WO2014038017A1 - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
WO2014038017A1
WO2014038017A1 PCT/JP2012/072631 JP2012072631W WO2014038017A1 WO 2014038017 A1 WO2014038017 A1 WO 2014038017A1 JP 2012072631 W JP2012072631 W JP 2012072631W WO 2014038017 A1 WO2014038017 A1 WO 2014038017A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
regenerative
contact
frequency
Prior art date
Application number
PCT/JP2012/072631
Other languages
French (fr)
Japanese (ja)
Inventor
壮志 野村
直道 石浦
慎二 瀧川
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2014534084A priority Critical patent/JP6104254B2/en
Priority to CN201280075652.0A priority patent/CN104604089B/en
Priority to PCT/JP2012/072631 priority patent/WO2014038017A1/en
Publication of WO2014038017A1 publication Critical patent/WO2014038017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0885Power supply

Definitions

  • the present invention relates to a non-contact power supply apparatus that supplies power to a power load on a movable part in a non-contact manner from a fixed part, and more particularly to a non-contact power supply apparatus that stores electricity by power regeneration of the power load.
  • a linear motor device generally includes a track member in which N poles and S poles of a plurality of magnets are alternately arranged along a moving direction, and a movable portion configured to include an armature having a core and a coil. Is.
  • the ball screw In the ball screw mechanism, the ball screw is rotationally driven by a drive motor.
  • a power supply cable that can be deformed has been conventionally used to supply power to these power loads.
  • the application of a non-contact power feeding device has been proposed in order to eliminate adverse effects such as an increase in the carrying weight due to a power feeding cable and a risk of disconnection due to metal fatigue.
  • the electromagnetic induction method using a coil has been widely used as a method of a non-contact power feeding device, but recently, an electrostatic coupling method in which a capacitor is configured by an opposing electrode plate has been used.
  • a magnetic resonance method has been studied.
  • this type of non-contact power feeding device is used to feed power to an armature of a linear motor device or a ball screw mechanism motor on a movable part
  • an electromotive force is induced in the armature or motor when the movable part is decelerated. Electric power regeneration is possible.
  • the conventional technology does not have an appropriate application using the regenerative power, and the regenerative power is wasted as heat loss.
  • the problem of wasting regenerative power is not limited to substrate work equipment, but is included in various equipment using non-contact power feeding.
  • Patent Documents 1 and 2 disclose technical examples of contactless power supply devices that use regenerative power as a solution to the above-described problems.
  • a charge capacitor is provided in an article conveyance device provided with a drive source driven by non-contact power feeding.
  • the non-contact power supply device of Patent Document 2 includes a power receiving circuit that supplies power to a motor in a non-contact manner and a power storage circuit that stores regenerative power of the motor.
  • the regenerative power can be effectively used by charging the battery or capacitor of the power storage circuit.
  • Patent Documents 1 and 2 power storage elements such as a battery and a capacitor are provided on the movable part side to be contactlessly fed. For this reason, a movable part becomes heavy by the weight of an electrical storage element, and big power is needed for the drive source on a movable part, and the bad effect which must increase non-contact electric power feeding arises. Further, since the space of the movable part is occupied by the size of the power storage element, there is a problem that hinders mounting of other members. As described above, in the technique of providing the power storage element on the movable part, the weight and size of the power storage element occupy a large ratio with respect to the entire movable part, which is difficult to overlook.
  • the present invention has been made in view of the problems of the background art described above, and effectively uses the regenerative power obtained by the power load on the movable part that is the target of non-contact power feeding, and the weight and size of the movable part. It is an object to be solved to provide a non-contact power feeding device that suppresses an increase.
  • the invention of the non-contact power feeding device includes a non-contact power feeding element provided in a fixed portion, a high-frequency power circuit that feeds high-frequency power to the non-contact power feeding element, and the fixed
  • a non-contact power receiving element that is provided in a movable part that is movably mounted on the part and receives the high frequency power in a non-contact manner, spaced apart from the non-contact power feeding element, and the high frequency received by the non-contact power receiving element
  • a non-contact power feeding device comprising a power receiving circuit that converts power and feeds power to the power load on the movable part, wherein the power load selectively consumes and generates power, and the power load is generated
  • a regenerative reverse circuit that reversely feeds regenerative power from the non-contact power receiving element to the fixed part via the non-contact power feeding element, and the regenerative power that is provided in the fixed part and reversely fed And storing the power negative
  • the regenerative reverse circuit is provided in the movable portion in parallel with the power receiving circuit, and converts the regenerative power generated by the power load into a high frequency to perform the contactless operation.
  • a regenerative high-frequency circuit that supplies power to the power receiving element, and a regenerative changeover switch that is provided in the movable portion and connects the power load to one of the power receiving circuit and the regenerative high-frequency circuit.
  • the high-frequency power supply circuit includes a direct-current power source that outputs direct-current power, four switching elements, and a flywheel diode connected in parallel to the switching elements.
  • a bridge circuit that converts DC power into the high-frequency power wherein the storage element is a charge capacitor connected in parallel to the DC power supply, and the regenerative reverse circuit includes the flywheel diode,
  • the switching element is opened and rectified by a full-wave rectifier circuit including the four flywheel diodes. It stores electricity in the charge capacitor.
  • the high-frequency power supply circuit includes a secondary battery that outputs DC power, four switching elements, and a flywheel diode connected in parallel to the switching elements.
  • the switching element is opened, and the secondary wave is rectified by a full-wave rectifier circuit including the four flywheel diodes. It stores electricity in the battery.
  • the power consumption and generation in the power load are selectively controlled, and the high-frequency power circuit and the power supply corresponding to the consumption and generation are controlled.
  • a control circuit for controlling the regenerative reverse circuit is further provided.
  • the invention according to claim 6 is the invention according to claim 1, wherein the power receiving circuit and the regenerative reverse circuit are The movable part is provided with four switching elements and a flywheel diode connected in parallel to each of the switching elements, the high frequency power received by the non-contact power receiving element can be converted into DC power, and the power Sharing a regenerative power generated by a load into a high frequency and supplying power to the non-contact power receiving element and a power receiving regenerative selection switch for switching a power feeding direction between the bridge circuit and the power load .
  • the contactless power feeding element and the contactless power receiving element are each an electrode plate.
  • the invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the movable part further includes a mounting head that is mounted on a component mounter that mounts a component on a substrate and that performs a component mounting operation.
  • the power load is a linear motor or a ball screw mechanism motor that drives the movable part.
  • the regenerative power generated by the power load is fed back in a non-contact manner from the non-contact power receiving element to the fixed part via the non-contact power feeding element by the regenerative reverse feed circuit.
  • the power is stored in the power storage element on the fixed portion side, and the stored power is used in preference to the high frequency power supply circuit. Therefore, the regenerative power can be stored without being wasted as heat loss, and can be effectively used before spontaneous discharge.
  • the power storage element is provided on the fixed part side, the weight and size of the movable part are reduced as compared with the prior art. In addition, an increase in the weight and size of the movable part is suppressed as compared with a configuration in which power regeneration is not performed.
  • the regenerative reverse circuit includes a regenerative high frequency circuit and a regenerative changeover switch provided in parallel with the power receiving circuit. Therefore, when the regenerative power is reversely fed, non-contact power feeding using a high frequency can be performed to increase the regenerative reverse feeding efficiency to the same level as the normal power feeding efficiency, and the regenerative power can be efficiently stored.
  • the charge capacitor can be stored by using the flywheel diode of the high frequency power supply circuit in the regenerative reverse circuit. Accordingly, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the fixed part side, the circuit configuration can be simplified, and an increase in cost required for effective use of regenerative power can be suppressed.
  • the secondary battery can be stored by using the flywheel diode of the high frequency power supply circuit in the regenerative reverse circuit. Therefore, a dedicated regenerative reverse circuit that transforms the regenerative power is not required on the fixed part side, and the circuit configuration can be simplified. In addition, since the storage element is also used as a secondary battery, the regenerative power can be used effectively. The required increase in cost can be remarkably suppressed.
  • control circuit selectively controls power consumption and generation in the power load, and controls the high frequency power supply circuit and the regenerative reverse circuit in response to the consumption and generation. Therefore, it is possible to control the power transfer direction with high accuracy in accordance with the operation state of the power load, and to realize smooth operation of the power load and high efficiency of power supply efficiency and regenerative reverse transmission efficiency.
  • the power reception circuit and the regenerative reverse transmission circuit share the bridge circuit and the power reception regeneration selection switch in the movable part. Therefore, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the movable part side, the circuit configuration can be simplified, and an increase in cost necessary for effective use of regenerative power can be suppressed.
  • the contactless power feeding element and the contactless power receiving element are each electrode plates, and regenerative power can be sent back from the movable part to the fixed part by an electrostatic coupling method. Therefore, it is possible to apply a combination of high-efficiency power feeding techniques such as using a series resonant circuit, and to realize high efficiency of power regeneration.
  • the movable part is further provided with a mounting head which is mounted on the component mounting machine and performs a component mounting operation.
  • the non-contact power feeding device of the present invention can be installed in a component mounting machine, and can effectively use the regenerative power of a linear motor or a ball screw mechanism motor that drives a movable part.
  • FIG. 3 is a circuit diagram schematically illustrating the non-contact power feeding device of the first embodiment and illustrating a power feeding operation. It is a figure explaining reverse transmission operation when electric power load generates regenerative electric power in a 1st embodiment. It is a circuit diagram explaining a non-contact electric supply device of a 2nd embodiment typically. It is a circuit diagram explaining typically the non-contact electric supply device of a 3rd embodiment. It is a circuit diagram explaining the non-contact electric power supply of 4th Embodiment typically. It is a circuit diagram explaining the non-contact electric power feeder of conventional structure typically.
  • FIG. 1 is a perspective view showing an overall configuration of a component mounting machine 10 to which the non-contact power feeding device 1 according to the first embodiment of the present invention can be applied.
  • the component mounter 10 is a device that mounts a large number of components on a board, and is configured by two sets of component mounting units having the same structure arranged substantially symmetrically.
  • the component mounting unit in a state where the right front cover of FIG. 1 is removed will be described as an example.
  • the width direction of the component mounter 10 from the left back side to the right front side in the figure is the X-axis direction
  • the longitudinal direction of the component mounter 10 is the Y-axis direction.
  • the component mounter 10 is configured by assembling a substrate transport device 110, a component supply device 120, two component transfer devices 130, 140, and the like on a machine base 190.
  • the board transfer device 110 is disposed so as to cross the vicinity of the center in the longitudinal direction of the component mounting machine 10 in the X-axis direction.
  • the substrate transport device 110 has a transport conveyor (not shown) and transports the substrate in the X-axis direction.
  • substrate conveyance apparatus 110 has an unillustrated clamp apparatus, and fixes and hold
  • the component supply device 120 is provided at the front portion in the longitudinal direction of the component mounter 10 (left front side in FIG. 1).
  • the component supply device 120 includes a plurality of cassette-type feeders 121, and supplies the components continuously from the carrier tape set in each feeder 121 to the two component transfer devices 130 and 140.
  • the two component transfer devices 130 and 140 are so-called XY robot type devices that can move in the X-axis direction and the Y-axis direction.
  • the two component transfer apparatuses 130 and 140 are disposed on the front side and the rear side in the longitudinal direction of the component mounter 10 so as to face each other.
  • Each component transfer device 130, 140 has a linear motor device 150 for movement in the Y-axis direction.
  • the linear motor device 150 includes a track member 151 and an auxiliary rail 155 common to the two component transfer devices 130 and 140, and a movable portion 3 for each of the two component transfer devices 130 and 140.
  • the track member 151 is arranged in parallel on both sides of the movable portion 3 and extends in the Y-axis direction that is the moving direction.
  • a plurality of magnets 152 are arranged in a row along the Y-axis direction on the inner side surfaces of the race member 151 facing each other.
  • the movable part 3 is movably mounted on the track member 151.
  • the movable part 3 includes a movable main body part 160, an X-axis rail 161, a mounting head 170, and the like.
  • the movable main body 160 extends in the Y-axis direction, and armatures that generate a propulsive force are disposed on opposite sides of the movable main body 160 so as to face the magnets 152 of the track member 151.
  • the X-axis rail 161 extends from the movable main body 160 in the X-axis direction.
  • One end 162 of the X-axis rail 161 is coupled to the movable main body 160 and the other end 163 is movably mounted on the auxiliary rail 155 so that the X-axis rail 161 moves integrally with the movable main body 160 in the Y-axis direction. It has become.
  • the component mounting head 170 is mounted on the X-axis rail 161 and moves in the X-axis direction.
  • a suction nozzle (not shown) is provided at the lower end of the component mounting head 170. The suction nozzle sucks and collects components from the component supply device 120 using negative pressure and mounts them on the substrate at the mounting work position.
  • a ball screw feed mechanism (not shown) provided on the X-axis rail 161 has an X-axis motor that rotationally drives the ball screw, and drives the component mounting head 170 in the X-axis direction. *
  • the component mounter 10 further includes a display setting device 180 for exchanging information with an operator, a camera (not shown) that images a board and components, and the like.
  • the armature of the linear motor device 150 and the X-axis motor of the ball screw feed mechanism always act as a drive source for consuming the power and moving the component mounting head 170.
  • an electromotive force is induced in the armature and the X-axis motor to act as a generator that generates regenerative power. Therefore, the armature of the linear motor device 150 and the X-axis motor of the ball screw feed mechanism correspond to the power load L of the present invention that selectively consumes and generates power.
  • FIG. 2 is a circuit diagram schematically illustrating the contactless power supply device 1 of the first embodiment and illustrating a power supply operation.
  • Each member of the fixed portion 2 is shown on the left side of FIG. 2, and each member of the movable portion 3 is shown on the right side.
  • a power feeding path is indicated by a broken arrow
  • a non-contact power feeding direction is indicated by a white arrow RS
  • a control flow is indicated by a one-dot chain line arrow.
  • the non-contact power feeding apparatus 1 normally performs non-contact power feeding from the fixed unit 2 to the power load L on the movable unit 3 and reverses the regenerative power from the movable unit 3 to the fixed unit 2 when the power load L generates regenerative power. And stored in the charge capacitor 52 on the fixed portion 2 side.
  • the non-contact power supply device 1 includes power supply electrode plates 41 and 42 on the fixed portion 2 side, a high-frequency power supply circuit 5 including a charge capacitor 52, and the like, and power receiving electrode plates 61 and 62 and a regenerative changeover switch 75 on the movable portion 3 side.
  • the power receiving circuit 7 includes the regenerative high-frequency circuit 8 and the like.
  • the two power supply electrode plates 41 and 42 correspond to the non-contact power supply element of the present invention, and are formed of a thin strip of metal material.
  • the two electrode plates for power supply 41 and 42 are horizontally provided on the fixed portion 2 so that the long side of the belt extends in the moving direction of the movable portion 3, and are parallel to each other while being separated from each other.
  • the lengths of the short sides of the power supply electrode plates 41 and 42 are appropriately designed according to the magnitude of the power supply power to be supplied.
  • the high-frequency power supply circuit 5 is disposed in the fixed portion 2 and includes a DC power supply 51, a charge capacitor 52, and a bridge circuit 53.
  • the DC power supply 51 generates a DC power supply voltage from a commercial power supply and supplies power to the bridge circuit 53 from the positive terminal 5P and the negative terminal 5N.
  • the charge capacitor 52 is a large-capacity capacitor, and a plurality of capacitors can be connected in parallel as needed.
  • the charge capacitor 52 has a sufficient capacitance to store regenerative power described later.
  • the charge capacitor 52 has its positive terminal 52P electrically connected to the positive terminal 51P of the DC power supply 51 and its negative terminal 52P electrically connected to the negative terminal 51N of the DC power supply 51. Therefore, the charge capacitor 52 is normally charged with a DC power supply voltage.
  • the bridge circuit 53 includes four switching elements 541 to 544 and flywheel diodes 551 to 554 connected in parallel to the switching elements 541 to 544. As shown in the figure, the bridge circuit 53 has its positive input terminal 56P electrically connected to the positive terminal 51P of the DC power supply 51, and its negative input terminal 56N electrically connected to the negative terminal 51N of the DC power supply 51. ing.
  • the first switching element 541 and the second switching element 542 are connected in series, and the third switching element 543 and the fourth switching element 544 are connected in series.
  • the connections are electrically connected in parallel.
  • One side output terminal 561 between the first switching element 541 and the second switching element 542 is electrically connected to one power supply electrode plate 41, and the other side between the third switching element 543 and the fourth switching element 544.
  • the output terminal 562 is electrically connected to the other power feeding electrode plate 42.
  • the flywheel diodes 551 to 554 suppress overvoltage that tends to occur at the moment when the switching elements 541 to 544 are opened.
  • the switching elements 541 to 544 are controlled to be opened and closed by the fixed part control circuit 21 provided in the fixed part 2. Specifically, at a certain time, the first and fourth switching elements 541 and 544 are closed, and the second and third switching elements 542 and 543 are opened. As a result, one power supply electrode plate 41 is short-circuited to the positive terminal 5P, and the other power supply electrode plate 42 is short-circuited to the negative terminal 5N. At the next time, the first and fourth switching elements 541 and 544 are opened, and the second and third switching elements 542 and 543 are closed. As a result, one power feeding electrode plate 41 is short-circuited to the negative terminal 5N, and the other power feeding electrode plate 42 is short-circuited to the positive terminal 5P. Such switching control is frequently performed, and high-frequency power is supplied between the two power supply electrode plates 41 and 42.
  • the two power receiving electrode plates 61 and 62 correspond to the non-contact power receiving element of the present invention, and are formed in a thin and long strip shape of a metal material.
  • the two power receiving electrode plates 61 and 62 are provided on the movable portion 3, and are respectively opposed to the power feeding electrode plates 41 and 42 on the fixed portion 2 side. Accordingly, two sets of parallel plate-shaped capacitors are constituted by two sets of opposing electrode plates (41 and 61, 42 and 62), and as shown by a white arrow RS in FIG. Contact power feeding can be performed.
  • One power receiving electrode plate 61 is electrically connected to one side input terminal 731 of the full-wave rectifier circuit 71 of the power receiving circuit 7, and the other power receiving electrode plate 62 is electrically connected to the other side input terminal 732.
  • the power receiving circuit 7 is disposed in the movable part 3, and is composed of a full-wave rectifier circuit 71, a regeneration changeover switch 75, and a smoothing coil 77.
  • the power receiving circuit 7 rectifies and converts the high frequency power received by the power receiving electrode plates 61 and 62 and supplies power to the power load L on the movable portion 3.
  • the full-wave rectifier circuit 71 is used for the conversion of high-frequency power.
  • the power load L may be an AC load. In this case, for example, an inverter circuit is used instead of the full-wave rectifier circuit 71.
  • the full-wave rectifier circuit 71 is configured by bridge-connecting four diode elements 721 to 724. More specifically, as shown in the figure, the series connection of the first diode element 721 and the second diode element 722 and the series connection of the third diode element 723 and the fourth diode element 724 are negatively connected to the positive output terminal 74P.
  • a side output terminal 74N is electrically connected in parallel.
  • One side input terminal 731 between the first diode element 721 and the second diode element 722 is electrically connected to one power receiving electrode plate 61, and the other side between the third diode element 723 and the fourth diode element 724.
  • the input terminal 732 is electrically connected to the other power receiving electrode plate 62.
  • the positive output terminal 74P is electrically connected to the power supply side contact 761 of the regeneration changeover switch 75, and the negative output terminal 74N is electrically connected to the negative terminal LN of the power load L.
  • the regenerative changeover switch 75 is a switch for selectively changing one of the full-wave rectifier circuit 71 and the regenerative high-frequency circuit 8.
  • the regenerative changeover switch 75 conducts one of the power supply side contact 761 and the regenerative side contact 762 to the common contact 763.
  • the power supply side contact 761 is electrically connected to the positive output terminal 74P of the full wave rectifier circuit 71, and the regeneration side contact 762 is electrically connected to the anode 82A of the reverse feed diode 81 of the regenerative high frequency circuit 8.
  • the common contact 763 is electrically connected to one side terminal 781 of the smoothing coil 77.
  • the movable part control circuit 31 provided in the movable part 3 controls the switching operation of the regenerative changeover switch 75 and makes the power supply side contact 761 conductive to the common contact 763 when supplying power to the power load L. Further, when the regenerative power generated by the power load L is sent back, the movable part control circuit 31 causes the regenerative contact 762 of the regenerative changeover switch 75 to conduct to the common contact 763.
  • the smoothing coil 77 smoothes the pulsating portion of the DC power output from the full-wave rectifier circuit 71.
  • One terminal 782 of the smoothing coil 77 is electrically connected to the common contact 76 of the regeneration changeover switch 75, and the other terminal 782 is electrically connected to the positive terminal LP of the power load.
  • the smoothing coil 77 is a simple example of a smoothing circuit, and another known smoothing circuit may be used.
  • the regenerative high-frequency circuit 8 is provided in parallel with the full-wave rectifier circuit 71 on the movable part 3.
  • the regenerative high-frequency circuit 8 converts the regenerative power generated by the power load L into a high frequency and supplies power to the non-contact power receiving elements 61 and 62.
  • the regenerative high-frequency circuit 8 includes a reverse-feeding diode 81 and a reverse-feeding bridge circuit 83 including four switching elements 851 to 854.
  • the anode 82A of the reverse feed diode 81 is electrically connected to the regeneration side contact 762 of the regeneration changeover switch 75, and the cathode 82K is electrically connected to the positive side input terminal 84P of the reverse feed bridge circuit 83.
  • the reverse feed diode 81 allows energization in the direction (reverse feed direction) from the power load L toward the non-contact power receiving elements 61 and 62 and prevents energization in the opposite direction.
  • the positive input terminal 84P of the reverse bridge circuit 83 is electrically connected to the reverse diode 81, and the negative input terminal 84N is electrically connected to the negative terminal LN of the power load L.
  • a first switching element 851 and a second switching element 852 are connected in series, and a third switching element 853 and a fourth switching element 854 are connected.
  • One side output terminal 861 between first switching element 851 and second switching element 852 is electrically connected to one power receiving electrode plate 61, and the other side between third switching element 853 and fourth switching element 854.
  • the output terminal 862 is electrically connected to the other power receiving electrode plate 62.
  • the switching elements 851 to 854 are controlled to be opened and closed by the movable part control circuit 31.
  • a specific control method of the reverse feed bridge circuit 83 is similar to the bridge circuit 53 on the fixed portion 2 side, and thus the description thereof will be omitted. However, the switching control is frequently performed and the two power receiving electrode plates 61 and 62 are used. During this period, high-frequency power is transmitted backward.
  • the fixed part control circuit 21 on the fixed part 2 side and the movable part control circuit 31 on the movable part 3 side can be configured by a computer control circuit that incorporates a microcomputer and operates by software.
  • a non-contact transmission unit 22 is attached to the fixed unit control circuit 21, and a non-contact reception unit 32 is attached to the movable unit control circuit 31.
  • As a communication method between the contactless transmission unit 22 and the contactless reception unit 32 an optical wireless method or a radio wave wireless method can be used.
  • the fixed part control circuit 21 and the movable part control circuit 31 cooperate with each other, and the fixed part control circuit 21 is configured to perform the position control of the mounting head 170 by driving the power load L with an initiative. Therefore, the fixed part control circuit 21 transmits a switching control signal Ctl1 for switching control between power supply to the power load L and reverse transmission of regenerative power from the power load L to the movable part control circuit 31 in a non-contact manner. Based on this switching control signal Ctl1, the movable part control circuit 31 commands the power load L to receive an operation command Ctl2.
  • the fixed part control circuit 21 and the movable part control circuit 31 does not necessarily need to be non-contact communication, and wired communication can also be used.
  • the fixed part control circuit 21 transmits a switching control signal Ctl1 for supplying power to the power load L to the movable part control circuit 31 via non-contact communication.
  • the movable part control circuit 31 commands an operation command Ctl2 to supply power to the power load L.
  • the movable part control circuit 31 causes the power supply side contact 761 of the regenerative changeover switch 75 to conduct to the common contact 763, and further controls all the four switching elements 851 to 854 of the reverse feed bridge circuit 83 to the open circuit state.
  • the fixed part control circuit 21 controls the operation of the bridge circuit 53 to a general full bridge circuit, that is, performs switching control of the four switching elements 541 to 544 to generate high-frequency power.
  • the frequency of the high-frequency power is controlled so that the entire circuit from the DC power source 51 to the power load L is in series resonance, thereby increasing the power supply efficiency. Since the resonance frequency at the time of electric power supply changes according to the load condition of the electric power load L, it is preferable to variably control the frequency.
  • the DC power of the DC power supply 51 is converted into high-frequency power by the bridge circuit 53 and is sent to the two power supply electrode plates 41 and 42.
  • the two power supply electrode plates 41 and 42 and the two power reception electrode plates 61 and 62 are electrostatically coupled as described above, and are non-electrostatically coupled as indicated by the white arrow RS. Contact power feeding is performed.
  • the high frequency power received by the power receiving electrode plates 61 and 62 is converted into DC power by the power receiving circuit 7 and fed to the power load L as indicated by arrows F2 and F3.
  • FIG. 3 is a diagram for explaining a reverse operation when the power load L generates regenerative power in the first embodiment.
  • the regenerative power is reversely transmitted from the power load L to the charge capacitor 52 as indicated by broken arrows F5 to F8 and white arrows RR in FIG.
  • the fixed part control circuit 21 controls all the four switching elements 541 to 544 of the bridge circuit 53 to the open circuit state. Furthermore, the fixed part control circuit 21 transmits a switching control signal Ctl1 indicating that the regenerative power is sent back to the movable part control circuit 31 via non-contact communication.
  • the movable part control circuit 31 commands the operation command Ctl2 to reversely send the regenerative power to the power load L.
  • the movable part control circuit 31 causes the regeneration side contact 762 of the regeneration changeover switch 75 to conduct to the common contact 763.
  • the movable part control circuit 31 controls the four switching elements 851 to 854 of the reverse feed bridge circuit 83 to operate as a full bridge circuit, and generates high frequency power.
  • the frequency of the high-frequency power is variably controlled so that the entire circuit from the power load L to the charge capacitor 52 is in series resonance, thereby improving the regeneration efficiency.
  • the resonance frequency at the time of electric power regeneration changes according to the regeneration implementation condition of the electric power load L, and may differ from the resonance frequency at the time of electric power feeding.
  • the regenerative power generated by the power load L is input to the regenerative high-frequency circuit 8, and is converted into high-frequency power to be two power receiving electrode plates 61, 62 is sent back. Further, non-contact power reverse transmission is performed by the electrostatic coupling method as indicated by the white arrow RR.
  • the high frequency regenerative power received by the power supply electrode plates 61 and 62 is input to the one side output terminal 561 and the other side output terminal 562 of the bridge circuit 53.
  • the bridge circuit 53 acts as a full-wave rectifier circuit including four flywheel diodes 551 to 554. Therefore, reverse DC power is output between the positive side input terminal 56P and the negative side input terminal 56N of the bridge circuit 53 in the direction opposite to the normal direction. Since the reverse DC voltage of the reverse DC power can be higher than the DC power supply voltage of the DC power supply 51, the charge capacitor 52 is charged with more charge than usual.
  • the charging voltage between the positive terminal 52P and the negative terminal 52N of the charge capacitor 52 rises above the normal DC power supply voltage.
  • the amount of charge that is charged more than usual is used in preference to the DC power source 51 when the power load L is next fed. Therefore, the charge that is preferentially used contributes to the power regeneration, and the total efficiency of the non-contact power feeding device 1 is improved by this amount.
  • a circuit range in which regenerative power is fed back from the power load L to the charge capacitor 52 is a regenerative reverse circuit. Therefore, the regenerative reverse circuit includes four smoothing coils 77 and a regenerative changeover switch 75 of the power receiving circuit 7, a regenerative high frequency circuit 8, power receiving electrode plates 61 and 62, power feeding electrode plates 41 and 42, and a bridge circuit 53.
  • the flywheel diodes 551 to 554 are configured.
  • FIG. 7 is a circuit diagram schematically illustrating the conventional contactless power supply device 9.
  • the high frequency power supply circuit 5 ⁇ / b> X that supplies high frequency power to the power supply electrode plates 41 and 42 on the fixed portion 2 ⁇ / b> X side does not include the charge capacitor 52, and regenerates on the movable portion 3 ⁇ / b> X side.
  • the power receiving circuit 7X is configured by directly connecting a smoothing coil 77 to a full-wave rectifier circuit 71. Instead, the charge capacitor 52X is electrically connected between the positive terminal LP and the negative terminal LN of the power load L.
  • the charge capacitor 52X is normally charged to a certain charging voltage by non-contact power feeding.
  • the power load L When the power load L generates regenerative power to generate a regenerative voltage, and the regenerative voltage exceeds the charging voltage, the charge is directly charged from the power load L to the charge capacitor 52X as indicated by arrows F9 and F10. Is done.
  • the arrangement positions of the charge capacitors 52X and 52 are different, but the charge capacitors 52X and 52 are charged at a higher voltage than usual during regeneration.
  • the charge capacitor 52 ⁇ / b> X is not provided on the movable portion 3 side, and a regenerative changeover switch 75 and a regenerative high-frequency circuit 8 are provided instead.
  • the charge capacitor 52X having a conventional configuration has a considerably large capacity and occupies a large proportion of weight and size with respect to the entire movable portion 3X.
  • the conventional charge capacitor 52X is heavier and larger than the sum of the regenerative changeover switch 75 and the regenerative high frequency circuit 8. Therefore, the movable part 3 of the contactless power supply device 1 of the first embodiment can be made smaller and lighter than the movable part 3X of the contactless power supply device 9 of the conventional configuration.
  • the regenerative power generated by the power load L is received from the power receiving electrode plates 61 and 62 by the regenerative reverse circuit via the power feeding electrode plates 41 and 42 and the fixed portion 2.
  • the non-contact reversely sent and stored in the charge capacitor 52 on the fixed portion 2 side, and the stored power is used in preference to the DC power supply 51. Therefore, the regenerative power can be stored without being wasted as heat loss, and can be effectively used before spontaneous discharge.
  • the charge capacitor 52 is provided on the fixed portion 2 side, so that the weight and size of the movable portion 3 are reduced compared to the movable portion 3X of the conventional configuration. Furthermore, an increase in the weight and size of the movable part 3 is suppressed compared to a configuration that does not perform power regeneration.
  • the non-contact power feeding element and the non-contact power receiving element are electrode plates 41, 42, 61, 62, respectively, and regenerative power can be sent back from the movable part 3 to the fixed part 2 by electrostatic coupling.
  • the transmission circuit includes a regenerative high-frequency circuit 8 and a regenerative changeover switch 75 provided in parallel with the power receiving circuit 7. Therefore, even when the regenerative power is reversely transmitted, the regenerative reverse transmission efficiency can be increased to the same level as the normal power supply efficiency by using the high-frequency series resonance circuit, and the regenerative power can be efficiently stored.
  • the charge capacitor 52 can be stored using the flywheel diodes 531 to 534 of the high-frequency power supply circuit 5 in the regenerative reverse circuit. Accordingly, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the fixed portion 2 side, the circuit configuration can be simplified, and an increase in cost required for effective use of regenerative power can be suppressed.
  • the fixed part control circuit 21 and the movable part control circuit 31 cooperate to selectively control the consumption and generation of power in the power load L, and the high frequency power supply circuit 5 and the regenerative high frequency circuit 8 corresponding to the consumption and generation. To control. Therefore, the power transfer direction can be controlled with high accuracy in accordance with the operating state of the power load L, and smooth operation of the power load L and higher efficiency of power supply efficiency and regenerative reverse transmission efficiency can be realized.
  • FIG. 4 is a circuit diagram schematically illustrating the contactless power feeding device 1A of the second embodiment.
  • the high frequency power supply circuit 5 ⁇ / b> A of the fixed portion 2 ⁇ / b> A has a battery 51 ⁇ / b> A instead of the DC power supply 51 and the charge capacitor 52.
  • the battery 51A is a secondary battery that can be repeatedly charged and discharged, and also serves as a power storage element. In other words, the battery 51A stores the regenerative power that is sent back from the movable portion 3 to the fixed portion 2A.
  • the non-contact power feeding device 1A of the second embodiment since the storage element is also used as the battery 51A, it is possible to remarkably suppress an increase in cost necessary for effective use of regenerative power. Since the configurations and operations of other parts of the second embodiment and the effects other than those described above are the same as those of the first embodiment, description thereof will be omitted.
  • FIG. 5 is a circuit diagram schematically illustrating the non-contact power feeding device 1B of the third embodiment.
  • the power reception circuit 7B includes a bridge circuit 79, a power reception regeneration selection switch 75B, and a smoothing coil 77.
  • the bridge circuit 79 is the same circuit as the bridge circuit 53 of the fixed unit 2, and includes four switching elements and a flywheel diode connected in parallel to each switching element. As shown in the figure, one input terminal 791 of the bridge circuit 79 is electrically connected to one power receiving electrode plate 61, and the other input terminal 792 is electrically connected to the other power feeding electrode plate 62. The positive output terminal 79P of the bridge circuit 79 is electrically connected to the changeover switch 75B, and the negative output terminal 79N is electrically connected to the negative terminal LN of the power load L.
  • the four switching elements of the bridge circuit 79 are controlled by the movable part control circuit 31, all are opened during power feeding, and switching controlled during regeneration.
  • the power reception regeneration selection switch 75B is a switch that selectively switches between power feeding and regeneration.
  • the power reception / regeneration selection switch 75B conducts one of the power supply side contact 761 and the regeneration side contact 762 to the common contact 763.
  • the power feeding side contact 761 is directly electrically connected to the positive output terminal 79P of the bridge circuit 79, and the regeneration side contact 762 is electrically connected to the positive output terminal 79P via the reverse feed diode 764.
  • the reverse feed diode 764 allows energization in the direction (reverse feed direction) from the power load L toward the non-contact power receiving elements 61 and 62 and prevents energization in the opposite direction.
  • the movable part control circuit 31 When power is supplied to the power load L, the movable part control circuit 31 connects the power supply side contact 761 of the power reception regeneration selection switch 75B to the common contact 763, and when the regenerative power generated by the power load L is sent back, the regenerative side contact. 762 is connected to the common contact 763.
  • the bridge circuit 79 acts as a full-wave rectifier circuit during power feeding and acts as a regenerative high-frequency circuit during regeneration. Therefore, the non-contact power feeding device 1B of the third embodiment operates in the same manner as the first embodiment, and the same effect as the first embodiment occurs.
  • a dedicated regenerative reverse circuit becomes unnecessary on the movable part 3B side, the circuit configuration can be simplified, and effective use of regenerative power is possible. The increase in cost required for the process can be suppressed.
  • FIG. 6 is a circuit diagram schematically illustrating the contactless power feeding device 1C of the fourth embodiment.
  • a power feeding coil 43 is used as a non-contact power feeding element of the fixed portion 2C
  • a power receiving coil 63 is used as a non-contact power receiving element of the movable portion 3C.
  • the power supply coil 43 and the power reception coil 63 are electromagnetically coupled well, and are configured to perform non-contact power supply by an electromagnetic induction method.
  • Other parts are the same as those in the first embodiment, and a description thereof will be omitted.
  • the regenerative power generated by the non-contact power load L by the electromagnetic induction method using the power feeding coil 43 and the power receiving coil 63 is reversely transmitted, and the fixed portion 2C side Can be stored.
  • the overall efficiency of electromagnetic induction type non-contact power feeding can be increased.
  • the power feeding coil 43 and the power receiving coil 63 can also be used in combination with the second and third embodiments.
  • the present invention is not limited to the non-contact power feeding device of the electrostatic coupling method and the electromagnetic coupling method, and can be implemented by another non-contact power feeding method such as a magnetic field resonance method.
  • the circuit configurations of the high-frequency power supply circuits 5, 5A, the power receiving circuits 7, 7B, the regenerative high-frequency circuit 8, and the like can be modified as appropriate. Various other applications and modifications are possible for the present invention.
  • the non-contact power feeding device of the present invention can be used for a component mounting machine, and can also be used for other board work equipment such as a board inspection machine. Furthermore, the non-contact power feeding device of the present invention can be used for various devices having a power load capable of regenerating power other than the linear motor device and the ball screw feeding mechanism in the movable portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

A non-contact power supply device (1) of the present invention comprises: non-contact power supply elements (41, 42) and a high-frequency power supply circuit (5) both provided in a fixed unit (2); and a non-contact power receiving elements (61, 62) and a power receiving circuit (7) both provided in a movable unit (3), said power receiving circuit (7) converting the high-frequency power received by the non-contact power receiving elements (61, 62) and supplying the converted high-frequency power to a power load (L) in the movable unit (3). In the non-contact power supply device (1), the power load (L) selectively consumes or generates power. The non-contact power supply device (1) further comprises: a regeneration reverse-transmission circuit for reversely transmitting regenerative power generated by the power load (L) from the non-contact power receiving elements (61, 62) to the fixed unit (2) via the non-contact power supply elements (41, 42) in a non-contact fashion; and an electricity storage element (52) provided in the fixed unit (2) and storing the reversely transmitted regenerative power. This enables the regenerative power obtained by the power load (L) in the movable unit (3) to be effectively used and the weight and size of the movable unit (3) to be reduced in comparison with conventional techniques.

Description

非接触給電装置Non-contact power feeding device
 本発明は、可動部上の電力負荷に固定部から非接触で給電する非接触給電装置に関し、より詳細には、電力負荷の電力回生によって蓄電を行う非接触給電装置に関する。 The present invention relates to a non-contact power supply apparatus that supplies power to a power load on a movable part in a non-contact manner from a fixed part, and more particularly to a non-contact power supply apparatus that stores electricity by power regeneration of the power load.
 多数の部品が実装された基板を生産する基板用作業機器として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがあり、これらを基板搬送装置で連結して基板生産ラインを構築する場合が多い。これらの基板用作業機器の多くは基板の上方を移動して所定の作業を行う可動部を備えており、可動部を駆動する一手段としてリニアモータ装置やボールねじ送り機構を用いることができる。リニアモータ装置は、移動方向に沿い複数の磁石のN極およびS極が交互に列設された軌道部材と、コアおよびコイルを有する電機子を含んで構成された可動部とを備えるのが一般的である。また、ボールねじ機構では、駆動モータによりボールねじを回転駆動する。リニアモータ装置の電機子やボールねじ機構用モータを可動部上に設けた構成では、これらの電力負荷に給電するために、従来から変形可能な給電用ケーブルが用いられてきた。また、近年では、給電用ケーブルによる荷搬重量の増加や金属疲労による断線のリスクなどの弊害を解消するために、非接触給電装置の適用が提案されている。 There are solder printing machines, component mounting machines, reflow machines, board inspection machines, etc. as board work equipment that produces boards with a large number of components mounted, and these are connected by a board transport device to build a board production line. There are many cases. Many of these substrate working devices include a movable portion that moves above the substrate and performs a predetermined operation, and a linear motor device or a ball screw feed mechanism can be used as one means for driving the movable portion. A linear motor device generally includes a track member in which N poles and S poles of a plurality of magnets are alternately arranged along a moving direction, and a movable portion configured to include an armature having a core and a coil. Is. In the ball screw mechanism, the ball screw is rotationally driven by a drive motor. In the configuration in which the armature of the linear motor device and the motor for the ball screw mechanism are provided on the movable part, a power supply cable that can be deformed has been conventionally used to supply power to these power loads. In recent years, the application of a non-contact power feeding device has been proposed in order to eliminate adverse effects such as an increase in the carrying weight due to a power feeding cable and a risk of disconnection due to metal fatigue.
 非接触給電装置の方式として、従来からコイルを用いた電磁誘導方式が多用されてきたが、最近では対向する電極板によりコンデンサを構成した静電結合方式も用いられるようになってきており、他に磁界共鳴方式なども検討されている。この種の非接触給電装置を用いて可動部上のリニアモータ装置の電機子やボールねじ機構用モータに給電する構成では、可動部を減速するときに電機子やモータに起電力が誘起されて電力の回生が可能になる。しかしながら、従来技術では回生電力を利用する適当な用途がなく、回生電力は熱損失として浪費されていた。回生電力を浪費するという問題点は、基板用作業機器に限定されず、非接触給電を利用した様々な機器に内包されている。 Conventionally, the electromagnetic induction method using a coil has been widely used as a method of a non-contact power feeding device, but recently, an electrostatic coupling method in which a capacitor is configured by an opposing electrode plate has been used. In addition, a magnetic resonance method has been studied. In a configuration in which this type of non-contact power feeding device is used to feed power to an armature of a linear motor device or a ball screw mechanism motor on a movable part, an electromotive force is induced in the armature or motor when the movable part is decelerated. Electric power regeneration is possible. However, the conventional technology does not have an appropriate application using the regenerative power, and the regenerative power is wasted as heat loss. The problem of wasting regenerative power is not limited to substrate work equipment, but is included in various equipment using non-contact power feeding.
 上述した問題点の解決策として回生電力を利用する非接触給電装置の技術例が特許文献1および2に開示されている。特許文献1の自動倉庫は、非接触給電によって駆動される駆動源を備えた物品搬送装置にチャージコンデンサが設けられている。これにより、駆動源で発生した回生電力をチャージコンデンサに充電し、該充電電力を物品搬送装置で大電力を必要とする際に利用できる、と記載されている。また、特許文献2の非接触給電装置は、非接触でモータへ給電する受電回路と、モータの回生電力を蓄電する蓄電回路とを備えている。これにより、回生電力を蓄電回路のバッテリまたはコンデンサ等に充電して有効に利用することができる、と記載されている。 Patent Documents 1 and 2 disclose technical examples of contactless power supply devices that use regenerative power as a solution to the above-described problems. In the automatic warehouse of Patent Document 1, a charge capacitor is provided in an article conveyance device provided with a drive source driven by non-contact power feeding. Thus, it is described that the regenerative power generated by the drive source is charged to the charge capacitor, and the charged power can be used when the power is required by the article transport device. Further, the non-contact power supply device of Patent Document 2 includes a power receiving circuit that supplies power to a motor in a non-contact manner and a power storage circuit that stores regenerative power of the motor. Thus, it is described that the regenerative power can be effectively used by charging the battery or capacitor of the power storage circuit.
特開2003-63613号公報JP 2003-63613 A 特開2005-295680号公報JP 2005-295680 A
 ところで、特許文献1および2では、バッテリやコンデンサなどの蓄電素子は、非接触給電される可動部側に設けられていた。このため、蓄電素子の重量分だけ可動部が重くなり、可動部上の駆動源に大きなパワーが必要となって、非接触の給電電力を増加しなければならなくなる弊害が生じる。また、蓄電素子の大きさ分だけ可動部のスペースが占有されるので、他の部材を搭載する妨げとなる弊害も生じる。このように、可動部上に蓄電素子を設ける技術では、蓄電素子の重量および大きさが可動部全体に対して大きな比率を占め、看過し難い問題点となっている。 By the way, in Patent Documents 1 and 2, power storage elements such as a battery and a capacitor are provided on the movable part side to be contactlessly fed. For this reason, a movable part becomes heavy by the weight of an electrical storage element, and big power is needed for the drive source on a movable part, and the bad effect which must increase non-contact electric power feeding arises. Further, since the space of the movable part is occupied by the size of the power storage element, there is a problem that hinders mounting of other members. As described above, in the technique of providing the power storage element on the movable part, the weight and size of the power storage element occupy a large ratio with respect to the entire movable part, which is difficult to overlook.
 本発明は、上記背景技術の問題点に鑑みてなされたもので、非接触給電の対象となる可動部上の電力負荷で得られる回生電力を有効利用するとともに、可動部の重量や大きさの増加を抑制した非接触給電装置を提供することを解決すべき課題とする。 The present invention has been made in view of the problems of the background art described above, and effectively uses the regenerative power obtained by the power load on the movable part that is the target of non-contact power feeding, and the weight and size of the movable part. It is an object to be solved to provide a non-contact power feeding device that suppresses an increase.
 上記課題を解決する請求項1に係る非接触給電装置の発明は、固定部に設けられた非接触給電用素子と、前記非接触給電用素子に高周波電力を給電する高周波電源回路と、前記固定部に移動可能に装架された可動部に設けられ、前記非接触給電用素子に離隔対向して非接触で高周波電力を受け取る非接触受電用素子と、前記非接触受電用素子が受け取った高周波電力を変換して前記可動部上の電力負荷に給電する受電回路とを備える非接触給電装置であって、前記電力負荷は、電力の消費および発生を選択的に行い、前記電力負荷が発生した回生電力を前記非接触受電用素子から前記非接触給電用素子を経由して前記固定部まで非接触で逆送する回生逆送回路と、前記固定部に設けられて逆送された前記回生電力を蓄電し、かつ前記電力負荷が前記電力を消費するときに前記高周波電源回路よりも優先して前記非接触給電用素子に高周波電力を給電する蓄電素子と、をさらに備える。 The invention of the non-contact power feeding device according to claim 1 that solves the above-described problem includes a non-contact power feeding element provided in a fixed portion, a high-frequency power circuit that feeds high-frequency power to the non-contact power feeding element, and the fixed A non-contact power receiving element that is provided in a movable part that is movably mounted on the part and receives the high frequency power in a non-contact manner, spaced apart from the non-contact power feeding element, and the high frequency received by the non-contact power receiving element A non-contact power feeding device comprising a power receiving circuit that converts power and feeds power to the power load on the movable part, wherein the power load selectively consumes and generates power, and the power load is generated A regenerative reverse circuit that reversely feeds regenerative power from the non-contact power receiving element to the fixed part via the non-contact power feeding element, and the regenerative power that is provided in the fixed part and reversely fed And storing the power negative There further comprises a storage element for feeding a high frequency power to the contactless power supply device in preference to the high frequency power supply circuit when consuming the power.
 請求項2に係る発明は、請求項1において、前記回生逆送回路は、前記可動部に前記受電回路と並列に設けられ、前記電力負荷が発生した回生電力を高周波に変換して前記非接触受電用素子に給電する回生高周波回路、ならびに、前記可動部に設けられ、前記電力負荷を前記受電回路および前記回生高周波回路の一方に接続する回生切替えスイッチを含んで構成される。 According to a second aspect of the present invention, in the first aspect, the regenerative reverse circuit is provided in the movable portion in parallel with the power receiving circuit, and converts the regenerative power generated by the power load into a high frequency to perform the contactless operation. A regenerative high-frequency circuit that supplies power to the power receiving element, and a regenerative changeover switch that is provided in the movable portion and connects the power load to one of the power receiving circuit and the regenerative high-frequency circuit.
 請求項3に係る発明は、請求項2において、前記高周波電源回路は、直流電力を出力する直流電源、ならびに、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり前記直流電力を前記高周波電力に変換するブリッジ回路を含み、前記蓄電素子は、前記直流電源に並列接続されたチャージコンデンサであり、前記回生逆送回路は、前記フライホイールダイオードを含んで構成され、前記非接触受電用素子から前記非接触給電用素子に高周波の回生電力が逆送されたときに、前記スイッチング素子を開路状態として前記4個のフライホイールダイオードからなる全波整流回路で整流して前記チャージコンデンサに蓄電する。 According to a third aspect of the present invention, in the second aspect, the high-frequency power supply circuit includes a direct-current power source that outputs direct-current power, four switching elements, and a flywheel diode connected in parallel to the switching elements. Including a bridge circuit that converts DC power into the high-frequency power, wherein the storage element is a charge capacitor connected in parallel to the DC power supply, and the regenerative reverse circuit includes the flywheel diode, When a high-frequency regenerative power is sent back from the non-contact power receiving element to the non-contact power feeding element, the switching element is opened and rectified by a full-wave rectifier circuit including the four flywheel diodes. It stores electricity in the charge capacitor.
 請求項4に係る発明は、請求項2において、前記高周波電源回路は、直流電力を出力する二次電池、ならびに、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり前記直流電力を前記高周波電力に変換するブリッジ回路を含み、前記蓄電素子は、前記二次電池で兼用されており、前記回生逆送回路は、前記フライホイールダイオードを含んで構成され、前記非接触受電用素子から前記非接触給電用素子に高周波の回生電力が逆送されたときに、前記スイッチング素子を開路状態として前記4個のフライホイールダイオードからなる全波整流回路で整流して前記二次電池に蓄電する。 According to a fourth aspect of the present invention, in the second aspect, the high-frequency power supply circuit includes a secondary battery that outputs DC power, four switching elements, and a flywheel diode connected in parallel to the switching elements. A bridge circuit that converts the DC power into the high-frequency power; the storage element is also used as the secondary battery; and the regenerative reverse circuit includes the flywheel diode; When a high-frequency regenerative power is reversely sent from the power receiving element to the contactless power feeding element, the switching element is opened, and the secondary wave is rectified by a full-wave rectifier circuit including the four flywheel diodes. It stores electricity in the battery.
 請求項5に係る発明は、請求項1~4のいずれか一項において、前記電力負荷における前記電力の消費および発生を選択的に制御し、消費および発生に対応して前記高周波電源回路および前記回生逆送回路を制御する制御回路をさらに備える。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the power consumption and generation in the power load are selectively controlled, and the high-frequency power circuit and the power supply corresponding to the consumption and generation are controlled. A control circuit for controlling the regenerative reverse circuit is further provided.
 請求項6に係る発明は、請求項1において、前記受電回路および前記回生逆送回路は、
 前記可動部に設けられ、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり、前記非接触受電用素子が受け取った高周波電力を直流電力に変換可能で、かつ前記電力負荷が発生した回生電力を高周波に変換して前記非接触受電用素子に給電可能であるブリッジ回路と、前記ブリッジ回路と前記電力負荷との間の給電方向を切り替える受電回生選択スイッチとを共有する。
The invention according to claim 6 is the invention according to claim 1, wherein the power receiving circuit and the regenerative reverse circuit are
The movable part is provided with four switching elements and a flywheel diode connected in parallel to each of the switching elements, the high frequency power received by the non-contact power receiving element can be converted into DC power, and the power Sharing a regenerative power generated by a load into a high frequency and supplying power to the non-contact power receiving element and a power receiving regenerative selection switch for switching a power feeding direction between the bridge circuit and the power load .
 請求項7に係る発明は、請求項1~6のいずれか一項において、前記非接触給電用素子および前記非接触受電用素子は、それぞれ電極板である。 According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the contactless power feeding element and the contactless power receiving element are each an electrode plate.
 請求項8に係る発明は、請求項1~7のいずれか一項において、前記可動部は、基板に部品を実装する部品実装機に装備され、かつ部品実装動作を行う実装ヘッドをさらに備え、前記電力負荷は、前記可動部を駆動するリニアモータまたはボールねじ機構用モータである。 The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the movable part further includes a mounting head that is mounted on a component mounter that mounts a component on a substrate and that performs a component mounting operation. The power load is a linear motor or a ball screw mechanism motor that drives the movable part.
 請求項1に係る非接触給電装置の発明では、電力負荷が発生した回生電力を回生逆送回路により非接触受電用素子から非接触給電用素子を経由して固定部まで非接触で逆送して固定部側の蓄電素子に蓄電し、蓄電電力を高周波電源回路よりも優先して使用する。したがって、回生電力を熱損失として浪費することなく蓄電し、自然放電してしまう以前に有効利用できる。さらに、特許文献1および2に例示される従来技術と異なり、蓄電素子が固定部側に設けられるので、可動部の重量や大きさが従来技術よりも削減される。また、電力回生を行わない構成と比較して、可動部の重量や大きさの増加が抑制される。 In the invention of the non-contact power feeding device according to claim 1, the regenerative power generated by the power load is fed back in a non-contact manner from the non-contact power receiving element to the fixed part via the non-contact power feeding element by the regenerative reverse feed circuit. The power is stored in the power storage element on the fixed portion side, and the stored power is used in preference to the high frequency power supply circuit. Therefore, the regenerative power can be stored without being wasted as heat loss, and can be effectively used before spontaneous discharge. Furthermore, unlike the prior arts exemplified in Patent Documents 1 and 2, since the power storage element is provided on the fixed part side, the weight and size of the movable part are reduced as compared with the prior art. In addition, an increase in the weight and size of the movable part is suppressed as compared with a configuration in which power regeneration is not performed.
 請求項2に係る発明では、回生逆送回路は、受電回路と並列に設けられた回生高周波回路ならびに回生切替えスイッチを含んで構成される。したがって、回生電力を逆送するときに、高周波を用いた非接触給電を行って回生逆送効率を常時の給電効率と同程度に高めることができ、回生電力を効率的に蓄電できる。 In the invention according to claim 2, the regenerative reverse circuit includes a regenerative high frequency circuit and a regenerative changeover switch provided in parallel with the power receiving circuit. Therefore, when the regenerative power is reversely fed, non-contact power feeding using a high frequency can be performed to increase the regenerative reverse feeding efficiency to the same level as the normal power feeding efficiency, and the regenerative power can be efficiently stored.
 請求項3に係る発明では、高周波電源回路のフライホイールダイオードを回生逆送回路に利用してチャージコンデンサを蓄電できる。したがって、回生電力を変成する専用の回生逆送回路が固定部側で不要になって回路構成を簡素化でき、回生電力の有効利用に必要となるコストの増加分を抑制できる。 In the invention according to claim 3, the charge capacitor can be stored by using the flywheel diode of the high frequency power supply circuit in the regenerative reverse circuit. Accordingly, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the fixed part side, the circuit configuration can be simplified, and an increase in cost required for effective use of regenerative power can be suppressed.
 請求項4に係る発明では、高周波電源回路のフライホイールダイオードを回生逆送回路に利用して二次電池を蓄電できる。したがって、回生電力を変成する専用の回生逆送回路が固定部側で不要になって回路構成を簡素化でき、加えて、蓄電素子が二次電池で兼用されるので、回生電力の有効利用に必要となるコストの増加分を顕著に抑制できる。 In the invention according to claim 4, the secondary battery can be stored by using the flywheel diode of the high frequency power supply circuit in the regenerative reverse circuit. Therefore, a dedicated regenerative reverse circuit that transforms the regenerative power is not required on the fixed part side, and the circuit configuration can be simplified. In addition, since the storage element is also used as a secondary battery, the regenerative power can be used effectively. The required increase in cost can be remarkably suppressed.
 請求項5に係る発明では、制御回路は、電力負荷における電力の消費および発生を選択的に制御し、消費および発生に対応して高周波電源回路および回生逆送回路を制御する。したがって、電力負荷の動作状態に対応して電力の移送方向を高精度に制御でき、電力負荷の円滑な動作と、給電効率および回生逆送効率の高効率化とを実現できる。 In the invention according to claim 5, the control circuit selectively controls power consumption and generation in the power load, and controls the high frequency power supply circuit and the regenerative reverse circuit in response to the consumption and generation. Therefore, it is possible to control the power transfer direction with high accuracy in accordance with the operation state of the power load, and to realize smooth operation of the power load and high efficiency of power supply efficiency and regenerative reverse transmission efficiency.
 請求項6に係る発明では、受電回路および回生逆送回路は、可動部内でブリッジ回路と受電回生選択スイッチとを共有する。したがって、回生電力を変成する専用の回生逆送回路が可動部側で不要になって回路構成を簡素化でき、回生電力の有効利用に必要となるコストの増加分を抑制できる。 In the invention according to claim 6, the power reception circuit and the regenerative reverse transmission circuit share the bridge circuit and the power reception regeneration selection switch in the movable part. Therefore, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the movable part side, the circuit configuration can be simplified, and an increase in cost necessary for effective use of regenerative power can be suppressed.
 請求項7に係る発明では、非接触給電用素子および非接触受電用素子はそれぞれ電極板とされており、回生電力を静電結合方式で可動部から固定部に逆送できる。したがって、直列共振回路を利用するなどの高効率給電の技術を組み合わせて適用でき、電力回生の高効率化を実現できる。 In the invention according to claim 7, the contactless power feeding element and the contactless power receiving element are each electrode plates, and regenerative power can be sent back from the movable part to the fixed part by an electrostatic coupling method. Therefore, it is possible to apply a combination of high-efficiency power feeding techniques such as using a series resonant circuit, and to realize high efficiency of power regeneration.
 請求項8に係る発明では、可動部は部品実装機に装備され、かつ部品実装動作を行う実装ヘッドをさらに備える。本発明の非接触給電装置は、部品実装機に装備することができ、可動部を駆動するリニアモータまたはボールねじ機構用モータの回生電力を有効利用できる。 In the invention according to claim 8, the movable part is further provided with a mounting head which is mounted on the component mounting machine and performs a component mounting operation. The non-contact power feeding device of the present invention can be installed in a component mounting machine, and can effectively use the regenerative power of a linear motor or a ball screw mechanism motor that drives a movable part.
本発明の第1実施形態の非接触給電装置を適用できる部品実装機の全体構成を示した斜視図である。It is the perspective view which showed the whole structure of the component mounting machine which can apply the non-contact electric power feeder of 1st Embodiment of this invention. 第1実施形態の非接触給電装置を模式的に説明し、給電動作を説明する回路図である。FIG. 3 is a circuit diagram schematically illustrating the non-contact power feeding device of the first embodiment and illustrating a power feeding operation. 第1実施形態で電力負荷が回生電力を発生したときの逆送動作を説明する図である。It is a figure explaining reverse transmission operation when electric power load generates regenerative electric power in a 1st embodiment. 第2実施形態の非接触給電装置を模式的に説明する回路図である。It is a circuit diagram explaining a non-contact electric supply device of a 2nd embodiment typically. 第3実施形態の非接触給電装置を模式的に説明する回路図である。It is a circuit diagram explaining typically the non-contact electric supply device of a 3rd embodiment. 第4実施形態の非接触給電装置を模式的に説明する回路図である。It is a circuit diagram explaining the non-contact electric power supply of 4th Embodiment typically. 従来構成の非接触給電装置を模式的に説明する回路図である。It is a circuit diagram explaining the non-contact electric power feeder of conventional structure typically.
 まず、本発明の非接触給電装置を適用できる部品実装機10について、図1を参考にして説明する。図1は、本発明の第1実施形態の非接触給電装置1を適用できる部品実装機10の全体構成を示した斜視図である。部品実装機10は、基板に多数の部品を実装する装置であり、2セットの同一構造の部品実装ユニットが概ね左右対称に配置されて構成されている。ここでは、図1の右手前側のカバーを取り外した状態の部品実装ユニットを例にして説明する。なお、図中の左奥側から右手前側に向かう部品実装機10の幅方向をX軸方向とし、部品実装機10の長手方向をY軸方向とする。 First, a component mounter 10 to which the non-contact power feeding device of the present invention can be applied will be described with reference to FIG. FIG. 1 is a perspective view showing an overall configuration of a component mounting machine 10 to which the non-contact power feeding device 1 according to the first embodiment of the present invention can be applied. The component mounter 10 is a device that mounts a large number of components on a board, and is configured by two sets of component mounting units having the same structure arranged substantially symmetrically. Here, the component mounting unit in a state where the right front cover of FIG. 1 is removed will be described as an example. In the drawing, the width direction of the component mounter 10 from the left back side to the right front side in the figure is the X-axis direction, and the longitudinal direction of the component mounter 10 is the Y-axis direction.
 部品実装機10は、基板搬送装置110、部品供給装置120、2個の部品移載装置130、140などが機台190に組み付けられて構成されている。基板搬送装置110は、部品実装機10の長手方向の中央付近をX軸方向に横断するように配設されている。基板搬送装置110は、図略の搬送コンベアを有しており、基板をX軸方向に搬送する。また、基板搬送装置110は、図略のクランプ装置を有しており、基板を所定の実装作業位置に固定および保持する。部品供給装置120は、部品実装機10の長手方向の前部(図1の左前側)に設けられている。部品供給装置120は、複数のカセット式フィーダ121を有し、各フィーダ121にセットされたキャリアテープから2個の部品移載装置130、140に連続的に部品を供給するようになっている。 The component mounter 10 is configured by assembling a substrate transport device 110, a component supply device 120, two component transfer devices 130, 140, and the like on a machine base 190. The board transfer device 110 is disposed so as to cross the vicinity of the center in the longitudinal direction of the component mounting machine 10 in the X-axis direction. The substrate transport device 110 has a transport conveyor (not shown) and transports the substrate in the X-axis direction. Moreover, the board | substrate conveyance apparatus 110 has an unillustrated clamp apparatus, and fixes and hold | maintains a board | substrate in a predetermined mounting operation position. The component supply device 120 is provided at the front portion in the longitudinal direction of the component mounter 10 (left front side in FIG. 1). The component supply device 120 includes a plurality of cassette-type feeders 121, and supplies the components continuously from the carrier tape set in each feeder 121 to the two component transfer devices 130 and 140.
 2個の部品移載装置130、140は、X軸方向およびY軸方向に移動可能ないわゆるXYロボットタイプの装置である。2個の部品移載装置130、140は、部品実装機10の長手方向の前側および後側に、相互に対向するように配設されている。各部品移載装置130、140は、Y軸方向の移動のためのリニアモータ装置150を有している。 The two component transfer devices 130 and 140 are so-called XY robot type devices that can move in the X-axis direction and the Y-axis direction. The two component transfer apparatuses 130 and 140 are disposed on the front side and the rear side in the longitudinal direction of the component mounter 10 so as to face each other. Each component transfer device 130, 140 has a linear motor device 150 for movement in the Y-axis direction.
 リニアモータ装置150は、2個の部品移載装置130、140に共通な軌道部材151および補助レール155と、2個の部品移載装置130、140ごとの可動部3で構成されている。軌道部材151は、可動部3を挟んで両側に平行配置され、移動方向となるY軸方向に延在している。軌道部材151の向かい合う内側側面には、Y軸方向に沿って複数の磁石152が列設されている。可動部3は、軌道部材151に移動可能に装架されている。 The linear motor device 150 includes a track member 151 and an auxiliary rail 155 common to the two component transfer devices 130 and 140, and a movable portion 3 for each of the two component transfer devices 130 and 140. The track member 151 is arranged in parallel on both sides of the movable portion 3 and extends in the Y-axis direction that is the moving direction. A plurality of magnets 152 are arranged in a row along the Y-axis direction on the inner side surfaces of the race member 151 facing each other. The movable part 3 is movably mounted on the track member 151.
 可動部3は、可動本体部160、X軸レール161、および実装ヘッド170などで構成されている。可動本体部160は、Y軸方向に延在しており、その両側面には軌道部材151の磁石152に対向して推進力を発生する電機子が配設されている。X軸レール161は、可動本体部160からX軸方向に延在している。X軸レール161は、一端162が可動本体部160に結合され、他端163が補助レール155に移動可能に装架されており、可動本体部160と一体的にY軸方向に移動するようになっている。 The movable part 3 includes a movable main body part 160, an X-axis rail 161, a mounting head 170, and the like. The movable main body 160 extends in the Y-axis direction, and armatures that generate a propulsive force are disposed on opposite sides of the movable main body 160 so as to face the magnets 152 of the track member 151. The X-axis rail 161 extends from the movable main body 160 in the X-axis direction. One end 162 of the X-axis rail 161 is coupled to the movable main body 160 and the other end 163 is movably mounted on the auxiliary rail 155 so that the X-axis rail 161 moves integrally with the movable main body 160 in the Y-axis direction. It has become.
 部品実装ヘッド170は、X軸レール161に装架され、X軸方向に移動するようになっている。部品実装ヘッド170の下端には図略の吸着ノズルが設けられている。吸着ノズルは、負圧を利用して部品供給装置120から部品を吸着採取し、実装作業位置の基板へ実装する。X軸レール161上に設けられた図略のボールねじ送り機構は、ボールねじを回転駆動するX軸モータを有しており、部品実装ヘッド170をX軸方向に駆動する。  The component mounting head 170 is mounted on the X-axis rail 161 and moves in the X-axis direction. A suction nozzle (not shown) is provided at the lower end of the component mounting head 170. The suction nozzle sucks and collects components from the component supply device 120 using negative pressure and mounts them on the substrate at the mounting work position. A ball screw feed mechanism (not shown) provided on the X-axis rail 161 has an X-axis motor that rotationally drives the ball screw, and drives the component mounting head 170 in the X-axis direction. *
 部品実装機10は、他に、オペレータと情報を交換するための表示設定装置180および、基板や部品を撮像する図略のカメラなどを備えている。 The component mounter 10 further includes a display setting device 180 for exchanging information with an operator, a camera (not shown) that images a board and components, and the like.
 部品実装機10において、リニアモータ装置150の電機子およびボールねじ送り機構のX軸モータは、常時は電力を消費して部品実装ヘッド170を移動させる駆動源として作用する。一方、部品実装ヘッド170が減速および停止されるとき、電機子およびX軸モータには起電力が誘起され、回生電力を発生する発電機として作用する。したがって、リニアモータ装置150の電機子およびボールねじ送り機構のX軸モータは、電力の消費および発生を選択的に行う本発明の電力負荷Lに相当する。 In the component mounter 10, the armature of the linear motor device 150 and the X-axis motor of the ball screw feed mechanism always act as a drive source for consuming the power and moving the component mounting head 170. On the other hand, when the component mounting head 170 is decelerated and stopped, an electromotive force is induced in the armature and the X-axis motor to act as a generator that generates regenerative power. Therefore, the armature of the linear motor device 150 and the X-axis motor of the ball screw feed mechanism correspond to the power load L of the present invention that selectively consumes and generates power.

 次に、本発明の第1実施形態の非接触給電装置1について、図2および図3を参考にして説明する。図2は、第1実施形態の非接触給電装置1を模式的に説明し、給電動作を説明する回路図である。図2の左側に固定部2の各部材が示され、右側に可動部3の各部材が示されている。また、破線の矢印によって給電経路が示され、白抜き矢印RSによって非接触給電の方向が示され、一点鎖線の矢印によって制御の流れが示されている。
,
Next, the non-contact power feeding device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3. FIG. 2 is a circuit diagram schematically illustrating the contactless power supply device 1 of the first embodiment and illustrating a power supply operation. Each member of the fixed portion 2 is shown on the left side of FIG. 2, and each member of the movable portion 3 is shown on the right side. Further, a power feeding path is indicated by a broken arrow, a non-contact power feeding direction is indicated by a white arrow RS, and a control flow is indicated by a one-dot chain line arrow.
 非接触給電装置1は、常時は固定部2から可動部3上の電力負荷Lに非接触給電を行い、電力負荷Lが回生電力を発生したときには可動部3から固定部2に回生電力を逆送して固定部2側のチャージコンデンサ52に蓄電する。非接触給電装置1は、固定部2側に給電用電極板41、42、チャージコンデンサ52を含む高周波電源回路5などを備え、可動部3側に受電用電極板61、62、回生切替えスイッチ75を含む受電回路7、および回生高周波回路8などを備えて構成されている。 The non-contact power feeding apparatus 1 normally performs non-contact power feeding from the fixed unit 2 to the power load L on the movable unit 3 and reverses the regenerative power from the movable unit 3 to the fixed unit 2 when the power load L generates regenerative power. And stored in the charge capacitor 52 on the fixed portion 2 side. The non-contact power supply device 1 includes power supply electrode plates 41 and 42 on the fixed portion 2 side, a high-frequency power supply circuit 5 including a charge capacitor 52, and the like, and power receiving electrode plates 61 and 62 and a regenerative changeover switch 75 on the movable portion 3 side. The power receiving circuit 7 includes the regenerative high-frequency circuit 8 and the like.
 2個の給電用電極板41、42は、本発明の非接触給電用素子に相当し、金属材料で薄板の細長い帯状に形成されている。2個の給電用電極板41、42は、帯状の長辺が可動部3の移動方向に延在するように固定部2に水平に設けられ、相互に離隔しつつ平行している。給電用電極板41、42の短辺の長さは、送給すべき給電電力の大きさに応じて適宜設計されている。 The two power supply electrode plates 41 and 42 correspond to the non-contact power supply element of the present invention, and are formed of a thin strip of metal material. The two electrode plates for power supply 41 and 42 are horizontally provided on the fixed portion 2 so that the long side of the belt extends in the moving direction of the movable portion 3, and are parallel to each other while being separated from each other. The lengths of the short sides of the power supply electrode plates 41 and 42 are appropriately designed according to the magnitude of the power supply power to be supplied.
 高周波電源回路5は、固定部2に配設されており、直流電源51、チャージコンデンサ52、およびブリッジ回路53で構成されている。直流電源51は、商用電源から直流電源電圧を生成し、正側端子5Pおよび負側端子5Nからブリッジ回路53に給電する。チャージコンデンサ52は大容量のコンデンサであり、必要に応じて複数のコンデンサを並列接続して用いることができる。チャージコンデンサ52は、後述する回生電力を蓄電するのに十分な静電容量を有している。チャージコンデンサ52は、その正側端子52Pが直流電源51の正側端子51Pに電気接続され、その負側端子52Pが直流電源51の負側端子51Nに電気接続されている。したがって、チャージコンデンサ52は、常時は直流電源電圧で充電されている。 The high-frequency power supply circuit 5 is disposed in the fixed portion 2 and includes a DC power supply 51, a charge capacitor 52, and a bridge circuit 53. The DC power supply 51 generates a DC power supply voltage from a commercial power supply and supplies power to the bridge circuit 53 from the positive terminal 5P and the negative terminal 5N. The charge capacitor 52 is a large-capacity capacitor, and a plurality of capacitors can be connected in parallel as needed. The charge capacitor 52 has a sufficient capacitance to store regenerative power described later. The charge capacitor 52 has its positive terminal 52P electrically connected to the positive terminal 51P of the DC power supply 51 and its negative terminal 52P electrically connected to the negative terminal 51N of the DC power supply 51. Therefore, the charge capacitor 52 is normally charged with a DC power supply voltage.
 ブリッジ回路53は、4個のスイッチング素子541~544および各スイッチング素子541~544に並列接続されたフライホイールダイオード551~554で構成されている。図示されるように、ブリッジ回路53は、その正側入力端子56Pが直流電源51の正側端子51Pに電気接続され、その負側入力端子56Nが直流電源51の負側端子51Nに電気接続されている。 The bridge circuit 53 includes four switching elements 541 to 544 and flywheel diodes 551 to 554 connected in parallel to the switching elements 541 to 544. As shown in the figure, the bridge circuit 53 has its positive input terminal 56P electrically connected to the positive terminal 51P of the DC power supply 51, and its negative input terminal 56N electrically connected to the negative terminal 51N of the DC power supply 51. ing.
 ブリッジ回路53の正側入力端子56Pと負側入力端子56Nとの間には、第1スイッチング素子541および第2スイッチング素子542の直列接続と、第3スイッチング素子543および第4スイッチング素子544の直列接続とが、並列に電気接続されている。第1スイッチング素子541と第2スイッチング素子542との間の一側出力端子561は一方の給電用電極板41に電気接続され、第3スイッチング素子543と第4スイッチング素子544との間の他側出力端子562は他方の給電用電極板42に電気接続されている。各フライホイールダイオード551~554は、各スイッチング素子541~544を開路した瞬間に発生しがちな過電圧を抑制するものである。 Between the positive input terminal 56P and the negative input terminal 56N of the bridge circuit 53, the first switching element 541 and the second switching element 542 are connected in series, and the third switching element 543 and the fourth switching element 544 are connected in series. The connections are electrically connected in parallel. One side output terminal 561 between the first switching element 541 and the second switching element 542 is electrically connected to one power supply electrode plate 41, and the other side between the third switching element 543 and the fourth switching element 544. The output terminal 562 is electrically connected to the other power feeding electrode plate 42. The flywheel diodes 551 to 554 suppress overvoltage that tends to occur at the moment when the switching elements 541 to 544 are opened.
 各スイッチング素子541~544は、固定部2に設けられた固定部制御回路21によって開閉制御される。具体的に、或る時刻には、第1および第4スイッチング素子541、544が閉路され、第2および第3スイッチング素子542、543が開路される。これにより、一方の給電用電極板41が正側端子5Pに短絡され、他方の給電用電極板42が負側端子5Nに短絡される。また、次の時刻には、第1および第4スイッチング素子541、544が開路され、第2および第3スイッチング素子542、543が閉路される。これにより、一方の給電用電極板41が負側端子5Nに短絡され、他方の給電用電極板42が正側端子5Pに短絡される。このような、スイッチング制御が多頻度で行われて、2個の給電用電極板41、42の間に高周波電力が送給される。 The switching elements 541 to 544 are controlled to be opened and closed by the fixed part control circuit 21 provided in the fixed part 2. Specifically, at a certain time, the first and fourth switching elements 541 and 544 are closed, and the second and third switching elements 542 and 543 are opened. As a result, one power supply electrode plate 41 is short-circuited to the positive terminal 5P, and the other power supply electrode plate 42 is short-circuited to the negative terminal 5N. At the next time, the first and fourth switching elements 541 and 544 are opened, and the second and third switching elements 542 and 543 are closed. As a result, one power feeding electrode plate 41 is short-circuited to the negative terminal 5N, and the other power feeding electrode plate 42 is short-circuited to the positive terminal 5P. Such switching control is frequently performed, and high-frequency power is supplied between the two power supply electrode plates 41 and 42.
 一方、2個の受電用電極板61、62は、本発明の非接触受電用素子に相当し、金属材料で薄板の細長い帯状に形成されている。2個の受電用電極板61、62は、可動部3に設けられ、それぞれが固定部2側の給電用電極板41、42に離隔対向している。したがって、2組の対向する電極板(41と61、42と62)により平行板状の2個のコンデンサが構成され、図2に白抜き矢印RSで示されるように、静電結合方式で非接触給電を行うことができる。一方の受電用電極板61は、受電回路7の全波整流回路71の一側入力端子731に電気接続され、他方の受電用電極板62は、他側入力端子732に電気接続されている。 On the other hand, the two power receiving electrode plates 61 and 62 correspond to the non-contact power receiving element of the present invention, and are formed in a thin and long strip shape of a metal material. The two power receiving electrode plates 61 and 62 are provided on the movable portion 3, and are respectively opposed to the power feeding electrode plates 41 and 42 on the fixed portion 2 side. Accordingly, two sets of parallel plate-shaped capacitors are constituted by two sets of opposing electrode plates (41 and 61, 42 and 62), and as shown by a white arrow RS in FIG. Contact power feeding can be performed. One power receiving electrode plate 61 is electrically connected to one side input terminal 731 of the full-wave rectifier circuit 71 of the power receiving circuit 7, and the other power receiving electrode plate 62 is electrically connected to the other side input terminal 732.
 受電回路7は、可動部3に配設されており、全波整流回路71、回生切替えスイッチ75および平滑コイルで77構成されている。受電回路7は、受電用電極板61、62が受け取った高周波電力を整流変換して可動部3上の電力負荷Lに給電するものである。本第1実施形態において、電力負荷Lは直流負荷であるので、高周波電力の変換に全波整流回路71を用いる。これに限定されず、電力負荷Lが交流負荷であってもよく、その場合には全波整流回路71に代えて例えばインバータ回路を用いる。 The power receiving circuit 7 is disposed in the movable part 3, and is composed of a full-wave rectifier circuit 71, a regeneration changeover switch 75, and a smoothing coil 77. The power receiving circuit 7 rectifies and converts the high frequency power received by the power receiving electrode plates 61 and 62 and supplies power to the power load L on the movable portion 3. In the first embodiment, since the power load L is a DC load, the full-wave rectifier circuit 71 is used for the conversion of high-frequency power. However, the power load L may be an AC load. In this case, for example, an inverter circuit is used instead of the full-wave rectifier circuit 71.
 全波整流回路71は、4個のダイオード素子721~724がブリッジ接続されて構成されている。詳述すると、図示されるように、第1ダイオード素子721および第2ダイオード素子722の直列接続と、第3ダイオード素子723および第4ダイオード素子724の直列接続とが、正側出力端子74Pと負側出力端子74Nとの間に並列に電気接続されている。第1ダイオード素子721と第2ダイオード素子722との間の一側入力端子731は一方の受電用電極板61に電気接続され、第3ダイオード素子723と第4ダイオード素子724との間の他側入力端子732は他方の受電用電極板62に電気接続されている。また、正側出力端子74Pは、回生切替えスイッチ75の給電側接点761に電気接続され、負側出力端子74Nは、電力負荷Lの負側端子LNに電気接続されている。 The full-wave rectifier circuit 71 is configured by bridge-connecting four diode elements 721 to 724. More specifically, as shown in the figure, the series connection of the first diode element 721 and the second diode element 722 and the series connection of the third diode element 723 and the fourth diode element 724 are negatively connected to the positive output terminal 74P. A side output terminal 74N is electrically connected in parallel. One side input terminal 731 between the first diode element 721 and the second diode element 722 is electrically connected to one power receiving electrode plate 61, and the other side between the third diode element 723 and the fourth diode element 724. The input terminal 732 is electrically connected to the other power receiving electrode plate 62. The positive output terminal 74P is electrically connected to the power supply side contact 761 of the regeneration changeover switch 75, and the negative output terminal 74N is electrically connected to the negative terminal LN of the power load L.
 回生切替えスイッチ75は、全波整流回路71および回生高周波回路8の一方を選択切り替えするスイッチである。回生切替えスイッチ75は、給電側接点761および回生側接点762の一方を共通接点763に導通させるものである。給電側接点761は、全波整流回路71の正側出力端子74Pに電気接続され、回生側接点762は、回生高周波回路8の逆送ダイオード81のアノード82Aに電気接続されている。また、共通接点763は、平滑コイル77の一側端子781に電気接続されている。 The regenerative changeover switch 75 is a switch for selectively changing one of the full-wave rectifier circuit 71 and the regenerative high-frequency circuit 8. The regenerative changeover switch 75 conducts one of the power supply side contact 761 and the regenerative side contact 762 to the common contact 763. The power supply side contact 761 is electrically connected to the positive output terminal 74P of the full wave rectifier circuit 71, and the regeneration side contact 762 is electrically connected to the anode 82A of the reverse feed diode 81 of the regenerative high frequency circuit 8. The common contact 763 is electrically connected to one side terminal 781 of the smoothing coil 77.
 可動部3に設けられた可動部制御回路31は、回生切替えスイッチ75の切り替え動作を制御し、電力負荷Lに給電するときには、給電側接点761を共通接点763に導通させる。また、可動部制御回路31は、電力負荷Lが発生した回生電力を逆送するときには、回生切替えスイッチ75の回生側接点762を共通接点763に導通させる。 The movable part control circuit 31 provided in the movable part 3 controls the switching operation of the regenerative changeover switch 75 and makes the power supply side contact 761 conductive to the common contact 763 when supplying power to the power load L. Further, when the regenerative power generated by the power load L is sent back, the movable part control circuit 31 causes the regenerative contact 762 of the regenerative changeover switch 75 to conduct to the common contact 763.
 平滑コイル77は、全波整流回路71から出力された直流電力の脈流分を平滑するものである。平滑コイル77の一側端子782は回生切替えスイッチ75の共通接点76に電気接続され、他側端子782は電力負荷の正側端子LPに電気接続されている。平滑コイル77は平滑回路の簡易な一例であって、周知の他の平滑回路を用いてもよい。 The smoothing coil 77 smoothes the pulsating portion of the DC power output from the full-wave rectifier circuit 71. One terminal 782 of the smoothing coil 77 is electrically connected to the common contact 76 of the regeneration changeover switch 75, and the other terminal 782 is electrically connected to the positive terminal LP of the power load. The smoothing coil 77 is a simple example of a smoothing circuit, and another known smoothing circuit may be used.
 回生高周波回路8は、可動部3上に全波整流回路71と並列に設けられている。回生高周波回路8は、電力負荷Lが発生した回生電力を高周波に変換して非接触受電用素子61、62に給電するものである。回生高周波回路8は、逆送用ダイオード81と、4個のスイッチング素子851~854からなる逆送ブリッジ回路83とにより構成されている。 The regenerative high-frequency circuit 8 is provided in parallel with the full-wave rectifier circuit 71 on the movable part 3. The regenerative high-frequency circuit 8 converts the regenerative power generated by the power load L into a high frequency and supplies power to the non-contact power receiving elements 61 and 62. The regenerative high-frequency circuit 8 includes a reverse-feeding diode 81 and a reverse-feeding bridge circuit 83 including four switching elements 851 to 854.
 逆送用ダイオード81のアノード82Aは回生切替えスイッチ75の回生側接点762に電気接続され、カソード82Kは逆送ブリッジ回路83の正側入力端子84Pに電気接続されている。逆送用ダイオード81は、電力負荷Lから非接触受電用素子61、62に向かう方向(逆送方向)の通電を許容し、その反対方向の通電を阻止する。 The anode 82A of the reverse feed diode 81 is electrically connected to the regeneration side contact 762 of the regeneration changeover switch 75, and the cathode 82K is electrically connected to the positive side input terminal 84P of the reverse feed bridge circuit 83. The reverse feed diode 81 allows energization in the direction (reverse feed direction) from the power load L toward the non-contact power receiving elements 61 and 62 and prevents energization in the opposite direction.
 逆送ブリッジ回路83の正側入力端子84Pは、逆送用ダイオード81に電気接続され、負側入力端子84Nは、電力負荷Lの負側端子LNに電気接続されている。図示されるように、正側入力端子84Pと負側入力端子84Nとの間には、第1スイッチング素子851および第2スイッチング素子852の直列接続と、第3スイッチング素子853および第4スイッチング素子854の直列接続とが、並列に電気接続されている。第1スイッチング素子851と第2スイッチング素子852との間の一側出力端子861は一方の受電用電極板61に電気接続され、第3スイッチング素子853と第4スイッチング素子854との間の他側出力端子862は他方の受電用電極板62に電気接続されている。 The positive input terminal 84P of the reverse bridge circuit 83 is electrically connected to the reverse diode 81, and the negative input terminal 84N is electrically connected to the negative terminal LN of the power load L. As illustrated, between the positive input terminal 84P and the negative input terminal 84N, a first switching element 851 and a second switching element 852 are connected in series, and a third switching element 853 and a fourth switching element 854 are connected. Are connected in parallel with each other. One side output terminal 861 between first switching element 851 and second switching element 852 is electrically connected to one power receiving electrode plate 61, and the other side between third switching element 853 and fourth switching element 854. The output terminal 862 is electrically connected to the other power receiving electrode plate 62.
 各スイッチング素子851~854は、可動部制御回路31によって開閉制御される。逆送ブリッジ回路83の具体的な制御方法は固定部2側のブリッジ回路53に類似するので説明は省略するが、スイッチング制御が多頻度で行われて、2個の受電用電極板61、62の間に高周波電力が逆送される。 The switching elements 851 to 854 are controlled to be opened and closed by the movable part control circuit 31. A specific control method of the reverse feed bridge circuit 83 is similar to the bridge circuit 53 on the fixed portion 2 side, and thus the description thereof will be omitted. However, the switching control is frequently performed and the two power receiving electrode plates 61 and 62 are used. During this period, high-frequency power is transmitted backward.
 固定部2側の固定部制御回路21および可動部3側の可動部制御回路31は、マイコンを内蔵しソフトウェアで動作するコンピュータ制御回路で構成することができる。固定部制御回路21には非接触送信部22が付属されており、可動部制御回路31には非接触受信部32が付属されている。非接触送信部22と非接触受信部32との間の通信方式には、光無線方式または電波無線方式を用いることができる。 The fixed part control circuit 21 on the fixed part 2 side and the movable part control circuit 31 on the movable part 3 side can be configured by a computer control circuit that incorporates a microcomputer and operates by software. A non-contact transmission unit 22 is attached to the fixed unit control circuit 21, and a non-contact reception unit 32 is attached to the movable unit control circuit 31. As a communication method between the contactless transmission unit 22 and the contactless reception unit 32, an optical wireless method or a radio wave wireless method can be used.
 固定部制御回路21および可動部制御回路31は協働し、電力負荷Lの駆動による実装ヘッド170の位置制御に関しては、固定部制御回路21がイニシアティブを持って執り行うように構成されている。したがって、固定部制御回路21は、電力負荷Lへの給電と電力負荷Lからの回生電力の逆送とを切り替え制御する切替え制御信号Ctl1を可動部制御回路31へ非接触で送信する。この切替え制御信号Ctl1に基づいて、可動部制御回路31は電力負荷Lに動作指令Ctl2を指令する。 The fixed part control circuit 21 and the movable part control circuit 31 cooperate with each other, and the fixed part control circuit 21 is configured to perform the position control of the mounting head 170 by driving the power load L with an initiative. Therefore, the fixed part control circuit 21 transmits a switching control signal Ctl1 for switching control between power supply to the power load L and reverse transmission of regenerative power from the power load L to the movable part control circuit 31 in a non-contact manner. Based on this switching control signal Ctl1, the movable part control circuit 31 commands the power load L to receive an operation command Ctl2.
 なお、固定部制御回路21と可動部制御回路31との間は、必ずしも非接触通信である必要は無く、有線通信を用いることもできる。また、電力負荷Lの動作状況や、給電電力および回生電力の大きさなどの情報を、可動部制御回路31から固定部制御回路21へと送信する双方向通信を採用してもよい。 In addition, between the fixed part control circuit 21 and the movable part control circuit 31 does not necessarily need to be non-contact communication, and wired communication can also be used. Moreover, you may employ | adopt the bidirectional | two-way communication which transmits information, such as the operating condition of the electric power load L, the magnitude | size of electric power feeding, and regenerative power, from the movable part control circuit 31 to the fixed part control circuit 21.
 次に、上述のように構成された第1実施形態の非接触給電装置1の動作について説明する。まず、常時の給電動作について説明し、次に、電力負荷Lが回生電力を発生したときの逆送動作について説明する。 Next, the operation of the non-contact power feeding device 1 according to the first embodiment configured as described above will be described. First, the normal power supply operation will be described, and then the reverse operation when the power load L generates regenerative power will be described.
 常時の給電動作では、図2の破線の矢印F1~F4および白抜き矢印RSに示されるように、直流電源51から電力負荷Lまで電力を送給する。まず、固定部制御回路21は、非接触通信を介して可動部制御回路31へと、電力負荷Lへ給電する旨の切替え制御信号Ctl1を送信する。可動部制御回路31は、電力負荷Lに電力を送給する旨の動作指令Ctl2を指令する。また、可動部制御回路31は、回生切替えスイッチ75の給電側接点761を共通接点763に導通させ、さらに、逆送ブリッジ回路83の4個のスイッチング素子851~854を全て開路状態に制御する。 In the normal power feeding operation, power is supplied from the DC power source 51 to the power load L as indicated by broken arrows F1 to F4 and white arrows RS in FIG. First, the fixed part control circuit 21 transmits a switching control signal Ctl1 for supplying power to the power load L to the movable part control circuit 31 via non-contact communication. The movable part control circuit 31 commands an operation command Ctl2 to supply power to the power load L. In addition, the movable part control circuit 31 causes the power supply side contact 761 of the regenerative changeover switch 75 to conduct to the common contact 763, and further controls all the four switching elements 851 to 854 of the reverse feed bridge circuit 83 to the open circuit state.
 一方、固定部制御回路21は、ブリッジ回路53を一般的なフルブリッジ回路に動作制御し、すなわち4個のスイッチング素子541~544をスイッチング制御して高周波電力を発生する。なお、このとき、直流電源51から電力負荷Lまでの全体回路が直列共振するように、高周波電力の周波数を制御して、給電効率を高める。給電時の共振周波数は、電力負荷Lの負荷状況に応じて変化するので、可変に周波数を制御することが好ましい。 On the other hand, the fixed part control circuit 21 controls the operation of the bridge circuit 53 to a general full bridge circuit, that is, performs switching control of the four switching elements 541 to 544 to generate high-frequency power. At this time, the frequency of the high-frequency power is controlled so that the entire circuit from the DC power source 51 to the power load L is in series resonance, thereby increasing the power supply efficiency. Since the resonance frequency at the time of electric power supply changes according to the load condition of the electric power load L, it is preferable to variably control the frequency.
 以上の制御により、図2の矢印F1、F4に示されるように、直流電源51の直流電力がブリッジ回路53で高周波電力に変換されて、2個の給電用電極板41、42に送給される。2個の給電用電極板41、42と2個の受電用電極板61、62とは、前述したように静電結合しており、白抜き矢印RSで示されるように静電結合方式で非接触給電が行われる。受電用電極板61、62が受け取った高周波電力は、矢印F2、F3に示されるように、受電回路7により直流電力に変換され、電力負荷Lに給電される。 With the above control, as indicated by arrows F1 and F4 in FIG. 2, the DC power of the DC power supply 51 is converted into high-frequency power by the bridge circuit 53 and is sent to the two power supply electrode plates 41 and 42. The The two power supply electrode plates 41 and 42 and the two power reception electrode plates 61 and 62 are electrostatically coupled as described above, and are non-electrostatically coupled as indicated by the white arrow RS. Contact power feeding is performed. The high frequency power received by the power receiving electrode plates 61 and 62 is converted into DC power by the power receiving circuit 7 and fed to the power load L as indicated by arrows F2 and F3.
 次に、図3は、第1実施形態で電力負荷Lが回生電力を発生したときの逆送動作を説明する図である。逆送動作では、図3の破線の矢印F5~F8および白抜き矢印RRに示されるように、電力負荷Lからチャージコンデンサ52まで回生電力を逆送する。まず、固定部制御回路21は、ブリッジ回路53の4個のスイッチング素子541~544を全て開路状態に制御する。さらに、固定部制御回路21は、非接触通信を介して可動部制御回路31へと、回生電力を逆送する旨の切替え制御信号Ctl1を送信する。 Next, FIG. 3 is a diagram for explaining a reverse operation when the power load L generates regenerative power in the first embodiment. In the reverse operation, the regenerative power is reversely transmitted from the power load L to the charge capacitor 52 as indicated by broken arrows F5 to F8 and white arrows RR in FIG. First, the fixed part control circuit 21 controls all the four switching elements 541 to 544 of the bridge circuit 53 to the open circuit state. Furthermore, the fixed part control circuit 21 transmits a switching control signal Ctl1 indicating that the regenerative power is sent back to the movable part control circuit 31 via non-contact communication.
 一方、可動部制御回路31は、電力負荷Lに回生電力を逆送する旨の動作指令Ctl2を指令する。また、可動部制御回路31は、回生切替えスイッチ75の回生側接点762を共通接点763に導通させる。さらに、可動部制御回路31は、逆送ブリッジ回路83の4個のスイッチング素子851~854をスイッチング制御しフルブリッジ回路として動作させ、高周波電力を発生する。なお、このとき、電力負荷Lからチャージコンデンサ52までの全体回路が直列共振するように、高周波電力の周波数を可変に制御して回生効率を高める。なお、電力回生時の共振周波数は、電力負荷Lの回生実施状況に応じて変化し、給電時の共振周波数と異なっていてもよい。 On the other hand, the movable part control circuit 31 commands the operation command Ctl2 to reversely send the regenerative power to the power load L. In addition, the movable part control circuit 31 causes the regeneration side contact 762 of the regeneration changeover switch 75 to conduct to the common contact 763. Further, the movable part control circuit 31 controls the four switching elements 851 to 854 of the reverse feed bridge circuit 83 to operate as a full bridge circuit, and generates high frequency power. At this time, the frequency of the high-frequency power is variably controlled so that the entire circuit from the power load L to the charge capacitor 52 is in series resonance, thereby improving the regeneration efficiency. In addition, the resonance frequency at the time of electric power regeneration changes according to the regeneration implementation condition of the electric power load L, and may differ from the resonance frequency at the time of electric power feeding.
 以上の制御により、図3に矢印F5、F8で示されるように、電力負荷Lで発生した回生電力が回生高周波回路8に入力され、高周波電力に変換されて2個の受電用電極板61、62に逆送される。さらに、白抜き矢印RRで示されるように静電結合方式で非接触の電力逆送が行われる。給電用電極板61、62が受け取った高周波の回生電力は、ブリッジ回路53の一側出力端子561および他側出力端子562に入力される。 With the above control, as indicated by arrows F5 and F8 in FIG. 3, the regenerative power generated by the power load L is input to the regenerative high-frequency circuit 8, and is converted into high-frequency power to be two power receiving electrode plates 61, 62 is sent back. Further, non-contact power reverse transmission is performed by the electrostatic coupling method as indicated by the white arrow RR. The high frequency regenerative power received by the power supply electrode plates 61 and 62 is input to the one side output terminal 561 and the other side output terminal 562 of the bridge circuit 53.
 ここで、ブリッジ回路53は、4個のスイッチング素子541~544が開路されているため、4個のフライホイールダイオード551~554からなる全波整流回路として作用する。したがって、常時と逆方向に、ブリッジ回路53の正側入力端子56Pと負側入力端子56Nとの間に逆送直流電力が出力される。逆送直流電力の逆送直流電圧は直流電源51の直流電源電圧よりも高くなり得るので、チャージコンデンサ52には常時よりも多くの電荷がチャージされる。 Here, since the four switching elements 541 to 544 are opened, the bridge circuit 53 acts as a full-wave rectifier circuit including four flywheel diodes 551 to 554. Therefore, reverse DC power is output between the positive side input terminal 56P and the negative side input terminal 56N of the bridge circuit 53 in the direction opposite to the normal direction. Since the reverse DC voltage of the reverse DC power can be higher than the DC power supply voltage of the DC power supply 51, the charge capacitor 52 is charged with more charge than usual.
 これにより、チャージコンデンサ52の正側端子52Pと負側端子52Nとの間の充電電圧が常時の直流電源電圧よりも上昇する。常時よりも多くチャージされた分の電荷は、次に電力負荷Lに給電するときに直流電源51よりも優先して使用される。したがって、優先して使用される分の電荷が電力回生に寄与し、この分だけ非接触給電装置1の総合効率が向上する。 As a result, the charging voltage between the positive terminal 52P and the negative terminal 52N of the charge capacitor 52 rises above the normal DC power supply voltage. The amount of charge that is charged more than usual is used in preference to the DC power source 51 when the power load L is next fed. Therefore, the charge that is preferentially used contributes to the power regeneration, and the total efficiency of the non-contact power feeding device 1 is improved by this amount.
 本第1実施形態において、電力負荷Lからチャージコンデンサ52に回生電力を逆送する回路範囲が回生逆送回路となる。したがって、回生逆送回路は、受電回路7の平滑コイル77および回生切替えスイッチ75、回生高周波回路8、受電用電極板61、62、給電用電極板41、42、ならびにブリッジ回路53の4個のフライホイールダイオード551~554で構成されている。 In the first embodiment, a circuit range in which regenerative power is fed back from the power load L to the charge capacitor 52 is a regenerative reverse circuit. Therefore, the regenerative reverse circuit includes four smoothing coils 77 and a regenerative changeover switch 75 of the power receiving circuit 7, a regenerative high frequency circuit 8, power receiving electrode plates 61 and 62, power feeding electrode plates 41 and 42, and a bridge circuit 53. The flywheel diodes 551 to 554 are configured.
 次に、第1実施形態の非接触給電装置1の効果について、従来構成と比較して説明する。図7は、従来構成の非接触給電装置9を模式的に説明する回路図である。従来構成の非接触給電装置9では、固定部2X側で給電用電極板41、42に高周波電力を送給する高周波電源回路5Xは、チャージコンデンサ52を備えていない、また可動部3X側に回生切替えスイッチ75および回生高周波回路8が無く、受電回路7Xは、全波整流回路71に平滑コイル77が直結されて構成されている。代わりに、電力負荷Lの正側端子LPと負側端子LNとの間に、チャージコンデンサ52Xが電気接続されている。 Next, the effect of the contactless power supply device 1 of the first embodiment will be described in comparison with the conventional configuration. FIG. 7 is a circuit diagram schematically illustrating the conventional contactless power supply device 9. In the conventional contactless power supply device 9, the high frequency power supply circuit 5 </ b> X that supplies high frequency power to the power supply electrode plates 41 and 42 on the fixed portion 2 </ b> X side does not include the charge capacitor 52, and regenerates on the movable portion 3 </ b> X side. Without the changeover switch 75 and the regenerative high-frequency circuit 8, the power receiving circuit 7X is configured by directly connecting a smoothing coil 77 to a full-wave rectifier circuit 71. Instead, the charge capacitor 52X is electrically connected between the positive terminal LP and the negative terminal LN of the power load L.
 チャージコンデンサ52Xは、常時は非接触給電によって或る充電電圧までチャージされている。電力負荷Lが回生電力を発生して回生電圧を発生し、回生電圧が充電電圧を超過すると、矢印F9、F10で示されるように、電力負荷Lからチャージコンデンサ52Xへと直接的に電荷がチャージされる。従来構成および本第1実施形態において、チャージコンデンサ52X、52の配設位置が異なるが、回生時に常時よりも高い電圧でチャージコンデンサ52X、52にチャージする点は同様である。 The charge capacitor 52X is normally charged to a certain charging voltage by non-contact power feeding. When the power load L generates regenerative power to generate a regenerative voltage, and the regenerative voltage exceeds the charging voltage, the charge is directly charged from the power load L to the charge capacitor 52X as indicated by arrows F9 and F10. Is done. In the conventional configuration and the first embodiment, the arrangement positions of the charge capacitors 52X and 52 are different, but the charge capacitors 52X and 52 are charged at a higher voltage than usual during regeneration.
 図7と図2とを比較すれば分かるように、第1実施形態では、可動部3側にチャージコンデンサ52Xが無く、代わりに回生切替えスイッチ75および回生高周波回路8が設けられている。ここで、電力負荷Lの回生電力を有効利用するために、従来構成のチャージコンデンサ52Xは相当の大容量となり、可動部3X全体に対して大きな比率の重量および大きさを占める。そして、従来構成のチャージコンデンサ52Xは、回生切替えスイッチ75および回生高周波回路8を足したよりも重くかつ大きくなる。したがって、第1実施形態の非接触給電装置1の可動部3は、従来構成の非接触給電装置9の可動部3Xよりも小形軽量化できる。 As can be seen from a comparison between FIG. 7 and FIG. 2, in the first embodiment, the charge capacitor 52 </ b> X is not provided on the movable portion 3 side, and a regenerative changeover switch 75 and a regenerative high-frequency circuit 8 are provided instead. Here, in order to effectively use the regenerative power of the power load L, the charge capacitor 52X having a conventional configuration has a considerably large capacity and occupies a large proportion of weight and size with respect to the entire movable portion 3X. The conventional charge capacitor 52X is heavier and larger than the sum of the regenerative changeover switch 75 and the regenerative high frequency circuit 8. Therefore, the movable part 3 of the contactless power supply device 1 of the first embodiment can be made smaller and lighter than the movable part 3X of the contactless power supply device 9 of the conventional configuration.
 第1実施形態の非接触給電装置1によれば、電力負荷Lが発生した回生電力を回生逆送回路により受電用電極板61、62から給電用電極板41、42を経由して固定部2まで非接触で逆送して固定部2側のチャージコンデンサ52に蓄電し、蓄電電力を直流電源51よりも優先して使用する。したがって、回生電力を熱損失として浪費することなく蓄電し、自然放電してしまう以前に有効利用できる。さらに、従来構成の非接触給電装置9と異なり、チャージコンデンサ52が固定部2側に設けられるので、可動部3の重量や大きさが従来構成の可動部3Xよりも削減される。さらに、電力回生を行わない構成と比較して、可動部3の重量や大きさの増加が抑制される。 According to the non-contact power feeding device 1 of the first embodiment, the regenerative power generated by the power load L is received from the power receiving electrode plates 61 and 62 by the regenerative reverse circuit via the power feeding electrode plates 41 and 42 and the fixed portion 2. The non-contact reversely sent and stored in the charge capacitor 52 on the fixed portion 2 side, and the stored power is used in preference to the DC power supply 51. Therefore, the regenerative power can be stored without being wasted as heat loss, and can be effectively used before spontaneous discharge. Further, unlike the contactless power supply device 9 of the conventional configuration, the charge capacitor 52 is provided on the fixed portion 2 side, so that the weight and size of the movable portion 3 are reduced compared to the movable portion 3X of the conventional configuration. Furthermore, an increase in the weight and size of the movable part 3 is suppressed compared to a configuration that does not perform power regeneration.
 また、非接触給電用素子および非接触受電用素子はそれぞれ電極板41、42、61、62とされて、回生電力を静電結合方式で可動部3から固定部2に逆送でき、回生逆送回路は、受電回路7と並列に設けられた回生高周波回路8ならびに回生切替えスイッチ75を含んで構成されている。したがって、回生電力を逆送するときにも高周波の直列共振回路を利用して回生逆送効率を常時の給電効率と同程度に高めることができ、回生電力を効率的に蓄電できる。 In addition, the non-contact power feeding element and the non-contact power receiving element are electrode plates 41, 42, 61, 62, respectively, and regenerative power can be sent back from the movable part 3 to the fixed part 2 by electrostatic coupling. The transmission circuit includes a regenerative high-frequency circuit 8 and a regenerative changeover switch 75 provided in parallel with the power receiving circuit 7. Therefore, even when the regenerative power is reversely transmitted, the regenerative reverse transmission efficiency can be increased to the same level as the normal power supply efficiency by using the high-frequency series resonance circuit, and the regenerative power can be efficiently stored.
 さらに、高周波電源回路5のフライホイールダイオード531~534を回生逆送回路に利用してチャージコンデンサ52を蓄電できる。したがって、回生電力を変成する専用の回生逆送回路が固定部2側で不要になって回路構成を簡素化でき、回生電力の有効利用に必要となるコストの増加分を抑制できる。 Furthermore, the charge capacitor 52 can be stored using the flywheel diodes 531 to 534 of the high-frequency power supply circuit 5 in the regenerative reverse circuit. Accordingly, a dedicated regenerative reverse circuit for transforming regenerative power is not required on the fixed portion 2 side, the circuit configuration can be simplified, and an increase in cost required for effective use of regenerative power can be suppressed.
 さらに、固定部制御回路21および可動部制御回路31は協働し、電力負荷Lにおける電力の消費および発生を選択的に制御し、消費および発生に対応して高周波電源回路5および回生高周波回路8を制御する。したがって、電力負荷Lの動作状態に対応して電力の移送方向を高精度に制御でき、電力負荷Lの円滑な動作と、給電効率および回生逆送効率の高効率化とを実現できる。 Furthermore, the fixed part control circuit 21 and the movable part control circuit 31 cooperate to selectively control the consumption and generation of power in the power load L, and the high frequency power supply circuit 5 and the regenerative high frequency circuit 8 corresponding to the consumption and generation. To control. Therefore, the power transfer direction can be controlled with high accuracy in accordance with the operating state of the power load L, and smooth operation of the power load L and higher efficiency of power supply efficiency and regenerative reverse transmission efficiency can be realized.
 次に、固定部2A側の高周波電源回路5Aの構成が異なる第2実施形態の非接触給電装置1Aについて、図4を参考にして、第1実施形態と異なる点を主に説明する。図4は、第2実施形態の非接触給電装置1Aを模式的に説明する回路図である。第2実施形態では、固定部2Aの高周波電源回路5Aは、直流電源51およびチャージコンデンサ52に代えてバッテリ51Aを有している。バッテリ51Aは、充電および放電を繰り返して行うことができる二次電池であり、蓄電素子を兼ねている。つまり、バッテリ51Aは、可動部3から固定部2Aに逆送された回生電力を蓄電する。 Next, the non-contact power feeding device 1A of the second embodiment in which the configuration of the high-frequency power supply circuit 5A on the fixed portion 2A side is different will be described mainly with reference to FIG. 4 and different points from the first embodiment. FIG. 4 is a circuit diagram schematically illustrating the contactless power feeding device 1A of the second embodiment. In the second embodiment, the high frequency power supply circuit 5 </ b> A of the fixed portion 2 </ b> A has a battery 51 </ b> A instead of the DC power supply 51 and the charge capacitor 52. The battery 51A is a secondary battery that can be repeatedly charged and discharged, and also serves as a power storage element. In other words, the battery 51A stores the regenerative power that is sent back from the movable portion 3 to the fixed portion 2A.
 第2実施形態の非接触給電装置1Aによれば、蓄電素子がバッテリ51Aで兼用されるので、回生電力の有効利用に必要となるコストの増加分を顕著に抑制できる。第2実施形態のその他の部位の構成、動作および上記した以外の効果は、第1実施形態と同様であるので説明は省略する。 According to the non-contact power feeding device 1A of the second embodiment, since the storage element is also used as the battery 51A, it is possible to remarkably suppress an increase in cost necessary for effective use of regenerative power. Since the configurations and operations of other parts of the second embodiment and the effects other than those described above are the same as those of the first embodiment, description thereof will be omitted.
 次に、可動部3B側の受電回路7B内に回生高周波回路が組み込まれた第3実施形態の非接触給電装置1Bについて、図5を参考にして、第1および第2実施形態と異なる点を主に説明する。図5は、第3実施形態の非接触給電装置1Bを模式的に説明する回路図である。第3実施形態では、受電回路7Bはブリッジ回路79、受電回生選択スイッチ75B、および平滑コイル77で構成されている。 Next, with respect to the non-contact power feeding device 1B of the third embodiment in which the regenerative high frequency circuit is incorporated in the power receiving circuit 7B on the movable part 3B side, the points different from the first and second embodiments are described with reference to FIG. Mainly explained. FIG. 5 is a circuit diagram schematically illustrating the non-contact power feeding device 1B of the third embodiment. In the third embodiment, the power reception circuit 7B includes a bridge circuit 79, a power reception regeneration selection switch 75B, and a smoothing coil 77.
 ブリッジ回路79は、固定部2のブリッジ回路53と同一の回路であり、4個のスイッチング素子および各スイッチング素子に並列接続されたフライホイールダイオードで構成されている。図示されるように、ブリッジ回路79の一側入力端子791は一方の受電用電極板61に電気接続され、他側入力端子792は他方の給電用電極板62に電気接続されている。また、ブリッジ回路79の正側出力端子79Pが切り替えスイッチ75Bに電気接続され、負側出力端子79Nが電力負荷Lの負側端子LNに電気接続されている。ブリッジ回路79の4個のスイッチング素子は、可動部制御回路31により制御され、給電時には全てが開路され、回生時にはスイッチング制御される。 The bridge circuit 79 is the same circuit as the bridge circuit 53 of the fixed unit 2, and includes four switching elements and a flywheel diode connected in parallel to each switching element. As shown in the figure, one input terminal 791 of the bridge circuit 79 is electrically connected to one power receiving electrode plate 61, and the other input terminal 792 is electrically connected to the other power feeding electrode plate 62. The positive output terminal 79P of the bridge circuit 79 is electrically connected to the changeover switch 75B, and the negative output terminal 79N is electrically connected to the negative terminal LN of the power load L. The four switching elements of the bridge circuit 79 are controlled by the movable part control circuit 31, all are opened during power feeding, and switching controlled during regeneration.
 受電回生選択スイッチ75Bは、給電と回生とを選択切り替えするスイッチである。受電回生選択スイッチ75Bは、給電側接点761および回生側接点762の一方を共通接点763に導通させるものである。給電側接点761は、ブリッジ回路79の正側出力端子79Pに直接的に電気接続され、回生側接点762は、逆送ダイオード764を介して正側出力端子79Pに電気接続されている。逆送ダイオード764は、電力負荷Lから非接触受電用素子61、62に向かう方向(逆送方向)の通電を許容し、その反対方向の通電を阻止する。可動部制御回路31は、電力負荷Lに給電するときには、受電回生選択スイッチ75Bの給電側接点761を共通接点763に導通させ、電力負荷Lが発生した回生電力を逆送するときには、回生側接点762を共通接点763に導通させる。 The power reception regeneration selection switch 75B is a switch that selectively switches between power feeding and regeneration. The power reception / regeneration selection switch 75B conducts one of the power supply side contact 761 and the regeneration side contact 762 to the common contact 763. The power feeding side contact 761 is directly electrically connected to the positive output terminal 79P of the bridge circuit 79, and the regeneration side contact 762 is electrically connected to the positive output terminal 79P via the reverse feed diode 764. The reverse feed diode 764 allows energization in the direction (reverse feed direction) from the power load L toward the non-contact power receiving elements 61 and 62 and prevents energization in the opposite direction. When power is supplied to the power load L, the movable part control circuit 31 connects the power supply side contact 761 of the power reception regeneration selection switch 75B to the common contact 763, and when the regenerative power generated by the power load L is sent back, the regenerative side contact. 762 is connected to the common contact 763.
 第3実施形態の非接触給電装置1Bでは、ブリッジ回路79は、給電時に全波整流回路として作用し、回生時に回生高周波回路として作用する。したがって、第3実施形態の非接触給電装置1Bは、第1実施形態と同等に動作し、第1実施形態と同様の効果が発生する。加えて、図5を図2と比較すれば分かるように、第3実施形態では、専用の回生逆送回路が可動部3B側で不要になって回路構成を簡素化でき、回生電力の有効利用に必要となるコストの増加分を抑制できる。 In the non-contact power feeding device 1B of the third embodiment, the bridge circuit 79 acts as a full-wave rectifier circuit during power feeding and acts as a regenerative high-frequency circuit during regeneration. Therefore, the non-contact power feeding device 1B of the third embodiment operates in the same manner as the first embodiment, and the same effect as the first embodiment occurs. In addition, as can be seen by comparing FIG. 5 with FIG. 2, in the third embodiment, a dedicated regenerative reverse circuit becomes unnecessary on the movable part 3B side, the circuit configuration can be simplified, and effective use of regenerative power is possible. The increase in cost required for the process can be suppressed.
 次に、非接触給電用素子および非接触受電用素子が異なる第4実施形態の非接触給電装置1Cについて、図6を参考にして、第1実施形態と異なる点を主に説明する。図6は、第4実施形態の非接触給電装置1Cを模式的に説明する回路図である。第4実施形態では、固定部2Cの非接触給電用素子として給電用コイル43が用いられ、可動部3Cの非接触受電用素子として受電用コイル63が用いられている。給電用コイル43と受電用コイル63とは良好に電磁結合しており、電磁誘導方式で非接触給電を行えるように構成されている。その他の部位は、第1実施形態と同様の構成であり、説明は省略する。 Next, the non-contact power feeding device 1C of the fourth embodiment in which the non-contact power feeding element and the non-contact power receiving element are different will be described mainly with reference to FIG. 6 and differences from the first embodiment. FIG. 6 is a circuit diagram schematically illustrating the contactless power feeding device 1C of the fourth embodiment. In the fourth embodiment, a power feeding coil 43 is used as a non-contact power feeding element of the fixed portion 2C, and a power receiving coil 63 is used as a non-contact power receiving element of the movable portion 3C. The power supply coil 43 and the power reception coil 63 are electromagnetically coupled well, and are configured to perform non-contact power supply by an electromagnetic induction method. Other parts are the same as those in the first embodiment, and a description thereof will be omitted.
 第4実施形態の非接触給電装置1Cによれば、給電用コイル43および受電用コイル63を用いて電磁誘導方式により非接触で電力負荷Lが発生した回生電力を逆送し、固定部2C側で蓄電できる。これにより、電磁誘導方式の非接触給電の総合効率を高めることができる。なお、給電用コイル43および受電用コイル63は、第2および第3実施形態に組み合わせて用いることもできる。 According to the non-contact power feeding device 1C of the fourth embodiment, the regenerative power generated by the non-contact power load L by the electromagnetic induction method using the power feeding coil 43 and the power receiving coil 63 is reversely transmitted, and the fixed portion 2C side Can be stored. As a result, the overall efficiency of electromagnetic induction type non-contact power feeding can be increased. The power feeding coil 43 and the power receiving coil 63 can also be used in combination with the second and third embodiments.
 なお、本発明は、静電結合方式および電磁結合方式の非接触給電装置に限定されず、磁界共鳴方式などの他の非接触給電方式で実施することもできる。また、高周波電源回路5、5Aや受電回路7、7B、回生高周波回路8などの回路構成は、適宜変形することもできる。本発明は、その他にも様々な応用や変形が可能である。 Note that the present invention is not limited to the non-contact power feeding device of the electrostatic coupling method and the electromagnetic coupling method, and can be implemented by another non-contact power feeding method such as a magnetic field resonance method. In addition, the circuit configurations of the high-frequency power supply circuits 5, 5A, the power receiving circuits 7, 7B, the regenerative high-frequency circuit 8, and the like can be modified as appropriate. Various other applications and modifications are possible for the present invention.
 本発明の非接触給電装置は、部品実装機に利用でき、基板検査機など他の基板用作業機器にも利用することができる。さらに、本発明の非接触給電装置は、リニアモータ装置やボールねじ送り機構以外の電力回生可能な電力負荷を可動部に有する様々な機器に利用することもできる。 The non-contact power feeding device of the present invention can be used for a component mounting machine, and can also be used for other board work equipment such as a board inspection machine. Furthermore, the non-contact power feeding device of the present invention can be used for various devices having a power load capable of regenerating power other than the linear motor device and the ball screw feeding mechanism in the movable portion.
  1、1A、1B、1C:非接触給電装置
  2、2A、2C:固定部  21;固定部制御回路
  3、3B、3C:可動部  31:可動部制御回路
  41、42:給電用電極板(非接触給電用素子)
  43:給電用コイル(非接触給電用素子)
  5、5A:高周波電源回路  51:直流電源
  51A:バッテリ(二次電池)  52:チャージコンデンサ(蓄電素子)
  53:ブリッジ回路  541~544:スイッチング素子
  551~554:フライホイールダイオード
  61、62:受電用電極板(非接触受電用素子)
  63:受電用コイル(非接触受電用素子)
  7、7B:受電回路  71:全波整流回路
  721~724:ダイオード素子
  75:回生切替えスイッチ  75B:受電回生選択スイッチ
  764:逆送ダイオード  77:平滑コイル  79:ブリッジ回路
  8:回生高周波回路  81:逆送ダイオード  83:逆送ブリッジ回路
  851~854:スイッチング素子
  9:従来技術の非接触給電装置
  10:部品実装機
     110:基板搬送装置  120:部品供給装置
     130、140:部品移載装置  150:リニアモータ装置
     160:可動本体部  161:X軸レール  170:実装ヘッド
     180:表示設定装置  190:機台
  L:電力負荷  
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C: Non-contact electric power feeder 2, 2A, 2C: Fixed part 21; Fixed part control circuit 3, 3B, 3C: Movable part 31: Movable part control circuit 41, 42: Electrode plate for electric power feeding (non- Contact power supply element)
43: Coil for power feeding (element for non-contact power feeding)
5, 5A: High frequency power supply circuit 51: DC power supply 51A: Battery (secondary battery) 52: Charge capacitor (storage element)
53: Bridge circuit 541-544: Switching element 551-554: Flywheel diode 61, 62: Electrode plate for power reception (non-contact power reception element)
63: Power receiving coil (non-contact power receiving element)
7, 7B: Power receiving circuit 71: Full wave rectifier circuit 721 to 724: Diode element 75: Regenerative changeover switch 75B: Power receiving regenerative selection switch 764: Reverse feed diode 77: Smoothing coil 79: Bridge circuit 8: Regenerative high frequency circuit 81: Reverse Sending diode 83: Reverse feeding bridge circuit 851 to 854: Switching element 9: Conventional non-contact power feeding device 10: Component mounting machine 110: Board transfer device 120: Component feeding device 130, 140: Component transfer device 150: Linear motor Device 160: Movable main body 161: X-axis rail 170: Mounting head 180: Display setting device 190: Machine base L: Power load

Claims (8)

  1.  固定部に設けられた非接触給電用素子と、
     前記非接触給電用素子に高周波電力を給電する高周波電源回路と、
     前記固定部に移動可能に装架された可動部に設けられ、前記非接触給電用素子に離隔対向して非接触で高周波電力を受け取る非接触受電用素子と、
     前記非接触受電用素子が受け取った高周波電力を変換して前記可動部上の電力負荷に給電する受電回路とを備える非接触給電装置であって、
     前記電力負荷は、電力の消費および発生を選択的に行い、
     前記電力負荷が発生した回生電力を前記非接触受電用素子から前記非接触給電用素子を経由して前記固定部まで非接触で逆送する回生逆送回路と、
     前記固定部に設けられて逆送された前記回生電力を蓄電し、かつ前記電力負荷が前記電力を消費するときに前記高周波電源回路よりも優先して前記非接触給電用素子に高周波電力を給電する蓄電素子と、をさらに備える非接触給電装置。
    A non-contact power supply element provided in the fixed portion;
    A high-frequency power supply circuit for supplying high-frequency power to the contactless power supply element;
    A non-contact power receiving element that is provided in a movable part that is movably mounted on the fixed part, and that receives the high-frequency power in a non-contact manner, spaced apart from the non-contact power feeding element;
    A non-contact power feeding device comprising: a power receiving circuit that converts high-frequency power received by the non-contact power receiving element and feeds power to the power load on the movable part;
    The power load selectively performs power consumption and generation,
    A regenerative reverse circuit that reversely transmits the regenerative power generated by the power load from the contactless power receiving element to the fixed part via the contactless power feeding element; and
    The regenerative power that is provided in the fixed portion and stored in reverse is stored, and when the power load consumes the power, the high-frequency power is supplied to the contactless power supply element in preference to the high-frequency power supply circuit. A non-contact power feeding device further comprising:
  2.  請求項1において、前記回生逆送回路は、
     前記可動部に前記受電回路と並列に設けられ、前記電力負荷が発生した回生電力を高周波に変換して前記非接触受電用素子に給電する回生高周波回路、ならびに、
     前記可動部に設けられ、前記電力負荷を前記受電回路および前記回生高周波回路の一方に接続する回生切替えスイッチを含んで構成される非接触給電装置。
    The regenerative reverse circuit according to claim 1,
    A regenerative high-frequency circuit that is provided in parallel with the power reception circuit in the movable part, converts the regenerative power generated by the power load into a high frequency and feeds the non-contact power reception element, and
    A non-contact power feeding device configured to include a regenerative changeover switch that is provided in the movable portion and connects the power load to one of the power receiving circuit and the regenerative high frequency circuit.
  3.  請求項2において、
     前記高周波電源回路は、直流電力を出力する直流電源、ならびに、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり前記直流電力を前記高周波電力に変換するブリッジ回路を含み、
     前記蓄電素子は、前記直流電源に並列接続されたチャージコンデンサであり、
     前記回生逆送回路は、前記フライホイールダイオードを含んで構成され、前記非接触受電用素子から前記非接触給電用素子に高周波の回生電力が逆送されたときに、前記スイッチング素子を開路状態として前記4個のフライホイールダイオードからなる全波整流回路で整流して前記チャージコンデンサに蓄電する非接触給電装置。
    In claim 2,
    The high-frequency power circuit includes a DC power source that outputs DC power, and a bridge circuit that includes four switching elements and a flywheel diode connected in parallel to each of the switching elements and converts the DC power to the high-frequency power. ,
    The power storage element is a charge capacitor connected in parallel to the DC power source,
    The regenerative reverse circuit is configured to include the flywheel diode, and when the high frequency regenerative power is reversely transmitted from the non-contact power receiving element to the non-contact power supply element, the switching element is opened. A non-contact power feeding device that rectifies by a full-wave rectifier circuit composed of the four flywheel diodes and stores the charge in the charge capacitor.
  4.  請求項2において、
     前記高周波電源回路は、直流電力を出力する二次電池、ならびに、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり前記直流電力を前記高周波電力に変換するブリッジ回路を含み、
     前記蓄電素子は、前記二次電池で兼用されており、
     前記回生逆送回路は、前記フライホイールダイオードを含んで構成され、前記非接触受電用素子から前記非接触給電用素子に高周波の回生電力が逆送されたときに、前記スイッチング素子を開路状態として前記4個のフライホイールダイオードからなる全波整流回路で整流して前記二次電池に蓄電する非接触給電装置。
    In claim 2,
    The high-frequency power circuit includes a secondary battery that outputs DC power, and a bridge circuit that includes four switching elements and a flywheel diode connected in parallel to each of the switching elements, and converts the DC power into the high-frequency power. Including
    The power storage element is also used in the secondary battery,
    The regenerative reverse circuit is configured to include the flywheel diode, and when the high frequency regenerative power is reversely transmitted from the non-contact power receiving element to the non-contact power supply element, the switching element is opened. A non-contact power feeding device that rectifies by a full-wave rectifier circuit including the four flywheel diodes and stores the secondary battery.
  5.  請求項1~4のいずれか一項において、前記電力負荷における前記電力の消費および発生を選択的に制御し、消費および発生に対応して前記高周波電源回路および前記回生逆送回路を制御する制御回路をさらに備える非接触給電装置。 5. The control according to claim 1, wherein the power consumption and generation in the power load are selectively controlled, and the high-frequency power supply circuit and the regenerative reverse circuit are controlled in response to the consumption and generation. A contactless power supply device further comprising a circuit.
  6.  請求項1において、前記受電回路および前記回生逆送回路は、
     前記可動部に設けられ、4個のスイッチング素子および各前記スイッチング素子に並列接続されたフライホイールダイオードからなり、前記非接触受電用素子が受け取った高周波電力を直流電力に変換可能で、かつ前記電力負荷が発生した回生電力を高周波に変換して前記非接触受電用素子に給電可能であるブリッジ回路と、
     前記ブリッジ回路と前記電力負荷との間の給電方向を切り替える受電回生選択スイッチとを共有する非接触給電装置。
    In Claim 1, the power reception circuit and the regenerative reverse transmission circuit,
    The movable part is provided with four switching elements and a flywheel diode connected in parallel to each of the switching elements, the high frequency power received by the non-contact power receiving element can be converted into DC power, and the power A bridge circuit capable of converting the regenerative power generated by the load into a high frequency and supplying power to the contactless power receiving element;
    A non-contact power feeding apparatus that shares a power reception regeneration selection switch that switches a power feeding direction between the bridge circuit and the power load.
  7.  請求項1~6のいずれか一項において、前記非接触給電用素子および前記非接触受電用素子は、それぞれ電極板である非接触給電装置。 The contactless power feeding device according to any one of claims 1 to 6, wherein each of the contactless power feeding element and the contactless power receiving element is an electrode plate.
  8.  請求項1~7のいずれか一項において、
     前記可動部は、基板に部品を実装する部品実装機に装備され、かつ部品実装動作を行う実装ヘッドをさらに備え、
     前記電力負荷は、前記可動部を駆動するリニアモータまたはボールねじ機構用モータである非接触給電装置。
    In any one of claims 1 to 7,
    The movable part further includes a mounting head that is mounted on a component mounting machine that mounts a component on a substrate and performs a component mounting operation.
    The non-contact power feeding device, wherein the power load is a linear motor or a ball screw mechanism motor that drives the movable part.
PCT/JP2012/072631 2012-09-05 2012-09-05 Non-contact power supply device WO2014038017A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014534084A JP6104254B2 (en) 2012-09-05 2012-09-05 Non-contact power feeding device
CN201280075652.0A CN104604089B (en) 2012-09-05 2012-09-05 Contactless power supply device
PCT/JP2012/072631 WO2014038017A1 (en) 2012-09-05 2012-09-05 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072631 WO2014038017A1 (en) 2012-09-05 2012-09-05 Non-contact power supply device

Publications (1)

Publication Number Publication Date
WO2014038017A1 true WO2014038017A1 (en) 2014-03-13

Family

ID=50236669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072631 WO2014038017A1 (en) 2012-09-05 2012-09-05 Non-contact power supply device

Country Status (3)

Country Link
JP (1) JP6104254B2 (en)
CN (1) CN104604089B (en)
WO (1) WO2014038017A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521030A (en) * 2014-06-26 2017-07-27 エッグトロニック エス.アール.エル. Method and apparatus for transmitting power
KR20180137835A (en) * 2017-06-19 2018-12-28 주식회사 유니코어 Variable type conveyor apparatus for transferring objects
WO2019198355A1 (en) * 2018-04-13 2019-10-17 スミダコーポレーション株式会社 Contactless power transmission system, power transmitting device, and power receiving device
CN115102304A (en) * 2022-07-25 2022-09-23 重庆大学 Bidirectional electric field coupling type wireless power transmission system and control method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873219B2 (en) * 2016-09-30 2020-12-22 Fuji Corporation Contactless power supply device
CN109792162B (en) * 2016-10-18 2023-05-16 株式会社富士 Non-contact power supply device
CN108347167B (en) * 2017-01-25 2021-07-13 通用电气公司 System and method for soft switching DC-DC converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295680A (en) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co Noncontact power supply apparatus and noncontact power supply system
JP2012019603A (en) * 2010-07-07 2012-01-26 Murata Mach Ltd Non-contact power reception device
JP2012100505A (en) * 2010-11-05 2012-05-24 Mitsubishi Heavy Industries Parking Co Ltd Lifting apparatus and control method therefor, and mechanical multistory parking lot applying the same
WO2012066862A1 (en) * 2010-11-17 2012-05-24 富士機械製造株式会社 Reciprocating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511927B2 (en) * 1999-01-18 2004-03-29 株式会社日立製作所 Charge / discharge device for power storage means
WO2010131349A1 (en) * 2009-05-14 2010-11-18 トヨタ自動車株式会社 Vehicle charging unit
JP2010288431A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Device housing battery and charging pad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295680A (en) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co Noncontact power supply apparatus and noncontact power supply system
JP2012019603A (en) * 2010-07-07 2012-01-26 Murata Mach Ltd Non-contact power reception device
JP2012100505A (en) * 2010-11-05 2012-05-24 Mitsubishi Heavy Industries Parking Co Ltd Lifting apparatus and control method therefor, and mechanical multistory parking lot applying the same
WO2012066862A1 (en) * 2010-11-17 2012-05-24 富士機械製造株式会社 Reciprocating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521030A (en) * 2014-06-26 2017-07-27 エッグトロニック エス.アール.エル. Method and apparatus for transmitting power
KR20180137835A (en) * 2017-06-19 2018-12-28 주식회사 유니코어 Variable type conveyor apparatus for transferring objects
KR102007957B1 (en) * 2017-06-19 2019-10-21 주식회사 유니코어 Variable type conveyor apparatus for transferring objects
WO2019198355A1 (en) * 2018-04-13 2019-10-17 スミダコーポレーション株式会社 Contactless power transmission system, power transmitting device, and power receiving device
JP2019187158A (en) * 2018-04-13 2019-10-24 スミダコーポレーション株式会社 Non-contact power transmission system, power reception device and power transmission device
JP7187810B2 (en) 2018-04-13 2022-12-13 スミダコーポレーション株式会社 Contactless power transmission system, power receiving device and power transmitting device
CN115102304A (en) * 2022-07-25 2022-09-23 重庆大学 Bidirectional electric field coupling type wireless power transmission system and control method thereof
CN115102304B (en) * 2022-07-25 2024-03-08 重庆大学 Bidirectional electric field coupling type wireless power transmission system and control method thereof

Also Published As

Publication number Publication date
JPWO2014038017A1 (en) 2016-08-08
JP6104254B2 (en) 2017-03-29
CN104604089A (en) 2015-05-06
CN104604089B (en) 2017-07-21

Similar Documents

Publication Publication Date Title
JP6104254B2 (en) Non-contact power feeding device
US11223238B2 (en) Non-contact power feeding device
JP6095661B2 (en) Non-contact power feeding device
US9985476B2 (en) Electrostatic coupling type contactless electric power supply device
WO2014049750A1 (en) Electrostatic-coupling-type non-contact power supply apparatus
JP6076355B2 (en) Non-contact power feeding device
JP6049744B2 (en) Non-contact power feeding device
WO2014125629A1 (en) Electrostatic coupled noncontact power supply device
JP6353046B2 (en) Power supply device
JP6701231B2 (en) Contactless power supply
JP2018133930A (en) Non-contact transmitter, non-contact receiver, and non-contact feeding system
JP6058003B2 (en) Electrostatic coupling type non-contact power feeding device
JP6677523B2 (en) Wireless power supply
JP7117219B2 (en) Wireless power supply device and multi-axis robot using it
WO2018158856A1 (en) Contactless power receiving device and contactless power supply device
JP5946287B2 (en) Component mounting device
WO2016016930A1 (en) Non-contact power supply device
JP2020048407A (en) Substrate production line
JP2013045777A (en) Work device for substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884177

Country of ref document: EP

Kind code of ref document: A1