp (> 0). Is set to a reduced voltage.
 図5(C)は、逆方向走査が指定されている場合(方向指定信号Cud=Lの場合)において正極性のデータ信号Sjが画素形成部Px(i,j)(画素回路110)の画素電極Epに印加されるときの走査信号Gi-1,Giおよび画素電圧Vp(i,j)の波形を模式的に示している。このとき、画素形成部Px(i,j)の画素電極Epに着目すると、対応隣接ゲートラインGLiの走査信号である対応走査信号GiがLレベルからHレベルへと変化して2水平期間だけHレベルを維持し、その2水平期間、対応隣接ゲートラインGLiが活性化状態となる。この2水平期間のうち前半の1水平期間は予備充電期間であり、この予備充電期間では、i+1番目のゲートラインGLi+1に対応する画素形成部Px(i+1,j)で形成すべき画素を示す電圧が対応ソースラインSLjに印加される。 FIG. 5C shows a case where the reverse direction scanning is designated (when the direction designation signal Cud = L), the positive data signal Sj is the pixel of the pixel formation portion Px (i, j) (pixel circuit 110). The waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown. At this time, when attention is paid to the pixel electrode Ep of the pixel forming portion Px (i, j), the corresponding scanning signal Gi, which is the scanning signal of the corresponding adjacent gate line GLi, changes from the L level to the H level, and is H for two horizontal periods. The level is maintained, and the corresponding adjacent gate line GLi is activated in the two horizontal periods. One horizontal period in the first half of these two horizontal periods is a preliminary charging period, and in this preliminary charging period, pixels to be formed by the pixel forming portion Px (i + 1, j) corresponding to the i + 1-th gate line GLi + 1. The voltage shown is applied to the corresponding source line SLj.
 対応走査信号GiがLレベルからHレベルへと変化した時点から1水平期間が経過すると、非対応隣接走査信号Gi-1はLレベルからHレベルへと変化し、非対応隣接ゲートラインGLi-1は活性化される。このとき非対応隣接走査信号GiのLレベルからHレベルへの変化は第2の寄生容量Cgd2を介して画素電圧Vp(i,j)に影響を与える。しかし、この時点では対応走査信号GiはHレベルであってTFT10はオン状態であるので、この影響は画素電圧Vp(i,j)を一時的に上昇させるだけである。そして、このとき対応ソースラインSLjには、画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjが印加される。これにより、当該画素を示すデータ信号Sjの電圧が対応ソースラインSLjからTFT10を介して画素形成部Px(i,j)の画素電極Epに与えられる。すなわち、画素形成部Px(i,j)の画素容量Cpに対する本充電期間が開始される。その後、非対応隣接走査信号Gi-1がLレベルからHレベルへと変化した時点から1水平期間が経過すると、対応走査信号GiがHレベルからLレベルへと変化し、対応ゲートラインGLiは非活性化される。これにより本充電期間が終了する。 When one horizontal period elapses from the time when the corresponding scanning signal Gi changes from the L level to the H level, the non-corresponding adjacent scanning signal Gi-1 changes from the L level to the H level, and the non-corresponding adjacent gate line GLi-1. Is activated. At this time, the change from the L level to the H level of the non-corresponding adjacent scanning signal Gi affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. However, at this time, since the corresponding scanning signal Gi is at the H level and the TFT 10 is in the ON state, this influence only raises the pixel voltage Vp (i, j) temporarily. At this time, the data signal Sj indicating the pixel to be formed by the pixel formation portion Px (i, j) is applied to the corresponding source line SLj. As a result, the voltage of the data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. That is, the main charging period for the pixel capacitance Cp of the pixel formation portion Px (i, j) is started. Thereafter, when one horizontal period elapses after the non-corresponding adjacent scanning signal Gi-1 changes from the L level to the H level, the corresponding scanning signal Gi changes from the H level to the L level, and the corresponding gate line GLi becomes non- Activated. Thereby, the main charging period ends.
 この本充電期間の終了時における対応走査信号GiのHレベルからLレベルへの変化は、第1の寄生容量Cgd1を介して画素電圧Vp(i,j)に影響を与える。すなわち、この対応走査信号GiのHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)がΔVp1(>0)だけ低下する。この低下分の電圧(以下「第1の引き込み電圧」という)ΔVp1の大きさは、この対応走査信号GiのHレベルからLレベルへの変化時におけるゲートラインGLiの電圧変化量および第1の寄生容量Cgd1等によって決まる。 The change of the corresponding scanning signal Gi from the H level to the L level at the end of the main charging period affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by ΔVp1 (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level. The magnitude of this reduced voltage (hereinafter referred to as “first pull-in voltage”) ΔVp1 is the amount of voltage change of the gate line GLi and the first parasitic when the corresponding scanning signal Gi changes from H level to L level. It depends on the capacitance Cgd1 and the like.
 対応走査信号GiがHレベルからLレベルへと変化した時点から1水平期間が経過すると、非対応隣接走査信号Gi-1はHレベルからLレベルへと変化し、非対応隣接ゲートラインGLi-1は非活性化される。このとき非対応隣接走査信号Gi-1のHレベルからLレベルへの変化は、第2の寄生容量Cgd2を介して画素電圧Vp(i,j)に影響を与える。すなわち、この非対応隣接走査信号Gi-1のHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)は更にΔVp2(>0)だけ低下する。この低下分の電圧(以下「第2の引き込み電圧」という)ΔVp2の大きさは、この非対応隣接走査信号Gi-1のHレベルからLレベルへの変化時におけるゲートラインGLi-1の電圧変化量および第2の寄生容量Cgd2等によって決まる。この後、画素電圧Vp(i,j)は、次のフレーム期間で対応走査信号Giが再びHレベルとなるまで、本充電期間終了直前の画素電圧Vp(i,j)=VwPから第1の引き込み電圧ΔVp1および第2の引き込み電圧ΔVp2だけ低下した電圧(VwP-ΔVp1-ΔVp2)を維持する。 When one horizontal period elapses from the time when the corresponding scanning signal Gi changes from the H level to the L level, the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated. At this time, the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. That is, the pixel voltage Vp (i, j) further decreases by ΔVp2 (> 0) in accordance with the change of the non-corresponding adjacent scanning signal Gi-1 from the H level to the L level. The magnitude of this reduced voltage (hereinafter referred to as “second pull-in voltage”) ΔVp2 is the voltage change of the gate line GLi-1 when the non-corresponding adjacent scanning signal Gi-1 changes from H level to L level. It depends on the quantity, the second parasitic capacitance Cgd2, etc. Thereafter, the pixel voltage Vp (i, j) is changed from the pixel voltage Vp (i, j) = VwP immediately before the end of the main charging period until the corresponding scanning signal Gi becomes H level again in the next frame period. The voltage (VwP−ΔVp1−ΔVp2) decreased by the pull-in voltage ΔVp1 and the second pull-in voltage ΔVp2 is maintained.
 図5(D)は、逆方向走査が指定されている場合(方向指定信号Cud=Lの場合)において負極性のデータ信号Sjが画素形成部Px(i,j)(画素回路110)の画素電極Epに印加されるときの走査信号Gi-1,Giおよび画素電圧Vp(i,j)の波形を模式的に示している。このときも、画素電圧Vp(i,j)は、対応走査信号GiがHレベルである2水平期間のうちの後半の1水平期間(本充電期間)において、画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjが対応ソースラインSLjに印加される。これにより、当該画素を示す負極性のデータ信号Sjの電圧が対応ソースラインSLjからTFT10を介して画素形成部Px(i,j)の画素電極Epに与えられる。そして、この本充電期間の終了時に対応走査信号GiがHレベルからLレベルへと変化し、この変化は第1の寄生容量Cgd1を介して画素電圧Vp(i,j)に影響を与える。すなわち、この対応走査信号GiのHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)が第1の引き込み電圧ΔVp1(>0)だけ低下する。 FIG. 5D shows a case where the negative data signal Sj is a pixel of the pixel formation portion Px (i, j) (pixel circuit 110) when reverse scanning is designated (when the direction designation signal Cud = L). The waveforms of the scanning signals Gi-1 and Gi and the pixel voltage Vp (i, j) when applied to the electrode Ep are schematically shown. Also at this time, the pixel voltage Vp (i, j) is applied to the pixel forming portion Px (i, j) in one horizontal period (main charging period) of the latter half of the two horizontal periods in which the corresponding scanning signal Gi is at the H level. A data signal Sj indicating a pixel to be formed is applied to the corresponding source line SLj. As a result, the voltage of the negative data signal Sj indicating the pixel is supplied from the corresponding source line SLj to the pixel electrode Ep of the pixel formation portion Px (i, j) via the TFT 10. Then, at the end of the main charging period, the corresponding scanning signal Gi changes from the H level to the L level, and this change affects the pixel voltage Vp (i, j) via the first parasitic capacitance Cgd1. That is, the pixel voltage Vp (i, j) decreases by the first pull-in voltage ΔVp1 (> 0) in accordance with the change of the corresponding scanning signal Gi from the H level to the L level.
 対応走査信号GiがHレベルからLレベルへと変化した時点から1水平期間が経過すると、非対応隣接走査信号Gi-1はHレベルからLレベルへと変化し、非対応隣接ゲートラインGLi-1は非活性化される。このとき非対応隣接走査信号Gi-1のHレベルからLレベルへの変化は、第2の寄生容量Cgd2を介して画素電圧Vp(i,j)に影響を与える。すなわち、この非対応隣接走査信号Gi-1のHレベルからLレベルへの変化に応じて画素電圧Vp(i,j)は更に第2の引き込み電圧ΔVp2(>0)だけ低下する。この後、画素電圧Vp(i,j)は、次のフレーム期間で対応走査信号Giが再びHレベルとなるまで、本充電期間終了直前の画素電圧Vp(i,j)=VwN(<0)から第1の引き込み電圧ΔVp1および第2の引き込み電圧ΔVp2だけ低下した電圧(VwN-ΔVp1-ΔVp2)を維持する。 When one horizontal period elapses from the time when the corresponding scanning signal Gi changes from the H level to the L level, the non-corresponding adjacent scanning signal Gi-1 changes from the H level to the L level, and the non-corresponding adjacent gate line GLi-1. Is deactivated. At this time, the change from the H level to the L level of the non-corresponding adjacent scanning signal Gi-1 affects the pixel voltage Vp (i, j) via the second parasitic capacitance Cgd2. That is, the pixel voltage Vp (i, j) further decreases by the second pull-in voltage ΔVp2 (> 0) in accordance with the change of the non-corresponding adjacent scanning signal Gi-1 from the H level to the L level. Thereafter, the pixel voltage Vp (i, j) is equal to the pixel voltage Vp (i, j) = VwN (<0) immediately before the end of the main charging period until the corresponding scanning signal Gi becomes H level again in the next frame period. The voltage (VwN−ΔVp1−ΔVp2) decreased by the first pulling voltage ΔVp1 and the second pulling voltage ΔVp2 is maintained.
 ここで、第1の引き込み電圧ΔVp1は、対応走査信号GiのHレベルからLレベルへの変化時におけるゲートラインGLiの電圧変化量および第1の寄生容量Cgd1等によって決まることから、正方向走査が指定されている場合における既述の引き込み電圧ΔVpに等しい(図5(A)および図5(B)参照)。したがって、図5(C)および図5(D)からわかるように、逆方向走査が指定されている場合に画素形成部Px(i,j)で画素を形成するために画素電極Epに実質的に与えられる電圧は、正方向走査が指定されている場合に比べて第2の引き込み電圧ΔVp2だけ低くなる。 Here, since the first pull-in voltage ΔVp1 is determined by the voltage change amount of the gate line GLi when the corresponding scanning signal Gi changes from the H level to the L level, the first parasitic capacitance Cgd1, and the like, the forward scanning is performed. It is equal to the aforementioned pull-in voltage ΔVp in the designated case (see FIGS. 5A and 5B). Therefore, as can be seen from FIGS. 5C and 5D, when reverse scanning is designated, the pixel forming portion Px (i, j) substantially forms the pixel electrode Ep in order to form a pixel. The voltage applied to is lower by the second pull-in voltage ΔVp2 than when the forward scanning is designated.
 そこで本実施形態では、逆方向走査が指定されている場合においても液晶への印加電圧に直流成分が含まれないようにするために、逆方向走査が指定されている場合に共通電極COMに印加される対向DC電圧すなわち第2対向電圧VcomBは、第1対向電圧VcomAを第2の引き込み電圧Δp2(>0)に応じて低下させた電圧に設定されている。 Therefore, in the present embodiment, in order to prevent a DC component from being included in the voltage applied to the liquid crystal even when reverse scanning is specified, it is applied to the common electrode COM when reverse scanning is specified. The counter DC voltage, that is, the second counter voltage VcomB, is set to a voltage obtained by reducing the first counter voltage VcomA according to the second pull-in voltage Δp2 (> 0).
 上記のようにして本実施形態では、正方向走査が指定されている場合(正方向DirAにゲートラインGL0~GLNが走査される場合)に共通電極COMに印加される対向DC電圧すなわち第1対向電圧VcomAは、ソースセンター電圧Vcenを引き込み電圧ΔVpに応じて低下させた電圧値に設定され(図5(A)および図5(B))、逆方向走査が指定されている場合(逆方向DirBにゲートラインGL0~GLNが走査される場合)に共通電極COMに印加される対向DC電圧すなわち第2対向電圧VcomBは、第1対向電圧VcomAを第2の引き込み電圧ΔVp2に応じて低下させた電圧値に設定されている(図5(C)および図5(D))。これにより、液晶への印加電圧に含まれる直流成分を抑制することができる。このように液晶への印加電圧において直流成分を抑制するためには、より一般的には、非対応隣接ゲートラインが活性化された後に対応隣接ゲートラインが活性化されるような順序(図4の方向DirA)で走査が行われる場合に共通電極COMに印加される対向DC電圧は、ソースセンター電圧Vcenを上記引き込み電圧Δp(>0)に応じて低下させた電圧値に設定し、対応隣接ゲートラインが活性化された後に非対応隣接ゲートラインが活性化されるような順序(図4の方向DirB)で走査が行われる場合に共通電極COMに印加される対向DC電圧は、ソースセンター電圧Vcenを第1の引き込み電圧ΔVp1および第2の引き込み電圧ΔVp2に応じて低下させた電圧値に設定すればよい。 As described above, in the present embodiment, when the forward scan is designated (when the gate lines GL0 to GLN are scanned in the forward direction DirA), the counter DC voltage applied to the common electrode COM, that is, the first counter The voltage VcomA is set to a voltage value obtained by lowering the source center voltage Vcen according to the pull-in voltage ΔVp (FIGS. 5A and 5B), and reverse scanning is specified (reverse direction DirB The counter DC voltage applied to the common electrode COM when the gate lines GL0 to GLN are scanned at the same time, that is, the second counter voltage VcomB is a voltage obtained by reducing the first counter voltage VcomA according to the second pull-in voltage ΔVp2. Is set to a value (FIG. 5C and FIG. 5D). Thereby, the DC component contained in the voltage applied to the liquid crystal can be suppressed. In order to suppress the direct current component in the voltage applied to the liquid crystal in this way, more generally, the order in which the corresponding adjacent gate line is activated after the non-corresponding adjacent gate line is activated (FIG. 4). When the scanning is performed in the direction DirA), the counter DC voltage applied to the common electrode COM is set to a voltage value obtained by lowering the source center voltage Vcen according to the pull-in voltage Δp (> 0). The counter DC voltage applied to the common electrode COM when the scanning is performed in the order in which the non-corresponding adjacent gate line is activated after activation of the gate line (direction DirB in FIG. 4) is the source center voltage Vcen may be set to a voltage value reduced according to the first pull-in voltage ΔVp1 and the second pull-in voltage ΔVp2.
<1.4 効果>
 上記のような本実施形態によれば、表示すべき画像のうち各画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjの電圧(ソースラインSLjの電圧)を当該画素形成部Px(i,j)の画素電極Epに印加するために対応するゲートラインGLiが1水平期間活性化されるだけでなく、その直前の1水平期間においても活性化される(図2および図3参照)。すなわち、各フレーム期間において走査信号G0~GNは1水平期間間隔で2水平期間ずつ順次Hレベルとなり、隣接する走査信号GiとGi-1とがHレベルとなる期間は1水平期間だけ重複している(以下、このような走査信号G0~GNによるゲートラインGL0~GLNの駆動を「重複連続ゲートパルス駆動」という)。また本実施形態では、液晶パネル100の反転駆動の方式としてソース反転駆動が採用されていることから(図2および図3)、当該2水平期間のうち前半の1水平期間に当該画素形成部Px(i,j)の画素電極Epに与えられる電圧は、後半の1水平期間に当該画素形成部Px(i,j)の画素電極Epに与えられる電圧すなわち当該画素形成部Px(i,j)で形成すべき画素を示すデータ信号Sjの電圧とは、必ずしも値は一致しないが極性は一致する。このため、当該2水平期間のうち前半の1水平期間は予備充電期間として機能する。これにより、各画素形成部Px(i,j)における画素容量Cpの充電率を向上させ、液晶パネル100の大型化または高解像度化が進んでも充電不足を防止することができる。
<1.4 Effect>
According to the present embodiment as described above, the voltage of the data signal Sj (the voltage of the source line SLj) indicating the pixel to be formed in each pixel formation portion Px (i, j) in the image to be displayed is the pixel formation. In order to apply to the pixel electrode Ep of the part Px (i, j), the corresponding gate line GLi is not only activated in one horizontal period, but also activated in the immediately preceding horizontal period (FIGS. 2 and 2). 3). That is, in each frame period, the scanning signals G0 to GN are sequentially set to the H level for every two horizontal periods at intervals of one horizontal period. (Hereinafter, driving of the gate lines GL0 to GLN by the scanning signals G0 to GN is referred to as “overlapping continuous gate pulse driving”). Further, in this embodiment, since source inversion driving is adopted as the inversion driving method of the liquid crystal panel 100 (FIGS. 2 and 3), the pixel forming portion Px in the first horizontal period of the two horizontal periods. The voltage applied to the pixel electrode Ep of (i, j) is the voltage applied to the pixel electrode Ep of the pixel formation portion Px (i, j) in the latter one horizontal period, that is, the pixel formation portion Px (i, j). The value of the voltage of the data signal Sj indicating the pixel to be formed is not necessarily the same, but the polarity is the same. For this reason, the first horizontal period of the two horizontal periods functions as a preliminary charging period. Thereby, the charging rate of the pixel capacitance Cp in each pixel forming portion Px (i, j) can be improved, and insufficient charging can be prevented even if the liquid crystal panel 100 is increased in size or resolution.
 しかし、上記のような重複連続ゲートパルス駆動を行う場合、既述のように、液晶への印加電圧が正しく交流化されるように共通電極COMに印加すべき電圧(以下「最適対向DC電圧」という)は、ゲートラインGL0~GLNの選択順すなわち走査方向によって異なる(図5)。これに対し本実施形態では、共通電極COMに印加すべき対向DC電圧Vcomとして、正方向走査が行われる場合の最適対向DC電圧に相当する第1対向電圧VcomAと、逆方向走査が行われる場合の最適対向DC電圧に相当する第2対向電圧VcomBとが生成され、方向指定信号Cudに基づき、正方向走査が行われる場合には第1対向電圧VcomAが共通電極COMに印加され、逆方向走査が行われる場合には第2対向電圧VcomAが共通電極COMに印加される。これにより、正方向走査と逆方向走査のいずれの場合であっても、液晶への印加電圧において直流成分が抑制されるように液晶パネル100が正しく交流駆動される。その結果、正方向走査と逆方向走査のいずれの場合であっても、表示画像におけるフリッカーの発生を抑え、液晶の劣化を防止することができる。 However, in the case of performing the overlapping continuous gate pulse driving as described above, as described above, the voltage to be applied to the common electrode COM (hereinafter referred to as “optimum counter DC voltage”) so that the voltage applied to the liquid crystal is correctly converted to AC Depends on the selection order of the gate lines GL0 to GLN, that is, the scanning direction (FIG. 5). On the other hand, in the present embodiment, as the counter DC voltage Vcom to be applied to the common electrode COM, the first counter voltage VcomA corresponding to the optimal counter DC voltage in the case where the forward scanning is performed and the reverse scanning are performed. The second counter voltage VcomB corresponding to the optimum counter DC voltage is generated, and when the forward scan is performed based on the direction designation signal Cud, the first counter voltage VcomA is applied to the common electrode COM, and the reverse scan is performed. Is performed, the second counter voltage VcomA is applied to the common electrode COM. As a result, the liquid crystal panel 100 is correctly AC driven so that the DC component is suppressed in the voltage applied to the liquid crystal regardless of whether the scanning is in the forward direction or the backward direction. As a result, it is possible to suppress the occurrence of flicker in the display image and prevent the deterioration of the liquid crystal, regardless of whether the scanning is in the forward direction or the backward direction.
<2.第2の実施形態>
 図6は、本発明の第2の実施形態に係る液晶表示装置の構成を示すブロック図である。図6では、上記第1の実施形態における構成要素と同一または対応する構成要素には同一の参照符号が付されている。
<2. Second Embodiment>
FIG. 6 is a block diagram showing a configuration of a liquid crystal display device according to the second embodiment of the present invention. In FIG. 6, the same or corresponding components as those in the first embodiment are given the same reference numerals.
 本実施形態に係る液晶表示装置は、上記第1の実施形態と同様、ゲートラインGLiをi=0,1,2,…,Nの順に活性化する正方向走査と、ゲートラインGLiをi=N,N-1,…,1,0の順に活性化する逆方向走査とを行えるように構成されており、重複連続ゲートパルス駆動を行うと共にソース反転駆動を行う(図2および図3)。 In the liquid crystal display device according to the present embodiment, as in the first embodiment, the forward scanning for activating the gate lines GLi in the order of i = 0, 1, 2,... Reverse scanning that activates in the order of N, N−1,..., 1, 0 is performed, and overlapping continuous gate pulse driving and source inversion driving are performed (FIGS. 2 and 3).
 図6に示すように、本実施形態における共通電極駆動回路502は、第1対向電圧生成回路51を備えているが、第2対向電圧生成回路を備えず、この点で上記第1の実施形態における共通電極駆動回路500とは異なる(図1参照)。本実施形態では、共通電極駆動回路502内の選択器としての切替スイッチ54に対し、正方向走査の場合の最適対向DC電圧に相当する第1対向電圧VcomAが第1対向電圧生成回路51から与えられると共に、逆方向走査の場合の最適対向DC電圧に相当する第2対向電圧VcomBが液晶表示装置の外部から与えられる。この切替スイッチ54は、上記第1の実施形態の場合と同様、正方向走査のときには第1対向電圧VcomAを選択し、逆方向走査のときには第2対向電圧VcomBを選択する。このようにして選択された対向DC電圧は、液晶パネル100の共通電極COMに与えられる。 As shown in FIG. 6, the common electrode drive circuit 502 in this embodiment includes the first counter voltage generation circuit 51, but does not include the second counter voltage generation circuit, and in this respect, the first embodiment described above. This is different from the common electrode driving circuit 500 in FIG. 1 (see FIG. 1). In the present embodiment, a first counter voltage VcomA corresponding to the optimal counter DC voltage in the case of forward scanning is supplied from the first counter voltage generation circuit 51 to the changeover switch 54 as a selector in the common electrode drive circuit 502. In addition, a second counter voltage VcomB corresponding to the optimum counter DC voltage in the case of reverse scanning is applied from the outside of the liquid crystal display device. As in the case of the first embodiment, the changeover switch 54 selects the first counter voltage VcomA during forward scanning and the second counter voltage VcomB during reverse scanning. The counter DC voltage selected in this manner is applied to the common electrode COM of the liquid crystal panel 100.
 上記のような本実施形態においても、ソース反転駆動を前提とした重複連続ゲートパルス駆動により予備充電が行われる共に、共通電極COMに印加される対向DC電圧が走査方向に応じて第1対向電圧VcomAと第2対向電圧VcomBとの間で切り替えられる。したがって本実施形態によれば、上記第1の実施形態と同様、液晶パネル100の大型化または高解像度化が進んでも充電不足を防止できると共に、正方向走査と逆方向走査のいずれの場合であっても表示画像におけるフリッカーの発生を抑えかつ液晶の劣化を防止することができる。 Also in the present embodiment as described above, preliminary charging is performed by overlapping continuous gate pulse driving on the premise of source inversion driving, and the counter DC voltage applied to the common electrode COM corresponds to the first counter voltage according to the scanning direction. It is switched between VcomA and the second counter voltage VcomB. Therefore, according to the present embodiment, as in the first embodiment described above, insufficient charging can be prevented even when the liquid crystal panel 100 is increased in size or resolution, and both the forward scan and the reverse scan are possible. However, it is possible to suppress the occurrence of flicker in the display image and to prevent the deterioration of the liquid crystal.
 なお、上記第2の実施形態では、第1対向電圧VcomAが液晶表示装置(の共通電極駆動回路502)内で生成され、第2対向電圧VcomBは液晶表示装置の外部から入力されるが、これに代えて、第1対向電圧VcomAが液晶表示装置の外部から入力され、第2対向電圧VcomBが液晶表示装置(の共通電極駆動回路502)内で生成される構成としてもよい。ここで、第1および第2対向電圧VcomA,VcomBのうち外部から入力される対向DC電圧はその値の設定の自由度が高いので、この点を考慮して、第1および第2対向電圧VcomA,VcomBのうちいずれを外部から入力するか決定すればよい。 In the second embodiment, the first counter voltage VcomA is generated in the liquid crystal display device (the common electrode driving circuit 502), and the second counter voltage VcomB is input from the outside of the liquid crystal display device. Instead, the first counter voltage VcomA may be input from the outside of the liquid crystal display device, and the second counter voltage VcomB may be generated in the liquid crystal display device (the common electrode drive circuit 502). Here, of the first and second counter voltages VcomA and VcomB, the counter DC voltage input from the outside has a high degree of freedom in setting the value. Therefore, considering this point, the first and second counter voltages VcomA , VcomB may be determined from the outside.
<3.第3の実施形態>
 図7は、本発明の第3の実施形態に係る液晶表示装置の構成を示すブロック図である。図7では、上記第1の実施形態における構成要素と同一または対応する構成要素には同一の参照符号が付されている。
<3. Third Embodiment>
FIG. 7 is a block diagram showing a configuration of a liquid crystal display device according to the third embodiment of the present invention. In FIG. 7, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals.
 本実施形態に係る液晶表示装置も、上記第1の実施形態と同様、ゲートラインGLiをi=0,1,2,…,Nの順に活性化する正方向走査と、ゲートラインGLiをi=N,N-1,…,1,0の順に活性化する逆方向走査とを行えるように構成されており、重複連続ゲートパルス駆動を行うと共にソース反転駆動を行う(図2および図3)。 Similarly to the first embodiment, the liquid crystal display device according to the present embodiment scans the gate line GLi in the order of i = 0, 1, 2,... Reverse scanning that activates in the order of N, N−1,..., 1, 0 is performed, and overlapping continuous gate pulse driving and source inversion driving are performed (FIGS. 2 and 3).
 図7に示すように、本実施形態における共通電極駆動回路503は、第1対向電圧生成回路および第2対向電圧生成回路のいずれも備えず、選択器としての切替スイッチ54のみを備えている。本実施形態における切替スイッチ54には、正方向走査の場合の最適対向DC電圧に相当する第1対向電圧VcomAおよび逆方向走査の場合の最適対向DC電圧に相当する第2対向電圧VcomBが共に液晶表示装置の外部から入力される。この切替スイッチ54は、上記第1の実施形態の場合と同様、正方向走査のときには第1対向電圧VcomAを選択し、逆方向走査のときには第2対向電圧VcomBを選択する。このようにして選択された対向DC電圧は、液晶パネル100の共通電極COMに与えられる。 As shown in FIG. 7, the common electrode driving circuit 503 in the present embodiment includes only the changeover switch 54 as a selector without including either the first counter voltage generation circuit or the second counter voltage generation circuit. In the changeover switch 54 in the present embodiment, both the first counter voltage VcomA corresponding to the optimal counter DC voltage in the case of forward scanning and the second counter voltage VcomB corresponding to the optimal counter DC voltage in the case of reverse scanning are both liquid crystal. Input from outside the display device. As in the case of the first embodiment, the changeover switch 54 selects the first counter voltage VcomA during forward scanning and the second counter voltage VcomB during reverse scanning. The counter DC voltage selected in this manner is applied to the common electrode COM of the liquid crystal panel 100.
 上記のような本実施形態においても、ソース反転駆動を前提とした重複連続ゲートパルス駆動により予備充電が行われる共に、共通電極COMに印加される対向DC電圧が走査方向に応じて第1対向電圧VcomAと第2対向電圧VcomBとの間で切り替えられる。したがって本実施形態によれば、上記第1の実施形態と同様、液晶パネル100の大型化または高解像度化が進んでも充電不足を防止できると共に、正方向走査と逆方向走査のいずれの場合であっても表示画像におけるフリッカーの発生を抑えかつ液晶の劣化を防止することができる。なお本実施形態では、正方向走査の場合の最適対向DC電圧に相当する第1対向電圧VcomAおよび逆方向走査の場合の最適対向DC電圧に相当する第2対向電圧VcomBが共に液晶表示装置の外部から入力されるので、正方向走査および逆方向走査のいずれの場合においても対向DC電圧の値の設定の自由度が高い。例えば本実施形態によれば、液晶表示装置の周囲温度に応じて第1および第2対応電圧VcomA,VcomBの値を変更するための回路を外部に設けることができる。 Also in the present embodiment as described above, preliminary charging is performed by overlapping continuous gate pulse driving on the premise of source inversion driving, and the counter DC voltage applied to the common electrode COM corresponds to the first counter voltage according to the scanning direction. It is switched between VcomA and the second counter voltage VcomB. Therefore, according to the present embodiment, as in the first embodiment described above, insufficient charging can be prevented even when the liquid crystal panel 100 is increased in size or resolution, and both the forward scan and the reverse scan are possible. However, it is possible to suppress the occurrence of flicker in the display image and to prevent the deterioration of the liquid crystal. In the present embodiment, the first counter voltage VcomA corresponding to the optimum counter DC voltage in the case of forward scanning and the second counter voltage VcomB corresponding to the optimum counter DC voltage in the case of backward scanning are both external to the liquid crystal display device. Therefore, the degree of freedom in setting the value of the counter DC voltage is high in both cases of forward scanning and backward scanning. For example, according to the present embodiment, a circuit for changing the values of the first and second corresponding voltages VcomA and VcomB according to the ambient temperature of the liquid crystal display device can be provided outside.
<4.変形例>
 上記第1から第3の実施形態では、ソース反転駆動を前提とした重複連続ゲートパルス駆動による予備充電が行われ、本充電期間の直前の1水平期間が予備充電期間とされているが(図2および図3)、予備充電期間の長さはこれに限定されるものではなく、例えば2水平期間またはそれ以上の予備充電期間を設けてもよい。
<4. Modification>
In the first to third embodiments, preliminary charging by overlapping continuous gate pulse driving based on source inversion driving is performed, and one horizontal period immediately before the main charging period is set as the preliminary charging period (see FIG. 2 and FIG. 3), the length of the preliminary charging period is not limited to this, and for example, a preliminary charging period of two horizontal periods or more may be provided.
 上記第1から第3の実施形態では、反転駆動方式としてソース反転駆動が採用されているが(図2および図3)、本発明はこれに限定されるものではなく、同一フレーム期間において同一ソースラインSLjに印加されるデータ信号Sjの電圧極性が同一であればよく、ソース反転駆動に代えて例えばフレーム反転駆動を採用してもよい。 In the first to third embodiments, source inversion driving is adopted as the inversion driving method (FIGS. 2 and 3), but the present invention is not limited to this, and the same source is used in the same frame period. As long as the voltage polarity of the data signal Sj applied to the line SLj is the same, for example, frame inversion driving may be employed instead of source inversion driving.
 上記第1から第3の実施形態では、重複連続ゲートパルス駆動が行われるが、重複連続ゲートパルス駆動を行わない液晶表示装置であっても、液晶パネルの構造に基づき、正方向走査と逆方向走査とで最適対向DC電圧が異なる場合がある。したがって、そのような場合には、液晶パネルの構造等に基づき第1対向電圧VcomAおよび第2対向電圧VcomBの値を設定し、共通電極COMへの印加電圧を走査方向に応じてこれらの電圧VcomAおよびVcomBの間で切り替えるようにしてもよい。 In the first to third embodiments, overlapping continuous gate pulse driving is performed. However, even in a liquid crystal display device that does not perform overlapping continuous gate pulse driving, based on the structure of the liquid crystal panel, the forward scanning and the reverse direction are performed. The optimum counter DC voltage may differ between scans. Accordingly, in such a case, the values of the first counter voltage VcomA and the second counter voltage VcomB are set based on the structure of the liquid crystal panel and the voltage VcomA applied to the common electrode COM is set according to the scanning direction. And VcomB may be switched.
 上記第1から第3の実施形態では、1番目のゲートラインGL1に対応する各画素形成部すなわち1行目の各画素形成部(1,j)(j=1~M)の画素電極Epについての非対応隣接ゲートラインとして0番目のゲートラインGL0がTFT基板に形成されている(図1、図6、図7)。この0番目のゲートラインGL0が存在しない場合、1行目の各画素形成部(1,j)(j=1~M)では、正しく交流駆動ができず液晶への印加電圧において直流成分を十分に抑制できない。しかし、このような問題が生じるのは1行目の画素形成部(1,j)(j=1~M)においてのみであるので、本発明を適用する対象や状況に応じて、0番目のゲートラインGL0およびそれに対する走査信号G0を生成するための回路部分を省略してもよい。 In the first to third embodiments, the pixel electrodes Ep of the pixel formation portions corresponding to the first gate line GL1, that is, the pixel formation portions (1, j) (j = 1 to M) in the first row. As a non-corresponding adjacent gate line, the 0th gate line GL0 is formed on the TFT substrate (FIGS. 1, 6, and 7). When the 0th gate line GL0 does not exist, each pixel formation portion (1, j) (j = 1 to M) in the first row cannot perform AC drive correctly, and the DC component is sufficient in the voltage applied to the liquid crystal. Cannot be suppressed. However, since such a problem occurs only in the pixel formation part (1, j) (j = 1 to M) in the first row, the 0th The circuit portion for generating the gate line GL0 and the scanning signal G0 corresponding thereto may be omitted.
 なお本発明は、TFT基板に形成される画素回路110等を構成する薄膜トランジスタ(TFT)の構造や材料を限定するものではなく、当該TFTは、上記第1から第3の実施形態のようにNチャネル形のMOS(Metal Oxide Semiconductor)構造であってもよいし、Pチャネル形のMOS構造であってもよい。画素回路110におけるTFT10としてPチャネル形のTFTを使用する場合、走査信号GiがHレベルのときにゲートラインGLiは非活性化状態となり、 走査信号GiがLレベルのときにゲートラインGLiは活性化状態となる。このため、第1および第2の寄生容量Cgd1,Cgd2に起因して生じる引き込み電圧は画素電圧Vp(i,j)を上昇させる。したがって、この場合、正方向走査が指定されているときに共通電極COMに印加される第1対向電圧VcomAは、ソースセンター電圧Vcenを引き込み電圧ΔVp(>0)に応じて上昇させた電圧値に設定され、逆方向走査が指定されているときに共通電極COMに印加される第2対向電圧VcomBは、第1対向電圧VcomAを第2の引き込み電圧ΔVp2(>0)に応じて上昇させた電圧値に設定されることになる。このことをいずれかの画素電極に着目して一般化すると(スイッチング素子としてのTFT10がPチャネル形かNチャネル形かを限定しないものとすると)、第1対向電圧VcomAは、対応隣接ゲートラインが活性化状態から非活性化状態へと変化する時の当該対応隣接ゲートラインにおける電圧変化量および当該対応隣接ゲートラインと当該画素電極との間における寄生容量に応じてデータ信号の中心電圧を増減することにより得られる電圧であり、第2対向電圧VcomBは、非対応隣接ゲートラインが活性化状態から非活性化状態へと変化する時の当該非対応隣接ゲートラインにおける電圧変化量および当該非対応隣接ゲートラインと当該画素電極との間における寄生容量に応じて第1対向電圧VcomAを増減することにより得られる電圧である。 Note that the present invention does not limit the structure or material of the thin film transistor (TFT) that constitutes the pixel circuit 110 or the like formed on the TFT substrate, and the TFT is N as in the first to third embodiments. A channel-type MOS (Metal-Oxide-Semiconductor) structure or a P-channel type MOS structure may be used. When a P-channel TFT is used as the TFT 10 in the pixel circuit 110, the gate line GLi is inactivated when the scanning signal Gi is at H level, and the gate line GLi is activated when the scanning signal Gi is at L level. It becomes a state. Therefore, the pull-in voltage generated due to the first and second parasitic capacitances Cgd1 and Cgd2 increases the pixel voltage Vp (i, j). Therefore, in this case, the first counter voltage VcomA applied to the common electrode COM when the forward scan is designated has a voltage value obtained by raising the source center voltage Vcen according to the pull-in voltage ΔVp (> 0). The second counter voltage VcomB applied to the common electrode COM when the reverse scan is set is a voltage obtained by increasing the first counter voltage VcomA according to the second pull-in voltage ΔVp2 (> 0). Will be set to the value. If this is generalized by focusing on one of the pixel electrodes (assuming that the TFT 10 as the switching element is not limited to the P-channel type or the N-channel type), the first counter voltage VcomA is determined by the corresponding adjacent gate line. The center voltage of the data signal is increased or decreased according to the voltage change amount in the corresponding adjacent gate line and the parasitic capacitance between the corresponding adjacent gate line and the pixel electrode when the active state changes to the inactive state. The second counter voltage VcomB is obtained when the non-corresponding adjacent gate line changes from the activated state to the non-activated state, and the voltage change amount in the non-corresponding adjacent gate line and the non-corresponding adjacent Obtained by increasing or decreasing the first counter voltage VcomA according to the parasitic capacitance between the gate line and the pixel electrode. It is the voltage.
 また、本発明においてTFT基板に形成される画素回路等を構成するTFTは、例えば、アモルファスシリコンを用いて作製されてもよいし、ポリシリコンを用いて作製されてもよく、酸化物半導体を用いて作製されてもよい。酸化物半導体を用いてTFTを作製する場合、そのチャネル層は、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、および酸素(O)を主成分とするInGaZnOxにより形成される。InGaZnOx以外の酸化物半導体として、例えばインジウム、ガリウム、亜鉛、銅(Cu)、シリコン(Si)、錫(Sn)、アルミニウム(Al)、カルシウム(Ca)、ゲルマニウム(Ge)、および鉛(Pb)のうち少なくとも1つを含んだ酸化物半導体を使用することができる。このような酸化物半導体をチャネル層に用いたTFTは、アモルファスシリコン等をチャネル層に用いたTFTに比べてオフリーク電流が極めて小さいという利点を有している。 In the present invention, a TFT constituting a pixel circuit or the like formed on a TFT substrate may be manufactured using, for example, amorphous silicon, polysilicon, or an oxide semiconductor. May be produced. When a TFT is manufactured using an oxide semiconductor, the channel layer is formed of InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components, for example. Examples of oxide semiconductors other than InGaZnOx include indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb). An oxide semiconductor containing at least one of them can be used. A TFT using such an oxide semiconductor for a channel layer has an advantage that off-leakage current is extremely small as compared with a TFT using amorphous silicon or the like for a channel layer.
 なお以上では、液晶表示装置を例に挙げて説明したが、本発明はこれに限定されるものではなく、共通電極を有し当該共通電極の電圧を基準に交流駆動が行われるアクティブマトリクス型の表示装置であれば本発明の適用が可能である。 In the above description, the liquid crystal display device has been described as an example. However, the present invention is not limited to this, and an active matrix type that has a common electrode and is driven by alternating current based on the voltage of the common electrode. The present invention can be applied to any display device.
 本発明は、走査方向を切り換えることができる交流駆動方式のアクティブマトリクス型表示装置およびその駆動回路および駆動方法に適用することができる。 The present invention can be applied to an AC drive type active matrix display device capable of switching the scanning direction, and its drive circuit and drive method.
100…液晶パネル(表示パネル)
110…画素回路
200…表示制御回路(制御部)
300…ソースドライバ(データ信号線駆動部)
400…ゲートドライバ(走査信号線駆動部)
500,502,503 …共通電極駆動回路(対向電圧供給部)
10 …薄膜トランジスタ(スイッチング素子)
51 …第1対向電圧生成回路
52 …第2対向電圧生成回路
54 …切替スイッチ(選択器)
GLi     …ゲートライン(走査信号線)(i=0~N)
SLj     …ソースライン(データ信号線)(j=1~M)
COM     …共通電極
Px(i,j) …画素回路(i=1~N;j=1~M)
Ep      …画素電極
Cp      …画素容量
Cgd1    …第1寄生容量
Cgd2    …第2寄生容量
Gi      …走査信号(i=0~N)
Sj      …データ信号(j=1~M)
Vcom    …選定対向DC電圧
VcomA   …第1対向電圧
VcomB   …第2対向電圧
100 ... Liquid crystal panel (display panel)
110: Pixel circuit 200: Display control circuit (control unit)
300: Source driver (data signal line driving unit)
400: Gate driver (scanning signal line driving unit)
500, 502, 503... Common electrode driving circuit (counter voltage supply unit)
10 ... Thin film transistor (switching element)
51 ... first counter voltage generation circuit 52 ... second counter voltage generation circuit 54 ... changeover switch (selector)
GLi: Gate line (scanning signal line) (i = 0 to N)
SLj: Source line (data signal line) (j = 1 to M)
COM ... Common electrode Px (i, j) ... Pixel circuit (i = 1 to N; j = 1 to M)
Ep: pixel electrode Cp: pixel capacitance Cgd1: first parasitic capacitance Cgd2: second parasitic capacitance Gi: scanning signal (i = 0 to N)
Sj: Data signal (j = 1 to M)
Vcom ... selected counter DC voltage VcomA ... first counter voltage VcomB ... second counter voltage

Claims (12)

  1.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極と対向するように配置された共通電極と、各画素電極を対応するデータ信号線に接続するために画素電極毎に設けられ対応する走査信号線に接続された制御端子を有するスイッチング素子とを含む交流駆動方式の表示装置の駆動回路であって、
     表示すべき画像を表す複数のデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動部と、
     前記複数の走査信号線を順次活性化し、かつ、前記複数の走査信号線の活性化順に対応する走査方向を互いに逆方向である第1方向と第2方向との間で切り替えることができる走査信号線駆動部と、
     前記共通電極に印加すべき対向電圧を出力する対向電圧供給部と、
     前記走査方向として前記第1方向と前記第2方向のうちいずれかを選択し、当該選択された走査方向に応じた順に前記複数の走査信号が活性化されるように前記走査信号線駆動部を制御し、前記第1方向用の第1対向電圧と前記第2方向用の第2対向電圧とからなる2つの異なる対向電圧のうち当該選択された走査方向に応じた対向電圧が出力されるように前記対向電圧供給部を制御する制御部と
    を備えることを特徴とする、駆動回路。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and a plurality of pixel electrodes arranged in a matrix corresponding to the plurality of data signal lines and the plurality of scanning signal lines A common electrode disposed to face the plurality of pixel electrodes, and a control terminal provided for each pixel electrode to connect each pixel electrode to a corresponding data signal line and connected to a corresponding scanning signal line A drive circuit for a display device of an AC drive system including a switching element having
    A data signal line driver that applies a plurality of data signals representing an image to be displayed to the plurality of data signal lines;
    A scanning signal that sequentially activates the plurality of scanning signal lines and can switch a scanning direction corresponding to the activation order of the plurality of scanning signal lines between a first direction and a second direction that are opposite to each other. A line driver;
    A counter voltage supply unit that outputs a counter voltage to be applied to the common electrode;
    Select one of the first direction and the second direction as the scanning direction, and set the scanning signal line driver to activate the plurality of scanning signals in the order corresponding to the selected scanning direction. The counter voltage corresponding to the selected scanning direction is output from two different counter voltages including the first counter voltage for the first direction and the second counter voltage for the second direction. And a control unit for controlling the counter voltage supply unit.
  2.  前記走査信号線駆動部は、互いに隣接する走査信号線がそれぞれ活性化される期間が部分的に重複するように前記複数の走査信号線を駆動することを特徴とする、請求項1に記載の駆動回路。 2. The scanning signal line driving unit according to claim 1, wherein the scanning signal line driving unit drives the plurality of scanning signal lines such that periods in which adjacent scanning signal lines are activated partially overlap each other. Driving circuit.
  3.  前記走査信号線駆動部は、
      前記第1方向が前記走査方向として選択されている場合には、各画素電極に隣接する2つの走査信号線のうち当該画素電極に対応するスイッチング素子の制御端子に接続された第1の走査信号線を活性化する前に当該2つの走査信号線のうち当該スイッチング素子の制御端子に接続されていない第2の走査信号線を活性化し、
      前記第2方向が前記走査方向として選択されている場合には、前記第1の走査信号線を活性化した後に前記第2の走査信号線を活性化し、
     前記第1対向電圧は、前記第1の走査信号線が活性化状態から非活性化状態へと変化する時の前記第1の走査信号線における電圧変化量および前記第1の走査信号線と前記画素電極との間における寄生容量に応じて前記データ信号の中心電圧を増減することにより得られる電圧であり、
     前記第2対向電圧は、前記第2の走査信号線が活性化状態から非活性化状態へと変化する時の前記第2の走査信号線における電圧変化量および前記第2の走査信号線と前記画素電極との間における寄生容量に応じて前記第1対向電圧を増減することにより得られる電圧であることを特徴とする、請求項2に記載の駆動回路。
    The scanning signal line driving unit includes:
    When the first direction is selected as the scanning direction, the first scanning signal connected to the control terminal of the switching element corresponding to the pixel electrode among the two scanning signal lines adjacent to each pixel electrode. Before activating the line, activate the second scanning signal line that is not connected to the control terminal of the switching element among the two scanning signal lines,
    When the second direction is selected as the scanning direction, the second scanning signal line is activated after activating the first scanning signal line;
    The first counter voltage includes a voltage change amount in the first scanning signal line when the first scanning signal line changes from an activated state to an inactivated state, and the first scanning signal line and the first scanning signal line. It is a voltage obtained by increasing or decreasing the center voltage of the data signal according to the parasitic capacitance between the pixel electrode,
    The second counter voltage includes a voltage change amount in the second scanning signal line when the second scanning signal line changes from an activated state to an inactivated state, and the second scanning signal line and the second scanning signal line. The drive circuit according to claim 2, wherein the drive circuit is a voltage obtained by increasing or decreasing the first counter voltage according to a parasitic capacitance between the pixel electrode and the pixel electrode.
  4.  前記走査信号線駆動部は、各画素電極に対応するスイッチング素子の制御端子に接続された走査信号線を、前記表示すべき画像のうち当該画素電極に対応する画素を示す前記データ信号を当該画素電極に印加すべき本充電期間と当該本充電期間の直前の所定期間である予備充電期間とからなる期間において連続的に活性化状態とし、
     前記データ信号線駆動部は、前記複数のデータ信号のそれぞれの極性が同一フレーム期間内では変化しないように前記複数のデータ信号を生成することを特徴とする、請求項2または3に記載の駆動回路。
    The scanning signal line drive unit displays the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode, and the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed. In a period consisting of a main charging period to be applied to the electrode and a pre-charging period that is a predetermined period immediately before the main charging period, it is continuously activated.
    4. The drive according to claim 2, wherein the data signal line driving unit generates the plurality of data signals such that the polarities of the plurality of data signals do not change within the same frame period. 5. circuit.
  5.  前記対向電圧供給部は、
      前記第1および第2対向電圧を生成する電圧生成器と、
      前記制御部からの制御信号に基づき、前記共通電極に印加すべき対向電圧として前記第1および第2対向電圧のいずれかを選択する選択器と
    を含むことを特徴とする、請求項1から4のいずれか1項に記載の駆動回路。
    The counter voltage supply unit includes:
    A voltage generator for generating the first and second counter voltages;
    5. A selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit. The driving circuit according to any one of the above.
  6.  前記第1および第2対向電圧の少なくとも一方は外部から入力され、
     前記対向電圧供給部は、前記制御部からの制御信号に基づき、前記共通電極に印加すべき対向電圧として前記第1および第2対向電圧のいずれかを選択する選択器を含むことを特徴とする、請求項1から4のいずれか1項に記載の駆動回路。
    At least one of the first and second counter voltages is input from the outside,
    The counter voltage supply unit includes a selector that selects one of the first and second counter voltages as a counter voltage to be applied to the common electrode based on a control signal from the control unit. 5. The drive circuit according to any one of claims 1 to 4.
  7.  請求項1から4のいずれか1項に記載の駆動回路を備えることを特徴とする表示装置。 A display device comprising the drive circuit according to any one of claims 1 to 4.
  8.  前記スイッチング素子は、酸化物半導体により形成されたチャネル層を含む薄膜トランジスタであることを特徴とする、請求項7に記載の表示装置。 The display device according to claim 7, wherein the switching element is a thin film transistor including a channel layer formed of an oxide semiconductor.
  9.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に対応してマトリクス状に配置された複数の画素電極と、前記複数の画素電極と対向するように配置された共通電極と、各画素電極を対応データ信号線に接続するために画素電極毎に設けられ対応する走査信号線に接続された制御端子を有するスイッチング素子とを含む交流駆動方式の表示装置の駆動方法であって、
     表示すべき画像を表す複数のデータ信号を前記複数のデータ信号線に印加するデータ信号線駆動ステップと、
     前記複数の走査信号線を順次活性化する走査信号線駆動ステップと、
     前記共通電極に印加すべき対向電圧を出力する対向電圧供給ステップと、
     前記複数の走査信号線の活性化順に対応する走査方向として、互いに逆方向である第1方向と第2方向のうちいずれかを選択する走査方向選択ステップと
    を備え、
     前記走査信号線駆動ステップでは、前記走査方向選択ステップで選択された走査方向に応じた順に前記複数の走査信号が活性化され、
     前記対向電圧供給ステップでは、前記第1方向用の第1対向電圧と前記第2方向用の第2対向電圧とからなる2つの異なる対向電圧のうち前記走査方向選択ステップで選択された走査方向に応じた対向電圧が出力されることを特徴とする、駆動方法。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and a plurality of pixel electrodes arranged in a matrix corresponding to the plurality of data signal lines and the plurality of scanning signal lines A common electrode arranged to face the plurality of pixel electrodes, and a control terminal provided for each pixel electrode to connect each pixel electrode to a corresponding data signal line and connected to a corresponding scanning signal line A driving method of an AC driving type display device including a switching element having,
    A data signal line driving step of applying a plurality of data signals representing an image to be displayed to the plurality of data signal lines;
    A scanning signal line driving step for sequentially activating the plurality of scanning signal lines;
    A counter voltage supply step of outputting a counter voltage to be applied to the common electrode;
    A scanning direction selection step of selecting one of a first direction and a second direction that are opposite to each other as a scanning direction corresponding to the activation order of the plurality of scanning signal lines;
    In the scanning signal line driving step, the plurality of scanning signals are activated in the order corresponding to the scanning direction selected in the scanning direction selection step,
    In the counter voltage supply step, the scanning direction selected in the scanning direction selection step is selected from two different counter voltages including the first counter voltage for the first direction and the second counter voltage for the second direction. A driving method, characterized in that a corresponding counter voltage is output.
  10.  前記走査信号線駆動ステップでは、互いに隣接する走査信号線がそれぞれ活性化される期間が部分的に重複するように前記複数の走査信号線が駆動されることを特徴とする、請求項9に記載の駆動方法。 10. The plurality of scanning signal lines are driven in the scanning signal line driving step so that the periods in which the adjacent scanning signal lines are activated partially overlap each other. Driving method.
  11.  前記走査信号線駆動ステップでは、
      前記第1方向が前記走査方向として選択されている場合には、各画素電極に隣接する2つの走査信号線のうち当該画素電極に対応するスイッチング素子の制御端子に接続された第1の走査信号線が活性化される前に当該2つの走査信号線のうち当該スイッチング素子の制御端子に接続されていない第2の走査信号線が活性化され、
      前記第2方向が前記走査方向として選択されている場合には、前記第1の走査信号線が活性化された後に前記第2の走査信号線が活性化され、
     前記第1対向電圧は、前記第1の走査信号線が活性化状態から非活性化状態へと変化する時の前記第1の走査信号線における電圧変化量および前記第1の走査信号線と前記画素電極との間における寄生容量に応じて前記データ信号の中心電圧を増減することにより得られる電圧であり、
     前記第2対向電圧は、前記第2の走査信号線が活性化状態から非活性化状態へと変化する時の前記第2の走査信号線における電圧変化量および前記第2の走査信号線と前記画素電極との間における寄生容量に応じて前記第1対向電圧を増減することにより得られる電圧であることを特徴とする、請求項10に記載の駆動方法。
    In the scanning signal line driving step,
    When the first direction is selected as the scanning direction, the first scanning signal connected to the control terminal of the switching element corresponding to the pixel electrode among the two scanning signal lines adjacent to each pixel electrode. Before the line is activated, the second scanning signal line that is not connected to the control terminal of the switching element is activated among the two scanning signal lines,
    When the second direction is selected as the scanning direction, the second scanning signal line is activated after the first scanning signal line is activated;
    The first counter voltage includes a voltage change amount in the first scanning signal line when the first scanning signal line changes from an activated state to an inactivated state, and the first scanning signal line and the first scanning signal line. It is a voltage obtained by increasing or decreasing the center voltage of the data signal according to the parasitic capacitance between the pixel electrode,
    The second counter voltage includes a voltage change amount in the second scanning signal line when the second scanning signal line changes from an activated state to an inactivated state, and the second scanning signal line and the second scanning signal line. The driving method according to claim 10, wherein the driving method is a voltage obtained by increasing or decreasing the first counter voltage according to a parasitic capacitance between the pixel electrode and the pixel electrode.
  12.  前記走査信号線駆動ステップでは、各画素電極に対応するスイッチング素子の制御端子に接続された走査信号線が、前記表示すべき画像のうち当該画素電極に対応する画素を示す前記データ信号を当該画素電極に印加すべき本充電期間と当該本充電期間の直前の所定期間である予備充電期間とからなる期間において連続的に活性化状態とされ、
     前記データ信号線駆動ステップでは、前記複数のデータ信号のそれぞれの極性が同一フレーム期間内では変化しないように前記複数のデータ信号が生成されることを特徴とする、請求項10または11に記載の駆動方法。
    In the scanning signal line driving step, the scanning signal line connected to the control terminal of the switching element corresponding to each pixel electrode receives the data signal indicating the pixel corresponding to the pixel electrode in the image to be displayed. In a period consisting of a main charging period to be applied to the electrode and a pre-charging period that is a predetermined period immediately before the main charging period, it is continuously activated.
    12. The plurality of data signals are generated in the data signal line driving step so that the polarities of the plurality of data signals do not change within the same frame period. Driving method.
PCT/JP2013/072175 2012-09-11 2013-08-20 Display device, and driving circuit and driving method therefor WO2014041965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-199816 2012-09-11
JP2012199816 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041965A1 true WO2014041965A1 (en) 2014-03-20

Family

ID=50278090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072175 WO2014041965A1 (en) 2012-09-11 2013-08-20 Display device, and driving circuit and driving method therefor

Country Status (1)

Country Link
WO (1) WO2014041965A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834132A (en) * 2015-05-11 2015-08-12 京东方科技集团股份有限公司 Display panel, method and device for debugging flicker, and display device
EP3588482A4 (en) * 2017-02-27 2020-08-12 Wuhan China Star Optoelectronics Technology Co., Ltd. Method for driving liquid crystal display panel
JP2021016870A (en) * 2019-07-17 2021-02-15 株式会社日立製作所 Welding work data accumulation device, welding work support system, and welding robot control device
CN112599106A (en) * 2020-12-31 2021-04-02 绵阳惠科光电科技有限公司 Display panel, driving method thereof and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202761A (en) * 2000-12-28 2002-07-19 Advanced Display Inc Liquid crystal display device
WO2010150562A1 (en) * 2009-06-22 2010-12-29 シャープ株式会社 Liquid crystal display device and method for driving same
JP2012098400A (en) * 2010-10-29 2012-05-24 Hitachi Displays Ltd Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202761A (en) * 2000-12-28 2002-07-19 Advanced Display Inc Liquid crystal display device
WO2010150562A1 (en) * 2009-06-22 2010-12-29 シャープ株式会社 Liquid crystal display device and method for driving same
JP2012098400A (en) * 2010-10-29 2012-05-24 Hitachi Displays Ltd Display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834132A (en) * 2015-05-11 2015-08-12 京东方科技集团股份有限公司 Display panel, method and device for debugging flicker, and display device
CN104834132B (en) * 2015-05-11 2018-02-06 京东方科技集团股份有限公司 Display panel, method and device, the display device of debugging pictures flicker
US9990875B2 (en) 2015-05-11 2018-06-05 Boe Technology Group Co., Ltd. Display panel, method and device for measuring screen flickering, and display device
EP3588482A4 (en) * 2017-02-27 2020-08-12 Wuhan China Star Optoelectronics Technology Co., Ltd. Method for driving liquid crystal display panel
JP2021016870A (en) * 2019-07-17 2021-02-15 株式会社日立製作所 Welding work data accumulation device, welding work support system, and welding robot control device
JP7261682B2 (en) 2019-07-17 2023-04-20 株式会社日立製作所 Welding work data storage device, welding work support system and welding robot control device
CN112599106A (en) * 2020-12-31 2021-04-02 绵阳惠科光电科技有限公司 Display panel, driving method thereof and display device

Similar Documents

Publication Publication Date Title
US8400383B2 (en) Liquid crystal display capable of improving aperture ratio and display quality without changing a storage capacitor voltage
JP5025047B2 (en) Liquid crystal display device using swing common electrode and driving method thereof
US8907883B2 (en) Active matrix type liquid crystal display device and drive method thereof
JP4859464B2 (en) Liquid crystal display
WO2010021210A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
JP2009128825A (en) Liquid crystal display device
US8299998B2 (en) Liquid crystal display device with first and second image signals about a middle voltage
WO2013069515A1 (en) Display device and method for driving same
JP2007025644A (en) Liquid crystal display panel driving method, liquid crystal display panel using this driving method and driving module used for driving this liquid crystal display panel
JPH0572999A (en) Liquid crystal display device and its driving method
JP2007225861A (en) Liquid crystal display device
JP2010079151A (en) Electrooptical apparatus, method for driving the same, and electronic device
WO2014041965A1 (en) Display device, and driving circuit and driving method therefor
JP2001133808A (en) Liquid crystal display device and driving method therefor
WO2010024049A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit and television receiving apparatus
JP2019056740A (en) Liquid crystal display device
WO2011104947A1 (en) Liquid crystal display device, television receiver and display method employed in liquid crystal display device
JP4178977B2 (en) Display drive device and drive control method thereof, and active matrix liquid crystal display device and drive method thereof.
TWI301255B (en) Image signal correcting circuit, image processing method, electro-optical device and electronic apparatus
JP2009210607A (en) Liquid crystal display device
JP6078946B2 (en) Electro-optical device and electronic apparatus
TW594122B (en) Control device of a liquid crystal display device
JP2013228460A (en) Display device
JPWO2012002044A1 (en) Display device, liquid crystal display device, television receiver
US20150293413A1 (en) Thin-film transistor array substrate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP