WO2014033893A1 - Method for forming electric power interchange group and electric power interchange group forming device - Google Patents

Method for forming electric power interchange group and electric power interchange group forming device Download PDF

Info

Publication number
WO2014033893A1
WO2014033893A1 PCT/JP2012/072096 JP2012072096W WO2014033893A1 WO 2014033893 A1 WO2014033893 A1 WO 2014033893A1 JP 2012072096 W JP2012072096 W JP 2012072096W WO 2014033893 A1 WO2014033893 A1 WO 2014033893A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
group
information
devices
electric power
Prior art date
Application number
PCT/JP2012/072096
Other languages
French (fr)
Japanese (ja)
Inventor
弘起 佐藤
石田 隆張
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/072096 priority Critical patent/WO2014033893A1/en
Priority to JP2014532664A priority patent/JPWO2014033893A1/en
Publication of WO2014033893A1 publication Critical patent/WO2014033893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2213/00Indexing scheme relating to details of circuit arrangements for providing remote indication of network conditions of for circuit arrangements for providing remote control of switching means in a power distribution network
    • H02J2213/10Indexing scheme relating to details of circuit arrangements for providing remote indication of network conditions of for circuit arrangements for providing remote control of switching means in a power distribution network using simultaneously two or more different transmission means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a power accommodation control terminal, a method for controlling a power accommodation control terminal, and a power system related network system configured by the power accommodation control terminal. Specifically, the present invention relates to a plurality of power accommodation based on arbitrary conditions. The present invention relates to a technology that enables control of power interchange by creating a control terminal group.
  • Patent Document 1 As a means for constructing such a local production and consumption type supply and demand system, a technique using a multi-terminal type asynchronous interconnection device (see Patent Document 1) has been proposed.
  • a connecting device having an AC / DC / AC converter is divided into small power grids, multi-terminal asynchronous interconnection devices communicate with each other, and power is transferred between the divided power grids. .
  • Patent Document 1 discloses only transferring power according to a supply request or a demand request, and does not consider keeping a balance between supply and demand within one power supply and demand system. Accordingly, an object of the present invention is to provide a technique for keeping a balance between supply and demand in a supply and demand system capable of receiving and transmitting power.
  • conditions are set according to the objectives such as stable supply and demand of power, smoothing of power equipment, cost effectiveness, etc., and a group of power interchange equipment that satisfies these multiple conditions is selected.
  • Conduct power interchange power transfer
  • the power accommodation device has accommodation conditions, facility information, control information, and transaction information.
  • the server obtains these through communication, accommodation conditions, facility information, power system accommodation conditions and facility information, Create a database of electricity transaction information and create groups based on it.
  • a group consisting of a plurality of power accommodation devices can be created based on an arbitrary condition to control power accommodation.
  • FIG. 1 is a diagram illustrating a configuration example of a power interchange network system 100 according to the present embodiment.
  • the power accommodation network system 100 (hereinafter, system 100) shown in FIG. 1 can control power accommodation by creating a group of a plurality of power accommodation devices based on arbitrary conditions when executing power accommodation in the power accommodation network.
  • Computer system can control power accommodation by creating a group of a plurality of power accommodation devices based on arbitrary conditions when executing power accommodation in the power accommodation network.
  • a multi-terminal type asynchronous interconnection device (power accommodation device) 102 (hereinafter, device 102) is connected to a power source 135, a battery 133, and a load 134 through power lines.
  • a power interchange network is configured through system power supply line 160 and other power interchange apparatuses 103, 104, 105, 106, 107, 108, 109 (hereinafter referred to as other apparatuses 103) connected to the power source, battery, and load. ing.
  • the device 102 and the other devices 103 are connected to the server 101 via the communication network 150.
  • the hardware configuration of the device 102 (the same applies to the other devices 103) is as follows.
  • the device 102 stores, in the internal memory 141, a storage device 121 composed of a suitable non-volatile storage device such as a hard disk drive, an internal memory 141 composed of a volatile storage device such as RAM, and a program 142 held in the storage device 121.
  • a central processing unit 143 such as a CPU that performs various determinations, computations, and control processes as well as performing overall control of the device itself by reading and executing, a power conversion device A129, a power conversion device B130, a power conversion device C131, and a power conversion device 132 And a communication device control unit 140 that performs communication with other devices 103 and the like, and communication with the server 101 via the communication network 150.
  • the storage device 121 stores at least conversion information 126, facility information 127, and transaction information 128 in addition to a program 142 for implementing functions necessary for the device 102 of the present embodiment.
  • the functions described below can be said to be functions implemented by executing the program 142 included in the apparatus 102, for example.
  • the functions provided in the device 102 may be realized not only by an example implemented by a program but also by a dedicated hardware device corresponding to the corresponding function.
  • the device 102 receives data from the server 101 or the other device 103 via the communication device control unit 140, the power conversion device 129, 130, 131 is received in accordance with a control command from the server or the other device 103. , 132 (hereinafter referred to as power converters 129 and the like).
  • the device 102 has a function of transmitting various data held by the device 102 to the server 101 or other devices 103 via the communication device control unit 140. In addition, it has a function of acquiring information from the server 101 or another device 103 via the communication device control unit 140 as necessary.
  • the device 102 has a function of communicating with the power conversion device 129 and the like via the communication device control unit 140 to control the power conversion device 129 and acquiring the device state from the power conversion device 129 and the like.
  • the device 102 records the current status of the power conversion device 129, the control history, the type of connected device, the amount of power of the connected type, the group to which the device 102 belongs, and the power interchange devices that are group members, It has a reading function.
  • the hardware configuration of the power supply 135 is composed of distributed power supply devices such as solar panels and wind power generators.
  • the power source 135 may have a function of communicating with the power conversion device A129. Further, the power supply 132 may have a function of supplying or stopping power according to a request from the power conversion device A129.
  • the power source 135 may have a function of transmitting the current state and the amount of flowing power to the power conversion device A129.
  • the power conversion device A129 may have the control function such as supply and stop and the power amount acquisition function.
  • the hardware configuration of the battery 133 is a storage battery such as a lead battery or a lithium battery.
  • the battery 133 may have a function of communicating with the power conversion device B130. Further, the battery 133 may have a function of storing, discharging, or stopping power according to a request from the power conversion device B130.
  • the battery 133 may have a function of transmitting the current state and the amount of flowing power to the power conversion device B130.
  • the power conversion device B ⁇ b> 130 may have the control function such as power storage and discharge and the power amount acquisition function.
  • the load 134 is composed of an arbitrary power load such as household equipment or factory equipment.
  • the load 134 may have a function of communicating with the power conversion device C131.
  • the load 134 may have a function of consuming or stopping power according to a request from the power conversion device C131.
  • the load 134 may have a function of transmitting the current state and the amount of flowing power to the power conversion device C131.
  • the power conversion device C131 may have a control function such as consumption or stop in the previous period and a power amount acquisition function.
  • the system power line 160 is composed of a low-voltage distribution line, a high-voltage distribution line, and a self-employed line.
  • the system power line 160 is connected to the power converter D132 and has a function of transmitting and receiving power.
  • the hardware configuration of the server 101 is as follows.
  • the server 101 stores, in the internal memory 115, a storage device 114 composed of a suitable non-volatile storage device such as a hard disk drive, an internal memory 115 composed of a volatile storage device such as RAM, and a program 116 held in the storage device 114.
  • a communication device control unit 113 A communication device control unit 113.
  • the storage device 114 includes a group database 118 that is group information, an equipment information database 119 that is equipment information, and electric energy information, in addition to a program 116 for implementing functions necessary as the server 101 of the present embodiment.
  • the electric energy information database 120 is stored at least.
  • the functions described below can be said to be functions implemented by executing the program 116 provided in the server 101, for example.
  • the functions provided in the server 101 may be realized not only by an example implemented by a program but also by a dedicated hardware device corresponding to the corresponding function.
  • the server 101 When the server 101 receives data from the device 102 or another device 103 via the communication device control unit 113, the server 101 needs to be in the storage device in response to a request command from the device 102 or the other device 103. It has a function to respond to data. Further, it has a function of acquiring various data possessed by the device 102 or other devices 103 via the communication device control unit 113. Further, it has a function of transmitting a control command to the device 102 or other devices 103 through the communication device control unit 113 and controlling the device 102 or other devices 103.
  • the server 101 acquires the conversion information 126, the facility information 127, and the transaction information 128 from the device 102 or another device 103, records them in the facility management database 119 and the power information database 120, and reads them out as necessary. It has a function.
  • the server 101 uses the data in the facility management database 119 and the power information database to calculate the power interchange group of the device 102 and other devices 103, records it in the group database 118, and recalculates as necessary. It has a function. Further, the calculation result has a function of transmitting information to the device 102 and other devices 103 through the communication device control unit 113 to control power interchange.
  • FIG. 2 is a diagram showing an example of the group database 118 in the present embodiment.
  • the group database 118 illustrated in FIG. 2 stores which group the device 101 and other devices 103 belong to, or which group the device 101 belongs to, and is managed by the server 101.
  • the group database 118 is composed of data such as group names 202, 203, and 204 to which the apparatus 101 and other apparatuses 103 belong, and periods 211, 212, and 213 representing periods of the group configuration.
  • This group database 118 is assumed that the server 101 is generated from the facility information and power amount information of the device 102 and other devices 103, or is generated by the administrator inputting data. it can. In addition, it is good also as a database which grasps
  • FIG. 3 is a diagram showing an example of the facility management database 119 in the present embodiment.
  • the facility management database 119 illustrated in FIG. 3 stores transmission / reception capabilities and power consumption capabilities of the device 102 and other devices 103 for each period, and is managed by the server 101.
  • This equipment management database 119 includes a maximum power generation amount 301, a maximum power storage amount 303, a maximum load amount 304, an installation location 305, whether to give / receive information 306, and a period representing a period during which information is measured and recorded for each device 102 and other devices 103. It is composed of data such as 301.
  • This equipment management database can be assumed to be generated from equipment information and transaction information of the device 102 and other devices 103, or generated by data input by an administrator. Further, the device 102 and the other devices 103 and the like acquire and manage the same information for each device (each column of 311, 312, and 313) and manage it in the facility information 127.
  • FIG. 4 is a diagram showing an example of the electric energy information database 120 in the present embodiment.
  • the power amount information database 120 illustrated in FIG. 4 stores the facility information of the system power line 160, the transfer capability and power consumption capability of the device 102 and other devices 103 for each period, and is managed by the server 101. Yes.
  • the power information database 119 includes the power supply amount 402 that represents the power supply capability amount during the unit period, the power reception amount 403 that represents the power reception capability amount during the unit period, and the power supply cost 404 necessary for power supply, for each device 102 and other devices 103. , And a data receiving cost 405 required at the time of power reception, and a period 401 representing a period during which information is measured and recorded.
  • the power supply cost represents the cost for power supply, and includes, for example, the cost of transmitting the system power line 160 to give power, the cost of acquiring and installing the power source 135, and the cost of operating.
  • the power receiving cost represents the cost of receiving power, and includes, for example, the cost of using the system power line 160 to receive power, the cost for acquiring and installing the battery 133, and the operating cost.
  • This power amount information database 120 can be assumed to be generated from facility information and transaction information of the device 102 and other devices 103, or generated by inputting data by an administrator. Further, the device 102 and other devices 103 and the like acquire and manage similar information for each device (each column of 411, 412, and 413), and manage it in the facility information 128 and the transaction information 129.
  • FIG. 5 is a flowchart showing a processing procedure example 1 of the control method of the server 101, the apparatus 102, and the other apparatus 103 in the present embodiment.
  • the server 101 performs device information acquisition 503 and transmits an information acquisition request 511 to the devices 102, 103, 104, and 105.
  • the devices 102, 103, 104, and 105 receive the information acquisition request 511 and transmit the conversion information 126, facility information 127, and transaction information 128 to the server 101 as a response 512 for information acquisition.
  • the server 101 performs the grouping calculation 504.
  • the grouping calculation 504 updates the equipment management database 119 and the power information database 120 from the obtained conversion information 126, equipment information 127, and transaction information 128 for each device, performs the grouping calculation, and updates the group database 118. . Details of the grouping calculation will be described later.
  • the server 101 performs grouping information transmission 504 and transmits a grouping control request 513 to the devices 102, 103, 104, and 105.
  • the devices 102, 103, 104, and 105 receive the grouping control request 513, update the conversion information 126, facility information 127, and transaction information 128, and transmit that they have been received by the server 101 through the grouping control request response 514.
  • the group 1 (202) is the device 102 and the device 103
  • the group 2 (203) is the device 104 and the device 105, as indicated by 211 in FIG.
  • the devices 102, 103, 104, and 105 implement power interchange 506, 507, 508, and 509 between the devices that are grouped in response to the control request.
  • the conversion information 125, facility information 126, and transaction information 127 are updated as necessary.
  • the server 101 performs accommodation result acquisition 510 and transmits an accommodation result acquisition request 515 to the devices 102, 103, 104, and 105.
  • the devices 102, 103, 104, and 105 receive the interchange result acquisition request 515 and transmit the conversion information 125, the facility information 126, and the transaction information 127 to the server 101 with the interchange result acquisition response 516.
  • the server 101 updates the equipment management database 119 and the power information database 120 from the obtained conversion information 126, equipment information 127, and transaction information 128 for each device, confirms the difference from the result assumed in the grouping calculation 504, If necessary, the grouping calculation is performed again, and the group database 118 is updated.
  • the grouping recalculation will be described later.
  • the group 1 (202) is the device 102 and the device 104
  • the group 2 (203) is the device 103 and the device 105 as indicated by 212 in FIG.
  • the server 101 performs grouping information transmission 512 and transmits a grouping control request 517 to the devices 102, 103, 104, and 105.
  • the devices 102, 103, 104, and 105 receive the grouping control request 517, update the conversion information 126, the facility information 127, and the transaction information 128, and transmit that they have been received by the server 101 through the grouping control request response 518.
  • FIG. 6 is a flowchart illustrating an example of a group determination processing procedure of the control method of the server 101 according to the present embodiment.
  • a new device includes a case where the device 102 or another device 103 requests the server for power interchange, or a case where the server 101 asks the device for addition.
  • device information addition processing is performed (602).
  • the server 101 communicates with the device 102 and other devices 103, acquires various pieces of device information, and updates the facility management database 119 and the power amount information database 120.
  • device addition has been described, but device deletion and device information update are performed in the same flow.
  • the large group division is to classify a plurality of power interchange apparatus candidates themselves before selecting a plurality of power interchange apparatuses as a group. Taking this embodiment as an example, there are a total of eight power interchange devices, such as the device 102 and the other devices 103. Based on these conditions, large group division is classified into one large group 1 with devices 102, 103, 104, and 105, and large group 2 with devices 106, 107, 108, and 109, and then within large group 1. Group selection, group selection in large group 2.
  • Judgment of whether large group division is necessary includes physical restrictions, legal restrictions, and performance restrictions.
  • the device is physically separated and cannot be grouped and accommodated, such as a device on a remote island and a device on another remote island.
  • the system power supply line 160 that performs power interchange does not have the ability to physically transmit power so that a large number of devices can simultaneously transmit and receive power.
  • the second point is that the design of the existing transmission lines and distribution lines is designed to transmit unilaterally from the power generation upstream of the generator to the customer in a tree structure, so as to transmit bidirectionally in a mesh form
  • special consideration must be given to physical limitations.
  • the physical restriction can be determined from the installation location 305 in the equipment management database 119.
  • the legal restriction is that the first example is that the power interchange between a certain device and a certain device is not permitted.
  • a certain device has been penalized and has not been allowed power interchange, and has been informed of insufficient billing or false facility information or transaction information.
  • Legal restrictions can be determined from the acceptance / rejection 306 in the equipment management database 119.
  • the performance limitation is the first example when the server 101 cannot select a group with a large number of devices, and it takes too much calculation time to select the group within the specified time.
  • the second example is a case where the server 101 cannot acquire or request information of the device 102 and other devices 103, cannot collect all device information at the same time due to the influence of communication performance, and the group selection is not in time. is there.
  • the performance limit can be determined from a calculation result log or a communication log stored in the program.
  • the server 101 When large group division is necessary (603: Yes), large group division processing is performed (604). If the server 101 matches the above three types of restrictions from the equipment management database 119, the server 101 divides the group into large groups, calculates devices belonging to each group, and records them in the group database 118.
  • Selecting a group by condition means determining whether or not an arbitrary condition is satisfied for each group candidate, and leaving the candidate when satisfied. Selecting a group under all conditions means confirming whether a group candidate is satisfied under all prescribed conditions.
  • This condition is recorded in the facility information 126 from the device 102 and other devices 103, recorded in the facility management database 119 of the server 101, or generated by the administrator inputting data. It can be assumed that there is. An example of selection based on conditions will be described in detail in Processing Procedure Example 2.
  • the selected group is transmitted to the apparatus and control of power interchange is started (607).
  • the server 101 transmits group information to the device 102 and other devices 103 to instruct power interchange between the devices.
  • group division processing is performed based on each condition (606). Based on the respective conditions, the group division process 606 performs a three-stage process. First, group candidates that can be combined with all candidate devices are calculated. Next, a group that can be executed when a certain condition is satisfied is selected from the calculated group candidates. Finally, it is confirmed whether the group selected based on the condition is physically executable. If it is not possible, the group is excluded from the candidates. This processing will be described later in processing procedure example 2. Next, it is determined whether or not a group selection is necessary again (608). Whether it is necessary to select a group again is determined based on the power interchange result in the group selection.
  • group selection is performed again (609). The selection of this condition will be described later. If it is not necessary to select a group again (608: No), it is confirmed whether a predetermined time has passed (610). When the predetermined time has not elapsed (610: No), power interchange is executed and it is confirmed whether another group selection is necessary (608). If the predetermined time has elapsed (610: Yes), it is determined whether a new device has been added (601). The passage of a certain time includes, for example, one week and one month. A certain time interval is determined for recalculation in large group division units. Further, the period in which the power fluctuation is small may be set long, and the period in which the power fluctuation is large may be set short.
  • FIG. 7 is a diagram showing a physical connection configuration example of the power interchange network in the present embodiment.
  • This power accommodation network includes power accommodation device A 701 (hereinafter referred to as device A), power accommodation device B 702 (hereinafter referred to as device B), power accommodation device C (hereinafter referred to as device C), and power accommodation device D (hereinafter referred to as device D). It consists of a stand. Each device is connected by a transmission line capable of transmitting power. Apparatus A and apparatus B have a power transmission line 712, apparatus A and apparatus C have a transmission line 711, apparatus A and apparatus D have a transmission line 715, and apparatus B and apparatus D have a transmission line 713. Yes, devices C and D have power transmission lines 714 that can transmit power to each other. Note that the power transmission line in this case only needs to be able to transmit power regardless of whether it is physically connected or logically connected.
  • FIG. 8 is a diagram showing an example of the transmittable capacity in the transmission line of the power interchange network shown in FIG. 7 in the present embodiment, and the equipment management database 119 of the server 101 based on the conversion information 126, equipment information 127, and transaction information 128.
  • Device A 811 has 5, 10, 1, the amount of power that can be transmitted to device B 802, device C 803, and device D 804.
  • the amount of power that can be transmitted from the device B 812 to the devices A 801, C 803, and D 804 is 5, 0, and 10.
  • the device C813 has 10, 0, 3 that can transmit power to the devices A801, B802, and D804.
  • the device D 814 has the possible power transmission amounts of 1, 10, 3 to the device A 801, the device B 802, and the device C 803.
  • the devices A701 and B702 can transmit the transmission amount 5 to each other, the devices A701 and C703 can transmit the transmission amount 10 to each other, and the devices A701 and D704 transmit power.
  • Device B 702 and device D 704 can transmit power to each other with power transmission amount 10
  • devices C 703 and D 704 can transmit power to each other with power transmission amount 3.
  • FIG. 9 is a diagram illustrating an example of facility information included in the apparatus of the power interchange network illustrated in FIG. 7 in the present embodiment.
  • the conversion information 126, the facility information 127, and the transaction information 128 are used to store the facility information in the facility management database 119 of the server 101.
  • a power generation amount 901, a storage amount 902, a load amount 903, a basic accommodation amount 904, and a maximum accommodation amount 905 for each of the devices A911, B912, C913, and D914 are shown.
  • the power generation amount 901 is a power generation amount that can be generated by the target device per unit time.
  • the storage amount 902 is a storage amount that the target device can store per unit time. In this example, it is assumed that the discharge amount is that the target device can discharge per unit time.
  • the load amount 903 is the amount of power consumed by the target device per unit time.
  • the basic accommodation amount 904 is the amount of power that can be transmitted to another device per unit time of the target device. A plus indicates that power can be transmitted and a minus indicates that it is necessary to receive power.
  • the maximum accommodation amount 905 is the maximum amount of power that can be transmitted to another device per unit time. The difference from the basic accommodation amount 904 is that all the stored amount is discharged and used for power accommodation. is there.
  • FIG. 10 shows how many types of groups can be created when there are a total of four devices, device A 701, device B 702, device C 703, and device D 704 in FIG. This process can be processed as a combination problem. Since there are four devices, there are a total of 15 types of combinations from pattern 1 (1011) to pattern 15 (1025). With each combination, each device can be combined into group 1 (1001), group 2 (1002), group 3 (1003), and group 4 (1004).
  • FIG. 11 is an example of selecting an appropriate group based on the conditions from the pattern of FIG. 10 in the present embodiment, and the information is stored in the group database 118 of the server 101 from the conversion information 126, the facility information 127, and the transaction information 128.
  • FIG. 11 includes patterns 1 (1111) to 15 (1126) similar to FIG. In the initial state (1101), all patterns are “present”. Next, an effective pattern is selected from the patterns 1 (1111) to 15 (1126) based on four types of conditions 1 (1102) to 4 (1105). In this example, Condition 1 (1102) is selected based on whether or not physical accommodation is possible (1131), Condition 2 (1103) is selected based on whether or not stable supply is possible (1104), and Condition 3 (1104) is determined based on the interconnection capacity. Selection according to (1133), Condition 4 (1105), shows selection by device smooth use (1134).
  • condition 1 (1102) and physical availability (1131) are shown.
  • “physical interchangeability” refers to selecting a pattern incapable of physically transmitting power based on the amount of physical power transmission in devices A, B, C, and D in FIG. 9.
  • the pattern in which only the devices B and C are grouped out of the patterns 1 to 15 in FIG. 10 is invalidated.
  • pattern 10 (1121) and pattern 13 become invalid after selection of condition 1 (1102).
  • Condition 2 (1103) and stable supply availability (1132) are shown. Whether stable supply is possible or not is determined by selecting a pattern in which the power interchange amount in the group is 0 at the minimum.
  • condition 3 (1104) and interconnection capacity determination (1133) are shown.
  • the interconnected line capacity determination is to select a case where power can be interchanged between apparatuses but power interchange is not possible due to a limit of a transmission capacity for accommodating.
  • the transmittable capacity between the devices is known, and in FIG. 9, it is necessary to supply power to the device C.
  • pattern 2 (1113) is first invalidated. This is because the device BCD belongs to the group, but only the device D can be supplied to the device C, and the amount of power that can be transmitted is only 1, so the power interchange amount of the device C becomes negative.
  • Pattern 6 (1117) is also invalidated. This is because the device CD belongs to the group, and only the device D can be supplied to the device C, and the power transmission amount is only 1, so that the power interchange amount of the device C becomes negative. For the same reason, the pattern 14 (1125) is also invalidated.
  • condition 4 (1105) and equipment smooth use (1134) are shown.
  • the smoothing use of equipment is not to generate or store electricity only by a specific device but to select a group in which all terminals use the equipment as evenly as possible.
  • pattern 5 (1116) is invalid. This is because only the device D performs accommodation on its own and discharges the stored power to balance it, so that only the device D places a burden on the equipment. For the same reason, the pattern 9 (1019) is also invalid.
  • Pattern 1 (1112), Pattern 3 (1114), and Pattern 9 (1120) remaining under the above conditions are final candidates.
  • An arbitrary pattern is selected from these.
  • the selection method includes, for example, a method using random or a calculation formula described later.
  • satisfaction is defined by the price per virtual unit power.
  • the amount of power to be calculated and the amount of power to be consumed are each given a price. Basically, it is solved by exchanging money.
  • the satisfaction level is a value from +2 to -2.
  • the satisfaction level is set to ⁇ 1 because of excessive supply.
  • the server 101 can determine whether to perform group selection again. For group re-selection, a group candidate that has not yet been selected in the pattern 1, pattern 3, and pattern 9 remaining in the group candidate selected in FIG. 11 is selected as a new group. Alternatively, there is a method of selecting the group by changing the conditions again, or updating the equipment management database 119 and the electric energy information database 120 and selecting the group again.
  • a plurality of power accommodation control terminal groups can be created based on arbitrary conditions to control power accommodation.
  • satisfaction degree defined as the evaluation of group re-election may be added to the above conditions.
  • a group may be selected so that satisfaction is always high.
  • a policy of a user or an administrator who uses the power interchange device may be added.
  • QoL Quality of Life
  • QoL is expressed by an objective function composed of a plurality of indices.
  • QoL A ⁇ f (x) + B ⁇ g (y) +... + Z ⁇ a (z)
  • A, B,..., Z are weighting factors, and each index is temporarily independent.
  • “experience” can be calculated from the transaction information 127 and the facility information 126 of the device 102.
  • a typical example of “like / dislike” is temperature. Pleasure of feelings and discomfort based on temperature can be used as a grouping determination factor.
  • “Large / low” “Restriction conditions (such as a range that can be accommodated)” + “Occupancy rate (weighting factor)” ⁇ “Asset (index)”.
  • the “operating rate” varies in relation to the transaction information 127 of the device 102.
  • “assets” is “maximum amount of power generation and power storage” and can be calculated from the facility information 126 and conversion information 127 of the apparatus 102.
  • "age of equipment” can be expressed in this formula.
  • a representative example of “large / small” is money, and the profit and loss based on money can be used as a judgment factor for grouping.
  • the group selection is performed in the order of physical interchangeability (1131), stable supply availability (1132), interconnection capacity determination (1133), and equipment smooth use (1134).
  • the order may be changed, and the priority may be changed according to conditions. For example, if the consumer is a general household, the group selection may be made such that the transaction amount is given priority over the stable supply, and if the consumer is a factory, the stable supply is given priority over the transaction amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

When electric power interchange is performed, the electric power interchange can be controlled by forming a group constituted by a plurality of electric power interchange devices under arbitrary conditions. Electric power interchange devices (102 - 109) having electric power conversion devices (129) and so forth, includes conversion information (126), facility information (127) and dealing information (128). The electric power interchange devices are connected to a server (101) through a communication network (150). The selection of a group based on a condition is performed by using a group database (118), a facility control database (119), and an electric power amount information database (120) and the group information is transmitted to the electric power interchange devices (102 - 109). The electric power interchange devices (102 - 109) controls the electric power conversion devices (129) and so forth owned by itself using the transmitted group information to perform the electric power interchange control.

Description

電力融通グループ作成方法、および電力融通グループ作成装置Power accommodation group creation method and power accommodation group creation device
 本発明は、電力融通制御端末、電力融通制御端末の制御方法、および電力融通制御端末で構成する電力系統関連系ネットワークシステムに関するものであり、具体的には、任意の条件に基づき複数の電力融通制御端末グループを作成し電力融通の制御を可能とする技術に関する。 The present invention relates to a power accommodation control terminal, a method for controlling a power accommodation control terminal, and a power system related network system configured by the power accommodation control terminal. Specifically, the present invention relates to a plurality of power accommodation based on arbitrary conditions. The present invention relates to a technology that enables control of power interchange by creating a control terminal group.
 現在、電力の安定供給への期待が高まっている。また太陽光や風力発電らの分散電源や蓄電池の普及が進んでいる。さらに送電と配電を別事業者が実施する、いわゆる発送電分離が実施される可能性も高まっており、現状の大型発電所と送電/配電網による電力供給から、各地域で電力を発電し消費する地産地消型の電力需給システムへの変化の兆しが高い。 Currently, expectations for stable power supply are increasing. In addition, the spread of distributed power sources and storage batteries such as solar power and wind power generation is progressing. In addition, there is a growing possibility that so-called dispatch electricity separation will be carried out, in which separate companies carry out transmission and distribution, and electricity is generated and consumed in each region from the current large-scale power plant and the power supply by the transmission / distribution network. There are high signs of changes to the local production and consumption type power supply and demand system.
 このような地産地消型の需給システムを構築する1手段として、多端型非同期連系装置を用いる技術(特許文献1参照)が提案されている。この従来技術は交流/直流/交流変換機を有する接続機で小さな送電網に分割し、多端子型非同期連系装置が相互に通信し、分割した送電網の間で電力授受を行うものである。 As a means for constructing such a local production and consumption type supply and demand system, a technique using a multi-terminal type asynchronous interconnection device (see Patent Document 1) has been proposed. In this prior art, a connecting device having an AC / DC / AC converter is divided into small power grids, multi-terminal asynchronous interconnection devices communicate with each other, and power is transferred between the divided power grids. .
特開2011-061970号公報JP 2011-061970
電力授受を行うにはいくつかの目的が考えられる。例えば常に一定品質を満たす電力を使用できる環境を得ることがあげられる。災害発生時、需要過多、不安定不均一な分散電源主体の発電形態が主体になっても、常に一定品質を満たす電力を使用できるとよい。
上記のような一定品質を満たす電力を使用するためには、1つの電力需給システム内で、需要と供給のバランスを常に一定に保つ必要がある。
There are several purposes for power transfer. For example, it is possible to obtain an environment in which electric power that always satisfies a certain quality can be used. When a disaster occurs, it is good to always be able to use power that satisfies a certain quality, even if the main power generation mode is a distributed power source that is over-demanded and unstable and uneven.
In order to use electric power that satisfies the above-mentioned constant quality, it is necessary to always maintain a constant balance between supply and demand within one electric power supply and demand system.
 しかし、特許文献1では、供給要求や需要要求に応じて電力を授受することのみが開示されており、1つの電力需給システム内で、需要と供給のバランスを保つことについては考慮されていない。そこで本発明の目的は、電力を授受が可能な需給システムの中で需要よ供給のバランスを保つ技術を提供することである。 However, Patent Document 1 discloses only transferring power according to a supply request or a demand request, and does not consider keeping a balance between supply and demand within one power supply and demand system. Accordingly, an object of the present invention is to provide a technique for keeping a balance between supply and demand in a supply and demand system capable of receiving and transmitting power.
 需給バランスを一定に保つには複数の異なる需要や供給を均衡化することで解決できる。需要は需要家ごとに必要な電力量や使用する時間帯が異なる。供給も同様で、供給元ごとに発電可能な電力量や発電可能な時間帯が異なる。加えて需要家が有する蓄電能力も異なる。そのため、これら供給元、需要家をグルーピングすることで、需要と供給を均衡化し需給バランスを一定に保つことができる。 ・ To keep the supply and demand balance constant, it can be solved by balancing multiple different demands and supplies. Demand is different for each customer in the amount of power required and the time zone used. The supply is the same, and the amount of power that can be generated and the time period during which power can be generated differ for each supply source. In addition, the power storage capacity of consumers is different. Therefore, by grouping these suppliers and consumers, it is possible to balance demand and supply and keep the supply-demand balance constant.
 より具体的には、電力の安定需給や電力機器の平滑化、コスト効果などの目的に沿って条件を設定し、これらの複数の条件を満足する電力融通装置のグループを選出し、グループ間で電力融通(電力授受)を行う。すなわち、電力融通装置が、融通する条件や設備情報、制御情報、取引情報を有しており、それらを通信によりサーバが取得し、融通する条件や設備情報、電力系統の融通条件や設備情報、電力の取引情報からなるデータベースを作成し、それに基いてグループを作成する。 More specifically, conditions are set according to the objectives such as stable supply and demand of power, smoothing of power equipment, cost effectiveness, etc., and a group of power interchange equipment that satisfies these multiple conditions is selected. Conduct power interchange (power transfer). That is, the power accommodation device has accommodation conditions, facility information, control information, and transaction information. The server obtains these through communication, accommodation conditions, facility information, power system accommodation conditions and facility information, Create a database of electricity transaction information and create groups based on it.
 本発明によれば、電力融通を実行する場合に、任意の条件に基づき複数の電力融通装置からなるグループを作成し電力融通の制御を可能となる。 According to the present invention, when power accommodation is executed, a group consisting of a plurality of power accommodation devices can be created based on an arbitrary condition to control power accommodation.
本実施形態における電力融通ネットワークシステムの構成例を示す図である。It is a figure which shows the structural example of the power interchange network system in this embodiment. 本実施形態におけるグループデータベースの例を示す図である。It is a figure which shows the example of the group database in this embodiment. 本実施形態における設備管理データベースおよび設備情報の例を示す図である。It is a figure which shows the example of the equipment management database and equipment information in this embodiment. 本実施形態における電力量情報データベースおよび取引情報の例を示す図である。It is a figure which shows the example of the electric energy information database in this embodiment, and transaction information. 本実施形態のサーバと電力融通装置の制御方法の処理手順例を示すフロー図である。It is a flowchart which shows the example of a process sequence of the control method of the server and power accommodation apparatus of this embodiment. 本実施形態のサーバの制御方法の処理手順例を示すフロー図である。It is a flowchart which shows the example of a process sequence of the control method of the server of this embodiment. 本実施形態における電力融通装置間の物理的な送電可能量と物理的な送電可能経路の例を示す図である。It is a figure which shows the example of the physical power transmission possible amount between the power interchange apparatuses in this embodiment, and a physical power transmission possible path | route. 本実施形態における装置間の送電可能量の例を示す図である。It is a figure which shows the example of the power transmission possible amount between apparatuses in this embodiment. 本実施形態における電力融通に必要な項目とその値の例を示す図である。It is a figure which shows the example of the item required for the power interchange in this embodiment, and its value. 本実施形態における算出可能なグループ例を示す図である。It is a figure which shows the example of a group which can be calculated in this embodiment. 本実施形態における条件に基づきグループ選別した結果の例を示す図である。It is a figure which shows the example of the result of having selected the group based on the conditions in this embodiment.
---システム構成---
 以下に本発明の実施形態について図面を用いて詳細に説明する。
---System configuration---
Embodiments of the present invention will be described below in detail with reference to the drawings.
 図1は、本実施形態の電力融通ネットワークシステム100の構成例を示す図である。図1に示す電力融通ネットワークシステム100(以下、システム100)は、電力融通ネットワークで電力融通を実行する場合に、任意の条件に基づき複数の電力融通装置のグループを作成し電力融通の制御を可能とするコンピュータシステムである。 FIG. 1 is a diagram illustrating a configuration example of a power interchange network system 100 according to the present embodiment. The power accommodation network system 100 (hereinafter, system 100) shown in FIG. 1 can control power accommodation by creating a group of a plurality of power accommodation devices based on arbitrary conditions when executing power accommodation in the power accommodation network. Computer system.
 図1に例示した本実施形態のシステム100は、ある多端子型非同期連系装置(電力融通装置)102(以下、装置102)が、電源135、電池133、負荷134と電力線で接続され、同様に電源、電池、負荷と接続した他の電力融通装置103、104、105、106、107、108、109(以下、他の装置103ら)と系統電源線160を介して電力融通ネットワークを構成している。また、本実施形態のシステム100は、装置102、他の装置103らは、通信ネットワーク150を介してサーバ101と結ばれている。 In the system 100 of this embodiment illustrated in FIG. 1, a multi-terminal type asynchronous interconnection device (power accommodation device) 102 (hereinafter, device 102) is connected to a power source 135, a battery 133, and a load 134 through power lines. A power interchange network is configured through system power supply line 160 and other power interchange apparatuses 103, 104, 105, 106, 107, 108, 109 (hereinafter referred to as other apparatuses 103) connected to the power source, battery, and load. ing. In the system 100 of this embodiment, the device 102 and the other devices 103 are connected to the server 101 via the communication network 150.
 装置102(他の装置103らも同様)のハードウェア構成は以下のようになる。装置102は、ハードディスクドライブなど適宜な不揮発性記憶装置で構成される記憶装置121、RAMなど揮発性記憶装置で構成される内部メモリ141、記憶装置121などに保持されるプログラム142を内部メモリ141に読み出すなどして実行し装置自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPUなどの中央演算装置143、電力変換装置A129、電力変換装置B130、電力変換装置C131、電力変換装置132と通信や、他の装置103らとの通信や、通信ネットワーク150を介したサーバ101との通信を行う通信機器制御部140、を備える。なお、記憶装置121には、本実施形態の装置102として必要な機能を実装する為のプログラム142の他、変換情報126、設備情報127、取引情報128が少なくとも記憶されている。 The hardware configuration of the device 102 (the same applies to the other devices 103) is as follows. The device 102 stores, in the internal memory 141, a storage device 121 composed of a suitable non-volatile storage device such as a hard disk drive, an internal memory 141 composed of a volatile storage device such as RAM, and a program 142 held in the storage device 121. A central processing unit 143 such as a CPU that performs various determinations, computations, and control processes as well as performing overall control of the device itself by reading and executing, a power conversion device A129, a power conversion device B130, a power conversion device C131, and a power conversion device 132 And a communication device control unit 140 that performs communication with other devices 103 and the like, and communication with the server 101 via the communication network 150. The storage device 121 stores at least conversion information 126, facility information 127, and transaction information 128 in addition to a program 142 for implementing functions necessary for the device 102 of the present embodiment.
 続いて、本実施形態の装置102(他の装置103らも同様)が備える機能について説明する。上述したように、以下に説明する機能は、例えば装置102が備えるプログラム142を実行することで実装される機能と言える。但し、装置102が備える機能はプログラムにより実装される例だけでなく、該当機能に対応した専用のハードウェア装置により実現するとしても良い。 装置102は、サーバ101もしくは他の装置103らより通信機器制御部140を介してデータを受信した場合、サーバもしくは他の装置103らからの制御命令に応じて、電力変換装置129、130、131、132(以下、電力変換装置129ら)を制御する機能を有する。また装置102が有する各種データを通信機器制御部140を介してサーバ101もしくは他の装置103らに送信する機能を有する。また必要に応じて通信機器制御部140を介してサーバ101もしくは他の装置103らから情報を取得する機能を有する。 Subsequently, functions provided in the device 102 of the present embodiment (the same applies to the other devices 103) will be described. As described above, the functions described below can be said to be functions implemented by executing the program 142 included in the apparatus 102, for example. However, the functions provided in the device 102 may be realized not only by an example implemented by a program but also by a dedicated hardware device corresponding to the corresponding function. When the device 102 receives data from the server 101 or the other device 103 via the communication device control unit 140, the power conversion device 129, 130, 131 is received in accordance with a control command from the server or the other device 103. , 132 (hereinafter referred to as power converters 129 and the like). In addition, it has a function of transmitting various data held by the device 102 to the server 101 or other devices 103 via the communication device control unit 140. In addition, it has a function of acquiring information from the server 101 or another device 103 via the communication device control unit 140 as necessary.
 また、装置102は、通信機器制御部140を介して電力変換装置129らと通信し、電力変換装置129らを制御したり、電力変換装置129らから機器状態を取得する機能を有する。 Further, the device 102 has a function of communicating with the power conversion device 129 and the like via the communication device control unit 140 to control the power conversion device 129 and acquiring the device state from the power conversion device 129 and the like.
 装置102は電力変換装置129らの現在状況、制御履歴、接続している装置の種別、接続している種別の電力量、装置102が所属するグループおよびグループメンバである電力融通装置らを記録、読み出しする機能を有する。 The device 102 records the current status of the power conversion device 129, the control history, the type of connected device, the amount of power of the connected type, the group to which the device 102 belongs, and the power interchange devices that are group members, It has a reading function.
 電源135のハードウェア構成は、太陽光パネルや風力発電機らの分散電源機器で構成する。電源135は電力変換装置A129と通信する機能を有してもよい。また電源132は電力変換装置A129から要求に応じて電力を供給したり停止したりする機能を有してもよい。また電源135は電力変換装置A129に現在の状態や流れる電力量を送信する機能を有してもよい。前記の供給や停止などの制御機能や電力量の取得機能は電力変換装置A129が有してもよい。 The hardware configuration of the power supply 135 is composed of distributed power supply devices such as solar panels and wind power generators. The power source 135 may have a function of communicating with the power conversion device A129. Further, the power supply 132 may have a function of supplying or stopping power according to a request from the power conversion device A129. The power source 135 may have a function of transmitting the current state and the amount of flowing power to the power conversion device A129. The power conversion device A129 may have the control function such as supply and stop and the power amount acquisition function.
 電池133のハードウェア構成は、鉛電池やリチウム電池らの蓄電池で構成する。電池133は電力変換装置B130と通信する機能を有してもよい。また電池133は電力変換装置B130から要求に応じて電力を蓄電したり放電したり停止したりする機能を有してもよい。また電池133は電力変換装置B130に現在の状態や流れる電力量を送信する機能を有してもよい。前記の蓄電や放電などの制御機能や電力量の取得機能は電力変換装置B130が有してもよい。 The hardware configuration of the battery 133 is a storage battery such as a lead battery or a lithium battery. The battery 133 may have a function of communicating with the power conversion device B130. Further, the battery 133 may have a function of storing, discharging, or stopping power according to a request from the power conversion device B130. The battery 133 may have a function of transmitting the current state and the amount of flowing power to the power conversion device B130. The power conversion device B <b> 130 may have the control function such as power storage and discharge and the power amount acquisition function.
 負荷134は家庭機器や工場機器らの任意の電力負荷で構成する。負荷134は電力変換装置C131と通信する機能を有してもよい。また負荷134は電力変換装置C131から要求に応じて電力を消費したり停止したりする機能を有してもよい。また負荷134は電力変換装置C131に現在の状態や流れる電力量を送信する機能を有してもよい。前期の消費や停止などの制御機能や電力量の取得機能は電力変換装置C131が有してもよい。 The load 134 is composed of an arbitrary power load such as household equipment or factory equipment. The load 134 may have a function of communicating with the power conversion device C131. The load 134 may have a function of consuming or stopping power according to a request from the power conversion device C131. In addition, the load 134 may have a function of transmitting the current state and the amount of flowing power to the power conversion device C131. The power conversion device C131 may have a control function such as consumption or stop in the previous period and a power amount acquisition function.
 系統電源線160は低圧配電線や高圧配電線や自営線らで構成する。系統電源線160は電力変換装置D132と接続し電力を送電したり受電したりする機能を有する。 The system power line 160 is composed of a low-voltage distribution line, a high-voltage distribution line, and a self-employed line. The system power line 160 is connected to the power converter D132 and has a function of transmitting and receiving power.
 サーバ101のハードウェア構成は以下のようになる。サーバ101は、ハードディスクドライブなど適宜な不揮発性記憶装置で構成される記憶装置114、RAMなど揮発性記憶装置で構成される内部メモリ115、記憶装置114などに保持されるプログラム116を内部メモリ115に読み出すなどして実行し装置自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPUなどの中央演算装置117、通信ネットワーク150を介して装置102、他の装置103らとの通信を行う通信機器制御部113、を備える。なお、記憶装置114には、本実施形態のサーバ101として必要な機能を実装する為のプログラム116の他、グループ情報であるグループデータベース118、設備情報である設備情報データベース119、電力量情報である電力量情報データベース120が少なくとも記憶されている。 The hardware configuration of the server 101 is as follows. The server 101 stores, in the internal memory 115, a storage device 114 composed of a suitable non-volatile storage device such as a hard disk drive, an internal memory 115 composed of a volatile storage device such as RAM, and a program 116 held in the storage device 114. Performs overall control of the device itself by reading and executing it, and communicates with the central processing unit 117 such as a CPU that performs various determinations, computations, and control processes, and the device 102 and other devices 103 via the communication network 150. A communication device control unit 113. The storage device 114 includes a group database 118 that is group information, an equipment information database 119 that is equipment information, and electric energy information, in addition to a program 116 for implementing functions necessary as the server 101 of the present embodiment. The electric energy information database 120 is stored at least.
 続いて、本実施形態のサーバ101が備える機能について説明する。上述したように、以下に説明する機能は、例えばサーバ101が備えるプログラム116を実行することで実装される機能と言える。但し、サーバ101が備える機能はプログラムにより実装される例だけでなく、該当機能に対応した専用のハードウェア装置により実現するとしても良い。 Subsequently, functions provided in the server 101 of this embodiment will be described. As described above, the functions described below can be said to be functions implemented by executing the program 116 provided in the server 101, for example. However, the functions provided in the server 101 may be realized not only by an example implemented by a program but also by a dedicated hardware device corresponding to the corresponding function.
 サーバ101は、装置102もしくは他の装置103らより通信機器制御部113を介してデータを受信した場合、装置102もしくは他の装置103らからの要求命令に応じて、記憶装置内にある必要なデータを応答する機能を有する。また通信機器制御部113を介して装置102もしくは他の装置103らが有する各種データを取得する機能を有する。また通信機器制御部113を介して装置102もしくは他の装置103らに対して制御命令を送信し、装置102もしくは他の装置103らを制御する機能を有する。 When the server 101 receives data from the device 102 or another device 103 via the communication device control unit 113, the server 101 needs to be in the storage device in response to a request command from the device 102 or the other device 103. It has a function to respond to data. Further, it has a function of acquiring various data possessed by the device 102 or other devices 103 via the communication device control unit 113. Further, it has a function of transmitting a control command to the device 102 or other devices 103 through the communication device control unit 113 and controlling the device 102 or other devices 103.
 また、サーバ101は、装置102もしくは他の装置103らから変換情報126、設備情報127、取引情報128らを取得し、設備管理データベース119、電力情報データベース120に記録し必要に応じて読み出し加工する機能を有する。 Further, the server 101 acquires the conversion information 126, the facility information 127, and the transaction information 128 from the device 102 or another device 103, records them in the facility management database 119 and the power information database 120, and reads them out as necessary. It has a function.
 また、サーバ101は、設備管理データベース119、電力情報データベースのデータを用いて、装置102や他の装置103らの電力融通グループを算出し、グループデータベース118に記録し、必要に応じて再計算する機能を有する。また計算結果は通信機器制御部113を介して、装置102や他の装置103らに情報送信し、電力融通の制御を行う機能を有する。 Further, the server 101 uses the data in the facility management database 119 and the power information database to calculate the power interchange group of the device 102 and other devices 103, records it in the group database 118, and recalculates as necessary. It has a function. Further, the calculation result has a function of transmitting information to the device 102 and other devices 103 through the communication device control unit 113 to control power interchange.
 ---データ構造例---
 次に、本実施形態のサーバ101や装置102や他の装置103らが用いるテーブルにおけるデータ構造例について説明する。
---- Data structure example ---
Next, an example of a data structure in a table used by the server 101, the apparatus 102, and other apparatuses 103 according to the present embodiment will be described.
 図2は本実施形態におけるグループデータベース118の例を示す図である。図2に例示するグループデータベース118は、装置101や他の装置103らがどのグループに所属しているか、あるいはどのグループに所属していたかを格納し、サーバ101が管理している。このグループデータベース118は、装置101や他の装置103らが所属するグループ名202、203、204、グループ構成の期間を表す期間211、212、213といったデータで構成されている。このグループデータベース118は、サーバ101が、装置102や他の装置103らの設備情報や電力量情報から生成されたものであるか、管理者がデータ入力して生成されたものであることが想定できる。なお、期間の欄を設けずに、現在のグループのみを把握するデータベースとしても良い。 FIG. 2 is a diagram showing an example of the group database 118 in the present embodiment. The group database 118 illustrated in FIG. 2 stores which group the device 101 and other devices 103 belong to, or which group the device 101 belongs to, and is managed by the server 101. The group database 118 is composed of data such as group names 202, 203, and 204 to which the apparatus 101 and other apparatuses 103 belong, and periods 211, 212, and 213 representing periods of the group configuration. This group database 118 is assumed that the server 101 is generated from the facility information and power amount information of the device 102 and other devices 103, or is generated by the administrator inputting data. it can. In addition, it is good also as a database which grasps | ascertains only the present group, without providing the column of a period.
 図3は本実施形態における設備管理データベース119の例を示す図である。図3に例示する設備管理データベース119は、装置102や他の装置103らが有する授受能力や電力消費能力を期間ごとに格納し、サーバ101が管理している。この設備管理データベース119は、装置102や他の装置103らごと、最大発電量301、最大蓄電量303、最大負荷量304、設置場所305、授受可否306、情報を測定し記録した期間を表す期間301といったデータで構成されている。この設備管理データベースは、装置102や他の装置103らの設備情報や取引情報から生成されたものであるか、管理者がデータ入力して生成されたものであることが想定できる。また装置102や他の装置103らは、それぞれの装置毎(311、312、313の各列)のように、に同様の情報を取得し管理し設備情報127に管理している。 FIG. 3 is a diagram showing an example of the facility management database 119 in the present embodiment. The facility management database 119 illustrated in FIG. 3 stores transmission / reception capabilities and power consumption capabilities of the device 102 and other devices 103 for each period, and is managed by the server 101. This equipment management database 119 includes a maximum power generation amount 301, a maximum power storage amount 303, a maximum load amount 304, an installation location 305, whether to give / receive information 306, and a period representing a period during which information is measured and recorded for each device 102 and other devices 103. It is composed of data such as 301. This equipment management database can be assumed to be generated from equipment information and transaction information of the device 102 and other devices 103, or generated by data input by an administrator. Further, the device 102 and the other devices 103 and the like acquire and manage the same information for each device (each column of 311, 312, and 313) and manage it in the facility information 127.
 図4は本実施形態における電力量情報データベース120の例を示す図である。図4に例示する電力量情報データベース120は、系統電源線160の設備情報や、装置102や他の装置103らが有する授受能力や電力消費能力を期間ごとに格納し、サーバ101が管理している。この電力情報データベース119は、装置102や他の装置103らごと、単位期間中に給電可能量を表す給電量402、単位期間中に受電可能量を表す受電量403、給電時に必要な給電費用404、受電時に必要な受電費用405、情報を測定し記録した期間を表す期間401といったデータで構成されている。給電費用とは給電にかかす費用を表し、例えば電力を授与するために系統電源線160を送電する費用や電源135の取得や設置する費用や運用するための費用などがある。受電費用とは受電かかる費用を表し、例えば電力を受け取るために系統電源線160を使用する費用や電池133の取得や設置するための費用や運用費用などがある。この電力量情報データベース120は、装置102や他の装置103らの設備情報や取引情報から生成されたものであるか、管理者がデータ入力して生成されたものであることが想定できる。また装置102や他の装置103らは、それぞれの装置毎(411、412、413の各列)に同様の情報を取得し管理し設備情報128や取引情報129に管理している。 FIG. 4 is a diagram showing an example of the electric energy information database 120 in the present embodiment. The power amount information database 120 illustrated in FIG. 4 stores the facility information of the system power line 160, the transfer capability and power consumption capability of the device 102 and other devices 103 for each period, and is managed by the server 101. Yes. The power information database 119 includes the power supply amount 402 that represents the power supply capability amount during the unit period, the power reception amount 403 that represents the power reception capability amount during the unit period, and the power supply cost 404 necessary for power supply, for each device 102 and other devices 103. , And a data receiving cost 405 required at the time of power reception, and a period 401 representing a period during which information is measured and recorded. The power supply cost represents the cost for power supply, and includes, for example, the cost of transmitting the system power line 160 to give power, the cost of acquiring and installing the power source 135, and the cost of operating. The power receiving cost represents the cost of receiving power, and includes, for example, the cost of using the system power line 160 to receive power, the cost for acquiring and installing the battery 133, and the operating cost. This power amount information database 120 can be assumed to be generated from facility information and transaction information of the device 102 and other devices 103, or generated by inputting data by an administrator. Further, the device 102 and other devices 103 and the like acquire and manage similar information for each device (each column of 411, 412, and 413), and manage it in the facility information 128 and the transaction information 129.
 ---処理手順例1---
 以下、本実施形態における電力融通装置の制御方法の実際手順について図に基づき説明する。以下で説明する電力融通装置の制御方法に対応する各種動作は、前記システム100を構成する電力融通装置102らがそれぞれ内部メモリ等に読み出して実行するプログラムによって実現される。そして、このプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。
--- Processing procedure example 1 ---
Hereinafter, the actual procedure of the control method of the power accommodation apparatus in the present embodiment will be described with reference to the drawings. Various operations corresponding to the control method of the power accommodation apparatus described below are realized by programs that are read and executed by the power accommodation apparatus 102 constituting the system 100, respectively, in an internal memory or the like. And this program is comprised from the code | cord | chord for performing the various operation | movement demonstrated below.
 図5は、本実施形態におけるサーバ101と装置102および他の装置103らの制御方法の処理手順例1を示すフロー図である。ここではまず、サーバ101と装置102および他の装置103らが実行する主たる処理を説明する。この場合、サーバ101は装置情報取得503を行い、装置102、103、104、105に対して、情報取得要求511を送信する。装置102、103、104、105は情報取得要求511を受け、変換情報126、設備情報127、取引情報128を、情報取得に対する応答512としてサーバ101に送信する。 FIG. 5 is a flowchart showing a processing procedure example 1 of the control method of the server 101, the apparatus 102, and the other apparatus 103 in the present embodiment. Here, first, main processes executed by the server 101, the apparatus 102, and the other apparatuses 103 will be described. In this case, the server 101 performs device information acquisition 503 and transmits an information acquisition request 511 to the devices 102, 103, 104, and 105. The devices 102, 103, 104, and 105 receive the information acquisition request 511 and transmit the conversion information 126, facility information 127, and transaction information 128 to the server 101 as a response 512 for information acquisition.
 ここでサーバ101はグループ化計算504を実施する。グループ化計算504は、入手した装置ごとの変換情報126、設備情報127、取引情報128、から設備管理データベース119、電力情報データベース120を更新し、グループ化計算を実施し、グループデータベース118を更新する。グループ化計算の詳細は後述する。 Here, the server 101 performs the grouping calculation 504. The grouping calculation 504 updates the equipment management database 119 and the power information database 120 from the obtained conversion information 126, equipment information 127, and transaction information 128 for each device, performs the grouping calculation, and updates the group database 118. . Details of the grouping calculation will be described later.
 次いでサーバ101はグループ化情報送信504を行い、装置102、103、104、105に対して、グループ化制御要求513を送信する。装置102、103、104、105はグループ化制御要求513を受け、変換情報126、設備情報127、取引情報128を更新し、グループ化制御要求応答514でサーバ101に受信できたことを送信する。 Next, the server 101 performs grouping information transmission 504 and transmits a grouping control request 513 to the devices 102, 103, 104, and 105. The devices 102, 103, 104, and 105 receive the grouping control request 513, update the conversion information 126, facility information 127, and transaction information 128, and transmit that they have been received by the server 101 through the grouping control request response 514.
 グループ化計算では、図2の211のように、グループ1(202)が装置102、装置103で、グループ2(203)が装置104、装置105がとなる。装置102、103、104、105は、制御要求を受けグループ化した装置同士で電力融通506、507、508、509を実施する。必要に応じて変換情報125、設備情報126、取引情報127を更新する。 In the grouping calculation, the group 1 (202) is the device 102 and the device 103, and the group 2 (203) is the device 104 and the device 105, as indicated by 211 in FIG. The devices 102, 103, 104, and 105 implement power interchange 506, 507, 508, and 509 between the devices that are grouped in response to the control request. The conversion information 125, facility information 126, and transaction information 127 are updated as necessary.
 次いでサーバ101は融通結果取得510を行い、装置102、103、104、105に対して、融通結果取得要求515を送信する。装置102、103、104、105は融通結果取得要求515を受け、変換情報125、設備情報126、取引情報127を、融通結果取得応答516でサーバ101に送信する。 Next, the server 101 performs accommodation result acquisition 510 and transmits an accommodation result acquisition request 515 to the devices 102, 103, 104, and 105. The devices 102, 103, 104, and 105 receive the interchange result acquisition request 515 and transmit the conversion information 125, the facility information 126, and the transaction information 127 to the server 101 with the interchange result acquisition response 516.
 ここでサーバ101は入手した装置ごとの変換情報126、設備情報127、取引情報128、から設備管理データベース119、電力情報データベース120を更新し、グループ化計算504で想定した結果と差異を確認し、必要であれば再度グループ化計算を実施し、グループデータベース118を更新する。グループ化再計算は後述する。ここではグループ再計算の結果、図2の212のようにグループ1(202)が装置102、装置104で、グループ2(203)が装置103、装置105となる。 Here, the server 101 updates the equipment management database 119 and the power information database 120 from the obtained conversion information 126, equipment information 127, and transaction information 128 for each device, confirms the difference from the result assumed in the grouping calculation 504, If necessary, the grouping calculation is performed again, and the group database 118 is updated. The grouping recalculation will be described later. Here, as a result of the group recalculation, the group 1 (202) is the device 102 and the device 104, and the group 2 (203) is the device 103 and the device 105 as indicated by 212 in FIG.
 次いでサーバ101はグループ化情報送信512を行い、装置102、103、104、105に対して、グループ化制御要求517を送信する。装置102、103、104、105はグループ化制御要求517を受け、変換情報126、設備情報127、取引情報128を更新し、グループ化制御要求応答518でサーバ101に受信できたことを送信する。 Next, the server 101 performs grouping information transmission 512 and transmits a grouping control request 517 to the devices 102, 103, 104, and 105. The devices 102, 103, 104, and 105 receive the grouping control request 517, update the conversion information 126, the facility information 127, and the transaction information 128, and transmit that they have been received by the server 101 through the grouping control request response 518.
 処理は図5の1(501)に戻る(502)。設備情報取得503から再度実施する
 次に図5のグループ選出504、およびグループ再選出511の処理詳細を示す。図6は、本実施形態のサーバ101の制御方法のグループ決定処理手順例を示すフロー図である。まず、新規装置の追加があるか無いかを判断する(601)。新規装置の追加には装置102や他の装置103らがサーバに電力融通を要求する場合や、サーバ101が装置に追加を問い合わせる場合などがある。
The process returns to 1 (501) in FIG. 5 (502). Re-execution from equipment information acquisition 503 Next, the details of the process of group selection 504 and group re-selection 511 in FIG. 5 will be described. FIG. 6 is a flowchart illustrating an example of a group determination processing procedure of the control method of the server 101 according to the present embodiment. First, it is determined whether or not a new device is added (601). The addition of a new device includes a case where the device 102 or another device 103 requests the server for power interchange, or a case where the server 101 asks the device for addition.
 新規装置の追加がある場合(601:Yes)、装置情報追加処理を行う(602)。装置情報追加ではサーバ101は装置102および他の装置103らと通信し、装置の各種情報を取得し、設備管理データベース119、電力量情報データベース120を更新する。また本例では装置追加について述べたが、装置の削除や、装置情報の更新も同様のフローとなる。 If a new device is added (601: Yes), device information addition processing is performed (602). In the addition of device information, the server 101 communicates with the device 102 and other devices 103, acquires various pieces of device information, and updates the facility management database 119 and the power amount information database 120. In this example, device addition has been described, but device deletion and device information update are performed in the same flow.
 次いで、電力融通装置のグループ選出処理の第一段階として、大グループ分割が必要であるかを必要でないかを判断する(603)。大グループ分割とは、複数の電力融通装置をグループ選出する前に、まず複数の電力融通装置の候補自体も分類することである。本実施形態を例にすれば、装置102および他の装置103らの計8台の電力融通装置がある。大グループ分割とはこのうち条件にもとづき、装置102、103、104、105で1つの大グループ1、装置106、107、108、109で大グループ2に分類し、次いで大グループ1の中でのグループ選出、大グループ2のなかでグループ選出する。 Next, as a first step of the group selection process of the power interchange apparatus, it is determined whether a large group division is necessary or not (603). The large group division is to classify a plurality of power interchange apparatus candidates themselves before selecting a plurality of power interchange apparatuses as a group. Taking this embodiment as an example, there are a total of eight power interchange devices, such as the device 102 and the other devices 103. Based on these conditions, large group division is classified into one large group 1 with devices 102, 103, 104, and 105, and large group 2 with devices 106, 107, 108, and 109, and then within large group 1. Group selection, group selection in large group 2.
 大グループ分割が必要であるかの判断は、物理的な制限、法律的な制限、性能的な制限などがある。物理的な制限とは、1点目の例は、装置が物理的に離れておりグループ化して融通することができない、離島の装置と別の離島の装置のような場合がある。2点目の例は、電力融通を行う系統電源線160が多数の装置で電力授受を同時に行うほど電力を物理的に送電する能力がないような場合がある。特に2点目は既存の送電線や配電線の設計が発電機を上流とした発電から需要家にツリー構造で一方的に送電するように設計されており、網目状で双方向に送電するような電力融通の場合は、物理的な制限に特に考慮する必要がある。物理的制限は設備管理データベース119にある設置場所305から判断できる。 判断 Judgment of whether large group division is necessary includes physical restrictions, legal restrictions, and performance restrictions. In the first example, there is a case where the device is physically separated and cannot be grouped and accommodated, such as a device on a remote island and a device on another remote island. In the second example, there is a case where the system power supply line 160 that performs power interchange does not have the ability to physically transmit power so that a large number of devices can simultaneously transmit and receive power. In particular, the second point is that the design of the existing transmission lines and distribution lines is designed to transmit unilaterally from the power generation upstream of the generator to the customer in a tree structure, so as to transmit bidirectionally in a mesh form In the case of flexible power accommodation, special consideration must be given to physical limitations. The physical restriction can be determined from the installation location 305 in the equipment management database 119.
 法律的な制限とは、1点目の例は、ある装置とある装置の電力融通が許可されていない、国家や地域が異なり融通ができない場合がある。2点目の例は、ある装置らが罰則をかけられており電力融通が許可されてない、課金不足や虚偽の設備情報や取引情報を通知した場合がある。法律的制限は設備管理データベース119にある授受可否306から判断できる。 The legal restriction is that the first example is that the power interchange between a certain device and a certain device is not permitted. As a second example, there is a case where a certain device has been penalized and has not been allowed power interchange, and has been informed of insufficient billing or false facility information or transaction information. Legal restrictions can be determined from the acceptance / rejection 306 in the equipment management database 119.
 性能的な制限とは、1点目の例は、サーバ101が多数の装置でグループ選出できない、計算時間が掛かりすぎてグループ選出が規定時間内に間に合わない場合である。2点目の例は、サーバ101が装置102および他の装置103らの情報が取得または要求できない、通信性能の影響で同じ時間にすべての装置情報が収集できず、グループ選出が間に合わない場合である。性能的制限は、プログラム内に格納する計算結果のログや通信ログから判断できる。 The performance limitation is the first example when the server 101 cannot select a group with a large number of devices, and it takes too much calculation time to select the group within the specified time. The second example is a case where the server 101 cannot acquire or request information of the device 102 and other devices 103, cannot collect all device information at the same time due to the influence of communication performance, and the group selection is not in time. is there. The performance limit can be determined from a calculation result log or a communication log stored in the program.
 大グループ分割が必要である場合(603:Yes)、大グループ分割処理を行う(604)。サーバ101は設備管理データベース119から、前記の3種類の制限らに合致する場合は、大グループ分割し、それぞれのグループに所属する装置を算出し、グループデータベース118に記録する。 When large group division is necessary (603: Yes), large group division processing is performed (604). If the server 101 matches the above three types of restrictions from the equipment management database 119, the server 101 divides the group into large groups, calculates devices belonging to each group, and records them in the group database 118.
 次いで、電力融通装置のグループ選出の主要処理を行う。まず全条件でグループ選出を行ったか行っていないかを判断する(605)。条件でグループ選出するとは、それぞれのグループ候補に対して任意の条件を満足するかを判断し、満足する場合にその候補を残すことである。全条件でグループ選出とは規定の条件すべてでグループ候補の満足可否を確認したことを意味する。本条件は、装置102および他の装置103らからの設備情報126に記録されたものや、サーバ101の設備管理データベース119に記録されたものや、管理者がデータ入力して生成されたものであることが想定できる。条件に基づく選出例は処理手順例2で詳細に説明する。 Next, the main process of selecting a group of power interchange devices is performed. First, it is determined whether or not a group is selected under all conditions (605). “Selecting a group by condition” means determining whether or not an arbitrary condition is satisfied for each group candidate, and leaving the candidate when satisfied. Selecting a group under all conditions means confirming whether a group candidate is satisfied under all prescribed conditions. This condition is recorded in the facility information 126 from the device 102 and other devices 103, recorded in the facility management database 119 of the server 101, or generated by the administrator inputting data. It can be assumed that there is. An example of selection based on conditions will be described in detail in Processing Procedure Example 2.
 全条件に基づきグループ選出を行っている場合(605:Yes)、装置に選出したグループを伝達し電力融通の制御を開始する(607)。サーバ101は装置102および他の装置103らにグループ情報を送信し、装置同士での電力融通を指示する。 When group selection is performed based on all conditions (605: Yes), the selected group is transmitted to the apparatus and control of power interchange is started (607). The server 101 transmits group information to the device 102 and other devices 103 to instruct power interchange between the devices.
 全条件に基づきグループ選出を行っていない場合(605:No)、それぞれの条件に基づきグループ分割処理をおこなう(606)。それぞれの条件に基づきグループ分割処理606とは、3段階の処理を行う。はじめに候補となるすべての装置で組合すことができるグループ候補を算出する。次に算出したグループ候補の中で、ある条件に基づいた場合に実行可能であるグループを選出する。最後に条件に基づいて選出されたグループが物理的に実行可能であるかを確認し、実行不可能な場合は候補から除外する。本処理は処理手順例2で後述する。 次いで、再度のグループ選出が必要であるか必要でないかを判断する(608)。再度のグループ選出が必要であるかは、グループ選出した中での電力融通結果に基づき判断する。電力融通結果が当初の条件と大きく乖離する場合(608:Yes)、再度グループ選出を行う(609)。本条件の選出については後述する。再度のグループ選出が必要でない場合(608:No)は、一定時間が経過したかを確認する(610)。一定時間が経過していない場合(610:No)、電力融通を実行し、再度のグループ選出が必要であるかを確認する(608)。一定時間が経過している場合(610:Yes)、新規装置の追加があるかを判断する(601)。一定時間の経過とは、例えば1週間、1ヶ月などがある。大グループ分割単位で算出しなおすため、ある程度の時間間隔を決める。また電力変動が少ない期間は長く、電力変動が多い期間は短く設定してもよい。 When group selection is not performed based on all conditions (605: No), group division processing is performed based on each condition (606). Based on the respective conditions, the group division process 606 performs a three-stage process. First, group candidates that can be combined with all candidate devices are calculated. Next, a group that can be executed when a certain condition is satisfied is selected from the calculated group candidates. Finally, it is confirmed whether the group selected based on the condition is physically executable. If it is not possible, the group is excluded from the candidates. This processing will be described later in processing procedure example 2. Next, it is determined whether or not a group selection is necessary again (608). Whether it is necessary to select a group again is determined based on the power interchange result in the group selection. If the power interchange result is significantly different from the initial condition (608: Yes), group selection is performed again (609). The selection of this condition will be described later. If it is not necessary to select a group again (608: No), it is confirmed whether a predetermined time has passed (610). When the predetermined time has not elapsed (610: No), power interchange is executed and it is confirmed whether another group selection is necessary (608). If the predetermined time has elapsed (610: Yes), it is determined whether a new device has been added (601). The passage of a certain time includes, for example, one week and one month. A certain time interval is determined for recalculation in large group division units. Further, the period in which the power fluctuation is small may be set long, and the period in which the power fluctuation is large may be set short.
 ---処理手順例2---
 条件に基づくグループ選出(606)について、図7、図8、図9、図10を用いて説明する。
--- Example of processing procedure 2 ---
The group selection based on the condition (606) will be described with reference to FIGS. 7, 8, 9, and 10. FIG.
 図7は、本実施形態における電力融通ネットワークの物理的接続構成例を示す図である。この電力融通ネットワークは電力融通装置A701(以下、装置A)、電力融通装置B702(以下、装置B)、電力融通装置C(以下、装置C)、電力融通装置D(以下、装置D)の4台で構成されている。それぞれの装置は電力が送電可能な送電線で接続されている。装置Aと装置Bには送電線712があり、装置Aと装置Cには送電線711があり、装置Aと装置Dには送電線715があり、装置Bと装置Dには送電線713があり、装置Cと装置Dには送電線714があり、電力をお互い送電できる。なおこの場合の送電線とは、物理的に接続されている場合でも、論理的に接続されている場合でも、いずれの場合でも電力が送電できればよい。 FIG. 7 is a diagram showing a physical connection configuration example of the power interchange network in the present embodiment. This power accommodation network includes power accommodation device A 701 (hereinafter referred to as device A), power accommodation device B 702 (hereinafter referred to as device B), power accommodation device C (hereinafter referred to as device C), and power accommodation device D (hereinafter referred to as device D). It consists of a stand. Each device is connected by a transmission line capable of transmitting power. Apparatus A and apparatus B have a power transmission line 712, apparatus A and apparatus C have a transmission line 711, apparatus A and apparatus D have a transmission line 715, and apparatus B and apparatus D have a transmission line 713. Yes, devices C and D have power transmission lines 714 that can transmit power to each other. Note that the power transmission line in this case only needs to be able to transmit power regardless of whether it is physically connected or logically connected.
 図8は、本実施形態における図7に示した電力融通ネットワークの送電線における送電可能容量例を示す図であり、変換情報126や設備情報127や取引情報128より、サーバ101の設備管理データベース119に格納する。装置A811は、装置B802、装置C803、装置D804に対して送電可能量が、5、10、1である。装置B812は、装置A801、装置C803、装置D804に対して送電可能量が、5、0、10である。装置C813は、装置A801、装置B802、装置D804に対して送電可能量が、10、0、3である。装置D814は、装置A801、装置B802、装置C803に対して送電可能量が、1、10、3である。以上より、図7の電力融通ネットワークでは、装置A701と装置B702は送電量5を互いに送電可能であり、装置A701と装置C703は送電量10を互いに送電可能であり、装置A701と装置D704は送電量1で互いに送電可能であり、装置B702と装置D704は送電量10で互いに送電可能であり、装置C703と装置D704は送電量3で互いに送電可能である。 FIG. 8 is a diagram showing an example of the transmittable capacity in the transmission line of the power interchange network shown in FIG. 7 in the present embodiment, and the equipment management database 119 of the server 101 based on the conversion information 126, equipment information 127, and transaction information 128. To store. Device A 811 has 5, 10, 1, the amount of power that can be transmitted to device B 802, device C 803, and device D 804. The amount of power that can be transmitted from the device B 812 to the devices A 801, C 803, and D 804 is 5, 0, and 10. The device C813 has 10, 0, 3 that can transmit power to the devices A801, B802, and D804. The device D 814 has the possible power transmission amounts of 1, 10, 3 to the device A 801, the device B 802, and the device C 803. As described above, in the power interchange network of FIG. 7, the devices A701 and B702 can transmit the transmission amount 5 to each other, the devices A701 and C703 can transmit the transmission amount 10 to each other, and the devices A701 and D704 transmit power. Device B 702 and device D 704 can transmit power to each other with power transmission amount 10, and devices C 703 and D 704 can transmit power to each other with power transmission amount 3.
 図9は、本実施形態における図7に示した電力融通ネットワークの装置が有する設備情報例を示す図であり、変換情報126や設備情報127や取引情報128より、サーバ101の設備管理データベース119に格納する。それぞれ装置A911、装置B912、装置C913、装置D914ごとの発電量901、蓄電量902、負荷量903、基本融通量904、最大融通量905を示す。発電量901はある単位時間あたりに対象装置が発電できる発電量である。蓄電量902はある単位時間あたりに対象装置が蓄電できる蓄電量である。また本例では単位時間あたりに対象装置が放電できる放電量であるとする。負荷量903はある単位時間あたりに対象装置が消費する電力量である。基本融通量904は対象装置がある単位時間あたりの別の装置に送電可能な電力量であり、プラスは授電可能で、マイナスは受電必要であることを示す。最大融通量905は対象装置がある単位時間あたりに別の装置に送電可能な最大電力量である、基本融通量904との違いは、蓄電量をすべて放電し電力融通のために使用する点である。 FIG. 9 is a diagram illustrating an example of facility information included in the apparatus of the power interchange network illustrated in FIG. 7 in the present embodiment. The conversion information 126, the facility information 127, and the transaction information 128 are used to store the facility information in the facility management database 119 of the server 101. Store. A power generation amount 901, a storage amount 902, a load amount 903, a basic accommodation amount 904, and a maximum accommodation amount 905 for each of the devices A911, B912, C913, and D914 are shown. The power generation amount 901 is a power generation amount that can be generated by the target device per unit time. The storage amount 902 is a storage amount that the target device can store per unit time. In this example, it is assumed that the discharge amount is that the target device can discharge per unit time. The load amount 903 is the amount of power consumed by the target device per unit time. The basic accommodation amount 904 is the amount of power that can be transmitted to another device per unit time of the target device. A plus indicates that power can be transmitted and a minus indicates that it is necessary to receive power. The maximum accommodation amount 905 is the maximum amount of power that can be transmitted to another device per unit time. The difference from the basic accommodation amount 904 is that all the stored amount is discharged and used for power accommodation. is there.
 図10は、図7の装置A701、装置B702、装置C703、装置D704、計4台の装置があった場合に何種類のグループを作成できるかを示している。本処理は組み合わせ問題として処理できる。装置が4台あるため、パターン1(1011)からパターン15(1025)の計15種類の組み合わせがある。それぞれの組み合わせで、グループ1(1001)、グループ2(1002)、グループ3(1003)、グループ4(1004)に、各装置の組み合わせができる。 FIG. 10 shows how many types of groups can be created when there are a total of four devices, device A 701, device B 702, device C 703, and device D 704 in FIG. This process can be processed as a combination problem. Since there are four devices, there are a total of 15 types of combinations from pattern 1 (1011) to pattern 15 (1025). With each combination, each device can be combined into group 1 (1001), group 2 (1002), group 3 (1003), and group 4 (1004).
 図11は本実施例における図10のパターンから条件に基づき適切なグループを選出する例であり、変換情報126や設備情報127や取引情報128より、サーバ101のグループデータベース118に格納する。 FIG. 11 is an example of selecting an appropriate group based on the conditions from the pattern of FIG. 10 in the present embodiment, and the information is stored in the group database 118 of the server 101 from the conversion information 126, the facility information 127, and the transaction information 128.
 図11は図10と同様のパターン1(1111)からパターン15(1126)がある。初期状態(1101)ではすべてのパターンが「あり」である。次いでここでは条件1(1102)から条件4(1105)の4種類の条件に基づきパターン1(1111)からパターン15(1126)のうち、有効なパターンを選出する。本例では条件1(1102)を、物理的な融通可否(1131)による選択、条件2(1103)を、安定的供給可否(1104)による選択、条件3(1104)を、連系線容量判定(1133)による選択、条件4(1105)を、機器平滑利用(1134)による選択を示す。 FIG. 11 includes patterns 1 (1111) to 15 (1126) similar to FIG. In the initial state (1101), all patterns are “present”. Next, an effective pattern is selected from the patterns 1 (1111) to 15 (1126) based on four types of conditions 1 (1102) to 4 (1105). In this example, Condition 1 (1102) is selected based on whether or not physical accommodation is possible (1131), Condition 2 (1103) is selected based on whether or not stable supply is possible (1104), and Condition 3 (1104) is determined based on the interconnection capacity. Selection according to (1133), Condition 4 (1105), shows selection by device smooth use (1134).
 まず、条件1(1102)、物理的な融通可否(1131)を示す。物理的な融通可否とは、図9において装置A、装置B、装置C、装置D、での物理的な送電可能量に基づき、物理的に送電不可能なパターンを選別する。図9にて装置Bと装置Cは互いに送電不可能なため、図10のパターン1からパターン15のうち、装置Bと装置Cのみがグループとなっているパターンを無効とする。図11ではパターン10(1121)およびパターン13は条件1(1102)の選出を経て無効となる。 続いて、条件2(1103)、安定的供給可否(1132)を示す。安定的供給可否とは、グループ内での電力融通量が最低でも0になるパターンを選別する。本条件は常に電力が安定して供給を受けられる、すなわち電力融通量がマイナスになり停電するような事態にならないようにすることを意味する。図9では装置Cの融通量がマイナスとなり、装置Cが単独となるグループが存在する場合は、電力の安定供給をうけることができない。以上より図11ではパターン4(1115)、パターン7(1118)、パターン11(1122)、パターン13(1124)、パターン15(1126)が無効となる。 First, condition 1 (1102) and physical availability (1131) are shown. In FIG. 9, “physical interchangeability” refers to selecting a pattern incapable of physically transmitting power based on the amount of physical power transmission in devices A, B, C, and D in FIG. 9. In FIG. 9, since the devices B and C cannot transmit power to each other, the pattern in which only the devices B and C are grouped out of the patterns 1 to 15 in FIG. 10 is invalidated. In FIG. 11, pattern 10 (1121) and pattern 13 become invalid after selection of condition 1 (1102). Subsequently, Condition 2 (1103) and stable supply availability (1132) are shown. Whether stable supply is possible or not is determined by selecting a pattern in which the power interchange amount in the group is 0 at the minimum. This condition means that the power can be always supplied stably, that is, the power interchange amount becomes negative and does not cause a power outage. In FIG. 9, when the accommodation amount of the device C becomes negative and there is a group in which the device C is independent, stable power supply cannot be received. Thus, in FIG. 11, pattern 4 (1115), pattern 7 (1118), pattern 11 (1122), pattern 13 (1124), and pattern 15 (1126) are invalid.
 続いて、条件3(1104)、連系線容量判定(1133)を示す。連系線容量判定とは、装置間で電力融通可能であるが融通するための送電容量の限界のために電力融通ができない場合を選別することである。図8から装置間の送電可能容量が把握しており、図9では装置Cに対して電力を供給する必要があることがわかる。以上より図11では、まずパターン2(1113)が無効となる。グループは装置BCDが所属しているが、装置Cには装置Dしか供給できず、送電可能量が1しかないため、装置Cの電力融通量はマイナスになるためである。またパターン6(1117)も無効となる。グループは装置CDが所属しており、装置Cには装置Dしか供給できず、送電可能量が1しかないため、装置Cの電力融通量はマイナスになるためである。同様な理由でパターン14(1125)も無効となる。 Subsequently, condition 3 (1104) and interconnection capacity determination (1133) are shown. The interconnected line capacity determination is to select a case where power can be interchanged between apparatuses but power interchange is not possible due to a limit of a transmission capacity for accommodating. As can be seen from FIG. 8, the transmittable capacity between the devices is known, and in FIG. 9, it is necessary to supply power to the device C. Thus, in FIG. 11, pattern 2 (1113) is first invalidated. This is because the device BCD belongs to the group, but only the device D can be supplied to the device C, and the amount of power that can be transmitted is only 1, so the power interchange amount of the device C becomes negative. Pattern 6 (1117) is also invalidated. This is because the device CD belongs to the group, and only the device D can be supplied to the device C, and the power transmission amount is only 1, so that the power interchange amount of the device C becomes negative. For the same reason, the pattern 14 (1125) is also invalidated.
 最後に条件4(1105)、機器平滑利用(1134)を示す。機器の平滑化利用とは特定の装置のみが発電や蓄電をするのではなく、全端末がなるべく均等に機器を使用するようなグループを選出することである。ここでは、パターン5(1116)は無効となる。これは装置Dのみが自分自身で融通を行い、かつ、蓄電していた分を放電して釣り合いがとれるため、装置Dのみ機器に負担が掛かるためである。同様の理由でパターン9(1019)も無効となる。 Finally, condition 4 (1105) and equipment smooth use (1134) are shown. The smoothing use of equipment is not to generate or store electricity only by a specific device but to select a group in which all terminals use the equipment as evenly as possible. Here, pattern 5 (1116) is invalid. This is because only the device D performs accommodation on its own and discharges the stored power to balance it, so that only the device D places a burden on the equipment. For the same reason, the pattern 9 (1019) is also invalid.
 以上の条件で残存したパターン1(1112)、パターン3(1114)、パターン9(1120)が最終候補となる。この中で任意のパターンを選択する。選択方法は、、例えばランダムや後述する計算式を用いる方法がある。 Pattern 1 (1112), Pattern 3 (1114), and Pattern 9 (1120) remaining under the above conditions are final candidates. An arbitrary pattern is selected from these. The selection method includes, for example, a method using random or a calculation formula described later.
 ―――処理手順例3―――
 本実施例における融通結果による再グループ選出処理(609)の例を示す。グループ選出後、電力融通量に対して以下のような判定基準を設ける。時間あたりの発電量A、時間当たりの蓄電量B、時間当たりの使用量C、を用い、A+B-C=Pとし、Pを判断基準とする。Aは、α×f(t)とし、時間の関数と重み係数αで表される。時間によって総発電量は変化する。Bは、β×g(t)とし、時間の関数と重み係数βで表される。時間によって総蓄電量は変化する。Cは、γ×h(t)とし、時間の関数と重み係数βで表される。時間によって総使用量は変化する。P=0の場合は発電と蓄電と負荷が最もバランスよく電力融通が実行されたことを表す。
――― Processing procedure example 3 ――――
The example of the regroup selection process (609) by the accommodation result in a present Example is shown. After selecting the group, the following criteria will be set for the power accommodation. Using power generation amount A per hour, power storage amount B per hour, and usage amount C per hour, A + BC = P, where P is a criterion. A is α × f (t) and is represented by a function of time and a weighting factor α. Total power generation changes with time. B is β × g (t) and is expressed by a function of time and a weighting coefficient β. The total amount of stored electricity changes with time. C is γ × h (t) and is represented by a function of time and a weighting coefficient β. Total usage varies with time. In the case of P = 0, it indicates that power interchange is executed with the most balanced power generation, power storage, and load.
 再グループ選出にあたり満足度を定義する。満足度は仮想的な単位電力あたりの値段で定義する。算出する電力量、消費する電力量に、それぞれ値段をつけたものである。基本的にお金のやり取りで解決する。ここでは満足度を+2から-2までの数値とする。以下の5種類の数値となることを考える。(1)A+B-C=0である場合、もっとも満足度は最大で+2とする。(2)P(最大)>A+B-C>0である場合、供給が高いが非効率なため、満足度は高い+1とする。もしくは標準として0とする。(3)A+B-C>P(最大)である場合は、供給過多のため、満足度は低い-1とする。(4)P(最小)<A+B-C<0である場合、需要が高いため、満足度は低い-1とする。(5)A+B-C<P(最小)である場合は、需要過多のため、満足度は最低で-2とする。前記の満足度の値を基に、サーバ101は、グループ選出を再度おこなうかを判断できる。
グループの再選出には、図11で選出したグループ候補に残ったパターン1、パターン3、パターン9でまだ選択していないグループ候補を新しいグループとして選択する。もしくは、再度条件を変更してグループ選出を行うか、設備管理データベース119、電力量情報データベース120を更新しグループ選出を再度行う方法などがある。
以上、本発明を実施するための最良の形態などについて具体的に説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
Define satisfaction when regrouping. Satisfaction is defined by the price per virtual unit power. The amount of power to be calculated and the amount of power to be consumed are each given a price. Basically, it is solved by exchanging money. Here, the satisfaction level is a value from +2 to -2. Consider the following five numerical values. (1) When A + B−C = 0, the maximum satisfaction is +2. (2) When P (maximum)> A + B−C> 0, the supply is high but inefficient, so the satisfaction level is high + 1. Or it is set to 0 as a standard. (3) When A + B−C> P (maximum), the satisfaction level is set to −1 because of excessive supply. (4) When P (minimum) <A + B−C <0, the demand is high, so the satisfaction level is low −1. (5) When A + B−C <P (minimum), the degree of satisfaction is at least −2 because of excessive demand. Based on the satisfaction value, the server 101 can determine whether to perform group selection again.
For group re-selection, a group candidate that has not yet been selected in the pattern 1, pattern 3, and pattern 9 remaining in the group candidate selected in FIG. 11 is selected as a new group. Alternatively, there is a method of selecting the group by changing the conditions again, or updating the equipment management database 119 and the electric energy information database 120 and selecting the group again.
Although the best mode for carrying out the present invention has been specifically described above, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.
 こうした本実施形態によれば、電力融通を実行する場合に、任意の条件に基づき複数の電力融通制御端末グループを作成し電力融通の制御を可能となる。 According to the present embodiment, when power accommodation is executed, a plurality of power accommodation control terminal groups can be created based on arbitrary conditions to control power accommodation.
 本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、前記条件に基づくグループの選出ごとに、前記大グループ分割のときと同様、物理的な制限、法律的な制限、性能的な制限などを加えてもよい。特に物理的な制限として、分散電源は日射量や風向きによって出力が変動するため安定した供給を確保するために、電力融通量が満足していてもグループ候補から削除してもよい。また同じく物理的制限として、発電地はリチウム電池、鉛電池で、放電の速度が異なる。前記分散電源と同様に安定した供給を確保するために、電力融通量を満足していてもグループ候補から削除してもよい。 記載 At least the following will be made clear by the description in this specification. That is, every time a group is selected based on the above conditions, physical restrictions, legal restrictions, performance restrictions, and the like may be added as in the case of the large group division. In particular, as a physical limitation, since the output of the distributed power supply varies depending on the amount of solar radiation and the wind direction, even if the power interchange amount is satisfied, it may be deleted from the group candidates in order to ensure a stable supply. Similarly, as a physical limitation, the power generation sites are lithium batteries and lead batteries, and the speed of discharge is different. In order to ensure a stable supply as in the case of the distributed power source, even if the power interchange amount is satisfied, it may be deleted from the group candidates.
 また、前記条件にグループ再選出の評価として規定した満足度を加えてもよい。満足度が常に高くなるようにグループ選出をしてもよい。 Also, the satisfaction degree defined as the evaluation of group re-election may be added to the above conditions. A group may be selected so that satisfaction is always high.
 また、前記条件に加えて、電力融通装置を使用する使用者もしくは管理者のポリシーを加えてもよい。例えば使用者もしくは管理者のポリシーとしてQoL(Quality of Life)と言う指標を定義し、QoLを複数の指標で構成する目的関数で表記する。QoL=A×f(x)+B×g(y)+…+Z×a(z)とし、A、B、…、Zをを重み係数として、各指標は一時独立とする。指標は重み係数と関数で表す。各指標の一例として、「好き/嫌い」、「多い/少ない」などがある。
「好き/嫌い」=「制約条件」+「個人差(重み係数)」×「経験(指標)」で表す。この場合、「経験」は、装置102の取引情報127や設備情報126から算出可能である。「好き/嫌い」の代表例は、温度であり、温度に基づく感情の快不快をグループ分けの判断要素として使用することができる。
「多い/少ない」=「制約条件(融通可能な範囲など)」+「稼働率(重み係数)」×「資産(指標)」で表す。「稼働率」は、装置102の取引情報127に関係し変動する。また「資産」は「発電や蓄電の最大量」であり、装置102の設備情報126や変換情報127から算出可能である。また「機器の老朽化」も本式で表現できる。「多い/少ない」の代表例は、お金であり、お金に基づく損得をグループ分けの判断要素として使用することができる。
In addition to the above conditions, a policy of a user or an administrator who uses the power interchange device may be added. For example, an index called QoL (Quality of Life) is defined as a user or administrator policy, and QoL is expressed by an objective function composed of a plurality of indices. QoL = A × f (x) + B × g (y) +... + Z × a (z), and A, B,..., Z are weighting factors, and each index is temporarily independent. The index is expressed by a weighting factor and a function. Examples of each index include “like / dislike” and “more / less”.
“Like / dislike” = “constraint condition” + “individual difference (weighting coefficient)” × “experience (index)”. In this case, “experience” can be calculated from the transaction information 127 and the facility information 126 of the device 102. A typical example of “like / dislike” is temperature. Pleasure of feelings and discomfort based on temperature can be used as a grouping determination factor.
“Large / low” = “Restriction conditions (such as a range that can be accommodated)” + “Occupancy rate (weighting factor)” × “Asset (index)”. The “operating rate” varies in relation to the transaction information 127 of the device 102. Further, “assets” is “maximum amount of power generation and power storage” and can be calculated from the facility information 126 and conversion information 127 of the apparatus 102. In addition, "age of equipment" can be expressed in this formula. A representative example of “large / small” is money, and the profit and loss based on money can be used as a judgment factor for grouping.
 また、図11の前記グループ選出では、物理的融通可否(1131)、安定的供給可否(1132)、連系線容量判定(1133)、機器平滑利用(1134)の順でグループ選出をしていったが、順番は変更してもよいし、条件に応じて優先度として変更してもよい。例えば需要家が一般家庭であれば安定供給よりも取引金額を優先し、需要家が工場であれば取引金額よりも安定供給を優先したグループ選出を行うようにしてもよい。 In the group selection of FIG. 11, the group selection is performed in the order of physical interchangeability (1131), stable supply availability (1132), interconnection capacity determination (1133), and equipment smooth use (1134). However, the order may be changed, and the priority may be changed according to conditions. For example, if the consumer is a general household, the group selection may be made such that the transaction amount is given priority over the stable supply, and if the consumer is a factory, the stable supply is given priority over the transaction amount.
 また、前記グループ選出では、条件にあわないパターンは無効としたが、メンバを多めに入れることで、発電量、蓄電量、負荷量が変動した際の、変動分を吸収させてもよい。 Also, in the group selection, patterns that do not meet the conditions are invalidated, but by adding a large number of members, fluctuations when the power generation amount, power storage amount, and load amount fluctuate may be absorbed.
100     電力融通ネットワークシステム
101     サーバ
102     電力融通装置
103-109 (他の)電力融通装置
113     サーバの通信機器制御部
114     サーバの記憶装置
115     内部メモリ
116     プログラム
117     サーバの中央演算装置
118     グループデータベース
119     設備管理データベース
120     電力量情報データベース
121     電力融通装置の記憶装置
126     変換情報
127     設備情報
128     取引情報
129     電力変換装置A
130     電力変換装置B
131     電力変換装置C
132     電力変換装置D
132     電力融通装置に接続している電源
133     電力融通装置に接続している電池
134     電力融通装置に接続している負荷
140     電力融通装置の通信機器制御部
141     電力融通装置の内部メモリ
142     電力融通装置のプログラム
143     電力融通装置の中央演算装置
160     系統電源線
DESCRIPTION OF SYMBOLS 100 Power interchange network system 101 Server 102 Power interchange apparatus 103-109 (Other) Power interchange apparatus 113 Server communication equipment control part 114 Server storage apparatus 115 Internal memory 116 Program 117 Central processing unit 118 Server database 119 Facility management Database 120 Electric energy information database 121 Storage device 126 of power interchange device Conversion information 127 Facility information 128 Transaction information 129 Power conversion device A
130 Power Converter B
131 Power converter C
132 Power converter D
132 Power supply connected to power accommodation device 133 Battery connected to power accommodation device 134 Load connected to power accommodation device 140 Communication equipment controller 141 of power accommodation device 142 Internal memory of power accommodation device 142 Power accommodation device Program 143 Central processing unit 160 of power interchange device System power line

Claims (3)

  1.  複数の多端子型非同期連系装置で構成される電力系統間非同期連系ネットワークシステムにおいて、前記連系装置の電力融通ポリシー、設備情報、制御情報、取引情報を通信により取得し、連系装置の融通ポリシー、設備情報、電力系統の融通ポリシー、設備情報、連系装置での取引情報からなるデータベースを有し、前記データベースを利用し連系装置の運用を最大に効率で運用する複数の連系装置を有するグループを算出する演算装置を有することを特徴とする、電力系統間非同期連系ネットワークシステム。 In an asynchronous interconnection network system between power systems composed of a plurality of multi-terminal type asynchronous interconnection devices, the power interchange policy, facility information, control information, and transaction information of the interconnection devices are acquired by communication, A plurality of interconnections that have a database consisting of accommodation policy, facility information, power system accommodation policy, facility information, and transaction information on interconnection devices, and that uses the database to operate interconnection devices with maximum efficiency. An asynchronous interconnection network system between power systems, comprising: an arithmetic unit that calculates a group including devices.
  2.  請求項1に記載の電力系統間非同期連系ネットワークシステムにおいて、
     前記演算装置は、
     前記算出のグループ作成後、任意の時間が経過後に、一定の評価指標と比較、良好でない場合に再度グループを算出する演算装置を有することを特徴とする、電力系統間非同期連系ネットワークシステム。
    In the asynchronous interconnection network system between electric power systems according to claim 1,
    The arithmetic unit is:
    An asynchronous interconnection network system between power systems, comprising: an arithmetic unit that compares a predetermined evaluation index after an arbitrary time has elapsed after creation of the calculation group and calculates a group again when it is not good.
  3.  請求項2に記載の電力系統間非同期連系ネットワークシステムにおいて、
     前記演算装置は、
     前記算出のグループ作成に、送電線容量、制御時間、送電距離の物理的制限事項を考慮してグループを算出する演算装置を有することを特徴とする、電力系統間非同期連系ネットワークシステム。
    In the asynchronous interconnection network system between electric power systems according to claim 2,
    The arithmetic unit is:
    An asynchronous interconnection network system between power systems, comprising: an arithmetic unit that calculates a group in consideration of physical restrictions of transmission line capacity, control time, and transmission distance in creating the calculation group.
PCT/JP2012/072096 2012-08-31 2012-08-31 Method for forming electric power interchange group and electric power interchange group forming device WO2014033893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/072096 WO2014033893A1 (en) 2012-08-31 2012-08-31 Method for forming electric power interchange group and electric power interchange group forming device
JP2014532664A JPWO2014033893A1 (en) 2012-08-31 2012-08-31 Power accommodation group creation method and power accommodation group creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072096 WO2014033893A1 (en) 2012-08-31 2012-08-31 Method for forming electric power interchange group and electric power interchange group forming device

Publications (1)

Publication Number Publication Date
WO2014033893A1 true WO2014033893A1 (en) 2014-03-06

Family

ID=50182741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072096 WO2014033893A1 (en) 2012-08-31 2012-08-31 Method for forming electric power interchange group and electric power interchange group forming device

Country Status (2)

Country Link
JP (1) JPWO2014033893A1 (en)
WO (1) WO2014033893A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015121937A1 (en) * 2014-02-13 2017-03-30 株式会社日立製作所 Power accommodation management system and power accommodation management method
KR101852722B1 (en) * 2017-06-01 2018-04-27 한국전력공사 Energy internet platform provision apparatus and method for energy storage system mutual power sharing service
JP2021013247A (en) * 2019-07-05 2021-02-04 ネクストエナジー・アンド・リソース株式会社 Supply management device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125469A (en) * 1998-10-14 2000-04-28 Toshiba Corp Distribution system monitor and control apparatus and recording medium storing program for monitor and control
JP2004007856A (en) * 2002-04-08 2004-01-08 Enesaabu Kk Power supply system and method
JP2004274851A (en) * 2003-03-06 2004-09-30 Osaka Gas Co Ltd Energy accommodation system
JP2005115452A (en) * 2003-10-03 2005-04-28 Enesaabu Kk Apparatus, method and program for increasing combined load factor of power demand at customer selection for power sale
JP2011061970A (en) * 2009-09-10 2011-03-24 Rikiya Abe Multi-terminal asynchronous link device, power apparatus control terminal device, power network system, and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125469A (en) * 1998-10-14 2000-04-28 Toshiba Corp Distribution system monitor and control apparatus and recording medium storing program for monitor and control
JP2004007856A (en) * 2002-04-08 2004-01-08 Enesaabu Kk Power supply system and method
JP2004274851A (en) * 2003-03-06 2004-09-30 Osaka Gas Co Ltd Energy accommodation system
JP2005115452A (en) * 2003-10-03 2005-04-28 Enesaabu Kk Apparatus, method and program for increasing combined load factor of power demand at customer selection for power sale
JP2011061970A (en) * 2009-09-10 2011-03-24 Rikiya Abe Multi-terminal asynchronous link device, power apparatus control terminal device, power network system, and method for controlling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015121937A1 (en) * 2014-02-13 2017-03-30 株式会社日立製作所 Power accommodation management system and power accommodation management method
KR101852722B1 (en) * 2017-06-01 2018-04-27 한국전력공사 Energy internet platform provision apparatus and method for energy storage system mutual power sharing service
JP2021013247A (en) * 2019-07-05 2021-02-04 ネクストエナジー・アンド・リソース株式会社 Supply management device

Also Published As

Publication number Publication date
JPWO2014033893A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
RU2747281C2 (en) Hierarchical implicit controller for a shielded system in a power grid
Arif et al. Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach
JP6271209B2 (en) Energy management system and energy management method for adjusting energy supply and demand of multiple blocks
JP6133447B2 (en) Power accommodation management system and power accommodation management method
US20190272016A1 (en) Dynamic tiering of datacenter power for workloads
JP6699719B2 (en) Control device, power generation control device, control method, system, and program
WO2020153443A1 (en) Energy management system and method for controlling same
JP2019134522A (en) Storage battery management device, storage battery management method and storage battery management program
Razzanelli et al. Distributed model predictive control for energy management in a network of microgrids using the dual decomposition method
Bafrani et al. Robust electrical reserve and energy scheduling of power system considering hydro pumped storage units and renewable energy resources
CN104901314A (en) Consumer apparatus operation management system and method
Javidsharifi et al. Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithm
Ghahramani et al. Robust short-term scheduling of smart distribution systems considering renewable sources and demand response programs
Cong et al. Robust coalitional game theoretic optimisation for cooperative energy hubs with correlated wind power
WO2014033893A1 (en) Method for forming electric power interchange group and electric power interchange group forming device
WO2017149617A1 (en) Control device, supply/demand adjustment control device, power storage device, output control device, supply/demand adjustment system, control method, supply/demand adjustment method, and program
Fesagandis et al. Resilient scheduling of networked microgrids against real-time failures
CN104272548A (en) Device, system, and method for managing power
JP6232275B2 (en) Supply and demand adjustment method and system
JP7266000B2 (en) SYSTEM CONSTRAINT ADJUSTMENT SUPPORT DEVICE AND METHOD
Safari et al. Frequency-constrained unit commitment problem with considering dynamic ramp rate limits in the presence of wind power generation
Nayeripour et al. Interactive fuzzy binary shuffled frog leaping algorithm for multi-objective reliable economic power distribution system expansion planning
De Leone et al. Optimization of power production and costs in microgrids
Tziovani et al. Assessing the operational flexibility in power systems with energy storage integration
JP3880471B2 (en) Power generation planning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883560

Country of ref document: EP

Kind code of ref document: A1