WO2014030490A1 - Circuit design assistance device, method, and program - Google Patents

Circuit design assistance device, method, and program Download PDF

Info

Publication number
WO2014030490A1
WO2014030490A1 PCT/JP2013/070259 JP2013070259W WO2014030490A1 WO 2014030490 A1 WO2014030490 A1 WO 2014030490A1 JP 2013070259 W JP2013070259 W JP 2013070259W WO 2014030490 A1 WO2014030490 A1 WO 2014030490A1
Authority
WO
WIPO (PCT)
Prior art keywords
mtj element
magnetization reversal
current value
expression
magnetization
Prior art date
Application number
PCT/JP2013/070259
Other languages
French (fr)
Japanese (ja)
Inventor
崎村 昇
杉林 直彦
洋紀 小池
哲郎 遠藤
貴弘 羽生
大野 英男
Original Assignee
日本電気株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立大学法人東北大学 filed Critical 日本電気株式会社
Priority to JP2014531556A priority Critical patent/JP6256951B2/en
Publication of WO2014030490A1 publication Critical patent/WO2014030490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Definitions

  • the present invention relates to a circuit design support apparatus, method and program, and more particularly to a circuit design support apparatus and a simulator program used for designing a spintronics integrated circuit.
  • MTJ Magnetic Tunnel Junction
  • a typical MTJ element has a pinned magnetic layer whose magnetization is fixed in one direction (also referred to as a magnetization fixed layer) and a free magnetic layer whose magnetization direction can be arbitrarily changed to one of two directions (also referred to as a magnetization free layer). And a tunnel barrier layer formed between these magnetic layers.
  • One bit of information (“0” or “1”) is assigned to the magnetization (direction) of the free magnetic layer.
  • the current flowing through the MTJ element changes depending on the magnetization of the free magnetic layer. That is, when the magnetizations of the two magnetic layers are parallel to each other (in the same direction), the tunnel current passing through the tunnel barrier layer increases (low resistance state).
  • FIG. 1 is a diagram showing state transitions (states (a) to (d)) of a typical MTJ element.
  • the illustrated MTJ element has a pinned magnetic layer 11, a free magnetic layer 12, and a tunnel barrier layer 13 provided therebetween.
  • An upper electrode n1 is connected to the pinned magnetic layer 11, and a lower electrode n2 is connected to the free magnetic layer 12.
  • a direction from the upper electrode n1 to the lower electrode n2 is defined as a positive direction, and a current flowing in this direction is defined as a positive current.
  • a direction from the lower electrode n2 toward the upper electrode n1 is defined as a negative direction, and a current flowing in this direction is defined as a negative current.
  • the directions of magnetization of the pinned magnetic layer 11 and the free magnetic layer 12 in the states (a) and (c) are indicated by arrows, respectively. In the state (a), the magnetization of the pinned magnetic layer 11 and the magnetization of the free magnetic layer 12 are in a parallel state (low resistance state).
  • An MTJ element in state (a) can transition to state (c) via state (b).
  • a negative current Iw1 is passed between the upper electrode n1 and the lower electrode n2 of the MTJ element.
  • the magnetization direction of free magnetic layer 12 is reversed, and the MTJ element transitions to state (c).
  • the magnetization of the pinned magnetic layer 11 and the magnetization of the free magnetic layer 12 are in an antiparallel state (high resistance state).
  • the MTJ element in the state (c) can transition to the state (a) through the state (d).
  • a positive current Iw0 is passed between the upper electrode n1 and the lower electrode n2 of the MTJ element.
  • MRAM magnetic random access memories
  • Non-Patent Document 1 discloses a spintronics element logic circuit that performs a logical operation on bit information of an MTJ element and bit information input by voltage.
  • Such various spintronic element logic circuits are complicatedly connected to realize a logic circuit capable of executing a larger and more complicated operation with a smaller area and power saving than a conventional CMOS circuit. it can.
  • the logic information inside the logic circuit is non-volatile, the calculation result before power off is not lost. Therefore, it is not necessary to store the calculation result in the nonvolatile storage device before turning off the power. Therefore, it is possible to realize high performance and power saving of the logic circuit by reducing the amount of information transferred on the data bus.
  • the power supply can be cut off frequently, and the leakage current during non-operation, which has been increasing in recent years, can be reduced or zero.
  • the spintronics element logic circuit is also expected as a technology that enables low power design, which has been difficult to realize in the past.
  • a relational expression between the magnetization reversal critical current value and time in each of the spin torque effect and the thermal activation effect is known from Non-Patent Document 1 and the like (these relational expressions will be described later).
  • these relational expressions have a limited time region that matches the actual measurement value, and there are regions that do not match the actual measurement value. For example, when ⁇ P is in the range of about 10 ns to 100 ns, the actual measurement value does not fit either the relational expression for the spin torque effect or the relational expression for the thermal activation effect. Since this time domain is the area that needs the most optimization in designing the circuit of the spintronics integrated circuit, a fatal circuit design error may occur unless the fitting accuracy in this time domain is improved.
  • the present invention focuses on the correlation between the magnetization reversal critical current value and time of an actual element, and a circuit that can simulate the correlation in a wide range and with high accuracy regardless of a specific time region (or current value region).
  • a design support apparatus and a circuit simulator are provided.
  • the apparatus which supports the design of the spintronics integrated circuit containing an MTJ element can be provided, and the shortening of the design time and the improvement of reliability can be expected.
  • the circuit design support apparatus includes an MTJ element identification unit that identifies an MTJ element from circuit information (netlist) that represents the configuration of the spintronics integrated circuit, and MTJ element characteristic information (model) that represents the characteristics of the MTJ element.
  • the magnetization reversal determination unit includes: a first computing unit that computes a time constant required for magnetization reversal based on the first expression and the second expression; And a second calculating means for calculating a magnetization reversal probability several, characterized by determining whether cause the magnetization reversal on the basis of the magnetization reversal probability.
  • each of the first expression and the second expression includes a current value supplied to the MTJ element as a variable
  • the first arithmetic unit may arbitrarily set a current value supplied to the MTJ element.
  • the first expression and the second expression contribute to the calculation of the time constant so that the first expression is dominant when the threshold value is greater than or equal to the threshold value, and the second expression is dominant when the threshold is small.
  • the magnetization reversal determining unit determines that the magnetization reversal is caused when the magnetization reversal probability exceeds an arbitrary threshold value. To do.
  • the approximate expression storage unit further stores a third expression that determines a ratio of the first expression and the second expression contributing to the calculation of the time constant, and a coefficient included in the third expression Is based on the MTJ element characteristic information. Further, the third expression is represented by a Butterworth filter function expression.
  • the second computing means increases the magnetization reversal probability when the current value supplied to the MTJ element is equal to or greater than the threshold current set by the MTJ element characteristic information, and the magnetization reversal when the current value is small. The calculation is performed so that the probability decreases.
  • a circuit design method for supporting the design of a spintronics integrated circuit including an MTJ element, the first step of identifying the MTJ element from circuit information (net list) representing a configuration of the spintronics integrated circuit, and the MTJ
  • determining whether to cause the magnetization reversal based on the magnetization reversal probability is
  • the second step is an equation that approximates a relationship between a current value supplied to the MTJ element and a time constant related to magnetization based on different theoretical models, and is supplied to the MTJ element, respectively.
  • the first and second formulas including the current value as a variable the first formula is mainly used when the current value supplied to the MTJ element is equal to or larger than an arbitrary threshold value, and when the current value is small, the first formula is used.
  • the time constant is changed by changing the ratio of the first expression and the second expression contributing to the calculation of the time constant according to the current value supplied to the MTJ element so that the second expression becomes main. And when it is determined that the magnetization reversal occurs when the magnetization reversal probability exceeds an arbitrary threshold value.
  • the present invention can provide a design support apparatus and a program capable of performing an operation simulation of an electronic circuit including an MTJ element at high speed and with high accuracy.
  • FIG. 1 is a diagram for explaining a state transition of a typical MTJ element.
  • FIG. 2 is a graph showing the relationship between the magnetization reversal critical current Ic and the magnetization relaxation time ⁇ P.
  • FIG. 3 is a block diagram showing a schematic configuration of the electronic circuit design support apparatus according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of a computer system used for realizing the electronic circuit design support apparatus of FIG.
  • FIG. 5 is a flowchart for explaining the operation of the magnetization reversal determination unit included in the electronic circuit design support apparatus of FIG.
  • FIG. 6 is an operation (or state) waveform diagram of each unit obtained by the operation (calculation) of the magnetization reversal determination unit of FIG.
  • FIG. 7 is a graph showing a fitting curve applied to the electronic circuit design support apparatus of FIG.
  • Figure 8 is a graph showing the dependence of the magnetization relaxation time tau P for the parameter ⁇ used in the realization of the fitting curve in Fig.
  • FIG. 9 shows that the approximate expression is Taylor-expanded near the discontinuous points in the approximate expression so that the solution does not diverge when the time constant is obtained from the approximate expression, and the number of terms kmax when the number of terms is kmax It is a graph which shows the relationship with the error (epsilon).
  • Figure 10 is a graph for explaining the method of obtaining the rewriting current value Iw from the magnetization relaxation time tau P by Newton's method.
  • FIG. 3 is a diagram showing the configuration of the electronic circuit design support apparatus 30 according to the embodiment of the present invention.
  • the circuit design support device 30 shown in FIG. 3 is a support device for designing a circuit including an MTJ element. With respect to arbitrary circuit information, various active element and passive element models including the MTJ element that is a component of the circuit. It is possible to perform a simulated operation based on the parameters.
  • the support device 30 includes a circuit information input unit 31, an element information input unit 32, an MTJ element identification unit 33, a voltage / current calculation unit 34, a magnetization reversal determination unit 35, an operation information output unit 36, and an approximate expression storage unit 37. Prepare.
  • the circuit information input unit 31 receives circuit information representing the configuration of the spintronics integrated circuit to be designed and signal waveform information input to the circuit.
  • the element information input unit 32 is linked to the approximate expression storage unit 37.
  • model parameters representing the characteristics of MTJ elements are input to the element information input unit 32. These model parameters correspond to the coefficient values in the approximate expression registered in the approximate expression storage unit 37.
  • the MTJ element identification unit 33 identifies the MTJ element included in the circuit from the input circuit information (net list).
  • This identification function is realized by referring to the MTJ element model parameter input from the element information input unit 32 and checking whether the netlist includes a model name that matches the MTJ element model name described therein.
  • the voltage / current calculation unit 34 uses the input waveform information input to the circuit information input unit 31 and the element information input unit 32 as the current flowing through each element included in the netlist and the voltage generated at the terminal connecting the elements. Calculated from the model parameters input to.
  • the calculator 34 has a function of calculating a rewrite current supplied to each MTJ element and a bias voltage at both ends thereof.
  • the magnetization reversal determination unit 35 calculates a time constant related to magnetization reversal from the rewrite current value supplied to each MTJ element (first calculation means), and calculates a magnetization reversal probability from the time constant (second calculation). In addition, it is determined whether to cause magnetization reversal in the MTJ element based on the calculated magnetization reversal probability.
  • the time constant and the magnetization reversal probability are calculated from the approximate expression stored in the approximate expression storage unit 37 and the value of the MTJ element model parameter.
  • the operation information output unit 36 operates in accordance with an instruction preliminarily described in the net list, in addition to the voltage at an arbitrary terminal and the current flowing through the element, as well as the operation waveform such as the magnetization state of the MTJ element, the resistance value, the rewrite current, and the current during sensing. The result is output by display or printing.
  • the electronic circuit design support device 30 can be realized by a computer system shown in FIG.
  • a computer system 40 shown in FIG. 4 includes a storage medium 41 that stores various data necessary for calculation for calculating a magnetization reversal time such as a net list and model parameters, and a computer main body 42.
  • the storage medium 41 stores computer-readable information non-temporarily.
  • the storage medium 41 stores programs for identifying MTJ elements, calculating voltages and currents, and determining the timing of magnetization reversal of MTJ elements. As will be described in detail later, this program determines whether to invert the magnetization from the first step of identifying the MTJ element from the designed circuit information, and the MTJ element characteristic information and the rewrite current value supplied to the MTJ element. Is a program that realizes at least the second step of judging the above and the third step of outputting the resistance value of the MTJ element.
  • This program calculates the time constant required for magnetization reversal from the current value supplied to the MTJ element in the second step, calculates the magnetization reversal probability from the time constant, and generates magnetization reversal based on the magnetization reversal probability. It is characterized by making it judge whether it is made to do.
  • the computer main body 42 also includes an input / output device 43 for inputting / outputting data, a storage device 44 for storing a program or data read from the storage medium 41, an arithmetic device 45 for performing overall control and calculation, and a calculation result. And a display device 46 for displaying the images, and these are connected to each other by a bus 47.
  • the circuit information input unit 31 and the element information input unit 32 are realized by the input / output device 43. Further, the MTJ element identification unit 33, the voltage / current calculation unit 34, and the magnetization reversal determination unit 35 are realized by the calculation device 45.
  • the approximate expression storage unit 37 is realized by the storage device 44 in a state incorporated in the program.
  • the operation information output unit 36 is realized by the display device 46.
  • the arithmetic device 45 executes a program read from the storage medium 41 and developed in the storage device 44, and calculates the timing of magnetization reversal of the MTJ element from the current value supplied to the MTJ element.
  • the arithmetic unit 45 stores the circuit information including the MTJ elements and the element information input from the input / output device 43 via the bus 47 and the approximate expression storage unit 37 realized by the storage medium 41.
  • An approximate expression including a stored constant (coefficient) is used.
  • the arithmetic device 45 causes the display device 46 to display operation information including a resistance value resulting from the magnetization state of the MTJ element.
  • the arithmetic unit 45 identifies the MTJ element with reference to the circuit information (net list) and the element information (model parameter). Next, the arithmetic unit 45 calculates the initial state (voltage, current, etc.) at each element and terminal. At this time, the magnetization state and resistance value of the MTJ element are set in advance in a state designated by a netlist or model parameter. Subsequently, the arithmetic unit 45 calculates the state at each time while advancing the simulation time in increments of ⁇ t using input signal information, model parameters, and approximate expressions.
  • the rewrite current value Iw has a positive or negative sign depending on the write data, but the calculation flow is basically the same in both cases of parallelization and antiparallelization. Therefore, the absolute value of the rewrite current value Iw is shown in FIG. Will be handled.
  • flowing through the MTJ element is greater than or equal to an arbitrary threshold current
  • ⁇ P Is the intrinsic time constant ⁇ that does not cause magnetization reversal NOSW (Step B2).
  • This time constant ⁇ NOSW Is a value previously described in the model parameter file.
  • magnetization relaxation time constant ⁇ P Magnetization reversal probability P PRB Calculate If it is determined in step A1 that
  • , the magnetization reversal probability P when the time t has elapsed from the current application time PRB Is P PRB 1 ⁇ exp ( ⁇ t / ⁇ P ). In this case, the magnetization reversal probability increases with time (step A3).
  • step A1 if it is determined in step A1 that
  • (this corresponds to the case where time t has elapsed since the supply of the rewrite current is stopped), the magnetization reversal probability P PRB Is P PRB Exp (-t / ⁇ P ). In this case, the magnetization reversal probability decreases with time (step B3). In step A3, the magnetization reversal probability P PRB In step A4, the obtained magnetization reversal probability P is obtained. PRB Is compared with an arbitrary threshold value
  • FIG. 6 is a waveform diagram showing the operation or state in each part when a transient response is simulated based on the flowchart of FIG.
  • the rewrite current pulse Iw0 is applied in the positive direction during the period from time T0 to T1. Furthermore, in order to make the magnetization of the MTJ element antiparallel, the rewrite current pulse Iw1 is applied in the negative direction during the period from time T2 to T3. Since Iw0 ⁇ Ic_min0 at time T0, ⁇ P Is calculated with Iw0 as a variable, and P PRB Is calculated.
  • Ic Ic0 ⁇ 1-f T ( ⁇ P ⁇ (1)
  • f T ( ⁇ P ) (K B T / E) ln ( ⁇ P / ⁇ 0 ) ... (1 ')
  • k B the Boltzmann constant
  • T the absolute temperature
  • E the energy barrier
  • ⁇ 0 the term represented by the formula (1 ′) is referred to as a thermal activation term.
  • ⁇ P >> ⁇ 0 ( ⁇ P Is about 100 ns or more), and is known to match the measured value well.
  • Approximate line (2) in FIG. 2 shows the critical current Ic based on the spin torque effect model, and is represented by the following equation according to Non-Patent Document 1.
  • Ic Ic0 ⁇ 1 + f S ( ⁇ P ) ⁇ (2)
  • f S ( ⁇ P ) ( ⁇ relax / ⁇ P ) ⁇ Ln ⁇ / (2 ⁇ (k B T / E))) ... (2 ')
  • the term represented by the expression (2 ′) is called a precession term.
  • each coefficient (a, b, m, n) of the equations (4) and (4 ′) is modeled to fit the measured values in the region between the spin torque region and the thermally active region. It becomes possible.
  • is ⁇ P Is a function that decreases monotonously as the value of increases, and the steepness of the change can be changed by the value of m.
  • This feature is optimal in that it can be used as a fitting equation in the region between the thermally active region and the spin torque region. (1) to (4) described above are ⁇ P
  • ⁇ P This is an expression for obtaining Ic from, and is convenient when deriving a model parameter for an actual measurement value.
  • ⁇ from the rewrite current Iw ( Ic) supplied to the MTJ element. P Need to be calculated. That is, it is necessary to incorporate inverse functions of these equations into the simulation program.
  • a, b, m, and n are model parameters.
  • the expression of the coefficients ⁇ , ⁇ , ⁇ , and ⁇ is not limited to the Butterworth function, and other filter function expressions can be used.
  • the spin injection MTJ element has been described as an example.
  • the present invention is also applied to an MTJ element that rewrites using a current magnetic field and an MTJ element that uses the phenomenon of domain wall motion. Is possible.
  • other resistance variable elements ReRAM (Resistance Random Access Memory) elements, PRAM (Phase change RAM) elements, atomic switch elements, etc.
  • atomic switch elements etc.
  • storage part which memorize
  • a calculation unit for obtaining a current value supplied to the MTJ element at time t based on circuit information representing a configuration of an integrated circuit including the MTJ element and element characteristic information on the MTJ element;
  • a magnetization reversal determination unit for determining whether to cause magnetization reversal in the MTJ element based on the obtained current value and the first and second approximate expressions;
  • a circuit design support apparatus comprising: (Additional remark 6) The said magnetization reversal judgment part calculated
  • the circuit design support device determines whether or not.
  • the said magnetization reversal judgment part determines whether the said magnetic reversal is caused when the calculated
  • the circuit design support apparatus described. The magnetization reversal determination unit is configured to respond to the calculated current value based on the first and second approximate expressions when the calculated current value is equal to or greater than a first threshold value.
  • a constant is obtained, and a magnetization reversal probability is further obtained using the obtained time constant, and it is determined that the magnetization reversal is caused when the obtained magnetization reversal probability is equal to or higher than a second threshold value.
  • the circuit design support device according to appendix 7. (Supplementary Note 9) When the obtained current value is smaller than the first threshold value, the magnetization reversal determination unit adopts a predetermined constant as a time constant corresponding to the obtained current value. 9.
  • the circuit design support device according to appendix 8 wherein a magnetization reversal probability is further obtained using a time constant.
  • requires the electric current value supplied to the said MTJ element in the time t based on the circuit information showing the structure of the integrated circuit containing an MTJ element, and the element characteristic information regarding the said MTJ element; Based on the first and second approximate expressions that approximate the relationship between the current value supplied to the MTJ element and the time constant related to magnetization reversal based on different theoretical models, and the MTJ, Determining whether to cause magnetization reversal in the element; A program characterized by causing a computer to execute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A circuit design assistance device (30) is provided with: an MTJ element identification unit (33) for identifying an MTJ element from circuit information indicative of the configuration of a spintronics integrated circuit; a magnetization reversal determination unit (35) for determining whether to cause a magnetization reversal, on the basis of MTJ element property information indicative of properties of an MTJ element and on the basis of an electrical current value supplied to the identified MTJ element; an approximation formula storage unit (37) for storing a first and second formula with which the relationship between the electrical current values supplied to the MTJ element and a time constant pertaining to magnetization is approximated on the basis of different theoretical models; and an operational information output unit (36) for outputting the resistance value of the MTJ element. The magnetization reversal determination unit has a first computing means for computing the time constant needed for the magnetization reversal on the basis of the first and second formulae, and a second computing means for computing a magnetization reversal probability from the computed time constant. The magnetization reversal determination unit determines whether to cause a magnetization reversal on the basis of the magnetization reversal probability. This makes it possible to swiftly and precisely simulate the operation of an integrated circuit that includes an MTJ element.

Description

回路設計支援装置、方法及びプログラムCircuit design support apparatus, method and program
 本発明は、回路設計支援装置、方法及びプログラムに関し、特にスピントロニクス集積回路の設計に利用される回路設計支援装置及びシミュレータプログラムに関する。 The present invention relates to a circuit design support apparatus, method and program, and more particularly to a circuit design support apparatus and a simulator program used for designing a spintronics integrated circuit.
 今日の情報通信技術は、電子の電荷を利用する半導体デバイス技術と、電子のスピンを利用する磁気デバイス技術が別々に技術開発されてきた。近年はそれぞれの技術が成熟度を増し、半導体デバイスの情報処理性能の限界や、磁気デバイスの情報蓄積能力の限界という壁にぶつかりつつある。そこで、電子の電荷の自由度とスピンの自由度の両方を利用した相乗効果により、これら限界を打破しようというスピントロニクス技術が注目されている。
 スピントロニクス素子の代表例が磁気抵抗素子(MTJ(Magnetic Tunnel Junction)素子)である。典型的なMTJ素子は、磁化が一方向に固定された固定磁性層(磁化固定層ともいう)と、磁化方向を二方向のうちの一方に任意に変えられる自由磁性層(磁化自由層ともいう)と、これら磁性層の間に形成されたトンネルバリア層を有している。1ビットの情報(“0”又は“1”)は、自由磁性層の磁化(方向)に割り当てられる。固定磁性層と自由磁性層との間に電圧を印加したときにMTJ素子に流れる電流は、自由磁性層の磁化に依存して変化する。即ち、二枚の磁性層の磁化が互いに平行(同じ向き)になる場合、トンネルバリア層を通過するトンネル電流は増加する(低抵抗状態)。逆に二枚の磁性層の磁化が反平行(反対の向き)になる場合、トンネル電流は減少(高抵抗状態)する。この性質を利用してMTJ素子に書込まれた情報を取り出すことができる。MTJ素子にある一定以上の磁場を印加する、あるいはスピン偏極電流を流すことにより、自由磁性層の磁化方向を反転させることで1ビットの情報を書き換える。
 図1は典型的なMTJ素子の状態遷移(状態(a)~(d))を示す図である。
 図示のMTJ素子は、固定磁性層11と、自由磁性層12と、それらの間に設けられたトンネルバリア層13を有している。固定磁性層11には上部電極n1が接続され、自由磁性層12には下部電極n2が接続されている。ここで、上部電極n1から下部電極n2へ向かう方向を正の方向と定義し、この方向に流れる電流を正電流とする。逆に下部電極n2から上部電極n1へ向かう方向を負の方向と定義し、この方向に流れる電流を負電流とする。
 状態(a)及び(c)における固定磁性層11の磁化の方向と自由磁性層12の磁化の方向がそれぞれ矢印で示されている。状態(a)では、固定磁性層11の磁化と自由磁性層12の磁化が平行状態(低抵抗状態)にある。状態(a)にあるMTJ素子は、状態(b)を経て状態(c)に遷移できる。状態(b)では、MTJ素子の上部電極n1と下部電極n2との間に負電流Iw1を流している。状態(b)において、自由磁性層12の磁化方向が反転してMTJ素子は、状態(c)へ遷移する。状態(c)では、固定磁性層11の磁化と自由磁性層12の磁化とが反平行状態(高抵抗状態)にある。また、状態(c)のMTJ素子は、状態(d)を経て状態(a)に遷移できる。状態(d)では、MTJ素子の上部電極n1と下部電極n2との間に正電流Iw0を流している。状態(d)において、自由磁性層12の磁化が反転してMTJ素子は、状態(a)の平行状態(低抵抗状態)へ遷移する。
 このスピントロニクスの分野では、MTJ素子を半導体デバイスに応用し、DRAMに代わる大容量で高速、かつ不揮発性を兼ね備えた従来に存在しない性能を実現できる可能性のある磁気ランダムアクセスメモリ(MRAM)が実用化段階に入っている。MRAMは従来の半導体メモリを不揮発化しようという試みであるが、さらに論理回路にもMTJ素子を組み込んで演算機能と不揮発メモリ機能を同時に実現しようという試みも盛んである。例えば、非特許文献1にはMTJ素子が持つビット情報と、電圧で入力されるビット情報とを論理演算するスピントロニクス要素論理回路が開示されている。このような様々なスピントロニクス要素論理回路が複雑に結線されて、より大規模で複雑な演算を、従来のCMOS回路に比べて小面積で、且つ省電力で実行可能な論理回路を実現することができる。さらに、論理回路内部の論理情報は不揮発性であるので、電源切断前の演算結果が消失しない。よって、電源を切断する前に、演算結果を不揮発性記憶装置に記憶させる動作が不要である。このため、データバスにおける情報の転送量を削減できることによる論理回路の高性能化と省電力化を実現できる。また、電源を高頻度に切断することが可能になり、近年増加の一途をたどる非動作時のリーク電流を低減またはゼロにできる。このように、スピントロニクス要素論理回路は、従来実現が困難であった低電力設計を可能にする技術としても期待されている。
Today's information communication technology has been developed separately for semiconductor device technology using electron charge and magnetic device technology using electron spin. In recent years, each technology has increased in maturity, and is hitting the walls of the limit of information processing performance of semiconductor devices and the limit of information storage capability of magnetic devices. Therefore, spintronics technology that attempts to break these limits by a synergistic effect utilizing both the degree of freedom of charge of electrons and the degree of freedom of spin has attracted attention.
A typical example of a spintronic device is a magnetoresistive device (MTJ (Magnetic Tunnel Junction) device). A typical MTJ element has a pinned magnetic layer whose magnetization is fixed in one direction (also referred to as a magnetization fixed layer) and a free magnetic layer whose magnetization direction can be arbitrarily changed to one of two directions (also referred to as a magnetization free layer). And a tunnel barrier layer formed between these magnetic layers. One bit of information (“0” or “1”) is assigned to the magnetization (direction) of the free magnetic layer. When a voltage is applied between the fixed magnetic layer and the free magnetic layer, the current flowing through the MTJ element changes depending on the magnetization of the free magnetic layer. That is, when the magnetizations of the two magnetic layers are parallel to each other (in the same direction), the tunnel current passing through the tunnel barrier layer increases (low resistance state). Conversely, when the magnetizations of the two magnetic layers are antiparallel (opposite directions), the tunnel current decreases (high resistance state). Using this property, information written in the MTJ element can be taken out. One-bit information is rewritten by inverting the magnetization direction of the free magnetic layer by applying a magnetic field of a certain level or higher to the MTJ element or by passing a spin-polarized current.
FIG. 1 is a diagram showing state transitions (states (a) to (d)) of a typical MTJ element.
The illustrated MTJ element has a pinned magnetic layer 11, a free magnetic layer 12, and a tunnel barrier layer 13 provided therebetween. An upper electrode n1 is connected to the pinned magnetic layer 11, and a lower electrode n2 is connected to the free magnetic layer 12. Here, a direction from the upper electrode n1 to the lower electrode n2 is defined as a positive direction, and a current flowing in this direction is defined as a positive current. Conversely, a direction from the lower electrode n2 toward the upper electrode n1 is defined as a negative direction, and a current flowing in this direction is defined as a negative current.
The directions of magnetization of the pinned magnetic layer 11 and the free magnetic layer 12 in the states (a) and (c) are indicated by arrows, respectively. In the state (a), the magnetization of the pinned magnetic layer 11 and the magnetization of the free magnetic layer 12 are in a parallel state (low resistance state). An MTJ element in state (a) can transition to state (c) via state (b). In the state (b), a negative current Iw1 is passed between the upper electrode n1 and the lower electrode n2 of the MTJ element. In state (b), the magnetization direction of free magnetic layer 12 is reversed, and the MTJ element transitions to state (c). In the state (c), the magnetization of the pinned magnetic layer 11 and the magnetization of the free magnetic layer 12 are in an antiparallel state (high resistance state). Further, the MTJ element in the state (c) can transition to the state (a) through the state (d). In the state (d), a positive current Iw0 is passed between the upper electrode n1 and the lower electrode n2 of the MTJ element. In the state (d), the magnetization of the free magnetic layer 12 is reversed, and the MTJ element transitions to the parallel state (low resistance state) of the state (a).
In this field of spintronics, MTJ elements are applied to semiconductor devices, and magnetic random access memories (MRAM) that can realize unprecedented performance with high capacity, high speed, and non-volatility to replace DRAM are put into practical use. Is in the process of becoming MRAM is an attempt to make a conventional semiconductor memory non-volatile, but an attempt to simultaneously realize an arithmetic function and a non-volatile memory function by incorporating an MTJ element in a logic circuit is also active. For example, Non-Patent Document 1 discloses a spintronics element logic circuit that performs a logical operation on bit information of an MTJ element and bit information input by voltage. Such various spintronic element logic circuits are complicatedly connected to realize a logic circuit capable of executing a larger and more complicated operation with a smaller area and power saving than a conventional CMOS circuit. it can. Furthermore, since the logic information inside the logic circuit is non-volatile, the calculation result before power off is not lost. Therefore, it is not necessary to store the calculation result in the nonvolatile storage device before turning off the power. Therefore, it is possible to realize high performance and power saving of the logic circuit by reducing the amount of information transferred on the data bus. In addition, the power supply can be cut off frequently, and the leakage current during non-operation, which has been increasing in recent years, can be reduced or zero. Thus, the spintronics element logic circuit is also expected as a technology that enables low power design, which has been difficult to realize in the past.
 MTJ素子を組み込んだ集積回路を設計するには、設計された回路が仕様通りに動作するか回路シミュレータでシミュレーションして確認する必要がある。しかし、現在流通している商用の回路シミュレータ(一般にSPICE:Simulation Program with Integrated Circuit Emphasisと呼ばれる)は、トランジスタや抵抗、容量、インダクタのモデルには対応するものの、MTJ素子のモデルに対応するものは存在しない。そこで、MTJ素子の磁化反転過程及び抵抗特性を実現する等価回路を、理想電源や理想トランジスタ(あるいは理想スイッチ)等を使って作成し、それをサブサーキットとして利用する方法が考えられる。しかしながら、この方法では、1つのMTJ素子を再現するのに数十素子を要し、さらに端子数も数十に達する。このため、計算量が著しく増大し、シミュレーション時間が爆発的に増加してしまう。よって、MTJ素子を含む大規模な論理演算回路の設計にSPICEを適用することは困難である。
 また、上記の簡易的なMTJ素子のサブサーキット・モデルでは、実デバイス上の諸特性が様々なパラメータによってアナログ的に変化する振る舞いを完全に模擬することが不可能である。例えば、磁化反転に要する臨界電流(Ic)と時間(τ)との間には、図2にドット(実測値)で示すようなMTJ素子特有の相関関係がある。この相関関係が実測値に対して精度良くモデル化されていないと、動作マージンを保証する設計や、動作不良を未然に防ぐ設計をすることは困難である。しかしながら、磁化反転に要する電流値と時間の関係は、電流値の大小、あるいは磁化反転時間の長短によって異なる物理作用により決まるため、複雑で、高精度にモデル化を行うのは容易ではない。例えば、図2において、MTJ素子に供給される書き換え電流がIc0よりも十分大きい場合(領域2)は電流の電子が持つスピントルクによる磁化反転が主となるモードであり、τは約10ns以下となる。一方、書き換え電流がIc0よりも小さい場合(領域1)は熱活性効果による磁化反転が主となるモードであり、τは約100ns以上となる。これらスピントルク効果と熱活性効果の各々における磁化反転臨界電流値と時間の関係式は非特許文献1等により知られている(これら関係式については後述する)。しかし、これらの関係式は実測値に合う時間領域が限定的であって、実測値に合わない領域が存在する。例えば、τがおよそ10ns~100nsの範囲ではスピントルク効果の関係式、及び熱活性効果の関係式のいずれにも実測値はフィットしない。この時間領域は、スピントロニクス集積回路の回路設計を行う上で最も最適化が必要とされる領域であるから、この時間領域のフィッティング精度を向上させなければ致命的な回路設計ミスを起こしかねない。
 本発明は、実際の素子が持つ磁化反転臨界電流値と時間の相関関係に着目し、特定の時間領域(あるいは電流値領域)によらず広範囲、且つ、高精度に当該相関関係を模擬できる回路設計支援装置、及び回路シミュレータを提供する。
In order to design an integrated circuit incorporating an MTJ element, it is necessary to confirm whether the designed circuit operates according to specifications by simulating with a circuit simulator. However, commercial circuit simulators that are currently distributed (generally called SPICE: Simulation Program with Integrated Circuit Emphasis) are compatible with the models of transistors, resistors, capacitors, and inductors. not exist. Therefore, an equivalent circuit that realizes the magnetization reversal process and resistance characteristics of the MTJ element can be created using an ideal power supply, an ideal transistor (or an ideal switch), and the like, and used as a sub-circuit. However, in this method, several tens of elements are required to reproduce one MTJ element, and the number of terminals reaches several tens. For this reason, the calculation amount increases remarkably, and the simulation time increases explosively. Therefore, it is difficult to apply SPICE to the design of a large-scale logic operation circuit including MTJ elements.
Further, in the above-described simple MTJ element subcircuit model, it is impossible to completely simulate the behavior in which various characteristics on an actual device change in an analog manner by various parameters. For example, there is a correlation peculiar to the MTJ element as indicated by dots (measured values) in FIG. 2 between the critical current (Ic) required for magnetization reversal and time (τ P ). If this correlation is not modeled accurately with respect to the actual measurement values, it is difficult to design to guarantee an operation margin or to prevent malfunction. However, since the relationship between the current value and time required for magnetization reversal is determined by different physical actions depending on the magnitude of the current value or the length of the magnetization reversal time, it is complicated and difficult to model with high accuracy. For example, in FIG. 2, when the rewrite current supplied to the MTJ element is sufficiently larger than Ic0 (region 2), this is a mode in which magnetization reversal is mainly caused by spin torque of current electrons, and τ P is about 10 ns or less. It becomes. On the other hand, when the rewrite current is smaller than Ic0 (region 1), this is a mode in which magnetization reversal is mainly caused by the thermal activation effect, and τ P is about 100 ns or more. A relational expression between the magnetization reversal critical current value and time in each of the spin torque effect and the thermal activation effect is known from Non-Patent Document 1 and the like (these relational expressions will be described later). However, these relational expressions have a limited time region that matches the actual measurement value, and there are regions that do not match the actual measurement value. For example, when τ P is in the range of about 10 ns to 100 ns, the actual measurement value does not fit either the relational expression for the spin torque effect or the relational expression for the thermal activation effect. Since this time domain is the area that needs the most optimization in designing the circuit of the spintronics integrated circuit, a fatal circuit design error may occur unless the fitting accuracy in this time domain is improved.
The present invention focuses on the correlation between the magnetization reversal critical current value and time of an actual element, and a circuit that can simulate the correlation in a wide range and with high accuracy regardless of a specific time region (or current value region). A design support apparatus and a circuit simulator are provided.
 本発明によれば、MTJ素子を含むスピントロニクス集積回路の設計を支援する装置を提供でき、その設計時間の短縮や信頼性の向上が期待できる。
 具体的には、本回路設計支援装置は、スピントロニクス集積回路の構成を表す回路情報(ネットリスト)からMTJ素子を識別するMTJ素子識別部と、前記MTJ素子の特性を表すMTJ素子特性情報(モデルパラメータ)と、識別された前記MTJ素子に供給される電流値とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判断する磁化反転判断部と、前記MTJ素子についての供給される電流値と磁化に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1の式及び第2の式を記憶する近似式記憶部と、前記MTJ素子の抵抗値を出力する動作情報出力部とを備え、前記磁化反転判断部は、前記第1の式及び前記第2の式に基づいて磁化反転に要する時定数を演算する第1の演算手段と、演算された時定数から磁化反転確率を演算する第2の演算手段とを有し、前記磁化反転確率に基づいて前記磁化反転を生じさせるか否かを判断することを特徴とする。
 また、前記第1の式及び前記第2の式は、それぞれ、前記MTJ素子に供給される電流値を変数として含み、前記第1の演算手段は、前記MTJ素子に供給される電流値が任意のしきい値以上の場合に第1の式が主となり、小さい場合に第2の式が主となるように、前記第1の式と前記第2の式とが前記時定数の演算に寄与する割合を前記MTJ素子に供給される電流値によって変化させ、前記磁化反転判断部は、前記磁化反転確率が任意のしきい値を超えた時に前記磁化反転を生じさせると判断することを特徴とする。
 また、前記近似式記憶部は、前記第1の式及び前記第2の式が前記時定数の演算に寄与する割合を決定づける第3の式をさらに記憶し、前記第3の式に含まれる係数が前記MTJ素子特性情報に基づくものであることを特徴とする。
 また、前記第3の式がバターワース・フィルタ関数式で表わされることを特徴とする。
 また、第2の演算手段は、前記MTJ素子に供給される電流値が、前記MTJ素子特性情報で設定されるしきい値電流以上の場合に前記磁化反転確率が上がり、小さい場合に前記磁化反転確率が下がるように演算されることを特徴とする。
 また、MTJ素子を含むスピントロニクス集積回路の設計を支援する回路設計方法であって、前記スピントロニクス集積回路の構成を表す回路情報(ネットリスト)から前記MTJ素子を識別する第1のステップと、前記MTJ素子の特性を表すMTJ素子特性情報(モデルパラメータ)と、識別されたMTJ素子に供給される電流値とに基づいて、前記磁化反転を生じさせるか否かを判断する第2のステップと、前記MTJ素子の抵抗値を出力する第3のステップとを含み、前記第2のステップにおいて、前記磁化反転に要する時定数を前記電流値に基づいて演算し、その時定数に基づいて磁化反転確率を演算し、その磁化反転確率に基づいて前記磁化反転を生じさせるか否かを判断することを特徴とする。
 また、前記第2のステップは、前記MTJ素子についての供給される電流値と磁化に関する時定数との関係を互いに異なる理論モデルに基づいて近似した式であって、それぞれ前記MTJ素子に供給される電流値を変数として含む第1の式及び第2の式を用い、前記MTJ素子に供給される電流値が任意のしきい値以上の場合に前記第1の式が主となり、小さい場合に前記第2の式が主となるように、前記第1の式と前記第2の式とが前記時定数の演算に寄与する割合を前記MTJ素子に供給される電流値によって変化させて前記時定数の演算を行い、かつ前記磁化反転確率が任意のしきい値を超えた時に磁化反転を生じさせると判断することを特徴とする。
ADVANTAGE OF THE INVENTION According to this invention, the apparatus which supports the design of the spintronics integrated circuit containing an MTJ element can be provided, and the shortening of the design time and the improvement of reliability can be expected.
Specifically, the circuit design support apparatus includes an MTJ element identification unit that identifies an MTJ element from circuit information (netlist) that represents the configuration of the spintronics integrated circuit, and MTJ element characteristic information (model) that represents the characteristics of the MTJ element. Parameter) and a current value supplied to the identified MTJ element, a magnetization reversal determination unit for determining whether to cause magnetization reversal in the MTJ element, and a supply for the MTJ element An approximate expression storage unit for storing a first expression and a second expression obtained by approximating a relationship between a current value and a time constant related to magnetization based on different theoretical models, and an operation information output for outputting a resistance value of the MTJ element The magnetization reversal determination unit includes: a first computing unit that computes a time constant required for magnetization reversal based on the first expression and the second expression; And a second calculating means for calculating a magnetization reversal probability several, characterized by determining whether cause the magnetization reversal on the basis of the magnetization reversal probability.
Further, each of the first expression and the second expression includes a current value supplied to the MTJ element as a variable, and the first arithmetic unit may arbitrarily set a current value supplied to the MTJ element. The first expression and the second expression contribute to the calculation of the time constant so that the first expression is dominant when the threshold value is greater than or equal to the threshold value, and the second expression is dominant when the threshold is small. And the magnetization reversal determining unit determines that the magnetization reversal is caused when the magnetization reversal probability exceeds an arbitrary threshold value. To do.
The approximate expression storage unit further stores a third expression that determines a ratio of the first expression and the second expression contributing to the calculation of the time constant, and a coefficient included in the third expression Is based on the MTJ element characteristic information.
Further, the third expression is represented by a Butterworth filter function expression.
The second computing means increases the magnetization reversal probability when the current value supplied to the MTJ element is equal to or greater than the threshold current set by the MTJ element characteristic information, and the magnetization reversal when the current value is small. The calculation is performed so that the probability decreases.
A circuit design method for supporting the design of a spintronics integrated circuit including an MTJ element, the first step of identifying the MTJ element from circuit information (net list) representing a configuration of the spintronics integrated circuit, and the MTJ A second step of determining whether to cause the magnetization reversal based on MTJ element characteristic information (model parameter) representing the characteristic of the element and a current value supplied to the identified MTJ element; A third step of outputting a resistance value of the MTJ element, and in the second step, a time constant required for the magnetization reversal is calculated based on the current value, and a magnetization reversal probability is calculated based on the time constant And determining whether to cause the magnetization reversal based on the magnetization reversal probability.
The second step is an equation that approximates a relationship between a current value supplied to the MTJ element and a time constant related to magnetization based on different theoretical models, and is supplied to the MTJ element, respectively. Using the first and second formulas including the current value as a variable, the first formula is mainly used when the current value supplied to the MTJ element is equal to or larger than an arbitrary threshold value, and when the current value is small, the first formula is used. The time constant is changed by changing the ratio of the first expression and the second expression contributing to the calculation of the time constant according to the current value supplied to the MTJ element so that the second expression becomes main. And when it is determined that the magnetization reversal occurs when the magnetization reversal probability exceeds an arbitrary threshold value.
 本発明は、MTJ素子を含む電子回路の動作シミュレーションを高速、且つ、高精度に実施することが可能な設計支援装置、及びプログラムを提供することができる。 The present invention can provide a design support apparatus and a program capable of performing an operation simulation of an electronic circuit including an MTJ element at high speed and with high accuracy.
 図1は、典型的なMTJ素子の状態遷移を説明するための図である。
 図2は、磁化反転臨界電流Icと磁化緩和時間τとの関係を示すグラフである。
 図3は、本発明の一実施の形態に係る電子回路設計支援装置の概略構成を示すブロック図である。
 図4は、図3の電子回路設計支援装置を実現するために用いられるコンピュータシステムの概略構成を示すブロック図である。
 図5は、図3の電子回路設計支援装置に含まれる磁化反転判断部の動作を説明するためのフローチャートである。
 図6は、図5の磁化反転判断部の動作(演算)により求まる各部の動作(または状態)波形図である。
 図7は、図3の電子回路設計支援装置に適用されるフィッティングカーブを示すグラフである。
 図8は、図7のフィッティングカーブの実現に用いられるパラメータαに対する磁化緩和時間τの依存性を示すグラフである。
 図9は、近似式から時定数を求める場合に解が発散しないよう、当該近似式中の不連続点の近傍でその近似式をテイラー展開し、項数をkmaxとした場合の項数kmaxと誤差εとの関係を示すグラフである。
 図10は、ニュートン法により磁化緩和時間τから書き換え電流値Iwを求める方法を説明するためのグラフである。
FIG. 1 is a diagram for explaining a state transition of a typical MTJ element.
FIG. 2 is a graph showing the relationship between the magnetization reversal critical current Ic and the magnetization relaxation time τ P.
FIG. 3 is a block diagram showing a schematic configuration of the electronic circuit design support apparatus according to the embodiment of the present invention.
FIG. 4 is a block diagram showing a schematic configuration of a computer system used for realizing the electronic circuit design support apparatus of FIG.
FIG. 5 is a flowchart for explaining the operation of the magnetization reversal determination unit included in the electronic circuit design support apparatus of FIG.
FIG. 6 is an operation (or state) waveform diagram of each unit obtained by the operation (calculation) of the magnetization reversal determination unit of FIG.
FIG. 7 is a graph showing a fitting curve applied to the electronic circuit design support apparatus of FIG.
Figure 8 is a graph showing the dependence of the magnetization relaxation time tau P for the parameter α used in the realization of the fitting curve in Fig.
FIG. 9 shows that the approximate expression is Taylor-expanded near the discontinuous points in the approximate expression so that the solution does not diverge when the time constant is obtained from the approximate expression, and the number of terms kmax when the number of terms is kmax It is a graph which shows the relationship with the error (epsilon).
Figure 10 is a graph for explaining the method of obtaining the rewriting current value Iw from the magnetization relaxation time tau P by Newton's method.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。
 図3は、本発明の一実施の形態における電子回路設計支援装置30の構成を表す図である。図3に示す回路設計支援装置30は、MTJ素子を含む回路を設計する支援装置であり、任意の回路情報に関して、その回路の構成要素であるMTJ素子を含む様々な能動素子、受動素子のモデルパラメータに基づいて模擬動作させることが可能である。本支援装置30は、回路情報入力部31、素子情報入力部32、MTJ素子識別部33、電圧・電流演算部34、磁化反転判断部35、動作情報出力部36、及び近似式記憶部37を備える。
 回路情報入力部31には、設計対象のスピントロニクス集積回路の構成を表す回路情報、及び、回路に入力される信号波形情報が入力される。素子情報入力部32は近似式記憶部37とリンクしている。素子情報入力部32には、CMOSトランジスタ等の能動素子や抵抗、容量等の受動素子のモデルパラメータの他、MTJ素子の特性を表すモデルパラメータが入力される。これらモデルパラメータは、近似式記憶部37に登録された近似式における係数値に対応する。
 MTJ素子識別部33は、入力される回路情報(ネットリスト)から回路に含まれるMTJ素子を識別する。この識別機能は、素子情報入力部32から入力されるMTJ素子モデルパラメータを参照し、それに記載されたMTJ素子モデル名と一致するモデル名がネットリストに含まれているかをチェックすることで実現される。
 電圧・電流演算部34は、ネットリストに含まれる各々の素子に流れる電流や、素子同士を接続する端子に生じる電圧を、回路情報入力部31に入力された入力波形情報と素子情報入力部32に入力されたモデルパラメータから演算する。本演算部34は、各々のMTJ素子に供給される書き換え電流やその両端のバイアス電圧を演算する機能を有する。
 磁化反転判断部35は、各々のMTJ素子に供給される書き換え電流値から磁化反転に関わる時定数を算出し(第1の演算手段)、その時定数から磁化反転確率を算出し(第2の演算手段)、さらに算出した磁化反転確率に基づいてMTJ素子に磁化反転を生じさせるか否かを判断する。時定数、及び磁化反転確率は近似式記憶部37に格納された近似式と、MTJ素子モデルパラメータの値から演算される。
 動作情報出力部36は、ネットリストに予め記載された指示に従って、任意の端子の電圧や素子に流れる電流の他、MTJ素子の磁化状態、抵抗値、書き換え電流やセンス時の電流等の動作波形結果をディスプレイ表示、あるいは印刷などにより出力する。
 本電子回路設計支援装置30は、図4に示すコンピュータシステムにより実現可能である。図4に示すコンピュータシステム40は、ネットリスト、モデルパラメータ等の磁化反転時間を算出する計算に必要な各種データが記憶される記憶媒体41と、コンピュータ本体42とを備えている。
 記憶媒体41は、コンピュータ読み取り可能な情報を非一時的に記憶する。記憶媒体41には、MTJ素子の識別、電圧や電流の演算、及びMTJ素子の磁化反転のタイミング判断を行うプログラムが格納されている。このプログラムは、以降に詳述するように、設計された回路情報からMTJ素子を識別する第1のステップと、MTJ素子特性情報とMTJ素子に供給される書き換え電流値から磁化反転させるか否かを判断する第2のステップと、MTJ素子の抵抗値を出力する第3のステップを少なくとも実現するプログラムである。このプログラムは、第2のステップにおいて、磁化反転に要する時定数をMTJ素子に供給される電流値から演算し、その時定数から磁化反転確率を演算し、その磁化反転確率に基づいて磁化反転を生じさせるか否かを判断させることを特徴とする。
 また、コンピュータ本体42はデータの入出力を行う入出力装置43と、記憶媒体41から読み込まれたプログラムまたはデータを記憶する記憶装置44と、全体の制御及び計算を行う演算装置45と、計算結果を表示する表示装置46とを備え、これらはバス47により相互に接続されている。
 このように構成されたコンピュータシステム40において、回路情報入力部31、及び、素子情報入力部32は入出力装置43により実現される。また、MTJ素子識別部33、電圧・電流演算部34、磁化反転判断部35は演算装置45により実現される。また、近似式記憶部37は上記プログラムに組み込まれた状態で記憶装置44により実現される。また、動作情報出力部36は、表示装置46により実現される。
 例えば、演算装置45は、記憶媒体41から読み込まれて記憶装置44に展開されたプログラムを実行し、MTJ素子に供給される電流値からそのMTJ素子の磁化反転するタイミングを計算する。その際、演算装置45は、入出力装置43からバス47を介して記憶装置44に入力された、MTJ素子を含む回路情報と素子情報、及び記憶媒体41により実現される近似式記憶部37に格納された定数(係数)を含む近似式を用いる。また、演算装置45は、MTJ素子の磁化状態に起因する抵抗値を含む動作情報を表示装置46に表示させる。
 次に、本実施の形態に係る電子回路設計支援装置30の動作について説明する。
 まず、電子回路設計支援装置30が起動すると、図4に示される演算装置45が記憶媒体41、及び記憶装置44に予め記憶されているプログラムを読み込んで実行する。これにより、演算装置45によって以下に述べるように図3の各機能ブロックが実現される。即ち、演算装置45は、回路情報(ネットリスト)、及び素子情報(モデルパラメータ)を参照して、MTJ素子を識別する。次に、演算装置45は、各々の素子、端子における初期状態(電圧、電流等)を計算する。この時、MTJ素子の磁化状態、及び抵抗値は予めネットリスト、あるいはモデルパラメータで指定された状態にセットされる。続いて、演算装置45は、入力信号情報やモデルパラメータ、近似式を活用して時間刻みΔtづつシミュレーション時刻を進めながら、各時刻の状態を計算する。この時、MTJ素子の磁化状態が反転するか否かの判断がMTJ素子に流れる書き換え電流をモニタリングすることにより実行される。ネットリストに記載されたシミュレーション終了時間まで時刻をΔtずつ進め、上記計算がその度毎に実施される。この計算結果は、図4の記憶装置44、及び記憶媒体41に出力され、使用者は表示装置46を介して動作波形データとして計算結果を観察することができる。
 図5は本実施の形態における磁化反転判断部35の演算フローを示している。ここで、シミュレーション上の時刻t0からt1=t0+Δtに変化したと仮定する(ステップA0)。また、書き換え電流値Iwは書き込みデータに応じて正負の符号を持つが、平行化及び反平行化のいずれの場合も基本的に同じ演算フローであるため、図5では書き換え電流値Iwの絶対値を取り扱うこととする。
 時刻t1において、MTJ素子に流れる書き換え電流値|Iw(t1)|が、モデルパラメータファイルにて設定される任意のしきい値電流|Ic_min|以上か否かを比較する(ステップA1)。
 比較結果が、|Iw(t1)|≧|Ic_min|(ステップA1でyes)であれば、後述する近似式に従って、磁化緩和時定数τの算出を行う(ステップA2)。そうでなければ(ステップA1でno)、τの値は磁化反転を起こさない固有の時定数τNOSWに設定される(ステップB2)。この時定数τNOSWはモデルパラメータファイルに予め記載された値である。
 次に、磁化緩和時定数τの値から磁化反転確率PPRBを計算する。ステップA1で、|Iw(t1)|≧|Ic_min|と判定された場合、電流印加時刻から時間t経過した時の磁化反転確率PPRBは、PPRB=1−exp(−t/τ)で求められる。この場合、磁化反転確率は時刻とともに増加する(ステップA3)。一方、ステップA1で|Iw(t1)|<|Ic_min|と判定された場合(これは書き換え電流の供給が停止して時間t経過した場合に相当する)、磁化反転確率PPRBは、PPRB=exp(−t/τ)で求められる。この場合、磁化反転確率は時刻とともに減少する(ステップB3)。
 ステップA3で磁化反転確率PPRBを求めた後、ステップA4において、求めた磁化反転確率PPRBの絶対値と任意のしきい値|Pth|とを比較する。時刻t1において磁化反転確率|PPRB|が|Pth|以上の場合、MTJ素子に磁化反転を生じさせ、これに伴ってMTJ素子の抵抗値が変化する(ステップA5)。超えない場合はMTJ素子に磁化反転を生じさせず、MTJ素子はその状態を保持する(ステップB5)。ステップB3で磁化反転確率PPRBを求めた場合も、MTJ素子はその状態を保持する。
 図6は、図5のフローチャートに基づいて過渡応答をシミュレーションした場合の各部における動作または状態を示す波形図である。MTJ素子の磁化を平行化するため、時刻T0からT1の期間において、書き換え電流パルスIw0を正の方向に印加している。さらに、MTJ素子の磁化を反平行化するために、時刻T2からT3の期間において、書き換え電流パルスIw1を負の方向に印加している。
 時刻T0においてIw0≧Ic_min0であるから、τがIw0を変数として計算され、さらにPPRBが計算される。PPRBがPth0を超えるタイミング(時刻TR0)でMTJ素子の磁化は反平行から平行状態に遷移し、その抵抗値Rmtjは低抵抗化(RAP→R)される。すなわち、時刻T0からTR0までの時間が磁化反転時間(磁化反転遅延tW0)となる。
 時刻T1に達すると、書き換え電流Iwの供給が停止され(Iw0<Ic_min0)、τが一定(=時定数τNOSW)となる。時定数τNOSWは、磁化反転確率PPRBを減少させ、最終的に0%にする。
 時刻T2において|Iw1|≧|Ic_min1|であるから、τがIw1を変数として計算され、さらにPPRBが計算される。ここで、反平行化の場合におけるPPRBの符号は負として定義している。|PPRB|が|Pth1|を超えるタイミング(時刻TR1)でMTJ素子の磁化は平行から反平行状態に遷移し、その抵抗値Rmtjは高抵抗化(R→RAP)される。すなわち、時刻T2からTR1までの時間が磁化反転時間(磁化反転遅延tW1)となる。
 時刻T3に達すると、書き換え電流の供給が停止され(|Iw1|<|Ic_min0|)、τが一定(=時定数τNOSW)となり、磁化反転確率PPRBは0に近づく。
 本発明の実施の形態における磁化緩和時定数τの算出方法(ステップA2)の詳細を説明する前に、典型的なMTJ素子における磁化反転電流と時間の関係について再び図2を参照して詳述する(この関係は非特許非特許文献1に開示されている)。なお、以下の説明では、MTJ素子に供給される書き換え電流Iwと、磁化反転臨界電流Icを明確に区別して記載するが、本設計支援装置、及びプログラムに組み込む場合は、τの算出を行う過程において、Ic=Iwと同義に取り扱えるものとする。
 図2において、上部分は、MTJ素子の磁化を平行化する際の磁化反転電流Icと時間ln(τ/t0)との関係を示し、下部分は、MTJ素子の磁化を非平行化する際の磁化反転電流Icと時間ln(τ/t0)との関係を示している。図2の上部分及び下部分のそれぞれにおいて、ドットは実測値を示し、実線(1)及び(2)は、その近似線を表している。
 図2の近似線(1)は、熱活性モデルによる臨界電流Icを示しており、非特許文献1によれば次式で表わされる。
Ic=Ic0{1−f(τ)}       ・・・(1)
(τ)=(kT/E)ln(τ/τ)・・・(1’)
ここで、kはボルツマン定数、Tは絶対温度、Eはエネルギーバリア、τは熱反転における試行時間で1nsとするのが一般的である。また、(1’)式で表われる項を熱活性項と呼ぶこととする。この近似式では、τ>>τの領域において(τは約100ns以上)、実測値と良く合うことが知られている。
 図2の近似線(2)は、スピントルク効果モデルによる臨界電流Icを示しており、非特許文献1によれば次式で表わされる。
Ic=Ic0{1+f(τ)}              ・・・(2)
(τ)=(τrelaz/τ)・ln{π/(2√(kT/E)))・・・(2’)
ここで、τrelaxは磁気モーメントの緩和時間である。また、(2’)式で表わされる項を歳差項と呼ぶこととする。この近似式では、τがτrelaxに近い領域において(約10ns以下)、実測値と良く合うことが知られている。
 (1)式と(2)式のどちらの式を使ってτを算出するか、MTJ素子に供給される書き換え電流値によって切り替える方法が考えられる。しかし、(1)式と(2)式の接線が存在しないため、切り替える基準となる電流値を決めることは困難である。
 そこで本発明による実施の形態では、(1)式と(2)式を結合する新たな係数α、βを導入する。すなわち、磁化反転臨界電流Icは、
Ic=Ic0{1+αf(τ)−βf(τ)}・・・(3)
の式で表わすこととする。ここで、係数α及びβは、τあるいはIcに依存して値が変化する係数で0~1の範囲をとる。例えば、τがτに比べて十分大きい熱活性モデルの領域ではαが0に近づき(歳差項はゼロに近づく)、βは1に近づく。一方、スピントルクモデルの領域ではαが1に近づき、βは0に近づく(熱活性項はゼロに近づく)。この様なα、βをフィッティング関数式として導入すれば良い。
 (3)式による臨界電流Icと磁化緩和時定数τの関係を図7に太線で示す。図7に示す様に、α、βの導入によって、熱活性領域とスピントルク領域の間の領域、すなわち、(1)式と(2)式のいずれの式にもフィッティングできない領域においても、実測値にフィッティングさせることが可能な近似式を実現することができる。
 α及びβの関数の一例として、バターワース・ローパスフィルタ関数式を挙げることができる。この関数は、次式で表わされる。
α=1/(1+a(τ/τ2m)  ・・・(4)
β=1−1/(1+b(τ/τ2n)・・・(4’)
ここで、(4)及び(4’)式の各係数(a、b、m、n)をモデルパラメータ化することで、スピントルク領域と熱活性領域の間の領域においても実測値にフィッティングさせることが可能となる。ここで、a=b、m=nとすることで(この場合、β=1−αが成り立つ)、パラメータを削減しても差し支えない。また、β=1固定にしてαだけを変化させても差し支えない。
 図8は、(4)式のパラメータaを1に固定し(a=1)、mの値を1から5まで変化させた場合のαの値をτを変数として図示したものである。αは、τが大きくなるに従って、単調減少する関数であり、mの値によって変化の急峻さを変えることができる。この特徴は、熱活性領域とスピントルク領域の間の領域におけるフィッティング式として活用できる点で最適である。
 以上説明した(1)式から(4)式はτからIcを求めるための式であり、実測値に対してモデルパラメータを導出する際には便利である。しかし、本発明による電子回路設計支援装置、及びシミュレーション・プログラムにおける図5のステップA2においては、MTJ素子に供給される書き換え電流Iw(=Ic)からτを算出する必要がある。すなわち、シミュレーション・プログラムにはこれらの式の逆関数を組み込む必要がある。(1)式や(2)式の逆関数は容易に導出できるものの、これらを結合した(3)式の逆関数を求めることは容易ではない。
 そこで、本実施の形態では、(1)式の逆関数から算出される時定数τ TAと、(2)式の逆関数から算出される時定数τ PRに対して(3)式と同様な結合を実施することで最終的なτを算出する。
 詳述すると、次式に示す(1)式の逆関数からτ TAを算出する。
τ TA=τ・exp[(E/kT){1−(Ic/Ic0)}]・・・(5)
 また、次式に示す(2)式の逆関数からτ PRを算出する。
τ PR=τrelax・ln{π/(2√(kT/E))}/{(Ic/Ic0)−1}・・・(6)
 さらに、(3)式の導出と同様の考え方に基づき、次式で最終的なτを算出する。
τ=γτ PR+δτ TA・・・(7)
ここで、γ、及びδは次式で表わされる。
γ=1−1/(1+a(Ic/Ic0)2m)・・・(8)
δ=1/(1+b(Ic/Ic0)2n)  ・・・(8’)
ここで、a、b、m、nはモデルパラメータである。(5)式から(8)式によれば、熱活性モデルとスピントルクモデルの両方に基づき、広範囲に渡ってフィッティング精度を確保できるτを算出することが可能である。例えば、書き換え電流Ic(=Iw)がIc0より十分大きい場合にはγは1に近づき、δは0に近づく。そのため、τの値はスピントルク効果から求まるτPPRが支配的となる。一方、IcがIc0よりも小さい場合は、γは0に近づき、δは1に近づく。そのため、τの値は熱活性効果から求まるτPTAが支配的となる。IcがIc0付近の場合は、両者の効果が混在する領域で、Iwの値によってその比率が変化する。
 ここで、(6)式には分母に{(Ic/Ic0)−1}の項があるため、もしIc=Ic0の場合はτ PRが発散することに注意が必要である。この発散を防ぐため、Ic≦Ic0におけるτ PRの値をパラメータ化しておくと良い。
 あるいは、発散を防ぐ別な方法として、下式で表されるg(Ic)に近い値をとり、かつIc=Ic0で発散しない連続関数でg(Ic)を置き換えるという方法がある。
g(Ic)≡1/{(Ic/Ic0)−1}・・・(9)
そのような連続関数の一例として、(9)式右辺をテイラー展開した関数がある。(6)式はスピントルク領域の式であるから、Ic>Ic0(すなわち1>Ic0/Ic)と考えてよく、(9)式を項(Ic0/Ic)でテイラー展開すると、次式となる。
Figure JPOXMLDOC01-appb-I000001
 kmaxが有限の場合、Ic0/Ic<1の条件下では、(10)式右辺の加算の回数(kmax)が多ければ多いほど、元の(9)式に対する(10)式の誤差εは、小さくなる。なお、誤差εは、次式で表される。
ε={kmaxまで和をとった(10)式右辺}−(9)式右辺}/{(9)式右辺}×100・・・(11)
数値計算上は、図9に示すkmaxとεの関係を参考に、εが所望の範囲に収まるようにkmaxを定める。
 書き換え電流Iw(=Ic)からτを算出する本発明の別の実施形態として、例えば本発明の(1)式から(4)式にて表されるτからIwを得る式をまず求めておき、続いて数値計算により逆関数を求める方法がある。数値計算法としては、ニュートン法などのアルゴリズムが有効である。このニュートン法を用いた逆関数計算法の一例を以下に示す。図10に、本例の説明のため、次式に対するτをニュートン法により求める方法を図解的に示す。
Iw(τ)=Iwc(定数)・・・(12)
明らかに、式Iw=Iw(τ)の曲線と、直線Iw=Iwcの交点が(12)式の解である。
 まず、適当な初期解τP0を設定する。Iw=Iw(τ)上で、τ=τP0における接線(接線1)を引き、Iw=Iwcとの交点のx座標をτP1とする。続いて今度はIw=Iw(τ)上で、τ=τP1における接線(接線2)を引き、Iw=Iwcとの交点のx座標をτP2とする。この操作を繰り返し、n−1回目のIw(τPn−1)とn回目のIw(τPn)との差が予め設定していた誤差値εよりも小さくなったときのτPnをもって、(12)式の解とする。このτPnはすなわち、与えられたIw=Iwcに対するτの値である。
 本発明の実施形態によれば、MTJ素子を含む電子回路の動作検証を高精度に短時間に実施することが可能な設計支援装置、及びプログラムを提供することができる。特に、スピントルクモデルの領域と熱活性モデルの領域の間の領域における書き換え特性が、実測値に非常に合う近似式を用いて計算することが可能となる。これは従来のサブサーキットモデルでは回路が複雑になりすぎて計算時間が膨大になるため事実上、実現不可能である。
 以上、本発明について具体的な実施の形態を例示しながら説明した。本発明は上記実施の形態に限定されず、本発明の技術思想の範囲内において、適宜変更され得ることは明らかである。例えば、上記α、β、γ、δの係数の式はバターワース関数に限らず、他のフィルタ関数式を用いることも可能である。また、上記実施形態では、スピン注入方式のMTJ素子を例示しながら説明をしたが、電流磁場を利用して書きかえる方式のMTJ素子や磁壁移動の現象を利用するMTJ素子にも本発明は適用可能である。また、MTJ素子に限らず、電流や電圧を供給して抵抗値が変化するその他の抵抗変化型素子(ReRAM(Resistance Random Access Memory)素子、PRAM(Phase change RAM)素子、原子スィッチ素子等)を含む回路への適用も本発明の範囲内であることは明白である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1) 本発明の特徴として、上に述べたように、磁化反転臨界電流Icを表す式として、熱活性項(1′)とスピントルク項(2′)を、係数αおよびβを用いて式(3)のように表すことを含む。
(付記2) また、本発明の別な特徴として、時定数τから磁化反転臨界電流Icを求める方法を含む。そのひとつの方法として、熱活性領域におけるIcとτの関係式(1)、およびスピントルク領域におけるIcとτの関係式(2)のそれぞれの逆関数を求め(それぞれ式(5)、(6))、係数γおよびδを用いて式(7)のように表すことを含む。
(付記3) また、時定数τから磁化反転臨界電流Icを求める別な方法として、例えば式(3)のようなτからIcを求める関係式をもとに、数値計算にて逆関数を求める、すなわち与えられたIcからτを計算する方法を含む。
(付記4) また、本発明の別な特徴として、式(6)のIc=Ic0における発散を防ぐために、式(6)をIc=Ic0で発散しない連続関数で置き換えることを含む。
(付記5) MTJ素子に供給される電流値と磁化反転に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1及び第2の近似式を記憶する近似式記憶部と、
 前記MTJ素子を含む集積回路の構成を表す回路情報と、前記MTJ素子に関する素子特性情報とに基づいて、時刻tにおける前記MTJ素子に供給される電流値を求める演算部と、
 求めた電流値と、前記第1及び第2の近似式とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判定する磁化反転判断部と、
を備えることを特徴とする回路設計支援装置。
(付記6) 前記磁化反転判断部は、第1の近似式に基づいて得られる第1の演算結果と、前記第2の近似式に基づいて得られる第2の演算結果とを、前記求めた電流値の大小に応じて前記第1の演算結果及び前記第2の演算結果の一方が支配的となるように変化させるパラメータを用いて重み付け加算し、加算結果に基づいて前記磁化反転を生じさせるか否かを判断することを特徴とする付記5に記載の回路設計支援装置。
(付記7) 前記磁化反転判断部は、前記求めた電流値が第1のしきい値以上の場合に、前記磁化反転を生じさせるか否か判定することを特徴とする付記5又は付記6に記載の回路設計支援装置。
(付記8) 前記磁化反転判断部は、前記求めた電流値が第1のしきい値以上の場合に、前記第1及び第2の近似式に基づいて、前記求めた電流値に対応する時定数を求め、求めた時定数を用いてさらに磁化反転確率を求め、求めた磁化反転確率が第2のしきい値以上の場合に、前記磁化反転を生じさせると判断する、ことを特徴とする付記7に記載の回路設計支援装置。
(付記9) 前記磁化反転判断部は、前記求めた電流値が第1のしきい値より小さい場合に、前記求めた電流値に対応する時定数として予め定められた定数を採用し、採用した時定数を用いてさらに磁化反転確率を求める、ことを特徴とする付記8に記載の回路設計支援装置。
(付記10) 前記演算部と前記磁化反転判定部は、Δt時間が経過する毎に動作を繰り返すことを特徴とする付記5乃至9のいずれかに記載の回路設計支援装置。
(付記11) MTJ素子を含む集積回路の構成を表す回路情報と、前記MTJ素子に関する素子特性情報とに基づいて、時刻tにおける前記MTJ素子に供給される電流値を求め、
 前記MTJ素子に供給される電流値と磁化反転に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1及び第2の近似式と、前記求めた電流値とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判定する、
 ことを特徴とする回路設計支援方法。
(付記12) MTJ素子を含む集積回路の構成を表す回路情報と、前記MTJ素子に関する素子特性情報とに基づいて、時刻tにおける前記MTJ素子に供給される電流値を求めるステップと、
 前記MTJ素子に供給される電流値と磁化反転に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1及び第2の近似式と、前記求めた電流値とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判定するステップと、
 をコンピュータに実行させることを特徴とするプログラム。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a diagram showing the configuration of the electronic circuit design support apparatus 30 according to the embodiment of the present invention. The circuit design support device 30 shown in FIG. 3 is a support device for designing a circuit including an MTJ element. With respect to arbitrary circuit information, various active element and passive element models including the MTJ element that is a component of the circuit. It is possible to perform a simulated operation based on the parameters. The support device 30 includes a circuit information input unit 31, an element information input unit 32, an MTJ element identification unit 33, a voltage / current calculation unit 34, a magnetization reversal determination unit 35, an operation information output unit 36, and an approximate expression storage unit 37. Prepare.
The circuit information input unit 31 receives circuit information representing the configuration of the spintronics integrated circuit to be designed and signal waveform information input to the circuit. The element information input unit 32 is linked to the approximate expression storage unit 37. In addition to model parameters of active elements such as CMOS transistors and passive elements such as resistors and capacitors, model parameters representing the characteristics of MTJ elements are input to the element information input unit 32. These model parameters correspond to the coefficient values in the approximate expression registered in the approximate expression storage unit 37.
The MTJ element identification unit 33 identifies the MTJ element included in the circuit from the input circuit information (net list). This identification function is realized by referring to the MTJ element model parameter input from the element information input unit 32 and checking whether the netlist includes a model name that matches the MTJ element model name described therein. The
The voltage / current calculation unit 34 uses the input waveform information input to the circuit information input unit 31 and the element information input unit 32 as the current flowing through each element included in the netlist and the voltage generated at the terminal connecting the elements. Calculated from the model parameters input to. The calculator 34 has a function of calculating a rewrite current supplied to each MTJ element and a bias voltage at both ends thereof.
The magnetization reversal determination unit 35 calculates a time constant related to magnetization reversal from the rewrite current value supplied to each MTJ element (first calculation means), and calculates a magnetization reversal probability from the time constant (second calculation). In addition, it is determined whether to cause magnetization reversal in the MTJ element based on the calculated magnetization reversal probability. The time constant and the magnetization reversal probability are calculated from the approximate expression stored in the approximate expression storage unit 37 and the value of the MTJ element model parameter.
The operation information output unit 36 operates in accordance with an instruction preliminarily described in the net list, in addition to the voltage at an arbitrary terminal and the current flowing through the element, as well as the operation waveform such as the magnetization state of the MTJ element, the resistance value, the rewrite current, and the current during sensing. The result is output by display or printing.
The electronic circuit design support device 30 can be realized by a computer system shown in FIG. A computer system 40 shown in FIG. 4 includes a storage medium 41 that stores various data necessary for calculation for calculating a magnetization reversal time such as a net list and model parameters, and a computer main body 42.
The storage medium 41 stores computer-readable information non-temporarily. The storage medium 41 stores programs for identifying MTJ elements, calculating voltages and currents, and determining the timing of magnetization reversal of MTJ elements. As will be described in detail later, this program determines whether to invert the magnetization from the first step of identifying the MTJ element from the designed circuit information, and the MTJ element characteristic information and the rewrite current value supplied to the MTJ element. Is a program that realizes at least the second step of judging the above and the third step of outputting the resistance value of the MTJ element. This program calculates the time constant required for magnetization reversal from the current value supplied to the MTJ element in the second step, calculates the magnetization reversal probability from the time constant, and generates magnetization reversal based on the magnetization reversal probability. It is characterized by making it judge whether it is made to do.
The computer main body 42 also includes an input / output device 43 for inputting / outputting data, a storage device 44 for storing a program or data read from the storage medium 41, an arithmetic device 45 for performing overall control and calculation, and a calculation result. And a display device 46 for displaying the images, and these are connected to each other by a bus 47.
In the computer system 40 configured as described above, the circuit information input unit 31 and the element information input unit 32 are realized by the input / output device 43. Further, the MTJ element identification unit 33, the voltage / current calculation unit 34, and the magnetization reversal determination unit 35 are realized by the calculation device 45. The approximate expression storage unit 37 is realized by the storage device 44 in a state incorporated in the program. The operation information output unit 36 is realized by the display device 46.
For example, the arithmetic device 45 executes a program read from the storage medium 41 and developed in the storage device 44, and calculates the timing of magnetization reversal of the MTJ element from the current value supplied to the MTJ element. At that time, the arithmetic unit 45 stores the circuit information including the MTJ elements and the element information input from the input / output device 43 via the bus 47 and the approximate expression storage unit 37 realized by the storage medium 41. An approximate expression including a stored constant (coefficient) is used. Further, the arithmetic device 45 causes the display device 46 to display operation information including a resistance value resulting from the magnetization state of the MTJ element.
Next, the operation of the electronic circuit design support apparatus 30 according to this embodiment will be described.
First, when the electronic circuit design support device 30 is activated, the arithmetic device 45 shown in FIG. 4 reads and executes a program stored in advance in the storage medium 41 and the storage device 44. Thereby, each functional block of FIG. 3 is realized by the arithmetic unit 45 as described below. That is, the arithmetic unit 45 identifies the MTJ element with reference to the circuit information (net list) and the element information (model parameter). Next, the arithmetic unit 45 calculates the initial state (voltage, current, etc.) at each element and terminal. At this time, the magnetization state and resistance value of the MTJ element are set in advance in a state designated by a netlist or model parameter. Subsequently, the arithmetic unit 45 calculates the state at each time while advancing the simulation time in increments of Δt using input signal information, model parameters, and approximate expressions. At this time, whether or not the magnetization state of the MTJ element is reversed is determined by monitoring the rewrite current flowing through the MTJ element. The time is advanced by Δt until the simulation end time described in the netlist, and the above calculation is performed each time. This calculation result is output to the storage device 44 and the storage medium 41 in FIG. 4, and the user can observe the calculation result as operation waveform data via the display device 46.
FIG. 5 shows a calculation flow of the magnetization reversal determination unit 35 in the present embodiment. Here, it is assumed that the simulation time has changed from t0 to t1 = t0 + Δt (step A0). The rewrite current value Iw has a positive or negative sign depending on the write data, but the calculation flow is basically the same in both cases of parallelization and antiparallelization. Therefore, the absolute value of the rewrite current value Iw is shown in FIG. Will be handled.
At time t1, it is compared whether or not the rewrite current value | Iw (t1) | flowing through the MTJ element is greater than or equal to an arbitrary threshold current | Ic_min | set in the model parameter file (step A1).
If the comparison result is | Iw (t1) | ≧ | Ic_min | (yes in step A1), the magnetization relaxation time constant τ is determined according to the approximate expression described later.PIs calculated (step A2). Otherwise (no in step A1), τPIs the intrinsic time constant τ that does not cause magnetization reversalNOSW(Step B2). This time constant τNOSWIs a value previously described in the model parameter file.
Next, magnetization relaxation time constant τPMagnetization reversal probability PPRBCalculate If it is determined in step A1 that | Iw (t1) | ≧ | Ic_min |, the magnetization reversal probability P when the time t has elapsed from the current application timePRBIs PPRB= 1−exp (−t / τP). In this case, the magnetization reversal probability increases with time (step A3). On the other hand, if it is determined in step A1 that | Iw (t1) | <| Ic_min | (this corresponds to the case where time t has elapsed since the supply of the rewrite current is stopped), the magnetization reversal probability PPRBIs PPRB= Exp (-t / τP). In this case, the magnetization reversal probability decreases with time (step B3).
In step A3, the magnetization reversal probability PPRBIn step A4, the obtained magnetization reversal probability P is obtained.PRBIs compared with an arbitrary threshold value | Pth |. Magnetization reversal probability at time t1 | PPRBIf | is greater than or equal to | Pth |, magnetization inversion occurs in the MTJ element, and the resistance value of the MTJ element changes accordingly (step A5). If not exceeded, magnetization reversal is not caused in the MTJ element, and the MTJ element maintains its state (step B5). In step B3, the magnetization reversal probability PPRBEven when the value is obtained, the MTJ element maintains that state.
FIG. 6 is a waveform diagram showing the operation or state in each part when a transient response is simulated based on the flowchart of FIG. In order to parallelize the magnetization of the MTJ element, the rewrite current pulse Iw0 is applied in the positive direction during the period from time T0 to T1. Furthermore, in order to make the magnetization of the MTJ element antiparallel, the rewrite current pulse Iw1 is applied in the negative direction during the period from time T2 to T3.
Since Iw0 ≧ Ic_min0 at time T0, τPIs calculated with Iw0 as a variable, and PPRBIs calculated. PPRBAt a time when Pth0 exceeds Pth0 (time TR0), the magnetization of the MTJ element changes from antiparallel to parallel state, and its resistance value Rmtj is reduced in resistance (RAP→ RP) That is, the time from time T0 to TR0 is the magnetization reversal time (magnetization reversal delay tW0).
When the time T1 is reached, the supply of the rewrite current Iw is stopped (Iw0 <Ic_min0), τPIs constant (= time constant τNOSW) Time constant τNOSWIs the magnetization reversal probability PPRBAnd finally to 0%.
Since | Iw1 | ≧ | Ic_min1 | at time T2, τPIs calculated with Iw1 as a variable, and PPRBIs calculated. Here, P in the case of anti-parallelizationPRBThe sign of is defined as negative. | PPRBAt a timing when | exceeds | Pth1 | (time TR1), the magnetization of the MTJ element transitions from a parallel state to an antiparallel state, and its resistance value Rmtj is increased in resistance (RP→ RAP) That is, the time from time T2 to TR1 is the magnetization reversal time (magnetization reversal delay tW1).
When the time T3 is reached, the supply of the rewrite current is stopped (| Iw1 | <| Ic_min0 |), τPIs constant (= time constant τNOSW) And the magnetization reversal probability PPRBApproaches 0.
Magnetization relaxation time constant τ in the embodiment of the present inventionPBefore describing the details of the calculation method (step A2), the relationship between the magnetization reversal current and time in a typical MTJ element will be described in detail with reference to FIG. 2 again (this relationship is described in Non-Patent Document 1). Disclosed). In the following description, the rewrite current Iw supplied to the MTJ element and the magnetization reversal critical current Ic are clearly distinguished and described. However, when incorporated in the present design support apparatus and program, τPIn the process of calculating Ic = Iw, it can be handled synonymously.
In FIG. 2, the upper part shows the magnetization reversal current Ic and the time ln (τ) when the magnetization of the MTJ element is parallelized.P/ T0), the lower part shows the magnetization reversal current Ic and the time ln (τ) when the magnetization of the MTJ element is made non-parallelP/ T0). In each of the upper part and the lower part of FIG. 2, dots indicate actual measurement values, and solid lines (1) and (2) indicate approximate lines thereof.
Approximate line (1) in FIG. 2 shows the critical current Ic by the thermal activation model, and is represented by the following equation according to Non-Patent Document 1.
Ic = Ic0 {1-fTP}} (1)
fTP) = (KBT / E) ln (τP/ Τ0) ... (1 ')
Where kBIs the Boltzmann constant, T is the absolute temperature, E is the energy barrier, τ0Is generally 1 ns in trial time in thermal reversal. In addition, the term represented by the formula (1 ′) is referred to as a thermal activation term. In this approximation, τP>> τ0PIs about 100 ns or more), and is known to match the measured value well.
Approximate line (2) in FIG. 2 shows the critical current Ic based on the spin torque effect model, and is represented by the following equation according to Non-Patent Document 1.
Ic = Ic0 {1 + fSP)}} (2)
fSP) = (Τrelax/ ΤP) · Ln {π / (2√ (kBT / E))) ... (2 ')
Where τrelaxIs the relaxation time of the magnetic moment. In addition, the term represented by the expression (2 ′) is called a precession term. In this approximation, τPIs τrelaxIt is known that in the region close to (approximately 10 ns or less), the measured value matches well.
Using either equation (1) or equation (2), τPOr a method of switching according to the rewrite current value supplied to the MTJ element. However, since there are no tangent lines in the expressions (1) and (2), it is difficult to determine a current value to be switched.
Therefore, in the embodiment according to the present invention, new coefficients α and β that combine the expressions (1) and (2) are introduced. That is, the magnetization reversal critical current Ic is
Ic = Ic0 {1 + αfSP) -ΒfTP)} ... (3)
It shall be expressed by the following formula. Where the coefficients α and β are τPAlternatively, a coefficient whose value varies depending on Ic takes a range of 0 to 1. For example, τPIs τ0In the region of the thermal activity model that is sufficiently larger than, α approaches 0 (the precession term approaches zero), and β approaches 1. On the other hand, in the region of the spin torque model, α approaches 1 and β approaches 0 (the thermal activity term approaches zero). Such α and β may be introduced as fitting function equations.
(3) Critical current Ic and magnetization relaxation time constant τPThis relationship is indicated by a thick line in FIG. As shown in FIG. 7, by the introduction of α and β, the measurement is performed in the region between the thermally active region and the spin torque region, that is, in the region where neither of the equations (1) and (2) can be fitted. An approximate expression that can be fitted to a value can be realized.
As an example of the functions of α and β, a Butterworth low-pass filter function equation can be given. This function is expressed by the following equation.
α = 1 / (1 + a (τP/ Τ0)2m) (4)
β = 1−1 / (1 + b (τP/ Τ0)2n) ... (4 ')
Here, each coefficient (a, b, m, n) of the equations (4) and (4 ′) is modeled to fit the measured values in the region between the spin torque region and the thermally active region. It becomes possible. Here, the parameters may be reduced by setting a = b and m = n (in this case, β = 1−α). It is also possible to change only α while β = 1 is fixed.
Fig. 8 shows the value of α when the parameter a in equation (4) is fixed at 1 (a = 1) and the value of m is changed from 1 to 5.PIs illustrated as a variable. α is τPIs a function that decreases monotonously as the value of increases, and the steepness of the change can be changed by the value of m. This feature is optimal in that it can be used as a fitting equation in the region between the thermally active region and the spin torque region.
(1) to (4) described above are τPThis is an expression for obtaining Ic from, and is convenient when deriving a model parameter for an actual measurement value. However, in step A2 of FIG. 5 in the electronic circuit design support apparatus and the simulation program according to the present invention, τ from the rewrite current Iw (= Ic) supplied to the MTJ element.PNeed to be calculated. That is, it is necessary to incorporate inverse functions of these equations into the simulation program. Although the inverse functions of Equation (1) and Equation (2) can be easily derived, it is not easy to obtain the inverse function of Equation (3) that combines them.
Therefore, in this embodiment, the time constant τ calculated from the inverse function of equation (1)P TAAnd the time constant τ calculated from the inverse function of equation (2)P PRBy performing the same combination as in equation (3), the final τPIs calculated.
Describing in detail, from the inverse function of equation (1) shown below, τP TAIs calculated.
τP TA= Τ0Exp [(E / kBT) {1- (Ic / Ic0)}] (5)
Also, from the inverse function of equation (2) shown below, τP PRIs calculated.
τP PR= ΤrelaxLn {π / (2√ (kBT / E))} / {(Ic / Ic0) -1} (6)
Furthermore, based on the same idea as the derivation of equation (3), the final τPIs calculated.
τP= ΓτP PR+ ΔτP TA... (7)
Here, γ and δ are expressed by the following equations.
γ = 1−1 / (1 + a (Ic / Ic0)2m) ... (8)
δ = 1 / (1 + b (Ic / Ic0)2n) ... (8 ')
Here, a, b, m, and n are model parameters. According to the equations (5) to (8), τ that can ensure fitting accuracy over a wide range based on both the thermal activation model and the spin torque model.PCan be calculated. For example, when the rewriting current Ic (= Iw) is sufficiently larger than Ic0, γ approaches 1 and δ approaches 0. Therefore, τPIs obtained from the spin torque effect τPPRBecomes dominant. On the other hand, when Ic is smaller than Ic0, γ approaches 0 and δ approaches 1. Therefore, τPThe value of τ is obtained from the thermal activation effectPTABecomes dominant. When Ic is in the vicinity of Ic0, the ratio varies depending on the value of Iw in a region where both effects are mixed.
Here, since there is a {(Ic / Ic0) -1} term in the denominator in equation (6), if Ic = Ic0, τP PRIt should be noted that diverges. In order to prevent this divergence, τ at Ic ≦ Ic0P PRIt is good to parameterize the value of.
Alternatively, as another method for preventing divergence, there is a method of replacing g (Ic) with a continuous function that takes a value close to g (Ic) represented by the following formula and does not diverge when Ic = Ic0.
g (Ic) ≡1 / {(Ic / Ic0) -1} (9)
As an example of such a continuous function, there is a function obtained by Taylor expansion of the right side of the equation (9). Since the equation (6) is an expression in the spin torque region, it can be considered that Ic> Ic0 (ie, 1> Ic0 / Ic). When the equation (9) is Taylor-expanded by the term (Ic0 / Ic), the following equation is obtained. .
Figure JPOXMLDOC01-appb-I000001
When kmax is finite, under the condition of Ic0 / Ic <1, the larger the number of additions (kmax) on the right side of equation (10), the more the error ε of equation (10) with respect to the original equation (9) becomes: Get smaller. The error ε is expressed by the following equation.
[epsilon] = {right side of equation (10)}-(9) right side} / {right side of equation (9)} × 100 (11)
In numerical calculation, with reference to the relationship between kmax and ε shown in FIG. 9, kmax is determined so that ε falls within a desired range.
From rewrite current Iw (= Ic) to τPAs another embodiment of the present invention for calculating τ, for example, τ represented by the expressions (1) to (4) of the present inventionPThere is a method in which an expression for obtaining Iw is first obtained, and then an inverse function is obtained by numerical calculation. An algorithm such as Newton's method is effective as a numerical calculation method. An example of the inverse function calculation method using the Newton method is shown below. In FIG. 10, for the purpose of explaining this example, τPThe method of calculating | requiring by the Newton method is shown graphically.
Iw (τP) = Iwc (constant) (12)
Obviously, the formula Iw = Iw (τP) And the intersection of the straight line Iw = Iwc is the solution of equation (12).
First, a suitable initial solution τP0Set. Iw = Iw (τP), Τ = τP0Tangent line (tangent line 1) is drawn and the x coordinate of the intersection with Iw = Iwc is τP1And Next, this time Iw = Iw (τP), Τ = τP1Tangent line (tangent line 2) is drawn, and the x coordinate of the intersection with Iw = Iwc is τP2And This operation is repeated until the (n-1) th Iw (τPn-1) And n-th Iw (τPn) Is a preset error value εnΤ when smaller thanPnIs the solution of equation (12). This τPnI.e., τ for a given Iw = IwcPIs the value of
According to the embodiment of the present invention, it is possible to provide a design support apparatus and program capable of performing operation verification of an electronic circuit including an MTJ element with high accuracy in a short time. In particular, the rewriting characteristics in the region between the spin torque model region and the thermal activation model region can be calculated by using an approximate expression that is very suitable for the actually measured value. This is practically impossible to achieve in the conventional subcircuit model because the circuit becomes too complex and the computation time is enormous.
The present invention has been described with reference to specific embodiments. It is obvious that the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the technical idea of the present invention. For example, the expression of the coefficients α, β, γ, and δ is not limited to the Butterworth function, and other filter function expressions can be used. In the above embodiment, the spin injection MTJ element has been described as an example. However, the present invention is also applied to an MTJ element that rewrites using a current magnetic field and an MTJ element that uses the phenomenon of domain wall motion. Is possible. In addition to MTJ elements, other resistance variable elements (ReRAM (Resistance Random Access Memory) elements, PRAM (Phase change RAM) elements, atomic switch elements, etc.) whose resistance value changes by supplying current or voltage are also included. Obviously, application to the included circuit is also within the scope of the present invention.
Some or all of the above embodiments can be described as in the following supplementary notes, but are not limited thereto.
(Supplementary note 1) As described above, as described above, the thermal activation term (1 ′) and the spin torque term (2 ′) are used as coefficients representing the magnetization reversal critical current Ic using the coefficients α and β. Including expression (3).
(Appendix 2) Another feature of the present invention is that the time constant τPA method for determining the magnetization reversal critical current Ic from As one method, Ic and τ in the thermally active regionPAnd Ic and τ in the spin torque regionPInverse relational expression (2) is obtained (Equations (5) and (6), respectively), and is expressed as Expression (7) using coefficients γ and δ.
(Appendix 3) Also, time constant τPAs another method for obtaining the magnetization reversal critical current Ic from thePBased on the relational expression for obtaining Ic from the equation, an inverse function is obtained by numerical calculation, that is, given Ic to τPIncluding a method of calculating
(Additional remark 4) Moreover, in order to prevent the divergence in Ic = Ic0 of Formula (6) as another characteristic of this invention, it replaces Formula (6) with the continuous function which does not diverge by Ic = Ic0.
(Additional remark 5) The approximate expression memory | storage part which memorize | stores the 1st and 2nd approximate expression which approximated the relationship between the electric current value supplied to an MTJ element, and the time constant regarding magnetization reversal based on a mutually different theoretical model,
A calculation unit for obtaining a current value supplied to the MTJ element at time t based on circuit information representing a configuration of an integrated circuit including the MTJ element and element characteristic information on the MTJ element;
A magnetization reversal determination unit for determining whether to cause magnetization reversal in the MTJ element based on the obtained current value and the first and second approximate expressions;
A circuit design support apparatus comprising:
(Additional remark 6) The said magnetization reversal judgment part calculated | required the 1st calculation result obtained based on the 1st approximation, and the 2nd calculation result obtained based on the said 2nd approximation Weighted addition is performed using a parameter that changes so that one of the first calculation result and the second calculation result becomes dominant according to the magnitude of the current value, and the magnetization reversal is caused based on the addition result. 6. The circuit design support device according to appendix 5, wherein the circuit design support device determines whether or not.
(Additional remark 7) The said magnetization reversal judgment part determines whether the said magnetic reversal is caused when the calculated | required electric current value is more than a 1st threshold value. The circuit design support apparatus described.
(Appendix 8) The magnetization reversal determination unit is configured to respond to the calculated current value based on the first and second approximate expressions when the calculated current value is equal to or greater than a first threshold value. A constant is obtained, and a magnetization reversal probability is further obtained using the obtained time constant, and it is determined that the magnetization reversal is caused when the obtained magnetization reversal probability is equal to or higher than a second threshold value. The circuit design support device according to appendix 7.
(Supplementary Note 9) When the obtained current value is smaller than the first threshold value, the magnetization reversal determination unit adopts a predetermined constant as a time constant corresponding to the obtained current value. 9. The circuit design support device according to appendix 8, wherein a magnetization reversal probability is further obtained using a time constant.
(Supplementary note 10) The circuit design support device according to any one of supplementary notes 5 to 9, wherein the calculation unit and the magnetization reversal determination unit repeat operations every time Δt time elapses.
(Additional remark 11) Based on the circuit information showing the structure of the integrated circuit containing an MTJ element and the element characteristic information regarding the said MTJ element, the electric current value supplied to the said MTJ element in the time t is calculated | required,
Based on the first and second approximate expressions that approximate the relationship between the current value supplied to the MTJ element and the time constant related to magnetization reversal based on different theoretical models, and the MTJ, Determine whether to cause magnetization reversal in the element,
A circuit design support method characterized by this.
(Additional remark 12) The step which calculates | requires the electric current value supplied to the said MTJ element in the time t based on the circuit information showing the structure of the integrated circuit containing an MTJ element, and the element characteristic information regarding the said MTJ element;
Based on the first and second approximate expressions that approximate the relationship between the current value supplied to the MTJ element and the time constant related to magnetization reversal based on different theoretical models, and the MTJ, Determining whether to cause magnetization reversal in the element;
A program characterized by causing a computer to execute.
 11  磁化自由層
 12  磁化固定層
 13  バリア層
 30  電子回路設計支援装置
 31  回路情報入力部
 32  素子情報入力部
 33  MTJ素子識別部
 34  電圧・電流演算部
 35  磁化反転判断部
 36  動作情報出力部
 37  近似式記憶部
 40  コンピュータシステム
 41  記憶媒体
 42  コンピュータ本体
 43  入出力装置
 44  記憶装置
 45  演算装置
 46  表示装置
 この出願は、2012年8月23日に出願された日本出願特願2012−184142号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
DESCRIPTION OF SYMBOLS 11 Magnetization free layer 12 Magnetization fixed layer 13 Barrier layer 30 Electronic circuit design support apparatus 31 Circuit information input part 32 Element information input part 33 MTJ element identification part 34 Voltage / current calculation part 35 Magnetization inversion judgment part 36 Operation information output part 37 Approximation Expression storage unit 40 Computer system 41 Storage medium 42 Computer main body 43 Input / output device 44 Storage device 45 Computing device 46 Display device This application is based on Japanese Patent Application No. 2012-184142 filed on August 23, 2012. All the disclosures of which are hereby incorporated by reference.

Claims (10)

  1.  MTJ素子を含むスピントロニクス集積回路の設計を支援する回路設計支援装置であって、
     前記スピントロニクス集積回路の構成を表す回路情報(ネットリスト)から前記MTJ素子を識別するMTJ素子識別部と、
     前記MTJ素子の特性を表すMTJ素子特性情報(モデルパラメータ)と、識別された前記MTJ素子に供給される電流値とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判断する磁化反転判断部と、
     前記MTJ素子についての供給される電流値と磁化に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1の式及び第2の式を記憶する近似式記憶部と、
     前記MTJ素子の抵抗値を出力する動作情報出力部とを備え、
     前記磁化反転判断部は、前記第1の式及び前記第2の式に基づいて磁化反転に要する時定数を演算する第1の演算手段と、
     演算された時定数から磁化反転確率を演算する第2の演算手段とを有し、
     前記磁化反転確率に基づいて前記磁化反転を生じさせるか否かを判断することを特徴とする回路設計支援装置。
    A circuit design support apparatus for supporting the design of a spintronics integrated circuit including an MTJ element,
    An MTJ element identification unit for identifying the MTJ element from circuit information (net list) representing the configuration of the spintronics integrated circuit;
    Magnetization for determining whether to cause magnetization reversal in the MTJ element based on MTJ element characteristic information (model parameter) representing the characteristic of the MTJ element and the current value supplied to the identified MTJ element An inversion judgment unit;
    An approximate expression storage unit that stores a first expression and a second expression that approximate a relationship between a supplied current value and a time constant related to magnetization of the MTJ element based on different theoretical models;
    An operation information output unit that outputs a resistance value of the MTJ element;
    The magnetization reversal determination unit includes first computing means for computing a time constant required for magnetization reversal based on the first equation and the second equation;
    Second calculating means for calculating a magnetization reversal probability from the calculated time constant;
    A circuit design support apparatus for determining whether or not to cause the magnetization reversal based on the magnetization reversal probability.
  2.  請求項1に記載の回路設計支援装置において、
     前記第1の式及び前記第2の式は、それぞれ、前記MTJ素子に供給される電流値を変数として含み、
     前記第1の演算手段は、前記MTJ素子に供給される電流値が任意のしきい値以上の場合に第1の式が主となり、小さい場合に第2の式が主となるように、前記第1の式と前記第2の式とが前記時定数の演算に寄与する割合を前記MTJ素子に供給される電流値によって変化させ、
     前記磁化反転判断部は、前記磁化反転確率が任意のしきい値を超えた時に前記磁化反転を生じさせると判断することを特徴とする回路設計支援装置。
    The circuit design support apparatus according to claim 1,
    Each of the first equation and the second equation includes a current value supplied to the MTJ element as a variable,
    The first calculation means is configured so that the first expression is mainly used when the current value supplied to the MTJ element is not less than an arbitrary threshold value, and the second expression is mainly used when the current value is small. The ratio of the first expression and the second expression contributing to the calculation of the time constant is changed according to the current value supplied to the MTJ element,
    The circuit design support device, wherein the magnetization reversal determination unit determines to cause the magnetization reversal when the magnetization reversal probability exceeds an arbitrary threshold value.
  3.  請求項1に記載の回路設計支援装置において、
     前記近似式記憶部は、前記第1の式及び前記第2の式が前記時定数の演算に寄与する割合を決定づける第3の式をさらに記憶し、
     前記第3の式に含まれる係数が前記MTJ素子特性情報に基づくものであることを特徴とする回路設計支援装置。
    The circuit design support apparatus according to claim 1,
    The approximate expression storage unit further stores a third expression that determines a ratio at which the first expression and the second expression contribute to the calculation of the time constant,
    The circuit design support apparatus, wherein a coefficient included in the third equation is based on the MTJ element characteristic information.
  4.  請求項3に記載の回路設計支援装置において、
     前記第3の式がバターワース・フィルタ関数式で表わされることを特徴とする回路設計支援装置。
    The circuit design support device according to claim 3,
    The circuit design support apparatus, wherein the third expression is represented by a Butterworth filter function expression.
  5.  請求項1に記載の回路設計支援装置において、
     第2の演算手段は、前記MTJ素子に供給される電流値が、前記MTJ素子特性情報で設定されるしきい値電流以上の場合に前記磁化反転確率が上がり、小さい場合に前記磁化反転確率が下がるように演算することを特徴とする回路設計支援装置。
    The circuit design support apparatus according to claim 1,
    The second calculation means increases the magnetization reversal probability when the current value supplied to the MTJ element is equal to or higher than the threshold current set by the MTJ element characteristic information, and reduces the magnetization reversal probability when the current value is small. A circuit design support device characterized in that the calculation is performed so as to be lowered.
  6.  MTJ素子を含むスピントロニクス集積回路の設計を支援する回路設計支援方法であって、
     前記スピントロニクス集積回路の構成を表す回路情報(ネットリスト)から前記MTJ素子を識別する第1のステップと、
     前記MTJ素子の特性を表すMTJ素子特性情報(モデルパラメータ)と、識別されたMTJ素子に供給される電流値とに基づいて、前記磁化反転を生じさせるか否かを判断する第2のステップと、
     前記MTJ素子の抵抗値を出力する第3のステップとを含み、
     前記第2のステップにおいて、前記磁化反転に要する時定数を前記電流値に基づいて演算し、その時定数に基づいて磁化反転確率を演算し、その磁化反転確率に基づいて前記磁化反転を生じさせるか否かを判断することを特徴とする回路設計支援方法。
    A circuit design support method for supporting the design of a spintronics integrated circuit including an MTJ element,
    A first step of identifying the MTJ element from circuit information (net list) representing a configuration of the spintronics integrated circuit;
    A second step of determining whether or not to cause the magnetization reversal based on MTJ element characteristic information (model parameter) representing characteristics of the MTJ element and a current value supplied to the identified MTJ element; ,
    A third step of outputting a resistance value of the MTJ element,
    In the second step, a time constant required for the magnetization reversal is calculated based on the current value, a magnetization reversal probability is calculated based on the time constant, and the magnetization reversal is caused based on the magnetization reversal probability A circuit design support method characterized by determining whether or not.
  7.  請求項6に記載の回路設計支援方法において、
     前記第2のステップは、前記MTJ素子についての供給される電流値と磁化に関する時定数との関係を互いに異なる理論モデルに基づいて近似した式であって、それぞれ前記MTJ素子に供給される電流値を変数として含む第1の式及び第2の式を用い、前記MTJ素子に供給される電流値が任意のしきい値以上の場合に前記第1の式が主となり、小さい場合に前記第2の式が主となるように、前記第1の式と前記第2の式とが前記時定数の演算に寄与する割合を前記MTJ素子に供給される電流値によって変化させて前記時定数の演算を行い、かつ
     前記磁化反転確率が任意のしきい値を超えた時に前記磁化反転を生じさせると判断することを特徴とする回路設計支援方法。
    The circuit design support method according to claim 6,
    The second step is an expression obtained by approximating a relationship between a current value supplied to the MTJ element and a time constant related to magnetization based on different theoretical models, and the current value supplied to the MTJ element, respectively. The first equation is mainly used when the current value supplied to the MTJ element is equal to or larger than an arbitrary threshold value, and the second equation is used when the current value is small. The ratio of the first expression and the second expression contributing to the calculation of the time constant is changed according to the current value supplied to the MTJ element so that the expression of And determining that the magnetization reversal is caused when the magnetization reversal probability exceeds an arbitrary threshold value.
  8.  コンピュータを、MTJ素子を含むスピントロニクス集積回路の設計を支援する回路設計支援装置として動作せせるプログラムであって、
     前記コンピュータに、
     前記スピントロニクス集積回路の構成を表す回路情報(ネットリスト)から前記MTJ素子を識別する第1のステップと、
     前記MTJ素子の特性を表すMTJ素子特性情報(モデルパラメータ)と、識別されたMTJ素子に供給される電流値とに基づいて、前記磁化反転を生じさせるか否か判断する第2のステップと、
     前記MTJ素子の抵抗値を出力する第3のステップとを、
     実行させ、
     前記第2のステップにおいて、前記磁化反転に要する時定数を前記電流値に基づいて演算し、その時定数に基づいて磁化反転確率を演算し、その磁化反転確率に基づいて前記磁化反転させるか否か判断することを特徴とするプログラム。
    A program that causes a computer to operate as a circuit design support device that supports the design of a spintronics integrated circuit including an MTJ element,
    In the computer,
    A first step of identifying the MTJ element from circuit information (net list) representing a configuration of the spintronics integrated circuit;
    A second step of determining whether to cause the magnetization reversal based on MTJ element characteristic information (model parameter) representing the characteristic of the MTJ element and a current value supplied to the identified MTJ element;
    A third step of outputting a resistance value of the MTJ element;
    Let it run
    In the second step, a time constant required for the magnetization reversal is calculated based on the current value, a magnetization reversal probability is calculated based on the time constant, and whether the magnetization reversal is performed based on the magnetization reversal probability A program characterized by judgment.
  9.  請求項8に記載のプログラムにおいて、
     前記第2のステップは、前記MTJ素子についての供給される電流値と磁化に関する時定数との関係を互いに異なる理論モデルに基づいて近似した式であって、それぞれ前記MTJ素子に供給される電流値を変数として含む第1の式及び第2の式を用い、前記MTJ素子に供給される電流値が任意のしきい値以上の場合に前記第1の式が主となり、小さい場合に前記第2の式が主となるように、前記第1の式と前記第2の式とが前記時定数の演算に寄与する割合を前記MTJ素子に供給される電流値によって変化させて前記時定数の演算を行い、かつ
     前記磁化反転確率が任意のしきい値を超えた時に前記磁化反転を生じさせると判断することを特徴とするプログラム。
    The program according to claim 8, wherein
    The second step is an expression obtained by approximating a relationship between a current value supplied to the MTJ element and a time constant related to magnetization based on different theoretical models, and the current value supplied to the MTJ element, respectively. The first equation is mainly used when the current value supplied to the MTJ element is equal to or larger than an arbitrary threshold value, and the second equation is used when the current value is small. The ratio of the first expression and the second expression contributing to the calculation of the time constant is changed according to the current value supplied to the MTJ element so that the expression of And determining that the magnetization reversal occurs when the magnetization reversal probability exceeds an arbitrary threshold value.
  10.  MTJ素子に供給される電流値と磁化反転に関する時定数との関係を互いに異なる理論モデルに基づいて近似した第1及び第2の近似式を記憶する近似式記憶部と、
     前記MTJ素子を含む集積回路の構成を表す回路情報と、前記MTJ素子に関する素子特性情報とに基づいて、時刻tにおける前記MTJ素子に供給される電流値を求める演算部と、
     求めた電流値と、前記第1及び第2の近似式とに基づいて、前記MTJ素子に磁化反転を生じさせるか否かを判定する磁化反転判断部と、
    を備えることを特徴とする回路設計支援装置。
    An approximate expression storage unit that stores first and second approximate expressions that approximate a relationship between a current value supplied to the MTJ element and a time constant related to magnetization reversal based on different theoretical models;
    An arithmetic unit that obtains a current value supplied to the MTJ element at time t based on circuit information representing a configuration of an integrated circuit including the MTJ element and element characteristic information on the MTJ element;
    A magnetization reversal determination unit that determines whether to cause magnetization reversal in the MTJ element based on the obtained current value and the first and second approximate expressions;
    A circuit design support apparatus comprising:
PCT/JP2013/070259 2012-08-23 2013-07-19 Circuit design assistance device, method, and program WO2014030490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531556A JP6256951B2 (en) 2012-08-23 2013-07-19 Circuit design support apparatus, method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184142 2012-08-23
JP2012-184142 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030490A1 true WO2014030490A1 (en) 2014-02-27

Family

ID=50149801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070259 WO2014030490A1 (en) 2012-08-23 2013-07-19 Circuit design assistance device, method, and program

Country Status (2)

Country Link
JP (1) JP6256951B2 (en)
WO (1) WO2014030490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025972A1 (en) * 2016-08-04 2018-02-08 国立大学法人東北大学 Circuit design assist system, circuit design assist method, circuit design assist program, and computer readable recording medium having said program recorded thereon
KR20200089542A (en) * 2019-01-17 2020-07-27 한양대학교 산학협력단 Processing Element Based Magnetic Tunnel Junction Structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068503A (en) * 1998-08-18 2000-03-03 Nec Corp Device simulation method and storage medium where device simulation program is stored

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068503A (en) * 1998-08-18 2000-03-03 Nec Corp Device simulation method and storage medium where device simulation program is stored

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKIMURA, NOBORU ET AL.: "High-Speed Simulator including Accurate MTJ Models for Spintronics Integrated Circuit Design", 2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 23 May 2012 (2012-05-23), pages 1971 - 1974 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025972A1 (en) * 2016-08-04 2018-02-08 国立大学法人東北大学 Circuit design assist system, circuit design assist method, circuit design assist program, and computer readable recording medium having said program recorded thereon
US10783294B2 (en) 2016-08-04 2020-09-22 Tohoku University System, method, and non-transitory computer readable recording medium storing a program recorded thereon for supporting a design of a circuit including a stochastic operation element
KR20200089542A (en) * 2019-01-17 2020-07-27 한양대학교 산학협력단 Processing Element Based Magnetic Tunnel Junction Structure
KR102182232B1 (en) 2019-01-17 2020-11-24 한양대학교 산학협력단 Processing Element Based Magnetic Tunnel Junction Structure

Also Published As

Publication number Publication date
JPWO2014030490A1 (en) 2016-07-28
JP6256951B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
Shang et al. Analysis and modeling of internal state variables for dynamic effects of nonvolatile memory devices
Kim et al. A technology-agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies
Bishnoi et al. Read disturb fault detection in STT-MRAM
EP2232497B1 (en) Method for modeling a magnetic tunnel junction with spin-polarized current writing
Bishnoi et al. Improving write performance for STT-MRAM
Sakimura et al. High-speed simulator including accurate MTJ models for spintronics integrated circuit design
Bishnoi et al. Self-timed read and write operations in STT-MRAM
Xu et al. Compact modeling of STT-MTJ devices
Lehtonen et al. A cellular computing architecture for parallel memristive stateful logic
Garzon et al. Assessment of STT-MRAMs based on double-barrier MTJs for cache applications by means of a device-to-system level simulation framework
Amirsoleimani et al. Logic design on mirrored memristive crossbars
JP6256951B2 (en) Circuit design support apparatus, method and program
Ren et al. Reference calibration of body-voltage sensing circuit for high-speed STT-RAMs
JP6161642B2 (en) Method and system for reading a memory cell based on a magnetic tunnel junction (MTJ) based on a pulse read current
Garcia-Redondo et al. A compact model for scalable mtj simulation
Bai et al. Clockless spintronic logic: A robust and ultra-low power computing paradigm
JP5793805B2 (en) Method for simulating operation of variable resistance element
Garg et al. Behavioural model of spin torque transfer magnetic tunnel junction, using Verilog-A
Prenat et al. Beyond MRAM, CMOS/MTJ integration for logic components
Merkel et al. Towards thermal profiling in CMOS/memristor hybrid RRAM architectures
Di Pendina et al. A hybrid magnetic/complementary metal oxide semiconductor process design kit for the design of low-power non-volatile logic circuits
US7082389B2 (en) Method and apparatus for simulating a magnetoresistive random access memory (MRAM)
Im et al. A read–write circuit for STT-MRAM with stochastic switchings
Eken et al. Giant Spin-Hall assisted STT-RAM and logic design
Liu et al. Compact model of magnetic tunnel junctions for SPICE simulation based on switching probability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830954

Country of ref document: EP

Kind code of ref document: A1