WO2014021479A1 - Display device capable of optical pointing input - Google Patents

Display device capable of optical pointing input Download PDF

Info

Publication number
WO2014021479A1
WO2014021479A1 PCT/KR2012/006068 KR2012006068W WO2014021479A1 WO 2014021479 A1 WO2014021479 A1 WO 2014021479A1 KR 2012006068 W KR2012006068 W KR 2012006068W WO 2014021479 A1 WO2014021479 A1 WO 2014021479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
input
optical
signal
Prior art date
Application number
PCT/KR2012/006068
Other languages
French (fr)
Korean (ko)
Inventor
김성환
안상진
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to PCT/KR2012/006068 priority Critical patent/WO2014021479A1/en
Publication of WO2014021479A1 publication Critical patent/WO2014021479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a display device capable of optical pointing input, and more particularly, to an optical sensor including a thin film transistor and a light receiving diode connected to a signal output part thereof, wherein the unit recognition element constituted by the optical sensor has a predetermined arrangement rule.
  • various execution commands can be input through a laser pointer, and in particular, optical pointing position recognition is configured to enable accurate optical pointing input to optical input generated in a plurality of unit recognition elements using triangulation. This relates to a possible display device.
  • IPTV Internet Protocol Television
  • the pointing device refers to a device that designates a specific position on the display and detects the position to use as an input signal.
  • the most common example of a pointing device is a laser pointer used for a presentation. Until now, a laser pointer shows only a pointed position, and unlike other devices, there is a technical limitation that cannot be used as an input device.
  • FIG. 1 is a diagram illustrating an arrangement structure of optical fibers formed on a screen portion of a display device capable of optical pointing input according to an example of the related art.
  • a display device capable of optical pointing input includes a grating type optical fiber that recognizes and transmits an optical input to a screen unit as shown in FIG. 1 in order to recognize an optical input from a laser pointer on a screen unit. It is configured so that the laser pointer can accurately recognize the coordinates of the current point.
  • An optical fiber is an optical device having excellent light transmission characteristics, and when light is input from one end, the light is transmitted to the other end with almost no loss. Therefore, when the optical fiber is arrayed as shown in FIG. It performs the same function as the sensor that informs you of the position of.
  • FIG. 2 is a diagram illustrating a principle of recognizing a light input position on a screen portion of a display device capable of light pointing input according to an example of the related art.
  • the horizontal detection elements Dx1, ..., Dxn provided on the horizontal side of the optical fiber arranged in a lattice shape and the vertical detection elements Dy1, ..., Dyn provided on the vertical side are specified on the screen portion.
  • signals of a Gaussian distribution having a maximum value are detected at the detection elements Dyp and Dxp, respectively.
  • the coordinates of the intersection point P corresponding to the maximum value can be calculated from this detection signal, and the coordinates of this intersection point P will be recognized as the coordinates of the point to which the laser point is pointing (pointing).
  • the display apparatus according to the related art has a problem in that mass production is difficult, manufacturing costs are high, and operation errors are frequently generated due to scattering noise generated in the process of inputting light into the optical fiber.
  • the display device has a problem in that it is not possible to receive various execution commands by an optical signal from a laser pointer.
  • An object of the present invention for solving the problems according to the prior art is to configure an optical sensor including a thin film transistor and a light receiving diode connected to the signal output unit, and the unit recognition element constituted by the optical sensor is arranged according to a predetermined arrangement rule. It is equipped with a screen portion, various execution commands can be input through the laser pointer, in particular, it is possible to recognize the optical pointing position configured to enable accurate optical pointing input to the optical input generated in the plurality of unit recognition elements using triangulation method In providing a display device.
  • a screen unit in which a unit recognition element consisting of an optical sensor is arranged according to a predetermined arrangement rule-the optical sensor is connected to the thin film transistor and the signal output of the thin film transistor Consisting of a light receiving diode; And a driving / recognition for recognizing a position at which the light is input using a change in the output voltage characteristic of the thin film transistor, which is generated when the light from the outside is input to the screen unit, according to a change in the electrical resistance value of the light receiving diode. And a unit, wherein the driving / recognition unit outputs the largest voltage characteristic change when the light input to the screen unit generates output voltage characteristic changes to three or more unit recognition elements. And a display apparatus capable of optical pointing input configured to recognize a position at which light is input using the arrangement rule of the unit recognition element and triangulation.
  • the present invention is characterized in that, when light is input to the unit recognition element, the electrical resistance of the light receiving diode is lowered.
  • the thin film transistor may be a MOS field effect transistor composed of a conductor, an insulator, and an amorphous silicon.
  • the light-emitting diode has a structure in which a layer to which an impurity of a Group 3 element is added, an amorphous silicon layer, and a layer to which an Impurity of a Group 5 element is added are sequentially stacked.
  • the light from the outside is characterized in that it has a wavelength of 380nm to 770nm.
  • the present invention may further include a counter unit for counting the number of times per unit time of the voltage signal output from the unit recognition element.
  • the light from the outside is frequency-modulated by a pulse generator, the number of times per unit time of the voltage signal is characterized in that it changes according to the frequency of the light from the outside.
  • the present invention detects three unit recognition elements that output the largest voltage characteristic change, generates each virtual circle centered on each unit recognition element, and generates the shortest distance from each center point of the three circles. Characterized in that configured to recognize the position of the intersection forming the light input position.
  • an optical sensor including a thin film transistor and a light-receiving diode connected to the signal output unit, and the unit pointer comprising the optical sensor is provided with a screen unit arranged according to a certain arrangement rule, so that the laser pointer is currently instructed.
  • the screen of the display device can be used as an input tool together with an output tool.
  • various execution commands through the laser pointer may be input through the screen unit of the display device.
  • TFT-LCD batch process it can be mass-produced at low cost and has the advantage of being implanted in an active matrix flat panel display.
  • the present invention is configured to enable accurate optical pointing input to optical input generated in a plurality of unit recognition elements by using triangulation, so that the arrangement rule (interval and number) of the optical scanning area of the laser pointer and the optical sensor can be properly adjusted.
  • the arrangement rule interval and number
  • the number of arrangements of the optical sensors can be minimized, thereby providing a further improved effect on production and economics of the product.
  • FIG. 1 is a view illustrating an arrangement structure of optical fibers formed on a screen portion of a display device capable of optical pointing input according to an example of the prior art
  • FIG. 2 is a view for explaining a principle of recognizing a light input position on a screen portion of a display device capable of optical pointing input according to an example of the prior art
  • FIG. 3 is a plan view showing a screen portion of a display device capable of optical pointing input according to an embodiment of the present invention
  • FIG. 4 is a view for explaining an operation principle when an optical signal is applied on the screen of the display device capable of optical pointing input according to an embodiment of the present invention
  • 5a and 5b are views showing a vertical cut surface of the unit recognition element in the screen unit according to an embodiment of the present invention
  • FIG. 6 is a functional block diagram of a laser pointer device used for input of an optical signal to a display device capable of optical pointing input according to an embodiment of the present invention
  • FIG. 7 is a view for explaining an operation according to an input of an optical signal in a display device capable of an optical pointing input according to an embodiment of the present invention
  • FIG. 8 is a view for explaining the concept of the triangulation method used in the display device capable of optical pointing input according to an embodiment of the present invention
  • FIG. 9 is a cross-sectional view conceptually illustrating a display device capable of an optical pointing input according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 3 is a plan view illustrating a screen portion of a display device capable of optical pointing input according to an embodiment of the present invention.
  • the screen unit of the display device capable of optical pointing input may include a gate electrode 21, a data electrode 22, and a voltage for controlling 'on / off' of a thin film transistor TFT. And a drive / recognition unit 10 which drives the thin film transistor and recognizes the light input.
  • the TFT is a MOS type field effect transistor composed of a conductor-insulator-amorphous silicon.
  • the unit recognition element 20 exists at the point where the gate electrode 21 and the data electrode 22 intersect, and the input of the optical signal to the local area is converted into an electrical signal through the unit recognition element 20.
  • the unit recognition element 20 is composed of one gate electrode 21 and one data electrode 22 formed in duplicate.
  • the data electrode 22 is a data electrode 22 applied to both a TFT and a light receiving diode, and is composed of a first data electrode 201, a second data electrode 202, and a third data electrode 203.
  • the first data electrode 201 is a data signal input electrode of a TFT
  • the second data electrode 202 is a data signal output electrode of a TFT and at the same time a signal input electrode of a light receiving diode
  • the third data electrode 203 is Corresponds to the signal output electrode of the light-receiving diode.
  • the second data electrode 202 performs the function of the electrode of the data signal output part of the TFT and the signal input part electrode of the light receiving diode, thereby outputting by the TFT when the electric resistance value of the light receiving diode is changed by light input from the outside.
  • the characteristics of the voltage to be changed are the characteristics of the voltage to be changed.
  • the TFT of the unit recognition element 20 of the specific region when the gate signal and the data signal from the driving / recognition unit 10 are input to the TFT of the unit recognition element 20 of the specific region, the TFT is turned on and thus the first data which is the data signal input electrode. Current flows through the electrode 201 and the second data electrode 202, which is a signal input electrode of the data signal output electrode and the light receiving diode.
  • the unit recognition element 20 composed of the TFT and the light receiving diode is arranged in a lattice form
  • the unit recognition element in the region to which the optical signal is applied as described above
  • the resistance value of the light receiving diode constituting (20) decreases.
  • the light emitting diode layer constituting the unit recognition element 20 of the screen unit 70 may include a p-type semiconductor layer 36 made of amorphous silicon (a-Si) to which impurities of group 3 elements are added, and an amorphous silicon ( an intrinsic semiconductor layer made of a-Si) and an n-type semiconductor layer made of amorphous silicon (a-Si) to which impurity of a Group 5 element is added, and whether or not an optical signal is applied to the unit recognition element 20. Depending on the amount of charge generated.
  • a-Si amorphous silicon
  • the unit recognition with the light signal (Light-On)
  • the light-emitting diode layer of the element 20 increases the amount of charge, thereby reducing the resistance value, and the light-off diode layer of the light-off unit recognition element 20 has a low amount of charge. The value will increase.
  • the driving / recognition unit 10 oscillates the gate signal and the data signal to drive the TFT of the unit recognition element, as shown in the voltage state diagram 27, the voltage is changed depending on whether the optical signal is applied or not.
  • the output waveform will be different.
  • the electric resistance value of the light-receiving diode layer decreases in the unit recognition element 20 to which the optical signal is applied, so that the waveform of the output voltage of the TFT appears high, but the light-receiving diode is applied to the unit recognition element 20 to which the optical signal is not applied.
  • the resistance value of the layer increases, so that the waveform of the output voltage of the TFT appears low.
  • FIG. 8 is a view for explaining the concept of the triangulation method used in the display device capable of optical pointing input according to an embodiment of the present invention.
  • an optical sensor constituting a unit recognition element is disposed, and the arrangement of the unit recognition elements may be a dense lattice, a lattice, an oblique lattice, an arbitrary arrangement, or the like.
  • the arrangement rule (interval and number) depends on resolution and economy.
  • the optical sensors P1, P2, and P3 are arranged in an arbitrary space
  • the input value (change in output voltage characteristic of the thin film transistor) is Three high optical sensors P1, P2, P3 are detected, and each of P1, P2, P3 has an input intensity according to the intensity of light.
  • the positions of P1, P2, and P3 can be determined by a predetermined arrangement rule (interval and number) of the optical sensor, and each imaginary circle centering on P1, P2, and P3 is shown in FIG. 8 according to the input intensity. You can make it together.
  • the position of the intersection which forms the shortest distance from each center point of the three circles can be calculated using triangulation. The intersection thus calculated is regarded as the input coordinate. In the example where three circles meet at one intersection as shown in FIG. 8, the point B at which the three circles overlap is an intersection.
  • Triangulation method is a method of accurately determining the position between each point by applying a triangulation method, taking the example of Figure 8, by accurately measuring one side of the triangle (P1-P2 line, the base line in Figure 8), and determines both ends of the base line
  • the positions of the intersection points (B points in FIG. 8) may be obtained by determining the points (B points in FIG. 8) connected to each other to measure the angles formed by both ends of the base line and the triangular points.
  • the screen unit 70 may not only check whether the optical signal is input to the specific unit recognition element 20, but also classify the optical signal according to the frequency of the input optical signal.
  • the display apparatus according to the present invention may perform different operations according to the type of the optical signal.
  • the laser pointer 40 is preferably manufactured to control the waveform of the output optical signal within a predetermined frequency range (for example, 1 ⁇ 60Hz range), for example
  • a predetermined frequency range for example, 1 ⁇ 60Hz range
  • the left button provided on the laser pointer 40 is clicked, an optical signal of 10 Hz is output, when the right button is clicked, an optical signal of 6 Hz is output, and when the scroll wheel is turned, an optical signal of 30 Hz is output. can do.
  • an optical signal having a specific frequency output from the laser pointer 40 is applied to the unit recognition element 20 of the screen unit 70 to generate a voltage signal in the voltage state diagram 27.
  • the generated voltage signal is input to the counter unit 50.
  • the counter unit 50 counters the number of times of the voltage signal output from the unit recognition element 20 per unit time, so that the left button click (10 Hz), right button click (6 Hz), scroll wheel ( 30Hz).
  • the display device capable of optical pointing input according to the present invention can perform different operations according to the input frequencies. .
  • 5A and 5B are views showing a vertical cut plane of the unit recognition element in the screen unit according to the present invention.
  • 5A illustrates an example of a structure by a basic process
  • FIG. 5B illustrates a structure by a process capable of reducing the number of photoetch masks.
  • a metal is deposited on the glass substrate 30 and then the pattern is etched to etch the light blocking film 311 of the gate electrode 310 and the light receiving diode.
  • the pattern is etched after the first data electrode 201 and the second data electrode 202 are deposited, and the n-type semiconductor layer 34 made of amorphous silicon (a-Si) to which impurities of group 5 elements are added. And 35, the p-type semiconductor layer 36 made of amorphous silicon (a-Si) to which the impurities of the group 3 element are added is stacked.
  • the data electrode (third data electrode) 203 of the light-receiving diode is deposited, the pattern is etched, and the passivation (SiNx) layer 38 is deposited.
  • a metal thin film layer for the light blocking film 37 of the TFT is stacked, followed by pattern etching, and a final passivation (SiNx) layer 39 is deposited.
  • a gate electrode pattern formed by an etching process is formed (Mask 1).
  • the insulating film 32, the intrinsic semiconductor layer 330 made of amorphous silicon (a-Si), and the n-type semiconductor layers 34 and 350 made of amorphous silicon (a-Si) to which impurities of the Group 5 element are added are successively.
  • an active pattern is formed by an etching process (Mask 2).
  • a first data pattern is formed by an etching process (Mask 3).
  • etching process of a film made of amorphous silicon to which n-type impurities are added between the first data electrode 201 and the second data electrode 202 is performed to secure operating characteristics of the channel.
  • a-Si amorphous silicon
  • the light-emitting diode according to the present invention has a structure in which a layer to which an impurity of a group 3 element is added, an amorphous silicon layer, and a layer to which an impurity of a Group 5 element are added are sequentially stacked.
  • a photosensitive diode pattern for signal output of the photodiode is formed through an etching process (Mask 4), and then a metal thin film for the third data electrode 203 composed of a conductor and the light blocking layer 37 of the TFT is deposited. Thereafter, a second data pattern formed by an etching process is formed (Mask 5). The process is then completed by depositing a passivation (SiNx) layer 38.
  • a display device capable of an optical pointing input according to the present invention includes a pulse generator 41, an optical cutter 42, and a light source 45.
  • the optical signal 43 before the frequency modulation generated by the light source 45 of the laser pointer 40 is transmitted to the pulse generator 41 in the form of a continuous beam.
  • the pulse generator 41 transmits an electric signal having a predetermined range of frequencies to the optical cutter 42
  • the optical cutter 42 emits a continuous beam of light from the light source 45 of the pulse generator 41.
  • the pulse is converted into a pulse having a frequency equal to the frequency.
  • the optical cutter 42 may be an optical switch made of a liquid crystal cell.
  • the optical signal applied from the pulse generator 41 to the screen portion of the display device according to the present invention has a wavelength of 380 nm to 770 nm. That is, since the wavelength range of visible light recognized by the eye generally corresponds to a range of 380 nm to 770 nm, it is preferable to have a wavelength range of 380 nm to 770 nm, which is a visible light region, in order for the point to be recognized by the user.
  • FIG. 7 is a view illustrating an operation according to an input of an optical signal in a display device capable of an optical pointing input according to the present invention.
  • the case of driving the XGA (1024 ⁇ 768) resolution at 60 Hz is taken as an example.
  • the timing controller 53 of the driving / recognition unit 10 included in the display device capable of optical pointing input according to the present invention generates a clock signal 501 for timing a flat panel display such as a TFT-LCD.
  • the clock signal 501 is transmitted to the gate driving IC 51, the data driving IC 52, the counter 50, and the processor 54 to serve as a time reference for the overall signal processing.
  • the gate signal generated in synchronization with the clock signal in the timing controller 53 is switched to the gate applied voltage of the TFT in the gate driver IC 51.
  • the gate voltage signal 511 is transmitted to the gate electrode and the counter unit 50 in the corresponding row. Therefore, in the case of 60 Hz driving, 768 gate signals are sequentially applied to the counter unit 50 during one frame.
  • the signal separating the frame from the frame is generated by the timing controller 53.
  • the data signal generated in synchronization with the clock signal in the timing controller 53 is switched to the data application pressure of the TFT in the data driver IC 52.
  • the data voltage signal 521 is transmitted to the data electrode of the corresponding column and the counter unit 50. Therefore, in the case of 60Hz driving, 768 gate signals are sequentially applied, and when 1024 gate signals are applied, the 1024 data signals are sequentially applied to the counter unit 50.
  • the signal 531 of the pixel output from the screen is input to the counter unit 50. Therefore, the clock signal 501, the gate drive driving signal 511, and the data drive driving signal 521 are input to the counter together with the pixel signal 531.
  • the input signal is a clock signal 501 for dividing a frame, a gate signal 511 for dividing a row from a row, an optical signal by performing an AND operation of the data signal 521 and a signal 531 of a pixel.
  • the preprocessing signal 532 composed of the input data signal is switched.
  • the preprocessing signal 532 is converted to Low Voltage Differential Signaling (LVDS), Reduced Swing Differential Signaling (RSDS), or the like, which is a signal 55 that is transmitted to the processor 54 and can be processed as an output in a display.
  • LVDS Low Voltage Differential Signaling
  • RSDS Reduced Swing Differential Signaling
  • a signal basically required for driving an active matrix display is a clock signal, which is a signal that distinguishes a frame from a frame, and one frame. Is a data signal associated with all columns corresponding to each row while the gate signal is applied.
  • the general display device expresses the contrast using the voltage size of the data signal.
  • the optical signal input from the outside is converted into an on / off data signal. Therefore, the display device according to the present invention follows the exact same standard as the display driving signal system which is generally used.
  • FIG. 9 is a cross-sectional view conceptually illustrating a display device capable of an optical pointing input according to an embodiment of the present invention.
  • the LCD panel LP includes a liquid crystal layer 1000 formed between the first substrate 4000 and the second substrate 2000 and between the first substrate 4000 and the second substrate 2000. It consists of.
  • the first substrate 4000 is a thin film transistor (TFT) array substrate which is a driving element.
  • TFT thin film transistor
  • a plurality of pixels are formed in the first substrate 4000 in a lattice arrangement, for example, and a driving element such as a TFT is formed in each pixel.
  • the second substrate 2000 is a color filter substrate, and a color filter layer for real color is formed.
  • a pixel electrode and a common electrode are formed on the first substrate 4000 and the second substrate 2000, respectively, and an alignment layer for aligning liquid crystal molecules of the liquid crystal layer 1000 is coated.
  • the first substrate 4000 and the second substrate 2000 are bonded by a sealing material 3000, and a liquid crystal layer 1000 is formed therebetween to form a TFT formed on the first substrate 4000.
  • a liquid crystal layer 1000 is formed therebetween to form a TFT formed on the first substrate 4000.
  • the screen unit 70 of the present embodiment may be formed, for example, between the first substrate 4000 and the liquid crystal layer 1000.
  • the arrangement of the unit recognition elements of the screen unit 70 may be performed in the same manner as the TFT array of the first substrate 4000, or may take a lattice structure and use fewer optical sensors than the TFT array of the first substrate 4000. It may be formed in a regular arrangement.
  • Basic driving of the TFT of the screen unit 70 may be performed together with the driving unit of the first substrate 4000. However, unlike the first substrate 4000, a data signal for pixel control is unnecessary.
  • the screen unit 70 when the arrangement of the unit recognition elements of the screen unit 70 takes a lattice structure and forms fewer optical sensors in a regular arrangement than the TFT array of the first substrate 4000, the screen unit 70
  • the separate drive control may be performed by the driving / recognition unit 10 as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a display device capable of optical pointing input, the display device comprising a screen unit in which unit recognition elements constituted by optical sensors are arranged according to a predetermined arrangement rule, each optical sensor including a thin film transistor and a light-receiving diode connected to a signal output part of the thin film transistor; and a driving/recognition unit for recognizing the point at which light is input using a change in the output voltage characteristics of the thin film transistor, caused by a change in the value of electric resistance of the light-receiving diode when light is input to the screen unit from an external source. When the light input to the screen unit causes a change in the output voltage characteristics of three or more unit recognition elements, the driving/recognition unit detects the three unit recognition elements which output the largest change in the voltage characteristics, and recognizes the point at which the light is input, using the arrangement rule of the unit recognition elements and a triangulation method.

Description

광 포인팅 입력이 가능한 디스플레이 장치Display device capable of optical pointing input
본 발명은 광 포인팅 입력이 가능한 디스플레이 장치에 관한 것으로서, 더욱 상세하게는 박막형 트랜지스터 및 그 신호 출력부에 연결된 수광 다이오드를 포함한 광 센서를 구성하고, 이러한 광 센서로 구성된 단위 인식 요소가 일정한 배열 규칙에 따라 배치된 스크린부를 구비하여, 레이저 포인터를 통한 다양한 실행명령이 입력될 수 있으며, 특히 삼각측량법을 이용하여 복수의 단위 인식 요소에 발생한 광 입력에 대해서 정확한 광 포인팅 입력이 가능하도록 구성된 광 포인팅 위치 인식이 가능한 디스플레이 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device capable of optical pointing input, and more particularly, to an optical sensor including a thin film transistor and a light receiving diode connected to a signal output part thereof, wherein the unit recognition element constituted by the optical sensor has a predetermined arrangement rule. In accordance with the screen unit disposed along, various execution commands can be input through a laser pointer, and in particular, optical pointing position recognition is configured to enable accurate optical pointing input to optical input generated in a plurality of unit recognition elements using triangulation. This relates to a possible display device.
일반인들에게 가장 대중적으로 이용되는 매체인 TV는 최근에 IPTV(Internet Protocol Television)라는 쌍방향 개념으로 진화되고 있다. 이러한 IPTV의 쌍방향 정보전송의 특징을 활용하면 학습자의 능동형 학습 환경을 효율적으로 구축할 수 있기 때문에 많은 전문가들은 새로운 매체 시장인 IPTV에서 가장 경쟁력 있는 시장으로 교육 콘텐츠 시장을 꼽고 있다.TV, the most popular medium for the general public, has recently evolved into an interactive concept called IPTV (Internet Protocol Television). By utilizing the characteristics of IPTV's two-way information transmission, learners can effectively build an active learning environment for learners, and many experts point to the education content market as the most competitive market in the new media market, IPTV.
그러나, IPTV를 활용한 교육 콘텐츠의 효용성을 높이기 위해서는 피교육자의 능동적 참여가 보장되어야 하며, 이를 위해서는 피교육자의 의사를 교육 주체에게 효율적으로 전달할 수 있는 포인팅 디바이스(Pointing Device)가 보장되어야 한다.However, in order to enhance the effectiveness of the educational content using IPTV, the active participation of the trainees must be ensured, and for this purpose, a pointing device capable of efficiently communicating the intentions of the trainees to the education subjects must be guaranteed.
여기서, 포인팅 디바이스는 디스플레이 위에 특정 위치를 지정하고, 그 위치를 감지하여 입력 신호로 사용할 수 있도록 하는 장치를 말한다. 포인팅 디바이스 중 가장 일반적인 예는 프레젠테이션에 사용하는 레이저 포인터인데, 현재까지의 레이저 포인터는 포인팅된 위치만을 보여줄 뿐 다른 디바이스들과는 달리 입력 장치로는 활용되고 있지 못하는 기술적 한계가 있었다. Here, the pointing device refers to a device that designates a specific position on the display and detects the position to use as an input signal. The most common example of a pointing device is a laser pointer used for a presentation. Until now, a laser pointer shows only a pointed position, and unlike other devices, there is a technical limitation that cannot be used as an input device.
이러한 기술적 한계를 극복하기 위해 광 포인팅 입력이 가능한 디스플레이 장치가 제안되었다. 도 1은 종래 기술에 일예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부상에 형성된 광섬유(optical fiber)의 배치 구조를 나타내는 도면이다.In order to overcome these technical limitations, a display device capable of an optical pointing input has been proposed. 1 is a diagram illustrating an arrangement structure of optical fibers formed on a screen portion of a display device capable of optical pointing input according to an example of the related art.
종래 기술에 따른 광 포인팅 입력이 가능한 디스플레이 장치는, 레이저 포인터로부터의 광입력을 스크린부에서 인식하기 위해서, 도 1에서와 같이 스크린부에 광입력을 인식하고 전달하는 광섬유(optical fiber)를 격자 형태로 배치하여 레이저 포인터가 현재 지시하고 있는 곳의 좌표를 정확히 인식할 수 있도록 구성한다.According to the related art, a display device capable of optical pointing input includes a grating type optical fiber that recognizes and transmits an optical input to a screen unit as shown in FIG. 1 in order to recognize an optical input from a laser pointer on a screen unit. It is configured so that the laser pointer can accurately recognize the coordinates of the current point.
광섬유는 광전달 특성이 우수한 광소자로서, 한쪽 끝에서 빛을 입력하면 다른 쪽 끝단까지 거의 손실 없이 빛을 전달해주므로, 도 1에서와 같이 광섬유를 어레이(Array)형으로 만들면 스크린부에서의 광입력의 위치를 알려주는 센서와 같은 기능을 수행하게 된다.An optical fiber is an optical device having excellent light transmission characteristics, and when light is input from one end, the light is transmitted to the other end with almost no loss. Therefore, when the optical fiber is arrayed as shown in FIG. It performs the same function as the sensor that informs you of the position of.
도 2는 종래 기술의 일예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부상에서 광입력된 위치를 인식하는 원리를 설명하는 도면이다.FIG. 2 is a diagram illustrating a principle of recognizing a light input position on a screen portion of a display device capable of light pointing input according to an example of the related art.
도 2에서처럼 격자형상으로 배치된 광섬유의 수평측면에 구비된 수평 검출소자(Dx1,...,Dxn) 및 수직측면에 구비된 수직 검출소자(Dy1,...,Dyn)는 스크린부상의 특정 지점(P)에 광입력이 있는 경우에 각각 검출소자(Dyp, Dxp)에서 최대값을 갖는 가우시안(Gaussian) 분포의 신호를 검출하게 된다. 이 검출 신호로부터 최대값에 대응하는 교차점(P)의 좌표를 계산할 수 있으며, 이 교차점(P)의 좌표가 레이저 포인트가 지시(포인팅)하고 있는 점의 좌표로 인식될 것이다.As shown in Fig. 2, the horizontal detection elements Dx1, ..., Dxn provided on the horizontal side of the optical fiber arranged in a lattice shape and the vertical detection elements Dy1, ..., Dyn provided on the vertical side are specified on the screen portion. When there is an optical input at the point P, signals of a Gaussian distribution having a maximum value are detected at the detection elements Dyp and Dxp, respectively. The coordinates of the intersection point P corresponding to the maximum value can be calculated from this detection signal, and the coordinates of this intersection point P will be recognized as the coordinates of the point to which the laser point is pointing (pointing).
그러나, 종래 기술에 따른 디스플레이 장치는 대량생산이 어려우며, 제작단가가 비싸고, 광섬유에 빛을 입력시키는 과정에서 발생되는 산란잡음(scattering noise)으로 인하여 동작의 오류가 빈번하게 발생되는 문제점을 가진다.However, the display apparatus according to the related art has a problem in that mass production is difficult, manufacturing costs are high, and operation errors are frequently generated due to scattering noise generated in the process of inputting light into the optical fiber.
아울러, 종래 기술에 따른 디스플레이 장치는 레이저 포인터로부터의 광 신호에 의한 다양한 실행명령을 입력받을 수 없다는 문제점이 있었다. In addition, the display device according to the related art has a problem in that it is not possible to receive various execution commands by an optical signal from a laser pointer.
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 박막형 트랜지스터 및 그 신호 출력부에 연결된 수광 다이오드를 포함한 광 센서를 구성하고, 이러한 광 센서로 구성된 단위 인식 요소가 일정한 배열 규칙에 따라 배치된 스크린부를 구비하여, 레이저 포인터를 통한 다양한 실행명령이 입력될 수 있으며, 특히 삼각측량법을 이용하여 복수의 단위 인식 요소에 발생한 광 입력에 대해서 정확한 광 포인팅 입력이 가능하도록 구성된 광 포인팅 위치 인식이 가능한 디스플레이 장치를 제공함에 있다. SUMMARY OF THE INVENTION An object of the present invention for solving the problems according to the prior art is to configure an optical sensor including a thin film transistor and a light receiving diode connected to the signal output unit, and the unit recognition element constituted by the optical sensor is arranged according to a predetermined arrangement rule. It is equipped with a screen portion, various execution commands can be input through the laser pointer, in particular, it is possible to recognize the optical pointing position configured to enable accurate optical pointing input to the optical input generated in the plurality of unit recognition elements using triangulation method In providing a display device.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 광 센서로 구성된 단위 인식 요소가 일정한 배열 규칙에 따라 배치된 스크린부- 상기 광 센서는 박막형 트랜지스터 및 상기 박막형 트랜지스터의 신호 출력부에 연결된 수광 다이오드를 포함하여 이뤄짐-; 및 상기 스크린부에 외부로부터의 광이 입력되면, 상기 수광 다이오드의 전기 저항값의 변화에 따라 발생되는, 상기 박막형 트랜지스터의 출력 전압 특성 변화를 이용하여 상기 광이 입력된 위치를 인식하는 구동/인식부;를 포함하여 구성되며, 상기 스크린부에 입력된 광이 3개 이상의 단위 인식 요소에 출력 전압 특성 변화를 발생시키는 경우, 상기 구동/인식부는 가장 큰 전압 특성 변화를 출력하는 3개의 단위 인식 요소를 검출하고, 단위 인식 요소의 상기 배열 규칙과 삼각측량법을 이용하여 광이 입력된 위치를 인식하도록 구성된 광 포인팅 입력이 가능한 디스플레이 장치가 개시된다.According to an aspect of the present invention for achieving the above object, a screen unit in which a unit recognition element consisting of an optical sensor is arranged according to a predetermined arrangement rule-the optical sensor is connected to the thin film transistor and the signal output of the thin film transistor Consisting of a light receiving diode; And a driving / recognition for recognizing a position at which the light is input using a change in the output voltage characteristic of the thin film transistor, which is generated when the light from the outside is input to the screen unit, according to a change in the electrical resistance value of the light receiving diode. And a unit, wherein the driving / recognition unit outputs the largest voltage characteristic change when the light input to the screen unit generates output voltage characteristic changes to three or more unit recognition elements. And a display apparatus capable of optical pointing input configured to recognize a position at which light is input using the arrangement rule of the unit recognition element and triangulation.
바람직하게 본 발명은, 상기 단위 인식 요소에 광이 입력되면, 상기 수광 다이오드의 전기 저항값이 낮아지는 것을 특징으로 한다. Preferably, the present invention is characterized in that, when light is input to the unit recognition element, the electrical resistance of the light receiving diode is lowered.
또한, 상기 박막형 트랜지스터는 전도체-절연체-비정질 실리콘으로 구성된 MOS형 전계효과 트랜지스터인 것을 특징으로 한다. The thin film transistor may be a MOS field effect transistor composed of a conductor, an insulator, and an amorphous silicon.
또한, 상기 수광 다이오드는 3족 원소의 불순물이 첨가된 층, 비정질 실리콘층, 및 5족 원소의 불순물이 첨가된 층이 연속적으로 적층된 구조를 갖는 것을 특징으로 한다. In addition, the light-emitting diode has a structure in which a layer to which an impurity of a Group 3 element is added, an amorphous silicon layer, and a layer to which an Impurity of a Group 5 element is added are sequentially stacked.
또한, 상기 외부로부터의 광은 380nm 내지 770nm의 파장을 갖는 것을 특징으로 한다. In addition, the light from the outside is characterized in that it has a wavelength of 380nm to 770nm.
또한 본 발명은, 상기 단위 인식 요소에서 출력되는 전압 신호의 단위 시간당 회수를 카운터하는 카운터부를 더 포함하는 것을 특징으로 한다. The present invention may further include a counter unit for counting the number of times per unit time of the voltage signal output from the unit recognition element.
또한, 상기 외부로부터의 광은 펄스 발생장치에 의해 주파수 변조된 것으로서, 상기 전압 신호의 단위 시간당 회수는 상기 외부로부터의 광의 주파수에 따라 변하는 것을 특징으로 한다.In addition, the light from the outside is frequency-modulated by a pulse generator, the number of times per unit time of the voltage signal is characterized in that it changes according to the frequency of the light from the outside.
바람직하게 본 발명은, 가장 큰 전압 특성 변화를 출력하는 3개의 단위 인식 요소를 검출하며, 각 단위 인식 요소를 중심으로 하는 각각의 가상의 원을 생성하고, 상기 3개의 원의 각 중심점으로부터 최단거리를 이루는 교차점의 위치를 광이 입력된 위치로 인식하도록 구성된 것을 특징으로 한다. Preferably, the present invention detects three unit recognition elements that output the largest voltage characteristic change, generates each virtual circle centered on each unit recognition element, and generates the shortest distance from each center point of the three circles. Characterized in that configured to recognize the position of the intersection forming the light input position.
본 발명에 따르면, 박막형 트랜지스터 및 그 신호 출력부에 연결된 수광 다이오드를 포함한 광 센서를 구성하고, 이러한 광 센서로 구성된 단위 인식 요소가 일정한 배열 규칙에 따라 배치된 스크린부를 구비하여, 레이저 포인터가 현재 지시하고 있는 곳의 좌표를 정확히 인식할 수 있도록 함으로써 디스플레이 장치의 스크린부를 출력도구와 함께 입력도구로 사용할 수 있게 된다. 아울러, 디스플레이 장치의 스크린부를 통해서 레이저 포인터를 통한 다양한 실행명령이 입력될 수 있게 된다. 또한 TFT-LCD 일괄공정을 적용함으로써 저렴하게 대량생산할 수 있으며, 능동형(Active Matrix) 평판디스플레이에 이식될 수 있는 장점을 가진다.According to the present invention, there is provided an optical sensor including a thin film transistor and a light-receiving diode connected to the signal output unit, and the unit pointer comprising the optical sensor is provided with a screen unit arranged according to a certain arrangement rule, so that the laser pointer is currently instructed. By accurately recognizing the coordinates of the location, the screen of the display device can be used as an input tool together with an output tool. In addition, various execution commands through the laser pointer may be input through the screen unit of the display device. In addition, by applying the TFT-LCD batch process, it can be mass-produced at low cost and has the advantage of being implanted in an active matrix flat panel display.
본 발명은 특히 삼각측량법을 이용하여 복수의 단위 인식 요소에 발생한 광 입력에 대해서 정확한 광 포인팅 입력이 가능하도록 구성되므로, 레이저 포인터의 광 주사영역과 광 센서의 배열 규칙(간격 및 개수)을 적절하게 조절하여, 광 센서의 배치 개수를 최소화함으로써 제품의 생산 및 경제성 측면에서 더욱 향상된 효과를 제공한다. In particular, the present invention is configured to enable accurate optical pointing input to optical input generated in a plurality of unit recognition elements by using triangulation, so that the arrangement rule (interval and number) of the optical scanning area of the laser pointer and the optical sensor can be properly adjusted. By adjusting, the number of arrangements of the optical sensors can be minimized, thereby providing a further improved effect on production and economics of the product.
도 1은 종래 기술의 일예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부상에 형성된 광섬유(optical fiber)의 배치 구조를 나타내는 도면,1 is a view illustrating an arrangement structure of optical fibers formed on a screen portion of a display device capable of optical pointing input according to an example of the prior art;
도 2는 종래 기술의 일예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부상에서 광입력된 위치를 인식하는 원리를 설명하는 도면, 2 is a view for explaining a principle of recognizing a light input position on a screen portion of a display device capable of optical pointing input according to an example of the prior art;
도 3은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부의 평면 구조도,3 is a plan view showing a screen portion of a display device capable of optical pointing input according to an embodiment of the present invention;
도 4는 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부상에 광신호가 인가되는 경우의 동작 원리를 설명하는 도면,4 is a view for explaining an operation principle when an optical signal is applied on the screen of the display device capable of optical pointing input according to an embodiment of the present invention;
도 5a, 및 도 5b는 본 발명의 일실시예에 따른 스크린부에서의 단위 인식 요소의 수직절단면을 나타내는 도면,5a and 5b are views showing a vertical cut surface of the unit recognition element in the screen unit according to an embodiment of the present invention,
도 6은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치로의 광신호의 입력에 사용되는 레이저 포인터 장치의 기능 블록도, 6 is a functional block diagram of a laser pointer device used for input of an optical signal to a display device capable of optical pointing input according to an embodiment of the present invention;
도 7은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치에서의 광신호의 입력에 따른 동작을 설명하는 도면, 7 is a view for explaining an operation according to an input of an optical signal in a display device capable of an optical pointing input according to an embodiment of the present invention;
도 8은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치에 이용되는 삼각측량법의 개념을 설명하기 위한 도면,8 is a view for explaining the concept of the triangulation method used in the display device capable of optical pointing input according to an embodiment of the present invention;
도 9는 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치를 개념적으로 나타낸 단면도이다.9 is a cross-sectional view conceptually illustrating a display device capable of an optical pointing input according to an embodiment of the present invention.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안 된다.The present invention can be embodied in many other forms without departing from the spirit or main features thereof. Therefore, the embodiments of the present invention are merely examples in all respects and should not be interpreted limitedly.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise", "comprise", "have", and the like are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification. Or other features or numbers, steps, operations, components, parts or combinations thereof in any way should not be excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals regardless of the reference numerals and redundant description thereof will be omitted. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 3은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부의 평면 구조도이다.3 is a plan view illustrating a screen portion of a display device capable of optical pointing input according to an embodiment of the present invention.
도 3을 참조하면, 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 스크린부는 박막형 트랜지스터(TFT)의 'on/off'를 제어하는 전압이 입력되는 게이트 전극(21), 데이터 전극(22), 및 박막형 트랜지스터의 구동 및 광입력의 인식을 수행하는 구동/인식부(10)로 구성된다. 한편, 본 발명을 실시함에 있어서, TFT는 전도체-절연체-비정질 실리콘으로 구성된 MOS형 전계효과 트랜지스터인 것이 바람직하다. Referring to FIG. 3, the screen unit of the display device capable of optical pointing input according to the present invention may include a gate electrode 21, a data electrode 22, and a voltage for controlling 'on / off' of a thin film transistor TFT. And a drive / recognition unit 10 which drives the thin film transistor and recognizes the light input. On the other hand, in practicing the present invention, it is preferable that the TFT is a MOS type field effect transistor composed of a conductor-insulator-amorphous silicon.
게이트 전극(21)과 데이터 전극(22)이 교차하는 지점에는 단위 인식 요소(20)가 존재하며, 단위 인식 요소(20)를 통하여 국소적인 영역에의 광신호의 입력이 전기신호로 전환된다. The unit recognition element 20 exists at the point where the gate electrode 21 and the data electrode 22 intersect, and the input of the optical signal to the local area is converted into an electrical signal through the unit recognition element 20.
구체적으로, 단위 인식 요소(20)는 각각 1개의 게이트 전극(21)과 이중으로 구성된 1개의 데이터 전극(22)으로 구성된다. 데이터 전극(22)은 TFT와 수광 다이오드에 모두 적용되는 데이터 전극(22)으로서, 제1 데이터 전극(201), 제2 데이터 전극(202), 및 제3 데이터 전극(203)으로 이루어져 있다. Specifically, the unit recognition element 20 is composed of one gate electrode 21 and one data electrode 22 formed in duplicate. The data electrode 22 is a data electrode 22 applied to both a TFT and a light receiving diode, and is composed of a first data electrode 201, a second data electrode 202, and a third data electrode 203.
제1 데이터 전극(201)은 TFT의 데이터 신호 입력부 전극이고, 제2 데이터 전극(202)은 TFT의 데이터 신호 출력부 전극임과 동시에 수광 다이오드의 신호 입력부 전극이며, 제3 데이터 전극(203)은 수광 다이오드의 신호 출력부 전극에 해당한다.The first data electrode 201 is a data signal input electrode of a TFT, the second data electrode 202 is a data signal output electrode of a TFT and at the same time a signal input electrode of a light receiving diode, and the third data electrode 203 is Corresponds to the signal output electrode of the light-receiving diode.
즉, 제2 데이터 전극(202)이 TFT의 데이터 신호 출력부의 전극 겸 수광 다이오드의 신호 입력부 전극의 기능을 수행함으로써, 외부로부터의 광입력에 의해 수광 다이오드의 전기 저항값이 변화되면 TFT에 의해 출력되는 전압의 특성이 변화되게 된다. That is, the second data electrode 202 performs the function of the electrode of the data signal output part of the TFT and the signal input part electrode of the light receiving diode, thereby outputting by the TFT when the electric resistance value of the light receiving diode is changed by light input from the outside. The characteristics of the voltage to be changed.
구체적으로, 구동/인식부(10)로부터의 게이트 신호와 데이터 신호가 특정영역의 단위 인식 요소(20)의 TFT에 입력되면, 해당 TFT는 'on' 상태가 되어 데이터 신호 입력부 전극인 제1 데이터 전극(201)과 데이터 신호 출력부 전극 겸 수광 다이오드의 신호 입력부 전극인 제2 데이터 전극(202)에 전류가 흐르게 된다. Specifically, when the gate signal and the data signal from the driving / recognition unit 10 are input to the TFT of the unit recognition element 20 of the specific region, the TFT is turned on and thus the first data which is the data signal input electrode. Current flows through the electrode 201 and the second data electrode 202, which is a signal input electrode of the data signal output electrode and the light receiving diode.
이러한 상태에서 특정 영역의 단위 인식 요소(20)에 광신호가 인가되면, 수광 다이오드의 전기적인 저항값은 낮아지게 되고, 그 결과 제2 데이터 전극(202)과 제3 데이터 전극(203) 사이에는 전류가 흐르게 된다. 반면에 광신호가 인가되지 않는다면, 제2 데이터 전극(202)과 제3 데이터 전극(203) 사이는 저항값이 높아져 전기적으로 개방되게 된다. In this state, when an optical signal is applied to the unit recognition element 20 of a specific region, the electrical resistance of the light receiving diode is lowered, and as a result, a current is generated between the second data electrode 202 and the third data electrode 203. Will flow. On the other hand, if the optical signal is not applied, the resistance value between the second data electrode 202 and the third data electrode 203 is increased to be electrically opened.
이하에서는, 도 4를 참조하여 단위 인식 요소(20)에 광신호가 인가되는 경우의 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치의 동작 원리에 대해 설명하기로 한다.Hereinafter, referring to FIG. 4, an operation principle of a display device capable of optical pointing input according to the present invention when an optical signal is applied to the unit recognition element 20 will be described.
레이저 포인터(40)에서 발사된 빛이 TFT와 수광 다이오드로 구성된 단위 인식 요소(20)가 격자형으로 배치된 스크린부(70)에 조사되면, 전술한 바와 같이 광신호가 인가된 영역의 단위 인식 요소(20)를 구성하는 수광 다이오드의 저항값이 감소한다. When the light emitted from the laser pointer 40 is irradiated to the screen unit 70 in which the unit recognition element 20 composed of the TFT and the light receiving diode is arranged in a lattice form, the unit recognition element in the region to which the optical signal is applied as described above The resistance value of the light receiving diode constituting (20) decreases.
구체적으로, 스크린부(70)의 단위 인식 요소(20)를 구성하는 수광 다이오드 층은 3족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 p형 반도체층(36), 비정질 실리콘(a-Si)으로 이루어진 진성 반도체층, 및 5족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 n형 반도체층으로 구성되어 있으며, 단위 인식 요소(20)에 인가되는 광신호의 유무에 따라서 발생되는 전하의 양이 달라진다. Specifically, the light emitting diode layer constituting the unit recognition element 20 of the screen unit 70 may include a p-type semiconductor layer 36 made of amorphous silicon (a-Si) to which impurities of group 3 elements are added, and an amorphous silicon ( an intrinsic semiconductor layer made of a-Si) and an n-type semiconductor layer made of amorphous silicon (a-Si) to which impurity of a Group 5 element is added, and whether or not an optical signal is applied to the unit recognition element 20. Depending on the amount of charge generated.
즉, 단위 인식 요소(20)에 인가되는 광신호의 유/무에 따른 TFT의 동작상태를 나타내는 동작 상태도(25)를 통해 확인할 수 있듯이, 광신호의 인가가 있는(Light-On) 단위 인식 요소(20)의 수광 다이오드 층에는 전하의 양이 많아져 저항값이 감소하게 되고, 광신호의 인가가 없는(Light-Off) 단위 인식 요소(20)의 수광 다이오드 층에는 전하의 양이 적어 저항값이 증가하게 된다. That is, as can be seen through the operation state diagram 25 showing the operation state of the TFT according to the presence / absence of the optical signal applied to the unit recognition element 20, the unit recognition with the light signal (Light-On) The light-emitting diode layer of the element 20 increases the amount of charge, thereby reducing the resistance value, and the light-off diode layer of the light-off unit recognition element 20 has a low amount of charge. The value will increase.
이 경우에 구동/인식부(10)에서 게이트 신호와 데이터 신호를 발진하여 단위 인식 요소의 TFT를 구동시키면, 전압 상태도(27)에서 확인되는 바와 같이 광신호의 인가 유/무에 따라 전압의 출력 파형이 달라지게 된다.In this case, when the driving / recognition unit 10 oscillates the gate signal and the data signal to drive the TFT of the unit recognition element, as shown in the voltage state diagram 27, the voltage is changed depending on whether the optical signal is applied or not. The output waveform will be different.
즉, 광신호의 인가가 있는 단위 인식 요소(20)에는 수광 다이오드 층의 전기 저항값이 감소하여 TFT의 출력 전압의 파형은 높게 나타나지만, 광신호의 인가가 없는 단위 인식 요소(20)에는 수광 다이오드 층의 저항값이 증가하여 TFT의 출력 전압의 파형은 낮게 나타난다. 그 결과, 단위 인식 요소(20)에서의 TFT의 출력 전압의 높낮이 변화를 통해 단위 인식 요소(20)에서의 광신호의 입력 유무를 확인할 수 있게 된다.That is, the electric resistance value of the light-receiving diode layer decreases in the unit recognition element 20 to which the optical signal is applied, so that the waveform of the output voltage of the TFT appears high, but the light-receiving diode is applied to the unit recognition element 20 to which the optical signal is not applied. The resistance value of the layer increases, so that the waveform of the output voltage of the TFT appears low. As a result, the presence or absence of the input of the optical signal in the unit recognition element 20 can be confirmed by changing the height of the output voltage of the TFT in the unit recognition element 20.
도 8은 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치에 이용되는 삼각측량법의 개념을 설명하기 위한 도면이다.8 is a view for explaining the concept of the triangulation method used in the display device capable of optical pointing input according to an embodiment of the present invention.
본 실시예의 광 포인팅 입력이 가능한 디스플레이 장치에는 단위 인식 요소를 구성하는 광 센서를 배치하게 되며, 단위 인식 요소의 배열은 밀집 격자형, 격자형, 사선 격자형, 임의 배치형 등을 사용할 수 있으며, 그 배열 규칙(간격 및 개수)은 해상도와 경제성에 따른다. In the display device capable of optical pointing input according to the present embodiment, an optical sensor constituting a unit recognition element is disposed, and the arrangement of the unit recognition elements may be a dense lattice, a lattice, an oblique lattice, an arbitrary arrangement, or the like. The arrangement rule (interval and number) depends on resolution and economy.
배열 규칙이 정해지고, 예를 들어, 임의 공간에 광 센서 P1, P2, P3가 배치되는 경우에, 넓은 주사영역을 가지는 레이저 입력을 주사하면, 가장 입력치(박막형 트랜지스터의 출력 전압 특성 변화)가 높은 3개의 광 센서 P1, P2, P3이 검출되고, 각각의 P1, P2, P3는 빛의 세기에 따른 입력 강도를 가지게 된다. When the arrangement rule is determined and, for example, the optical sensors P1, P2, and P3 are arranged in an arbitrary space, when the laser input having a wide scan area is scanned, the input value (change in output voltage characteristic of the thin film transistor) is Three high optical sensors P1, P2, P3 are detected, and each of P1, P2, P3 has an input intensity according to the intensity of light.
P1, P2, P3의 위치는 미리 정해진 광 센서의 배열 규칙(간격 및 개수)에 의해 파악될 수 있으며, 상기 입력 강도에 따라 P1, P2, P3을 중심으로 하는 각각의 가상의 원을 도 8과 같이 만들 수 있다. 상기 3개의 원의 각 중심점으로부터 최단거리를 이루는 교차점의 위치를 삼각측량법을 이용하여 계산할 수 있다. 이렇게 계산된 교차점을 입력 좌표로 간주하게 된다. 도 8과 같이 3개의 원이 하나의 교차점에서 만나는 예의 경우, 3개의 원이 겹치는 B 점이 교차점이 된다. The positions of P1, P2, and P3 can be determined by a predetermined arrangement rule (interval and number) of the optical sensor, and each imaginary circle centering on P1, P2, and P3 is shown in FIG. 8 according to the input intensity. You can make it together. The position of the intersection which forms the shortest distance from each center point of the three circles can be calculated using triangulation. The intersection thus calculated is regarded as the input coordinate. In the example where three circles meet at one intersection as shown in FIG. 8, the point B at which the three circles overlap is an intersection.
삼각측량법은 삼각법을 응용하여 각 지점 간의 위치를 정확히 결정하는 방법으로서, 도 8을 예로 들면, 삼각형의 한 변(도 8의 P1-P2선, 기선)을 정확히 측정하여 정하고, 상기 기선의 양쪽 끝에서 서로 연결시켜 만나는 점(도 8의 B점)을 정하여, 기선의 양쪽 끝과 삼각점이 이루는 각을 측정하는 방식으로 교차점(도 8의 B점)의 위치를 구할 수 있다. Triangulation method is a method of accurately determining the position between each point by applying a triangulation method, taking the example of Figure 8, by accurately measuring one side of the triangle (P1-P2 line, the base line in Figure 8), and determines both ends of the base line In FIG. 8, the positions of the intersection points (B points in FIG. 8) may be obtained by determining the points (B points in FIG. 8) connected to each other to measure the angles formed by both ends of the base line and the triangular points.
한편, 본 발명을 실시함에 있어서는 스크린부(70)는 특정 단위 인식 요소(20)로의 광신호의 입력 유무를 확인할 뿐만 아니라, 입력되는 광신호의 주파수에 따라 광신호의 종류를 구분하여 인식할 수도 있으며, 이러한 경우에 본 발명에 따른 디스플레이 장치는 광신호의 종류에 따라 각각 다른 동작을 수행할 수도 있다. Meanwhile, in the embodiment of the present invention, the screen unit 70 may not only check whether the optical signal is input to the specific unit recognition element 20, but also classify the optical signal according to the frequency of the input optical signal. In this case, the display apparatus according to the present invention may perform different operations according to the type of the optical signal.
이를 위해, 본 발명을 실시함에 있어서 레이저 포인터(40)는 출력되는 광신호의 파형을 소정의 주파수 범위(예를 들면, 1~60Hz 범위)내에서 제어할 수 있도록 제작됨이 바람직하며, 예를 들어, 레이저 포인터(40)에 구비된 왼쪽 버튼을 클릭하는 경우에는 10Hz의 광신호가 출력되고, 오른쪽 버튼을 클릭하는 경우에는 6Hz의 광신호가 출력되고, 스크롤 휠을 돌리는 경우에는 30Hz의 광신호가 출력되도록 할 수 있다.To this end, in the practice of the present invention, the laser pointer 40 is preferably manufactured to control the waveform of the output optical signal within a predetermined frequency range (for example, 1 ~ 60Hz range), for example For example, when the left button provided on the laser pointer 40 is clicked, an optical signal of 10 Hz is output, when the right button is clicked, an optical signal of 6 Hz is output, and when the scroll wheel is turned, an optical signal of 30 Hz is output. can do.
다시, 도 4를 참조하면, 레이저 포인터(40)에서 출력된 특정 주파수를 가지는 광신호는 스크린부(70)의 단위 인식 요소(20)에 인가되어 전압 상태도(27)에서의 전압 신호를 발생시키며, 발생된 전압 신호는 카운터부(50)에 입력된다.Referring again to FIG. 4, an optical signal having a specific frequency output from the laser pointer 40 is applied to the unit recognition element 20 of the screen unit 70 to generate a voltage signal in the voltage state diagram 27. The generated voltage signal is input to the counter unit 50.
한편, 카운터부(50)는 단위 인식 요소(20)에서 출력되는 전압 신호의 단위 시간당 회수를 카운터함으로써, 전압 신호의 주파수에 따라 왼쪽 버튼 클릭(10Hz), 오른쪽 버튼 클릭(6Hz), 스크롤 휠(30Hz)로 구분하여 인식한다.On the other hand, the counter unit 50 counters the number of times of the voltage signal output from the unit recognition element 20 per unit time, so that the left button click (10 Hz), right button click (6 Hz), scroll wheel ( 30Hz).
이와 같이 특정 단위 인식 요소(20)에 인가된 광신호의 주파수를 구분하여 인식함으로써, 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치는 입력된 주파수에 따라 각각 다른 동작을 구분하여 수행할 수 있게 된다. By distinguishing and recognizing the frequencies of the optical signals applied to the specific unit recognition element 20 as described above, the display device capable of optical pointing input according to the present invention can perform different operations according to the input frequencies. .
도 5a, 및 도 5b는 본 발명에 따른 스크린부에서의 단위 인식 요소의 수직절단면을 나타내는 도면이다. 도 5a에서는 기본적인 공정에 의한 구조의 예를 도시하였고, 도 5b에서는 광식각 마스크의 수를 줄일 수 있는 공정에 의한 구조를 도시하였다.5A and 5B are views showing a vertical cut plane of the unit recognition element in the screen unit according to the present invention. 5A illustrates an example of a structure by a basic process, and FIG. 5B illustrates a structure by a process capable of reducing the number of photoetch masks.
도 5a를 참조하면, 기본적인 공정에 의한 스크린부(70)의 제작 공정에 있어서, 유리기판(30) 위에 금속을 증착시킨 후 패턴을 식각함으로써 게이트 전극(310)과 수광 다이오드의 광 차단막(311)을 만든다. Referring to FIG. 5A, in the manufacturing process of the screen unit 70 according to a basic process, a metal is deposited on the glass substrate 30 and then the pattern is etched to etch the light blocking film 311 of the gate electrode 310 and the light receiving diode. Make
그 후에 연속공정을 통하여 절연막(32), 비정질 실리콘(a-Si)으로 이루어진 진성 반도체층(33), 5족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 n형 반도체 층(34,35)가 연속적으로 증착되고, 액티브 층의 패턴이 식각된다. After that, through the continuous process, the insulating film 32, the intrinsic semiconductor layer 33 made of amorphous silicon (a-Si), and the n-type semiconductor layer 34 made of amorphous silicon (a-Si) to which impurities of the Group 5 element were added. 35 is deposited successively, and the pattern of the active layer is etched.
그 다음, 제1 데이터 전극(201) 및 제2 데이터 전극(202)이 증착된 후 패턴이 식각되며, 5족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 n형 반도체 층(34,35)을 에치 백(etch back)한 후, 3족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 p형 반도체층(36)을 쌓는다.Next, the pattern is etched after the first data electrode 201 and the second data electrode 202 are deposited, and the n-type semiconductor layer 34 made of amorphous silicon (a-Si) to which impurities of group 5 elements are added. And 35, the p-type semiconductor layer 36 made of amorphous silicon (a-Si) to which the impurities of the group 3 element are added is stacked.
그 다음, 수광 다이오드의 데이터 전극(제3 데이터 전극:203)을 증착하고, 패턴 식각을 한 뒤 패시베이션(SiNx) 층(38)을 증착한다. 그 다음, TFT의 광차단막(37)을 위한 금속 박막층을 쌓은 뒤 패턴 식각을 하고, 최종 패시베이션(SiNx) 층(39)을 증착한다.Next, the data electrode (third data electrode) 203 of the light-receiving diode is deposited, the pattern is etched, and the passivation (SiNx) layer 38 is deposited. Next, a metal thin film layer for the light blocking film 37 of the TFT is stacked, followed by pattern etching, and a final passivation (SiNx) layer 39 is deposited.
도 5b를 참조하면, 광식각 마스크의 수를 줄일 수 있는 공정에 의한 스크린부(70)의 제작 공정에 있어서, 유리기판(30) 위에 전도체로 구성된 게이트 전극(310)과 수광 다이오드의 광 차단막(311)을 증착한 후, 식각 공정에 의한 게이트 전극 패턴을 형성(Mask 1)한다. Referring to FIG. 5B, in the manufacturing process of the screen unit 70 by reducing the number of photoetch masks, the gate electrode 310 made of a conductor on the glass substrate 30 and the light blocking film of the light receiving diode ( 311), a gate electrode pattern formed by an etching process is formed (Mask 1).
그리고, 절연막(32), 비정질 실리콘(a-Si)으로 이루어진 진성 반도체층(330), 5족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 n형 반도체 층(34,350)을 연속적으로 증착한 후, 식각 공정에 의한 액티브 패턴을 형성(Mask 2)한다.Then, the insulating film 32, the intrinsic semiconductor layer 330 made of amorphous silicon (a-Si), and the n-type semiconductor layers 34 and 350 made of amorphous silicon (a-Si) to which impurities of the Group 5 element are added are successively. After deposition, an active pattern is formed by an etching process (Mask 2).
그 다음, 전도체로 구성된 데이터 전극인 제1 데이터 전극(201) 및 제2 데이터 전극(202)을 증착한 후에 식각 공정에 의한 제1 데이터 패턴을 형성(Mask 3)한다. Next, after depositing the first data electrode 201 and the second data electrode 202, which are data electrodes composed of a conductor, a first data pattern is formed by an etching process (Mask 3).
그 다음, 제1 데이터 전극(201) 및 제2 데이터 전극(202) 사이의 n형 불순물이 첨가된 비정질 실리콘으로 구성된 막의 식각 공정을 하여 채널의 동작특성을 확보한 후, 3족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 p형 반도체층(36)ㆍ비정질 실리콘(a-Si)으로 이루어진 진성 반도체층(331)ㆍ5족 원소의 불순물이 첨가된 비정질 실리콘(a-Si)으로 이루어진 n형 반도체 층(351)으로 구성된 3중막을 연속적으로 증착한다. Subsequently, an etching process of a film made of amorphous silicon to which n-type impurities are added between the first data electrode 201 and the second data electrode 202 is performed to secure operating characteristics of the channel. P-type semiconductor layer 36 made of added amorphous silicon (a-Si), intrinsic semiconductor layer 331 made of amorphous silicon (a-Si), amorphous silicon (a-Si) to which impurities of group 5 elements are added A triple film composed of an n-type semiconductor layer 351 is continuously deposited.
그 결과, 본 발명에서의 수광 다이오드는 3족 원소의 불순물이 첨가된 층, 비정질 실리콘층, 및 5족 원소의 불순물이 첨가된 층이 연속적으로 적층된 구조를 구비하게 된다.As a result, the light-emitting diode according to the present invention has a structure in which a layer to which an impurity of a group 3 element is added, an amorphous silicon layer, and a layer to which an impurity of a Group 5 element are added are sequentially stacked.
그리고, 식각 공정을 통해 수광 다이오드의 신호출력을 위한 수광 다이오드 패턴을 형성(Mask 4)한 다음, 전도체로 구성된 제3 데이터 전극(203)과 TFT의 광차단막(37)을 위한 금속 박막을 증착한 후에, 식각 공정에 의한 제2 데이터 패턴을 형성(Mask 5)한다. 그 다음, 패시베이션(SiNx) 층(38)을 증착함으로써 공정을 마무리 한다.Then, a photosensitive diode pattern for signal output of the photodiode is formed through an etching process (Mask 4), and then a metal thin film for the third data electrode 203 composed of a conductor and the light blocking layer 37 of the TFT is deposited. Thereafter, a second data pattern formed by an etching process is formed (Mask 5). The process is then completed by depositing a passivation (SiNx) layer 38.
도 6은 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치로의 광신호의 입력에 사용되는 레이저 포인터 장치의 기능 블록도이다. 도 6을 참조하면, 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치는 펄스 발생장치(41), 광 절단기(42), 및 광원(45)을 포함한다.6 is a functional block diagram of a laser pointer device used for input of an optical signal to a display device capable of optical pointing input according to the present invention. Referring to FIG. 6, a display device capable of an optical pointing input according to the present invention includes a pulse generator 41, an optical cutter 42, and a light source 45.
레이저 포인터(40)의 광원(45)에서 발생한 주파수 변조 전의 광신호(43)는 연속적인 빔 형태로서 펄스 발생장치(41)에 전송된다. 펄스 발생장치(41)가 소정 범위의 주파수를 가지는 전기신호를 광 절단기(42)에 전달하면, 광 절단기(42)는 광원(45)으로부터의 연속적인 형태의 빔을 펄스 발생장치(41)의 주파수와 동일한 크기의 주파수를 갖는 펄스로 전환시킨다. 본 발명을 실시함에 있어서, 광 절단기(42)는 액정 셀로 만들어진 광 스위치가 될 수 있다.The optical signal 43 before the frequency modulation generated by the light source 45 of the laser pointer 40 is transmitted to the pulse generator 41 in the form of a continuous beam. When the pulse generator 41 transmits an electric signal having a predetermined range of frequencies to the optical cutter 42, the optical cutter 42 emits a continuous beam of light from the light source 45 of the pulse generator 41. The pulse is converted into a pulse having a frequency equal to the frequency. In practicing the present invention, the optical cutter 42 may be an optical switch made of a liquid crystal cell.
또한, 본 발명을 실시함에 있어서는, 펄스 발생장치(41)로부터 본 발명에 따른 디스플레이 장치의 스크린부에 인가되는 광신호는 380nm 내지 770nm의 파장을 갖도록 하는 것이 바람직하다. 즉, 눈에 인식되는 가시광선의 파장범위는 일반적으로 380nm 내지 770nm이내의 범위에 해당하므로, 포인팅하는 지점이 사용자에게 인식되기 위해서는 가시광선 영역인 380nm 내지 770nm이내의 파장 범위를 가지는 것이 바람직한 것이다.In addition, in the practice of the present invention, it is preferable that the optical signal applied from the pulse generator 41 to the screen portion of the display device according to the present invention has a wavelength of 380 nm to 770 nm. That is, since the wavelength range of visible light recognized by the eye generally corresponds to a range of 380 nm to 770 nm, it is preferable to have a wavelength range of 380 nm to 770 nm, which is a visible light region, in order for the point to be recognized by the user.
도 7은 본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치에서의 광신호의 입력에 따른 동작을 설명하는 도면이다. 도 7에서의 광 포인팅 입력이 가능한 디스플레이 장치에서의 광신호의 입력에 따른 동작을 설명함에 있어서는, XGA(1024×768) 해상도를 60Hz로 구동하는 경우를 예로 든다. 7 is a view illustrating an operation according to an input of an optical signal in a display device capable of an optical pointing input according to the present invention. In describing the operation according to the input of the optical signal in the display apparatus capable of the optical pointing input in FIG. 7, the case of driving the XGA (1024 × 768) resolution at 60 Hz is taken as an example.
본 발명에 따른 광 포인팅 입력이 가능한 디스플레이 장치에 구비된 구동/인식부(10)의 타이밍 콘트롤러(53)는 TFT-LCD와 같은 평면 디스플레이의 타이밍을 맞추어주는 클럭신호(501)를 발생시켜 준다. 클럭신호(501)는 게이트 구동 IC(51), 데이터 구동 IC(52), 카운터부(50), 프로세서(54)에 전달되어 전체적인 신호처리를 위한 시간 기준이 된다.The timing controller 53 of the driving / recognition unit 10 included in the display device capable of optical pointing input according to the present invention generates a clock signal 501 for timing a flat panel display such as a TFT-LCD. The clock signal 501 is transmitted to the gate driving IC 51, the data driving IC 52, the counter 50, and the processor 54 to serve as a time reference for the overall signal processing.
한편, 타이밍 콘트롤러(53)에서 클럭신호에 동기되어 발생된 게이트 신호는 게이트 구동 IC(51)에서 TFT의 게이트 인가전압으로 전환된다. 이러한 게이트 전압신호(511)는 해당되는 행의 게이트 전극과 카운터부(50)로 전달된다. 그러므로 60Hz구동의 경우 1프레임(frame)동안 카운터부(50)에 768번의 게이트 신호가 순차적으로 인가된다. 프레임과 프레임 사이를 구분하는 신호는 타이밍 콘트롤러(53)에서 발생된다.On the other hand, the gate signal generated in synchronization with the clock signal in the timing controller 53 is switched to the gate applied voltage of the TFT in the gate driver IC 51. The gate voltage signal 511 is transmitted to the gate electrode and the counter unit 50 in the corresponding row. Therefore, in the case of 60 Hz driving, 768 gate signals are sequentially applied to the counter unit 50 during one frame. The signal separating the frame from the frame is generated by the timing controller 53.
타이밍 콘트롤러(53)에서 클럭신호에 동기되어 발생된 데이터 신호는 데이터 구동 IC(52)에서 TFT의 데이터 인가압으로 전환된다. 이러한 데이터 전압신호(521)는 해당되는 열의 데이터전극과 카운터부(50)로 전달된다. 그러므로 60Hz 구동의 경우 768번의 게이트 신호가 순차적으로 인가되는데, 1번의 게이트 신호가 인가될 때 카운터부(50)에는 1024번 데이터신호가 순차적으로 인가된다.The data signal generated in synchronization with the clock signal in the timing controller 53 is switched to the data application pressure of the TFT in the data driver IC 52. The data voltage signal 521 is transmitted to the data electrode of the corresponding column and the counter unit 50. Therefore, in the case of 60Hz driving, 768 gate signals are sequentially applied, and when 1024 gate signals are applied, the 1024 data signals are sequentially applied to the counter unit 50.
스크린에서 출력되는 화소의 신호(531)는 카운터부(50)로 입력된다. 그러므로 카운터에는 화소의 신호(531)을 포함하여 클럭신호(501), 게이트 드라이브 구동신호(511), 데이터 드라이브 구동신호(521)가 함께 입력된다. 카운터에서는 입력된 신호는 프레임을 구분하는 클럭신호(501), 행과 행 사이를 구분하는 게이트신호(511), 데이터 신호(521)와 화소의 신호(531)의 'AND' 연산을 수행한 광입력 데이터신호로 구성된 전처리 신호(532)로 전환된다.The signal 531 of the pixel output from the screen is input to the counter unit 50. Therefore, the clock signal 501, the gate drive driving signal 511, and the data drive driving signal 521 are input to the counter together with the pixel signal 531. In the counter, the input signal is a clock signal 501 for dividing a frame, a gate signal 511 for dividing a row from a row, an optical signal by performing an AND operation of the data signal 521 and a signal 531 of a pixel. The preprocessing signal 532 composed of the input data signal is switched.
한편, 전처리 신호(532)는 프로세서(54)로 전달되어 디스플레이에서 출력으로 처리될 수 있는 신호(55)인 LVDS(Low Voltage Differential Signaling)나 RSDS(Reduced Swing Differential Signaling) 등으로 전환된다.On the other hand, the preprocessing signal 532 is converted to Low Voltage Differential Signaling (LVDS), Reduced Swing Differential Signaling (RSDS), or the like, which is a signal 55 that is transmitted to the processor 54 and can be processed as an output in a display.
참고로, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 자명하게 알려져 있듯이, 액티브 매트릭스(Active Matrix) 디스플레이 구동을 위해서 기본적으로 필요한 신호는 프레임과 프레임을 구분해주는 신호인 클럭신호, 1 프레임 동안의 게이트 신호, 및 게이트 신호가 인가되는 동안 각각의 행에 해당하는 모든 열과 관련된 데이터 신호이다.For reference, as is well known to those skilled in the art, a signal basically required for driving an active matrix display is a clock signal, which is a signal that distinguishes a frame from a frame, and one frame. Is a data signal associated with all columns corresponding to each row while the gate signal is applied.
여기서, 일반적인 디스플레이 장치에서는 데이터 신호의 전압크기를 이용하여 명암을 표현하는데, 본 발명에서는 외부에서 입력된 광신호가 On/Off형태의 데이터 신호로 전환되는 것이다. 그러므로, 본 발명에 따른 디스플레이 장치는 일반적으로 사용되고 있는 디스플레이 구동신호체계와 완전하게 동일한 표준을 따르고 있는 것이다. Here, the general display device expresses the contrast using the voltage size of the data signal. In the present invention, the optical signal input from the outside is converted into an on / off data signal. Therefore, the display device according to the present invention follows the exact same standard as the display driving signal system which is generally used.
도 9는 본 발명의 일실시예에 따른 광 포인팅 입력이 가능한 디스플레이 장치를 개념적으로 나타낸 단면도이다.9 is a cross-sectional view conceptually illustrating a display device capable of an optical pointing input according to an embodiment of the present invention.
본 실시예의 스크린부가 일반적인 TFT-LCD 디스플레이 장치에 설치되는 상태를 예시 설명한다. The state in which the screen portion of this embodiment is installed in a general TFT-LCD display device will be described by way of example.
도 9에 도시된 바와 같이, LCD 패널(LP)은 제1기판(4000)과 제2기판(2000) 및 상기 제1기판(4000)과 제2기판(2000) 사이에 형성된 액정층(1000)으로 구성된다. 제1기판(4000)은 구동소자인 박막형 트랜지스터(Thin Film Transistor, TFT) 어레이(Array)기판이다. 도면에는 도시하지 않았지만, 상기 제1기판(4000)에는 복수의 화소가 예를 들어 격자 배열로 형성되어 있으며, 각각의 화소에는 TFT와 같은 구동소자가 형성된다. 제2기판(2000)은 컬러 필터(Color Filter)기판으로서, 실제 컬러를 구현하기 위한 컬러 필터층이 형성되어 있다. 또한, 상기 제1기판(4000) 및 제2기판(2000)에는 각각 화소 전극 및 공통 전극이 형성되어 있으며 액정층(1000)의 액정분자를 배향하기 위한 배향막이 도포되어 있다.As shown in FIG. 9, the LCD panel LP includes a liquid crystal layer 1000 formed between the first substrate 4000 and the second substrate 2000 and between the first substrate 4000 and the second substrate 2000. It consists of. The first substrate 4000 is a thin film transistor (TFT) array substrate which is a driving element. Although not shown in the drawing, a plurality of pixels are formed in the first substrate 4000 in a lattice arrangement, for example, and a driving element such as a TFT is formed in each pixel. The second substrate 2000 is a color filter substrate, and a color filter layer for real color is formed. In addition, a pixel electrode and a common electrode are formed on the first substrate 4000 and the second substrate 2000, respectively, and an alignment layer for aligning liquid crystal molecules of the liquid crystal layer 1000 is coated.
상기 제1기판(4000) 및 제2기판(2000)은 실링재(Sealing Material, 3000)에 의해 합착되어 있으며, 그 사이에 액정층(1000)이 형성되어 상기 제1기판(4000)에 형성된 TFT에 의해 액정분자를 구동하여 액정층을 투과하는 광량을 제어함으로써 정보를 표시하게 된다.The first substrate 4000 and the second substrate 2000 are bonded by a sealing material 3000, and a liquid crystal layer 1000 is formed therebetween to form a TFT formed on the first substrate 4000. By driving the liquid crystal molecules by controlling the amount of light passing through the liquid crystal layer, information is displayed.
본 실시예의 스크린부(70)는 예를 들어, 제1기판(4000)과 액정층(1000)의 사이에 형성될 수 있다. 스크린부(70)의 단위 인식 요소의 배열은 제1기판(4000)의 TFT 어레이와 동일하게 이뤄질 수도 있고, 격자 구조를 취하되 제1기판(4000)의 TFT 어레이보다 더 적은 개수의 광 센서를 규칙적 배열 형태로 형성할 수도 있다. The screen unit 70 of the present embodiment may be formed, for example, between the first substrate 4000 and the liquid crystal layer 1000. The arrangement of the unit recognition elements of the screen unit 70 may be performed in the same manner as the TFT array of the first substrate 4000, or may take a lattice structure and use fewer optical sensors than the TFT array of the first substrate 4000. It may be formed in a regular arrangement.
스크린부(70)의 TFT의 기본 구동(게이트 신호 인가)은 제1기판(4000)의 구동부를 통해 함께 이뤄질 수 있으며, 다만 제1기판(4000)과 달리 화소 제어를 위한 데이터 신호는 불필요하다. Basic driving of the TFT of the screen unit 70 may be performed together with the driving unit of the first substrate 4000. However, unlike the first substrate 4000, a data signal for pixel control is unnecessary.
한편, 스크린부(70)의 단위 인식 요소의 배열이 격자 구조를 취하되 제1기판(4000)의 TFT 어레이보다 더 적은 개수의 광 센서를 규칙적 배열 형태로 형성하는 경우에는, 스크린부(70)의 구동/인식부(10)에 의해 전체적으로 별도의 구동 제어가 이뤄질 수도 있다. On the other hand, when the arrangement of the unit recognition elements of the screen unit 70 takes a lattice structure and forms fewer optical sensors in a regular arrangement than the TFT array of the first substrate 4000, the screen unit 70 The separate drive control may be performed by the driving / recognition unit 10 as a whole.
이상에서는 본 발명의 바람직한 실시예 및 응용예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예 및 응용예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the above has been shown and described with respect to preferred embodiments and applications of the present invention, the present invention is not limited to the specific embodiments and applications described above, the invention without departing from the gist of the invention claimed in the claims Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (8)

  1. 광 센서로 구성된 단위 인식 요소가 일정한 배열 규칙에 따라 배치된 스크린부- 상기 광 센서는 박막형 트랜지스터 및 상기 박막형 트랜지스터의 신호 출력부에 연결된 수광 다이오드를 포함하여 이뤄짐-; 및 A screen unit in which a unit recognition element composed of an optical sensor is disposed according to a predetermined arrangement rule, wherein the optical sensor comprises a thin film transistor and a light receiving diode connected to a signal output of the thin film transistor; And
    상기 스크린부에 외부로부터의 광이 입력되면, 상기 수광 다이오드의 전기 저항값의 변화에 따라 발생되는, 상기 박막형 트랜지스터의 출력 전압 특성 변화를 이용하여 상기 광이 입력된 위치를 인식하는 구동/인식부;를 포함하여 구성되며, When light from the outside is input to the screen unit, a driving / recognition unit that recognizes a position where the light is input using a change in output voltage characteristic of the thin film transistor, which is generated according to a change in an electrical resistance value of the light receiving diode. Consisting of;
    상기 스크린부에 입력된 광이 3개 이상의 단위 인식 요소에 출력 전압 특성 변화를 발생시키는 경우, 상기 구동/인식부는 가장 큰 전압 특성 변화를 출력하는 3개의 단위 인식 요소를 검출하고, 단위 인식 요소의 상기 배열 규칙과 삼각측량법을 이용하여 광이 입력된 위치를 인식하도록 구성된 광 포인팅 입력이 가능한 디스플레이 장치.When the light input to the screen unit generates an output voltage characteristic change in three or more unit recognition elements, the driving / recognition unit detects three unit recognition elements that output the largest voltage characteristic change, And a light pointing input configured to recognize a position at which light is input using the alignment rule and the triangulation method.
  2. 제1항에 있어서,The method of claim 1,
    상기 단위 인식 요소에 광이 입력되면, 상기 수광 다이오드의 전기 저항값이 낮아지는 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.And a light input to the unit recognition element, wherein the electrical resistance of the light receiving diode is lowered.
  3. 제1항에 있어서,The method of claim 1,
    상기 박막형 트랜지스터는 전도체-절연체-비정질 실리콘으로 구성된 MOS형 전계효과 트랜지스터인 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.And the thin film transistor is a MOS type field effect transistor composed of a conductor, an insulator, and an amorphous silicon.
  4. 제1항에 있어서,The method of claim 1,
    상기 수광 다이오드는 3족 원소의 불순물이 첨가된 층, 비정질 실리콘층, 및 5족 원소의 불순물이 첨가된 층이 연속적으로 적층된 구조를 갖는 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.And the light receiving diode has a structure in which a layer to which an impurity of a Group 3 element is added, an amorphous silicon layer, and a layer to which an Impurity of a Group 5 element is added are sequentially stacked.
  5. 제1항에 있어서,The method of claim 1,
    상기 외부로부터의 광은 380nm 내지 770nm의 파장을 갖는 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.And the light from the outside has a wavelength of 380 nm to 770 nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 단위 인식 요소에서 출력되는 전압 신호의 단위 시간당 회수를 카운터하는 카운터부를 더 포함하는 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.And a counter unit for counting the number of times per unit time of the voltage signal output from the unit recognition element.
  7. 제6항에 있어서,The method of claim 6,
    상기 외부로부터의 광은 펄스 발생장치에 의해 주파수 변조된 것으로서, 상기 전압 신호의 단위 시간당 회수는 상기 외부로부터의 광의 주파수에 따라 변하는 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치.The light from the outside is frequency-modulated by a pulse generator, and the number of times of the voltage signal per unit time is a display device capable of optical pointing input, characterized in that it changes in accordance with the frequency of the light from the outside.
  8. 제1항에 있어서, The method of claim 1,
    가장 큰 전압 특성 변화를 출력하는 3개의 단위 인식 요소를 검출하며, 각 단위 인식 요소를 중심으로 하는 각각의 가상의 원을 생성하고, 상기 3개의 원의 각 중심점으로부터 최단거리를 이루는 교차점의 위치를 광이 입력된 위치로 인식하도록 구성된 것을 특징으로 하는 광 포인팅 입력이 가능한 디스플레이 장치. Detects three unit recognition elements that output the largest voltage characteristic change, generates each virtual circle centered on each unit recognition element, and locates the intersection of the shortest distance from each center point of the three circles. And a light pointing input configured to recognize light as an input position.
PCT/KR2012/006068 2012-07-30 2012-07-30 Display device capable of optical pointing input WO2014021479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/006068 WO2014021479A1 (en) 2012-07-30 2012-07-30 Display device capable of optical pointing input

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/006068 WO2014021479A1 (en) 2012-07-30 2012-07-30 Display device capable of optical pointing input

Publications (1)

Publication Number Publication Date
WO2014021479A1 true WO2014021479A1 (en) 2014-02-06

Family

ID=50028137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006068 WO2014021479A1 (en) 2012-07-30 2012-07-30 Display device capable of optical pointing input

Country Status (1)

Country Link
WO (1) WO2014021479A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010353A1 (en) * 2014-07-15 2016-01-21 Samsung Electronics Co., Ltd. Display apparatus and control method thereof
CN111462667A (en) * 2019-01-22 2020-07-28 咸阳彩虹光电科技有限公司 Driving method and driving device for display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047328A (en) * 2001-12-10 2003-06-18 삼성전자주식회사 Remote pointing method and apparatus therefor
KR20080070084A (en) * 2005-11-30 2008-07-29 코닌클리케 필립스 일렉트로닉스 엔.브이. Position detection of an electromagnetic beam projection
KR20100008988A (en) * 2008-07-17 2010-01-27 안상진 Display device capable of photo-recognition and manufacturing method therof
KR20100128388A (en) * 2009-05-28 2010-12-08 한국전자통신연구원 The light tough screen
KR20110111110A (en) * 2010-04-02 2011-10-10 삼성전자주식회사 Remote touch panel using light sensor and remote touch screen apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047328A (en) * 2001-12-10 2003-06-18 삼성전자주식회사 Remote pointing method and apparatus therefor
KR20080070084A (en) * 2005-11-30 2008-07-29 코닌클리케 필립스 일렉트로닉스 엔.브이. Position detection of an electromagnetic beam projection
KR20100008988A (en) * 2008-07-17 2010-01-27 안상진 Display device capable of photo-recognition and manufacturing method therof
KR20100128388A (en) * 2009-05-28 2010-12-08 한국전자통신연구원 The light tough screen
KR20110111110A (en) * 2010-04-02 2011-10-10 삼성전자주식회사 Remote touch panel using light sensor and remote touch screen apparatus having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010353A1 (en) * 2014-07-15 2016-01-21 Samsung Electronics Co., Ltd. Display apparatus and control method thereof
CN111462667A (en) * 2019-01-22 2020-07-28 咸阳彩虹光电科技有限公司 Driving method and driving device for display panel

Similar Documents

Publication Publication Date Title
US10572062B2 (en) Display device and touch detection method of display device
US10809851B2 (en) Display device and touch detection method of display device
JP6301609B2 (en) In-cell touch panel
US10296120B2 (en) Touch display panel and driving method
US9904406B2 (en) In-cell touch module, its driving method, touch display panel and display device
US9535523B2 (en) Touch sensor integrated type display device
US20170205956A1 (en) Display substrate and method for testing the same, display apparatus
CN112654917B (en) Display substrate, display device, manufacturing method of display substrate and driving method of display substrate
KR101782585B1 (en) Light sensing panel and display apparatus having the same
CN104155787B (en) Touch display device and method
CN111142708B (en) Display panel, driving method thereof and display device
KR20130006081A (en) Display device and driving method thereof
CN102798973B (en) Micro-electromechanical display with touch control function
JP2015232876A (en) Display device with touch detection function, and electronic apparatus
CN106405909A (en) Flexible display device, flexible display panel and driving method thereof
KR20120083143A (en) Display panel
US20160216816A1 (en) 3d touch display device, its manufacturing method and driving method
US8698167B2 (en) Light sensor and display apparatus having the same
CN105487717A (en) Touch panel and manufacturing method thereof
KR20130067869A (en) Liquid crystal display apparatus comprising a touch screen
US9134837B2 (en) Display apparatus with reduced signal interference
WO2014021479A1 (en) Display device capable of optical pointing input
US11249334B2 (en) Array substrate, display panel and display device
KR20240016373A (en) Display device
WO2014038782A1 (en) Thin film transistor liquid crystal display having capacitive touch sensor embedded therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882364

Country of ref document: EP

Kind code of ref document: A1