WO2014029420A1 - Method for limiting electrical power consumption - Google Patents

Method for limiting electrical power consumption Download PDF

Info

Publication number
WO2014029420A1
WO2014029420A1 PCT/EP2012/066232 EP2012066232W WO2014029420A1 WO 2014029420 A1 WO2014029420 A1 WO 2014029420A1 EP 2012066232 W EP2012066232 W EP 2012066232W WO 2014029420 A1 WO2014029420 A1 WO 2014029420A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
maximum value
charging
time interval
control device
Prior art date
Application number
PCT/EP2012/066232
Other languages
German (de)
French (fr)
Inventor
Martina FRIEDRICH
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2012/066232 priority Critical patent/WO2014029420A1/en
Publication of WO2014029420A1 publication Critical patent/WO2014029420A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • traction battery which provides the electrical energy required for the driving operation.
  • Discharged batteries must be recharged if necessary by means of a charging device.
  • a charging device emits electrical energy to the vehicle during the charging process, with which the traction battery of the vehicle is charged. This electrical energy takes the charger from a power grid.
  • Contracts for the supply of electric power from energy ⁇ utilities often contain provisions which must not be exceeded during a specified time interval, Example ⁇ , during a 15-minute time interval, a specified differently Bener maximum value of the energy absorption means.
  • European patent application EP 0 803 956 A2 discloses a method and a system for optimizing the consumption of electrical energy in industrial plants.
  • the respective energy reference power is decentralized analy ⁇ Siert, based on decentralized calculations, suitable loads are selected and switched on or off.
  • the invention has for its object to provide a method and a device with which the electrical power consumption can be limited by charging devices.
  • a method of limiting the electrical power consumption of charging means for charging a traction battery of an electrically driven vehicle wherein at least two charging devices are each assigned a target value which ⁇ writes the electrical energy be, which must from ⁇ indicate the charging means at a maximum at the vehicle
  • a prediction value for the energy absorption of at least two charging devices is determined for a currently running time interval, the prediction value is compared with a predetermined maximum value and when the predictive value is greater than the maximum value, Minim ⁇ reduces least one of the setpoints (reduced), where ⁇ is reduced by the energy consumption in the time interval.
  • the predetermined maximum value is a maximum value of the average energy consumption for the time interval.
  • the maximum value describes the maximum allowed mitt ⁇ sized electric power consumption in the time interval.
  • the method is particularly advantageous that - if the forecast value is greater than the maximum value - at least one of the setpoints is reduced.
  • the Minim ⁇ least an associated charging device is instructed to output less electric power to the vehicle in the current time interval.
  • the energy consumption of the relevant charging station is reduced in the time interval, so that the average electrical energy consumption in the time interval is reduced. So that no more electrical Ener ⁇ energy is absorbed by the charge devices during the time interval, as dictated by the maximum value is ensured.
  • penalties are avoided, for example, which can be agreed in energy supply contracts in the event that the maximum value is exceeded ⁇ .
  • the process can proceed in such a way that at least the one
  • the method may be configured such that the forecast is ⁇ value determined using the already completed in the time interval energy intake, energy expenditure of the current would take at least two loading facilities and the length of the not yet elapsed time of the time interval.
  • the current power consumption can be for example the energy ⁇ receptive at the time of the forecast. 'Date of the forecast, "the timing is understood in the time interval here at which the forecast value is determined.
  • the refreshes ⁇ elle power consumption can also be a mean of Ener ⁇ giefact at the time of the forecast, so for example an average of the energy absorption during a up to the time point of the forecast ⁇ zoom reaching time range, wherein the time range is shorter than the time interval.
  • the method may be configured such that the maximum value is constant over time, or the maximum value from a data ⁇ memory is read out, stored in the time interval individual maximum values, or the maximum value of a charging device external unit is received. So there are several ways in which the maximum value is predetermined.
  • the method may also be such that at least one of the setpoints is increased if the prediction value is less than the maximum value. This can malwert good use of prescribed Maxi ⁇ .
  • the control device is configured to determine a forecast value for the Energyauf ⁇ measure the at least two charging devices for a current running time interval, comparing the prediction value with a maximum value and decreasing (reduce) at least one of the setpoint values if the forecast value than the Ma ⁇ is greater ximalwert. This reduces the energy consumption during the time interval.
  • the predetermined maximum value is a maximum value of the average power consumption for the Zeitin ⁇ interval. Specifically, the maximum value describes the maximum allowed average electric power consumption in the time interval ⁇ .
  • This control device may be configured to transmit the at least one setpoint to the associated Ladeeinrich ⁇ device.
  • the controller may be configured such that the control device determines the predictive value by using the already completed in the time interval energy consumption, the current power consumption of the at least two Ladeein ⁇ directions and the length of the not yet elapsed time span of the time interval.
  • the control device may be configured such that the maximum value is constant in time, or the maximum value is a maximum interval value which is stored in a data memory, or the maximum value has been received by a charger-external unit.
  • the control device may also be designed to increase at least one of the setpoint values if the prediction value is smaller than the maximum value.
  • FIG. 2 is an exemplary process flow and in
  • FIG. 3 shows a further exemplary method sequence.
  • FIG. 1 schematically shows a first charging device 1 which is electrically connected to a first electrically drivable vehicle 5 by means of a first charging cable 3.
  • the first charging device 1 transmits electrical energy to the vehicle 5 via the first charging cable 3 in order to charge a first driving battery 7 of the first vehicle 5.
  • a second charging device 10 is shown, the second means of a second charging cable 13 with a
  • a third charging device 20 is shown, which is electrically connected by means of a third charging cable 23 with a third electrically driven vehicle 25.
  • the third vehicle 25 has a third driving battery 27.
  • the first charging device 1, the second charging device 10 and the third charging device 20 receive electrical energy from an energy supply network 24 via electrical supply lines 22 and return this electrical energy via the charging cable to the corresponding vehicles.
  • the first charging device 1, the second charging device 10 and the third charging device 20 are connected to a control device 29 by means of a communication connection 27 (for example by means of communication lines or by means of a radio-communication connection).
  • the control device receives information about the energy intake from the charging devices 1 via this communication connection 27, 10 and 20. Via this communication link 27, the control device 29 further sends setpoint values to the charging devices 1, 10 and 20.
  • These setpoints describe the magnitude of the electrical energy which the charging device is allowed to deliver to the respective vehicle to be charged (eg the power P or the maximum) Energy W, which the charging device may deliver to the vehicle respectively).
  • the charging device For example infor ⁇ mized the charging device, the connected vehicle according to the nominal value of the size of the electrical energy that may ab vide the vehicle from the charging device.
  • the controller 29 is also optionally connected via a further communication link 32 with the power supply network 24th Via this further communication connection 32, the control device 29 receives information from a control unit 33 of the energy supply network or
  • the control device 29 has a data memory 34.
  • it is contractually agreed between an operator of the three charging devices and a power supply company 24 that in each time interval, the energy consumption of the three charging devices may not be greater than 20 kW on average (the maximum value P max is therefore 20 kW).
  • the maximum value P max is thus constant in time and stored as Kon ⁇ stante in the data memory 34 of the control device 29th
  • the maximum value depending ⁇ can also be read from a table yet, are stored in the zeitin- tervallindividuelle maximum values. This table can also be stored in the data memory 34.
  • the time-invariable maximum value P max 20 kW is assumed.
  • the length of the time Inter ⁇ Valls is 15 minutes. With a maximum of 20 kW up to 5 kWh electrical ⁇ shear energy can be absorbed by the three chargers during this time interval.
  • This set value S1 specifies that the first charging device may deliver maximum electrical energy with the power 5 kW to the first vehicle 5.
  • the first charging device 1 is instructed by means of this first target value Sl to give maximum electric energy to the power of 5 kW to the first vehicle.
  • the first charging device 1 ensures that the first vehicle 5 is not more than the first target value Sl entspre ⁇ -reaching performance requests. This is done by means of a commu ⁇ communication between the first charging device and the first vehicle, which is not shown in the figures.
  • the first charging device 1 automatically ends the charging process or reduces the charging power.
  • the third Ladeeinrich ⁇ tung 20 to deliver a maximum of electrical energy with the Leis ⁇ tung 15 kW at the third vehicle 25th
  • a first message 40 informs the first charging ⁇ device 10, the control device 29 about the fact that the first charging means a kilowatt-hour of energy in the last 10 minutes of the time interval (1 kWh) has received from the power grid 24 10, and that current electric energy with a power of 5 kW is recorded.
  • the second charging device 10 sends a second message 42 to the control device 29.
  • the control device 29 is informed that the second charging device 10 during the first 10 minutes of the time interval one kilowatt hour of energy (1 kWh) from the power grid 24th recorded and that the current power consumption is 10 kW. Also, the controller 29 is informed by means of a third message 44 that the third charging device 20 is a kilowatt ⁇ hour energy during the first 10 minutes of the interval (1 kWh) has received from the power grid 24 and that the current power consumption is 15 kW.
  • vorlie ⁇ constricting data determined in the control device 29 is a forecasting sewert P P for the power consumption of the three charging devices 1, 10 and 20 for the currently running time interval.
  • the forecast value P P for the time interval in which the loading unit average energy is calculated using the following formula:
  • P P is the forecast value
  • W is the already taken up by the loading means during the time Inter ⁇ Valls energy ⁇ amount (ie, the previously ver ⁇ needed during the time interval power)
  • P is the actual power consumed
  • t R the length of the not yet elapsed time of the Time interval (remaining time)
  • T the length of the time interval.
  • the controller determines that, during the time elapsed t R of the time interval, the outputs P 1, P 2 and P 3 of the charging means together add the value 24 kW may not exceed. In comparison with the previous ones
  • the controller 29 determines that these setpoints must be reduced by a total of 6 kW.
  • the first charging ⁇ device 1 reduces its electric power supply to the first Vehicle 5 such that the first vehicle 5 is charged only with a power of 4 kW.
  • the control device 29 reduces the second
  • the prognosis value has not been accounted occurring defects ⁇ trend in charging devices power loss when determining development.
  • this power loss could be also taken into account by a value for the occurring in the charging device power dissipation is added when determining the prognosis ⁇ value to the target values for each charging station.
  • the method can also run such that the setpoint values are reduced stepwise until the prediction value is less than or equal to the maximum value.
  • the method may also occur so that the controller 29 only the third reference value S3 of 15 kW to 9 kW, and the reduced at ⁇ the two reference values can be unchanged. This case may occur, for example, when the first vehicle and the second vehicle have a higher priority when loading than the third vehicle.
  • the reduction of the setpoint values can therefore depend on a priority of the customer or of the vehicle connected to the charging station during charging.
  • the controller 29 then calculates a new forecast value P P:
  • the method described is represented once again by means of a flowchart.
  • a start time (block 210) is known how big the ⁇ interval already made energy intake is in the current time, what is the current energy consumption of chargers (this corresponds to the nominal values) and how large the not verstri ⁇ chene period of the time interval (the remaining time) is.
  • a prediction value for the Energyauf ⁇ exception of said loading means is in the current time interval is determined (block 220). Thereafter, the determined prognosis value is compared with a predetermined maximum value (block 210)
  • FIG. 3 shows a further exemplary method sequence.
  • This variant provides that at least one of the setpoints is increased if the forecast value is smaller than the maximum value. This allows the maximum value to be used well. In this case, either - similar to that described above in connection with the reduction of the target values in detail - are calculated by the control device, to what value the reference value or more setpoints are in the lau ⁇ fenden time interval to increase. Alternatively, the target value or target values can be gradually while ver ⁇ enlarges until the forecast value is equal to the maximum value. By means of dead times and / or hystereses, unwanted oscillations of the setpoints can also be prevented here. In the embodiment of Figure 3, is checked ge ⁇ in block 310 whether the predictive value is smaller than the maximum value. If so, then at least one setpoint is increased in block 320. Thereupon, the Minim ⁇ least received an enlarged set value to the charging device or the loading devices in block 330th Thereafter, the process continues at block 220.
  • a method and a control device have been described with which the electrical energy consumption of charging devices can be effectively limited. This ensures that during a time interval not more electrical energy is taken from the loading facilities on ⁇ , as dictated by a maximum value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention relates to a method for limiting the electrical power consumption of charging devices (1, 10, 20) for charging a traction battery (7, 17, 27) of an electrically driven vehicle (5, 15, 25). At least two charging devices (1, 10, 20) are each assigned a set point (S1, S2, S3), which describes the maximum electrical power which the respective charging device (1, 10, 20) can discharge to the vehicle (5, 15, 25). In the method, a prognostic value for the power consumption of the at least two charging devices (1, 10, 20) is determined (220) for a current time interval, the prognostic value is compared (230) with a predetermined maximum value and, if the prognostic value is greater than the maximum value, at least one of the set points is reduced.

Description

Beschreibung description
Verfahren zum Begrenzen der elektrischen Energieaufnahme Elektrisch antreibbare Fahrzeuge weisen eine Fahrbatterie (Akkumulator) auf, welche die für den Fahrbetrieb benötigte elektrische Energie zur Verfügung stellt. Entladene Batterien müssen bei Bedarf mittels einer Ladeeinrichtung wieder aufgeladen werden. Eine derartige Ladeeinrichtung gibt während des Aufladevorgangs elektrische Energie an das Fahrzeug ab, mit der die Fahrbatterie des Fahrzeugs aufgeladen wird. Diese elektrische Energie nimmt die Ladeeinrichtung von einem Energieversorgungsnetz auf. Verträge für den Bezug von elektrischer Energie von Energie¬ versorgungsunternehmen enthalten oftmals Bestimmungen, nach denen während eines festgelegten Zeitintervalls, beispiels¬ weise während eines 15-minütigen Zeitintervalls, ein vorgege¬ bener Maximalwert der Energieaufnahme im Mittel nicht über- schritten werden darf. Electrically driven vehicles have a traction battery (accumulator) which provides the electrical energy required for the driving operation. Discharged batteries must be recharged if necessary by means of a charging device. Such a charging device emits electrical energy to the vehicle during the charging process, with which the traction battery of the vehicle is charged. This electrical energy takes the charger from a power grid. Contracts for the supply of electric power from energy ¬ utilities often contain provisions which must not be exceeded during a specified time interval, Example ¬, during a 15-minute time interval, a specified differently Bener maximum value of the energy absorption means.
Aus der europäischen Patentanmeldung EP 0 803 956 A2 ist ein Verfahren und ein System zur Optimierung des Verbrauchs an elektrischer Energie in Industriebetrieben bekannt. Dabei wird die jeweilige Energiebezugsleistung dezentral analy¬ siert, anhand von dezentralen Berechnungen werden geeignete Verbraucher ausgewählt und ein- bzw. ausgeschaltet. European patent application EP 0 803 956 A2 discloses a method and a system for optimizing the consumption of electrical energy in industrial plants. The respective energy reference power is decentralized analy ¬ Siert, based on decentralized calculations, suitable loads are selected and switched on or off.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Einrichtung anzugeben, mit denen die elektrische Energieaufnahme von Ladeeinrichtungen begrenzt werden kann. The invention has for its object to provide a method and a device with which the electrical power consumption can be limited by charging devices.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren und eine Einrichtung nach den unabhängigen Patentansprüchen. Vorteilhafte Ausgestaltungen des Verfahrens und der Einrich¬ tung sind in den abhängigen Patentansprüchen angegeben. Erfindungsgemäß angegeben wird ein Verfahren zum Begrenzen der elektrischen Energieaufnahme von Ladeeinrichtungen zum Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs, wobei mindestens zwei Ladeeinrichtungen jeweils ein Sollwert zugeordnet ist, der die elektrische Energie be¬ schreibt, die die Ladeeinrichtung maximal an das Fahrzeug ab¬ geben darf, wobei bei dem Verfahren ein Prognosewert für die Energieaufnahme der mindestens zwei Ladeeinrichtungen für ein aktuell laufendes Zeitintervall ermittelt wird, der Prognose- wert mit einem vorbestimmten Maximalwert verglichen wird, und wenn der Prognosewert größer als der Maximalwert ist, mindes¬ tens einer der Sollwerte verringert (verkleinert) wird, wo¬ durch die Energieaufnahme in dem Zeitintervall verringert wird. Dabei ist der vorbestimmte Maximalwert ein Maximalwert der mittleren Energieaufnahme für das Zeitintervall. Insbe¬ sondere beschreibt der Maximalwert die maximal erlaubte mitt¬ lere elektrische Leistungsaufnahme in dem Zeitintervall. This object is achieved by a method and a device according to the independent claims. Advantageous embodiments of the method and the Einrich ¬ tion are given in the dependent claims. Is given According to the invention a method of limiting the electrical power consumption of charging means for charging a traction battery of an electrically driven vehicle, wherein at least two charging devices are each assigned a target value which ¬ writes the electrical energy be, which must from ¬ indicate the charging means at a maximum at the vehicle wherein in the method a prediction value for the energy absorption of at least two charging devices is determined for a currently running time interval, the prediction value is compared with a predetermined maximum value and when the predictive value is greater than the maximum value, Minim ¬ reduces least one of the setpoints (reduced), where ¬ is reduced by the energy consumption in the time interval. In this case, the predetermined maximum value is a maximum value of the average energy consumption for the time interval. In particular ¬ sondere the maximum value describes the maximum allowed mitt ¬ sized electric power consumption in the time interval.
Bei dem Verfahren ist insbesondere vorteilhaft, dass - wenn der Prognosewert größer als der Maximalwert ist - mindestens einer der Sollwerte verringert wird. Dadurch wird die mindes¬ tens eine zugeordnete Ladeeinrichtung angewiesen, in dem laufenden Zeitintervall weniger elektrische Leistung an das Fahrzeug abzugeben. Dadurch wird die Energieaufnahme der betreffenden Ladesäule in dem Zeitintervall verringert, so dass auch die mittlere elektrische Energieaufnahme in dem Zeitintervall verringert wird. Damit wird sichergestellt, dass während des Zeitintervalls nicht mehr elektrische Ener¬ gie von den Ladeeinrichtungen aufgenommen wird, als durch den Maximalwert vorgegeben ist. Dadurch werden z.B. auch Straf- Zahlungen vermieden, welche in Energielieferverträgen vereinbart sein können für den Fall, dass der Maximalwert über¬ schritten wird. Das Verfahren kann so ablaufen, dass mindestens der eineIn the method is particularly advantageous that - if the forecast value is greater than the maximum value - at least one of the setpoints is reduced. Thereby, the Minim ¬ least an associated charging device is instructed to output less electric power to the vehicle in the current time interval. As a result, the energy consumption of the relevant charging station is reduced in the time interval, so that the average electrical energy consumption in the time interval is reduced. So that no more electrical Ener ¬ energy is absorbed by the charge devices during the time interval, as dictated by the maximum value is ensured. As a result, penalties are avoided, for example, which can be agreed in energy supply contracts in the event that the maximum value is exceeded ¬ . The process can proceed in such a way that at least the one
Sollwert an die zugeordnete Ladeeinrichtung gesendet wird. Damit wird die entsprechende Ladeeinrichtung über den geänderten Sollwert informiert. Das Verfahren kann so ausgestaltet sein, dass der Prognose¬ wert ermittelt wird unter Nutzung der in dem Zeitintervall bereits erfolgten Energieaufnahme, der aktuellen Energieauf- nähme der mindestens zwei Ladeeinrichtungen und der Länge der noch nicht verstrichenen Zeitspanne des Zeitintervalls. Dabei kann die aktuelle Energieaufnahme beispielsweise die Energie¬ aufnahme zum Zeitpunkt der Prognose sein. Unter „Zeitpunkt der Prognose" wird hier der Zeitpunkt in dem Zeitintervall verstanden, zu dem der Prognosewert ermittelt wird. Die aktu¬ elle Energieaufnahme kann aber auch ein Mittelwert der Ener¬ gieaufnahme zum Zeitpunkt der Prognose sein, also z.B. ein Mittelwert der Energieaufnahme während eines bis an den Zeit¬ punkt der Prognose heranreichenden Zeitbereichs, wobei der Zeitbereich kürzer ist als das Zeitintervall. Setpoint is sent to the associated charging device. This informs the corresponding charging device of the changed setpoint. The method may be configured such that the forecast is ¬ value determined using the already completed in the time interval energy intake, energy expenditure of the current would take at least two loading facilities and the length of the not yet elapsed time of the time interval. The current power consumption can be for example the energy ¬ receptive at the time of the forecast. 'Date of the forecast, "the timing is understood in the time interval here at which the forecast value is determined. However, the refreshes ¬ elle power consumption can also be a mean of Ener ¬ gieaufnahme at the time of the forecast, so for example an average of the energy absorption during a up to the time point of the forecast ¬ zoom reaching time range, wherein the time range is shorter than the time interval.
Das Verfahren kann so ausgestaltet sein, dass der Maximalwert zeitlich konstant ist, oder der Maximalwert aus einem Daten¬ speicher ausgelesen wird, in dem zeitintervallindividuelle Maximalwerte gespeichert sind, oder der Maximalwert von einer ladeeinrichtungsexternen Einheit empfangen wird. Es gibt also verschiedene Möglichkeiten, wie der Maximalwert vorbestimmt wird . Das Verfahren kann auch so ablaufen, dass mindestens einer der Sollwerte vergrößert wird, wenn der Prognosewert kleiner als der Maximalwert ist. Dadurch kann der vorgegebene Maxi¬ malwert gut ausgenutzt werden. Erfindungsgemäß angegeben wird weiterhin eine Steuereinrichtung zum Begrenzen der elektrischen Energieaufnahme von Ladeeinrichtungen zum Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs, wobei mindestens zwei Ladeeinrichtun¬ gen jeweils ein Sollwert zugeordnet ist, der die elektrische Energie beschreibt, die die Ladeeinrichtung maximal an dasThe method may be configured such that the maximum value is constant over time, or the maximum value from a data ¬ memory is read out, stored in the time interval individual maximum values, or the maximum value of a charging device external unit is received. So there are several ways in which the maximum value is predetermined. The method may also be such that at least one of the setpoints is increased if the prediction value is less than the maximum value. This can malwert good use of prescribed Maxi ¬. According to the invention, furthermore, a control device for limiting the electrical energy consumption of charging devices for charging a traction battery of an electrically driven vehicle, wherein at least two Ladeeinrichtun ¬ gen each assigned a desired value, which describes the electrical energy, the charging device to the maximum
Fahrzeug abgeben darf, wobei die Steuereinrichtung ausgestaltet ist zum Ermitteln eines Prognosewerts für die Energieauf¬ nahme der mindestens zwei Ladeeinrichtungen für ein aktuell laufendes Zeitintervall, Vergleichen des Prognosewerts mit einem Maximalwert und Verringern (Verkleinern) mindestens eines der Sollwerte, wenn der Prognosewert größer als der Ma¬ ximalwert ist. Dadurch wird die Energieaufnahme in dem Zeit- intervall verringert. Dabei ist der vorbestimmte Maximalwert ein Maximalwert der mittleren Energieaufnahme für das Zeitin¬ tervall. Insbesondere beschreibt der Maximalwert die maximal erlaubte mittlere elektrische Leistungsaufnahme in dem Zeit¬ intervall . May give vehicle, the control device is configured to determine a forecast value for the Energieauf ¬ measure the at least two charging devices for a current running time interval, comparing the prediction value with a maximum value and decreasing (reduce) at least one of the setpoint values if the forecast value than the Ma ¬ is greater ximalwert. This reduces the energy consumption during the time interval. In this case the predetermined maximum value is a maximum value of the average power consumption for the Zeitin ¬ interval. Specifically, the maximum value describes the maximum allowed average electric power consumption in the time interval ¬.
Diese Steuereinrichtung kann ausgestaltet sein zum Senden des mindestens einen Sollwerts an die zugeordnete Ladeeinrich¬ tung . Die Steuereinrichtung kann so ausgestaltet sein, dass die Steuereinrichtung den Prognosewert ermittelt unter Nutzung der in dem Zeitintervall bereits erfolgten Energieaufnahme, der aktuellen Energieaufnahme der mindestens zwei Ladeein¬ richtungen und der Länge der noch nicht verstrichenen Zeit- spanne des Zeitintervalls. This control device may be configured to transmit the at least one setpoint to the associated Ladeeinrich ¬ device. The controller may be configured such that the control device determines the predictive value by using the already completed in the time interval energy consumption, the current power consumption of the at least two Ladeein ¬ directions and the length of the not yet elapsed time span of the time interval.
Die Steuereinrichtung kann so ausgestaltet sein, dass der Maximalwert zeitlich konstant ist, oder der Maximalwert ein zeitintervallindividueller Maximalwert ist, der in einem Da- tenspeicher gespeichert ist, oder der Maximalwert von einer ladeeinrichtungsexternen Einheit empfangen worden ist. The control device may be configured such that the maximum value is constant in time, or the maximum value is a maximum interval value which is stored in a data memory, or the maximum value has been received by a charger-external unit.
Die Steuereinrichtung kann auch ausgestaltet sein zum Vergrößern mindestens eines der Sollwerte, wenn der Prognosewert kleiner als der Maximalwert ist. The control device may also be designed to increase at least one of the setpoint values if the prediction value is smaller than the maximum value.
Diese Steuereinrichtung weist ebenfalls die Vorteile auf, die oben im Zusammenhang mit dem Verfahren angegeben sind. Im Folgenden wird die Erfindung anhand von Ausführungsbei¬ spielen näher erläutert. Dazu ist in Figur 1 ein Ausführungsbeispiel des Verfahrens und der Steuereinrichtung, in This control device also has the advantages stated above in connection with the method. The invention will be explained in more detail below with reference to exemplary embodiments. This is in Figure 1 shows an embodiment of the method and the control device, in
Figur 2 ein beispielhafter Verfahrensablauf und in Figure 2 is an exemplary process flow and in
Figur 3 ein weiterer beispielhafter Verfahrensablauf dargestellt . In Figur 1 ist schematisch eine erste Ladeeinrichtung 1 dargestellt, welche mittels eines ersten Ladekabels 3 mit einem ersten elektrisch antreibbaren Fahrzeug 5 elektrisch verbunden ist. Die erste Ladeeinrichtung 1 überträgt über das erste Ladekabel 3 elektrische Energie zu dem Fahrzeug 5, um eine erste Fahrbatterie 7 des ersten Fahrzeugs 5 aufzuladen. FIG. 3 shows a further exemplary method sequence. FIG. 1 schematically shows a first charging device 1 which is electrically connected to a first electrically drivable vehicle 5 by means of a first charging cable 3. The first charging device 1 transmits electrical energy to the vehicle 5 via the first charging cable 3 in order to charge a first driving battery 7 of the first vehicle 5.
Ebenso ist eine zweite Ladeeinrichtung 10 dargestellt, die mittels eines zweiten Ladekabels 13 mit einem zweiten Also, a second charging device 10 is shown, the second means of a second charging cable 13 with a
elektrisch antreibbaren Fahrzeug 15 elektrisch verbunden ist, wobei dieses Fahrzeug 15 eine zweite Fahrbatterie 17 auf¬ weist. In gleicher Weise ist eine dritte Ladeeinrichtung 20 dargestellt, die mittels eines dritten Ladekabels 23 mit einem dritten elektrisch antreibbaren Fahrzeug 25 elektrisch verbunden ist. Das dritte Fahrzeug 25 weist eine dritte Fahr- batterie 27 auf. electrically driven vehicle 15 is electrically connected, said vehicle 15 has a second drive battery 17 ¬ . In the same way, a third charging device 20 is shown, which is electrically connected by means of a third charging cable 23 with a third electrically driven vehicle 25. The third vehicle 25 has a third driving battery 27.
Die erste Ladeeinrichtung 1, die zweite Ladeeinrichtung 10 und die dritte Ladeeinrichtung 20 nehmen über elektrische Versorgungsleitungen 22 elektrische Energie von einem Ener- gieversorgungsnetz 24 auf und geben diese elektrische Energie über die Ladekabel an die entsprechenden Fahrzeuge wieder ab. Die erste Ladeeinrichtung 1, die zweite Ladeeinrichtung 10 und die dritte Ladeeinrichtung 20 sind mittels einer Kommunikationsverbindung 27 (beispielsweise mittels Kommunikations- leitungen oder mittels einer Funk-Kommunikationsverbindung) mit einer Steuereinrichtung 29 verbunden. Über diese Kommunikationsverbindung 27 empfängt die Steuereinrichtung Informationen über die Energieaufnahme von den Ladeeinrichtungen 1, 10 und 20. Über diese Kommunikationsverbindung 27 sendet die Steuereinrichtung 29 weiterhin Sollwerte an die Ladeeinrichtung 1, 10 und 20. Diese Sollwerte beschreiben die Größe der elektrischen Energie, die die Ladeeinrichtung maximal an das jeweils aufzuladende Fahrzeug abgeben darf (beispielsweise die Leistung P oder die Energie W, die die Ladeeinrichtung jeweils an das Fahrzeug abgeben darf) . Beispielsweise infor¬ miert die Ladeeinrichtung das angeschlossene Fahrzeug gemäß dem Sollwert über die Größe der elektrischen Energie, die das Fahrzeug von der Ladeeinrichtung abfordern darf. The first charging device 1, the second charging device 10 and the third charging device 20 receive electrical energy from an energy supply network 24 via electrical supply lines 22 and return this electrical energy via the charging cable to the corresponding vehicles. The first charging device 1, the second charging device 10 and the third charging device 20 are connected to a control device 29 by means of a communication connection 27 (for example by means of communication lines or by means of a radio-communication connection). The control device receives information about the energy intake from the charging devices 1 via this communication connection 27, 10 and 20. Via this communication link 27, the control device 29 further sends setpoint values to the charging devices 1, 10 and 20. These setpoints describe the magnitude of the electrical energy which the charging device is allowed to deliver to the respective vehicle to be charged (eg the power P or the maximum) Energy W, which the charging device may deliver to the vehicle respectively). For example infor ¬ mized the charging device, the connected vehicle according to the nominal value of the size of the electrical energy that may abfordern the vehicle from the charging device.
Die Steuereinrichtung 29 ist außerdem optional über eine weitere Kommunikationsverbindung 32 mit dem Energieversorgungsnetz 24 verbunden. Über diese weitere Kommunikationsverbin- dung 32 empfängt die Steuereinrichtung 29 Informationen von einer Steuereinheit 33 des Energieversorgungsnetzes bzw. The controller 29 is also optionally connected via a further communication link 32 with the power supply network 24th Via this further communication connection 32, the control device 29 receives information from a control unit 33 of the energy supply network or
eines Betreibers des Energieversorgungsnetzes 24. Weiterhin weist die Steuereinrichtung 29 einen Datenspeicher 34 auf. Im Ausführungsbeispiel ist zwischen einem Betreiber der drei Ladeeinrichtungen und einem das Energieversorgungsnetz 24 betreibenden Energieversorgungsunternehmen vertraglich vereinbart, dass in jedem Zeitintervall die Energieaufnahme der drei Ladeeinrichtungen im Mittel nicht größer als 20 kW sein darf (der Maximalwert Pmax beträgt also 20 kW) . In diesem Fall ist der Maximalwert Pmax also zeitlich konstant und als Kon¬ stante in dem Datenspeicher 34 der Steuereinrichtung 29 abgespeichert . In einem anderen Ausführungsbeispiel kann der Maximalwert je¬ doch auch aus einer Tabelle ausgelesen werden, in der zeitin- tervallindividuelle Maximalwerte gespeichert sind. Diese Ta¬ belle kann ebenfalls in dem Datenspeicher 34 abgespeichert sein. Mittels einer Datenabfrage kann dann für jedes Zeitin- tervall der jeweils zugehörige zeitintervallindividuelle Ma¬ ximalwert aus der Tabelle des Datenspeichers 34 ausgelesen werden. Mit anderen Worten kann für jedes Zeitintervall des Tages (z.B. für jedes 15-minütige Zeitintervall des Tages, also für jede Viertelstunde des Tages) ein eigener Maximal¬ wert in der Tabelle des Datenspeichers 34 abgespeichert sein. In einem weiteren Ausführungsbeispiel kann der Maximalwert auch von einer ladeeinrichtungsexternen Einheit empfangen werden, beispielsweise von der Steuereinheit 33 des Energie¬ versorgungsunternehmens, die in dem Energieversorgungsnetz 24 angeordnet ist. Diese Steuereinheit 33 stellt eine ladeein¬ richtungsexterne Einheit dar, welche den jeweils gültigen Ma¬ ximalwert mittels einer Nachricht 55 zu der Steuereinrichtung 29 übermitteln kann. an operator of the power supply network 24. Furthermore, the control device 29 has a data memory 34. In the exemplary embodiment, it is contractually agreed between an operator of the three charging devices and a power supply company 24 that in each time interval, the energy consumption of the three charging devices may not be greater than 20 kW on average (the maximum value P max is therefore 20 kW). In this case, the maximum value P max is thus constant in time and stored as Kon ¬ stante in the data memory 34 of the control device 29th In another embodiment, the maximum value depending ¬ can also be read from a table yet, are stored in the zeitin- tervallindividuelle maximum values. This table can also be stored in the data memory 34. By means of a data query can then for each Zeitin- interval of the respective associated time interval individual Ma ¬ ximalwert from the table of the data memory 34 are read out. In other words, for each time interval of the day (eg for each 15-minute time interval of the day, own its maximum ¬ value stored in the table of the data memory 34 Thus, for each quarter hour of the day) a. In a further embodiment, the maximum value can also be received from a charging device external unit, for example by the control unit 33 of the energy supply company ¬ disposed in the power supply network 24th This control unit 33 constitutes a ladeein ¬ direction external unit, which can transmit the applicable Ma ¬ ximalwert by means of a message 55 to the controller 29th
Im Ausführungsbeispiel wird von dem zeitlich unveränderlichen Maximalwert Pmax = 20 kW ausgegangen. Die Länge des Zeitinter¬ valls beträgt 15 Minuten. Bei einem Maximalwert von 20 kW können während dieses Zeitintervalls maximal 5 kWh elektri¬ scher Energie von den drei Ladeeinrichtungen aufgenommen werden. Im Ausführungsbeispiel wird angenommen, dass von dem ak¬ tuellen 15-minütigen Zeitintervall bereits 10 Minuten vergangen sind, so dass die Länge der noch nicht verstrichenen Zeitspanne des Zeitintervalls 5 Minuten (1/12 Stunde) be¬ trägt . In the exemplary embodiment, the time-invariable maximum value P max = 20 kW is assumed. The length of the time Inter ¬ Valls is 15 minutes. With a maximum of 20 kW up to 5 kWh electrical ¬ shear energy can be absorbed by the three chargers during this time interval. In the exemplary embodiment it is assumed that in 10 minutes have passed from the ak ¬ tual 15-minute time interval, so that the length of the elapsed time is not the time interval 5 minutes ¬ transmits be (1/12 hour).
Der ersten Ladeeinrichtung 1 ist einer erster Sollwert Sl zugeordnet, welcher im Ausführungsbeispiel den Wert 5 kW auf- weist (Sl = 5 kW) . Dieser Sollwert Sl gibt vor, dass die erste Ladeeinrichtung maximal elektrische Energie mit der Leistung 5 kW an das erste Fahrzeug 5 abgeben darf. Mit ande¬ ren Worten wird mittels dieses ersten Sollwerts Sl die erste Ladeeinrichtung 1 angewiesen, maximal elektrische Energie mit der Leistung 5 kW an das erste Fahrzeug 5 abzugeben. Die erste Ladeeinrichtung 1 stellt sicher, dass das erste Fahrzeug 5 nicht mehr als die dem ersten Sollwert Sl entspre¬ chende Leistung anfordert. Dies geschieht mittels einer Kom¬ munikation zwischen der ersten Ladeeinrichtung und dem ersten Fahrzeug, die in den Figuren nicht weiter dargestellt ist.The first charging device 1 is associated with a first setpoint value S1, which in the exemplary embodiment has the value 5 kW (Sl = 5 kW). This set value S1 specifies that the first charging device may deliver maximum electrical energy with the power 5 kW to the first vehicle 5. With walls ¬ ren words, the first charging device 1 is instructed by means of this first target value Sl to give maximum electric energy to the power of 5 kW to the first vehicle. 5 The first charging device 1 ensures that the first vehicle 5 is not more than the first target value Sl entspre ¬-reaching performance requests. This is done by means of a commu ¬ communication between the first charging device and the first vehicle, which is not shown in the figures.
Sollte das erste Fahrzeug 5 mehr Leistung von der ersten La¬ deeinrichtung 1 abfordern, als dem ersten Sollwert Sl ent- spricht, dann beendet die erste Ladeeinrichtung 1 automatisch den Ladevorgang oder reduziert die Ladeleistung. If the first vehicle abfordern 5 more power from the first La ¬ signaling device 1, as the first target value corresponds Sl speaks, then the first charging device 1 automatically ends the charging process or reduces the charging power.
Der zweiten Ladeeinrichtung 10 ist ein zweiter Sollwert S2 zugeordnet, der den Wert 10 kW aufweist (S2 = 10 kW) . Mittels dieses zweiten Sollwerts wird die zweite Ladeeinrichtung 10 angewiesen, maximal elektrische Energie mit der Leistung 10 kW an das zweite Fahrzeug 15 abzugeben. Der dritten Ladeeinrichtung 20 ist ein dritter Sollwert S3 zugeordnet, welcher im Ausführungsbeispiel die Größe 15 kW aufweist (S3 = 15 kW) . Mittels dieses dritten Sollwerts ist die dritte Ladeeinrich¬ tung 20 angewiesen, maximal elektrische Energie mit der Leis¬ tung 15 kW an das dritte Fahrzeug 25 abzugeben. Mittels einer ersten Nachricht 40 informiert die erste Lade¬ einrichtung 10 die Steuereinrichtung 29 darüber, dass die erste Ladeeinrichtung 10 in den vergangenen 10 Minuten des Zeitintervalls eine Kilowattstunde Energie (1 kWh) von dem Energieversorgungsnetz 24 aufgenommen hat und dass aktuell elektrische Energie mit einer Leistung von 5 kW aufgenommen wird. Ebenso sendet die zweite Ladeeinrichtung 10 eine zweite Nachricht 42 an die Steuereinrichtung 29. Mit dieser zweiten Nachricht 42 wird die Steuereinrichtung 29 darüber informiert, dass die zweite Ladeeinrichtung 10 während der ersten 10 Minuten des Zeitintervalls eine Kilowattstunde Energie (1 kWh) von dem Energieversorgungsnetz 24 aufgenommen hat und dass die aktuelle Leistungsaufnahme 10 kW beträgt. Ebenso wird mittels einer dritten Nachricht 44 die Steuereinrichtung 29 darüber informiert, dass die dritte Ladeeinrichtung 20 während der ersten 10 Minuten des Intervalls eine Kilowatt¬ stunde Energie (1 kWh) von dem Energieversorgungsnetz 24 aufgenommen hat und dass die aktuelle Leistungsaufnahme 15 kW beträgt. Anhand dieser bei der Steuereinrichtung 29 vorlie¬ genden Daten ermittelt die Steuereinrichtung 29 einen Progno- sewert PP für die Energieaufnahme der drei Ladeeinrichtungen 1, 10 und 20 für das aktuell laufende Zeitintervall. Der Prognosewert PP für die in dem Zeitintervall von den Ladeein- richtungen im Mittel aufgenommene Energie wird nach folgender Formel berechnet: The second charging device 10 is assigned a second set value S2, which has the value 10 kW (S2 = 10 kW). By means of this second desired value, the second charging device 10 is instructed to deliver a maximum of electrical energy with the power 10 kW to the second vehicle 15. The third charging device 20 is assigned a third setpoint value S3, which in the exemplary embodiment has the size 15 kW (S3 = 15 kW). By means of this third target value is instructed, the third Ladeeinrich ¬ tung 20 to deliver a maximum of electrical energy with the Leis ¬ tung 15 kW at the third vehicle 25th By means of a first message 40 informs the first charging ¬ device 10, the control device 29 about the fact that the first charging means a kilowatt-hour of energy in the last 10 minutes of the time interval (1 kWh) has received from the power grid 24 10, and that current electric energy with a power of 5 kW is recorded. Likewise, the second charging device 10 sends a second message 42 to the control device 29. With this second message 42, the control device 29 is informed that the second charging device 10 during the first 10 minutes of the time interval one kilowatt hour of energy (1 kWh) from the power grid 24th recorded and that the current power consumption is 10 kW. Also, the controller 29 is informed by means of a third message 44 that the third charging device 20 is a kilowatt ¬ hour energy during the first 10 minutes of the interval (1 kWh) has received from the power grid 24 and that the current power consumption is 15 kW. Based on this, in the control device 29 vorlie ¬ constricting data determined in the control device 29 is a forecasting sewert P P for the power consumption of the three charging devices 1, 10 and 20 for the currently running time interval. The forecast value P P for the time interval in which the loading unit average energy is calculated using the following formula:
PP = (W + P tR) /T P P = (W + P t R ) / T
Dabei ist PP der Prognosewert, W die während des Zeitinter¬ valls bereits von den Ladeeinrichtungen aufgenommene Energie¬ menge (d. h. die während des Zeitintervalls bisher ver¬ brauchte Energie) , P die aktuelle Leistungsaufnahme, tR die Länge der noch nicht verstrichenen Zeitspanne des Zeitintervalls (Restzeit) und T die Länge des Zeitintervalls. Where P P is the forecast value, W is the already taken up by the loading means during the time Inter ¬ Valls energy ¬ amount (ie, the previously ver ¬ needed during the time interval power), P is the actual power consumed, t R the length of the not yet elapsed time of the Time interval (remaining time) and T the length of the time interval.
Mit den oben genannten Werten ergibt sich im Ausführungsbeispiel folgender Prognosewert: With the above-mentioned values, the following forecast value results in the exemplary embodiment:
PP = (Wl + PI tR + W2 + P2 tR + W3 + P3 tR) /T P P = (Wl + W2 + PI + P2 t R t R + W3 + P3 t R) / T
PP = (1kWh + 5kW (l/12)h + 1kWh + 10kW (l/12)h + 1kWh + P P = (1kWh + 5kW (l / 12) h + 1kWh + 10kW (l / 12) h + 1kWh +
15kW (l/12)h) /0,25h  15kW (l / 12) h) / 0,25h
PP = (1,417kWh + 1,833kWh + 2,25kWh) / 0,25h = 22kW P P = (1,417kWh + 1,833kWh + 2,25kWh) / 0,25h = 22kW
Damit ist der Prognosewert PP der mittleren elektrischen Leistungsaufnahme der Ladeeinrichtungen mit 22 kW größer als der vorbestimmte Maximalwert Pmax = 20 kW. Aus diesem Grunde verringert die Steuereinrichtung 29 mindestens einen der Sollwerte der drei Ladeeinrichtungen, um die elektrische Energieaufnahme der Ladeeinrichtungen zu begrenzen. Thus, the forecast value P P of the average electrical power consumption of the 22 kW charging devices is greater than the predetermined maximum value P max = 20 kW. For this reason, the controller 29 reduces at least one of the target values of the three charging devices to limit the electric power consumption of the charging devices.
Gemäß der Beziehung PI + P2 + P3 = (PP T - Wl- W2 - W3) / tR ermittelt die Steuereinrichtung, dass während der noch nicht verstrichenen Zeitspanne tR des Zeitintervalls die Leistungen PI, P2 und P3 der Ladeeinrichtungen zusammen den Wert 24 kW nicht überschreiten dürfen. Im Vergleich mit den bisherigenAccording to the relation PI + P2 + P3 = (P P T - Wl - W2 - W3) / t R , the controller determines that, during the time elapsed t R of the time interval, the outputs P 1, P 2 and P 3 of the charging means together add the value 24 kW may not exceed. In comparison with the previous ones
Sollwerten Sl = 5 kW, S2 = 10 kW und S3 = 15 kW ermittelt die Steuereinrichtung 29, dass diese Sollwerte um insgesamt 6 kW verringert werden müssen. Im Ausführungsbeispiel reduziert die Steuereinrichtung 29 den ersten Sollwert Sl von 5 kW auf 4 kW und sendet mittels einer vierten Nachricht 46 den neuen Sollwert Sl = 4 kW an die erste Ladeeinrichtung 1. Daraufhin reduziert die erste Lade¬ einrichtung 1 ihre elektrische Energieabgabe an das erste Fahrzeug 5 derart, dass das erste Fahrzeug 5 nur noch mit einer Leistung von 4 kW aufgeladen wird. Weiterhin reduziert die Steuereinrichtung 29 den zweitenSetpoints Sl = 5 kW, S2 = 10 kW and S3 = 15 kW, the controller 29 determines that these setpoints must be reduced by a total of 6 kW. In the exemplary embodiment, the control device 29 reduces the first reference value Sl of 5 kW to 4 kW and sends by means of a fourth message 46 to new setpoint Sl = 4 kW at the first charging device 1. Then, the first charging ¬ device 1 reduces its electric power supply to the first Vehicle 5 such that the first vehicle 5 is charged only with a power of 4 kW. Furthermore, the control device 29 reduces the second
Sollwert S2 von 10 kW auf 8 kW und sendet mittels einer fünf¬ ten Nachricht 48 den neuen Sollwert S2 = 8 kW an die zweite Ladeeinrichtung 10. Daraufhin reduziert die zweite Ladeeinrichtung 10 ihre elektrische Energieabgabe an das zweite Fahrzeug 15 derart, dass das zweite Fahrzeug 15 nur noch mit einer Leistung von 8 kW aufgeladen wird. Setpoint S2 of 10 kW to 8 kW and sends by means of a five ¬ th message 48 to new setpoint S2 = 8 kW to the second charging device 10. Subsequently, the second charging device 10 reduces its electric power supply to the second vehicle 15 so that the second vehicle 15 is only charged with a power of 8 kW.
Außerdem reduziert die Steuereinrichtung 29 den dritten Sollwert S3 von 15 kW auf 12 kW und sendet mittels einer sechsten Nachricht 50 den neuen Sollwert S3 = 12 kW an die dritte La¬ deeinrichtung 20. Daraufhin reduziert die dritte Ladeeinrichtung 20 ihre elektrische Energieabgabe an das dritte Fahrzeug 25 derart, dass das dritte Fahrzeug 25 nur noch mit einer Leistung von 12 kW aufgeladen wird. Furthermore, the controller 29 reduces the third reference value S3 of 15 kW to 12 kW and sends by means of a sixth message 50 to new setpoint S3 = 12 kW to the third La ¬ signaling device 20. Thereafter, the third charging device 20 reduces its electric power supply to the third vehicle 25 such that the third vehicle 25 is charged only with a power of 12 kW.
Daraufhin berechnet die Steuereinrichtung 29 einen neuen Prognosewert für die Energieaufnahme der drei Ladeeinrichtun¬ gen : PP = (Wl + PI tR + W2 + P2 tR + W3 + P3 tR) /T 29 Subsequently, the control means calculates a new predictive value for the power consumption of the three Ladeeinrichtun ¬ gen: P = P (Wl + W2 + PI + P2 t R t R + W3 + P3 t R) / T
PP = (1kWh + 4kW (l/12)h + 1kWh + 8kW (l/12)h + 1kWh + 12kW (l/12)h) / 0,25h P P = (1kWh + 4kW (l / 12) h + 1kWh + 8kW (l / 12) h + 1kWh + 12kW (l / 12) h) / 0,25h
PP = (1,33kWh + 1,67kWh + 2kWh) / 0,25h = 20 kW. Damit ergibt sich ein neuer Prognosewert PP für die mittlere elektrische Leistungsaufnahme im Zeitintervall. Dieser neue Leistungs-Prognosewert PP sagt aus, dass die drei Ladeein¬ richtungen in dem Zeitintervall im Mittel genau die maximal erlaubten 20 kW elektrischer Leistung aufnehmen. Damit ist der Prognosewert PP gleich dem vorbestimmten Maximalwert Pmax = 20 kW. Eine weitere Verringerung der Sollwerte ist also nicht notwendig. Nun wiederholt sich der Ablauf, d. h. die Steuereinrichtung empfängt aktuelle Daten der drei Ladeeinrichtungen und berechnet einen weiteren Prognosewert. Die Er¬ mittlung des Prognosewerts wird zyklisch wiederholt. Die Zeit zwischen zwei Prognosewert-Berechnungen kann über eine Konfiguration vorgegeben werden. Ebenso können Parameter (wie z.B. Totzeiten oder Hysteresen) über eine Konfiguration vorgegeben werden, um unerwünschte Schwingungen der Sollwerte zu verhindern . P P = (1,33kWh + 1,67kWh + 2kWh) / 0,25h = 20kW. This results in a new forecast value P P for the mean electrical power consumption in the time interval. This new performance prediction value P P states that the three Ladeein ¬ directions exactly in the time interval on average, the maximum allowed to take up 20 kW of electrical power. Thus, the forecast value P P is equal to the predetermined maximum value P max = 20 kW. A further reduction of the setpoints is therefore not necessary. Now the sequence repeats, ie the control device receives current data of the three charging devices and calculates another prognosis value. The ¬ He mediation the forecast value is repeated cyclically. The time between two forecast value calculations can be specified via a configuration. Likewise, parameters (such as dead times or hystereses) can be preset via a configuration in order to prevent unwanted oscillations of the setpoints.
Bei den bisher beschriebenen Beispielen wurde bei der Ermitt- lung des Prognosewerts die in den Ladeeinrichtungen auftre¬ tende Verlustleistung nicht berücksichtigt. In einem weiteren Ausführungsbeispiel könnte diese Verlustleistung aber auch berücksichtigt werden, indem bei der Ermittlung des Prognose¬ wertes zu den Sollwerten für jede Ladesäule ein Wert für die in der Ladeeinrichtung auftretende Verlustleistung addiert wird . In the previously described examples of the prognosis value has not been accounted occurring defects ¬ trend in charging devices power loss when determining development. In another embodiment, this power loss could be also taken into account by a value for the occurring in the charging device power dissipation is added when determining the prognosis ¬ value to the target values for each charging station.
In einem weiteren Ausführungsbeispiel kann das Verfahren auch so ablaufen, dass die Sollwerte schrittweise solange verrin- gert werden, bis der Prognosewert kleiner oder gleich dem Maximalwert ist. In a further exemplary embodiment, the method can also run such that the setpoint values are reduced stepwise until the prediction value is less than or equal to the maximum value.
In einem anderen Ausführungsbeispiel kann das Verfahren auch so ablaufen, dass die Steuereinrichtung 29 lediglich den dritten Sollwert S3 von 15 kW auf 9 kW reduziert und die an¬ deren beiden Sollwerte unverändert lässt. Dieser Fall kann beispielsweise auftreten, wenn das erste Fahrzeug und das zweite Fahrzeug beim Laden eine höhere Priorität haben als das dritte Fahrzeug. Die Verringerung der Sollwerte kann also abhängig sein von einer Priorität des Kunden bzw. des an der Ladesäule angeschlossenen Fahrzeugs beim Laden. Danach sendet die Steuereinrichtung 29 den neuen Sollwert S3 = 9 kW an die dritte Ladeeinrichtung 20. Daraufhin reduziert die dritte La- deeinrichtung 20 ihre elektrische Energieabgabe an das dritte Fahrzeug 25 derart, dass das Fahrzeug 25 nur noch mit einer Leistung von 9 kW aufgeladen wird. Daraufhin berechnet die Steuereinrichtung 29 einen neuen Prognosewert PP: In another embodiment, the method may also occur so that the controller 29 only the third reference value S3 of 15 kW to 9 kW, and the reduced at ¬ the two reference values can be unchanged. This case may occur, for example, when the first vehicle and the second vehicle have a higher priority when loading than the third vehicle. The reduction of the setpoint values can therefore depend on a priority of the customer or of the vehicle connected to the charging station during charging. Thereafter, the control device 29 sends the new setpoint value S3 = 9 kW to the third charging device 20. deeinrichtung 20 their electrical energy output to the third vehicle 25 such that the vehicle 25 is charged only with a power of 9 kW. The controller 29 then calculates a new forecast value P P:
PP = (Wl + PI tR + W2 + P2 tR + W3 + P3 tR) /T P P = (Wl + W2 + PI + P2 t R t R + W3 + P3 t R) / T
PP = (1kWh + 5kW (l/12)h + 1kWh + 10kW (l/12)h + 1kWh + 9kWP P = (1kWh + 5kW (l / 12) h + 1kWh + 10kW (l / 12) h + 1kWh + 9kW
(l/12)h) /0,25h (l / 12) h) / 0.25h
PP = (1,42kWh + 1,83kWh + 1,75kWh) /0,25h = 20kW P P = (1.42kWh + 1.83kWh + 1.75kWh) / 0.25h = 20kW
Der Wert der prognostizierten mittleren elektrischen Leistung im Zeitintervall beträgt also PP = 20kW und entspricht damit dem Maximalwert Pmax · In Figur 2 ist das beschriebene Verfahren nochmals mittels eines Ablaufdiagramms dargestellt. Zu einem StartZeitpunkt (Block 210) ist bekannt, wie groß die in dem laufenden Zeit¬ intervall bereits erfolgte Energieaufnahme ist, wie groß die aktuelle Energieaufnahme der Ladeeinrichtungen ist (dies ent- spricht den Sollwerten) und wie groß die noch nicht verstri¬ chene Zeitspanne des Zeitintervalls (die Restzeit) ist. An¬ hand dieser Werte wird ein Prognosewert für die Energieauf¬ nahme der Ladeeinrichtungen in dem laufenden Zeitintervall ermittelt (Block 220) . Danach wird der ermittelte Prognose- wert verglichen mit einem vorbestimmten Maximalwert (BlockThe value of the predicted average electrical power in the time interval is thus P P = 20kW and thus corresponds to the maximum value P ma x. In FIG. 2, the method described is represented once again by means of a flowchart. For a start time (block 210) is known how big the ¬ interval already made energy intake is in the current time, what is the current energy consumption of chargers (this corresponds to the nominal values) and how large the not verstri ¬ chene period of the time interval (the remaining time) is. ¬ at these values, a prediction value for the Energieauf ¬ exception of said loading means is in the current time interval is determined (block 220). Thereafter, the determined prognosis value is compared with a predetermined maximum value (block
230) . Wenn der Prognosewert kleiner oder gleich dem Maximalwert ist, dann wird der Verfahrensablauf bei Block 220 wei¬ tergeführt, d. h. es wird ein neuer Prognosewert (mit aktua¬ lisierten Daten) ermittelt. Wenn der Prognosewert jedoch größer als der zulässige Maximalwert ist, dann geht der Ver¬ fahrensablauf über zu Block 240. Dann wird mindestens ein Sollwert für die Ladeeinrichtungen verringert (verkleinert) , wodurch die Energieaufnahme der betreffenden Ladeeinrichtung bzw. Ladeeinrichtungen verringert wird. Dieser Sollwert wird daraufhin an die betreffende Ladeeinrichtung bzw. die betreffenden Ladeeinrichtungen übermittelt (Block 250). Danach wird der Verfahrensablauf bei Block 220 fortgesetzt. In Figur 3 ist ein weiterer beispielhafter Verfahrensablauf dargestellt. Diese Variante sieht vor, dass mindestens einer der Sollwerte vergrößert wird, wenn der Prognosewert kleiner als der Maximalwert ist. Dadurch kann der Maximalwert gut ausgenutzt werden. Dabei kann entweder - ähnlich wie oben im Zusammenhang mit der Verringerung der Sollwerte ausführlich beschrieben - von der Steuereinrichtung errechnet werden, um welchen Wert der Sollwert oder mehrere Sollwerte in dem lau¬ fenden Zeitintervall zu vergrößern sind. Alternativ kann auch der Sollwert bzw. die Sollwerte schrittweise solange ver¬ größert werden, bis der Prognosewert gleich dem Maximalwert ist. Mittels Totzeiten und/oder Hysteresen können auch hier unerwünschte Schwingungen der Sollwerte verhindert werden. Bei dem Ausführungsbeispiel der Figur 3 wird in Block 310 ge¬ prüft, ob der Prognosewert kleiner als der Maximalwert ist. Wenn dies der Fall ist, dann wird in Block 320 mindestens ein Sollwert vergrößert. Daraufhin wird in Block 330 der mindes¬ tens eine vergrößerte Sollwert an die Ladeeinrichtung bzw. die Ladeeinrichtungen übermittelt. Danach wird der Verfahrensablauf bei Block 220 fortgesetzt. 230). If the forecast value is less than or equal to the maximum value, then the process flow is tergeführt at block 220 wei ¬, ie it is determined, a new forecast value (with aktua ¬ ized data). However, if the prediction value is greater than the allowable maximum value, then the Ver ¬ drive control flow goes to block 240. Then, at least one desired value for the charging devices is decreased (reduced), whereby the energy absorption of the respective charging device or charging devices is reduced. This setpoint is then transmitted to the relevant charging device or the relevant charging devices (block 250). Thereafter, the process continues at block 220. FIG. 3 shows a further exemplary method sequence. This variant provides that at least one of the setpoints is increased if the forecast value is smaller than the maximum value. This allows the maximum value to be used well. In this case, either - similar to that described above in connection with the reduction of the target values in detail - are calculated by the control device, to what value the reference value or more setpoints are in the lau ¬ fenden time interval to increase. Alternatively, the target value or target values can be gradually while ver ¬ enlarges until the forecast value is equal to the maximum value. By means of dead times and / or hystereses, unwanted oscillations of the setpoints can also be prevented here. In the embodiment of Figure 3, is checked ge ¬ in block 310 whether the predictive value is smaller than the maximum value. If so, then at least one setpoint is increased in block 320. Thereupon, the Minim ¬ least received an enlarged set value to the charging device or the loading devices in block 330th Thereafter, the process continues at block 220.
Es wurde ein Verfahren und eine Steuereinrichtung beschrieben, mit denen die elektrische Energieaufnahme von Ladeein- richtungen wirkungsvoll begrenzt werden kann. Dadurch kann sichergestellt werden, dass während eines Zeitintervalls nicht mehr elektrische Energie von den Ladeeinrichtungen auf¬ genommen wird, als durch einen Maximalwert vorgegeben ist. A method and a control device have been described with which the electrical energy consumption of charging devices can be effectively limited. This ensures that during a time interval not more electrical energy is taken from the loading facilities on ¬, as dictated by a maximum value.

Claims

Patentansprüche claims
1. Verfahren zum Begrenzen der elektrischen Energieaufnahme von Ladeeinrichtungen (1, 10, 20) zum Laden einer Fahrbatte- rie (7, 17, 27) eines elektrisch antreibbaren Fahrzeugs (5, 15, 25), wobei mindestens zwei Ladeeinrichtungen (1, 10, 20) jeweils ein Sollwert (Sl, S2, S3) zugeordnet ist, der die elektrische Energie beschreibt, die die jeweilige Ladeein¬ richtung (1, 10, 20) maximal an das Fahrzeug (5, 15, 25) ab- geben darf, wobei bei dem Verfahren 1. A method for limiting the electrical energy consumption of charging devices (1, 10, 20) for charging a Fahrbatte- rie (7, 17, 27) of an electrically driven vehicle (5, 15, 25), wherein at least two charging devices (1, 10 , 20) in each case a desired value (S1, S2, S3) is assigned, which describes the electrical energy, which may deliver the respective Ladeein ¬ direction (1, 10, 20) maximum to the vehicle (5, 15, 25) , wherein in the process
- ein Prognosewert für die Energieaufnahme der mindestens zwei Ladeeinrichtungen (1, 10, 20) für ein laufendes Zeitintervall ermittelt (220) wird,  a prognosis value for the energy consumption of the at least two charging devices (1, 10, 20) is determined (220) for a running time interval,
- der Prognosewert mit einem vorbestimmten Maximalwert ver- glichen (230) wird, und  - comparing the forecast value with a predetermined maximum value (230), and
- wenn der Prognosewert größer als der Maximalwert ist, min¬ destens einer der Sollwerte verringert wird (240) . - if the prediction value is larger than the maximum value, min ¬ least one of the command values is reduced (240).
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
- mindestens der eine Sollwert (Sl) an die zugeordnete Lade¬ einrichtung (1) gesendet (46) wird. - At least one setpoint (Sl) to the associated charging device ¬ (1) is sent (46).
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
- der Prognosewert ermittelt (220) wird unter Nutzung der in dem Zeitintervall bereits erfolgten Energieaufnahme, der ak¬ tuellen Energieaufnahme und der Länge der noch nicht verstri¬ chenen Zeitspanne des Zeitintervalls. - the forecast value is determined (220) using the already completed in the time interval energy consumption, the ak ¬ tual energy intake and length of not verstri ¬ rupted period of time interval.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass 4. Method according to one of the preceding claims, characterized in that
- der Maximalwert zeitlich konstant ist, oder  - the maximum value is constant in time, or
- der Maximalwert aus einem Datenspeicher (34) ausgelesen wird, in dem zeitintervallindividuelle Maximalwerte gespei¬ chert sind, oder - is read out of the maximum value from a data memory (34) are vomit ¬ chert in the time interval individual maximum values, or
- der Maximalwert von einer ladeeinrichtungsexternen Einheit (33) empfangen wird. the maximum value is received by a charger external unit (33).
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass 5. The method according to any one of the preceding claims, d a d u r c h e c e n e c e in that e
- wenn der Prognosewert kleiner als der Maximalwert ist, min- destens einer der Sollwerte vergrößert wird (320) .  - if the prediction value is smaller than the maximum value, control for at least one of the reference values is increased (320).
6. Steuereinrichtung (29) zum Begrenzen der elektrischen Energieaufnahme von Ladeeinrichtungen (1, 10, 20) zum Laden einer Fahrbatterie (7, 17, 27) eines elektrisch antreibbaren Fahrzeugs (5, 15, 25) , wobei mindestens zwei Ladeeinrichtun¬ gen (1, 10, 20) jeweils ein Sollwert (Sl, S2, S3) zugeordnet ist, der die elektrische Energie beschreibt, die die jewei¬ lige Ladeeinrichtung (1, 10, 20) maximal an das Fahrzeug (5, 15, 25) abgeben darf, wobei die Steuereinrichtung ausgestal- tet ist zum 6. Control device (29) for limiting the electrical energy consumption of charging devices (1, 10, 20) for charging a traction battery (7, 17, 27) of an electrically driven vehicle (5, 15, 25), wherein at least two Ladeeinrichtun ¬ conditions ( 1, 10, 20) in each case a desired value (S1, S2, S3) is assigned, which describes the electrical energy, which deliver the jewei ¬ lige charging device (1, 10, 20) maximum to the vehicle (5, 15, 25) may, with the control device is configured to the
- Ermitteln (220) eines Prognosewerts für die Energieaufnahme der mindestens zwei Ladeeinrichtungen (1, 10, 20) für ein laufendes Zeitintervall,  Determining (220) a forecast value for the energy consumption of the at least two charging devices (1, 10, 20) for a running time interval,
- Vergleichen (230) des Prognosewerts mit einem Maximalwert und  Comparing (230) the forecast value with a maximum value and
- Verringern (240) mindestens eines der Sollwerte, wenn der Prognosewert größer als der Maximalwert ist.  - reducing (240) at least one of the setpoint values if the prediction value is larger than the maximum value.
7. Steuereinrichtung nach Anspruch 6, 7. Control device according to claim 6,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
die Steuereinrichtung ausgestaltet ist zum the control device is designed for
- Senden (46) des mindestens einen Sollwerts (Sl) an die zu¬ geordnete Ladeeinrichtung (1). - Sending (46) of the at least one desired value (Sl) to the ¬ ordered charging device (1).
8. Steuereinrichtung nach Anspruch 6 oder 7, 8. Control device according to claim 6 or 7,
d a d u r c h g e k e n n z e i c h n e t , dass d a d u r c h e c e n c i n e s that
- die Steuereinrichtung den Prognosewert ermittelt (220) un¬ ter Nutzung der in dem Zeitintervall bereits erfolgten Energieaufnahme, der aktuellen Energieaufnahme und der Länge der noch nicht verstrichenen Zeitspanne des Zeitintervalls. - The controller determines the prognosis value (220) un ¬ ter use of the already in the time interval energy intake, the current energy consumption and the length of the not yet elapsed time period of the time interval.
9. Steuereinrichtung nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass - der Maximalwert zeitlich konstant ist, oder 9. Control device according to one of claims 6 to 8, characterized in that - the maximum value is constant in time, or
- der Maximalwert ein zeitintervallindividueller Maximalwert ist, der in einem Datenspeicher (34) gespeichert ist, oder - The maximum value is a time interval individual maximum value stored in a data memory (34), or
- der Maximalwert von einer ladeeinrichtungsexternen Einheit (33) empfangen worden ist. - the maximum value has been received by a charger external unit (33).
10. Steuereinrichtung nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass die Steuereinrichtung ausgestaltet ist zum 10. Control device according to one of claims 6 to 9, d a d u r c h e c e n e c i n e s that the control device is designed to
- Vergrößern (320) mindestens eines der Sollwerte, wenn der Prognosewert kleiner als der Maximalwert ist. - increasing (320) of at least one of the setpoint values if the prediction value is smaller than the maximum value.
PCT/EP2012/066232 2012-08-21 2012-08-21 Method for limiting electrical power consumption WO2014029420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/066232 WO2014029420A1 (en) 2012-08-21 2012-08-21 Method for limiting electrical power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/066232 WO2014029420A1 (en) 2012-08-21 2012-08-21 Method for limiting electrical power consumption

Publications (1)

Publication Number Publication Date
WO2014029420A1 true WO2014029420A1 (en) 2014-02-27

Family

ID=46826456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/066232 WO2014029420A1 (en) 2012-08-21 2012-08-21 Method for limiting electrical power consumption

Country Status (1)

Country Link
WO (1) WO2014029420A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110716A1 (en) * 2016-06-10 2017-12-14 Sma Solar Technology Ag Method and device for controlling a discharge capacity for a storage unit
DE102017211690A1 (en) * 2017-07-07 2019-01-10 Bayerische Motoren Werke Aktiengesellschaft System for reducing load peaks in an electrical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349879A (en) * 1979-02-21 1982-09-14 South Eastern Electricity Board Apparatus for controlling electrical power consumption
EP0803956A2 (en) 1996-04-22 1997-10-29 Siemens Aktiengesellschaft System and method for the optimisation and management of electrical energy consumption in industrial plants
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20100217485A1 (en) * 2007-11-30 2010-08-26 Toyota Jidosha Kabushiki Kaisha Charging control device and charging control method
DE102009036816A1 (en) * 2009-08-10 2011-02-17 Rwe Ag Control of charging stations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349879A (en) * 1979-02-21 1982-09-14 South Eastern Electricity Board Apparatus for controlling electrical power consumption
EP0803956A2 (en) 1996-04-22 1997-10-29 Siemens Aktiengesellschaft System and method for the optimisation and management of electrical energy consumption in industrial plants
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20100217485A1 (en) * 2007-11-30 2010-08-26 Toyota Jidosha Kabushiki Kaisha Charging control device and charging control method
DE102009036816A1 (en) * 2009-08-10 2011-02-17 Rwe Ag Control of charging stations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110716A1 (en) * 2016-06-10 2017-12-14 Sma Solar Technology Ag Method and device for controlling a discharge capacity for a storage unit
WO2017211551A1 (en) 2016-06-10 2017-12-14 Sma Solar Technology Ag Method and device for controlling a discharge power for a storage unit
DE102017211690A1 (en) * 2017-07-07 2019-01-10 Bayerische Motoren Werke Aktiengesellschaft System for reducing load peaks in an electrical system
DE102017211690B4 (en) 2017-07-07 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft System for reducing load peaks in an electrical system
EP3649717B1 (en) 2017-07-07 2021-08-04 Bayerische Motoren Werke Aktiengesellschaft System for reducing load peaks in an electrical system
US11411401B2 (en) 2017-07-07 2022-08-09 Bayerische Motoren Werke Aktiengesellschaft System for reducing load peaks in an electrical installation

Similar Documents

Publication Publication Date Title
EP2428390B1 (en) Device and method for charging vehicle batteries efficiently
EP2514063B1 (en) Energy storage system and method for the operation thereof
WO2019242928A1 (en) Method for configuring a charging system and charging system for charging the electrical energy store of a vehicle
EP2131469B1 (en) Method and system to control the power by which a battery is charged
DE202015009263U1 (en) Switching device for the intelligent charging of electric vehicles
EP3442823B1 (en) Electric vehicle with feedback to the power supply system and provision of control power
DE102009036816A1 (en) Control of charging stations
EP3373407B1 (en) Method for operating a modular battery storage system, modular battery storage system and battery management system therefor
EP1325542A1 (en) Method for regulating the generator voltage in a motor vehicle
WO2012163396A1 (en) Limiting power or current intensity in charging devices
DE102016212026A1 (en) Method and control unit for stabilizing a supply network
WO2015107096A1 (en) Energy storage system and method for increasing the efficiency of an energy storage system
WO2019162264A1 (en) Method and control device for adjusting electrical power available to an electrical power requirement in an electrical network
DE102014206381A1 (en) Charging system for electric vehicles
DE102017206497B4 (en) Charging device and method for charging an electrical energy store of a vehicle, and motor vehicle
EP3402035B1 (en) Method for charging a battery and stationary loading installation
WO2014029420A1 (en) Method for limiting electrical power consumption
WO2020260615A1 (en) Method and system for coordinating charging operations for electric vehicles
EP3689666A1 (en) Load management in a low voltage network
WO2019020446A1 (en) Method for operating an electric overall onboard power supply, control unit, and vehicle
EP3649717B1 (en) System for reducing load peaks in an electrical system
DE102012111046A1 (en) Method for limiting maximum power consumption of complex production machine, particularly injection molding machine, involves determining temporal power consumption during specified time window of aggregates or groups
WO2012163421A1 (en) Assignment of power or current strength to charging devices
WO2017133811A1 (en) Control apparatus for controlling a plurality of energy stores, energy supply network and method
DE102016223705A1 (en) Method and control unit for the recovery of electrical energy from an energy store

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12756408

Country of ref document: EP

Kind code of ref document: A1