WO2014017518A1 - Three-dimensional object detection device and three-dimensional object detection method - Google Patents

Three-dimensional object detection device and three-dimensional object detection method Download PDF

Info

Publication number
WO2014017518A1
WO2014017518A1 PCT/JP2013/070007 JP2013070007W WO2014017518A1 WO 2014017518 A1 WO2014017518 A1 WO 2014017518A1 JP 2013070007 W JP2013070007 W JP 2013070007W WO 2014017518 A1 WO2014017518 A1 WO 2014017518A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional object
image
bird
difference
detected
Prior art date
Application number
PCT/JP2013/070007
Other languages
French (fr)
Japanese (ja)
Inventor
修 深田
早川 泰久
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014526959A priority Critical patent/JP6003987B2/en
Publication of WO2014017518A1 publication Critical patent/WO2014017518A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to a three-dimensional object detection device and a three-dimensional object detection method.
  • This application claims priority based on Japanese Patent Application No. 2012-166499 filed on Jul. 27, 2012.
  • the contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
  • a detection device that includes a camera that captures the side of a vehicle and detects a stationary three-dimensional object such as an off-road implantation by matching an image captured by the camera with a previously stored pattern is known ( Patent Document 1).
  • the problem to be solved by the present invention is to falsely detect an image of a stationary solid object outside the road shoulder or outside of the road reflected in the captured image as an image of another vehicle traveling in the adjacent lane adjacent to the traveling lane of the host vehicle. It is providing the solid-object detection apparatus and solid-object detection method which can detect other vehicles which drive
  • the first integrated value of the first luminance distribution information generated by counting the number of pixels in which the luminance difference indicates a predetermined difference on the difference image of the images at different times that have been aligned and performing frequency distribution is obtained.
  • a three-dimensional object is a moving object or a stationary object based on features on the image extracted from images captured at different timings.
  • a three-dimensional object detection device and a three-dimensional object detection method that detect other vehicles traveling in the adjacent lane adjacent to the traveling lane of the host vehicle with high accuracy.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device of the present invention is applied. It is a top view (three-dimensional object detection by difference waveform information) which shows the driving state of the vehicle of FIG. It is a block diagram which shows the detail of the computer of FIG. 4A and 4B are diagrams for explaining the outline of processing of the alignment unit in FIG. 3, in which FIG. 3A is a plan view showing a moving state of the vehicle, and FIG. It is the schematic which shows the mode of the production
  • FIG. 4 is a flowchart (No. 1) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the three-dimensional object detection unit of FIG. 3.
  • FIG. 1 is a flowchart (No. 1) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the three-dimensional object detection unit of FIG. 3.
  • FIG. 4 is a flowchart (part 2) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the three-dimensional object detection unit of FIG. 3. It is a figure (three-dimensional object detection by edge information) which shows the running state of vehicles of Drawing 1, (a) is a top view showing the positional relationship of a detection field etc., and (b) shows the positional relationship of a detection field etc. in real space. It is a perspective view shown. 4A and 4B are diagrams for explaining the operation of the luminance difference calculation unit in FIG. 3, in which FIG.
  • 3A is a diagram illustrating a positional relationship among attention lines, reference lines, attention points, and reference points in a bird's-eye view image
  • FIG. It is a figure which shows the positional relationship of the attention line, reference line, attention point, and reference point.
  • 4A and 4B are diagrams for explaining the detailed operation of the luminance difference calculation unit in FIG. 3, in which FIG. 3A is a diagram illustrating a detection region in a bird's-eye view image, and FIG. It is a figure which shows the positional relationship of a reference point.
  • FIG. 4 is a flowchart (part 1) illustrating a three-dimensional object detection method using edge information executed by a viewpoint conversion unit, a luminance difference calculation unit, an edge line detection unit, and a three-dimensional object detection unit in FIG. 3;
  • FIG. 4 is a flowchart (part 1) illustrating a three-dimensional object detection method using edge information executed by a viewpoint conversion unit, a luminance difference calculation unit, an edge line detection unit, and a three-dimensional object detection unit in FIG. 3;
  • FIG. 4 is a flowchart (part 2) illustrating a three-dimensional object detection method using edge information executed by the viewpoint conversion unit, the luminance difference calculation unit, the edge line detection unit, and the three-dimensional object detection unit of FIG. 3. It is a figure which shows the example of an image for demonstrating edge detection operation
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device 1 of the present invention is applied.
  • the three-dimensional object detection device 1 of the present example is careful when the driver of the host vehicle V is driving. Is a device that detects, as an obstacle, other vehicles that are likely to be contacted, for example, other vehicles that may be contacted when the host vehicle V changes lanes.
  • the three-dimensional object detection device 1 of this example detects another vehicle that travels in an adjacent lane (hereinafter also simply referred to as an adjacent lane) adjacent to the lane in which the host vehicle travels.
  • an adjacent lane hereinafter also simply referred to as an adjacent lane
  • the three-dimensional object detection device 1 of the present example can calculate the detected movement distance and movement speed of the other vehicle. For this reason, in the example described below, the three-dimensional object detection device 1 is mounted on the own vehicle V, and the three-dimensional object detected around the own vehicle travels in the adjacent lane next to the lane on which the own vehicle V travels. An example of detecting a vehicle will be shown. As shown in the figure, the three-dimensional object detection device 1 of the present example includes a camera 10, a vehicle speed sensor 20, and a calculator 30.
  • the camera 10 is attached to the host vehicle V so that the optical axis is at an angle ⁇ from the horizontal to the lower side at a height h at the rear of the host vehicle V.
  • the camera 10 images a predetermined area in the surrounding environment of the host vehicle V from this position.
  • the vehicle speed sensor 20 detects the traveling speed of the host vehicle V, and calculates the vehicle speed from the wheel speed detected by, for example, a wheel speed sensor that detects the rotational speed of the wheel.
  • the computer 30 detects a three-dimensional object behind the vehicle, and calculates a moving distance and a moving speed for the three-dimensional object in this example.
  • FIG. 2 is a plan view showing a traveling state of the host vehicle V in FIG.
  • the camera 10 images the vehicle rear side at a predetermined angle of view a.
  • the angle of view a of the camera 10 is set to an angle of view at which the left and right lanes can be imaged in addition to the lane in which the host vehicle V travels.
  • the area that can be imaged includes detection target areas A1 and A2 on the adjacent lane that is behind the host vehicle V and that is adjacent to the left and right of the travel lane of the host vehicle V.
  • the rear of the vehicle in this embodiment includes not only the rear of the vehicle but also the side of the rear of the vehicle.
  • the area behind the imaged vehicle is set according to the angle of view of the camera 10.
  • the vehicle can be set to include an area of 0 degrees to 90 degrees, preferably 0 degrees to 70 degrees on the left and right sides from the right direction.
  • FIG. 3 is a block diagram showing details of the computer 30 of FIG. In FIG. 3, the camera 10 and the vehicle speed sensor 20 are also illustrated in order to clarify the connection relationship.
  • the computer 30 includes a viewpoint conversion unit 31, a positioning unit 32, a three-dimensional object detection unit 33, a detection area setting unit 34, and a smear detection unit 40.
  • the calculation unit 30 of the present embodiment has a configuration relating to a three-dimensional object detection block using differential waveform information.
  • the calculation unit 30 of the present embodiment can also be configured with respect to a three-dimensional object detection block using edge information.
  • a block configuration A configured by the alignment unit 32 and the three-dimensional object detection unit 33 is surrounded by a broken line, a luminance difference calculation unit 35, an edge line detection unit 36, It can be configured by replacing the block configuration B configured by the three-dimensional object detection unit 37.
  • both the block configuration A and the block configuration B can be provided, so that the solid object can be detected using the difference waveform information and the solid object can be detected using the edge information.
  • the block configuration A and the block configuration B can be provided, either the block configuration A or the block configuration B can be operated according to environmental factors such as brightness. Each configuration will be described below.
  • the three-dimensional object detection device 1 of the present embodiment exists in the detection area A1 of the right adjacent lane or the detection area A2 of the left adjacent lane behind the vehicle based on image information obtained by the monocular camera 1 that captures the rear of the vehicle. A three-dimensional object is detected.
  • the detection area setting unit 34 sets detection areas A1 and A2 in the captured image information and on the right and left sides behind the host vehicle V, respectively.
  • the positions of the detection areas A2 and A2 are not particularly limited, and can be set as appropriate according to the processing conditions.
  • the viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10 and converts the input captured image data into a bird's-eye view image data in a bird's-eye view state.
  • the state viewed from a bird's-eye view is a state viewed from the viewpoint of a virtual camera looking down from above, for example, vertically downward.
  • This viewpoint conversion can be executed as described in, for example, Japanese Patent Application Laid-Open No. 2008-219063.
  • the viewpoint conversion of captured image data to bird's-eye view image data is based on the principle that a vertical edge peculiar to a three-dimensional object is converted into a straight line group passing through a specific fixed point by viewpoint conversion to bird's-eye view image data. This is because a planar object and a three-dimensional object can be distinguished if used. Note that the result of the image conversion processing by the viewpoint conversion unit 31 is also used in detection of a three-dimensional object by edge information described later.
  • the alignment unit 32 sequentially inputs the bird's-eye view image data obtained by the viewpoint conversion of the viewpoint conversion unit 31 and aligns the positions of the inputted bird's-eye view image data at different times.
  • 4A and 4B are diagrams for explaining the outline of the processing of the alignment unit 32, where FIG. 4A is a plan view showing the moving state of the host vehicle V, and FIG. 4B is an image showing the outline of the alignment.
  • the host vehicle V at the current time is located at V1, and the host vehicle V one hour before is located at V2.
  • the other vehicle VX is located in the rear direction of the own vehicle V and is in parallel with the own vehicle V, the other vehicle VX at the current time is located at V3, and the other vehicle VX one hour before is located at V4.
  • the host vehicle V has moved a distance d at one time.
  • “one hour before” may be a past time for a predetermined time (for example, one control cycle) from the current time, or may be a past time for an arbitrary time.
  • the bird's-eye view image PB t at the current time is as shown in Figure 4 (b).
  • the bird's-eye view image PB t becomes a rectangular shape for the white line drawn on the road surface, but a relatively accurate is a plan view state, tilting occurs about the position of another vehicle VX at position V3.
  • the white line drawn on the road surface has a rectangular shape and is relatively accurately viewed in plan, but the other vehicle VX at the position V4 The fall will occur.
  • the vertical edges of solid objects are straight lines along the collapse direction by the viewpoint conversion processing to bird's-eye view image data. This is because the plane image on the road surface does not include a vertical edge, but such a fall does not occur even when the viewpoint is changed.
  • the alignment unit 32 performs alignment of the bird's-eye view images PB t and PB t ⁇ 1 as described above on the data. At this time, the alignment unit 32 is offset a bird's-eye view image PB t-1 before one unit time, to match the position and bird's-eye view image PB t at the current time.
  • the image on the left side and the center image in FIG. 4B show a state that is offset by the movement distance d ′.
  • This offset amount d ′ is a movement amount on the bird's-eye view image data corresponding to the actual movement distance d of the host vehicle V shown in FIG. It is determined based on the time until the time.
  • the alignment unit 32 takes the difference between the bird's-eye view images PB t and PB t ⁇ 1 and generates data of the difference image PD t .
  • the pixel value of the difference image PD t may be an absolute value of the difference between the pixel values of the bird's-eye view images PB t and PB t ⁇ 1 , and the absolute value may be used to cope with a change in illuminance environment. “1” may be set when a predetermined threshold value p is exceeded, and “0” may be set when the threshold value p is not exceeded.
  • the image on the right side of FIG. 4B is the difference image PD t .
  • the three-dimensional object detection unit 33 detects a three-dimensional object based on the data of the difference image PD t shown in FIG. At this time, the three-dimensional object detection unit 33 of this example also calculates the movement distance of the three-dimensional object in the real space. In detecting the three-dimensional object and calculating the movement distance, the three-dimensional object detection unit 33 first generates a differential waveform. Note that the moving distance of the three-dimensional object per time is used for calculating the moving speed of the three-dimensional object. The moving speed of the three-dimensional object can be used to determine whether or not the three-dimensional object is a vehicle.
  • Three-dimensional object detection unit 33 of the present embodiment when generating the differential waveform sets a detection area in the difference image PD t.
  • the three-dimensional object detection device 1 of the present example is another vehicle that the driver of the host vehicle V pays attention to, in particular, the lane in which the host vehicle V that may be contacted when the host vehicle V changes lanes travels. Another vehicle traveling in the adjacent lane is detected as a detection target. For this reason, in this example which detects a solid object based on image information, two detection areas are set on the right side and the left side of the host vehicle V in the image obtained by the camera 1. Specifically, in the present embodiment, rectangular detection areas A1 and A2 are set on the left and right sides behind the host vehicle V as shown in FIG.
  • the other vehicle detected in the detection areas A1 and A2 is detected as an obstacle traveling in the adjacent lane adjacent to the lane in which the host vehicle V is traveling.
  • Such detection areas A1 and A2 may be set from a relative position with respect to the host vehicle V, or may be set based on the position of the white line.
  • the movement distance detection device 1 may use, for example, an existing white line recognition technique.
  • the three-dimensional object detection unit 33 recognizes the sides (sides along the traveling direction) of the set detection areas A1 and A2 on the own vehicle V side as the ground lines L1 and L2 (FIG. 2).
  • the ground line means a line in which the three-dimensional object contacts the ground.
  • the ground line is set as described above, not a line in contact with the ground. Even in this case, from experience, the difference between the ground line according to the present embodiment and the ground line obtained from the position of the other vehicle VX is not too large, and there is no problem in practical use.
  • FIG. 5 is a schematic diagram illustrating how a differential waveform is generated by the three-dimensional object detection unit 33 illustrated in FIG. 3.
  • the three-dimensional object detection unit 33 calculates a differential waveform from a portion corresponding to the detection areas A ⁇ b> 1 and A ⁇ b> 2 in the difference image PD t (right diagram in FIG. 4B) calculated by the alignment unit 32.
  • DW t is generated.
  • the three-dimensional object detection unit 33 generates a differential waveform DW t along the direction in which the three-dimensional object falls by viewpoint conversion.
  • the difference waveform DW t is generated for the detection area A2 in the same procedure.
  • the three-dimensional object detection unit 33 defines a line La in the direction in which the three-dimensional object falls on the data of the difference image DW t . Then, the three-dimensional object detection unit 33 counts the number of difference pixels DP indicating a predetermined difference on the line La.
  • the difference pixel DP indicating the predetermined difference is a predetermined threshold value when the pixel value of the difference image DW t is an absolute value of the difference between the pixel values of the bird's-eye view images PB t and PB t ⁇ 1.
  • the pixel value of the difference image DW t is expressed by “0” and “1”, the pixel indicates “1”.
  • the three-dimensional object detection unit 33 counts the number of difference pixels DP and then obtains an intersection point CP between the line La and the ground line L1. Then, the three-dimensional object detection unit 33 associates the intersection CP with the count number, determines the horizontal axis position based on the position of the intersection CP, that is, the position on the vertical axis in the right diagram of FIG. The axis position, that is, the position on the right and left axis in the right diagram of FIG.
  • the three-dimensional object detection unit 33 defines lines Lb, Lc... In the direction in which the three-dimensional object falls, counts the number of difference pixels DP, and determines the horizontal axis position based on the position of each intersection CP. Then, the vertical axis position is determined from the count number (number of difference pixels DP) and plotted.
  • the three-dimensional object detection unit 33 generates the differential waveform DW t as shown in the right diagram of FIG.
  • the line La and the line Lb in the direction in which the three-dimensional object collapses have different distances overlapping the detection area A1. For this reason, if the detection area A1 is filled with the difference pixels DP, the number of difference pixels DP is larger on the line La than on the line Lb. For this reason, when the three-dimensional object detection unit 33 determines the vertical axis position from the count number of the difference pixels DP, the three-dimensional object detection unit 33 is normalized based on the distance at which the lines La and Lb in the direction in which the three-dimensional object falls and the detection area A1 overlap. Turn into. As a specific example, in the left diagram of FIG.
  • the three-dimensional object detection unit 33 normalizes the count number by dividing it by the overlap distance.
  • the difference waveform DW t the line La on the direction the three-dimensional object collapses, the value of the differential waveform DW t corresponding to Lb is substantially the same.
  • the three-dimensional object detection unit 33 calculates the movement distance by comparison with the differential waveform DW t ⁇ 1 one time before. That is, the three-dimensional object detection unit 33 calculates the movement distance from the time change of the difference waveforms DW t and DW t ⁇ 1 .
  • the three-dimensional object detection unit 33 divides the differential waveform DW t into a plurality of small areas DW t1 to DW tn (n is an arbitrary integer equal to or greater than 2).
  • FIG. 6 is a diagram illustrating the small areas DW t1 to DW tn divided by the three-dimensional object detection unit 33.
  • the small areas DW t1 to DW tn are divided so as to overlap each other, for example, as shown in FIG. For example, the small area DW t1 and the small area DW t2 overlap, and the small area DW t2 and the small area DW t3 overlap.
  • the three-dimensional object detection unit 33 obtains an offset amount (amount of movement of the differential waveform in the horizontal axis direction (vertical direction in FIG. 6)) for each of the small areas DW t1 to DW tn .
  • the offset amount is determined from the difference between the differential waveform DW t in the difference waveform DW t-1 and the current time before one unit time (distance in the horizontal axis direction).
  • three-dimensional object detection unit 33 for each small area DW t1 ⁇ DW tn, when moving the differential waveform DW t1 before one unit time in the horizontal axis direction, the differential waveform DW t at the current time The position where the error is minimized (the position in the horizontal axis direction) is determined, and the amount of movement in the horizontal axis between the original position of the differential waveform DW t ⁇ 1 and the position where the error is minimized is obtained as an offset amount. Then, the three-dimensional object detection unit 33 counts the offset amount obtained for each of the small areas DW t1 to DW tn and forms a histogram.
  • FIG. 7 is a diagram illustrating an example of a histogram obtained by the three-dimensional object detection unit 33.
  • the offset amount which is the amount of movement that minimizes the error between each of the small areas DW t1 to DW tn and the differential waveform DW t ⁇ 1 one time before, has some variation.
  • the three-dimensional object detection unit 33 forms a histogram of offset amounts including variations, and calculates a movement distance from the histogram.
  • the three-dimensional object detection unit 33 calculates the moving distance of the three-dimensional object from the maximum value of the histogram. That is, in the example illustrated in FIG.
  • the three-dimensional object detection unit 33 calculates the offset amount indicating the maximum value of the histogram as the movement distance ⁇ * .
  • the moving distance ⁇ * is a relative moving distance of the other vehicle VX with respect to the host vehicle V. For this reason, when calculating the absolute movement distance, the three-dimensional object detection unit 33 calculates the absolute movement distance based on the obtained movement distance ⁇ * and the signal from the vehicle speed sensor 20. The relative speed can be obtained based on the relative movement distance of the other vehicle VX with respect to the host vehicle V.
  • the three-dimensional object detection unit 33 weights each of the plurality of small areas DW t1 to DW tn and forms a histogram by counting the offset amount obtained for each of the small areas DW t1 to DW tn according to the weight. May be.
  • FIG. 8 is a diagram illustrating weighting by the three-dimensional object detection unit 33.
  • the small area DW m (m is an integer of 1 to n ⁇ 1) is flat. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is small. Three-dimensional object detection unit 33 to reduce the weight for such small area DW m. This is because the flat small area DW m has no characteristics and is likely to have a large error in calculating the offset amount.
  • the small region DW m + k (k is an integer equal to or less than nm) is rich in undulations. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is large.
  • Three-dimensional object detection unit 33 increases the weight for such small area DW m. This is because the small region DW m + k rich in undulations is characteristic and there is a high possibility that the offset amount can be accurately calculated. By weighting in this way, the calculation accuracy of the movement distance can be improved.
  • the differential waveform DW t is divided into a plurality of small areas DW t1 to DW tn in order to improve the calculation accuracy of the movement distance.
  • the small area DW t1 is divided. It is not necessary to divide into ⁇ DW tn .
  • the three-dimensional object detection unit 33 calculates the moving distance from the offset amount of the differential waveform DW t when the error between the differential waveform DW t and the differential waveform DW t ⁇ 1 is minimized. That is, the method for obtaining the offset amount of the difference waveform DW t in the difference waveform DW t-1 and the current time before one unit time is not limited to the above disclosure.
  • the computer 30 includes a smear detection unit 40.
  • the smear detection unit 40 detects a smear generation region from data of a captured image obtained by imaging with the camera 10. Since smear is a whiteout phenomenon that occurs in a CCD image sensor or the like, the smear detection unit 40 may be omitted when the camera 10 using a CMOS image sensor or the like that does not generate such smear is employed.
  • FIG. 9 is an image diagram for explaining the processing by the smear detection unit 40 and the calculation processing of the differential waveform DW t thereby.
  • data of the captured image P in which the smear S exists is input to the smear detection unit 40.
  • the smear detection unit 40 detects the smear S from the captured image P.
  • There are various methods for detecting the smear S For example, in the case of a general CCD (Charge-Coupled Device) camera, the smear S is generated only in the downward direction of the image from the light source.
  • CCD Charge-Coupled Device
  • a region having a luminance value equal to or higher than a predetermined value from the lower side of the image to the upper side of the image and continuous in the vertical direction is searched, and this is identified as a smear S generation region.
  • the smear detection unit 40 generates smear image SP data in which the pixel value is set to “1” for the place where the smear S occurs and the other place is set to “0”. After the generation, the smear detection unit 40 transmits the data of the smear image SP to the viewpoint conversion unit 31.
  • the viewpoint conversion unit 31 to which the data of the smear image SP is input converts the viewpoint into a state of bird's-eye view. Thereby, the viewpoint conversion unit 31 generates data of the smear bird's-eye view image SB t .
  • the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t to the alignment unit 33. Further, the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t ⁇ 1 one hour before to the alignment unit 33.
  • the alignment unit 32 performs alignment of the smear bird's-eye view images SB t and SB t ⁇ 1 on the data.
  • the specific alignment is the same as the case where the alignment of the bird's-eye view images PB t and PB t ⁇ 1 is executed on the data.
  • the alignment unit 32 performs a logical sum on the smear S generation region of each smear bird's-eye view image SB t , SB t ⁇ 1 . Thereby, the alignment part 32 produces
  • the alignment unit 32 transmits the data of the mask image MP to the three-dimensional object detection unit 33.
  • the three-dimensional object detection unit 33 sets the count number of the frequency distribution to zero for the portion corresponding to the smear S generation region in the mask image MP. That is, when the differential waveform DW t as shown in FIG. 9 is generated, the three-dimensional object detection unit 33 sets the count number SC by the smear S to zero and generates a corrected differential waveform DW t ′. Become.
  • the three-dimensional object detection unit 33 obtains the moving speed of the vehicle V (camera 10), and obtains the offset amount for the stationary object from the obtained moving speed. After obtaining the offset amount of the stationary object, the three-dimensional object detection unit 33 calculates the moving distance of the three-dimensional object after ignoring the offset amount corresponding to the stationary object among the maximum values of the histogram.
  • FIG. 10 is a diagram illustrating another example of a histogram obtained by the three-dimensional object detection unit 33.
  • a stationary object exists in addition to the other vehicle VX within the angle of view of the camera 10, two maximum values ⁇ 1 and ⁇ 2 appear in the obtained histogram.
  • one of the two maximum values ⁇ 1, ⁇ 2 is the offset amount of the stationary object.
  • the three-dimensional object detection unit 33 calculates the offset amount for the stationary object from the moving speed, ignores the maximum value corresponding to the offset amount, and calculates the moving distance of the three-dimensional object using the remaining maximum value. To do.
  • the three-dimensional object detection unit 33 stops calculating the movement distance.
  • step S0 the computer 30 sets a detection area based on a predetermined rule. This detection area setting method will be described in detail later.
  • the computer 30 receives data of the image P captured by the camera 10 and generates a smear image SP by the smear detection unit 40 (S1).
  • the viewpoint conversion unit 31 generates data of the bird's-eye view image PB t from the data of the captured image P from the camera 10, and also generates data of the smear bird's-eye view image SB t from the data of the smear image SP (S2). .
  • the alignment unit 33 aligns the data of the bird's-eye view image PB t and the data of the bird's-eye view image PB t ⁇ 1 one hour ago, and the data of the smear bird's-eye view image SB t one hour ago. And the data of the smear bird's-eye view image SB t-1 are aligned (S3).
  • the alignment unit 33 generates data for the difference image PD t and also generates data for the mask image MP (S4).
  • three-dimensional object detection unit 33, the data of the difference image PD t, and a one unit time before the difference image PD t-1 of the data generates a difference waveform DW t (S5).
  • the three-dimensional object detection unit 33 After generating the differential waveform DW t , the three-dimensional object detection unit 33 sets the count number corresponding to the generation area of the smear S in the differential waveform DW t to zero, and suppresses the influence of the smear S (S6).
  • the three-dimensional object detection unit 33 determines whether or not the peak of the differential waveform DW t is greater than or equal to the first threshold value ⁇ (S7).
  • the peak of the difference waveform DW t is not equal to or greater than the first threshold value ⁇ , that is, when there is almost no difference, it is considered that there is no three-dimensional object in the captured image P.
  • the three-dimensional object detection unit 33 does not have a three-dimensional object and has another vehicle as an obstacle. It is determined not to do so (FIG. 12: S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
  • the three-dimensional object detection unit 33 determines that a three-dimensional object exists, and sets the difference waveform DW t to a plurality of difference waveforms DW t .
  • the area is divided into small areas DW t1 to DW tn (S8).
  • the three-dimensional object detection unit 33 performs weighting for each of the small areas DW t1 to DW tn (S9).
  • the three-dimensional object detection unit 33 calculates an offset amount for each of the small areas DW t1 to DW tn (S10), and generates a histogram with weights added (S11).
  • the three-dimensional object detection unit 33 calculates a relative movement distance that is a movement distance of the three-dimensional object with respect to the host vehicle V based on the histogram (S12). Next, the three-dimensional object detection unit 33 calculates the absolute movement speed of the three-dimensional object from the relative movement distance (S13). At this time, the three-dimensional object detection unit 33 calculates the relative movement speed by differentiating the relative movement distance with respect to time, and adds the own vehicle speed detected by the vehicle speed sensor 20 to calculate the absolute movement speed.
  • the three-dimensional object detection unit 33 determines whether the absolute movement speed of the three-dimensional object is 10 km / h or more and the relative movement speed of the three-dimensional object with respect to the host vehicle V is +60 km / h or less (S14). When both are satisfied (S14: YES), the three-dimensional object detection unit 33 determines that the three-dimensional object is the other vehicle VX (S15). Then, the processes shown in FIGS. 11 and 12 are terminated. On the other hand, when either one is not satisfied (S14: NO), the three-dimensional object detection unit 33 determines that there is no other vehicle (S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
  • the rear side of the host vehicle V is set as the detection areas A1 and A2, and the vehicle V travels in the adjacent lane that travels next to the travel lane of the host vehicle to which attention should be paid while traveling.
  • Emphasis is placed on detecting the vehicle VX, and in particular, whether or not there is a possibility of contact when the host vehicle V changes lanes. This is to determine whether or not there is a possibility of contact with another vehicle VX traveling in the adjacent lane adjacent to the traveling lane of the own vehicle when the own vehicle V changes lanes. For this reason, the process of step S14 is performed.
  • step S14 it is determined whether the absolute moving speed of the three-dimensional object is 10 km / h or more and the relative moving speed of the three-dimensional object with respect to the vehicle V is +60 km / h or less.
  • the absolute moving speed of the stationary object may be detected to be several km / h. Therefore, by determining whether the speed is 10 km / h or more, it is possible to reduce the possibility of determining that the stationary object is the other vehicle VX.
  • the relative speed of the three-dimensional object with respect to the host vehicle V may be detected at a speed exceeding +60 km / h. Therefore, the possibility of erroneous detection due to noise can be reduced by determining whether the relative speed is +60 km / h or less.
  • step S14 it may be determined that the absolute movement speed is not negative or not 0 km / h. Further, in the present embodiment, since emphasis is placed on whether or not there is a possibility of contact when the host vehicle V changes lanes, when another vehicle VX is detected in step S15, the driver of the host vehicle is notified. A warning sound may be emitted or a display corresponding to a warning may be performed by a predetermined display device.
  • the number of pixels indicating a predetermined difference is counted on the data of the difference image PD t along the direction in which the three-dimensional object falls by viewpoint conversion.
  • the difference waveform DW t is generated by frequency distribution.
  • the pixel indicating the predetermined difference on the data of the difference image PD t is a pixel that has changed in an image at a different time, in other words, a place where a three-dimensional object exists.
  • the difference waveform DW t is generated by counting the number of pixels along the direction in which the three-dimensional object collapses and performing frequency distribution at the location where the three-dimensional object exists.
  • the differential waveform DW t is generated from the information in the height direction for the three-dimensional object. Then, the moving distance of the three-dimensional object is calculated from the time change of the differential waveform DW t including the information in the height direction. For this reason, compared with the case where only one point of movement is focused on, the detection location before the time change and the detection location after the time change are specified including information in the height direction. The same location is likely to be obtained, and the movement distance is calculated from the time change of the same location, so that the calculation accuracy of the movement distance can be improved.
  • the count number of the frequency distribution is set to zero for the portion corresponding to the smear S generation region in the differential waveform DW t .
  • the waveform portion generated by the smear S in the differential waveform DW t is removed, and a situation in which the smear S is mistaken as a three-dimensional object can be prevented.
  • the moving distance of the three-dimensional object is calculated from the offset amount of the differential waveform DW t when the error of the differential waveform DW t generated at different times is minimized. For this reason, the movement distance is calculated from the offset amount of the one-dimensional information called the waveform, and the calculation cost can be suppressed in calculating the movement distance.
  • the differential waveform DW t generated at different times is divided into a plurality of small regions DW t1 to DW tn .
  • a plurality of waveforms representing respective portions of the three-dimensional object are obtained.
  • weighting is performed for each of the plurality of small areas DW t1 to DW tn , and the offset amount obtained for each of the small areas DW t1 to DW tn is counted according to the weight to form a histogram. For this reason, the moving distance can be calculated more appropriately by increasing the weight for the characteristic area and decreasing the weight for the non-characteristic area. Therefore, the calculation accuracy of the moving distance can be further improved.
  • the weight is increased as the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference increases. For this reason, the characteristic undulation region having a large difference between the maximum value and the minimum value has a larger weight, and the flat region having a small undulation has a smaller weight.
  • the moving distance is calculated by increasing the weight in the area where the difference between the maximum value and the minimum value is large. The accuracy can be further improved.
  • the moving distance of the three-dimensional object is calculated from the maximum value of the histogram obtained by counting the offset amount obtained for each of the small areas DW t1 to DW tn . For this reason, even if there is a variation in the offset amount, a more accurate movement distance can be calculated from the maximum value.
  • the offset amount for a stationary object is obtained and this offset amount is ignored, it is possible to prevent a situation in which the calculation accuracy of the moving distance of the three-dimensional object is lowered due to the stationary object.
  • the calculation of the moving distance of the three-dimensional object is stopped. For this reason, it is possible to prevent a situation in which an erroneous movement distance having a plurality of maximum values is calculated.
  • the vehicle speed of the host vehicle V is determined based on a signal from the vehicle speed sensor 20, but the present invention is not limited to this, and the speed may be estimated from a plurality of images at different times. In this case, a vehicle speed sensor becomes unnecessary, and the configuration can be simplified.
  • the captured image at the current time and the image one hour before are converted into a bird's-eye view, the converted bird's-eye view is aligned, the difference image PD t is generated, and the generated difference image PD
  • t is evaluated along the falling direction (the falling direction of the three-dimensional object when the captured image is converted into a bird's eye view)
  • the differential waveform DW t is generated, but the present invention is not limited to this.
  • the differential waveform DW t may be generated by evaluating along the direction corresponding to the falling direction (that is, the direction in which the falling direction is converted into the direction on the captured image).
  • the difference image PD t is generated from the difference between the two images subjected to the alignment, and the difference image PD t is converted into a bird's eye view
  • the bird's-eye view does not necessarily have to be clearly generated as long as the evaluation can be performed along the direction in which the user falls.
  • FIGS. 13A and 13B are diagrams illustrating an imaging range and the like of the camera 10 in FIG. 3.
  • FIG. 13A is a plan view
  • FIG. 13B is a perspective view in real space on the rear side from the host vehicle V. Show.
  • the camera 10 has a predetermined angle of view a, and images the rear side from the host vehicle V included in the predetermined angle of view a.
  • the angle of view “a” of the camera 10 is set so that the imaging range of the camera 10 includes the adjacent lane in addition to the lane in which the host vehicle V travels.
  • the detection areas A1 and A2 in this example are trapezoidal in a plan view (when viewed from a bird's eye), and the positions, sizes, and shapes of the detection areas A1 and A2 are determined based on the distances d 1 to d 4. Is done.
  • the detection areas A1 and A2 in the example shown in the figure are not limited to a trapezoidal shape, and may be other shapes such as a rectangle when viewed from a bird's eye view as shown in FIG. Note that the detection area setting unit 34 in the present embodiment can also set the detection areas A1 and A2 by the method described above.
  • the distance d1 is a distance from the host vehicle V to the ground lines L1 and L2.
  • the ground lines L1 and L2 mean lines on which a three-dimensional object existing in the lane adjacent to the lane in which the host vehicle V travels contacts the ground.
  • the purpose of the present embodiment is to detect other vehicles VX and the like (including two-wheeled vehicles) traveling in the left and right lanes adjacent to the lane of the host vehicle V on the rear side of the host vehicle V.
  • a distance d1 which is a position to be the ground lines L1 and L2 of the other vehicle VX is obtained from a distance d11 from the own vehicle V to the white line W and a distance d12 from the white line W to a position where the other vehicle VX is predicted to travel. It can be determined substantially fixedly.
  • the distance d1 is not limited to being fixedly determined, and may be variable.
  • the computer 30 recognizes the position of the white line W with respect to the host vehicle V by a technique such as white line recognition, and determines the distance d11 based on the recognized position of the white line W.
  • the distance d1 is variably set using the determined distance d11.
  • the distance d1 is It shall be fixedly determined.
  • the distance d2 is a distance extending from the rear end portion of the host vehicle V in the vehicle traveling direction.
  • the distance d2 is determined so that the detection areas A1 and A2 are at least within the angle of view a of the camera 10.
  • the distance d2 is set so as to be in contact with the range divided into the angle of view a.
  • the distance d3 is a distance indicating the length of the detection areas A1, A2 in the vehicle traveling direction. This distance d3 is determined based on the size of the three-dimensional object to be detected. In the present embodiment, since the detection target is the other vehicle VX or the like, the distance d3 is set to a length including the other vehicle VX.
  • the distance d4 is a distance indicating a height set so as to include a tire such as the other vehicle VX in the real space.
  • the distance d4 is a length shown in FIG. 13A in the bird's-eye view image.
  • the distance d4 may be a length that does not include a lane that is further adjacent to the left and right adjacent lanes in the bird's-eye view image (that is, a lane that is adjacent to two lanes).
  • the distances d1 to d4 are determined, and thereby the positions, sizes, and shapes of the detection areas A1 and A2 are determined. More specifically, the position of the upper side b1 of the detection areas A1 and A2 forming a trapezoid is determined by the distance d1. The starting point position C1 of the upper side b1 is determined by the distance d2. The end point position C2 of the upper side b1 is determined by the distance d3. The side b2 of the detection areas A1 and A2 having a trapezoidal shape is determined by a straight line L3 extending from the camera 10 toward the starting point position C1.
  • a side b3 of trapezoidal detection areas A1 and A2 is determined by a straight line L4 extending from the camera 10 toward the end position C2.
  • the position of the lower side b4 of the detection areas A1 and A2 having a trapezoidal shape is determined by the distance d4.
  • the areas surrounded by the sides b1 to b4 are set as the detection areas A1 and A2.
  • the detection areas A ⁇ b> 1 and A ⁇ b> 2 are true squares (rectangles) in the real space behind the host vehicle V.
  • the viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10.
  • the viewpoint conversion unit 31 performs viewpoint conversion processing on the bird's-eye view image data in a bird's-eye view state on the input captured image data.
  • the bird's-eye view is a state seen from the viewpoint of a virtual camera looking down from above, for example, vertically downward (or slightly obliquely downward).
  • This viewpoint conversion process can be realized by a technique described in, for example, Japanese Patent Application Laid-Open No. 2008-219063.
  • the luminance difference calculation unit 35 calculates a luminance difference with respect to the bird's-eye view image data subjected to viewpoint conversion by the viewpoint conversion unit 31 in order to detect the edge of the three-dimensional object included in the bird's-eye view image. For each of a plurality of positions along a vertical imaginary line extending in the vertical direction in the real space, the brightness difference calculating unit 35 calculates a brightness difference between two pixels in the vicinity of each position.
  • the luminance difference calculation unit 35 can calculate the luminance difference by either a method of setting only one vertical virtual line extending in the vertical direction in the real space or a method of setting two vertical virtual lines.
  • the brightness difference calculation unit 35 applies a first vertical imaginary line corresponding to a line segment extending in the vertical direction in the real space and a vertical direction in the real space different from the first vertical imaginary line with respect to the bird's-eye view image that has undergone viewpoint conversion.
  • a second vertical imaginary line corresponding to the extending line segment is set.
  • the luminance difference calculation unit 35 continuously obtains a luminance difference between a point on the first vertical imaginary line and a point on the second vertical imaginary line along the first vertical imaginary line and the second vertical imaginary line.
  • the operation of the luminance difference calculation unit 35 will be described in detail.
  • the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and passes through the detection area A1 (hereinafter referred to as the attention line La).
  • the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and also passes through the second vertical virtual line Lr (hereinafter referred to as a reference line Lr) passing through the detection area A1.
  • the reference line Lr is set at a position separated from the attention line La by a predetermined distance in the real space.
  • the line corresponding to the line segment extending in the vertical direction in the real space is a line that spreads radially from the position Ps of the camera 10 in the bird's-eye view image.
  • This radially extending line is a line along the direction in which the three-dimensional object falls when converted to bird's-eye view.
  • the luminance difference calculation unit 35 sets the attention point Pa (point on the first vertical imaginary line) on the attention line La.
  • the luminance difference calculation unit 35 sets a reference point Pr (a point on the second vertical plate) on the reference line Lr.
  • the attention line La, the attention point Pa, the reference line Lr, and the reference point Pr have the relationship shown in FIG. 14B in the real space.
  • the attention line La and the reference line Lr are lines extending in the vertical direction in the real space, and the attention point Pa and the reference point Pr are substantially the same height in the real space. This is the point that is set.
  • the attention point Pa and the reference point Pr do not necessarily have the same height, and an error that allows the attention point Pa and the reference point Pr to be regarded as the same height is allowed.
  • the luminance difference calculation unit 35 obtains a luminance difference between the attention point Pa and the reference point Pr. If the luminance difference between the attention point Pa and the reference point Pr is large, it is considered that an edge exists between the attention point Pa and the reference point Pr. Therefore, the edge line detection unit 36 shown in FIG. 3 detects an edge line based on the luminance difference between the attention point Pa and the reference point Pr.
  • FIG. 15 is a diagram illustrating a detailed operation of the luminance difference calculation unit 35, in which FIG. 15 (a) shows a bird's-eye view image in a bird's-eye view state, and FIG. 15 (b) is shown in FIG. 15 (a). It is the figure which expanded a part B1 of the bird's-eye view image. Although only the detection area A1 is illustrated and described in FIG. 15, the luminance difference is calculated in the same procedure for the detection area A2.
  • the other vehicle VX When the other vehicle VX is reflected in the captured image captured by the camera 10, the other vehicle VX appears in the detection area A1 in the bird's-eye view image as shown in FIG. As shown in the enlarged view of the area B1 in FIG. 15A in FIG. 15B, it is assumed that the attention line La is set on the rubber part of the tire of the other vehicle VX on the bird's-eye view image.
  • the luminance difference calculation unit 35 first sets the reference line Lr.
  • the reference line Lr is set along the vertical direction at a position away from the attention line La by a predetermined distance in the real space.
  • the reference line Lr is set at a position separated from the attention line La by 10 cm in real space.
  • the reference line Lr is set on the wheel of the tire of the other vehicle VX that is separated from the rubber of the tire of the other vehicle VX by, for example, 10 cm on the bird's eye view image.
  • the luminance difference calculation unit 35 sets a plurality of attention points Pa1 to PaN on the attention line La.
  • attention point Pai when an arbitrary point is indicated
  • the number of attention points Pa set on the attention line La may be arbitrary.
  • N attention points Pa are set on the attention line La.
  • the luminance difference calculation unit 35 sets the reference points Pr1 to PrN so as to be the same height as the attention points Pa1 to PaN in the real space. Then, the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr having the same height. Thereby, the luminance difference calculation unit 35 calculates the luminance difference between the two pixels for each of a plurality of positions (1 to N) along the vertical imaginary line extending in the vertical direction in the real space. For example, the luminance difference calculating unit 35 calculates a luminance difference between the first attention point Pa1 and the first reference point Pr1, and the second difference between the second attention point Pa2 and the second reference point Pr2. Will be calculated.
  • the luminance difference calculation unit 35 continuously calculates the luminance difference along the attention line La and the reference line Lr. That is, the luminance difference calculation unit 35 sequentially obtains the luminance difference between the third to Nth attention points Pa3 to PaN and the third to Nth reference points Pr3 to PrN.
  • the luminance difference calculation unit 35 repeatedly executes the above-described processing such as setting the reference line Lr, setting the attention point Pa and the reference point Pr, and calculating the luminance difference while shifting the attention line La in the detection area A1. That is, the luminance difference calculation unit 35 repeatedly executes the above processing while changing the position of each of the attention line La and the reference line Lr by the same distance in the presence direction of the ground line L1 in the real space. For example, the luminance difference calculation unit 35 sets the reference line Lr as the reference line Lr in the previous processing, sets the reference line Lr for the attention line La, and sequentially obtains the luminance difference. It will be.
  • the edge line detection unit 36 detects an edge line from the continuous luminance difference calculated by the luminance difference calculation unit 35.
  • the first attention point Pa ⁇ b> 1 and the first reference point Pr ⁇ b> 1 are located in the same tire portion, and thus the luminance difference is small.
  • the second to sixth attention points Pa2 to Pa6 are located in the rubber part of the tire, and the second to sixth reference points Pr2 to Pr6 are located in the wheel part of the tire. Therefore, the luminance difference between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 becomes large. Therefore, the edge line detection unit 36 may detect that an edge line exists between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 having a large luminance difference. it can.
  • the edge line detection unit 36 firstly follows the following Equation 1 to determine the i-th attention point Pai (coordinate (xi, yi)) and the i-th reference point Pri (coordinate ( xi ′, yi ′)) and the i th attention point Pai are attributed.
  • Equation 1 t represents a threshold value
  • I (xi, yi) represents the luminance value of the i-th attention point Pai
  • I (xi ′, yi ′) represents the luminance value of the i-th reference point Pri.
  • the attribute s (xi, yi) of the attention point Pai is “1”.
  • the attribute s (xi, yi) of the attention point Pai is “ ⁇ 1”.
  • the edge line detection unit 36 determines whether or not the attention line La is an edge line from the continuity c (xi, yi) of the attribute s along the attention line La based on Equation 2 below.
  • the continuity c (xi, yi) is “1”.
  • the attribute s (xi, yi) of the attention point Pai is not the same as the attribute s (xi + 1, yi + 1) of the adjacent attention point Pai + 1
  • the continuity c (xi, yi) is “0”.
  • the edge line detection unit 36 obtains the sum for the continuity c of all the points of interest Pa on the line of interest La.
  • the edge line detection unit 36 normalizes the continuity c by dividing the obtained sum of continuity c by the number N of points of interest Pa.
  • the edge line detection unit 36 determines that the attention line La is an edge line when the normalized value exceeds the threshold ⁇ .
  • the threshold value ⁇ is a value set in advance through experiments or the like.
  • the edge line detection unit 36 determines whether or not the attention line La is an edge line based on Equation 3 below. Then, the edge line detection unit 36 determines whether or not all the attention lines La drawn on the detection area A1 are edge lines. [Equation 3] ⁇ c (xi, yi) / N> ⁇
  • the three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36.
  • the three-dimensional object detection device 1 detects an edge line extending in the vertical direction in real space. The fact that many edge lines extending in the vertical direction are detected means that there is a high possibility that a three-dimensional object exists in the detection areas A1 and A2. For this reason, the three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36. Furthermore, prior to detecting the three-dimensional object, the three-dimensional object detection unit 37 determines whether or not the edge line detected by the edge line detection unit 36 is correct.
  • the three-dimensional object detection unit 37 determines whether or not the luminance change along the edge line of the bird's-eye view image on the edge line is larger than a predetermined threshold value. When the luminance change of the bird's-eye view image on the edge line is larger than the threshold value, it is determined that the edge line is detected by erroneous determination. On the other hand, when the luminance change of the bird's-eye view image on the edge line is not larger than the threshold value, it is determined that the edge line is correct.
  • This threshold value is a value set in advance by experiments or the like.
  • FIG. 16 is a diagram illustrating the luminance distribution of the edge line.
  • FIG. 16A illustrates the edge line and the luminance distribution when another vehicle VX as a three-dimensional object exists in the detection area A1, and
  • FIG. Indicates an edge line and a luminance distribution when there is no solid object in the detection area A1.
  • the attention line La set in the tire rubber portion of the other vehicle VX is determined to be an edge line in the bird's-eye view image.
  • the luminance change of the bird's-eye view image on the attention line La is gentle. This is because the tire of the other vehicle VX is extended in the bird's-eye view image by converting the image captured by the camera 10 into a bird's-eye view image.
  • the attention line La set in the white character portion “50” drawn on the road surface in the bird's-eye view image is erroneously determined as an edge line.
  • the brightness change of the bird's-eye view image on the attention line La has a large undulation. This is because a portion with high brightness in white characters and a portion with low brightness such as a road surface are mixed on the edge line.
  • the three-dimensional object detection unit 37 determines whether or not the edge line is detected by erroneous determination. When the luminance change along the edge line is larger than a predetermined threshold, the three-dimensional object detection unit 37 determines that the edge line is detected by erroneous determination. And the said edge line is not used for the detection of a solid object. Thereby, white characters such as “50” on the road surface, weeds on the road shoulder, and the like are determined as edge lines, and the detection accuracy of the three-dimensional object is prevented from being lowered.
  • the three-dimensional object detection unit 37 calculates the luminance change of the edge line by any one of the following mathematical formulas 4 and 5.
  • the luminance change of the edge line corresponds to the evaluation value in the vertical direction in the real space.
  • Equation 4 evaluates the luminance distribution by the sum of the squares of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1).
  • Equation 5 evaluates the luminance distribution by the sum of the absolute values of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1).
  • the attribute b (xi, yi) of the attention point Pa (xi, yi) is “1”. Become. If the relationship is other than that, the attribute b (xi, yi) of the attention point Pai is '0'.
  • This threshold value t2 is set in advance by an experiment or the like in order to determine that the attention line La is not on the same three-dimensional object. Then, the three-dimensional object detection unit 37 sums up the attributes b for all the attention points Pa on the attention line La, obtains an evaluation value in the vertical equivalent direction, and determines whether the edge line is correct.
  • 17 and 18 are flowcharts showing details of the three-dimensional object detection method according to the present embodiment.
  • FIG. 17 and FIG. 18 for the sake of convenience, the processing for the detection area A1 will be described, but the same processing is executed for the detection area A2.
  • step S20 the computer 30 sets a detection area based on a predetermined rule. This detection area setting method will be described in detail later.
  • step S21 the camera 10 captures an image of a predetermined area specified by the angle of view a and the attachment position.
  • step S22 the viewpoint conversion unit 31 inputs the captured image data captured by the camera 10 in step S21, performs viewpoint conversion, and generates bird's-eye view image data.
  • step S23 the luminance difference calculation unit 35 sets the attention line La on the detection area A1. At this time, the luminance difference calculation unit 35 sets a line corresponding to a line extending in the vertical direction in the real space as the attention line La.
  • luminance difference calculation part 35 sets the reference line Lr on detection area
  • step S25 the luminance difference calculation unit 35 sets a plurality of attention points Pa on the attention line La.
  • the luminance difference calculation unit 35 sets the attention points Pa as many as not causing a problem at the time of edge detection by the edge line detection unit 36.
  • step S26 the luminance difference calculation unit 35 sets the reference point Pr so that the attention point Pa and the reference point Pr are substantially the same height in the real space. Thereby, the attention point Pa and the reference point Pr are arranged in a substantially horizontal direction, and it becomes easy to detect an edge line extending in the vertical direction in the real space.
  • step S27 the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr that have the same height in the real space.
  • the edge line detection unit 36 calculates the attribute s of each attention point Pa in accordance with Equation 1 above.
  • step S28 the edge line detection unit 36 calculates the continuity c of the attribute s of each attention point Pa in accordance with Equation 2 above.
  • step S29 the edge line detection unit 36 determines whether or not the value obtained by normalizing the total sum of continuity c is greater than the threshold value ⁇ according to the above formula 3.
  • the edge line detection unit 36 detects the attention line La as an edge line in step S30. Then, the process proceeds to step S31.
  • the edge line detection unit 36 does not detect the attention line La as an edge line, and the process proceeds to step S31.
  • step S31 the computer 30 determines whether or not the processing in steps S23 to S30 has been executed for all the attention lines La that can be set on the detection area A1. If it is determined that the above processing has not been performed for all the attention lines La (S31: NO), the processing returns to step S23, a new attention line La is set, and the processing up to step S31 is repeated. On the other hand, when it is determined that the above process has been performed for all the attention lines La (S31: YES), the process proceeds to step S32 in FIG.
  • step S32 of FIG. 18 the three-dimensional object detection unit 37 calculates a luminance change along the edge line for each edge line detected in step S30 of FIG.
  • the three-dimensional object detection unit 37 calculates the luminance change of the edge line according to any one of the above formulas 4, 5, and 6.
  • step S33 the three-dimensional object detection unit 37 excludes edge lines whose luminance change is larger than a predetermined threshold from the edge lines. That is, it is determined that an edge line having a large luminance change is not a correct edge line, and the edge line is not used for detecting a three-dimensional object. As described above, this is to prevent characters on the road surface, roadside weeds, and the like included in the detection area A1 from being detected as edge lines. Therefore, the predetermined threshold value is a value set based on a luminance change generated by characters on the road surface, weeds on the road shoulder, or the like obtained in advance by experiments or the like.
  • step S34 the three-dimensional object detection unit 37 determines whether or not the amount of the edge line is equal to or larger than the second threshold value ⁇ .
  • the second threshold value ⁇ is set based on the number of edge lines of the four-wheeled vehicle that have appeared in the detection region A1 in advance through experiments or the like.
  • the three-dimensional object detection unit 37 detects that a three-dimensional object exists in the detection area A1 in step S35.
  • the three-dimensional object detection unit 37 determines that there is no three-dimensional object in the detection area A1. Thereafter, the processing illustrated in FIGS. 17 and 18 ends.
  • the detected three-dimensional object may be determined to be another vehicle VX that travels in the adjacent lane adjacent to the lane in which the host vehicle V travels, and the relative speed of the detected three-dimensional object with respect to the host vehicle V is taken into consideration. It may be determined whether the vehicle is another vehicle VX traveling in the adjacent lane.
  • the vertical direction in the real space with respect to the bird's-eye view image A vertical imaginary line is set as a line segment extending to. Then, for each of a plurality of positions along the vertical imaginary line, a luminance difference between two pixels in the vicinity of each position can be calculated, and the presence or absence of a three-dimensional object can be determined based on the continuity of the luminance difference.
  • the attention line La corresponding to the line segment extending in the vertical direction in the real space and the reference line Lr different from the attention line La are set for the detection areas A1 and A2 in the bird's-eye view image. Then, a luminance difference between the attention point Pa on the attention line La and the reference point Pr on the reference line Lr is continuously obtained along the attention line La and the reference line La. In this way, the luminance difference between the attention line La and the reference line Lr is obtained by continuously obtaining the luminance difference between the points. In the case where the luminance difference between the attention line La and the reference line Lr is high, there is a high possibility that there is an edge of the three-dimensional object at the set position of the attention line La.
  • a three-dimensional object can be detected based on a continuous luminance difference.
  • the detection accuracy of a three-dimensional object can be improved.
  • the luminance difference between two points of approximately the same height near the vertical imaginary line is obtained.
  • the luminance difference is obtained from the attention point Pa on the attention line La and the reference point Pr on the reference line Lr, which are substantially the same height in the real space, and thus the luminance when there is an edge extending in the vertical direction. The difference can be detected clearly.
  • FIG. 19 is a diagram illustrating an example of an image for explaining the processing of the edge line detection unit 36.
  • 102 is an adjacent image.
  • a region where the brightness of the first striped pattern 101 is high and a region where the brightness of the second striped pattern 102 is low are adjacent to each other, and a region where the brightness of the first striped pattern 101 is low and the second striped pattern 102. Is adjacent to a region with high brightness.
  • the portion 103 located at the boundary between the first striped pattern 101 and the second striped pattern 102 tends not to be perceived as an edge depending on human senses.
  • the edge line detection unit 36 determines the part 103 as an edge line only when there is continuity in the attribute of the luminance difference in addition to the luminance difference in the part 103, the edge line detection unit 36 An erroneous determination of recognizing a part 103 that is not recognized as an edge line as a sensation as an edge line can be suppressed, and edge detection according to a human sense can be performed.
  • the edge line detection unit 36 when the luminance change of the edge line detected by the edge line detection unit 36 is larger than a predetermined threshold value, it is determined that the edge line has been detected by erroneous determination.
  • the captured image acquired by the camera 10 is converted into a bird's-eye view image, the three-dimensional object included in the captured image tends to appear in the bird's-eye view image in a stretched state.
  • the luminance change of the bird's-eye view image in the stretched direction tends to be small.
  • the bird's-eye view image includes a high luminance region such as a character portion and a low luminance region such as a road surface portion.
  • the brightness change in the stretched direction tends to increase in the bird's-eye view image. Therefore, by determining the luminance change of the bird's-eye view image along the edge line as in this example, the edge line detected by the erroneous determination can be recognized, and the detection accuracy of the three-dimensional object can be improved.
  • the edge line detection unit 36 when the luminance change of the edge line detected by the edge line detection unit 36 is larger than a predetermined threshold value, it is determined that the edge line has been detected by erroneous determination.
  • the captured image acquired by the camera 10 is converted into a bird's-eye view image, the three-dimensional object included in the captured image tends to appear in the bird's-eye view image in a stretched state.
  • the luminance change of the bird's-eye view image in the stretched direction tends to be small.
  • the bird's-eye view image includes a high luminance region such as a character portion and a low luminance region such as a road surface portion.
  • the brightness change in the stretched direction tends to increase in the bird's-eye view image. Therefore, by determining the luminance change of the bird's-eye view image along the edge line as in this example, the edge line detected by the erroneous determination can be recognized, and the detection accuracy of the three-dimensional object can be improved.
  • the three-dimensional object detection units 33 and 37 can also send detection results to an external vehicle controller for notification to the occupant and vehicle control.
  • the three-dimensional object detection device 1 of this example includes the two three-dimensional object detection units 33 (or the three-dimensional object detection unit 37), the three-dimensional object determination unit 34, the stationary object determination unit 38, and the control unit. 39.
  • the three-dimensional object determination unit 34 determines whether or not the detected three-dimensional object is the other vehicle VX existing in the detection areas A1 and A2. Judgment finally.
  • the three-dimensional object detection unit 33 (or three-dimensional object detection unit 37) detects a three-dimensional object reflecting the determination result of the stationary object determination unit 38.
  • the stationary object determination unit 38 determines whether the three-dimensional object detected by the three-dimensional object detection unit 33 (or the three-dimensional object detection unit 37) is a stationary object.
  • the stationary object determination unit 38 of the present embodiment is used to plant trees such as vegetation planted on road separation zones and road shoulders, vegetation that grows naturally on grasslands and forests on roads, or snow that accumulates on road separation zones and road shoulders, or It detects natural objects such as snow walls mixed with snow and mud, artificial objects such as guardrails, semi-artificial objects such as planted trees and fake trees, and other stationary objects such as objects that are stationary on the roadside.
  • a stationary object in this specification is an object that does not include a drive source that moves by itself.
  • the stationary object determination unit 38 performs a process of determining a stationary object based on the differential waveform information or a process of determining a stationary object based on the edge information.
  • the stationary object determination unit 38 may be an alignment unit 32, a three-dimensional object detection unit 33, or a luminance difference calculation unit. 35, the edge line detection unit 36 or the three-dimensional object detection unit 37 can perform a part of the processing, obtain the processing result, and finally determine irregularity.
  • the stationary object determination unit 38 of the three-dimensional object detection device 1 detects the three-dimensional object detected from the captured image based on the difference in the characteristics of the moving object image and the stationary object image in the images captured at different times. Is a moving object or a stationary object.
  • the images used when the stationary object determination unit 38 in the present embodiment determines whether the object is a stationary object include a bird's eye view image that has undergone viewpoint conversion and an image that has not undergone viewpoint conversion.
  • the three-dimensional object detection device 1 according to the present embodiment can determine whether or not the object is a stationary object based on images (first image and second image) that have not undergone viewpoint conversion.
  • the three-dimensional object detection device 1 may not include the viewpoint conversion unit 31. Good.
  • the stationary object determination unit 38 includes the position of the first bird's-eye view image (including the first image) obtained at the first time when the three-dimensional object is detected, and the second after the first time.
  • the position of the second bird's-eye view image (including the second image) obtained at this time is aligned on the bird's-eye view according to the moving distance (movement speed) of the host vehicle V, and this position is aligned.
  • a first integrated value of first difference waveform information generated by counting the number of pixels indicating a predetermined difference and performing frequency distribution on the difference image of the bird's eye view image (including the image) is obtained.
  • the stationary object determination unit 38 acquires an offset difference image in consideration of the movement amount of the host vehicle V.
  • the offset amount d ′ is a movement amount on the bird's-eye view image data corresponding to the actual movement distance of the host vehicle V shown in FIG. 4A, and the signal from the vehicle speed sensor 20 and the current time from one hour before. It is determined based on the time until.
  • the first integrated value is the entire value plotted as the first differential waveform information, the entire predetermined area, or the total value of the predetermined area.
  • the stationary object determination unit 38 obtains the first bird's-eye view image (first image) obtained at the first time and the second bird's-eye view image obtained at the second time after the first time.
  • a second integrated value of the second differential waveform information generated by counting the number of pixels indicating a predetermined difference on the difference image from the (second image) and generating a frequency distribution is obtained. That is, the stationary object determination unit 38 acquires a difference image that is not offset.
  • the second integrated value is all of the values plotted as the second differential waveform information or the total value of the predetermined area.
  • the stationary object determination unit 38 detects the solid object detection unit 33.
  • the determined three-dimensional object is determined to be a stationary object.
  • the inventors have a large amount of pixels corresponding to the feature point of the moving object in the difference image obtained by offsetting (aligned) the captured images at different timings, and do not offset the captured images at different timings (no alignment) ) Focusing on the fact that the pixel amount corresponding to the feature point of the stationary object appears large in the difference image, and in the present invention, the pixel value (edge amount) of the difference image of the captured image that is offset (aligned) at different timings. By comparing pixel values (edge amounts) of difference images of captured images with different timings that are not offset (not aligned), it is determined whether the three-dimensional object is a stationary object or a moving object.
  • a solid object image Q (T0) is detected in the detection areas A1 and A2 at the past timing T0, and the detection area A1 at the current timing T1 after the timing of T0.
  • the subject vehicle V which is the detection subject, moves along the direction B, so that the three-dimensional object detected at the past timing T0 on the image.
  • the image Q (T0) moves to the position of the image Q (T1) of the three-dimensional object on the upper side in the drawing of the detection areas A1 and A2.
  • the stationary object determination unit 38 detects the distribution of the pixels or edge components of the three-dimensional object image Q (T1) detected at the current timing T1 and the past timing T0. Distribution of pixels or edge components of the three-dimensional object image Q (T0), which has been offset (positioned) by a predetermined amount, and the past timing It is possible to obtain a pixel or edge component distribution of the three-dimensional object image Q (T0B) which is the image of the three-dimensional object detected at T0 and is not offset (not aligned).
  • FIG. 20 the point of interest shown in FIG. 20 will be described in consideration of whether the three-dimensional object is a moving object or a stationary object.
  • a case where the three-dimensional object is a moving object will be described based on FIG. 21, and a case where the three-dimensional object is a stationary object will be described based on FIG.
  • both the host vehicle V and the other vehicle VX move, and therefore the host vehicle V and the other vehicle VX are different from each other.
  • FIG. 21B when the captured image is not offset (not aligned), the positions of the host vehicle V and the other vehicle VX tend to approach each other, and the difference image PDt is characteristic. Fewer pixels (edges) are detected. If the number of pixels (edges) in the difference image PDt is large, the integrated value tends to be high. If the number of pixels (edges) in the difference image PDt is small, the integrated value in the difference waveform information tends to be low.
  • the detected three-dimensional object is a stationary stationary object Q1
  • the own vehicle V moves while the stationary object Q1 is stationary.
  • the stationary object Q1 tend to be separated. That is, when the captured image is offset, the positions of the host vehicle V and the stationary object Q1 tend to approach, and a small number of pixels (edges) that can be characteristic are detected in the difference image PDt.
  • the captured image is not offset, the position of the stationary object Q1 tends to be different from the previous captured image as the host vehicle V moves, and the difference image PDt is characteristic. Many possible pixels (edges) are detected.
  • the integrated value in the luminance distribution information tends to be high, and if there are few pixels (edges) in the difference image PDt, the integrated value in the luminance distribution information tends to be low.
  • the stationary object detection unit 38 obtains the position of the first bird's-eye view image obtained at the first time T0 when the three-dimensional object is detected and the second time T1 obtained after the first time.
  • the position of the two bird's-eye view images is aligned on the bird's-eye view, and on the difference image of the aligned bird's-eye view images, the number of pixels in which the brightness difference between adjacent image areas is equal to or greater than a predetermined threshold is counted.
  • a first integrated value of the first luminance distribution information generated by frequency distribution is obtained. In other words, an offset (positioned) difference image is generated in consideration of the movement amount of the host vehicle V.
  • the offset amount d ′ corresponds to the movement amount on the bird's-eye view image data corresponding to the actual movement distance of the host vehicle V shown in FIG. 4A, and the signal from the vehicle speed sensor 20 and the current amount from one hour before. It is determined based on the time until the time.
  • the first integrated value is the total of values plotted as the first luminance distribution information or a predetermined area.
  • the stationary object determination unit 38 calculates the first bird's-eye view image obtained at the first time T0 and the second bird's-eye view image obtained at the second time T1 after the first time T0.
  • the second integrated value of the second luminance distribution information generated by counting the number of pixels in which the luminance difference between adjacent image areas is equal to or greater than a predetermined threshold and generating the frequency distribution is obtained. That is, a difference image that is not offset is generated, and its integrated value (second integrated value) is calculated.
  • the second integrated value is all of the values plotted as the second luminance distribution information or the total value of the predetermined area.
  • the three-dimensional object determination unit 34 detects the solid object detection unit 33.
  • the determined three-dimensional object is determined to be a “moving object”.
  • the pixel amount (edge amount) extracted from the difference image between the past captured image that has been offset (aligned) based on the captured images at different times and the current captured image is not offset ( (Does not align)
  • the image transition feature of the moving object and the image transition feature of the stationary object Can be determined with high accuracy whether the three-dimensional object is a moving object or a stationary object.
  • the second integrated value of the pixels (edge amount) indicating a predetermined difference in the difference image from the image that is not offset (not aligned) is offset (alignment). If it is determined that the difference image from the image is larger than the first integrated value of the pixels (edge amount) indicating the predetermined difference, the first count value is added to calculate the evaluation value. That is, as the determination that the second integrated value is larger than the first integrated value is accumulated, the evaluation value is increased. When the evaluation value is equal to or greater than a predetermined evaluation threshold, it is determined that the three-dimensional object detected by the three-dimensional object detection units 33 and 37 is a stationary object.
  • the stationary object detection unit 38 sets the first count value higher as the number of consecutive determinations increases. To do. As described above, when the determination that the second integrated value is larger than the first integrated value continues, it is determined that there is an increased possibility that the detected three-dimensional object is a stationary object, and the evaluation value becomes larger. Since the first count value is increased as described above, it is possible to determine with high accuracy whether or not the three-dimensional object is a moving object based on the continuous observation result.
  • the stationary object detection unit 38 adds the first count value when it is determined that the second integrated value is greater than the first integrated value, and determines that the second integrated value is smaller than the first integrated value.
  • the evaluation value may be calculated by subtracting the second count value.
  • the stationary object detection unit 38 determines that the second integrated value is smaller than the first integrated value after determining that the second integrated value is larger than the first integrated value. Further, after that, when it is determined that the second integrated value is larger than the first integrated value, the first count value is set high.
  • the detected three-dimensional object is a stationary object. Since it is determined that there is a high possibility, and the first count value is increased so that the evaluation value is increased, it is possible to determine a stationary object with high accuracy based on the continuous observation result. Incidentally, the detection state of the feature of the moving object tends to be observed stably. If the detection result is unstable and the determination result that the three-dimensional object is a stationary object is discretely detected, it can be determined that the detected three-dimensional object is likely to be a stationary object. It is.
  • the stationary object detection unit 38 calculates an evaluation value by subtracting the second count value. In this case, the stationary object detection unit 38 sets the second count value higher when the determination that the second integrated value is smaller than the first integrated value continues for a predetermined number of times.
  • the second integrated value is smaller than the first integrated value
  • it is determined that the detected three-dimensional object is likely to be a moving object (another vehicle VX)
  • a stationary object is determined.
  • the second count value related to the subtraction is increased so that the evaluation value for performing the reduction becomes smaller, so that the stationary object can be determined with high accuracy based on the continuous observation result.
  • the control unit 39 includes a stationary object such as grass / snow, planting, or guardrail in the captured image, and the image Q1 of the stationary object is reflected in the detection areas A1 and A2. If it is determined by the stationary object determination unit 38, any of the three-dimensional object detection units 33 and 37, the three-dimensional object determination unit 34, the stationary object determination unit 38, or the control unit 39 that is itself in the next process. A control command to be executed in one or more units can be generated.
  • the control command of the present embodiment is a command for controlling the operation of each unit so that it is suppressed that the detected three-dimensional object is the other vehicle VX.
  • the detected three-dimensional object is an image of a stationary object such as grass / snow, planting, or guardrail. This is to prevent the other vehicle VX from being determined.
  • the computer 30 of the present embodiment is a computer, control commands for the three-dimensional object detection process, the three-dimensional object determination process, and the stationary object determination process may be incorporated in advance in the program of each process, or may be transmitted at the time of execution.
  • the control command of the present embodiment may be a command for reducing sensitivity when detecting a three-dimensional object based on differential waveform information, or a command for decreasing sensitivity when detecting a three-dimensional object based on edge information.
  • the control command stops the process of determining the detected three-dimensional object as the other vehicle, It may be a command for a result that makes it be judged that the vehicle is not a vehicle.
  • the control unit 39 When it is determined that the three-dimensional object detected by the stationary object determination unit 38 is likely to be an image of a stationary object, the control unit 39 according to the present embodiment detects the three-dimensional object, and the detected three-dimensional object. A control command for suppressing the object from being determined to be another vehicle VX is sent to the three-dimensional object detection units 33 and 37 or the three-dimensional object determination unit 34. This makes it difficult for the three-dimensional object detection units 33 and 37 to detect the three-dimensional object. Further, it is difficult for the three-dimensional object determination unit 34 to determine that the detected three-dimensional object is the other vehicle VX existing in the detection area A.
  • the control unit 39 issues a control command with a content for canceling the detection process of the three-dimensional object. It may be generated and output to the three-dimensional object detection units 33 and 37, or a control command for canceling the determination process for the three-dimensional object or a control command for determining that the detected three-dimensional object is not another vehicle is generated. Then, it may be output to the three-dimensional object determination unit 34. Thereby, the effect similar to the above can be obtained.
  • control unit 39 determines in the previous process that the three-dimensional object detected by the stationary object determination unit 38 is highly likely to be a stationary object, an image of the stationary object appears in the detection areas A1 and A2. It is determined that there is a high possibility that an error will occur in the processing based on the image information. If the three-dimensional object is detected in the same manner as usual, the three-dimensional object detected based on the image of the stationary object Q1 reflected in the detection areas A1 and A2 may be erroneously determined as the other vehicle VX.
  • the control unit 39 suppresses that the three-dimensional object detected based on the image of the stationary object Q1 is erroneously determined as the other vehicle VX.
  • the threshold value regarding the difference between the pixel values when generating information is changed to be high.
  • detection of a three-dimensional object or determination of the other vehicle VX is suppressed by changing the determination threshold value higher. It is possible to prevent erroneous detection due to the image of the stationary object Q1.
  • the control unit 39 makes it difficult to detect the three-dimensional object when it is determined that the three-dimensional object detected by the stationary object determination unit 38 is likely to be an image of a stationary object. Then, a control command for increasing the first threshold value ⁇ is generated and output to the three-dimensional object detection unit 33.
  • the first threshold value ⁇ is the first threshold value ⁇ for determining the peak of the differential waveform DWt in step S7 of FIG. 11 (see FIG. 5).
  • the control unit 39 can output a control command for increasing or decreasing the threshold value p regarding the difference between pixel values in the difference waveform information to the three-dimensional object detection unit 33.
  • the control unit 39 when it is determined that there is a high possibility that the three-dimensional object detected by the stationary object determination unit 38 is an image of a stationary object, the control unit 39 according to the present embodiment performs predetermined processing on the difference image of the bird's eye view image.
  • a control command that counts the number of pixels indicating the difference between the two and outputs a low frequency distribution value can be output to the three-dimensional object detection unit 33.
  • the value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG.
  • control unit 39 determines that the three-dimensional object detected in the previous process is likely to be an image of a stationary object, the control unit 39 is based on the image Q1 of the stationary object reflected in the detection areas A1 and A2. It is determined that there is a high possibility of misdetecting the other vehicle VX. For this reason, in the next process, the frequency-distributed value of the differential waveform DWt is changed to a low value so that it is difficult to detect the three-dimensional object or the other vehicle VX in the detection areas A1 and A2.
  • the output value is lowered to reduce the vehicle VX of the other vehicle VX traveling next to the traveling lane of the host vehicle V. Since the detection sensitivity is adjusted, erroneous detection of the other vehicle VX due to the stationary object Q1 reflected in the detection areas A1 and A2 can be prevented.
  • control unit 39 determines that the three-dimensional object detected in the previous processing is highly likely to be an image of a stationary object, and the detection areas A1, A2 It is determined that there is a high possibility of misdetecting the other vehicle VX based on the stationary object Q1 reflected in the. For this reason, the control unit 39 of the present embodiment detects the three-dimensional object by the three-dimensional object detection units 33 and 37 when it is determined that the detected three-dimensional object is likely to be an image of a stationary object.
  • control unit 39 increases each threshold value used for each process (so that it is difficult to detect).
  • the output value compared with each threshold value is changed to be low (so that it is difficult to detect).
  • the control unit 39 is used for each process.
  • the threshold value is changed higher than the initial value, the standard value, or other set values (so that detection is difficult), or the output value compared with each threshold value is changed low (so that detection is difficult).
  • a promotion process becomes control of a suppression process and judgment.
  • the control unit 39 When the three-dimensional object detection unit 33 that detects the three-dimensional object using the difference waveform information detects the three-dimensional object when the difference waveform information is equal to or greater than the predetermined first threshold value ⁇ , the control unit 39 performs the previous process. When it is determined that the detected three-dimensional object is a stationary object, a control command for changing the first threshold value ⁇ so as to make it difficult to detect the three-dimensional object is generated, and this control command is sent to the three-dimensional object detection unit 33. Output.
  • the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object. If it is determined that there is a control command that counts the number of pixels indicating a predetermined difference on the difference image of the bird's eye view image and generates a low-frequency-distributed value and outputs it, this control command Is output to the three-dimensional object detection unit 38.
  • the control unit 39 When it is determined that the three-dimensional object detected in the processing is a stationary object, a control command for changing the threshold value p so that the three-dimensional object is difficult to detect is generated, and this control command is used as the three-dimensional object detection hand unit 38. Output to.
  • the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object. If it is determined that there is a control command to be output by changing the number of pixels extracted on the difference image to be lower along the direction in which the three-dimensional object falls when the viewpoint of the bird's eye view image is converted, The control command is output to the three-dimensional object detection unit 38.
  • control unit 39 determines that the three-dimensional object is detected by the three-dimensional object detection unit 33 (or the three-dimensional object detection unit 37) or that the three-dimensional object is finally the other vehicle VX by the three-dimensional object determination unit 34.
  • the detection areas A1 and A2 are partially masked, or the threshold value and output value used for detection and determination are adjusted.
  • the control unit 39 detects the three-dimensional object detected in the previous process.
  • a control command for changing the predetermined threshold value t so as to make it difficult to detect the three-dimensional object is generated, and this control command is output to the three-dimensional object detection unit 37.
  • the control unit 39 is detected in the previous process. If it is determined that the three-dimensional object is a stationary object, a control command for changing the luminance value of the pixel to a low value is generated, and the control command is output to the three-dimensional object detection unit 37.
  • the control unit 39 When the three-dimensional object detection unit 37 that detects a three-dimensional object using edge information detects a three-dimensional object based on an edge line having a length equal to or greater than the threshold value ⁇ included in the edge information, the control unit 39 performs the previous process. When it is determined that the three-dimensional object detected in step 3 is a stationary object, a control command for changing the threshold ⁇ to be high so that the three-dimensional object is difficult to detect is generated, and this control command is output to the three-dimensional object detection unit 37. To do.
  • the control unit 39 If it is determined that the three-dimensional object detected in the process of (2) is a stationary object, a control command is generated to change the edge line length value of the detected edge information to a low value and output the control command. Output to the three-dimensional object detection unit 37.
  • the number of edge lines having a length equal to or greater than a predetermined length included in the edge information for example, the number of edge lines having a length equal to or greater than the threshold ⁇ is included in the edge information by the three-dimensional object detection unit 37 that detects the solid object using the edge information is equal to or greater than the second threshold ⁇ .
  • the control unit 39 is unlikely to detect the three-dimensional object when it is determined that the three-dimensional object detected in the previous process is a stationary object.
  • a control command for changing the second threshold value ⁇ to a high value is generated, and this control command is output to the three-dimensional object detection unit 37.
  • the number of edge lines having a length equal to or greater than a predetermined length included in the edge information for example, the number of edge lines having a length equal to or greater than the threshold ⁇ is included in the edge information by the three-dimensional object detection unit 37 that detects the solid object using the edge information is equal to or greater than the second threshold ⁇ .
  • the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object, the detected predetermined length or more. A control command that outputs a low number of edge lines is generated, and this control command is output to the three-dimensional object detection unit 37.
  • the control unit 39 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is equal to or higher than a predetermined speed
  • the control unit 39 If it is determined that the three-dimensional object detected in the process is a stationary object, the predetermined speed that is the lower limit when determining that the three-dimensional object is another vehicle is changed so that the three-dimensional object is difficult to detect. A control command is generated, and this control command is output to the three-dimensional object determination unit 34.
  • the control unit 39 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is equal to or higher than a predetermined speed
  • the control unit 39 If it is determined that the three-dimensional object detected in the process is a stationary object, the moving speed of the three-dimensional object is changed to be lower than the predetermined speed that is the lower limit when determining that the three-dimensional object is another vehicle.
  • the control command to be output is generated, and the control command is output to the three-dimensional object determination unit 34.
  • the control unit 39 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is less than a preset predetermined speed. If it is determined that the three-dimensional object detected in the process is a stationary object, a control command is generated to change the predetermined speed, which is the upper limit when determining that the three-dimensional object is another vehicle, and this control is performed. The command is output to the three-dimensional object determination unit 34.
  • the control unit 39 performs the previous process.
  • a control command that changes the moving speed of the three-dimensional object to be higher than the predetermined speed that is the upper limit when determining that the three-dimensional object is another vehicle. And outputs this control command to the three-dimensional object determination unit 34.
  • the “movement speed” includes the absolute speed of the three-dimensional object and the relative speed of the three-dimensional object with respect to the host vehicle.
  • the absolute speed of the three-dimensional object may be calculated from the relative speed of the three-dimensional object, and the relative speed of the three-dimensional object may be calculated from the absolute speed of the three-dimensional object.
  • the first threshold value ⁇ is for determining the peak of the differential waveform DWt in step S7 of FIG.
  • the threshold value p is a threshold value for extracting a pixel having a predetermined pixel value.
  • the predetermined threshold value t is a threshold value for extracting pixels or edge components having a predetermined luminance difference.
  • the threshold value ⁇ is a threshold value for determining a value (edge length) obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa in step S29 of FIG. 17, and the second threshold value ⁇ is the step of FIG. 34 is a threshold value for evaluating the amount (number) of edge lines.
  • the detection sensitivity is adjusted so that the other vehicle VX traveling next to the traveling lane of the host vehicle V is difficult to be detected by changing the determination threshold to be higher. It is possible to prevent erroneous detection as VX.
  • the control unit 39 of the present embodiment outputs a control command for counting the number of pixels indicating a predetermined difference on the difference image of the bird's-eye view image and outputting a low frequency distribution value to the three-dimensional object detection unit 33.
  • the value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG.
  • the control unit 39 of the present embodiment outputs a control command for outputting the detected edge information to the three-dimensional object detection unit 37.
  • the detected edge information includes the length of the edge line that is a value obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa in step S29 in FIG. 17, and the amount of edge line in step 34 in FIG. It is.
  • the control unit 39 does not detect the three-dimensional object in the next process so that the three-dimensional object is not detected as a three-dimensional object. Further, the value obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa or the amount of the edge line is changed to be low.
  • the three-dimensional object is detected or the other vehicle VX is determined by changing the determination threshold value to be high. Therefore, it is possible to prevent erroneous detection due to the still object image Q1 reflected in the detection areas A1 and A2.
  • FIG. 23 the operation of the three-dimensional object detection device 1 of the present embodiment, in particular, the operation of the three-dimensional object determination unit 34 and the three-dimensional object detection units 33 and 37 that have acquired the control unit 39 and the control command will be described.
  • the process illustrated in FIG. 23 is the current three-dimensional object detection process performed using the result of the previous process after the previous three-dimensional object detection process.
  • the stationary object determination unit 38 determines whether the three-dimensional object is a stationary object or a moving object based on the difference waveform information or the edge information.
  • FIG. 24 is a flowchart showing the control procedure of the stationary object determination process of the present embodiment.
  • the three-dimensional object determination unit 34 acquires an image at a past timing T0.
  • the three-dimensional object determination unit 34 obtains an offset image T0A at the past timing T0 and a non-offset image T0B at the past timing T0.
  • Each image may be a captured image or a bird's-eye view image whose viewpoint has been changed.
  • step S83 the three-dimensional object determination unit 34 acquires the image T1 at the current timing T1.
  • step S84 the three-dimensional object determination unit 34 obtains a difference image PDtA between the image T1 at the current timing T1 and the offset image T0A at the past timing T0, and the past image T1 at the current timing T1 and the past A difference image PDtB from the non-offset image T0B at the timing T0 is acquired.
  • step S85 the three-dimensional object determination unit 34 extracts pixels having a pixel value greater than or equal to a predetermined difference and pixels having a luminance difference greater than or equal to a predetermined value from the difference image PDtA, and obtains a pixel distribution for each position. Similarly, the three-dimensional object determination unit 34 extracts pixels having a pixel value equal to or larger than a predetermined difference and pixels having a luminance difference equal to or larger than a predetermined value in the difference image PDtB, and obtains a pixel distribution for each position.
  • the three-dimensional object determination unit 34 obtains the integrated value PA of the pixel amount in the difference image PDtA and obtains the integrated value PB of the pixel amount in the difference image PDtB. Instead of the integrated values PA and PB, the total pixel amount may be obtained.
  • step S87 the three-dimensional object determination unit 34 compares the first integrated value PA and the second integrated value PB. If the first integrated value PA is smaller than the second integrated value PB, that is, the offset past image T0A. The pixel amount of the difference image between the current image T1 and the first integrated value PA is more than the pixel amount or the second integrated value PB of the difference image between the past image T0B and the current image T1 that is not offset (not aligned). If it is smaller, the process proceeds to step S88, where it is determined that the detected three-dimensional object is a stationary object, and the process proceeds to step S51 in FIG. At this time, it may be determined that the three-dimensional object is not another vehicle, and the process may proceed to steps S46 and S47 in FIG. On the other hand, if the first integrated value PA is greater than or equal to the second integrated value PB in step S87, the three-dimensional object is a moving object, so the process proceeds to step S43 in FIG. 23 and normal other vehicle detection is performed.
  • step S42 the stationary object determination unit 38 determines whether or not the three-dimensional object is a stationary object. If it is determined that the detected three-dimensional object is a moving object, the process proceeds to step S43. If it is determined that the detected three-dimensional object is a stationary object, the process proceeds to step S51.
  • step S51 when the stationary object determining unit 38 determines that the three-dimensional object detected in the previous process is the image Q1 of the stationary object, the control unit 39 displays the stationary image reflected in the detection areas A1 and A2. Based on the object image Q1, it is determined that there is a high possibility that the other vehicle VX is erroneously detected, and the three-dimensional object is detected in the next processing, and it is suppressed that the three-dimensional object is determined to be the other vehicle VX. As described above, control is performed such that the threshold value used in the three-dimensional object detection process and the three-dimensional object determination process is set high, or the output value compared with the threshold value is output low.
  • the threshold p for pixel value difference when generating the difference waveform information, the first threshold ⁇ used when determining the three-dimensional object from the difference waveform information, and the edge so that detection of the three-dimensional object is suppressed A control command for changing any one or more of the threshold value ⁇ for generating information and the second threshold value ⁇ used for determining the solid object from the edge information to the three-dimensional object detection units 33 and 37 is sent. Note that, instead of increasing the threshold value, the control unit 39 may generate a control command for decreasing the output value evaluated by the threshold value and output the control command to the three-dimensional object detection units 33 and 37.
  • the first threshold value ⁇ is a threshold value for determining the peak of the differential waveform DWt in step S7 of FIG.
  • the threshold value ⁇ is a threshold value for determining a value obtained by normalizing the sum of the continuity c of the attribute of each target point Pa in step S29 in FIG. 17, and the second threshold value ⁇ is the amount of the edge line in step 34 in FIG. Is a threshold value for evaluating.
  • the control unit 39 detects a three-dimensional object by outputting a control command that counts the number of pixels indicating a predetermined difference on the difference image of the bird's eye view image and outputs the frequency distribution value lower.
  • the value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG.
  • the control unit 39 can output a control command for outputting a low amount of detected edge information to the three-dimensional object detection unit 37.
  • the detected amount of edge information is a value obtained by normalizing the sum of the continuity c of the attributes of each point of interest Pa in step S29 in FIG. 17 or the amount of edge lines in step 34 in FIG.
  • the control unit 39 normalizes the sum of the continuity c of the attribute of each attention point Pa so that a solid object is difficult to detect in the next process.
  • a control command for changing the value or the amount of the edge line to be low can be output to the three-dimensional object detection unit 37.
  • step S43 a three-dimensional object is detected based on the difference waveform information or edge information, and it is determined whether the detected three-dimensional object is another vehicle VX. If a three-dimensional object is detected in step S44 and the detected three-dimensional object is another vehicle VX, a determination result indicating that another vehicle is present is output in step S45, otherwise, in step S46. The determination result that there is no other vehicle is output.
  • the processes in step S45 and step S46 are the detection process of the other vehicle VX based on the differential waveform information described in FIGS. 11 and 12, and the detection process of the other vehicle VX based on the edge information described in FIGS. Common.
  • step S42 if the three-dimensional object is not detected in step S42, the process proceeds to step S46, and it may be determined that the detected three-dimensional object is not the other vehicle VX, and there is no other vehicle VX, or step S47.
  • the process of detecting a three-dimensional object may be stopped.
  • the image transition characteristics of the moving object based on the magnitude relationship between the pixel amount (edge amount) extracted from the difference image between the past captured image and the current captured image that are not offset (not aligned)
  • the feature of the image transition of the stationary object is identified, and it can be determined with high accuracy whether the three-dimensional object is a moving object or a stationary object. Even if the processing is based on the difference waveform information or the processing based on the edge information, the same operations and effects are obtained.
  • the first when the determination that the second integrated value is greater than the first integrated value continues, the first as the number of consecutive determinations increases. Set the count value higher.
  • the determination that the second integrated value is larger than the first integrated value it is determined that the possibility that the detected three-dimensional object is a stationary object has increased, and the evaluation value is larger. Since the first count value is increased as described above, it is possible to determine with high accuracy whether or not the three-dimensional object is a moving object based on the continuous observation result.
  • the determination that the second integrated value is greater than the first integrated value and the determination that the first integrated value is greater than the second integrated value are interchanged.
  • the detected three-dimensional object is a moving object (another vehicle VX). Since the second count value related to subtraction is increased so that the evaluation value for determining a stationary object is determined to be small, the stationary object is highly accurate based on the observation results over time. Can be judged.
  • the first threshold value ⁇ is changed to a high value. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next to the traveling lane of the own vehicle V is difficult to be detected, the image of the stationary object Q1 is prevented from being erroneously detected as the other vehicle VX traveling in the adjacent lane. can do.
  • the output value when generating the differential waveform information is lowered, so that the travel lane of the host vehicle V is reduced. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next is hard to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
  • the driving lane of the host vehicle V is increased by changing the determination threshold when generating edge information to a higher value. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next to the vehicle is difficult to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
  • the output value when generating edge information is lowered, so that the next to the traveling lane of the host vehicle V Since the detection sensitivity can be adjusted so that the other vehicle VX traveling on the vehicle is difficult to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
  • the three-dimensional object detection device 1 of the present embodiment is the same whether the other vehicle VX is detected by the process based on the difference waveform information or the other vehicle VX is detected by the process based on the edge information.
  • the camera 10 corresponds to an imaging unit according to the present invention
  • the viewpoint conversion unit 31 corresponds to an image conversion unit according to the present invention
  • the alignment unit 32 and the three-dimensional object detection unit 33 include a three-dimensional object detection according to the present invention.
  • the brightness difference calculation unit 35, the edge line detection unit 36, and the three-dimensional object detection unit 37 correspond to a three-dimensional object detection unit according to the present invention
  • the three-dimensional object determination unit 34 corresponds to a three-dimensional object determination unit.
  • the stationary object determination unit 38 corresponds to a stationary object determination unit
  • the control unit 39 corresponds to a control unit
  • the vehicle speed sensor 20 corresponds to a vehicle speed sensor.
  • luminance distribution information include at least “difference waveform information” and “edge information” in the present embodiment.
  • the alignment unit 21 in the present embodiment aligns the positions of the bird's-eye view images at different times on the bird's-eye view, and obtains the aligned bird's-eye view image. This can be performed with accuracy according to the type and required detection accuracy. It may be a strict alignment process such as aligning positions based on the same time and the same position, or may be a loose alignment process that grasps the coordinates of each bird's-eye view image.
  • SYMBOLS 1 Three-dimensional object detection apparatus 10 ... Camera 20 ... Vehicle speed sensor 30 ... Computer 31 ... Viewpoint conversion part 32 ... Position alignment part 33, 37 ... Three-dimensional object detection part 34 ... Three-dimensional object judgment part 35 ... Luminance difference calculation part 36 ... Edge detection part 38 ... stationary determining unit 40 ... smear detection unit A1, A2 ... detection area CP ... intersection DP ... differential pixel DW t, DW t '... differential waveform DW t1 ⁇ DW m, DW m + k ⁇ DW tn ... small regions L1, L2 ... ground line La, Lb ... three-dimensional object line on direction collapses the P ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

The present invention is provided with: three-dimensional object detection units (33, 37) that detect three-dimensional objects on the basis of image information rearwards from a vehicle from a camera (10); a still object determination unit (38) that determines whether or not a three-dimensional object is a still object (Q1) on the basis of the integration value of pixels having a brightness difference of at least a predetermined threshold extracted from a difference image between a current captured image and a past captured image that are not offset (not positioned) and pixel quantity (edge quantity) extracted from a difference image between the current captured image and the past captured image that are offset (positioned) on the basis of captured images of different times; and a control unit (39) that controls each process. The control unit (39) suppresses the determination that a detected three-dimensional object is another vehicle (VX) when it is determined that the three-dimensional object detected by the still object determination unit (38) is a still object (Q1).

Description

立体物検出装置及び立体物検出方法Three-dimensional object detection apparatus and three-dimensional object detection method
 本発明は、立体物検出装置及び立体物検出方法に関するものである。
 本出願は、2012年7月27日に出願された日本国特許出願の特願2012―166499に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
The present invention relates to a three-dimensional object detection device and a three-dimensional object detection method.
This application claims priority based on Japanese Patent Application No. 2012-166499 filed on Jul. 27, 2012. For designated countries that are allowed to be incorporated by reference, The contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
 車両側方を撮像するカメラを備え、カメラにより撮像された画像と予め記憶されたパターンとをマッチングすることにより、路外の植え込み等の静止した立体物を検出する検出装置が知られている(特許文献1参照)。 A detection device that includes a camera that captures the side of a vehicle and detects a stationary three-dimensional object such as an off-road implantation by matching an image captured by the camera with a previously stored pattern is known ( Patent Document 1).
特開2006-315482号公報JP 2006-315482 A
 しかしながら、従来の技術によれば、たとえば、路外に存在する草などの植え込みや泥がまだらに混ざった雪などの静止した立体物を検出するためには、各種の植え込みや雪の多様なパターンを作成及び記憶しておかなければならず、判断時においてはこれら多数の各パターンを撮像画像とマッチングしなければならならず、処理負担が大きいという問題がある。 However, according to the conventional technology, for example, in order to detect stationary three-dimensional objects such as planting of grass existing outside the road and snow mixed with mud, various patterns of various planting and snow Must be created and stored, and at the time of determination, each of these many patterns must be matched with the captured image, resulting in a large processing load.
 本発明が解決しようとする課題は、撮像画像に映り込む路肩又は路外の静止した立体物の像を、自車両の走行車線の隣の隣接車線を走行する他車両の像として誤検出することを防止して、隣接車線を走行する他車両を高い精度で検出できる立体物検出装置及び立体物検出方法を提供することである。 The problem to be solved by the present invention is to falsely detect an image of a stationary solid object outside the road shoulder or outside of the road reflected in the captured image as an image of another vehicle traveling in the adjacent lane adjacent to the traveling lane of the host vehicle. It is providing the solid-object detection apparatus and solid-object detection method which can detect other vehicles which drive | work an adjacent lane with high precision.
 本発明は、位置合わせがされた、異なる時刻の画像の差分画像上において輝度差が所定の差分を示す画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求め、位置合わせをしない、異なる時刻の画像の差分画像上において輝度差が所定の差分を示す画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求め、第2積算値が第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、検出された立体物が静止物体であると判断することにより、上記課題を解決する。 According to the present invention, the first integrated value of the first luminance distribution information generated by counting the number of pixels in which the luminance difference indicates a predetermined difference on the difference image of the images at different times that have been aligned and performing frequency distribution is obtained. The second integrated value of the second luminance distribution information generated by frequency distribution by counting the number of pixels in which the luminance difference shows a predetermined difference on the difference image of the images at different times without obtaining and positioning, 2 When the evaluation value according to the number of times that the integrated value is determined to be greater than the first integrated value is equal to or greater than a predetermined evaluation threshold, the detected three-dimensional object is determined to be a stationary object, thereby Solve the problem.
 本発明によれば、異なるタイミングに撮像された画像から抽出された画像上の特徴に基づいて、立体物が移動物体であるか又は静止物体であるかを判断することができる。この結果、自車両の走行車線の隣の隣接車線を走行する他車両を、高い精度で検出する立体物検出装置及び立体物検出方法を提供することができる。 According to the present invention, it is possible to determine whether a three-dimensional object is a moving object or a stationary object based on features on the image extracted from images captured at different timings. As a result, it is possible to provide a three-dimensional object detection device and a three-dimensional object detection method that detect other vehicles traveling in the adjacent lane adjacent to the traveling lane of the host vehicle with high accuracy.
本発明の立体物検出装置を適用した一実施の形態に係る車両の概略構成図である。1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device of the present invention is applied. 図1の車両の走行状態を示す平面図(差分波形情報による立体物検出)である。It is a top view (three-dimensional object detection by difference waveform information) which shows the driving state of the vehicle of FIG. 図1の計算機の詳細を示すブロック図である。It is a block diagram which shows the detail of the computer of FIG. 図3の位置合わせ部の処理の概要を説明するための図であり、(a)は車両の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。4A and 4B are diagrams for explaining the outline of processing of the alignment unit in FIG. 3, in which FIG. 3A is a plan view showing a moving state of the vehicle, and FIG. 図3の立体物検出部による差分波形の生成の様子を示す概略図である。It is the schematic which shows the mode of the production | generation of the difference waveform by the solid-object detection part of FIG. 図3の立体物検出部によって分割される小領域を示す図である。It is a figure which shows the small area | region divided | segmented by the solid-object detection part of FIG. 図3の立体物検出部により得られるヒストグラムの一例を示す図である。It is a figure which shows an example of the histogram obtained by the solid-object detection part of FIG. 図3の立体物検出部による重み付けを示す図である。It is a figure which shows the weighting by the solid-object detection part of FIG. 図3のスミア検出部による処理及びそれによる差分波形の算出処理を示す図である。It is a figure which shows the process by the smear detection part of FIG. 3, and the calculation process of the difference waveform by it. 図3の立体物検出部により得られるヒストグラムの他の例を示す図である。It is a figure which shows the other example of the histogram obtained by the solid-object detection part of FIG. 図3の視点変換部、位置合わせ部、スミア検出部及び立体物検出部により実行される差分波形情報を用いた立体物検出方法を示すフローチャート(その1)である。FIG. 4 is a flowchart (No. 1) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the three-dimensional object detection unit of FIG. 3. 図3の視点変換部、位置合わせ部、スミア検出部及び立体物検出部により実行される差分波形情報を用いた立体物検出方法を示すフローチャート(その2)である。FIG. 4 is a flowchart (part 2) illustrating a three-dimensional object detection method using differential waveform information executed by the viewpoint conversion unit, the alignment unit, the smear detection unit, and the three-dimensional object detection unit of FIG. 3. 図1の車両の走行状態を示す図(エッジ情報による立体物検出)であり、(a)は検出領域等の位置関係を示す平面図、(b)は実空間における検出領域等の位置関係を示す斜視図である。It is a figure (three-dimensional object detection by edge information) which shows the running state of vehicles of Drawing 1, (a) is a top view showing the positional relationship of a detection field etc., and (b) shows the positional relationship of a detection field etc. in real space. It is a perspective view shown. 図3の輝度差算出部の動作を説明するための図であり、(a)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図、(b)は実空間における注目線、参照線、注目点及び参照点の位置関係を示す図である。4A and 4B are diagrams for explaining the operation of the luminance difference calculation unit in FIG. 3, in which FIG. 3A is a diagram illustrating a positional relationship among attention lines, reference lines, attention points, and reference points in a bird's-eye view image, and FIG. It is a figure which shows the positional relationship of the attention line, reference line, attention point, and reference point. 図3の輝度差算出部の詳細な動作を説明するための図であり、(a)は鳥瞰視画像における検出領域を示す図、(b)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図である。4A and 4B are diagrams for explaining the detailed operation of the luminance difference calculation unit in FIG. 3, in which FIG. 3A is a diagram illustrating a detection region in a bird's-eye view image, and FIG. It is a figure which shows the positional relationship of a reference point. エッジ線とエッジ線上の輝度分布を示す図であり、(a)は検出領域に立体物(車両)が存在している場合の輝度分布を示す図、(b)は検出領域に立体物が存在しない場合の輝度分布を示す図である。It is a figure which shows the luminance distribution on an edge line and an edge line, (a) is a figure which shows luminance distribution when a solid object (vehicle) exists in a detection area, (b) is a solid object in a detection area It is a figure which shows the luminance distribution when not doing. 図3の視点変換部、輝度差算出部、エッジ線検出部及び立体物検出部により実行されるエッジ情報を用いた立体物検出方法を示すフローチャート(その1)である。FIG. 4 is a flowchart (part 1) illustrating a three-dimensional object detection method using edge information executed by a viewpoint conversion unit, a luminance difference calculation unit, an edge line detection unit, and a three-dimensional object detection unit in FIG. 3; 図3の視点変換部、輝度差算出部、エッジ線検出部及び立体物検出部により実行されるエッジ情報を用いた立体物検出方法を示すフローチャート(その2)である。FIG. 4 is a flowchart (part 2) illustrating a three-dimensional object detection method using edge information executed by the viewpoint conversion unit, the luminance difference calculation unit, the edge line detection unit, and the three-dimensional object detection unit of FIG. 3. エッジ検出動作を説明するための画像例を示す図である。It is a figure which shows the example of an image for demonstrating edge detection operation | movement. 第2実施形態の静止物体の判断処理を説明するための第1の図である。It is a 1st figure for demonstrating the determination process of the stationary object of 2nd Embodiment. 第2実施形態の静止物体の判断処理を説明するための第2の図である。It is a 2nd figure for demonstrating the determination process of the stationary object of 2nd Embodiment. 第2実施形態の静止物体の判断処理を説明するための第3の図である。It is a 3rd figure for demonstrating the determination process of the stationary object of 2nd Embodiment. 静止物体の判断処理を含む他車両検出の制御手順を示す他の例のフローチャートである。It is a flowchart of the other example which shows the control procedure of the other vehicle detection including the determination process of a stationary object. 静止物体の判断処理を示すフローチャートである。It is a flowchart which shows the determination process of a stationary object.
 本実施形態の立体物検出装置1について説明する。
 図1は、本発明の立体物検出装置1を適用した一実施の形態に係る車両の概略構成図であり、本例の立体物検出装置1は、自車両Vの運転者が運転中に注意を払うべき他車両、例えば、自車両Vが車線変更する際に接触の可能性がある他車両を障害物として検出する装置である。特に、本例の立体物検出装置1は自車両が走行する車線の隣の隣接車線(以下、単に隣接車線ともいう)を走行する他車両を検出する。また、本例の立体物検出装置1は、検出した他車両の移動距離、移動速度を算出することができる。このため、以下説明する一例は、立体物検出装置1を自車両Vに搭載し、自車両周囲において検出される立体物のうち、自車両Vが走行する車線の隣の隣接車線を走行する他車両を検出する例を示すこととする。同図に示すように、本例の立体物検出装置1は、カメラ10と、車速センサ20と、計算機30とを備える。
The three-dimensional object detection device 1 of the present embodiment will be described.
FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment to which a three-dimensional object detection device 1 of the present invention is applied. The three-dimensional object detection device 1 of the present example is careful when the driver of the host vehicle V is driving. Is a device that detects, as an obstacle, other vehicles that are likely to be contacted, for example, other vehicles that may be contacted when the host vehicle V changes lanes. In particular, the three-dimensional object detection device 1 of this example detects another vehicle that travels in an adjacent lane (hereinafter also simply referred to as an adjacent lane) adjacent to the lane in which the host vehicle travels. Further, the three-dimensional object detection device 1 of the present example can calculate the detected movement distance and movement speed of the other vehicle. For this reason, in the example described below, the three-dimensional object detection device 1 is mounted on the own vehicle V, and the three-dimensional object detected around the own vehicle travels in the adjacent lane next to the lane on which the own vehicle V travels. An example of detecting a vehicle will be shown. As shown in the figure, the three-dimensional object detection device 1 of the present example includes a camera 10, a vehicle speed sensor 20, and a calculator 30.
 カメラ10は、図1に示すように自車両Vの後方における高さhの箇所において、光軸が水平から下向きに角度θとなるように自車両Vに取り付けられている。カメラ10は、この位置から自車両Vの周囲環境のうちの所定領域を撮像する。本実施形態において自車両Vの後方の立体物を検出するために設けられるカメラ1は一つであるが、他の用途のため、例えば車両周囲の画像を取得するための他のカメラを設けることもできる。車速センサ20は、自車両Vの走行速度を検出するものであって、例えば車輪に回転数を検知する車輪速センサで検出した車輪速から車速度を算出する。計算機30は、車両後方の立体物を検出するとともに、本例ではその立体物について移動距離及び移動速度を算出する。 As shown in FIG. 1, the camera 10 is attached to the host vehicle V so that the optical axis is at an angle θ from the horizontal to the lower side at a height h at the rear of the host vehicle V. The camera 10 images a predetermined area in the surrounding environment of the host vehicle V from this position. In the present embodiment, there is one camera 1 provided for detecting a three-dimensional object behind the host vehicle V. However, for other purposes, for example, providing another camera for acquiring an image around the vehicle. You can also. The vehicle speed sensor 20 detects the traveling speed of the host vehicle V, and calculates the vehicle speed from the wheel speed detected by, for example, a wheel speed sensor that detects the rotational speed of the wheel. The computer 30 detects a three-dimensional object behind the vehicle, and calculates a moving distance and a moving speed for the three-dimensional object in this example.
 図2は、図1の自車両Vの走行状態を示す平面図である。同図に示すように、カメラ10は、所定の画角aで車両後方側を撮像する。このとき、カメラ10の画角aは、自車両Vが走行する車線に加えて、その左右の車線についても撮像可能な画角に設定されている。撮像可能な領域には、自車両Vの後方であり、自車両Vの走行車線の左右隣の隣接車線上の検出対象領域A1,A2を含む。なお、本実施形態における車両後方には、車両の真後ろだけではなく、車両の後ろ側の側方をも含む。撮像される車両後方の領域は、カメラ10の画角に応じて設定される。一例ではあるが、車長方向に沿う車両の真後ろをゼロ度とした場合に、真後ろ方向から左右0度~90度、好ましくは0度~70度等の領域を含むように設定できる。 FIG. 2 is a plan view showing a traveling state of the host vehicle V in FIG. As shown in the figure, the camera 10 images the vehicle rear side at a predetermined angle of view a. At this time, the angle of view a of the camera 10 is set to an angle of view at which the left and right lanes can be imaged in addition to the lane in which the host vehicle V travels. The area that can be imaged includes detection target areas A1 and A2 on the adjacent lane that is behind the host vehicle V and that is adjacent to the left and right of the travel lane of the host vehicle V. Note that the rear of the vehicle in this embodiment includes not only the rear of the vehicle but also the side of the rear of the vehicle. The area behind the imaged vehicle is set according to the angle of view of the camera 10. As an example, when the vehicle rearward direction along the vehicle length is set to zero degrees, the vehicle can be set to include an area of 0 degrees to 90 degrees, preferably 0 degrees to 70 degrees on the left and right sides from the right direction.
 図3は、図1の計算機30の詳細を示すブロック図である。なお、図3においては、接続関係を明確とするためにカメラ10、車速センサ20についても図示する。 FIG. 3 is a block diagram showing details of the computer 30 of FIG. In FIG. 3, the camera 10 and the vehicle speed sensor 20 are also illustrated in order to clarify the connection relationship.
 図3に示すように、計算機30は、視点変換部31と、位置合わせ部32と、立体物検出部33と、検出領域設定部34と、スミア検出部40とを備える。本実施形態の計算部30は、差分波形情報を利用した立体物の検出ブロックに関する構成である。本実施形態の計算部30は、エッジ情報を利用した立体物の検出ブロックに関する構成とすることもできる。この場合は、図3に示す構成のうち、位置合わせ部32と、立体物検出部33から構成されるブロック構成Aを、破線で囲んだ輝度差算出部35と、エッジ線検出部36と、立体物検出部37から構成されるブロック構成Bと置き換えて構成することができる。もちろん、ブロック構成A及びブロック構成Bの両方を備え、差分波形情報を利用した立体物の検出を行うとともに、エッジ情報を利用した立体物の検出も行うことができるようにすることができる。ブロック構成A及びブロック構成Bを備える場合には、例えば明るさなどの環境要因に応じてブロック構成A又はブロック構成Bのいずれかを動作させることができる。以下、各構成について説明する。 As shown in FIG. 3, the computer 30 includes a viewpoint conversion unit 31, a positioning unit 32, a three-dimensional object detection unit 33, a detection area setting unit 34, and a smear detection unit 40. The calculation unit 30 of the present embodiment has a configuration relating to a three-dimensional object detection block using differential waveform information. The calculation unit 30 of the present embodiment can also be configured with respect to a three-dimensional object detection block using edge information. In this case, in the configuration shown in FIG. 3, a block configuration A configured by the alignment unit 32 and the three-dimensional object detection unit 33 is surrounded by a broken line, a luminance difference calculation unit 35, an edge line detection unit 36, It can be configured by replacing the block configuration B configured by the three-dimensional object detection unit 37. Of course, both the block configuration A and the block configuration B can be provided, so that the solid object can be detected using the difference waveform information and the solid object can be detected using the edge information. When the block configuration A and the block configuration B are provided, either the block configuration A or the block configuration B can be operated according to environmental factors such as brightness. Each configuration will be described below.
《差分波形情報による立体物の検出》
 本実施形態の立体物検出装置1は、車両後方を撮像する単眼のカメラ1により得られた画像情報に基づいて車両後方の右側隣接車線の検出領域A1又は左側隣接車線の検出領域A2に存在する立体物を検出する。検出領域設定部34は、撮像された画像情報内であって、自車両Vの後方の右側及び左側のそれぞれに検出領域A1,A2を設定する。この検出領域A2,A2の位置は特に限定されず、また、処理条件に応じて適宜に設定することができる。
<Detection of three-dimensional object by differential waveform information>
The three-dimensional object detection device 1 of the present embodiment exists in the detection area A1 of the right adjacent lane or the detection area A2 of the left adjacent lane behind the vehicle based on image information obtained by the monocular camera 1 that captures the rear of the vehicle. A three-dimensional object is detected. The detection area setting unit 34 sets detection areas A1 and A2 in the captured image information and on the right and left sides behind the host vehicle V, respectively. The positions of the detection areas A2 and A2 are not particularly limited, and can be set as appropriate according to the processing conditions.
 次に、視点変換部について説明する。視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力し、入力した撮像画像データを鳥瞰視される状態の鳥瞰視画像データに視点変換する。鳥瞰視される状態とは、上空から例えば鉛直下向きに見下ろす仮想カメラの視点から見た状態である。この視点変換は、例えば特開2008-219063号公報に記載されるようにして実行することができる。撮像画像データを鳥瞰視画像データに視点変換するのは、立体物に特有の鉛直エッジは鳥瞰視画像データへの視点変換により特定の定点を通る直線群に変換されるという原理に基づき、これを利用すれば平面物と立体物とを識別できるからである。なお、視点変換部31による画像変換処理の結果は、後述するエッジ情報による立体物の検出においても利用される。 Next, the viewpoint conversion unit will be described. The viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10 and converts the input captured image data into a bird's-eye view image data in a bird's-eye view state. The state viewed from a bird's-eye view is a state viewed from the viewpoint of a virtual camera looking down from above, for example, vertically downward. This viewpoint conversion can be executed as described in, for example, Japanese Patent Application Laid-Open No. 2008-219063. The viewpoint conversion of captured image data to bird's-eye view image data is based on the principle that a vertical edge peculiar to a three-dimensional object is converted into a straight line group passing through a specific fixed point by viewpoint conversion to bird's-eye view image data. This is because a planar object and a three-dimensional object can be distinguished if used. Note that the result of the image conversion processing by the viewpoint conversion unit 31 is also used in detection of a three-dimensional object by edge information described later.
 位置合わせ部32は、視点変換部31の視点変換により得られた鳥瞰視画像データを順次入力し、入力した異なる時刻の鳥瞰視画像データの位置を合わせる。図4は、位置合わせ部32の処理の概要を説明するための図であり、(a)は自車両Vの移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。 The alignment unit 32 sequentially inputs the bird's-eye view image data obtained by the viewpoint conversion of the viewpoint conversion unit 31 and aligns the positions of the inputted bird's-eye view image data at different times. 4A and 4B are diagrams for explaining the outline of the processing of the alignment unit 32, where FIG. 4A is a plan view showing the moving state of the host vehicle V, and FIG. 4B is an image showing the outline of the alignment.
 図4(a)に示すように、現時刻の自車両VがV1に位置し、一時刻前の自車両VがV2に位置していたとする。また、自車両Vの後側方向に他車両VXが位置して自車両Vと並走状態にあり、現時刻の他車両VXがV3に位置し、一時刻前の他車両VXがV4に位置していたとする。さらに、自車両Vは、一時刻で距離d移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。 As shown in FIG. 4A, it is assumed that the host vehicle V at the current time is located at V1, and the host vehicle V one hour before is located at V2. Further, the other vehicle VX is located in the rear direction of the own vehicle V and is in parallel with the own vehicle V, the other vehicle VX at the current time is located at V3, and the other vehicle VX one hour before is located at V4. Suppose you were. Furthermore, it is assumed that the host vehicle V has moved a distance d at one time. Note that “one hour before” may be a past time for a predetermined time (for example, one control cycle) from the current time, or may be a past time for an arbitrary time.
 このような状態において、現時刻における鳥瞰視画像PBは図4(b)に示すようになる。この鳥瞰視画像PBでは、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、位置V3にある他車両VXの位置については倒れ込みが発生する。また、一時刻前における鳥瞰視画像PBt-1についても同様に、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、位置V4にある他車両VXについては倒れ込みが発生する。既述したとおり、立体物の鉛直エッジ(厳密な意味の鉛直エッジ以外にも路面から三次元空間に立ち上がったエッジを含む)は、鳥瞰視画像データへの視点変換処理によって倒れ込み方向に沿った直線群として現れるのに対し、路面上の平面画像は鉛直エッジを含まないので、視点変換してもそのような倒れ込みが生じないからである。 In this state, the bird's-eye view image PB t at the current time is as shown in Figure 4 (b). In the bird's-eye view image PB t, becomes a rectangular shape for the white line drawn on the road surface, but a relatively accurate is a plan view state, tilting occurs about the position of another vehicle VX at position V3. Similarly, in the bird's-eye view image PB t-1 one hour before, the white line drawn on the road surface has a rectangular shape and is relatively accurately viewed in plan, but the other vehicle VX at the position V4 The fall will occur. As described above, the vertical edges of solid objects (including the edges that rise in the three-dimensional space from the road surface in addition to the vertical edges in the strict sense) are straight lines along the collapse direction by the viewpoint conversion processing to bird's-eye view image data. This is because the plane image on the road surface does not include a vertical edge, but such a fall does not occur even when the viewpoint is changed.
 位置合わせ部32は、上記のような鳥瞰視画像PB,PBt-1の位置合わせをデータ上で実行する。この際、位置合わせ部32は、一時刻前における鳥瞰視画像PBt-1をオフセットさせ、現時刻における鳥瞰視画像PBと位置を一致させる。図4(b)の左側の画像と中央の画像は、移動距離d’だけオフセットした状態を示す。このオフセット量d’は、図4(a)に示した自車両Vの実際の移動距離dに対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。 The alignment unit 32 performs alignment of the bird's-eye view images PB t and PB t−1 as described above on the data. At this time, the alignment unit 32 is offset a bird's-eye view image PB t-1 before one unit time, to match the position and bird's-eye view image PB t at the current time. The image on the left side and the center image in FIG. 4B show a state that is offset by the movement distance d ′. This offset amount d ′ is a movement amount on the bird's-eye view image data corresponding to the actual movement distance d of the host vehicle V shown in FIG. It is determined based on the time until the time.
 また、位置合わせ後において位置合わせ部32は、鳥瞰視画像PB,PBt-1の差分をとり、差分画像PDのデータを生成する。ここで、差分画像PDの画素値は、鳥瞰視画像PB,PBt-1の画素値の差を絶対値化したものでもよいし、照度環境の変化に対応するために当該絶対値が所定の閾値pを超えたときに「1」とし、超えないときに「0」としてもよい。図4(b)の右側の画像が、差分画像PDである。 Further, after the alignment, the alignment unit 32 takes the difference between the bird's-eye view images PB t and PB t−1 and generates data of the difference image PD t . Here, the pixel value of the difference image PD t may be an absolute value of the difference between the pixel values of the bird's-eye view images PB t and PB t−1 , and the absolute value may be used to cope with a change in illuminance environment. “1” may be set when a predetermined threshold value p is exceeded, and “0” may be set when the threshold value p is not exceeded. The image on the right side of FIG. 4B is the difference image PD t .
 図3に戻り、立体物検出部33は、図4(b)に示す差分画像PDのデータに基づいて立体物を検出する。この際、本例の立体物検出部33は、実空間上における立体物の移動距離についても算出する。立体物の検出及び移動距離の算出にあたり、立体物検出部33は、まず差分波形を生成する。なお、立体物の時間あたりの移動距離は、立体物の移動速度の算出に用いられる。そして、立体物の移動速度は、立体物が車両であるか否かの判断に用いることができる。 Returning to FIG. 3, the three-dimensional object detection unit 33 detects a three-dimensional object based on the data of the difference image PD t shown in FIG. At this time, the three-dimensional object detection unit 33 of this example also calculates the movement distance of the three-dimensional object in the real space. In detecting the three-dimensional object and calculating the movement distance, the three-dimensional object detection unit 33 first generates a differential waveform. Note that the moving distance of the three-dimensional object per time is used for calculating the moving speed of the three-dimensional object. The moving speed of the three-dimensional object can be used to determine whether or not the three-dimensional object is a vehicle.
 差分波形の生成にあたって本実施形態の立体物検出部33は、差分画像PDにおいて検出領域を設定する。本例の立体物検出装置1は、自車両Vの運転手が注意を払う他車両であり、特に、自車両Vが車線変更する際に接触の可能性がある自車両Vが走行する車線の隣の車線を走行する他車両を検出対象物として検出する。このため、画像情報に基づいて立体物を検出する本例では、カメラ1により得られた画像のうち、自車両Vの右側及び左側に二つの検出領域を設定する。具体的に、本実施形態では、図2に示すように自車両Vの後方の左側及び右側に矩形状の検出領域A1,A2を設定する。この検出領域A1,A2において検出された他車両は、自車両Vが走行する車線の隣の隣接車線を走行する障害物として検出される。なお、このような検出領域A1,A2は、自車両Vに対する相対位置から設定してもよいし、白線の位置を基準に設定してもよい。白線の位置を基準に設定する場合に、移動距離検出装置1は、例えば既存の白線認識技術等を利用するとよい。 Three-dimensional object detection unit 33 of the present embodiment when generating the differential waveform sets a detection area in the difference image PD t. The three-dimensional object detection device 1 of the present example is another vehicle that the driver of the host vehicle V pays attention to, in particular, the lane in which the host vehicle V that may be contacted when the host vehicle V changes lanes travels. Another vehicle traveling in the adjacent lane is detected as a detection target. For this reason, in this example which detects a solid object based on image information, two detection areas are set on the right side and the left side of the host vehicle V in the image obtained by the camera 1. Specifically, in the present embodiment, rectangular detection areas A1 and A2 are set on the left and right sides behind the host vehicle V as shown in FIG. The other vehicle detected in the detection areas A1 and A2 is detected as an obstacle traveling in the adjacent lane adjacent to the lane in which the host vehicle V is traveling. Such detection areas A1 and A2 may be set from a relative position with respect to the host vehicle V, or may be set based on the position of the white line. When setting the position of the white line as a reference, the movement distance detection device 1 may use, for example, an existing white line recognition technique.
 また、立体物検出部33は、設定した検出領域A1,A2の自車両V側における辺(走行方向に沿う辺)を接地線L1,L2(図2)として認識する。一般に接地線は立体物が地面に接触する線を意味するが、本実施形態では地面に接触する線でなく上記の如くに設定される。なおこの場合であっても、経験上、本実施形態に係る接地線と、本来の他車両VXの位置から求められる接地線との差は大きくなり過ぎず、実用上は問題が無い。 Further, the three-dimensional object detection unit 33 recognizes the sides (sides along the traveling direction) of the set detection areas A1 and A2 on the own vehicle V side as the ground lines L1 and L2 (FIG. 2). In general, the ground line means a line in which the three-dimensional object contacts the ground. However, in the present embodiment, the ground line is set as described above, not a line in contact with the ground. Even in this case, from experience, the difference between the ground line according to the present embodiment and the ground line obtained from the position of the other vehicle VX is not too large, and there is no problem in practical use.
 図5は、図3に示す立体物検出部33による差分波形の生成の様子を示す概略図である。図5に示すように、立体物検出部33は、位置合わせ部32で算出した差分画像PD(図4(b)の右図)のうち検出領域A1,A2に相当する部分から、差分波形DWを生成する。この際、立体物検出部33は、視点変換により立体物が倒れ込む方向に沿って、差分波形DWを生成する。なお、図5に示す例では、便宜上検出領域A1のみを用いて説明するが、検出領域A2についても同様の手順で差分波形DWを生成する。 FIG. 5 is a schematic diagram illustrating how a differential waveform is generated by the three-dimensional object detection unit 33 illustrated in FIG. 3. As shown in FIG. 5, the three-dimensional object detection unit 33 calculates a differential waveform from a portion corresponding to the detection areas A <b> 1 and A <b> 2 in the difference image PD t (right diagram in FIG. 4B) calculated by the alignment unit 32. DW t is generated. At this time, the three-dimensional object detection unit 33 generates a differential waveform DW t along the direction in which the three-dimensional object falls by viewpoint conversion. In the example shown in FIG. 5, only the detection area A1 is described for convenience, but the difference waveform DW t is generated for the detection area A2 in the same procedure.
 具体的に説明すると、立体物検出部33は、差分画像DWのデータ上において立体物が倒れ込む方向上の線Laを定義する。そして、立体物検出部33は、線La上において所定の差分を示す差分画素DPの数をカウントする。ここで、所定の差分を示す差分画素DPは、差分画像DWの画素値が鳥瞰視画像PB,PBt-1の画素値の差を絶対値化したものである場合は、所定の閾値を超える画素であり、差分画像DWの画素値が「0」「1」で表現されている場合は、「1」を示す画素である。 More specifically, the three-dimensional object detection unit 33 defines a line La in the direction in which the three-dimensional object falls on the data of the difference image DW t . Then, the three-dimensional object detection unit 33 counts the number of difference pixels DP indicating a predetermined difference on the line La. Here, the difference pixel DP indicating the predetermined difference is a predetermined threshold value when the pixel value of the difference image DW t is an absolute value of the difference between the pixel values of the bird's-eye view images PB t and PB t−1. When the pixel value of the difference image DW t is expressed by “0” and “1”, the pixel indicates “1”.
 立体物検出部33は、差分画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、立体物検出部33は、交点CPとカウント数とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図5右図の上下方向軸における位置を決定するとともに、カウント数から縦軸位置、すなわち図5右図の左右方向軸における位置を決定し、交点CPにおけるカウント数としてプロットする。 The three-dimensional object detection unit 33 counts the number of difference pixels DP and then obtains an intersection point CP between the line La and the ground line L1. Then, the three-dimensional object detection unit 33 associates the intersection CP with the count number, determines the horizontal axis position based on the position of the intersection CP, that is, the position on the vertical axis in the right diagram of FIG. The axis position, that is, the position on the right and left axis in the right diagram of FIG.
 以下同様に、立体物検出部33は、立体物が倒れ込む方向上の線Lb,Lc…を定義して、差分画素DPの数をカウントし、各交点CPの位置に基づいて横軸位置を決定し、カウント数(差分画素DPの数)から縦軸位置を決定しプロットする。立体物検出部33は、上記を順次繰り返して度数分布化することで、図5右図に示すように差分波形DWを生成する。 Similarly, the three-dimensional object detection unit 33 defines lines Lb, Lc... In the direction in which the three-dimensional object falls, counts the number of difference pixels DP, and determines the horizontal axis position based on the position of each intersection CP. Then, the vertical axis position is determined from the count number (number of difference pixels DP) and plotted. The three-dimensional object detection unit 33 generates the differential waveform DW t as shown in the right diagram of FIG.
 なお、図5左図に示すように、立体物が倒れ込む方向上の線Laと線Lbとは検出領域A1と重複する距離が異なっている。このため、検出領域A1が差分画素DPで満たされているとすると、線Lb上よりも線La上の方が差分画素DPの数が多くなる。このため、立体物検出部33は、差分画素DPのカウント数から縦軸位置を決定する場合に、立体物が倒れ込む方向上の線La,Lbと検出領域A1とが重複する距離に基づいて正規化する。具体例を挙げると、図5左図において線La上の差分画素DPは6つあり、線Lb上の差分画素DPは5つである。このため、図5においてカウント数から縦軸位置を決定するにあたり、立体物検出部33は、カウント数を重複距離で除算するなどして正規化する。これにより、差分波形DWに示すように、立体物が倒れ込む方向上の線La,Lbに対応する差分波形DWの値はほぼ同じとなっている。 As shown in the left diagram of FIG. 5, the line La and the line Lb in the direction in which the three-dimensional object collapses have different distances overlapping the detection area A1. For this reason, if the detection area A1 is filled with the difference pixels DP, the number of difference pixels DP is larger on the line La than on the line Lb. For this reason, when the three-dimensional object detection unit 33 determines the vertical axis position from the count number of the difference pixels DP, the three-dimensional object detection unit 33 is normalized based on the distance at which the lines La and Lb in the direction in which the three-dimensional object falls and the detection area A1 overlap. Turn into. As a specific example, in the left diagram of FIG. 5, there are six difference pixels DP on the line La, and there are five difference pixels DP on the line Lb. For this reason, in determining the vertical axis position from the count number in FIG. 5, the three-dimensional object detection unit 33 normalizes the count number by dividing it by the overlap distance. Thus, as shown in the difference waveform DW t, the line La on the direction the three-dimensional object collapses, the value of the differential waveform DW t corresponding to Lb is substantially the same.
 差分波形DWの生成後、立体物検出部33は一時刻前の差分波形DWt-1との対比により移動距離を算出する。すなわち、立体物検出部33は、差分波形DW,DWt-1の時間変化から移動距離を算出する。 After the generation of the differential waveform DW t , the three-dimensional object detection unit 33 calculates the movement distance by comparison with the differential waveform DW t−1 one time before. That is, the three-dimensional object detection unit 33 calculates the movement distance from the time change of the difference waveforms DW t and DW t−1 .
 詳細に説明すると、立体物検出部33は、図6に示すように差分波形DWを複数の小領域DWt1~DWtn(nは2以上の任意の整数)に分割する。図6は、立体物検出部33によって分割される小領域DWt1~DWtnを示す図である。小領域DWt1~DWtnは、例えば図6に示すように、互いに重複するようにして分割される。例えば小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。 Specifically, as shown in FIG. 6, the three-dimensional object detection unit 33 divides the differential waveform DW t into a plurality of small areas DW t1 to DW tn (n is an arbitrary integer equal to or greater than 2). FIG. 6 is a diagram illustrating the small areas DW t1 to DW tn divided by the three-dimensional object detection unit 33. The small areas DW t1 to DW tn are divided so as to overlap each other, for example, as shown in FIG. For example, the small area DW t1 and the small area DW t2 overlap, and the small area DW t2 and the small area DW t3 overlap.
 次いで、立体物検出部33は、小領域DWt1~DWtn毎にオフセット量(差分波形の横軸方向(図6の上下方向)の移動量)を求める。ここで、オフセット量は、一時刻前における差分波形DWt-1と現時刻における差分波形DWとの差(横軸方向の距離)から求められる。この際、立体物検出部33は、小領域DWt1~DWtn毎に、一時刻前における差分波形DWt-1を横軸方向に移動させた際に、現時刻における差分波形DWとの誤差が最小となる位置(横軸方向の位置)を判定し、差分波形DWt-1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。そして、立体物検出部33は、小領域DWt1~DWtn毎に求めたオフセット量をカウントしてヒストグラム化する。 Next, the three-dimensional object detection unit 33 obtains an offset amount (amount of movement of the differential waveform in the horizontal axis direction (vertical direction in FIG. 6)) for each of the small areas DW t1 to DW tn . Here, the offset amount is determined from the difference between the differential waveform DW t in the difference waveform DW t-1 and the current time before one unit time (distance in the horizontal axis direction). At this time, three-dimensional object detection unit 33, for each small area DW t1 ~ DW tn, when moving the differential waveform DW t1 before one unit time in the horizontal axis direction, the differential waveform DW t at the current time The position where the error is minimized (the position in the horizontal axis direction) is determined, and the amount of movement in the horizontal axis between the original position of the differential waveform DW t−1 and the position where the error is minimized is obtained as an offset amount. Then, the three-dimensional object detection unit 33 counts the offset amount obtained for each of the small areas DW t1 to DW tn and forms a histogram.
 図7は、立体物検出部33により得られるヒストグラムの一例を示す図である。図7に示すように、各小領域DWt1~DWtnと一時刻前における差分波形DWt-1との誤差が最小となる移動量であるオフセット量には、多少のバラつきが生じる。このため、立体物検出部33は、バラつきを含んだオフセット量をヒストグラム化し、ヒストグラムから移動距離を算出する。この際、立体物検出部33は、ヒストグラムの極大値から立体物の移動距離を算出する。すなわち、図7に示す例において立体物検出部33は、ヒストグラムの極大値を示すオフセット量を移動距離τと算出する。なおこの移動距離τは、自車両Vに対する他車両VXの相対移動距離である。このため、立体物検出部33は、絶対移動距離を算出する場合には、得られた移動距離τと車速センサ20からの信号とに基づいて、絶対移動距離を算出することとなる。なお、自車両Vに対する他車両VXの相対移動距離に基づいて相対速度を求めることができる。 FIG. 7 is a diagram illustrating an example of a histogram obtained by the three-dimensional object detection unit 33. As shown in FIG. 7, the offset amount, which is the amount of movement that minimizes the error between each of the small areas DW t1 to DW tn and the differential waveform DW t−1 one time before, has some variation. For this reason, the three-dimensional object detection unit 33 forms a histogram of offset amounts including variations, and calculates a movement distance from the histogram. At this time, the three-dimensional object detection unit 33 calculates the moving distance of the three-dimensional object from the maximum value of the histogram. That is, in the example illustrated in FIG. 7, the three-dimensional object detection unit 33 calculates the offset amount indicating the maximum value of the histogram as the movement distance τ * . The moving distance τ * is a relative moving distance of the other vehicle VX with respect to the host vehicle V. For this reason, when calculating the absolute movement distance, the three-dimensional object detection unit 33 calculates the absolute movement distance based on the obtained movement distance τ * and the signal from the vehicle speed sensor 20. The relative speed can be obtained based on the relative movement distance of the other vehicle VX with respect to the host vehicle V.
 なお、ヒストグラム化にあたり立体物検出部33は、複数の小領域DWt1~DWtn毎に重み付けをし、小領域DWt1~DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化してもよい。図8は、立体物検出部33による重み付けを示す図である。 Note that the three-dimensional object detection unit 33 weights each of the plurality of small areas DW t1 to DW tn and forms a histogram by counting the offset amount obtained for each of the small areas DW t1 to DW tn according to the weight. May be. FIG. 8 is a diagram illustrating weighting by the three-dimensional object detection unit 33.
 図8に示すように、小領域DW(mは1以上n-1以下の整数)は平坦となっている。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が小さくなっている。立体物検出部33は、このような小領域DWについて重みを小さくする。平坦な小領域DWについては、特徴がなくオフセット量の算出にあたり誤差が大きくなる可能性が高いからである。 As shown in FIG. 8, the small area DW m (m is an integer of 1 to n−1) is flat. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is small. Three-dimensional object detection unit 33 to reduce the weight for such small area DW m. This is because the flat small area DW m has no characteristics and is likely to have a large error in calculating the offset amount.
 一方、小領域DWm+k(kはn-m以下の整数)は起伏に富んでいる。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が大きくなっている。立体物検出部33は、このような小領域DWについて重みを大きくする。起伏に富む小領域DWm+kについては、特徴的でありオフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。 On the other hand, the small region DW m + k (k is an integer equal to or less than nm) is rich in undulations. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is large. Three-dimensional object detection unit 33 increases the weight for such small area DW m. This is because the small region DW m + k rich in undulations is characteristic and there is a high possibility that the offset amount can be accurately calculated. By weighting in this way, the calculation accuracy of the movement distance can be improved.
 なお、移動距離の算出精度を向上するために上記実施形態では差分波形DWを複数の小領域DWt1~DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1~DWtnに分割しなくてもよい。この場合に、立体物検出部33は、差分波形DWと差分波形DWt-1との誤差が最小となるときの差分波形DWのオフセット量から移動距離を算出することとなる。すなわち、一時刻前における差分波形DWt-1と現時刻における差分波形DWとのオフセット量を求める方法は上記内容に限定されない。 In the above embodiment, the differential waveform DW t is divided into a plurality of small areas DW t1 to DW tn in order to improve the calculation accuracy of the movement distance. However, when the calculation accuracy of the movement distance is not so required, the small area DW t1 is divided. It is not necessary to divide into ~ DW tn . In this case, the three-dimensional object detection unit 33 calculates the moving distance from the offset amount of the differential waveform DW t when the error between the differential waveform DW t and the differential waveform DW t−1 is minimized. That is, the method for obtaining the offset amount of the difference waveform DW t in the difference waveform DW t-1 and the current time before one unit time is not limited to the above disclosure.
 図3に戻り、計算機30はスミア検出部40を備える。スミア検出部40は、カメラ10による撮像によって得られた撮像画像のデータからスミアの発生領域を検出する。なお、スミアはCCDイメージセンサ等に生じる白飛び現象であることから、こうしたスミアが生じないCMOSイメージセンサ等を用いたカメラ10を採用する場合にはスミア検出部40を省略してもよい。 Returning to FIG. 3, the computer 30 includes a smear detection unit 40. The smear detection unit 40 detects a smear generation region from data of a captured image obtained by imaging with the camera 10. Since smear is a whiteout phenomenon that occurs in a CCD image sensor or the like, the smear detection unit 40 may be omitted when the camera 10 using a CMOS image sensor or the like that does not generate such smear is employed.
 図9は、スミア検出部40による処理及びそれによる差分波形DWの算出処理を説明するための画像図である。まずスミア検出部40にスミアSが存在する撮像画像Pのデータが入力されたとする。このとき、スミア検出部40は、撮像画像PからスミアSを検出する。スミアSの検出方法は様々であるが、例えば一般的なCCD(Charge-Coupled Device)カメラの場合、光源から画像下方向にだけスミアSが発生する。このため、本実施形態では画像下側から画像上方に向かって所定値以上の輝度値を持ち、且つ、縦方向に連続した領域を検索し、これをスミアSの発生領域と特定する。 FIG. 9 is an image diagram for explaining the processing by the smear detection unit 40 and the calculation processing of the differential waveform DW t thereby. First, it is assumed that data of the captured image P in which the smear S exists is input to the smear detection unit 40. At this time, the smear detection unit 40 detects the smear S from the captured image P. There are various methods for detecting the smear S. For example, in the case of a general CCD (Charge-Coupled Device) camera, the smear S is generated only in the downward direction of the image from the light source. For this reason, in this embodiment, a region having a luminance value equal to or higher than a predetermined value from the lower side of the image to the upper side of the image and continuous in the vertical direction is searched, and this is identified as a smear S generation region.
 また、スミア検出部40は、スミアSの発生箇所について画素値を「1」とし、それ以外の箇所を「0」とするスミア画像SPのデータを生成する。生成後、スミア検出部40はスミア画像SPのデータを視点変換部31に送信する。また、スミア画像SPのデータを入力した視点変換部31は、このデータを鳥瞰視される状態に視点変換する。これにより、視点変換部31はスミア鳥瞰視画像SBのデータを生成する。生成後、視点変換部31はスミア鳥瞰視画像SBのデータを位置合わせ部33に送信する。また、視点変換部31は一時刻前のスミア鳥瞰視画像SBt-1のデータを位置合わせ部33に送信する。 In addition, the smear detection unit 40 generates smear image SP data in which the pixel value is set to “1” for the place where the smear S occurs and the other place is set to “0”. After the generation, the smear detection unit 40 transmits the data of the smear image SP to the viewpoint conversion unit 31. In addition, the viewpoint conversion unit 31 to which the data of the smear image SP is input converts the viewpoint into a state of bird's-eye view. Thereby, the viewpoint conversion unit 31 generates data of the smear bird's-eye view image SB t . After the generation, the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t to the alignment unit 33. Further, the viewpoint conversion unit 31 transmits the data of the smear bird's-eye view image SB t−1 one hour before to the alignment unit 33.
 位置合わせ部32は、スミア鳥瞰視画像SB,SBt-1の位置合わせをデータ上で実行する。具体的な位置合わせについては、鳥瞰視画像PB,PBt-1の位置合わせをデータ上で実行する場合と同様である。また、位置合わせ後、位置合わせ部32は、各スミア鳥瞰視画像SB,SBt-1のスミアSの発生領域について論理和をとる。これにより、位置合わせ部32は、マスク画像MPのデータを生成する。生成後、位置合わせ部32は、マスク画像MPのデータを立体物検出部33に送信する。 The alignment unit 32 performs alignment of the smear bird's-eye view images SB t and SB t−1 on the data. The specific alignment is the same as the case where the alignment of the bird's-eye view images PB t and PB t−1 is executed on the data. In addition, after the alignment, the alignment unit 32 performs a logical sum on the smear S generation region of each smear bird's-eye view image SB t , SB t−1 . Thereby, the alignment part 32 produces | generates the data of mask image MP. After the generation, the alignment unit 32 transmits the data of the mask image MP to the three-dimensional object detection unit 33.
 立体物検出部33は、マスク画像MPのうちスミアSの発生領域に該当する箇所について、度数分布のカウント数をゼロとする。すなわち、図9に示すような差分波形DWが生成されていた場合に、立体物検出部33は、スミアSによるカウント数SCをゼロとし、補正された差分波形DW’を生成することとなる。 The three-dimensional object detection unit 33 sets the count number of the frequency distribution to zero for the portion corresponding to the smear S generation region in the mask image MP. That is, when the differential waveform DW t as shown in FIG. 9 is generated, the three-dimensional object detection unit 33 sets the count number SC by the smear S to zero and generates a corrected differential waveform DW t ′. Become.
 なお、本実施形態において立体物検出部33は、車両V(カメラ10)の移動速度を求め、求めた移動速度から静止物についてのオフセット量を求める。静止物のオフセット量を求めた後、立体物検出部33は、ヒストグラムの極大値のうち静止物に該当するオフセット量を無視したうえで、立体物の移動距離を算出する。 In the present embodiment, the three-dimensional object detection unit 33 obtains the moving speed of the vehicle V (camera 10), and obtains the offset amount for the stationary object from the obtained moving speed. After obtaining the offset amount of the stationary object, the three-dimensional object detection unit 33 calculates the moving distance of the three-dimensional object after ignoring the offset amount corresponding to the stationary object among the maximum values of the histogram.
 図10は、立体物検出部33により得られるヒストグラムの他例を示す図である。カメラ10の画角内に他車両VXの他に静止物が存在する場合に、得られるヒストグラムには2つの極大値τ1,τ2が現れる。この場合、2つの極大値τ1,τ2のうち、いずれか一方は静止物のオフセット量である。このため、立体物検出部33は、移動速度から静止物についてのオフセット量を求め、そのオフセット量に該当する極大値について無視し、残り一方の極大値を採用して立体物の移動距離を算出する。 FIG. 10 is a diagram illustrating another example of a histogram obtained by the three-dimensional object detection unit 33. When a stationary object exists in addition to the other vehicle VX within the angle of view of the camera 10, two maximum values τ1 and τ2 appear in the obtained histogram. In this case, one of the two maximum values τ1, τ2 is the offset amount of the stationary object. For this reason, the three-dimensional object detection unit 33 calculates the offset amount for the stationary object from the moving speed, ignores the maximum value corresponding to the offset amount, and calculates the moving distance of the three-dimensional object using the remaining maximum value. To do.
 なお、静止物に該当するオフセット量を無視したとしても、極大値が複数存在する場合、カメラ10の画角内に他車両VXが複数台存在すると想定される。しかし、検出領域A1,A2内に複数の他車両VXが存在することは極めて稀である。このため、立体物検出部33は、移動距離の算出を中止する。 Even if the offset amount corresponding to the stationary object is ignored, if there are a plurality of maximum values, it is assumed that there are a plurality of other vehicles VX within the angle of view of the camera 10. However, it is very rare that a plurality of other vehicles VX exist in the detection areas A1 and A2. For this reason, the three-dimensional object detection unit 33 stops calculating the movement distance.
 次に差分波形情報による立体物検出手順を説明する。図11及び図12は、本実施形態の立体物検出手順を示すフローチャートである。図11に示すように、先ずステップS0において、計算機30は所定のルールに基づいて検出領域を設定する。この検出領域の設定手法については後に詳述する。そして、計算機30は、カメラ10による撮像画像Pのデータを入力し、スミア検出部40によりスミア画像SPを生成する(S1)。次いで、視点変換部31は、カメラ10からの撮像画像Pのデータから鳥瞰視画像PBのデータを生成すると共に、スミア画像SPのデータからスミア鳥瞰視画像SBのデータを生成する(S2)。 Next, a solid object detection procedure based on differential waveform information will be described. 11 and 12 are flowcharts showing the three-dimensional object detection procedure of this embodiment. As shown in FIG. 11, first in step S0, the computer 30 sets a detection area based on a predetermined rule. This detection area setting method will be described in detail later. Then, the computer 30 receives data of the image P captured by the camera 10 and generates a smear image SP by the smear detection unit 40 (S1). Next, the viewpoint conversion unit 31 generates data of the bird's-eye view image PB t from the data of the captured image P from the camera 10, and also generates data of the smear bird's-eye view image SB t from the data of the smear image SP (S2). .
 そして、位置合わせ部33は、鳥瞰視画像PBのデータと、一時刻前の鳥瞰視画像PBt-1のデータとを位置合わせすると共に、スミア鳥瞰視画像SBのデータと、一時刻前のスミア鳥瞰視画像SBt-1のデータとを位置合わせする(S3)。この位置合わせ後、位置合わせ部33は、差分画像PDのデータを生成すると共に、マスク画像MPのデータを生成する(S4)。その後、立体物検出部33は、差分画像PDのデータと、一時刻前の差分画像PDt-1のデータとから、差分波形DWを生成する(S5)。差分波形DWを生成後、立体物検出部33は、差分波形DWのうち、スミアSの発生領域に該当するカウント数をゼロとし、スミアSによる影響を抑制する(S6)。 Then, the alignment unit 33 aligns the data of the bird's-eye view image PB t and the data of the bird's-eye view image PB t−1 one hour ago, and the data of the smear bird's-eye view image SB t one hour ago. And the data of the smear bird's-eye view image SB t-1 are aligned (S3). After this alignment, the alignment unit 33 generates data for the difference image PD t and also generates data for the mask image MP (S4). Then, three-dimensional object detection unit 33, the data of the difference image PD t, and a one unit time before the difference image PD t-1 of the data, generates a difference waveform DW t (S5). After generating the differential waveform DW t , the three-dimensional object detection unit 33 sets the count number corresponding to the generation area of the smear S in the differential waveform DW t to zero, and suppresses the influence of the smear S (S6).
 その後、立体物検出部33は、差分波形DWのピークが第1閾値α以上であるか否かを判断する(S7)。ここで、差分波形DWのピークが第1閾値α以上でない場合、すなわち差分が殆どない場合には、撮像画像P内には立体物が存在しないと考えられる。このため、差分波形DWのピークが第1閾値α以上でないと判断した場合には(S7:NO)、立体物検出部33は、立体物が存在せず、障害物としての他車両が存在しないと判断する(図12:S16)。そして、図11及び図12に示す処理を終了する。 Thereafter, the three-dimensional object detection unit 33 determines whether or not the peak of the differential waveform DW t is greater than or equal to the first threshold value α (S7). Here, when the peak of the difference waveform DW t is not equal to or greater than the first threshold value α, that is, when there is almost no difference, it is considered that there is no three-dimensional object in the captured image P. For this reason, when it is determined that the peak of the differential waveform DW t is not equal to or greater than the first threshold value α (S7: NO), the three-dimensional object detection unit 33 does not have a three-dimensional object and has another vehicle as an obstacle. It is determined not to do so (FIG. 12: S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
 一方、差分波形DWのピークが第1閾値α以上であると判断した場合には(S7:YES)、立体物検出部33は、立体物が存在すると判断し、差分波形DWを複数の小領域DWt1~DWtnに分割する(S8)。次いで、立体物検出部33は、小領域DWt1~DWtn毎に重み付けを行う(S9)。その後、立体物検出部33は、小領域DWt1~DWtn毎のオフセット量を算出し(S10)、重みを加味してヒストグラムを生成する(S11)。 On the other hand, when it is determined that the peak of the difference waveform DW t is equal to or greater than the first threshold value α (S7: YES), the three-dimensional object detection unit 33 determines that a three-dimensional object exists, and sets the difference waveform DW t to a plurality of difference waveforms DW t . The area is divided into small areas DW t1 to DW tn (S8). Next, the three-dimensional object detection unit 33 performs weighting for each of the small areas DW t1 to DW tn (S9). Thereafter, the three-dimensional object detection unit 33 calculates an offset amount for each of the small areas DW t1 to DW tn (S10), and generates a histogram with weights added (S11).
 そして、立体物検出部33は、ヒストグラムに基づいて自車両Vに対する立体物の移動距離である相対移動距離を算出する(S12)。次に、立体物検出部33は、相対移動距離から立体物の絶対移動速度を算出する(S13)。このとき、立体物検出部33は、相対移動距離を時間微分して相対移動速度を算出すると共に、車速センサ20で検出された自車速を加算して、絶対移動速度を算出する。 Then, the three-dimensional object detection unit 33 calculates a relative movement distance that is a movement distance of the three-dimensional object with respect to the host vehicle V based on the histogram (S12). Next, the three-dimensional object detection unit 33 calculates the absolute movement speed of the three-dimensional object from the relative movement distance (S13). At this time, the three-dimensional object detection unit 33 calculates the relative movement speed by differentiating the relative movement distance with respect to time, and adds the own vehicle speed detected by the vehicle speed sensor 20 to calculate the absolute movement speed.
 その後、立体物検出部33は、立体物の絶対移動速度が10km/h以上、且つ、立体物の自車両Vに対する相対移動速度が+60km/h以下であるか否かを判断する(S14)。双方を満たす場合には(S14:YES)、立体物検出部33は、立体物が他車両VXであると判断する(S15)。そして、図11及び図12に示す処理を終了する。一方、いずれか一方でも満たさない場合には(S14:NO)、立体物検出部33は、他車両が存在しないと判断する(S16)。そして、図11及び図12に示す処理を終了する。 Thereafter, the three-dimensional object detection unit 33 determines whether the absolute movement speed of the three-dimensional object is 10 km / h or more and the relative movement speed of the three-dimensional object with respect to the host vehicle V is +60 km / h or less (S14). When both are satisfied (S14: YES), the three-dimensional object detection unit 33 determines that the three-dimensional object is the other vehicle VX (S15). Then, the processes shown in FIGS. 11 and 12 are terminated. On the other hand, when either one is not satisfied (S14: NO), the three-dimensional object detection unit 33 determines that there is no other vehicle (S16). Then, the processes shown in FIGS. 11 and 12 are terminated.
 なお、本実施形態では自車両Vの後側方を検出領域A1,A2とし、自車両Vが走行中に注意を払うべきである自車両の走行車線の隣を走行する隣接車線を走行する他車両VXを検出すること、特に、自車両Vが車線変更した場合に接触する可能性がある否かに重点を置いている。自車両Vが車線変更した場合に、自車両の走行車線の隣の隣接車線を走行する他車両VXと接触する可能性がある否かを判断するためである。このため、ステップS14の処理が実行されている。すなわち、本実施形態にけるシステムを高速道路で作動させることを前提とすると、立体物の速度が10km/h未満である場合、たとえ他車両VXが存在したとしても、車線変更する際には自車両Vの遠く後方に位置するため問題となることが少ない。同様に、立体物の自車両Vに対する相対移動速度が+60km/hを超える場合(すなわち、立体物が自車両Vの速度よりも60km/hより大きな速度で移動している場合)、車線変更する際には自車両Vの前方に移動しているため問題となることが少ない。このため、ステップS14では車線変更の際に問題となる他車両VXを判断しているともいえる。 In the present embodiment, the rear side of the host vehicle V is set as the detection areas A1 and A2, and the vehicle V travels in the adjacent lane that travels next to the travel lane of the host vehicle to which attention should be paid while traveling. Emphasis is placed on detecting the vehicle VX, and in particular, whether or not there is a possibility of contact when the host vehicle V changes lanes. This is to determine whether or not there is a possibility of contact with another vehicle VX traveling in the adjacent lane adjacent to the traveling lane of the own vehicle when the own vehicle V changes lanes. For this reason, the process of step S14 is performed. That is, assuming that the system according to this embodiment is operated on a highway, if the speed of a three-dimensional object is less than 10 km / h, even if another vehicle VX exists, Since it is located far behind the vehicle V, there are few problems. Similarly, when the relative moving speed of the three-dimensional object with respect to the own vehicle V exceeds +60 km / h (that is, when the three-dimensional object is moving at a speed higher than 60 km / h than the speed of the own vehicle V), the lane is changed. In some cases, since the vehicle is moving in front of the host vehicle V, there is little problem. For this reason, it can be said that the other vehicle VX which becomes a problem at the time of lane change is judged in step S14.
 また、ステップS14において立体物の絶対移動速度が10km/h以上、且つ、立体物の自車両Vに対する相対移動速度が+60km/h以下であるかを判断することにより、以下の効果がある。例えば、カメラ10の取り付け誤差によっては、静止物の絶対移動速度を数km/hであると検出してしまう場合があり得る。よって、10km/h以上であるかを判断することにより、静止物を他車両VXであると判断してしまう可能性を低減することができる。また、ノイズによっては立体物の自車両Vに対する相対速度を+60km/hを超える速度に検出してしまうことがあり得る。よって、相対速度が+60km/h以下であるかを判断することにより、ノイズによる誤検出の可能性を低減できる。 In step S14, it is determined whether the absolute moving speed of the three-dimensional object is 10 km / h or more and the relative moving speed of the three-dimensional object with respect to the vehicle V is +60 km / h or less. For example, depending on the mounting error of the camera 10, the absolute moving speed of the stationary object may be detected to be several km / h. Therefore, by determining whether the speed is 10 km / h or more, it is possible to reduce the possibility of determining that the stationary object is the other vehicle VX. Further, depending on the noise, the relative speed of the three-dimensional object with respect to the host vehicle V may be detected at a speed exceeding +60 km / h. Therefore, the possibility of erroneous detection due to noise can be reduced by determining whether the relative speed is +60 km / h or less.
 さらに、ステップS14の処理に代えて、絶対移動速度がマイナスでないことや、0km/hでないことを判断してもよい。また、本実施形態では自車両Vが車線変更した場合に接触する可能性がある否かに重点を置いているため、ステップS15において他車両VXが検出された場合に、自車両の運転者に警告音を発したり、所定の表示装置により警告相当の表示を行ったりしてもよい。 Furthermore, instead of the process of step S14, it may be determined that the absolute movement speed is not negative or not 0 km / h. Further, in the present embodiment, since emphasis is placed on whether or not there is a possibility of contact when the host vehicle V changes lanes, when another vehicle VX is detected in step S15, the driver of the host vehicle is notified. A warning sound may be emitted or a display corresponding to a warning may be performed by a predetermined display device.
 このように、本例の差分波形情報による立体物の検出手順によれば、視点変換により立体物が倒れ込む方向に沿って、差分画像PDのデータ上において所定の差分を示す画素数をカウントして度数分布化することで差分波形DWを生成する。ここで、差分画像PDのデータ上において所定の差分を示す画素とは、異なる時刻の画像において変化があった画素であり、言い換えれば立体物が存在した箇所であるといえる。このため、立体物が存在した箇所において、立体物が倒れ込む方向に沿って画素数をカウントして度数分布化することで差分波形DWを生成することとなる。特に、立体物が倒れ込む方向に沿って画素数をカウントすることから、立体物に対して高さ方向の情報から差分波形DWを生成することとなる。そして、高さ方向の情報を含む差分波形DWの時間変化から立体物の移動距離を算出する。このため、単に1点の移動のみに着目するような場合と比較して、時間変化前の検出箇所と時間変化後の検出箇所とは高さ方向の情報を含んで特定されるため立体物において同じ箇所となり易く、同じ箇所の時間変化から移動距離を算出することとなり、移動距離の算出精度を向上させることができる。 Thus, according to the detection procedure of the three-dimensional object based on the difference waveform information of this example, the number of pixels indicating a predetermined difference is counted on the data of the difference image PD t along the direction in which the three-dimensional object falls by viewpoint conversion. The difference waveform DW t is generated by frequency distribution. Here, the pixel indicating the predetermined difference on the data of the difference image PD t is a pixel that has changed in an image at a different time, in other words, a place where a three-dimensional object exists. For this reason, the difference waveform DW t is generated by counting the number of pixels along the direction in which the three-dimensional object collapses and performing frequency distribution at the location where the three-dimensional object exists. In particular, since the number of pixels is counted along the direction in which the three-dimensional object falls, the differential waveform DW t is generated from the information in the height direction for the three-dimensional object. Then, the moving distance of the three-dimensional object is calculated from the time change of the differential waveform DW t including the information in the height direction. For this reason, compared with the case where only one point of movement is focused on, the detection location before the time change and the detection location after the time change are specified including information in the height direction. The same location is likely to be obtained, and the movement distance is calculated from the time change of the same location, so that the calculation accuracy of the movement distance can be improved.
 また、差分波形DWのうちスミアSの発生領域に該当する箇所について、度数分布のカウント数をゼロとする。これにより、差分波形DWのうちスミアSによって生じる波形部位を除去することとなり、スミアSを立体物と誤認してしまう事態を防止することができる。 In addition, the count number of the frequency distribution is set to zero for the portion corresponding to the smear S generation region in the differential waveform DW t . As a result, the waveform portion generated by the smear S in the differential waveform DW t is removed, and a situation in which the smear S is mistaken as a three-dimensional object can be prevented.
 また、異なる時刻に生成された差分波形DWの誤差が最小となるときの差分波形DWのオフセット量から立体物の移動距離を算出する。このため、波形という1次元の情報のオフセット量から移動距離を算出することとなり、移動距離の算出にあたり計算コストを抑制することができる。 Further, the moving distance of the three-dimensional object is calculated from the offset amount of the differential waveform DW t when the error of the differential waveform DW t generated at different times is minimized. For this reason, the movement distance is calculated from the offset amount of the one-dimensional information called the waveform, and the calculation cost can be suppressed in calculating the movement distance.
 また、異なる時刻に生成された差分波形DWを複数の小領域DWt1~DWtnに分割する。このように複数の小領域DWt1~DWtnに分割することによって、立体物のそれぞれの箇所を表わした波形を複数得ることとなる。また、小領域DWt1~DWtn毎にそれぞれの波形の誤差が最小となるときのオフセット量を求め、小領域DWt1~DWtn毎に求めたオフセット量をカウントしてヒストグラム化することにより、立体物の移動距離を算出する。このため、立体物のそれぞれの箇所毎にオフセット量を求めることとなり、複数のオフセット量から移動距離を求めることとなり、移動距離の算出精度を向上させることができる。 Further, the differential waveform DW t generated at different times is divided into a plurality of small regions DW t1 to DW tn . Thus, by dividing into a plurality of small areas DW t1 to DW tn , a plurality of waveforms representing respective portions of the three-dimensional object are obtained. Also, determine the offset amount when the error of each waveform for each small area DW t1 ~ DW tn is minimized by histogram by counting the offset amount determined for each small area DW t1 ~ DW tn, The moving distance of the three-dimensional object is calculated. For this reason, the offset amount is obtained for each part of the three-dimensional object, and the movement distance is obtained from a plurality of offset amounts, so that the calculation accuracy of the movement distance can be improved.
 また、複数の小領域DWt1~DWtn毎に重み付けをし、小領域DWt1~DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化する。このため、特徴的な領域については重みを大きくし、特徴的でない領域については重みを小さくすることにより、一層適切に移動距離を算出することができる。従って、移動距離の算出精度を一層向上させることができる。 Further, weighting is performed for each of the plurality of small areas DW t1 to DW tn , and the offset amount obtained for each of the small areas DW t1 to DW tn is counted according to the weight to form a histogram. For this reason, the moving distance can be calculated more appropriately by increasing the weight for the characteristic area and decreasing the weight for the non-characteristic area. Therefore, the calculation accuracy of the moving distance can be further improved.
 また、差分波形DWの各小領域DWt1~DWtnについて、所定の差分を示す画素数のカウントの最大値と最小値との差が大きいほど、重みを大きくする。このため、最大値と最小値との差が大きい特徴的な起伏の領域ほど重みが大きくなり、起伏が小さい平坦な領域については重みが小さくなる。ここで、平坦な領域よりも起伏の大きい領域の方が形状的にオフセット量を正確に求めやすいため、最大値と最小値との差が大きい領域ほど重みを大きくすることにより、移動距離の算出精度を一層向上させることができる。 For each of the small areas DW t1 to DW tn of the differential waveform DW t , the weight is increased as the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference increases. For this reason, the characteristic undulation region having a large difference between the maximum value and the minimum value has a larger weight, and the flat region having a small undulation has a smaller weight. Here, since it is easier to obtain the offset amount more accurately in the shape of the undulating area than in the flat area, the moving distance is calculated by increasing the weight in the area where the difference between the maximum value and the minimum value is large. The accuracy can be further improved.
 また、小領域DWt1~DWtn毎に求めたオフセット量をカウントして得られたヒストグラムの極大値から、立体物の移動距離を算出する。このため、オフセット量にバラつきがあったとしても、その極大値から、より正確性の高い移動距離を算出することができる。 Further, the moving distance of the three-dimensional object is calculated from the maximum value of the histogram obtained by counting the offset amount obtained for each of the small areas DW t1 to DW tn . For this reason, even if there is a variation in the offset amount, a more accurate movement distance can be calculated from the maximum value.
 また、静止物についてのオフセット量を求め、このオフセット量を無視するため、静止物により立体物の移動距離の算出精度が低下してしまう事態を防止することができる。また、静止物に該当するオフセット量を無視したうえで、極大値が複数ある場合、立体物の移動距離の算出を中止する。このため、極大値が複数あるような誤った移動距離を算出してしまう事態を防止することができる。 Also, since the offset amount for a stationary object is obtained and this offset amount is ignored, it is possible to prevent a situation in which the calculation accuracy of the moving distance of the three-dimensional object is lowered due to the stationary object. In addition, if there are a plurality of maximum values after ignoring the offset amount corresponding to the stationary object, the calculation of the moving distance of the three-dimensional object is stopped. For this reason, it is possible to prevent a situation in which an erroneous movement distance having a plurality of maximum values is calculated.
 なお上記実施形態において、自車両Vの車速を車速センサ20からの信号に基づいて判断しているが、これに限らず、異なる時刻の複数の画像から速度を推定するようにしてもよい。この場合、車速センサが不要となり、構成の簡素化を図ることができる。 In the above embodiment, the vehicle speed of the host vehicle V is determined based on a signal from the vehicle speed sensor 20, but the present invention is not limited to this, and the speed may be estimated from a plurality of images at different times. In this case, a vehicle speed sensor becomes unnecessary, and the configuration can be simplified.
 また、上記実施形態においては撮像した現時刻の画像と一時刻前の画像とを鳥瞰図に変換し、変換した鳥瞰図の位置合わせを行ったうえで差分画像PDを生成し、生成した差分画像PDを倒れ込み方向(撮像した画像を鳥瞰図に変換した際の立体物の倒れ込み方向)に沿って評価して差分波形DWを生成しているが、これに限定されない。例えば、一時刻前の画像のみを鳥瞰図に変換し、変換した鳥瞰図を位置合わせした後に再び撮像した画像相当に変換し、この画像と現時刻の画像とで差分画像を生成し、生成した差分画像を倒れ込み方向に相当する方向(すなわち、倒れ込み方向を撮像画像上の方向に変換した方向)に沿って評価することによって差分波形DWを生成してもよい。すなわち、現時刻の画像と一時刻前の画像との位置合わせを行い、位置合わせを行った両画像の差分から差分画像PDを生成し、差分画像PDを鳥瞰図に変換した際の立体物の倒れ込み方向に沿って評価できれば、必ずしも明確に鳥瞰図を生成しなくともよい。 In the above-described embodiment, the captured image at the current time and the image one hour before are converted into a bird's-eye view, the converted bird's-eye view is aligned, the difference image PD t is generated, and the generated difference image PD Although t is evaluated along the falling direction (the falling direction of the three-dimensional object when the captured image is converted into a bird's eye view), the differential waveform DW t is generated, but the present invention is not limited to this. For example, only the image one hour before is converted into a bird's-eye view, the converted bird's-eye view is converted into an equivalent to the image captured again, a difference image is generated between this image and the current time image, and the generated difference image The differential waveform DW t may be generated by evaluating along the direction corresponding to the falling direction (that is, the direction in which the falling direction is converted into the direction on the captured image). That is, the three-dimensional object when the image of the current time and the image of one hour before are aligned, the difference image PD t is generated from the difference between the two images subjected to the alignment, and the difference image PD t is converted into a bird's eye view The bird's-eye view does not necessarily have to be clearly generated as long as the evaluation can be performed along the direction in which the user falls.
《エッジ情報による立体物の検出》
 次に、図3に示すブロックAに代えて動作させることが可能である、輝度差算出部35、エッジ線検出部36及び立体物検出部37で構成されるエッジ情報を利用した立体物の検出ブロックBについて説明する。図13は、図3のカメラ10の撮像範囲等を示す図であり、図13(a)は平面図、図13(b)は、自車両Vから後側方における実空間上の斜視図を示す。図13(a)に示すように、カメラ10は所定の画角aとされ、この所定の画角aに含まれる自車両Vから後側方を撮像する。カメラ10の画角aは、図2に示す場合と同様に、カメラ10の撮像範囲に自車両Vが走行する車線に加えて、隣接する車線も含まれるように設定されている。
《Detection of solid objects by edge information》
Next, it is possible to operate instead of the block A shown in FIG. 3 to detect a three-dimensional object using edge information configured by a luminance difference calculation unit 35, an edge line detection unit 36, and a three-dimensional object detection unit 37. The block B will be described. FIGS. 13A and 13B are diagrams illustrating an imaging range and the like of the camera 10 in FIG. 3. FIG. 13A is a plan view, and FIG. 13B is a perspective view in real space on the rear side from the host vehicle V. Show. As shown in FIG. 13A, the camera 10 has a predetermined angle of view a, and images the rear side from the host vehicle V included in the predetermined angle of view a. Similarly to the case shown in FIG. 2, the angle of view “a” of the camera 10 is set so that the imaging range of the camera 10 includes the adjacent lane in addition to the lane in which the host vehicle V travels.
 本例の検出領域A1,A2は、平面視(鳥瞰視された状態)において台形状とされ、これら検出領域A1,A2の位置、大きさ及び形状は、距離d~dに基づいて決定される。なお、同図に示す例の検出領域A1,A2は台形状に限らず、図2に示すように鳥瞰視された状態で矩形など他の形状であってもよい。なお、本実施形態における検出領域設定部34も、先述した手法により検出領域A1,A2を設定することができる。 The detection areas A1 and A2 in this example are trapezoidal in a plan view (when viewed from a bird's eye), and the positions, sizes, and shapes of the detection areas A1 and A2 are determined based on the distances d 1 to d 4. Is done. The detection areas A1 and A2 in the example shown in the figure are not limited to a trapezoidal shape, and may be other shapes such as a rectangle when viewed from a bird's eye view as shown in FIG. Note that the detection area setting unit 34 in the present embodiment can also set the detection areas A1 and A2 by the method described above.
 ここで、距離d1は、自車両Vから接地線L1,L2までの距離である。接地線L1,L2は、自車両Vが走行する車線に隣接する車線に存在する立体物が地面に接触する線を意味する。本実施形態においては、自車両Vの後側方において自車両Vの車線に隣接する左右の車線を走行する他車両VX等(2輪車等を含む)を検出することが目的である。このため、自車両Vから白線Wまでの距離d11及び白線Wから他車両VXが走行すると予測される位置までの距離d12から、他車両VXの接地線L1,L2となる位置である距離d1を略固定的に決定しておくことができる。 Here, the distance d1 is a distance from the host vehicle V to the ground lines L1 and L2. The ground lines L1 and L2 mean lines on which a three-dimensional object existing in the lane adjacent to the lane in which the host vehicle V travels contacts the ground. The purpose of the present embodiment is to detect other vehicles VX and the like (including two-wheeled vehicles) traveling in the left and right lanes adjacent to the lane of the host vehicle V on the rear side of the host vehicle V. For this reason, a distance d1 which is a position to be the ground lines L1 and L2 of the other vehicle VX is obtained from a distance d11 from the own vehicle V to the white line W and a distance d12 from the white line W to a position where the other vehicle VX is predicted to travel. It can be determined substantially fixedly.
 また、距離d1については、固定的に決定されている場合に限らず、可変としてもよい。この場合に、計算機30は、白線認識等の技術により自車両Vに対する白線Wの位置を認識し、認識した白線Wの位置に基づいて距離d11を決定する。これにより、距離d1は、決定された距離d11を用いて可変的に設定される。以下の本実施形態においては、他車両VXが走行する位置(白線Wからの距離d12)及び自車両Vが走行する位置(白線Wからの距離d11)は大凡決まっていることから、距離d1は固定的に決定されているものとする。 Further, the distance d1 is not limited to being fixedly determined, and may be variable. In this case, the computer 30 recognizes the position of the white line W with respect to the host vehicle V by a technique such as white line recognition, and determines the distance d11 based on the recognized position of the white line W. Thereby, the distance d1 is variably set using the determined distance d11. In the following embodiment, since the position where the other vehicle VX travels (distance d12 from the white line W) and the position where the host vehicle V travels (distance d11 from the white line W) are roughly determined, the distance d1 is It shall be fixedly determined.
 距離d2は、自車両Vの後端部から車両進行方向に伸びる距離である。この距離d2は、検出領域A1,A2が少なくともカメラ10の画角a内に収まるように決定されている。特に本実施形態において、距離d2は、画角aに区分される範囲に接するよう設定されている。距離d3は、検出領域A1,A2の車両進行方向における長さを示す距離である。この距離d3は、検出対象となる立体物の大きさに基づいて決定される。本実施形態においては、検出対象が他車両VX等であるため、距離d3は、他車両VXを含む長さに設定される。 The distance d2 is a distance extending from the rear end portion of the host vehicle V in the vehicle traveling direction. The distance d2 is determined so that the detection areas A1 and A2 are at least within the angle of view a of the camera 10. In particular, in the present embodiment, the distance d2 is set so as to be in contact with the range divided into the angle of view a. The distance d3 is a distance indicating the length of the detection areas A1, A2 in the vehicle traveling direction. This distance d3 is determined based on the size of the three-dimensional object to be detected. In the present embodiment, since the detection target is the other vehicle VX or the like, the distance d3 is set to a length including the other vehicle VX.
 距離d4は、図13(b)に示すように、実空間において他車両VX等のタイヤを含むように設定された高さを示す距離である。距離d4は、鳥瞰視画像においては図13(a)に示す長さとされる。なお、距離d4は、鳥瞰視画像において左右の隣接車線よりも更に隣接する車線(すなわち2車線隣りの車線)を含まない長さとすることもできる。自車両Vの車線から2車線隣の車線を含んでしまうと、自車両Vが走行している車線である自車線の左右の隣接車線に他車両VXが存在するのか、2車線隣りの車線に他車両VXが存在するのかについて、区別が付かなくなってしまうためである。 As shown in FIG. 13B, the distance d4 is a distance indicating a height set so as to include a tire such as the other vehicle VX in the real space. The distance d4 is a length shown in FIG. 13A in the bird's-eye view image. The distance d4 may be a length that does not include a lane that is further adjacent to the left and right adjacent lanes in the bird's-eye view image (that is, a lane that is adjacent to two lanes). If the lane adjacent to the two lanes is included from the lane of the own vehicle V, there is another vehicle VX in the adjacent lane on the left and right of the own lane that is the lane in which the own vehicle V is traveling, or in the lane adjacent to the two lanes This is because it becomes impossible to distinguish whether there is another vehicle VX.
 以上のように、距離d1~距離d4が決定され、これにより検出領域A1,A2の位置、大きさ及び形状が決定される。具体的に説明すると、距離d1により、台形をなす検出領域A1,A2の上辺b1の位置が決定される。距離d2により、上辺b1の始点位置C1が決定される。距離d3により、上辺b1の終点位置C2が決定される。カメラ10から始点位置C1に向かって伸びる直線L3により、台形をなす検出領域A1,A2の側辺b2が決定される。同様に、カメラ10から終点位置C2に向かって伸びる直線L4により、台形をなす検出領域A1,A2の側辺b3が決定される。距離d4により、台形をなす検出領域A1,A2の下辺b4の位置が決定される。このように、各辺b1~b4により囲まれる領域が検出領域A1,A2とされる。この検出領域A1,A2は、図13(b)に示すように、自車両Vから後側方における実空間上では真四角(長方形)となる。 As described above, the distances d1 to d4 are determined, and thereby the positions, sizes, and shapes of the detection areas A1 and A2 are determined. More specifically, the position of the upper side b1 of the detection areas A1 and A2 forming a trapezoid is determined by the distance d1. The starting point position C1 of the upper side b1 is determined by the distance d2. The end point position C2 of the upper side b1 is determined by the distance d3. The side b2 of the detection areas A1 and A2 having a trapezoidal shape is determined by a straight line L3 extending from the camera 10 toward the starting point position C1. Similarly, a side b3 of trapezoidal detection areas A1 and A2 is determined by a straight line L4 extending from the camera 10 toward the end position C2. The position of the lower side b4 of the detection areas A1 and A2 having a trapezoidal shape is determined by the distance d4. Thus, the areas surrounded by the sides b1 to b4 are set as the detection areas A1 and A2. As shown in FIG. 13B, the detection areas A <b> 1 and A <b> 2 are true squares (rectangles) in the real space behind the host vehicle V.
 図3に戻り、視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力する。視点変換部31は、入力した撮像画像データに対して、鳥瞰視される状態の鳥瞰視画像データに視点変換処理を行う。鳥瞰視される状態とは、上空から例えば鉛直下向き(又は、やや斜め下向き)に見下ろす仮想カメラの視点から見た状態である。この視点変換処理は、例えば特開2008-219063号公報に記載された技術によって実現することができる。 Returning to FIG. 3, the viewpoint conversion unit 31 inputs captured image data of a predetermined area obtained by imaging with the camera 10. The viewpoint conversion unit 31 performs viewpoint conversion processing on the bird's-eye view image data in a bird's-eye view state on the input captured image data. The bird's-eye view is a state seen from the viewpoint of a virtual camera looking down from above, for example, vertically downward (or slightly obliquely downward). This viewpoint conversion process can be realized by a technique described in, for example, Japanese Patent Application Laid-Open No. 2008-219063.
 輝度差算出部35は、鳥瞰視画像に含まれる立体物のエッジを検出するために、視点変換部31により視点変換された鳥瞰視画像データに対して、輝度差の算出を行う。輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素間の輝度差を算出する。輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線を1本だけ設定する手法と、鉛直仮想線を2本設定する手法との何れかによって輝度差を算出することができる。 The luminance difference calculation unit 35 calculates a luminance difference with respect to the bird's-eye view image data subjected to viewpoint conversion by the viewpoint conversion unit 31 in order to detect the edge of the three-dimensional object included in the bird's-eye view image. For each of a plurality of positions along a vertical imaginary line extending in the vertical direction in the real space, the brightness difference calculating unit 35 calculates a brightness difference between two pixels in the vicinity of each position. The luminance difference calculation unit 35 can calculate the luminance difference by either a method of setting only one vertical virtual line extending in the vertical direction in the real space or a method of setting two vertical virtual lines.
 鉛直仮想線を2本設定する具体的な手法について説明する。輝度差算出部35は、視点変換された鳥瞰視画像に対して、実空間で鉛直方向に伸びる線分に該当する第1鉛直仮想線と、第1鉛直仮想線と異なり実空間で鉛直方向に伸びる線分に該当する第2鉛直仮想線とを設定する。輝度差算出部35は、第1鉛直仮想線上の点と第2鉛直仮想線上の点との輝度差を、第1鉛直仮想線及び第2鉛直仮想線に沿って連続的に求める。以下、この輝度差算出部35の動作について詳細に説明する。 A specific method for setting two vertical virtual lines will be described. The brightness difference calculation unit 35 applies a first vertical imaginary line corresponding to a line segment extending in the vertical direction in the real space and a vertical direction in the real space different from the first vertical imaginary line with respect to the bird's-eye view image that has undergone viewpoint conversion. A second vertical imaginary line corresponding to the extending line segment is set. The luminance difference calculation unit 35 continuously obtains a luminance difference between a point on the first vertical imaginary line and a point on the second vertical imaginary line along the first vertical imaginary line and the second vertical imaginary line. Hereinafter, the operation of the luminance difference calculation unit 35 will be described in detail.
 輝度差算出部35は、図14(a)に示すように、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第1鉛直仮想線La(以下、注目線Laという)を設定する。また輝度差算出部35は、注目線Laと異なり、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第2鉛直仮想線Lr(以下、参照線Lrという)を設定する。ここで参照線Lrは、実空間における所定距離だけ注目線Laから離間する位置に設定される。なお、実空間で鉛直方向に伸びる線分に該当する線とは、鳥瞰視画像においてはカメラ10の位置Psから放射状に広がる線となる。この放射状に広がる線は、鳥瞰視に変換した際に立体物が倒れ込む方向に沿う線である。 As shown in FIG. 14A, the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and passes through the detection area A1 (hereinafter referred to as the attention line La). Set). In addition, unlike the attention line La, the luminance difference calculation unit 35 corresponds to a line segment extending in the vertical direction in the real space and also passes through the second vertical virtual line Lr (hereinafter referred to as a reference line Lr) passing through the detection area A1. Set. Here, the reference line Lr is set at a position separated from the attention line La by a predetermined distance in the real space. Note that the line corresponding to the line segment extending in the vertical direction in the real space is a line that spreads radially from the position Ps of the camera 10 in the bird's-eye view image. This radially extending line is a line along the direction in which the three-dimensional object falls when converted to bird's-eye view.
 輝度差算出部35は、注目線La上に注目点Pa(第1鉛直仮想線上の点)を設定する。また輝度差算出部35は、参照線Lr上に参照点Pr(第2鉛直板想線上の点)を設定する。これら注目線La、注目点Pa、参照線Lr、参照点Prは、実空間上において図14(b)に示す関係となる。図14(b)から明らかなように、注目線La及び参照線Lrは、実空間上において鉛直方向に伸びた線であり、注目点Paと参照点Prとは、実空間上において略同じ高さに設定される点である。なお、注目点Paと参照点Prとは必ずしも厳密に同じ高さである必要はなく、注目点Paと参照点Prとが同じ高さとみなせる程度の誤差は許容される。 The luminance difference calculation unit 35 sets the attention point Pa (point on the first vertical imaginary line) on the attention line La. In addition, the luminance difference calculation unit 35 sets a reference point Pr (a point on the second vertical plate) on the reference line Lr. The attention line La, the attention point Pa, the reference line Lr, and the reference point Pr have the relationship shown in FIG. 14B in the real space. As is clear from FIG. 14B, the attention line La and the reference line Lr are lines extending in the vertical direction in the real space, and the attention point Pa and the reference point Pr are substantially the same height in the real space. This is the point that is set. Note that the attention point Pa and the reference point Pr do not necessarily have the same height, and an error that allows the attention point Pa and the reference point Pr to be regarded as the same height is allowed.
 輝度差算出部35は、注目点Paと参照点Prとの輝度差を求める。仮に、注目点Paと参照点Prとの輝度差が大きいと、注目点Paと参照点Prとの間にエッジが存在すると考えられる。このため、図3に示したエッジ線検出部36は、注目点Paと参照点Prとの輝度差に基づいてエッジ線を検出する。 The luminance difference calculation unit 35 obtains a luminance difference between the attention point Pa and the reference point Pr. If the luminance difference between the attention point Pa and the reference point Pr is large, it is considered that an edge exists between the attention point Pa and the reference point Pr. Therefore, the edge line detection unit 36 shown in FIG. 3 detects an edge line based on the luminance difference between the attention point Pa and the reference point Pr.
 この点をより詳細に説明する。図15は、輝度差算出部35の詳細動作を示す図であり、図15(a)は鳥瞰視された状態の鳥瞰視画像を示し、図15(b)は、図15(a)に示した鳥瞰視画像の一部B1を拡大した図である。なお図15についても検出領域A1のみを図示して説明するが、検出領域A2についても同様の手順で輝度差を算出する。 This point will be explained in more detail. FIG. 15 is a diagram illustrating a detailed operation of the luminance difference calculation unit 35, in which FIG. 15 (a) shows a bird's-eye view image in a bird's-eye view state, and FIG. 15 (b) is shown in FIG. 15 (a). It is the figure which expanded a part B1 of the bird's-eye view image. Although only the detection area A1 is illustrated and described in FIG. 15, the luminance difference is calculated in the same procedure for the detection area A2.
 カメラ10が撮像した撮像画像内に他車両VXが映っていた場合に、図15(a)に示すように、鳥瞰視画像内の検出領域A1に他車両VXが現れる。図15(b)に図15(a)中の領域B1の拡大図を示すように、鳥瞰視画像上において、他車両VXのタイヤのゴム部分上に注目線Laが設定されていたとする。この状態において、輝度差算出部35は、先ず参照線Lrを設定する。参照線Lrは、注目線Laから実空間上において所定の距離だけ離れた位置に、鉛直方向に沿って設定される。具体的には、本実施形態に係る立体物検出装置1において、参照線Lrは、注目線Laから実空間上において10cmだけ離れた位置に設定される。これにより、参照線Lrは、鳥瞰視画像上において、例えば他車両VXのタイヤのゴムから10cm相当だけ離れた他車両VXのタイヤのホイール上に設定される。 When the other vehicle VX is reflected in the captured image captured by the camera 10, the other vehicle VX appears in the detection area A1 in the bird's-eye view image as shown in FIG. As shown in the enlarged view of the area B1 in FIG. 15A in FIG. 15B, it is assumed that the attention line La is set on the rubber part of the tire of the other vehicle VX on the bird's-eye view image. In this state, the luminance difference calculation unit 35 first sets the reference line Lr. The reference line Lr is set along the vertical direction at a position away from the attention line La by a predetermined distance in the real space. Specifically, in the three-dimensional object detection device 1 according to the present embodiment, the reference line Lr is set at a position separated from the attention line La by 10 cm in real space. Thereby, the reference line Lr is set on the wheel of the tire of the other vehicle VX that is separated from the rubber of the tire of the other vehicle VX by, for example, 10 cm on the bird's eye view image.
 次に、輝度差算出部35は、注目線La上に複数の注目点Pa1~PaNを設定する。図15(b)においては、説明の便宜上、6つの注目点Pa1~Pa6(以下、任意の点を示す場合には単に注目点Paiという)を設定している。なお、注目線La上に設定する注目点Paの数は任意でよい。以下の説明では、N個の注目点Paが注目線La上に設定されたものとして説明する。 Next, the luminance difference calculation unit 35 sets a plurality of attention points Pa1 to PaN on the attention line La. In FIG. 15B, for the convenience of explanation, six attention points Pa1 to Pa6 (hereinafter simply referred to as attention point Pai when an arbitrary point is indicated) are set. Note that the number of attention points Pa set on the attention line La may be arbitrary. In the following description, it is assumed that N attention points Pa are set on the attention line La.
 次に、輝度差算出部35は、実空間上において各注目点Pa1~PaNと同じ高さとなるように各参照点Pr1~PrNを設定する。そして、輝度差算出部35は、同じ高さ同士の注目点Paと参照点Prとの輝度差を算出する。これにより、輝度差算出部35は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置(1~N)ごとに、2つの画素の輝度差を算出する。輝度差算出部35は、例えば第1注目点Pa1とは、第1参照点Pr1との間で輝度差を算出し、第2注目点Pa2とは、第2参照点Pr2との間で輝度差を算出することとなる。これにより、輝度差算出部35は、注目線La及び参照線Lrに沿って、連続的に輝度差を求める。すなわち、輝度差算出部35は、第3~第N注目点Pa3~PaNと第3~第N参照点Pr3~PrNとの輝度差を順次求めていくこととなる。 Next, the luminance difference calculation unit 35 sets the reference points Pr1 to PrN so as to be the same height as the attention points Pa1 to PaN in the real space. Then, the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr having the same height. Thereby, the luminance difference calculation unit 35 calculates the luminance difference between the two pixels for each of a plurality of positions (1 to N) along the vertical imaginary line extending in the vertical direction in the real space. For example, the luminance difference calculating unit 35 calculates a luminance difference between the first attention point Pa1 and the first reference point Pr1, and the second difference between the second attention point Pa2 and the second reference point Pr2. Will be calculated. Thereby, the luminance difference calculation unit 35 continuously calculates the luminance difference along the attention line La and the reference line Lr. That is, the luminance difference calculation unit 35 sequentially obtains the luminance difference between the third to Nth attention points Pa3 to PaN and the third to Nth reference points Pr3 to PrN.
 輝度差算出部35は、検出領域A1内において注目線Laをずらしながら、上記の参照線Lrの設定、注目点Pa及び参照点Prの設定、輝度差の算出といった処理を繰り返し実行する。すなわち、輝度差算出部35は、注目線La及び参照線Lrのそれぞれを、実空間上において接地線L1の存在方向に同一距離だけ位置を変えながら上記の処理を繰り返し実行する。輝度差算出部35は、例えば、前回処理において参照線Lrとなっていた線を注目線Laに設定し、この注目線Laに対して参照線Lrを設定して、順次輝度差を求めていくことになる。 The luminance difference calculation unit 35 repeatedly executes the above-described processing such as setting the reference line Lr, setting the attention point Pa and the reference point Pr, and calculating the luminance difference while shifting the attention line La in the detection area A1. That is, the luminance difference calculation unit 35 repeatedly executes the above processing while changing the position of each of the attention line La and the reference line Lr by the same distance in the presence direction of the ground line L1 in the real space. For example, the luminance difference calculation unit 35 sets the reference line Lr as the reference line Lr in the previous processing, sets the reference line Lr for the attention line La, and sequentially obtains the luminance difference. It will be.
 図3に戻り、エッジ線検出部36は、輝度差算出部35により算出された連続的な輝度差から、エッジ線を検出する。例えば、図15(b)に示す場合、第1注目点Pa1と第1参照点Pr1とは、同じタイヤ部分に位置するために、輝度差は、小さい。一方、第2~第6注目点Pa2~Pa6はタイヤのゴム部分に位置し、第2~第6参照点Pr2~Pr6はタイヤのホイール部分に位置する。したがって、第2~第6注目点Pa2~Pa6と第2~第6参照点Pr2~Pr6との輝度差は大きくなる。このため、エッジ線検出部36は、輝度差が大きい第2~第6注目点Pa2~Pa6と第2~第6参照点Pr2~Pr6との間にエッジ線が存在することを検出することができる。 3, the edge line detection unit 36 detects an edge line from the continuous luminance difference calculated by the luminance difference calculation unit 35. For example, in the case illustrated in FIG. 15B, the first attention point Pa <b> 1 and the first reference point Pr <b> 1 are located in the same tire portion, and thus the luminance difference is small. On the other hand, the second to sixth attention points Pa2 to Pa6 are located in the rubber part of the tire, and the second to sixth reference points Pr2 to Pr6 are located in the wheel part of the tire. Therefore, the luminance difference between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 becomes large. Therefore, the edge line detection unit 36 may detect that an edge line exists between the second to sixth attention points Pa2 to Pa6 and the second to sixth reference points Pr2 to Pr6 having a large luminance difference. it can.
 具体的には、エッジ線検出部36は、エッジ線を検出するにあたり、先ず下記の数式1に従って、i番目の注目点Pai(座標(xi,yi))とi番目の参照点Pri(座標(xi’,yi’))との輝度差から、i番目の注目点Paiに属性付けを行う。
[数1]
I(xi,yi)>I(xi’,yi’)+tのとき
 s(xi,yi)=1
I(xi,yi)<I(xi’,yi’)-tのとき
 s(xi,yi)=-1
上記以外のとき
 s(xi,yi)=0
Specifically, when detecting the edge line, the edge line detection unit 36 firstly follows the following Equation 1 to determine the i-th attention point Pai (coordinate (xi, yi)) and the i-th reference point Pri (coordinate ( xi ′, yi ′)) and the i th attention point Pai are attributed.
[Equation 1]
When I (xi, yi)> I (xi ′, yi ′) + t s (xi, yi) = 1
When I (xi, yi) <I (xi ′, yi ′) − t s (xi, yi) = − 1
Otherwise s (xi, yi) = 0
 上記数式1において、tは閾値を示し、I(xi,yi)はi番目の注目点Paiの輝度値を示し、I(xi’,yi’)はi番目の参照点Priの輝度値を示す。上記数式1によれば、注目点Paiの輝度値が、参照点Priに閾値tを加えた輝度値よりも高い場合には、当該注目点Paiの属性s(xi,yi)は‘1’となる。一方、注目点Paiの輝度値が、参照点Priから閾値tを減じた輝度値よりも低い場合には、当該注目点Paiの属性s(xi,yi)は‘-1’となる。注目点Paiの輝度値と参照点Priの輝度値とがそれ以外の関係である場合には、注目点Paiの属性s(xi,yi)は‘0’となる。 In Equation 1, t represents a threshold value, I (xi, yi) represents the luminance value of the i-th attention point Pai, and I (xi ′, yi ′) represents the luminance value of the i-th reference point Pri. . According to Equation 1, when the luminance value of the attention point Pai is higher than the luminance value obtained by adding the threshold value t to the reference point Pri, the attribute s (xi, yi) of the attention point Pai is “1”. Become. On the other hand, when the luminance value of the attention point Pai is lower than the luminance value obtained by subtracting the threshold value t from the reference point Pri, the attribute s (xi, yi) of the attention point Pai is “−1”. When the luminance value of the attention point Pai and the luminance value of the reference point Pri are in other relationships, the attribute s (xi, yi) of the attention point Pai is “0”.
 次にエッジ線検出部36は、下記数式2に基づいて、注目線Laに沿った属性sの連続性c(xi,yi)から、注目線Laがエッジ線であるか否かを判定する。
[数2]
s(xi,yi)=s(xi+1,yi+1)のとき(且つ0=0を除く)、
 c(xi,yi)=1
上記以外のとき、
 c(xi,yi)=0
Next, the edge line detection unit 36 determines whether or not the attention line La is an edge line from the continuity c (xi, yi) of the attribute s along the attention line La based on Equation 2 below.
[Equation 2]
When s (xi, yi) = s (xi + 1, yi + 1) (and excluding 0 = 0),
c (xi, yi) = 1
Other than the above
c (xi, yi) = 0
 注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じである場合には、連続性c(xi,yi)は‘1’となる。注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じではない場合には、連続性c(xi,yi)は‘0’となる。 When the attribute s (xi, yi) of the attention point Pai and the attribute s (xi + 1, yi + 1) of the adjacent attention point Pai + 1 are the same, the continuity c (xi, yi) is “1”. When the attribute s (xi, yi) of the attention point Pai is not the same as the attribute s (xi + 1, yi + 1) of the adjacent attention point Pai + 1, the continuity c (xi, yi) is “0”.
 次にエッジ線検出部36は、注目線La上の全ての注目点Paの連続性cについて総和を求める。エッジ線検出部36は、求めた連続性cの総和を注目点Paの数Nで割ることにより、連続性cを正規化する。エッジ線検出部36は、正規化した値が閾値θを超えた場合に、注目線Laをエッジ線と判断する。なお、閾値θは、予め実験等によって設定された値である。 Next, the edge line detection unit 36 obtains the sum for the continuity c of all the points of interest Pa on the line of interest La. The edge line detection unit 36 normalizes the continuity c by dividing the obtained sum of continuity c by the number N of points of interest Pa. The edge line detection unit 36 determines that the attention line La is an edge line when the normalized value exceeds the threshold θ. The threshold value θ is a value set in advance through experiments or the like.
 すなわち、エッジ線検出部36は、下記数式3に基づいて注目線Laがエッジ線であるか否かを判断する。そして、エッジ線検出部36は、検出領域A1上に描かれた注目線Laの全てについてエッジ線であるか否かを判断する。
[数3]
Σc(xi,yi)/N>θ
That is, the edge line detection unit 36 determines whether or not the attention line La is an edge line based on Equation 3 below. Then, the edge line detection unit 36 determines whether or not all the attention lines La drawn on the detection area A1 are edge lines.
[Equation 3]
Σc (xi, yi) / N> θ
 図3に戻り、立体物検出部37は、エッジ線検出部36により検出されたエッジ線の量に基づいて立体物を検出する。上述したように、本実施形態に係る立体物検出装置1は、実空間上において鉛直方向に伸びるエッジ線を検出する。鉛直方向に伸びるエッジ線が多く検出されるということは、検出領域A1,A2に立体物が存在する可能性が高いということである。このため、立体物検出部37は、エッジ線検出部36により検出されたエッジ線の量に基づいて立体物を検出する。さらに、立体物検出部37は、立体物を検出するに先立って、エッジ線検出部36により検出されたエッジ線が正しいものであるか否かを判定する。立体物検出部37は、エッジ線上の鳥瞰視画像のエッジ線に沿った輝度変化が所定の閾値よりも大きいか否かを判定する。エッジ線上の鳥瞰視画像の輝度変化が閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。一方、エッジ線上の鳥瞰視画像の輝度変化が閾値よりも大きくない場合には、当該エッジ線が正しいものと判定する。なお、この閾値は、実験等により予め設定された値である。 3, the three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36. As described above, the three-dimensional object detection device 1 according to the present embodiment detects an edge line extending in the vertical direction in real space. The fact that many edge lines extending in the vertical direction are detected means that there is a high possibility that a three-dimensional object exists in the detection areas A1 and A2. For this reason, the three-dimensional object detection unit 37 detects a three-dimensional object based on the amount of edge lines detected by the edge line detection unit 36. Furthermore, prior to detecting the three-dimensional object, the three-dimensional object detection unit 37 determines whether or not the edge line detected by the edge line detection unit 36 is correct. The three-dimensional object detection unit 37 determines whether or not the luminance change along the edge line of the bird's-eye view image on the edge line is larger than a predetermined threshold value. When the luminance change of the bird's-eye view image on the edge line is larger than the threshold value, it is determined that the edge line is detected by erroneous determination. On the other hand, when the luminance change of the bird's-eye view image on the edge line is not larger than the threshold value, it is determined that the edge line is correct. This threshold value is a value set in advance by experiments or the like.
 図16は、エッジ線の輝度分布を示す図であり、図16(a)は検出領域A1に立体物としての他車両VXが存在した場合のエッジ線及び輝度分布を示し、図16(b)は検出領域A1に立体物が存在しない場合のエッジ線及び輝度分布を示す。 FIG. 16 is a diagram illustrating the luminance distribution of the edge line. FIG. 16A illustrates the edge line and the luminance distribution when another vehicle VX as a three-dimensional object exists in the detection area A1, and FIG. Indicates an edge line and a luminance distribution when there is no solid object in the detection area A1.
 図16(a)に示すように、鳥瞰視画像において他車両VXのタイヤゴム部分に設定された注目線Laがエッジ線であると判断されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化はなだらかなものとなる。これは、カメラ10により撮像された画像が鳥瞰視画像に視点変換されたことにより、他車両VXのタイヤが鳥瞰視画像内で引き延ばされたことによる。一方、図16(b)に示すように、鳥瞰視画像において路面に描かれた「50」という白色文字部分に設定された注目線Laがエッジ線であると誤判定されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化は起伏の大きいものとなる。これは、エッジ線上に、白色文字における輝度が高い部分と、路面等の輝度が低い部分とが混在しているからである。 As shown in FIG. 16A, it is assumed that the attention line La set in the tire rubber portion of the other vehicle VX is determined to be an edge line in the bird's-eye view image. In this case, the luminance change of the bird's-eye view image on the attention line La is gentle. This is because the tire of the other vehicle VX is extended in the bird's-eye view image by converting the image captured by the camera 10 into a bird's-eye view image. On the other hand, as shown in FIG. 16B, it is assumed that the attention line La set in the white character portion “50” drawn on the road surface in the bird's-eye view image is erroneously determined as an edge line. In this case, the brightness change of the bird's-eye view image on the attention line La has a large undulation. This is because a portion with high brightness in white characters and a portion with low brightness such as a road surface are mixed on the edge line.
 以上のような注目線La上の輝度分布の相違に基づいて、立体物検出部37は、エッジ線が誤判定により検出されたものか否かを判定する。立体物検出部37は、エッジ線に沿った輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものであると判定する。そして、当該エッジ線は、立体物の検出には使用しない。これにより、路面上の「50」といった白色文字や路肩の雑草等がエッジ線として判定されてしまい、立体物の検出精度が低下することを抑制する。 Based on the difference in luminance distribution on the attention line La as described above, the three-dimensional object detection unit 37 determines whether or not the edge line is detected by erroneous determination. When the luminance change along the edge line is larger than a predetermined threshold, the three-dimensional object detection unit 37 determines that the edge line is detected by erroneous determination. And the said edge line is not used for the detection of a solid object. Thereby, white characters such as “50” on the road surface, weeds on the road shoulder, and the like are determined as edge lines, and the detection accuracy of the three-dimensional object is prevented from being lowered.
 具体的には、立体物検出部37は、下記数式4,5の何れかにより、エッジ線の輝度変化を算出する。このエッジ線の輝度変化は、実空間上における鉛直方向の評価値に相当する。下記数式4は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の二乗の合計値によって輝度分布を評価する。下記数式5は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の絶対値の合計値よって輝度分布を評価する。
[数4]
鉛直相当方向の評価値=Σ[{I(xi,yi)-I(xi+1,yi+1)}
[数5]
鉛直相当方向の評価値=Σ|I(xi,yi)-I(xi+1,yi+1)|
Specifically, the three-dimensional object detection unit 37 calculates the luminance change of the edge line by any one of the following mathematical formulas 4 and 5. The luminance change of the edge line corresponds to the evaluation value in the vertical direction in the real space. Equation 4 below evaluates the luminance distribution by the sum of the squares of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1). . Equation 5 below evaluates the luminance distribution by the sum of the absolute values of the differences between the i-th luminance value I (xi, yi) on the attention line La and the adjacent i + 1-th luminance value I (xi + 1, yi + 1). To do.
[Equation 4]
Evaluation value in the vertical equivalent direction = Σ [{I (xi, yi) −I (xi + 1, yi + 1)} 2 ]
[Equation 5]
Evaluation value in the vertical equivalent direction = Σ | I (xi, yi) −I (xi + 1, yi + 1) |
 なお、数式5に限らず、下記数式6のように、閾値t2を用いて隣接する輝度値の属性bを二値化して、当該二値化した属性bを全ての注目点Paについて総和してもよい。
[数6]
鉛直相当方向の評価値=Σb(xi,yi)
但し、|I(xi,yi)-I(xi+1,yi+1)|>t2のとき、
 b(xi,yi)=1
上記以外のとき、
 b(xi,yi)=0
In addition, not only Formula 5 but also Formula 6 below, the threshold value t2 is used to binarize the attribute b of the adjacent luminance value, and the binarized attribute b is summed for all the attention points Pa. Also good.
[Equation 6]
Evaluation value in the vertical equivalent direction = Σb (xi, yi)
However, when | I (xi, yi) −I (xi + 1, yi + 1) |> t2,
b (xi, yi) = 1
Other than the above
b (xi, yi) = 0
 注目点Paiの輝度値と参照点Priの輝度値との輝度差の絶対値が閾値t2よりも大きい場合、当該注目点Pa(xi,yi)の属性b(xi,yi)は‘1’となる。それ以外の関係である場合には、注目点Paiの属性b(xi,yi)は‘0’となる。この閾値t2は、注目線Laが同じ立体物上にないことを判定するために実験等によって予め設定されている。そして、立体物検出部37は、注目線La上の全注目点Paについての属性bを総和して、鉛直相当方向の評価値を求めて、エッジ線が正しいものかを判定する。 When the absolute value of the luminance difference between the luminance value of the attention point Pai and the luminance value of the reference point Pri is larger than the threshold value t2, the attribute b (xi, yi) of the attention point Pa (xi, yi) is “1”. Become. If the relationship is other than that, the attribute b (xi, yi) of the attention point Pai is '0'. This threshold value t2 is set in advance by an experiment or the like in order to determine that the attention line La is not on the same three-dimensional object. Then, the three-dimensional object detection unit 37 sums up the attributes b for all the attention points Pa on the attention line La, obtains an evaluation value in the vertical equivalent direction, and determines whether the edge line is correct.
 次に、本実施形態に係るエッジ情報を利用した立体物検出方法について説明する。図17及び図18は、本実施形態に係る立体物検出方法の詳細を示すフローチャートである。なお、図17及び図18においては、便宜上、検出領域A1を対象とする処理について説明するが、検出領域A2についても同様の処理が実行される。 Next, a three-dimensional object detection method using edge information according to the present embodiment will be described. 17 and 18 are flowcharts showing details of the three-dimensional object detection method according to the present embodiment. In FIG. 17 and FIG. 18, for the sake of convenience, the processing for the detection area A1 will be described, but the same processing is executed for the detection area A2.
 図17に示すように、まず、先ずステップS20において、計算機30は所定のルールに基づいて検出領域を設定する。この検出領域の設定手法については後に詳述する。そして、ステップS21において、カメラ10は、画角a及び取付位置によって特定された所定領域を撮像する。次に視点変換部31は、ステップS22において、ステップS21にてカメラ10により撮像された撮像画像データを入力し、視点変換を行って鳥瞰視画像データを生成する。 As shown in FIG. 17, first, in step S20, the computer 30 sets a detection area based on a predetermined rule. This detection area setting method will be described in detail later. In step S21, the camera 10 captures an image of a predetermined area specified by the angle of view a and the attachment position. Next, in step S22, the viewpoint conversion unit 31 inputs the captured image data captured by the camera 10 in step S21, performs viewpoint conversion, and generates bird's-eye view image data.
 次に輝度差算出部35は、ステップS23において、検出領域A1上に注目線Laを設定する。このとき、輝度差算出部35は、実空間上において鉛直方向に伸びる線に相当する線を注目線Laとして設定する。次に輝度差算出部35は、ステップS24において、検出領域A1上に参照線Lrを設定する。このとき、輝度差算出部35は、実空間上において鉛直方向に伸びる線分に該当し、且つ、注目線Laと実空間上において所定距離離れた線を参照線Lrとして設定する。 Next, in step S23, the luminance difference calculation unit 35 sets the attention line La on the detection area A1. At this time, the luminance difference calculation unit 35 sets a line corresponding to a line extending in the vertical direction in the real space as the attention line La. Next, the brightness | luminance difference calculation part 35 sets the reference line Lr on detection area | region A1 in step S24. At this time, the luminance difference calculation unit 35 sets a reference line Lr that corresponds to a line segment extending in the vertical direction in the real space and is separated from the attention line La by a predetermined distance in the real space.
 次に輝度差算出部35は、ステップS25において、注目線La上に複数の注目点Paを設定する。この際に、輝度差算出部35は、エッジ線検出部36によるエッジ検出時に問題とならない程度の数の注目点Paを設定する。また、輝度差算出部35は、ステップS26において、実空間上において注目点Paと参照点Prとが略同じ高さとなるように、参照点Prを設定する。これにより、注目点Paと参照点Prとが略水平方向に並ぶこととなり、実空間上において鉛直方向に伸びるエッジ線を検出しやすくなる。 Next, in step S25, the luminance difference calculation unit 35 sets a plurality of attention points Pa on the attention line La. At this time, the luminance difference calculation unit 35 sets the attention points Pa as many as not causing a problem at the time of edge detection by the edge line detection unit 36. In step S26, the luminance difference calculation unit 35 sets the reference point Pr so that the attention point Pa and the reference point Pr are substantially the same height in the real space. Thereby, the attention point Pa and the reference point Pr are arranged in a substantially horizontal direction, and it becomes easy to detect an edge line extending in the vertical direction in the real space.
 次に輝度差算出部35は、ステップS27において、実空間上において同じ高さとなる注目点Paと参照点Prとの輝度差を算出する。次にエッジ線検出部36は、上記の数式1に従って、各注目点Paの属性sを算出する。次にエッジ線検出部36は、ステップS28において、上記の数式2に従って、各注目点Paの属性sの連続性cを算出する。次にエッジ線検出部36は、ステップS29において、上記数式3に従って、連続性cの総和を正規化した値が閾値θより大きいか否かを判定する。正規化した値が閾値θよりも大きいと判断した場合(S29:YES)、エッジ線検出部36は、ステップS30において、当該注目線Laをエッジ線として検出する。そして、処理はステップS31に移行する。正規化した値が閾値θより大きくないと判断した場合(S29:NO)、エッジ線検出部36は、当該注目線Laをエッジ線として検出せず、処理はステップS31に移行する。 Next, in step S27, the luminance difference calculation unit 35 calculates the luminance difference between the attention point Pa and the reference point Pr that have the same height in the real space. Next, the edge line detection unit 36 calculates the attribute s of each attention point Pa in accordance with Equation 1 above. Next, in step S28, the edge line detection unit 36 calculates the continuity c of the attribute s of each attention point Pa in accordance with Equation 2 above. Next, in step S29, the edge line detection unit 36 determines whether or not the value obtained by normalizing the total sum of continuity c is greater than the threshold value θ according to the above formula 3. When it is determined that the normalized value is larger than the threshold θ (S29: YES), the edge line detection unit 36 detects the attention line La as an edge line in step S30. Then, the process proceeds to step S31. When it is determined that the normalized value is not larger than the threshold θ (S29: NO), the edge line detection unit 36 does not detect the attention line La as an edge line, and the process proceeds to step S31.
 ステップS31において、計算機30は、検出領域A1上に設定可能な注目線Laの全てについて上記のステップS23~ステップS30の処理を実行したか否かを判断する。全ての注目線Laについて上記処理をしていないと判断した場合(S31:NO)、ステップS23に処理を戻して、新たに注目線Laを設定して、ステップS31までの処理を繰り返す。一方、全ての注目線Laについて上記処理をしたと判断した場合(S31:YES)、処理は図18のステップS32に移行する。 In step S31, the computer 30 determines whether or not the processing in steps S23 to S30 has been executed for all the attention lines La that can be set on the detection area A1. If it is determined that the above processing has not been performed for all the attention lines La (S31: NO), the processing returns to step S23, a new attention line La is set, and the processing up to step S31 is repeated. On the other hand, when it is determined that the above process has been performed for all the attention lines La (S31: YES), the process proceeds to step S32 in FIG.
 図18のステップS32において、立体物検出部37は、図17のステップS30において検出された各エッジ線について、当該エッジ線に沿った輝度変化を算出する。立体物検出部37は、上記数式4,5,6の何れかの式に従って、エッジ線の輝度変化を算出する。次に立体物検出部37は、ステップS33において、エッジ線のうち、輝度変化が所定の閾値よりも大きいエッジ線を除外する。すなわち、輝度変化の大きいエッジ線は正しいエッジ線ではないと判定し、エッジ線を立体物の検出には使用しない。これは、上述したように、検出領域A1に含まれる路面上の文字や路肩の雑草等がエッジ線として検出されてしまうことを抑制するためである。したがって、所定の閾値とは、予め実験等によって求められた、路面上の文字や路肩の雑草等によって発生する輝度変化に基づいて設定された値となる。 In step S32 of FIG. 18, the three-dimensional object detection unit 37 calculates a luminance change along the edge line for each edge line detected in step S30 of FIG. The three-dimensional object detection unit 37 calculates the luminance change of the edge line according to any one of the above formulas 4, 5, and 6. Next, in step S33, the three-dimensional object detection unit 37 excludes edge lines whose luminance change is larger than a predetermined threshold from the edge lines. That is, it is determined that an edge line having a large luminance change is not a correct edge line, and the edge line is not used for detecting a three-dimensional object. As described above, this is to prevent characters on the road surface, roadside weeds, and the like included in the detection area A1 from being detected as edge lines. Therefore, the predetermined threshold value is a value set based on a luminance change generated by characters on the road surface, weeds on the road shoulder, or the like obtained in advance by experiments or the like.
 次に立体物検出部37は、ステップS34において、エッジ線の量が第2閾値β以上であるか否かを判断する。例えば、検出対象の立体物として四輪車を設定した場合、当該第2閾値βは、予め実験等によって検出領域A1内において出現した四輪車のエッジ線の数に基づいて設定される。エッジ線の量が第2閾値β以上であると判定した場合(S34:YES)、立体物検出部37は、ステップS35において、検出領域A1内に立体物が存在すると検出する。一方、エッジ線の量が第2閾値β以上ではないと判定した場合(S34:NO)、立体物検出部37は、検出領域A1内に立体物が存在しないと判断する。その後、図17及び図18に示す処理は終了する。検出された立体物は、自車両Vが走行する車線の隣の隣接車線を走行する他車両VXであると判断してもよいし、検出した立体物の自車両Vに対する相対速度を考慮して隣接車線を走行する他車両VXであるか否かを判断してもよい。 Next, in step S34, the three-dimensional object detection unit 37 determines whether or not the amount of the edge line is equal to or larger than the second threshold value β. For example, when a four-wheeled vehicle is set as the three-dimensional object to be detected, the second threshold value β is set based on the number of edge lines of the four-wheeled vehicle that have appeared in the detection region A1 in advance through experiments or the like. When it is determined that the amount of the edge line is equal to or larger than the second threshold value β (S34: YES), the three-dimensional object detection unit 37 detects that a three-dimensional object exists in the detection area A1 in step S35. On the other hand, when it is determined that the amount of the edge line is not equal to or larger than the second threshold value β (S34: NO), the three-dimensional object detection unit 37 determines that there is no three-dimensional object in the detection area A1. Thereafter, the processing illustrated in FIGS. 17 and 18 ends. The detected three-dimensional object may be determined to be another vehicle VX that travels in the adjacent lane adjacent to the lane in which the host vehicle V travels, and the relative speed of the detected three-dimensional object with respect to the host vehicle V is taken into consideration. It may be determined whether the vehicle is another vehicle VX traveling in the adjacent lane.
 以上のように、本実施形態のエッジ情報を利用した立体物の検出方法によれば、検出領域A1,A2に存在する立体物を検出するために、鳥瞰視画像に対して実空間において鉛直方向に伸びる線分としての鉛直仮想線を設定する。そして、鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素の輝度差を算出し、当該輝度差の連続性に基づいて立体物の有無を判定することができる。 As described above, according to the three-dimensional object detection method using the edge information of the present embodiment, in order to detect the three-dimensional object existing in the detection areas A1 and A2, the vertical direction in the real space with respect to the bird's-eye view image A vertical imaginary line is set as a line segment extending to. Then, for each of a plurality of positions along the vertical imaginary line, a luminance difference between two pixels in the vicinity of each position can be calculated, and the presence or absence of a three-dimensional object can be determined based on the continuity of the luminance difference.
 具体的には、鳥瞰視画像における検出領域A1,A2に対して、実空間において鉛直方向に伸びる線分に該当する注目線Laと、注目線Laとは異なる参照線Lrとを設定する。そして、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差を注目線La及び参照線Laに沿って連続的に求める。このように、点同士の輝度差を連続的に求めることにより、注目線Laと参照線Lrとの輝度差を求める。注目線Laと参照線Lrとの輝度差が高い場合には、注目線Laの設定箇所に立体物のエッジがある可能性が高い。これによって、連続的な輝度差に基づいて立体物を検出することができる。特に、実空間において鉛直方向に伸びる鉛直仮想線同士との輝度比較を行うために、鳥瞰視画像に変換することによって立体物が路面からの高さに応じて引き伸ばされてしまっても、立体物の検出処理が影響されることはない。したがって、本例の方法によれば、立体物の検出精度を向上させることができる。 Specifically, the attention line La corresponding to the line segment extending in the vertical direction in the real space and the reference line Lr different from the attention line La are set for the detection areas A1 and A2 in the bird's-eye view image. Then, a luminance difference between the attention point Pa on the attention line La and the reference point Pr on the reference line Lr is continuously obtained along the attention line La and the reference line La. In this way, the luminance difference between the attention line La and the reference line Lr is obtained by continuously obtaining the luminance difference between the points. In the case where the luminance difference between the attention line La and the reference line Lr is high, there is a high possibility that there is an edge of the three-dimensional object at the set position of the attention line La. Thereby, a three-dimensional object can be detected based on a continuous luminance difference. In particular, in order to compare brightness with vertical virtual lines extending in the vertical direction in real space, even if the three-dimensional object is stretched according to the height from the road surface by converting it to a bird's-eye view image, This detection process is not affected. Therefore, according to the method of this example, the detection accuracy of a three-dimensional object can be improved.
 また、本例では、鉛直仮想線付近の略同じ高さの2つの点の輝度差を求める。具体的には、実空間上で略同じ高さとなる注目線La上の注目点Paと参照線Lr上の参照点Prとから輝度差を求めるので、鉛直方向に伸びるエッジが存在する場合における輝度差を明確に検出することができる。 Also, in this example, the luminance difference between two points of approximately the same height near the vertical imaginary line is obtained. Specifically, the luminance difference is obtained from the attention point Pa on the attention line La and the reference point Pr on the reference line Lr, which are substantially the same height in the real space, and thus the luminance when there is an edge extending in the vertical direction. The difference can be detected clearly.
 更に、本例では、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差に基づいて注目点Paに属性付けを行い、注目線Laに沿った属性の連続性cに基づいて当該注目線Laがエッジ線であるかを判断するので、輝度の高い領域と輝度の低い領域との境界をエッジ線として検出し、人間の自然な感覚に沿ったエッジ検出を行うことができる。この効果について詳細に説明する。図19は、エッジ線検出部36の処理を説明する画像例を示す図である。この画像例は、輝度の高い領域と輝度の低い領域とが繰り返される縞模様を示す第1縞模様101と、輝度の低い領域と輝度の高い領域とが繰り返される縞模様を示す第2縞模様102とが隣接した画像である。また、この画像例は、第1縞模様101の輝度が高い領域と第2縞模様102の輝度の低い領域とが隣接すると共に、第1縞模様101の輝度が低い領域と第2縞模様102の輝度が高い領域とが隣接している。この第1縞模様101と第2縞模様102との境界に位置する部位103は、人間の感覚によってはエッジとは知覚されない傾向にある。 Furthermore, in this example, the attention point Pa is attributed based on the luminance difference between the attention point Pa on the attention line La and the reference point Pr on the reference line Lr, and attribute continuity c along the attention line La is obtained. Therefore, it is determined whether the attention line La is an edge line. Therefore, the boundary between the high luminance area and the low luminance area is detected as an edge line, and edge detection is performed in accordance with a natural human sense. Can do. This effect will be described in detail. FIG. 19 is a diagram illustrating an example of an image for explaining the processing of the edge line detection unit 36. In this image example, a first striped pattern 101 showing a striped pattern in which a high brightness area and a low brightness area are repeated, and a second striped pattern showing a striped pattern in which a low brightness area and a high brightness area are repeated. 102 is an adjacent image. Further, in this image example, a region where the brightness of the first striped pattern 101 is high and a region where the brightness of the second striped pattern 102 is low are adjacent to each other, and a region where the brightness of the first striped pattern 101 is low and the second striped pattern 102. Is adjacent to a region with high brightness. The portion 103 located at the boundary between the first striped pattern 101 and the second striped pattern 102 tends not to be perceived as an edge depending on human senses.
 これに対し、輝度の低い領域と輝度が高い領域とが隣接しているために、輝度差のみでエッジを検出すると、当該部位103はエッジとして認識されてしまう。しかし、エッジ線検出部36は、部位103における輝度差に加えて、当該輝度差の属性に連続性がある場合にのみ部位103をエッジ線として判定するので、エッジ線検出部36は、人間の感覚としてエッジ線として認識しない部位103をエッジ線として認識してしまう誤判定を抑制でき、人間の感覚に沿ったエッジ検出を行うことができる。 On the other hand, since the low luminance region and the high luminance region are adjacent to each other, if the edge is detected only by the luminance difference, the portion 103 is recognized as an edge. However, since the edge line detection unit 36 determines the part 103 as an edge line only when there is continuity in the attribute of the luminance difference in addition to the luminance difference in the part 103, the edge line detection unit 36 An erroneous determination of recognizing a part 103 that is not recognized as an edge line as a sensation as an edge line can be suppressed, and edge detection according to a human sense can be performed.
 さらに、本例では、エッジ線検出部36により検出されたエッジ線の輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。カメラ10により取得された撮像画像を鳥瞰視画像に変換した場合、当該撮像画像に含まれる立体物は、引き伸ばされた状態で鳥瞰視画像に現れる傾向がある。例えば、上述したように他車両VXのタイヤが引き伸ばされた場合に、タイヤという1つの部位が引き伸ばされるため、引き伸ばされた方向における鳥瞰視画像の輝度変化は小さい傾向となる。これに対し、路面に描かれた文字等をエッジ線として誤判定した場合に、鳥瞰視画像には、文字部分といった輝度が高い領域と路面部分といった輝度が低い領域とが混合されて含まれる。この場合に、鳥瞰視画像において、引き伸ばされた方向の輝度変化は大きくなる傾向がある。したがって、本例のようにエッジ線に沿った鳥瞰視画像の輝度変化を判定することによって、誤判定により検出されたエッジ線を認識することができ、立体物の検出精度を高めることができる。 Furthermore, in this example, when the luminance change of the edge line detected by the edge line detection unit 36 is larger than a predetermined threshold value, it is determined that the edge line has been detected by erroneous determination. When the captured image acquired by the camera 10 is converted into a bird's-eye view image, the three-dimensional object included in the captured image tends to appear in the bird's-eye view image in a stretched state. For example, as described above, when the tire of the other vehicle VX is stretched, since one portion of the tire is stretched, the luminance change of the bird's-eye view image in the stretched direction tends to be small. On the other hand, when a character or the like drawn on the road surface is erroneously determined as an edge line, the bird's-eye view image includes a high luminance region such as a character portion and a low luminance region such as a road surface portion. In this case, the brightness change in the stretched direction tends to increase in the bird's-eye view image. Therefore, by determining the luminance change of the bird's-eye view image along the edge line as in this example, the edge line detected by the erroneous determination can be recognized, and the detection accuracy of the three-dimensional object can be improved.
 さらに、本例では、エッジ線検出部36により検出されたエッジ線の輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。カメラ10により取得された撮像画像を鳥瞰視画像に変換した場合、当該撮像画像に含まれる立体物は、引き伸ばされた状態で鳥瞰視画像に現れる傾向がある。例えば、上述したように他車両VXのタイヤが引き伸ばされた場合に、タイヤという1つの部位が引き伸ばされるため、引き伸ばされた方向における鳥瞰視画像の輝度変化は小さい傾向となる。これに対し、路面に描かれた文字等をエッジ線として誤判定した場合に、鳥瞰視画像には、文字部分といった輝度が高い領域と路面部分といった輝度が低い領域とが混合されて含まれる。この場合に、鳥瞰視画像において、引き伸ばされた方向の輝度変化は大きくなる傾向がある。したがって、本例のようにエッジ線に沿った鳥瞰視画像の輝度変化を判定することによって、誤判定により検出されたエッジ線を認識することができ、立体物の検出精度を高めることができる。立体物検出部33,37は、さらに乗員への報知や車両制御のため、検出結果を外部の車両コントローラへ送出することもできる。 Furthermore, in this example, when the luminance change of the edge line detected by the edge line detection unit 36 is larger than a predetermined threshold value, it is determined that the edge line has been detected by erroneous determination. When the captured image acquired by the camera 10 is converted into a bird's-eye view image, the three-dimensional object included in the captured image tends to appear in the bird's-eye view image in a stretched state. For example, as described above, when the tire of the other vehicle VX is stretched, since one portion of the tire is stretched, the luminance change of the bird's-eye view image in the stretched direction tends to be small. On the other hand, when a character or the like drawn on the road surface is erroneously determined as an edge line, the bird's-eye view image includes a high luminance region such as a character portion and a low luminance region such as a road surface portion. In this case, the brightness change in the stretched direction tends to increase in the bird's-eye view image. Therefore, by determining the luminance change of the bird's-eye view image along the edge line as in this example, the edge line detected by the erroneous determination can be recognized, and the detection accuracy of the three-dimensional object can be improved. The three-dimensional object detection units 33 and 37 can also send detection results to an external vehicle controller for notification to the occupant and vehicle control.
《立体物の最終判断》
 図3に戻り、本例の立体物検出装置1は、上述した2つの立体物検出部33(又は立体物検出部37)と、立体物判断部34と、静止物判断部38と、制御部39とを備える。立体物判断部34は、立体物検出部33(又は立体物検出部37)による検出結果に基づいて、検出された立体物が検出領域A1,A2に存在する他車両VXであるか否かを最終的に判断する。立体物検出部33(又は立体物検出部37)は、静止物判断部38の判断結果を反映させた立体物の検出を行う。静止物判断部38は、立体物検出部33(又は立体物検出部37)により検出された立体物が静止物体であるか否かを判断する。
《Final judgment of solid object》
Returning to FIG. 3, the three-dimensional object detection device 1 of this example includes the two three-dimensional object detection units 33 (or the three-dimensional object detection unit 37), the three-dimensional object determination unit 34, the stationary object determination unit 38, and the control unit. 39. Based on the detection result by the three-dimensional object detection unit 33 (or the three-dimensional object detection unit 37), the three-dimensional object determination unit 34 determines whether or not the detected three-dimensional object is the other vehicle VX existing in the detection areas A1 and A2. Judgment finally. The three-dimensional object detection unit 33 (or three-dimensional object detection unit 37) detects a three-dimensional object reflecting the determination result of the stationary object determination unit 38. The stationary object determination unit 38 determines whether the three-dimensional object detected by the three-dimensional object detection unit 33 (or the three-dimensional object detection unit 37) is a stationary object.
 本実施形態の静止物判断部38は、道路の分離帯や路肩に植栽された草木などの植え込みや、道路脇の草原や森林に自生する草木又は道路の分離帯や路肩に積もった雪若しくは雪と泥が混ざった雪の壁などの自然物、ガードレールなどの人工物、植栽された樹木や擬木などの半人工物その他の道路脇に静止して存在する物体などの静止物体を検出する。本明細書における静止物体は、自ら移動をする駆動源を備えない物体である。 The stationary object determination unit 38 of the present embodiment is used to plant trees such as vegetation planted on road separation zones and road shoulders, vegetation that grows naturally on grasslands and forests on roads, or snow that accumulates on road separation zones and road shoulders, or It detects natural objects such as snow walls mixed with snow and mud, artificial objects such as guardrails, semi-artificial objects such as planted trees and fake trees, and other stationary objects such as objects that are stationary on the roadside. A stationary object in this specification is an object that does not include a drive source that moves by itself.
 静止物判断部38は、差分波形情報に基づいて静止物体を判断する処理、又はエッジ情報に基づいて静止物体を判断する処理を行う。なお、以下においては、静止部判断部38を処理の主体とした静止物体の判断手法を説明するが、静止物判断部38は、位置合わせ部32若しくは立体物検出部33、又は輝度差算出部35、エッジ線検出部36若しくは立体物検出部37に処理の一部を行わせて、その処理結果を取得し、最終的に不規則性を判断することができる。 The stationary object determination unit 38 performs a process of determining a stationary object based on the differential waveform information or a process of determining a stationary object based on the edge information. In the following description, a stationary object determination method using the stationary part determination unit 38 as a subject of processing will be described. However, the stationary object determination unit 38 may be an alignment unit 32, a three-dimensional object detection unit 33, or a luminance difference calculation unit. 35, the edge line detection unit 36 or the three-dimensional object detection unit 37 can perform a part of the processing, obtain the processing result, and finally determine irregularity.
 本実施形態の立体物検出装置1の静止物判断部38は、異なる時間において撮像された画像における移動物体の像と静止物体の像の特徴の相違に基づいて、撮像画像から検出される立体物が移動物体であるか静止物体であるかを判断する。本実施形態における静止物判断部38が静止物体であるかを判断する際に用いられる画像は、視点変換をした鳥瞰視画像と、視点変換がされていない画像とを含む。つまり、本実施形態の立体物検出装置1は、視点変換がされていない画像(第1画像、第2画像)に基づいて静止物体であるか否かの判断を行うことができる。視点変換がされていない画像(第1画像、第2画像)に基づいて静止物体であるか否かの判断を行う場合には、立体物検出装置1は視点変換部31は具備しなくてもよい。 The stationary object determination unit 38 of the three-dimensional object detection device 1 according to the present embodiment detects the three-dimensional object detected from the captured image based on the difference in the characteristics of the moving object image and the stationary object image in the images captured at different times. Is a moving object or a stationary object. The images used when the stationary object determination unit 38 in the present embodiment determines whether the object is a stationary object include a bird's eye view image that has undergone viewpoint conversion and an image that has not undergone viewpoint conversion. In other words, the three-dimensional object detection device 1 according to the present embodiment can determine whether or not the object is a stationary object based on images (first image and second image) that have not undergone viewpoint conversion. When determining whether or not the object is a stationary object based on images that have not been subjected to viewpoint conversion (first image and second image), the three-dimensional object detection device 1 may not include the viewpoint conversion unit 31. Good.
 具体的に、静止物判断部38は、立体物が検出された第1の時刻において得られた第1鳥瞰視画像(を含む第1画像)の位置と、第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像(を含む第2画像)の位置とを自車両Vの移動距離(移動速度)に応じて鳥瞰視上で位置合わせをして、この位置合わせされた鳥瞰視画像(を含む画像)の差分画像上において、所定の差分を示す画素数をカウントして度数分布化して生成した第1差分波形情報の第1積算値を求める。静止物判断部38は、自車両Vの移動量を考慮して、オフセットした差分画像を取得する。オフセットする量d’は、図4(a)に示した自車両Vの実際の移動距離に対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。第1積算値は、第1差分波形情報としてプロットされた値の全部又は所定領域の全部又は所定領域の合計値である。 Specifically, the stationary object determination unit 38 includes the position of the first bird's-eye view image (including the first image) obtained at the first time when the three-dimensional object is detected, and the second after the first time. The position of the second bird's-eye view image (including the second image) obtained at this time is aligned on the bird's-eye view according to the moving distance (movement speed) of the host vehicle V, and this position is aligned. A first integrated value of first difference waveform information generated by counting the number of pixels indicating a predetermined difference and performing frequency distribution on the difference image of the bird's eye view image (including the image) is obtained. The stationary object determination unit 38 acquires an offset difference image in consideration of the movement amount of the host vehicle V. The offset amount d ′ is a movement amount on the bird's-eye view image data corresponding to the actual movement distance of the host vehicle V shown in FIG. 4A, and the signal from the vehicle speed sensor 20 and the current time from one hour before. It is determined based on the time until. The first integrated value is the entire value plotted as the first differential waveform information, the entire predetermined area, or the total value of the predetermined area.
 続いて、静止物判断部38は、第1の時刻において得られた第1鳥瞰視画像(第1画像)と、第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像(第2画像)との差分画像上において所定の差分を示す画素数をカウントして度数分布化して生成した第2差分波形情報の第2積算値を求める。つまり、静止物判断部38は、オフセットさせない差分画像を取得する。第2積算値は、第2差分波形情報としてプロットされた値の全部又は所定領域の合計値である。 Subsequently, the stationary object determination unit 38 obtains the first bird's-eye view image (first image) obtained at the first time and the second bird's-eye view image obtained at the second time after the first time. A second integrated value of the second differential waveform information generated by counting the number of pixels indicating a predetermined difference on the difference image from the (second image) and generating a frequency distribution is obtained. That is, the stationary object determination unit 38 acquires a difference image that is not offset. The second integrated value is all of the values plotted as the second differential waveform information or the total value of the predetermined area.
 そして、静止物判断部38は、第2積算値が第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、立体物検出部33により検出された立体物が静止物体であると判断する。 Then, when the evaluation value corresponding to the number of times that the second integrated value is determined to be greater than the first integrated value is greater than or equal to a predetermined evaluation threshold, the stationary object determination unit 38 detects the solid object detection unit 33. The determined three-dimensional object is determined to be a stationary object.
 発明者らは、異なるタイミングにおける撮像画像をオフセットさせた(位置合わせをした)差分画像では移動物体の特徴点に対応する画素量が大きく現れ、異なるタイミングにおける撮像画像をオフセットさせない(位置合わせをしない)差分画像では静止物体の特徴点に対応する画素量が大きく現れる点に着目し、本発明では、オフセットした(位置合せをした)タイミングの異なる撮像画像の差分画像の画素値(エッジ量)と、オフセットしない(位置合わせをしない)タイミングの異なる撮像画像の差分画像の画素値(エッジ量)とを比較することにより、立体物が静止物体であるか移動物体であるかを判断する。 The inventors have a large amount of pixels corresponding to the feature point of the moving object in the difference image obtained by offsetting (aligned) the captured images at different timings, and do not offset the captured images at different timings (no alignment) ) Focusing on the fact that the pixel amount corresponding to the feature point of the stationary object appears large in the difference image, and in the present invention, the pixel value (edge amount) of the difference image of the captured image that is offset (aligned) at different timings. By comparing pixel values (edge amounts) of difference images of captured images with different timings that are not offset (not aligned), it is determined whether the three-dimensional object is a stationary object or a moving object.
 図20(a)に示すように、過去のタイミングT0において、検出領域A1,A2内に立体物の像Q(T0)が検出され、T0のタイミングの後の現在のタイミングT1において、検出領域A1,A2内に立体物の像Q(T1)が検出された場合には、検出主体である自車両Vは方向Bに沿って移動するので、画像上、過去のタイミングT0において検出された立体物の像Q(T0)は、検出領域A1,A2の図中上側の立体物の像Q(T1)の位置へ移動する。 As shown in FIG. 20A, a solid object image Q (T0) is detected in the detection areas A1 and A2 at the past timing T0, and the detection area A1 at the current timing T1 after the timing of T0. , A2 when the three-dimensional object image Q (T1) is detected, the subject vehicle V, which is the detection subject, moves along the direction B, so that the three-dimensional object detected at the past timing T0 on the image. The image Q (T0) moves to the position of the image Q (T1) of the three-dimensional object on the upper side in the drawing of the detection areas A1 and A2.
 そして、図20(b)に示すように、静止物判断部38は、現在のタイミングT1において検出された立体物の像Q(T1)の画素またはエッジ成分の分布と、過去のタイミングT0において検出された立体物の像Q(T0)の像であって、所定量だけオフセットさせた(位置合わせをさせた)立体物の像Q(T0A)の画素またはエッジ成分の分布と、同じく過去のタイミングT0において検出された立体物の像Q(T0)の像であって、オフセットをさせない(位置合わせをしない)立体物の像Q(T0B)の画素またはエッジ成分の分布を得ることができる。 Then, as shown in FIG. 20B, the stationary object determination unit 38 detects the distribution of the pixels or edge components of the three-dimensional object image Q (T1) detected at the current timing T1 and the past timing T0. Distribution of pixels or edge components of the three-dimensional object image Q (T0), which has been offset (positioned) by a predetermined amount, and the past timing It is possible to obtain a pixel or edge component distribution of the three-dimensional object image Q (T0B) which is the image of the three-dimensional object detected at T0 and is not offset (not aligned).
 図20(b)に示すように、画像T1とオフセットされた(位置合わせされた)画像T0Aとを比較すると、画像T1における立体物の像Q(T1)と画像T0Aにおける立体物の像Q(T0A)との位置(自車両Vの移動方向Bに沿う位置)はほぼ共通する。他方、同図に示すように、画像T1とオフセットしない(位置合わせしない)画像T0Bとを比較すると、画像T1における立体物の像Q(T1)と画像T0Bにおける立体物の像Q(T0B)との位置(自車両Vの移動方向Bに沿う位置)は異なる。つまり、T1とT0Aとの差分画像を求めると、共通する部分については差し引かれて残らないので、特徴として抽出される画素の数は少なく、T1とT0Bとの差分画像を求めると、異なる部分が残るので、特徴として抽出される画素の数は相対的に多い。 As shown in FIG. 20B, when the image T1 is compared with the offset (aligned) image T0A, the three-dimensional object image Q (T1) in the image T1 and the three-dimensional object image Q ( The position (a position along the moving direction B of the host vehicle V) with T0A) is almost common. On the other hand, as shown in the figure, when comparing the image T1 and the image T0B that is not offset (not aligned), the solid object image Q (T1) in the image T1 and the solid object image Q (T0B) in the image T0B The position (position along the moving direction B of the host vehicle V) is different. That is, when the difference image between T1 and T0A is obtained, the common part is not subtracted and remains, so the number of pixels extracted as features is small, and when the difference image between T1 and T0B is obtained, different parts are found. Since it remains, the number of pixels extracted as a feature is relatively large.
 次に、立体物が移動物体であるか静止物体であるかを考慮して、図20に示す着目点を説明する。図21に基づいて立体物が移動物体である場合を説明し、図22に基づいて立体物が静止物体である場合を説明する。 Next, the point of interest shown in FIG. 20 will be described in consideration of whether the three-dimensional object is a moving object or a stationary object. A case where the three-dimensional object is a moving object will be described based on FIG. 21, and a case where the three-dimensional object is a stationary object will be described based on FIG.
 図21(a)に示すように、検出される立体物が移動する他車両VXである場合には、自車両Vと他車両VXの両方が移動するので、自車両Vと他車両VXとは所定の位置関係を保つ傾向がある。つまり、撮像画像をオフセットすると他車両VXの位置は、かえってずれる傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が多く検出される。他方、図21(b)に示すように、撮像画像をオフセットしない(位置合せをしない)場合には、自車両Vと他車両VXの位置は接近する傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が少なく検出される。差分画像PDtにおける画素(エッジ)が多ければ積算値は高くなり、差分画像PDtにおける画素(エッジ)が少なければ差分波形情報における積算値は低くなる傾向がある。 As shown in FIG. 21A, when the detected three-dimensional object is another vehicle VX that moves, both the host vehicle V and the other vehicle VX move, and therefore the host vehicle V and the other vehicle VX are different from each other. There is a tendency to maintain a predetermined positional relationship. That is, when the captured image is offset, the position of the other vehicle VX tends to be shifted, and many pixels (edges) that can be characteristic are detected in the difference image PDt. On the other hand, as shown in FIG. 21B, when the captured image is not offset (not aligned), the positions of the host vehicle V and the other vehicle VX tend to approach each other, and the difference image PDt is characteristic. Fewer pixels (edges) are detected. If the number of pixels (edges) in the difference image PDt is large, the integrated value tends to be high. If the number of pixels (edges) in the difference image PDt is small, the integrated value in the difference waveform information tends to be low.
 また、図22(a)に示すように、検出される立体物が静止した静止物体Q1である場合には、自車両Vが移動する一方で静止物体Q1は静止しているので、自車両Vと静止物体Q1とは離隔する傾向がある。つまり、撮像画像をオフセットすると自車両Vと静止物体Q1の位置は接近する傾向があり、差分画像PDtには特徴となりうる画素(エッジ)は少なく検出される。他方、図22(b)に示すように、撮像画像をオフセットしないと、自車両Vの移動に伴い静止物体Q1の位置が前回の撮像画像とは異なる傾向があり、差分画像PDtには特徴となりうる画素(エッジ)が多く検出される。差分画像PDtにおける画素(エッジ)が多ければ輝度分布情報における積算値は高くなり、差分画像PDtにおける画素(エッジ)が少なければ輝度分布情報における積算値は低くなる傾向がある。 Further, as shown in FIG. 22A, when the detected three-dimensional object is a stationary stationary object Q1, the own vehicle V moves while the stationary object Q1 is stationary. And the stationary object Q1 tend to be separated. That is, when the captured image is offset, the positions of the host vehicle V and the stationary object Q1 tend to approach, and a small number of pixels (edges) that can be characteristic are detected in the difference image PDt. On the other hand, as shown in FIG. 22B, if the captured image is not offset, the position of the stationary object Q1 tends to be different from the previous captured image as the host vehicle V moves, and the difference image PDt is characteristic. Many possible pixels (edges) are detected. If there are many pixels (edges) in the difference image PDt, the integrated value in the luminance distribution information tends to be high, and if there are few pixels (edges) in the difference image PDt, the integrated value in the luminance distribution information tends to be low.
 上述した考え方は、エッジ情報を用いる場合も同様に適用することができる。
 つまり、静止物検出部38は、立体物が検出された第1の時刻T0において得られた第1鳥瞰視画像の位置と、第1の時刻の後の第2の時刻T1において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、この位置合わせされた鳥瞰視画像の差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求める。つまり、自車両Vの移動量を考慮して、オフセットした(位置合せをした)差分画像を生成する。オフセットする量d’は、図4(a)に示した自車両Vの実際の移動距離に対応する鳥瞰視画像データ上の移動量に対応し、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。第1積算値は、第1輝度分布情報としてプロットされた値の全部又は所定領域の合計値である。
The above-described concept can be similarly applied to the case where edge information is used.
That is, the stationary object detection unit 38 obtains the position of the first bird's-eye view image obtained at the first time T0 when the three-dimensional object is detected and the second time T1 obtained after the first time. The position of the two bird's-eye view images is aligned on the bird's-eye view, and on the difference image of the aligned bird's-eye view images, the number of pixels in which the brightness difference between adjacent image areas is equal to or greater than a predetermined threshold is counted. A first integrated value of the first luminance distribution information generated by frequency distribution is obtained. In other words, an offset (positioned) difference image is generated in consideration of the movement amount of the host vehicle V. The offset amount d ′ corresponds to the movement amount on the bird's-eye view image data corresponding to the actual movement distance of the host vehicle V shown in FIG. 4A, and the signal from the vehicle speed sensor 20 and the current amount from one hour before. It is determined based on the time until the time. The first integrated value is the total of values plotted as the first luminance distribution information or a predetermined area.
 続いて、静止物判断部38は、第1の時刻T0において得られた第1鳥瞰視画像と、第1の時刻T0の後の第2の時刻T1において得られた第2鳥瞰視画像との差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求める。つまり、オフセットさせない差分画像を生成し、その積算値(第2積算値)を算出する。第2積算値は、第2輝度分布情報としてプロットされた値の全部又は所定領域の合計値である。 Subsequently, the stationary object determination unit 38 calculates the first bird's-eye view image obtained at the first time T0 and the second bird's-eye view image obtained at the second time T1 after the first time T0. On the difference image, the second integrated value of the second luminance distribution information generated by counting the number of pixels in which the luminance difference between adjacent image areas is equal to or greater than a predetermined threshold and generating the frequency distribution is obtained. That is, a difference image that is not offset is generated, and its integrated value (second integrated value) is calculated. The second integrated value is all of the values plotted as the second luminance distribution information or the total value of the predetermined area.
 そして、立体物判断部34は、第2積算値が第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、立体物検出部33により検出された立体物が「移動物体」であると判断する。評価値の算出手法は限定されないが、本実施形態では、所定周期で繰り返し実行される処理において、第2積算値が第1積算値よりも大きいと判断される度に、評価ポイントをカウントアップし、その合計値を「評価値」として求める。 Then, when the evaluation value corresponding to the number of times that the second integrated value is determined to be greater than the first integrated value is greater than or equal to a predetermined evaluation threshold, the three-dimensional object determination unit 34 detects the solid object detection unit 33. The determined three-dimensional object is determined to be a “moving object”. Although the calculation method of the evaluation value is not limited, in this embodiment, every time it is determined that the second integrated value is larger than the first integrated value in the process repeatedly executed at a predetermined cycle, the evaluation point is counted up. The total value is obtained as an “evaluation value”.
 このように、異なる時刻の撮像画像に基づいて、オフセットさせた(位置合わせさせた)過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)と、オフセットさせない(位置合わせしない)過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)との大小関係に基づいて、移動物体の画像遷移の特徴と静止物体の画像遷移の特徴とを識別し、立体物が移動物体であるか静止物体であるかを高い精度で判断することができる。 In this way, the pixel amount (edge amount) extracted from the difference image between the past captured image that has been offset (aligned) based on the captured images at different times and the current captured image is not offset ( (Does not align) Based on the magnitude relationship between the pixel amount (edge amount) extracted from the difference image between the past captured image and the current captured image, the image transition feature of the moving object and the image transition feature of the stationary object Can be determined with high accuracy whether the three-dimensional object is a moving object or a stationary object.
 本実施形態の静止物検出部38は、オフセットしていない(位置合せをしていない)画像との差分画像において所定差分を示す画素(エッジ量)の第2積算値が、オフセットした(位置合せをした)画像との差分画像において所定差分を示す画素(エッジ量)の第1積算値よりも大きいと判断された場合には、第1カウント値を加算して評価値を算出する。つまり、第2積算値が第1積算値よりも大きいという判断が積み重なるにつれて、評価値を増加させる。そして、評価値が所定の評価閾値以上である場合には、立体物検出部33,37により検出された立体物が静止物体であると判断する。 In the stationary object detection unit 38 of the present embodiment, the second integrated value of the pixels (edge amount) indicating a predetermined difference in the difference image from the image that is not offset (not aligned) is offset (alignment). If it is determined that the difference image from the image is larger than the first integrated value of the pixels (edge amount) indicating the predetermined difference, the first count value is added to calculate the evaluation value. That is, as the determination that the second integrated value is larger than the first integrated value is accumulated, the evaluation value is increased. When the evaluation value is equal to or greater than a predetermined evaluation threshold, it is determined that the three-dimensional object detected by the three-dimensional object detection units 33 and 37 is a stationary object.
 この処理において、静止物検出部38は、第2積算値が第1積算値よりも大きいという内容の判断が連続する場合には、この判断の連続回数が増えるにつれて、第1カウント値を高く設定する。このように、第2積算値が第1積算値よりも大きい判断が連続する場合には、検出された立体物が静止物体である可能性が高まっていると判断し、評価値がより大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、立体物が移動物体であるか否かを高い精度で判断することができる。 In this process, when the determination that the second integrated value is larger than the first integrated value continues, the stationary object detection unit 38 sets the first count value higher as the number of consecutive determinations increases. To do. As described above, when the determination that the second integrated value is larger than the first integrated value continues, it is determined that there is an increased possibility that the detected three-dimensional object is a stationary object, and the evaluation value becomes larger. Since the first count value is increased as described above, it is possible to determine with high accuracy whether or not the three-dimensional object is a moving object based on the continuous observation result.
 静止物検出部38は、第2積算値が第1積算値よりも大きいと判断された場合には第1カウント値を加算するとともに、第2積算値が第1積算値よりも小さいと判断された場合には、第2カウント値を減算して評価値を算出してもよい。この場合において、静止物検出部38は、第2積算値が第1積算値よりも大きいという内容の判断がされた後に、第2積算値が第1積算値よりも小さいという内容の判断がされ、さらにその後に、第2積算値が第1積算値よりも大きいという内容の判断がされた場合には、第1カウント値を高く設定する。 The stationary object detection unit 38 adds the first count value when it is determined that the second integrated value is greater than the first integrated value, and determines that the second integrated value is smaller than the first integrated value. In this case, the evaluation value may be calculated by subtracting the second count value. In this case, the stationary object detection unit 38 determines that the second integrated value is smaller than the first integrated value after determining that the second integrated value is larger than the first integrated value. Further, after that, when it is determined that the second integrated value is larger than the first integrated value, the first count value is set high.
 このように、第2積算値が第1積算値よりも大きいという判断と、第1積算値が第2積算値よりも大きいという判断とが入れ替わり生じる場合は、検出された立体物は静止物体である可能性が高いと判断し、評価値が大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。ちなみに、移動物体の特徴の検出状態は安定的に観察できる傾向が高い。検出結果が不安定であり、立体物が静止物体であるという判断結果が離散的に検出された場合には、検出された立体物は静止物体である可能性が高いと判断することができるからである。 As described above, when the determination that the second integrated value is greater than the first integrated value and the determination that the first integrated value is greater than the second integrated value occur interchangeably, the detected three-dimensional object is a stationary object. Since it is determined that there is a high possibility, and the first count value is increased so that the evaluation value is increased, it is possible to determine a stationary object with high accuracy based on the continuous observation result. Incidentally, the detection state of the feature of the moving object tends to be observed stably. If the detection result is unstable and the determination result that the three-dimensional object is a stationary object is discretely detected, it can be determined that the detected three-dimensional object is likely to be a stationary object. It is.
 静止物検出部38は、第2積算値が第1積算値よりも小さいと判断された場合には、第2カウント値を減算して評価値を算出する。この場合において、静止物検出部38は、第2積算値が第1積算値よりも小さいという内容の判断が所定回数以上連続した場合には、第2カウント値を高く設定する。 When it is determined that the second integrated value is smaller than the first integrated value, the stationary object detection unit 38 calculates an evaluation value by subtracting the second count value. In this case, the stationary object detection unit 38 sets the second count value higher when the determination that the second integrated value is smaller than the first integrated value continues for a predetermined number of times.
 このように、第2積算値が第1積算値よりも小さいと判断した場合には、検出された立体物が移動物体(他車両VX)である可能性が高いと判断し、静止物体を判断するための評価値が小さくなるように、減算に係る第2カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。 Thus, when it is determined that the second integrated value is smaller than the first integrated value, it is determined that the detected three-dimensional object is likely to be a moving object (another vehicle VX), and a stationary object is determined. The second count value related to the subtraction is increased so that the evaluation value for performing the reduction becomes smaller, so that the stationary object can be determined with high accuracy based on the continuous observation result.
 続いて、制御部39について説明する。本実施形態の制御部39は、前回の処理において、撮像画像に草・雪、植栽、ガードレールなどの静止物体が含まれており、検出領域A1,A2に静止物体の像Q1が映り込んでいることが静止物判断部38により判断された場合には、次回の処理において立体物検出部33,37、立体物判断部34、静止物判断部38、又は自身である制御部39の何れか一つ以上の各部において実行される制御命令を生成することができる。 Subsequently, the control unit 39 will be described. In the previous process, the control unit 39 according to the present embodiment includes a stationary object such as grass / snow, planting, or guardrail in the captured image, and the image Q1 of the stationary object is reflected in the detection areas A1 and A2. If it is determined by the stationary object determination unit 38, any of the three-dimensional object detection units 33 and 37, the three-dimensional object determination unit 34, the stationary object determination unit 38, or the control unit 39 that is itself in the next process. A control command to be executed in one or more units can be generated.
 本実施形態の制御命令は、検出される立体物が他車両VXであると判断されることが抑制されるように各部の動作を制御するための命令である。検出領域A1,A2に静止物体の像が映り込んでいる場合に、検出された立体物は草・雪、植栽、ガードレールなどの静止物体の像である可能性が高いため、それを誤って他車両VXと判断することを防止するためである。本実施形態の計算機30はコンピュータであるため、立体物検出処理、立体物判断処理、静止物判断処理に対する制御命令は各処理のプログラムに予め組み込んでもよいし、実行時に送出してもよい。本実施形態の制御命令は、差分波形情報に基づいて立体物を検出する際の感度を低下させる命令、エッジ情報に基づいて立体物を検出する際の感度を低下させる命令であってもよい。また、立体物が他車両VXであると判断されることを抑制する場合には、制御命令は、検出された立体物を他車両として判断する処理を中止させたり、検出された立体物を他車両ではないと判断させたりする結果に対する命令であってもよい。 The control command of the present embodiment is a command for controlling the operation of each unit so that it is suppressed that the detected three-dimensional object is the other vehicle VX. When an image of a stationary object is reflected in the detection areas A1 and A2, it is highly possible that the detected three-dimensional object is an image of a stationary object such as grass / snow, planting, or guardrail. This is to prevent the other vehicle VX from being determined. Since the computer 30 of the present embodiment is a computer, control commands for the three-dimensional object detection process, the three-dimensional object determination process, and the stationary object determination process may be incorporated in advance in the program of each process, or may be transmitted at the time of execution. The control command of the present embodiment may be a command for reducing sensitivity when detecting a three-dimensional object based on differential waveform information, or a command for decreasing sensitivity when detecting a three-dimensional object based on edge information. In addition, when suppressing the determination that the three-dimensional object is the other vehicle VX, the control command stops the process of determining the detected three-dimensional object as the other vehicle, It may be a command for a result that makes it be judged that the vehicle is not a vehicle.
 本実施形態の制御部39は、静止物判断部38により検出された立体物は静止物体の像である可能性が高いと判断された場合には、立体物が検出され、この検出された立体物が他車両VXであると判断されることを抑制する制御命令を立体物検出部33,37又は立体物判断部34に送出する。これにより、立体物検出部33,37は立体物を検出し難くなる。また、立体物判断部34は検出された立体物が検出領域Aに存在する他車両VXであると判断し難くなる。 When it is determined that the three-dimensional object detected by the stationary object determination unit 38 is likely to be an image of a stationary object, the control unit 39 according to the present embodiment detects the three-dimensional object, and the detected three-dimensional object. A control command for suppressing the object from being determined to be another vehicle VX is sent to the three-dimensional object detection units 33 and 37 or the three-dimensional object determination unit 34. This makes it difficult for the three-dimensional object detection units 33 and 37 to detect the three-dimensional object. Further, it is difficult for the three-dimensional object determination unit 34 to determine that the detected three-dimensional object is the other vehicle VX existing in the detection area A.
 また、制御部39は、静止物判断部38により検出された立体物は静止物体の像である可能性が高いと判断された場合には、立体物の検出処理を中止する内容の制御命令を生成して立体物検出部33,37に出力してもよいし、立体物の判断処理を中止する内容の制御命令又は検出された立体物が他車両ではないと判断する内容の制御命令を生成し、立体物判断部34に出力してもよい。これにより、上述と同様の作用効果を得ることができる。 In addition, when it is determined that there is a high possibility that the solid object detected by the stationary object determination unit 38 is an image of a stationary object, the control unit 39 issues a control command with a content for canceling the detection process of the three-dimensional object. It may be generated and output to the three-dimensional object detection units 33 and 37, or a control command for canceling the determination process for the three-dimensional object or a control command for determining that the detected three-dimensional object is not another vehicle is generated. Then, it may be output to the three-dimensional object determination unit 34. Thereby, the effect similar to the above can be obtained.
 以下、制御部39が出力する具体的な各制御命令について説明する。
 制御部39は、前回の処理で、静止物判断部38により検出された立体物は静止物である可能性が高いと判断された場合には、検出領域A1,A2に静止物体の像が映り込んでおり、画像情報に基づく処理に誤りが発生する可能性が高いと判断する。このまま、通常と同じ手法で立体物を検出すると、検出領域A1,A2に映り込んだ静止物体Q1の像に基づいて検出された立体物を誤って他車両VXと判断する場合がある。このため、本実施形態の制御部39は、次回の処理においては、静止物体Q1の像に基づいて検出された立体物が誤って他車両VXと判断されることを抑制するために、差分波形情報を生成する際の画素値の差分に関する閾値を高く変更する。このように、検出領域A1,A2に静止物体Q1が映り込んでいる場合には、判断の閾値を高く変更することにより、立体物の検出又は他車両VXであるとの判断が抑制されるので、静止物体Q1の像に起因する誤検出することを防止することができる。
Hereinafter, specific control commands output by the control unit 39 will be described.
When the control unit 39 determines in the previous process that the three-dimensional object detected by the stationary object determination unit 38 is highly likely to be a stationary object, an image of the stationary object appears in the detection areas A1 and A2. It is determined that there is a high possibility that an error will occur in the processing based on the image information. If the three-dimensional object is detected in the same manner as usual, the three-dimensional object detected based on the image of the stationary object Q1 reflected in the detection areas A1 and A2 may be erroneously determined as the other vehicle VX. For this reason, in the next process, the control unit 39 according to the present embodiment suppresses that the three-dimensional object detected based on the image of the stationary object Q1 is erroneously determined as the other vehicle VX. The threshold value regarding the difference between the pixel values when generating information is changed to be high. As described above, when the stationary object Q1 is reflected in the detection areas A1 and A2, detection of a three-dimensional object or determination of the other vehicle VX is suppressed by changing the determination threshold value higher. It is possible to prevent erroneous detection due to the image of the stationary object Q1.
 まず、差分波形情報に基づいて立体物を検出する場合の制御命令について説明する。先述したように、立体物検出部33は、差分波形情報と第1閾値αとに基づいて立体物を検出する。そして、本実施形態の制御部39は、静止物判断部38により検出された立体物は静止物体の像である可能性が高いと判断された場合には、立体物が検出され難くなるように、第1閾値αを高くする制御命令を生成し、立体物検出部33に出力する。第1閾値αとは、図11のステップS7において、差分波形DWtのピークを判断するための第1閾値αである(図5参照)。また、制御部39は、差分波形情報における画素値の差分に関する閾値pを高く又は低くする制御命令を立体物検出部33に出力することができる。 First, a control command for detecting a three-dimensional object based on differential waveform information will be described. As described above, the three-dimensional object detection unit 33 detects a three-dimensional object based on the difference waveform information and the first threshold value α. Then, the control unit 39 of the present embodiment makes it difficult to detect the three-dimensional object when it is determined that the three-dimensional object detected by the stationary object determination unit 38 is likely to be an image of a stationary object. Then, a control command for increasing the first threshold value α is generated and output to the three-dimensional object detection unit 33. The first threshold value α is the first threshold value α for determining the peak of the differential waveform DWt in step S7 of FIG. 11 (see FIG. 5). In addition, the control unit 39 can output a control command for increasing or decreasing the threshold value p regarding the difference between pixel values in the difference waveform information to the three-dimensional object detection unit 33.
 また、本実施形態の制御部39は、静止物判断部38により検出された立体物は静止物体の像である可能性が高いと判断された場合には、鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値を低く出力する制御命令を立体物検出部33に出力することができる。鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値とは、図11のステップS5において生成される差分波形DWtの縦軸の値である。制御部39は、前回の処理で検出された立体物は静止物の像である可能性が高いと判断された場合には、検出領域A1,A2に映り込んだ静止物体の像Q1に基づいて他車両VXを誤検出する可能性が高いと判断する。このため、次回の処理においては検出領域A1,A2において立体物又は他車両VXが検出され難くなるように、差分波形DWtの度数分布化された値を低く変更して出力する。このように、検出された立体物は静止物体の像である可能性が高いと判断された場合に、出力値を低くすることにより、自車両Vの走行車線の隣を走行する他車両VXの検出感度が調整されるため、検出領域A1,A2に映り込んだ静止物体Q1に起因する他車両VXの誤検出を防止することができる。 In addition, when it is determined that there is a high possibility that the three-dimensional object detected by the stationary object determination unit 38 is an image of a stationary object, the control unit 39 according to the present embodiment performs predetermined processing on the difference image of the bird's eye view image. A control command that counts the number of pixels indicating the difference between the two and outputs a low frequency distribution value can be output to the three-dimensional object detection unit 33. The value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG. If the control unit 39 determines that the three-dimensional object detected in the previous process is likely to be an image of a stationary object, the control unit 39 is based on the image Q1 of the stationary object reflected in the detection areas A1 and A2. It is determined that there is a high possibility of misdetecting the other vehicle VX. For this reason, in the next process, the frequency-distributed value of the differential waveform DWt is changed to a low value so that it is difficult to detect the three-dimensional object or the other vehicle VX in the detection areas A1 and A2. In this way, when it is determined that the detected three-dimensional object is likely to be an image of a stationary object, the output value is lowered to reduce the vehicle VX of the other vehicle VX traveling next to the traveling lane of the host vehicle V. Since the detection sensitivity is adjusted, erroneous detection of the other vehicle VX due to the stationary object Q1 reflected in the detection areas A1 and A2 can be prevented.
 次に、エッジ情報に基づいて立体物を検出する場合の制御命令について説明する。先述した差分波形情報に基づく処理と同様に、制御部39は、前回の処理で検出された立体物は静止物体の像である可能性が高いと判断された場合には、検出領域A1,A2に映り込んだ静止物体Q1に基づいて他車両VXを誤検出する可能性が高いと判断する。
 このため、本実施形態の制御部39は、検出された立体物は静止物体の像である可能性が高いと判断された場合には、立体物検出部33、37により立体物が検出されること又は立体物判断部37により立体物が他車両であると判断されることを抑制するために、制御部39は各処理に用いられる各閾値を高く(検出がされ難くなるように)変更し、各閾値と比較される出力値を低く(検出がされ難くなるように)変更する。
Next, a control command for detecting a three-dimensional object based on edge information will be described. Similar to the processing based on the differential waveform information described above, the control unit 39 determines that the three-dimensional object detected in the previous processing is highly likely to be an image of a stationary object, and the detection areas A1, A2 It is determined that there is a high possibility of misdetecting the other vehicle VX based on the stationary object Q1 reflected in the.
For this reason, the control unit 39 of the present embodiment detects the three-dimensional object by the three-dimensional object detection units 33 and 37 when it is determined that the detected three-dimensional object is likely to be an image of a stationary object. In order to suppress that the three-dimensional object is determined to be another vehicle by the three-dimensional object determination unit 37, the control unit 39 increases each threshold value used for each process (so that it is difficult to detect). The output value compared with each threshold value is changed to be low (so that it is difficult to detect).
 立体物検出部33、37により立体物が検出されること又は立体物判断部37により立体物が他車両であると判断されることを抑制するために、制御部39は各処理に用いられる各閾値を初期値、標準値その他の設定値よりも高く(検出がされ難くなるように)変更し、又は各閾値と比較される出力値を低く(検出がされ難くなるように)変更する。なお、制御部39が促進処理を行う場合には、促進処理は抑制処理と判断の制御となる。 In order to suppress that the three-dimensional object is detected by the three-dimensional object detection units 33 and 37 or that the three-dimensional object determination unit 37 determines that the three-dimensional object is another vehicle, the control unit 39 is used for each process. The threshold value is changed higher than the initial value, the standard value, or other set values (so that detection is difficult), or the output value compared with each threshold value is changed low (so that detection is difficult). In addition, when the control part 39 performs a promotion process, a promotion process becomes control of a suppression process and judgment.
 具体的な処理の内容は、以下のとおりである。 The details of the processing are as follows.
 差分波形情報を用いて立体物を検出する立体物検出部33が、差分波形情報が所定の第1閾値α以上であるときに立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように第1閾値αを高く変更する制御命令を生成し、この制御命令を立体物検出部33に出力する。 When the three-dimensional object detection unit 33 that detects the three-dimensional object using the difference waveform information detects the three-dimensional object when the difference waveform information is equal to or greater than the predetermined first threshold value α, the control unit 39 performs the previous process. When it is determined that the detected three-dimensional object is a stationary object, a control command for changing the first threshold value α so as to make it difficult to detect the three-dimensional object is generated, and this control command is sent to the three-dimensional object detection unit 33. Output.
 同じく、立体物検出部33が、差分波形情報が所定の第1閾値α以上であるときに立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値を低く変更して出力させる制御命令を生成し、この制御命令を立体物検出部38に出力する。 Similarly, when the three-dimensional object detection unit 33 detects a three-dimensional object when the differential waveform information is greater than or equal to the predetermined first threshold value α, the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object. If it is determined that there is a control command that counts the number of pixels indicating a predetermined difference on the difference image of the bird's eye view image and generates a low-frequency-distributed value and outputs it, this control command Is output to the three-dimensional object detection unit 38.
 また、差分波形情報を用いて立体物を検出する立体物検出部33が閾値p以上の画素値を示す画素数を所定の差分を示す画素数として抽出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように閾値pを高く変更する制御命令を生成し、この制御命令を立体物検出手部38に出力する。 In addition, when the three-dimensional object detection unit 33 that detects a three-dimensional object using the difference waveform information extracts the number of pixels indicating a pixel value equal to or greater than the threshold value p as the number of pixels indicating a predetermined difference, the control unit 39 When it is determined that the three-dimensional object detected in the processing is a stationary object, a control command for changing the threshold value p so that the three-dimensional object is difficult to detect is generated, and this control command is used as the three-dimensional object detection hand unit 38. Output to.
 同じく、立体物検出部33が閾値p以上の画素値を示す画素数を所定の差分を示す画素数として抽出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿って、差分画像上において抽出される画素数を低く変更して出力する制御命令を生成し、この制御命令を立体物検出部38に出力する。たとえば、制御部39は、立体物検出部33(又は立体物検出部37)による立体物が存在するという検出結果、又は立体物判断部34による立体物が最終的に他車両VXであるという判断結果が出ることを抑制するために、検出領域A1,A2を部分的にマスクし、又は検出や判断に用いられる閾値や出力値を調整する。 Similarly, when the three-dimensional object detection unit 33 extracts the number of pixels indicating a pixel value equal to or greater than the threshold p as the number of pixels indicating a predetermined difference, the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object. If it is determined that there is a control command to be output by changing the number of pixels extracted on the difference image to be lower along the direction in which the three-dimensional object falls when the viewpoint of the bird's eye view image is converted, The control command is output to the three-dimensional object detection unit 38. For example, the control unit 39 determines that the three-dimensional object is detected by the three-dimensional object detection unit 33 (or the three-dimensional object detection unit 37) or that the three-dimensional object is finally the other vehicle VX by the three-dimensional object determination unit 34. In order to prevent the result from being obtained, the detection areas A1 and A2 are partially masked, or the threshold value and output value used for detection and determination are adjusted.
 エッジ情報を用いて立体物を検出する立体物検出部37が所定閾値t以上の輝度差を示す画素に基づいてエッジ線を抽出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように所定閾値tを高く変更する制御命令を生成し、この制御命令を立体物検出部37に出力する。 When the three-dimensional object detection unit 37 that detects a three-dimensional object using edge information extracts an edge line based on a pixel indicating a luminance difference equal to or greater than a predetermined threshold t, the control unit 39 detects the three-dimensional object detected in the previous process. When it is determined that the object is a stationary object, a control command for changing the predetermined threshold value t so as to make it difficult to detect the three-dimensional object is generated, and this control command is output to the three-dimensional object detection unit 37.
 同じく、エッジ情報を用いて立体物を検出する立体物検出部37が所定閾値t以上の輝度差を示す画素に基づいてエッジ線を抽出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、画素の輝度値を低く変更して出力する制御命令を生成し、この制御命令を立体物検出部37に出力する。 Similarly, when the three-dimensional object detection unit 37 that detects a three-dimensional object using edge information extracts an edge line based on a pixel indicating a luminance difference equal to or greater than a predetermined threshold value t, the control unit 39 is detected in the previous process. If it is determined that the three-dimensional object is a stationary object, a control command for changing the luminance value of the pixel to a low value is generated, and the control command is output to the three-dimensional object detection unit 37.
 エッジ情報を用いて立体物を検出する立体物検出部37がエッジ情報に含まれる閾値θ以上の長さを有するエッジ線に基づいて立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように閾値θを高く変更する制御命令を生成し、この制御命令を立体物検出部37に出力する。 When the three-dimensional object detection unit 37 that detects a three-dimensional object using edge information detects a three-dimensional object based on an edge line having a length equal to or greater than the threshold value θ included in the edge information, the control unit 39 performs the previous process. When it is determined that the three-dimensional object detected in step 3 is a stationary object, a control command for changing the threshold θ to be high so that the three-dimensional object is difficult to detect is generated, and this control command is output to the three-dimensional object detection unit 37. To do.
 同じく、エッジ情報を用いて立体物を検出する立体物検出部37がエッジ情報に含まれる閾値θ以上の長さを有するエッジ線に基づいて立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、検出したエッジ情報のエッジ線の長さの値を低く変更して出力させる制御命令を生成し、この制御命令を立体物検出部37に出力する。 Similarly, when the three-dimensional object detection unit 37 that detects a three-dimensional object using edge information detects a three-dimensional object based on an edge line having a length equal to or longer than the threshold θ included in the edge information, the control unit 39 If it is determined that the three-dimensional object detected in the process of (2) is a stationary object, a control command is generated to change the edge line length value of the detected edge information to a low value and output the control command. Output to the three-dimensional object detection unit 37.
 エッジ情報を用いて立体物を検出する立体物検出部37がエッジ情報に含まれる所定長さ以上のエッジ線、例えば閾値θ以上の長さを有するエッジ線の本数が第2閾値β以上であるか否かの判断に基づいて立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように第2閾値βを高く変更する制御命令を生成し、この制御命令を立体物検出部37に出力する。 The number of edge lines having a length equal to or greater than a predetermined length included in the edge information, for example, the number of edge lines having a length equal to or greater than the threshold θ is included in the edge information by the three-dimensional object detection unit 37 that detects the solid object using the edge information is equal to or greater than the second threshold β. In the case of detecting a three-dimensional object based on whether or not the three-dimensional object is detected, the control unit 39 is unlikely to detect the three-dimensional object when it is determined that the three-dimensional object detected in the previous process is a stationary object. A control command for changing the second threshold value β to a high value is generated, and this control command is output to the three-dimensional object detection unit 37.
 エッジ情報を用いて立体物を検出する立体物検出部37がエッジ情報に含まれる所定長さ以上のエッジ線、例えば閾値θ以上の長さを有するエッジ線の本数が第2閾値β以上であるか否かの判断に基づいて立体物を検出する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、検出した所定長さ以上のエッジ線の本数を低く出力する制御命令を生成し、この制御命令を立体物検出部37に出力する。 The number of edge lines having a length equal to or greater than a predetermined length included in the edge information, for example, the number of edge lines having a length equal to or greater than the threshold θ is included in the edge information by the three-dimensional object detection unit 37 that detects the solid object using the edge information is equal to or greater than the second threshold β. In the case of detecting a three-dimensional object based on whether or not the three-dimensional object is detected, the control unit 39 determines that the three-dimensional object detected in the previous process is a stationary object, the detected predetermined length or more. A control command that outputs a low number of edge lines is generated, and this control command is output to the three-dimensional object detection unit 37.
 また、立体物判断部34は、検出された立体物の移動速度が予め設定された所定速度以上であるときに、この立体物を他車両であると判断する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物が検出され難いように立体物を他車両であると判断する際の下限となる所定速度を高く変更する制御命令を生成し、この制御命令を立体物判断部34に出力する。 In addition, when the three-dimensional object determination unit 34 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is equal to or higher than a predetermined speed, the control unit 39 If it is determined that the three-dimensional object detected in the process is a stationary object, the predetermined speed that is the lower limit when determining that the three-dimensional object is another vehicle is changed so that the three-dimensional object is difficult to detect. A control command is generated, and this control command is output to the three-dimensional object determination unit 34.
 同じく、立体物判断部34は、検出された立体物の移動速度が予め設定された所定速度以上であるときに、この立体物を他車両であると判断する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物を他車両であると判断する際の下限となる所定速度と比較される立体物の移動速度を低く変更して出力する制御命令を生成し、当該制御命令を立体物判断部34に出力する。 Similarly, when the three-dimensional object determination unit 34 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is equal to or higher than a predetermined speed, the control unit 39 If it is determined that the three-dimensional object detected in the process is a stationary object, the moving speed of the three-dimensional object is changed to be lower than the predetermined speed that is the lower limit when determining that the three-dimensional object is another vehicle. The control command to be output is generated, and the control command is output to the three-dimensional object determination unit 34.
 また、立体物判断部34が、検出された立体物の移動速度が予め設定された所定速度未満であるときに、この立体物を他車両であると判断する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物を他車両であると判断する際の上限となる所定速度を低く変更する制御命令を生成し、この制御命令を立体物判断部34に出力する。 When the three-dimensional object determination unit 34 determines that the three-dimensional object is another vehicle when the movement speed of the detected three-dimensional object is less than a preset predetermined speed, the control unit 39 If it is determined that the three-dimensional object detected in the process is a stationary object, a control command is generated to change the predetermined speed, which is the upper limit when determining that the three-dimensional object is another vehicle, and this control is performed. The command is output to the three-dimensional object determination unit 34.
 同じく、立体物判断部34検出された立体物の移動速度が予め設定された所定速度未満であるときにこの立体物を他車両であると判断する場合において、制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、立体物を他車両であると判断する際の上限となる所定速度と比較される立体物の移動速度を高く変更する制御命令を生成し、この制御命令を立体物判断部34に出力する。 Similarly, when determining that the three-dimensional object is another vehicle when the movement speed of the three-dimensional object detected by the three-dimensional object determination unit 34 is less than a predetermined speed set in advance, the control unit 39 performs the previous process. When it is determined that the detected three-dimensional object is a stationary object, a control command that changes the moving speed of the three-dimensional object to be higher than the predetermined speed that is the upper limit when determining that the three-dimensional object is another vehicle. And outputs this control command to the three-dimensional object determination unit 34.
 なお、ここで「移動速度」は、立体物の絶対速度、および自車両に対する立体物の相対速度を含む。立体物の絶対速度は立体物の相対速度から算出してもよいし、立体物の相対速度は立体物の絶対速度から算出してもよい。 Here, the “movement speed” includes the absolute speed of the three-dimensional object and the relative speed of the three-dimensional object with respect to the host vehicle. The absolute speed of the three-dimensional object may be calculated from the relative speed of the three-dimensional object, and the relative speed of the three-dimensional object may be calculated from the absolute speed of the three-dimensional object.
 ちなみに、第1閾値αは、図11のステップS7において、差分波形DWtのピークを判断するためのである。閾値pは所定の画素値を有する画素を抽出するための閾値である。所定閾値tは所定の輝度差を有する画素又はエッジ成分を抽出するための閾値である。閾値θは、図17のステップS29における各注目点Paの属性の連続性cの総和を正規化した値(エッジの長さ)を判断する閾値であり、第2閾値βは、図18のステップ34におけるエッジ線の量(本数)を評価する閾値である。このように、判断の閾値を高く変更することにより、自車両Vの走行車線の隣を走行する他車両VXが検出されにくいように検出感度が調整されるため、検出された静止物を他車両VXとして誤検出することを防止することができる。 Incidentally, the first threshold value α is for determining the peak of the differential waveform DWt in step S7 of FIG. The threshold value p is a threshold value for extracting a pixel having a predetermined pixel value. The predetermined threshold value t is a threshold value for extracting pixels or edge components having a predetermined luminance difference. The threshold value θ is a threshold value for determining a value (edge length) obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa in step S29 of FIG. 17, and the second threshold value β is the step of FIG. 34 is a threshold value for evaluating the amount (number) of edge lines. As described above, the detection sensitivity is adjusted so that the other vehicle VX traveling next to the traveling lane of the host vehicle V is difficult to be detected by changing the determination threshold to be higher. It is possible to prevent erroneous detection as VX.
 本実施形態の制御部39は、鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値を低く出力する制御命令を立体物検出部33に出力する。鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値とは、図11のステップS5において生成される差分波形DWtの縦軸の値である。 The control unit 39 of the present embodiment outputs a control command for counting the number of pixels indicating a predetermined difference on the difference image of the bird's-eye view image and outputting a low frequency distribution value to the three-dimensional object detection unit 33. The value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG.
 また、本実施形態の制御部39は、検出したエッジ情報を低く出力する制御命令を立体物検出部37に出力する。検出したエッジ情報とは、図17のステップS29における各注目点Paの属性の連続性cの総和を正規化した値であるエッジ線の長さのほか、図18のステップ34におけるエッジ線の量である。制御部39は、前回の処理で検出された立体物が静止物体であると判断された場合には、静止物を立体物として検出しないように、次回の処理においては立体物が検出されにくいように、各注目点Paの属性の連続性cの総和を正規化した値又はエッジ線の量を低く変更する。このように、検出された立体物は静止物体の像である可能性が高いと判断された場合に、判断の閾値を高く変更することにより、立体物の検出又は他車両VXであるとの判断がされることを抑制するので、検出領域A1,A2に映り込んだ静止物体の像Q1に起因する誤検出することを防止することができる。 Also, the control unit 39 of the present embodiment outputs a control command for outputting the detected edge information to the three-dimensional object detection unit 37. The detected edge information includes the length of the edge line that is a value obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa in step S29 in FIG. 17, and the amount of edge line in step 34 in FIG. It is. When it is determined that the three-dimensional object detected in the previous process is a stationary object, the control unit 39 does not detect the three-dimensional object in the next process so that the three-dimensional object is not detected as a three-dimensional object. Further, the value obtained by normalizing the sum of the continuity c of the attribute of each attention point Pa or the amount of the edge line is changed to be low. As described above, when it is determined that the detected three-dimensional object is likely to be an image of a stationary object, the three-dimensional object is detected or the other vehicle VX is determined by changing the determination threshold value to be high. Therefore, it is possible to prevent erroneous detection due to the still object image Q1 reflected in the detection areas A1 and A2.
 以下、図23に基づいて、本実施形態の立体物検出装置1の動作、特に、制御部39及び制御命令を取得した立体物判断部34、立体物検出部33,37の動作を説明する。図23に示す処理は、前回の立体物検出処理の後に、前回処理の結果を利用して行われる今回の立体物検出処理である。 Hereinafter, based on FIG. 23, the operation of the three-dimensional object detection device 1 of the present embodiment, in particular, the operation of the three-dimensional object determination unit 34 and the three-dimensional object detection units 33 and 37 that have acquired the control unit 39 and the control command will be described. The process illustrated in FIG. 23 is the current three-dimensional object detection process performed using the result of the previous process after the previous three-dimensional object detection process.
 まず、図23に示すステップS41において、静止物判断部38は、差分波形情報又はエッジ情報に基づいて、立体物が静止物体であるか、又は移動物体であるかを判断する。 First, in step S41 shown in FIG. 23, the stationary object determination unit 38 determines whether the three-dimensional object is a stationary object or a moving object based on the difference waveform information or the edge information.
 図24は、本実施形態の静止物体の判断処理の制御手順を示すフローチャート図である。図24に示すように、まず、ステップS81において、立体物判断部34は、過去のタイミングT0の画像を取得する。次に、ステップS82において、立体物判断部34は、過去のタイミングT0におけるオフセット画像T0Aと、過去のタイミングT0における非オフセット画像T0Bとを求める。各画像は、撮像画像であってもよいし、視点変換された鳥瞰視画像であってもよい。 FIG. 24 is a flowchart showing the control procedure of the stationary object determination process of the present embodiment. As shown in FIG. 24, first, in step S81, the three-dimensional object determination unit 34 acquires an image at a past timing T0. Next, in step S82, the three-dimensional object determination unit 34 obtains an offset image T0A at the past timing T0 and a non-offset image T0B at the past timing T0. Each image may be a captured image or a bird's-eye view image whose viewpoint has been changed.
 ステップS83において、立体物判断部34は、現在のタイミングT1における画像T1を取得する。続くステップS84において、立体物判断部34は、現在のタイミングT1における画像T1と、過去のタイミングT0におけるオフセット画像T0Aとの差分画像PDtAを取得するとともに、現在のタイミングT1における画像T1と、過去のタイミングT0における非オフセット画像T0Bとの差分画像PDtBを取得する。 In step S83, the three-dimensional object determination unit 34 acquires the image T1 at the current timing T1. In subsequent step S84, the three-dimensional object determination unit 34 obtains a difference image PDtA between the image T1 at the current timing T1 and the offset image T0A at the past timing T0, and the past image T1 at the current timing T1 and the past A difference image PDtB from the non-offset image T0B at the timing T0 is acquired.
 ステップS85において、立体物判断部34は、差分画像PDtAにおいて、画素値が所定差分以上の画素、輝度差が所定値以上の画素を抽出し、位置ごとに画素の分布を求める。同様に、立体物判断部34は、差分画像PDtBにおいて、画素値が所定差分以上の画素、輝度差が所定値以上の画素を抽出し、位置ごとに画素の分布を求める。続くステップS86において、立体物判断部34は、差分画像PDtAにおける画素量の積算値PAを求めるとともに、差分画像PDtBにおける画素量の積算値PBを求める。積算値PA,PBに代えて、全体の画素量を求めてもよい。 In step S85, the three-dimensional object determination unit 34 extracts pixels having a pixel value greater than or equal to a predetermined difference and pixels having a luminance difference greater than or equal to a predetermined value from the difference image PDtA, and obtains a pixel distribution for each position. Similarly, the three-dimensional object determination unit 34 extracts pixels having a pixel value equal to or larger than a predetermined difference and pixels having a luminance difference equal to or larger than a predetermined value in the difference image PDtB, and obtains a pixel distribution for each position. In subsequent step S86, the three-dimensional object determination unit 34 obtains the integrated value PA of the pixel amount in the difference image PDtA and obtains the integrated value PB of the pixel amount in the difference image PDtB. Instead of the integrated values PA and PB, the total pixel amount may be obtained.
 ステップS87において、立体物判断部34は、第1積算値PAと第2積算値PBとを比較し、第1積算値PAが第2積算値PBよりも小さい場合、つまり、オフセットした過去画像T0Aと現在画像T1との差分画像の画素量又は第1積算値PAの方が、オフセットしない(位置合せをしない)過去画像T0Bと現在画像T1との差分画像の画素量又は第2積算値PBよりも小さい場合には、ステップS88に進み、検出された立体物は静止物体であると判断し、図23のステップS51へ移行して、他車両の検出抑制処理を行う。このとき、立体物は他車両ではないと判断して、図23のステップS46、47へ進んでもよい。他方、ステップS87において、第1積算値PAが第2積算値PB以上である場合には、立体物は移動物体であるので、図23のステップS43へ進んで、通常の他車両検出を行う。 In step S87, the three-dimensional object determination unit 34 compares the first integrated value PA and the second integrated value PB. If the first integrated value PA is smaller than the second integrated value PB, that is, the offset past image T0A. The pixel amount of the difference image between the current image T1 and the first integrated value PA is more than the pixel amount or the second integrated value PB of the difference image between the past image T0B and the current image T1 that is not offset (not aligned). If it is smaller, the process proceeds to step S88, where it is determined that the detected three-dimensional object is a stationary object, and the process proceeds to step S51 in FIG. At this time, it may be determined that the three-dimensional object is not another vehicle, and the process may proceed to steps S46 and S47 in FIG. On the other hand, if the first integrated value PA is greater than or equal to the second integrated value PB in step S87, the three-dimensional object is a moving object, so the process proceeds to step S43 in FIG. 23 and normal other vehicle detection is performed.
 図23に戻り、ステップS42において、静止物判断部38は、立体物が静止物体であるか否かを判断する。検出された立体物が移動物体であると判断された場合には、ステップS43へ進む。検出された立体物が静止物体であると判断された場合には、ステップS51へ進む。 23, in step S42, the stationary object determination unit 38 determines whether or not the three-dimensional object is a stationary object. If it is determined that the detected three-dimensional object is a moving object, the process proceeds to step S43. If it is determined that the detected three-dimensional object is a stationary object, the process proceeds to step S51.
 ステップS51において、制御部39は、静止物判断部38により前回の処理で検出された立体物が静止物体の像Q1であると判断された場合には、検出領域A1,A2に映り込んだ静止物体の像Q1に基づいて他車両VXを誤検出する可能性が高いと判断し、次回の処理において立体物が検出され、その立体物が他車両VXであると判断されることが抑制されるように、立体物検出処理、立体物判断処理において用いられる閾値を高く設定するか、閾値と比較される出力値を低く出力する制御を行う。具体的には、立体物の検出が抑制されるように、差分波形情報を生成する際の画素値の差分に関する閾値p、差分波形情報から立体物を判断する際に用いる第1閾値α、エッジ情報を生成する際の閾値θ、エッジ情報から立体物を判断する際に用いる第2閾値βの何れか一つ以上を高く変更する旨の制御命令を立体物検出部33,37へ送出する。なお、制御部39は、閾値を上げる代わりに、閾値によって評価される出力値を低くする制御命令を生成し、立体物検出部33、37に出力してもよい。先述したように、第1閾値αは、図11のステップS7において、差分波形DWtのピークを判断するための閾値である。閾値θは、図17のステップS29における各注目点Paの属性の連続性cの総和を正規化した値を判断する閾値であり、第2閾値βは、図18のステップ34におけるエッジ線の量を評価する閾値である。 In step S51, when the stationary object determining unit 38 determines that the three-dimensional object detected in the previous process is the image Q1 of the stationary object, the control unit 39 displays the stationary image reflected in the detection areas A1 and A2. Based on the object image Q1, it is determined that there is a high possibility that the other vehicle VX is erroneously detected, and the three-dimensional object is detected in the next processing, and it is suppressed that the three-dimensional object is determined to be the other vehicle VX. As described above, control is performed such that the threshold value used in the three-dimensional object detection process and the three-dimensional object determination process is set high, or the output value compared with the threshold value is output low. Specifically, the threshold p for pixel value difference when generating the difference waveform information, the first threshold α used when determining the three-dimensional object from the difference waveform information, and the edge so that detection of the three-dimensional object is suppressed A control command for changing any one or more of the threshold value θ for generating information and the second threshold value β used for determining the solid object from the edge information to the three-dimensional object detection units 33 and 37 is sent. Note that, instead of increasing the threshold value, the control unit 39 may generate a control command for decreasing the output value evaluated by the threshold value and output the control command to the three-dimensional object detection units 33 and 37. As described above, the first threshold value α is a threshold value for determining the peak of the differential waveform DWt in step S7 of FIG. The threshold value θ is a threshold value for determining a value obtained by normalizing the sum of the continuity c of the attribute of each target point Pa in step S29 in FIG. 17, and the second threshold value β is the amount of the edge line in step 34 in FIG. Is a threshold value for evaluating.
 なお出力値を低くする場合には、制御部39は、鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値を低く出力する制御命令を立体物検出部33に出力する。鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値とは、図11のステップS5において生成される差分波形DWtの縦軸の値である。同様に、制御部39は、検出したエッジ情報の量を低く出力する制御命令を立体物検出部37に出力することができる。検出したエッジ情報の量とは、図17のステップS29における各注目点Paの属性の連続性cの総和を正規化した値、又は図18のステップ34におけるエッジ線の量である。制御部39は、前回の処理で光環境が急変すると判断された場合には、次回の処理においては立体物が検出されにくいように、各注目点Paの属性の連続性cの総和を正規化した値又はエッジ線の量を低く変更する制御命令を立体物検出部37に出力することができる。 When the output value is lowered, the control unit 39 detects a three-dimensional object by outputting a control command that counts the number of pixels indicating a predetermined difference on the difference image of the bird's eye view image and outputs the frequency distribution value lower. To the unit 33. The value obtained by counting the number of pixels showing a predetermined difference on the difference image of the bird's-eye view image and performing frequency distribution is the value on the vertical axis of the difference waveform DWt generated in step S5 of FIG. Similarly, the control unit 39 can output a control command for outputting a low amount of detected edge information to the three-dimensional object detection unit 37. The detected amount of edge information is a value obtained by normalizing the sum of the continuity c of the attributes of each point of interest Pa in step S29 in FIG. 17 or the amount of edge lines in step 34 in FIG. When it is determined that the light environment changes suddenly in the previous process, the control unit 39 normalizes the sum of the continuity c of the attribute of each attention point Pa so that a solid object is difficult to detect in the next process. A control command for changing the value or the amount of the edge line to be low can be output to the three-dimensional object detection unit 37.
 各閾値又は各出力値を変化させたのち、ステップS43に進み、差分波形情報又はエッジ情報に基づいて立体物を検出し、検出された立体物が他車両VXであるか否かを判断する。ステップS44において、立体物が検出され、検出された立体物が他車両VXである場合には、ステップS45において他車両が存在する旨の判断結果を出力し、そうでない場合には、ステップS46において他車両は存在しない旨の判断結果を出力する。ステップS45及びステップS46における処理は、先に図11及び12において説明した差分波形情報に基づく他車両VXの検出処理、同じく図17及び図18において説明したエッジ情報に基づく他車両VXの検出処理と共通する。 After changing each threshold value or each output value, the process proceeds to step S43, where a three-dimensional object is detected based on the difference waveform information or edge information, and it is determined whether the detected three-dimensional object is another vehicle VX. If a three-dimensional object is detected in step S44 and the detected three-dimensional object is another vehicle VX, a determination result indicating that another vehicle is present is output in step S45, otherwise, in step S46. The determination result that there is no other vehicle is output. The processes in step S45 and step S46 are the detection process of the other vehicle VX based on the differential waveform information described in FIGS. 11 and 12, and the detection process of the other vehicle VX based on the edge information described in FIGS. Common.
 他方、ステップS42において、立体物が非検出である場合には、ステップS46に進み、検出された立体物は他車両VXではなく、他車両VXは存在しないと判断してもよいし、ステップS47に進み、立体物の検出処理を中止してもよい。 On the other hand, if the three-dimensional object is not detected in step S42, the process proceeds to step S46, and it may be determined that the detected three-dimensional object is not the other vehicle VX, and there is no other vehicle VX, or step S47. The process of detecting a three-dimensional object may be stopped.
 以上のとおり構成され、動作する本発明の本実施形態に係る立体物検出装置1によれば、以下の効果を奏する。
 (1)本実施形態の立体物検出装置1によれば、異なる時刻の撮像画像に基づいて、オフセットさせた過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)と、オフセットさせない(位置合せをしない)過去の撮像画像と現在の撮像画像との差分画像から抽出される画素量(エッジ量)との大小関係に基づいて、移動物体の画像遷移の特徴と静止物体の画像遷移の特徴とを識別し、立体物が移動物体であるか静止物体であるかを高い精度で判断することができる。差分波形情報に基づく処理であっても、エッジ情報に基づく処理であっても同様の作用及び効果を奏する。
According to the three-dimensional object detection device 1 according to this embodiment of the present invention configured and operating as described above, the following effects are obtained.
(1) According to the three-dimensional object detection device 1 of the present embodiment, the pixel amount (edge amount) extracted from the difference image between the past captured image and the current captured image that are offset based on the captured images at different times. ) And the image transition characteristics of the moving object based on the magnitude relationship between the pixel amount (edge amount) extracted from the difference image between the past captured image and the current captured image that are not offset (not aligned) The feature of the image transition of the stationary object is identified, and it can be determined with high accuracy whether the three-dimensional object is a moving object or a stationary object. Even if the processing is based on the difference waveform information or the processing based on the edge information, the same operations and effects are obtained.
 (2)本実施形態の立体物検出装置1によれば、第2積算値が第1積算値よりも大きいという内容の判断が連続する場合には、この判断の連続回数が増えるにつれて、第1カウント値を高く設定する。このように、第2積算値が第1積算値よりも大きいという判断が連続する場合には、検出された立体物が静止物体である可能性が高まっていると判断し、評価値がより大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、立体物が移動物体であるか否かを高い精度で判断することができる。 (2) According to the three-dimensional object detection device 1 of the present embodiment, when the determination that the second integrated value is greater than the first integrated value continues, the first as the number of consecutive determinations increases. Set the count value higher. Thus, when the determination that the second integrated value is larger than the first integrated value continues, it is determined that the possibility that the detected three-dimensional object is a stationary object has increased, and the evaluation value is larger. Since the first count value is increased as described above, it is possible to determine with high accuracy whether or not the three-dimensional object is a moving object based on the continuous observation result.
 (3)本実施形態の立体物検出装置1によれば、第2積算値が第1積算値よりも大きいという判断と、第1積算値が第2積算値よりも大きいという判断とが入れ替わり生じる場合は、検出された立体物は静止物体である可能性が高いと判断し、評価値が大きくなるように第1カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。 (3) According to the three-dimensional object detection device 1 of the present embodiment, the determination that the second integrated value is greater than the first integrated value and the determination that the first integrated value is greater than the second integrated value are interchanged. In this case, it is determined that the detected three-dimensional object is likely to be a stationary object, and the first count value is increased so as to increase the evaluation value. Judgment can be made with high accuracy.
 (4)本実施形態の立体物検出装置1によれば、第2積算値が第1積算値よりも小さいと判断した場合には、検出された立体物が移動物体(他車両VX)である可能性が高いと判断し、静止物体を判断するための評価値が小さくなるように、減算に係る第2カウント値を大きくするので、継時的な観察結果に基づいて、静止物体を高い精度で判断することができる。 (4) According to the three-dimensional object detection device 1 of the present embodiment, when it is determined that the second integrated value is smaller than the first integrated value, the detected three-dimensional object is a moving object (another vehicle VX). Since the second count value related to subtraction is increased so that the evaluation value for determining a stationary object is determined to be small, the stationary object is highly accurate based on the observation results over time. Can be judged.
 (5)本実施形態の立体物検出装置1によれば、前回の処理において検出された立体物が静止物体の像であると判断された場合には、第1閾値αを高く変更することにより、自車両Vの走行車線の隣を走行する他車両VXが検出されにくいように検出感度を調整できるため、静止物体Q1の像を隣の車線を走行する他車両VXとして誤検出することを防止することができる。 (5) According to the three-dimensional object detection device 1 of the present embodiment, when it is determined that the three-dimensional object detected in the previous process is an image of a stationary object, the first threshold value α is changed to a high value. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next to the traveling lane of the own vehicle V is difficult to be detected, the image of the stationary object Q1 is prevented from being erroneously detected as the other vehicle VX traveling in the adjacent lane. can do.
 (6)前回の処理において検出された立体物が静止物体の像であると判断された場合には、差分波形情報を生成する際の出力値を低くすることにより、自車両Vの走行車線の隣を走行する他車両VXが検出されにくいように検出感度を調整できるため、静止物体Q1の像を隣の車線を走行する他車両VXとして誤検出することを防止することができる。 (6) If it is determined that the three-dimensional object detected in the previous process is an image of a stationary object, the output value when generating the differential waveform information is lowered, so that the travel lane of the host vehicle V is reduced. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next is hard to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
 (7)前回の処理において検出された立体物が静止物体の像であると判断された場合には、エッジ情報を生成する際の判断の閾値を高く変更することにより、自車両Vの走行車線の隣を走行する他車両VXが検出されにくいように検出感度を調整できるため、静止物体Q1の像を隣の車線を走行する他車両VXとして誤検出することを防止することができる。 (7) When it is determined that the three-dimensional object detected in the previous process is an image of a stationary object, the driving lane of the host vehicle V is increased by changing the determination threshold when generating edge information to a higher value. Since the detection sensitivity can be adjusted so that the other vehicle VX traveling next to the vehicle is difficult to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
 (8)前回の処理において検出された立体物が静止物体の像であると判断された場合には、エッジ情報を生成する際の出力値を低くすることにより、自車両Vの走行車線の隣を走行する他車両VXが検出されにくいように検出感度を調整できるため、静止物体Q1の像を隣の車線を走行する他車両VXとして誤検出することを防止することができる。 (8) If it is determined that the three-dimensional object detected in the previous process is an image of a stationary object, the output value when generating edge information is lowered, so that the next to the traveling lane of the host vehicle V Since the detection sensitivity can be adjusted so that the other vehicle VX traveling on the vehicle is difficult to be detected, it is possible to prevent erroneous detection of the image of the stationary object Q1 as the other vehicle VX traveling in the adjacent lane.
 なお、本実施形態の立体物検出装置1は、差分波形情報に基づく処理により他車両VXを検出する場合であっても、エッジ情報に基づく処理により他車両VXを検出する場合であっても同様の作用及び効果を奏する。 Note that the three-dimensional object detection device 1 of the present embodiment is the same whether the other vehicle VX is detected by the process based on the difference waveform information or the other vehicle VX is detected by the process based on the edge information. The effects and effects of
 上記カメラ10は本発明に係る撮像手段に相当し、上記視点変換部31は本発明に係る画像変換手段に相当し、上記位置合わせ部32及び立体物検出部33は本発明に係る立体物検出手段に相当し、上記輝度差算出部35,エッジ線検出部36及び立体物検出部37は本発明に係る立体物検出手段に相当し、上記立体物判断部34は立体物判断手段に相当し、上記静止物判断部38は静止物判断手段に相当し、制御部39は制御手段に相当し、上記車速センサ20は車速センサに相当する。 The camera 10 corresponds to an imaging unit according to the present invention, the viewpoint conversion unit 31 corresponds to an image conversion unit according to the present invention, and the alignment unit 32 and the three-dimensional object detection unit 33 include a three-dimensional object detection according to the present invention. The brightness difference calculation unit 35, the edge line detection unit 36, and the three-dimensional object detection unit 37 correspond to a three-dimensional object detection unit according to the present invention, and the three-dimensional object determination unit 34 corresponds to a three-dimensional object determination unit. The stationary object determination unit 38 corresponds to a stationary object determination unit, the control unit 39 corresponds to a control unit, and the vehicle speed sensor 20 corresponds to a vehicle speed sensor.
 本発明における「輝度分布情報」、「第1輝度分布情報」、「第2輝度分布情報」は、本実施形態における「差分波形情報」と「エッジ情報」を少なくとも含む。 In the present invention, “luminance distribution information”, “first luminance distribution information”, and “second luminance distribution information” include at least “difference waveform information” and “edge information” in the present embodiment.
 本実施形態における位置合わせ部21は、異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、その位置合わせされた鳥瞰視画像を得るが、この「位置合わせ」処理は、検出対象の種別や要求される検出精度に応じた精度で行うことができる。同一時刻及び同一位置を基準に位置を合わせるといった厳密な位置合わせ処理であってもよいし、各鳥瞰視画像の座標を把握するという程度の緩い位置合わせ処理であってもよい。 The alignment unit 21 in the present embodiment aligns the positions of the bird's-eye view images at different times on the bird's-eye view, and obtains the aligned bird's-eye view image. This can be performed with accuracy according to the type and required detection accuracy. It may be a strict alignment process such as aligning positions based on the same time and the same position, or may be a loose alignment process that grasps the coordinates of each bird's-eye view image.
1…立体物検出装置
10…カメラ
20…車速センサ
30…計算機
31…視点変換部
32…位置合わせ部
33,37…立体物検出部
34…立体物判断部
35…輝度差算出部
36…エッジ検出部
38…静止物判断部
40…スミア検出部
A1,A2…検出領域
CP…交点
DP…差分画素
DW,DW’…差分波形
DWt1~DW,DWm+k~DWtn…小領域
L1,L2…接地線
La,Lb…立体物が倒れ込む方向上の線
P…撮像画像
PB…鳥瞰視画像
PD…差分画像
MP…マスク画像
S…スミア
SP…スミア画像
SB…スミア鳥瞰視画像
V…自車両
VX…他車両
DESCRIPTION OF SYMBOLS 1 ... Three-dimensional object detection apparatus 10 ... Camera 20 ... Vehicle speed sensor 30 ... Computer 31 ... Viewpoint conversion part 32 ... Position alignment part 33, 37 ... Three-dimensional object detection part 34 ... Three-dimensional object judgment part 35 ... Luminance difference calculation part 36 ... Edge detection part 38 ... stationary determining unit 40 ... smear detection unit A1, A2 ... detection area CP ... intersection DP ... differential pixel DW t, DW t '... differential waveform DW t1 ~ DW m, DW m + k ~ DW tn ... small regions L1, L2 ... ground line La, Lb ... three-dimensional object line on direction collapses the P ... captured image PB t ... bird's-eye view image PD t ... difference image MP ... mask image S ... smear SP ... smear image SB t ... smear bird's-eye view image V ... Vehicle VX ... Other vehicle

Claims (22)

  1.  車両後方を撮像する撮像手段と、
     前記撮像手段により取得された画像に基づいて、前記車両後方に存在する立体物を検出する立体物検出手段と、
     第1の時刻において得られた前記第1画像の位置と、前記第1の時刻の後の第2の時刻において得られた第2画像の位置とを位置合わせし、当該位置合わせされた画像の差分画像上において、輝度差が所定の差分を示す画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求めるとともに、前記第1の時刻において得られた第1画像と、前記第1の時刻の後の第2の時刻において得られた第2画像との差分画像上において、輝度差が所定の差分を示す画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求め、前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、前記立体物検出手段により検出された立体物が静止物体であると判断する静止物判断手段と、
     前記立体物検出手段により検出された立体物が前記検出領域に存在する他車両であるか否かを判断する立体物判断手段と、
     前記静止物判断手段により、前記検出された立体物が静止物体であると判断された場合には、前記立体物判断手段により前記検出された立体物が他車両であると判断されることを抑制する制御手段と、を備えることを特徴とする立体物検出装置。
    Imaging means for imaging the rear of the vehicle;
    A three-dimensional object detection means for detecting a three-dimensional object existing behind the vehicle based on an image acquired by the imaging means;
    The position of the first image obtained at the first time and the position of the second image obtained at the second time after the first time are aligned, and the position of the aligned image On the difference image, the first integrated value of the first luminance distribution information generated by counting the number of pixels in which the luminance difference indicates a predetermined difference and performing frequency distribution is obtained, and the first obtained at the first time is obtained. On the difference image between the image and the second image obtained at the second time after the first time, the number of pixels whose luminance difference indicates a predetermined difference is counted and generated by frequency distribution. When the second integrated value of the two luminance distribution information is obtained and the evaluation value corresponding to the number of times that the second integrated value is determined to be larger than the first integrated value is greater than or equal to a predetermined evaluation threshold, the three-dimensional The solid object detected by the object detection means is a stationary object. A stationary determining means for determining that that,
    A three-dimensional object judging means for judging whether or not the three-dimensional object detected by the three-dimensional object detecting means is another vehicle existing in the detection area;
    When the detected three-dimensional object is determined to be a stationary object by the stationary object determination unit, it is suppressed that the detected three-dimensional object is determined to be another vehicle by the three-dimensional object determination unit. A three-dimensional object detection apparatus comprising:
  2.  前記撮像手段により得られた画像を鳥瞰視画像に視点変換する画像変換手段をさらに備え、
     前記画像変換手段により得られた異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成する差分波形情報生成手段をさらに備え、
     前記立体物検出手段は、前記差分波形情報に含まれ、前記鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿って、前記差分画像上において所定の差分を示す画素数であるとしてカウントされた度数に基づいて、前記車両後方の右側及び左側のそれぞれに設定された検出領域に存在する立体物を検出し、
     前記静止物判断手段は、第1の時刻において得られた前記第1鳥瞰視画像の位置と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、所定の差分を示す画素数をカウントして度数分布化して生成した第1差分波形情報の第1積算値を求めるとともに、前記第1の時刻において得られた第1鳥瞰視画像と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像との差分画像上において所定の差分を示す画素数をカウントして度数分布化して生成した第2差分波形情報の第2積算値を求め、前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、前記立体物検出手段により検出された立体物が静止物体であると判断することを特徴とする請求項1に記載の立体物検出装置。
    Further comprising image conversion means for converting the image obtained by the imaging means into a bird's-eye view image,
    The position of the bird's-eye view image at different times obtained by the image conversion means is aligned on the bird's-eye view, and the number of pixels indicating a predetermined difference is counted on the difference image of the aligned bird's-eye view image. Further comprising differential waveform information generating means for generating differential waveform information by distributing,
    The three-dimensional object detection means counts as being the number of pixels indicating a predetermined difference on the difference image along a direction in which the three-dimensional object falls when the bird's-eye view image is subjected to viewpoint conversion, when included in the difference waveform information. Based on the frequency that has been detected to detect a three-dimensional object present in the detection area set on each of the right and left sides behind the vehicle,
    The stationary object judging means obtains the position of the first bird's-eye view image obtained at the first time and the position of the second bird's-eye view image obtained at the second time after the first time. The first integrated value of the first differential waveform information generated by performing frequency distribution by counting the number of pixels indicating a predetermined difference on the difference image of the aligned bird's-eye view image is aligned in bird's-eye view. And obtaining a predetermined difference on a difference image between a first bird's-eye view image obtained at the first time and a second bird's-eye view image obtained at a second time after the first time. A second integrated value of the second differential waveform information generated by counting the number of pixels shown and frequency distribution is obtained, and an evaluation value according to the number of times that the second integrated value is determined to be larger than the first integrated value Is greater than or equal to a predetermined evaluation threshold, Three-dimensional object detection apparatus according to claim 1, the three-dimensional object detected by the detecting means and determines that a stationary object.
  3.  前記撮像手段により得られた画像を鳥瞰視画像に視点変換する画像変換手段をさらに備え、
     前記画像変換手段により得られた鳥瞰視画像において、互いに隣接する画像領域の輝度差が所定閾値以上である画素を抽出し、当該画素に基づいてエッジ情報を生成するエッジ情報生成手段を、さらに備え、
     前記立体物検出手段は、前記エッジ情報に含まれ、前記鳥瞰視画像に視点変換した際に立体物が倒れ込む方向に沿って抽出され、かつ、互いに隣接する画像領域の輝度差が所定閾値以上である画素を含むエッジ情報に基づいて前記車両後方の右側及び左側のそれぞれに設定された検出領域に存在する立体物を検出し、
     静止物判断手段は、第1の時刻において得られた第1鳥瞰視画像の位置と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求めるとともに、前記第1の時刻において得られた第1鳥瞰視画像と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像との差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求め、前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、前記立体物検出手段により検出された立体物が静止物体であると判断することを特徴とする請求項1に記載の立体物検出装置。
    Further comprising image conversion means for converting the image obtained by the imaging means into a bird's-eye view image,
    In the bird's-eye view image obtained by the image conversion unit, the image processing device further includes an edge information generation unit that extracts pixels whose luminance difference between adjacent image regions is equal to or greater than a predetermined threshold and generates edge information based on the pixels. ,
    The three-dimensional object detection means is included in the edge information, extracted along a direction in which the three-dimensional object falls when the viewpoint is converted into the bird's-eye view image, and a luminance difference between adjacent image areas is equal to or greater than a predetermined threshold value. Detecting a three-dimensional object existing in detection areas set on the right side and the left side of the vehicle rear based on edge information including a certain pixel,
    The stationary object judging means is configured to view the position of the first bird's-eye view image obtained at the first time and the position of the second bird's-eye view image obtained at the second time after the first time. A first luminance distribution generated by performing frequency distribution by counting the number of pixels in which the luminance difference between adjacent image areas is equal to or greater than a predetermined threshold on the difference image of the aligned bird's-eye view image. While obtaining the first integrated value of information, the difference between the first bird's-eye view image obtained at the first time and the second bird's-eye view image obtained at a second time after the first time On the image, the second integrated value of the second luminance distribution information generated by counting the number of pixels in which the luminance difference between adjacent image areas is equal to or greater than a predetermined threshold and generating the frequency distribution is obtained, and the second integrated value is Determined to be greater than the first integrated value The three-dimensional object according to claim 1, wherein when the evaluation value corresponding to the number is equal to or greater than a predetermined evaluation threshold value, the three-dimensional object detected by the three-dimensional object detection unit is determined to be a stationary object. Detection device.
  4.  前記静止物判断手段は、前記第2積算値が前記第1積算値よりも大きいと判断された場合には、第1カウント値を加算して前記評価値を算出し、
     前記第2積算値が前記第1積算値よりも大きいという内容の判断が連続する場合には、前記判断の連続回数が増えるにつれて、前記第1カウント値を高く設定することを特徴とする請求項1~3の何れか一項に記載の立体物検出装置。
    The stationary object judging means, when it is judged that the second integrated value is larger than the first integrated value, calculates the evaluation value by adding a first count value,
    When the determination that the second integrated value is larger than the first integrated value continues, the first count value is set higher as the number of continuous determinations increases. The three-dimensional object detection device according to any one of 1 to 3.
  5.  前記静止物判断手段は、
    前記第2積算値が前記第1積算値よりも大きいと判断された場合には第1カウント値を加算するとともに、前記第2積算値が前記第1積算値よりも小さいと判断された場合には、第2カウント値を減算して前記評価値を算出し、
    前記第2積算値が前記第1積算値よりも大きいという内容の判断がされた後に、前記第2積算値が前記第1積算値よりも小さいという内容の判断がされ、さらにその後に、前記第2積算値が前記第1積算値よりも大きいという内容の判断がされた場合には、前記第1カウント値を高く設定することを特徴とする請求項1~3の何れか一項に記載の立体物検出装置。
    The stationary object judging means includes:
    When it is determined that the second integrated value is greater than the first integrated value, the first count value is added, and when the second integrated value is determined to be smaller than the first integrated value. Calculates the evaluation value by subtracting the second count value,
    After the determination that the second integrated value is larger than the first integrated value, the content is determined that the second integrated value is smaller than the first integrated value. The first count value is set to be high when it is determined that the content of 2 integrated values is larger than the first integrated value. Solid object detection device.
  6.  前記静止物判断手段は、
    前記第2積算値が前記第1積算値よりも小さいと判断された場合には、第2カウント値を減算して前記評価値を算出し、
    前記第2積算値が前記第1積算値よりも小さいという内容の判断が所定回数以上連続した場合には、前記第2カウント値を高く設定することを特徴とする請求項1~3の何れか一項に記載の立体物検出装置。
    The stationary object judging means includes:
    When it is determined that the second integrated value is smaller than the first integrated value, the evaluation value is calculated by subtracting a second count value;
    4. The second count value is set to be high when the determination that the second integrated value is smaller than the first integrated value continues for a predetermined number of times or more. The three-dimensional object detection device according to one item.
  7.  前記立体物検出手段は、前記差分波形情報が所定の第1閾値α以上である場合に立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記第1閾値αを前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物検出手段に出力することを特徴とする請求項2又は請求項2を引用する請求項4~6の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object when the difference waveform information is a predetermined first threshold value α or more,
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command to change the first threshold value α so that the three-dimensional object is difficult to detect, and The three-dimensional object detection device according to any one of claims 4 to 6, wherein the object detection means outputs the object to the object detection means.
  8.  前記立体物検出手段は、前記差分波形情報が所定の第1閾値α以上である場合に立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化された値を低くする制御命令を生成し、当該制御命令を前記立体物検出手段に出力することを特徴とする請求項2又は請求項2を引用する請求項4~6の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object when the difference waveform information is a predetermined first threshold value α or more,
    The control means, when it is determined that the detected three-dimensional object is a stationary object, counts the number of pixels indicating a predetermined difference on the difference image of the bird's eye view image and is a frequency distribution value The control instruction according to any one of claims 4 to 6, wherein a control instruction for lowering the output is generated and the control instruction is output to the three-dimensional object detection means. Object detection device.
  9.  前記立体物検出手段は、閾値p以上の画素値を示す画素数を前記所定の差分を示す画素数として抽出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記閾値pを前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物検出手段に出力することを特徴とする請求項2又は請求項2を引用する請求項4~8の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means extracts the number of pixels indicating a pixel value equal to or greater than a threshold value p as the number of pixels indicating the predetermined difference,
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command for changing the threshold value p so that the three-dimensional object is difficult to detect, and detects the three-dimensional object. The three-dimensional object detection apparatus according to any one of claims 4 to 8, wherein the output to the means is performed.
  10.  前記立体物検出手段は、閾値p以上の画素値を示す画素数を前記所定の差分を示す画素数として抽出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿って、前記差分画像上において所定の差分を示す画素数を低くする制御命令を生成し、当該制御命令を前記立体物検出手段に出力することを特徴とする請求項2又は請求項2を引用する請求項4~8の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means extracts the number of pixels indicating a pixel value equal to or greater than a threshold value p as the number of pixels indicating the predetermined difference,
    When the control unit determines that the detected three-dimensional object is a stationary object, the control unit performs predetermined processing on the difference image along a direction in which the three-dimensional object falls when the viewpoint of the bird's-eye view image is converted. 9. The control command for generating a control command for reducing the number of pixels indicating the difference and outputting the control command to the three-dimensional object detection means. The three-dimensional object detection device according to item.
  11.  前記立体物検出手段は、所定閾値t以上の輝度差を示す画素に基づいてエッジ線を抽出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記所定閾値tを前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means extracts an edge line based on a pixel indicating a luminance difference equal to or greater than a predetermined threshold t,
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command for changing the predetermined threshold t to be high so that the three-dimensional object is not easily detected, and the three-dimensional object The three-dimensional object detection apparatus according to any one of claims 4 to 6, wherein the three-dimensional object detection apparatus outputs the detection means to the detection means.
  12.  前記立体物検出手段は、所定閾値t以上の輝度差を示す画素に基づいてエッジ線を抽出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記画素の輝度値を低くする制御命令を生成し、当該制御命令を前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means extracts an edge line based on a pixel indicating a luminance difference equal to or greater than a predetermined threshold t,
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command for decreasing the luminance value of the pixel, and outputs the control command to the three-dimensional object detection unit. The three-dimensional object detection device according to any one of claims 4 to 6, wherein the three-dimensional object is cited.
  13.  前記立体物検出手段は、前記エッジ情報に含まれる閾値θ以上の長さを有する前記エッジ線に基づいて立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記閾値θを前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6、11、12の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object based on the edge line having a length greater than or equal to a threshold θ included in the edge information,
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command for changing the threshold θ to be high so that the three-dimensional object is difficult to detect, and detects the three-dimensional object. The three-dimensional object detection apparatus according to any one of claims 4 to 6, 11 and 12, which is output to the means.
  14.  前記立体物検出手段は、前記エッジ情報に含まれる閾値θ以上の長さを有する前記エッジ線に基づいて立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記検出したエッジ情報を低く出力する制御命令を前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6、11、12の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object based on the edge line having a length greater than or equal to a threshold θ included in the edge information,
    The control means, when it is determined that the detected three-dimensional object is a stationary object, outputs a control command for outputting the detected edge information low to the three-dimensional object detection means. The three-dimensional object detection device according to any one of claims 4 to 6, 11, and 12, wherein the item 3 or the item 3 is cited.
  15.  前記立体物検出手段は、前記エッジ情報に含まれる閾値θ以上の長さを有する前記エッジ線の本数が第2閾値β以上であるか否かの判断に基づいて立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記第2閾値βを前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6、11、12の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object based on a determination as to whether or not the number of the edge lines having a length equal to or greater than a threshold θ included in the edge information is equal to or greater than a second threshold β.
    When it is determined that the detected three-dimensional object is a stationary object, the control unit generates a control command for changing the second threshold β to be high so that the three-dimensional object is difficult to detect, and The three-dimensional object detection device according to any one of claims 4 to 6, 11 and 12, which outputs the object detection means to claim 3 or claim 3.
  16.  前記立体物検出手段は、前記エッジ情報に含まれる閾値θ以上の長さを有する前記エッジ線の本数が第2閾値β以上であるか否かの判断に基づいて立体物を検出し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記検出したエッジ線の本数を低く出力する制御命令を前記立体物検出手段に出力することを特徴とする請求項3又は請求項3を引用する請求項4~6、11、12の何れか一項に記載の立体物検出装置。
    The three-dimensional object detection means detects a three-dimensional object based on a determination as to whether or not the number of the edge lines having a length equal to or greater than a threshold θ included in the edge information is equal to or greater than a second threshold β.
    When it is determined that the detected three-dimensional object is a stationary object, the control means outputs a control command for outputting a low number of the detected edge lines to the three-dimensional object detection means. The three-dimensional object detection apparatus according to any one of claims 4 to 6, 11, and 12, which cites claim 3 or claim 3.
  17.  前記立体物判断手段は、前記検出された立体物の自車両に対する相対速度が予め設定された所定速度以上である場合に、当該立体物を他車両であると判断し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記立体物を他車両であると判断する際の下限となる前記所定速度を前記立体物が検出され難いように高く変更する制御命令を生成し、前記立体物判断手段に出力することを特徴とする請求項1~16の何れか一項に記載の立体物検出装置。
    The three-dimensional object determination means determines that the three-dimensional object is another vehicle when a relative speed of the detected three-dimensional object with respect to the host vehicle is equal to or higher than a predetermined speed set in advance.
    When it is determined that the detected three-dimensional object is a stationary object, the control means detects the three-dimensional object at the predetermined speed that is a lower limit when determining that the three-dimensional object is another vehicle. The three-dimensional object detection device according to any one of claims 1 to 16, wherein a control command for changing the height to be difficult is generated and output to the three-dimensional object determination means.
  18.  前記立体物判断手段は、前記検出された立体物の自車両に対する相対速度が予め設定された所定速度以上である場合に、当該立体物を前記他車両であると判断し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記立体物を他車両であると判断する際の下限となる前記所定速度と比較される前記立体物の自車両に対する相対速度を低く変更する制御命令を前記立体物判断手段に出力することを特徴とする請求項1~16の何れか一項に記載の立体物検出装置。
    The three-dimensional object determination means determines that the three-dimensional object is the other vehicle when a relative speed of the detected three-dimensional object with respect to the host vehicle is equal to or higher than a predetermined speed set in advance.
    When it is determined that the detected three-dimensional object is a stationary object, the control unit compares the three-dimensional object with the predetermined speed that is a lower limit when determining that the three-dimensional object is another vehicle. The three-dimensional object detection device according to any one of claims 1 to 16, wherein a control command for changing a relative speed of the vehicle to a low value is output to the three-dimensional object determination means.
  19.  前記立体物判断手段は、前記検出された立体物の自車両に対する相対速度が予め設定された所定速度未満である場合に、当該立体物を他車両であると判断し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記立体物を他車両であると判断する際の上限となる前記所定速度を前記所定速度を前記立体物が検出され難いように低く変更する制御命令を生成し、前記立体物判断手段に出力することを特徴とする請求項1~18の何れか一項に記載の立体物検出装置。
    The three-dimensional object determination means determines that the three-dimensional object is another vehicle when the relative speed of the detected three-dimensional object with respect to the host vehicle is less than a predetermined speed set in advance.
    When it is determined that the detected three-dimensional object is a stationary object, the control means sets the predetermined speed to be the upper limit when the three-dimensional object is determined to be another vehicle. The three-dimensional object detection device according to any one of claims 1 to 18, wherein a control command for changing the value so that an object is difficult to detect is generated and output to the three-dimensional object determination means.
  20.  前記立体物判断手段は、前記検出された立体物の自車両に対する相対速度が予め設定された所定速度未満である場合に、当該立体物を前記他車両であると判断し、
     前記制御手段は、前記検出された立体物が静止物体であると判断された場合には、前記立体物を他車両であると判断する際の上限となる前記所定速度と比較される前記立体物の自車両に対する相対速度を高く変更する制御命令を前記立体物判断手段に出力することを特徴とする請求項1~18の何れか一項に記載の立体物検出装置。
    The three-dimensional object determining means determines that the three-dimensional object is the other vehicle when the relative speed of the detected three-dimensional object with respect to the host vehicle is less than a predetermined speed set in advance.
    When it is determined that the detected three-dimensional object is a stationary object, the control unit compares the three-dimensional object with the predetermined speed that is an upper limit when determining that the three-dimensional object is another vehicle. The three-dimensional object detection device according to any one of claims 1 to 18, wherein a control command for changing a relative speed of the vehicle to a higher value is output to the three-dimensional object determination means.
  21.  車両に搭載され、車両後方を撮像する撮像手段により得られた画像を鳥瞰視画像に視点変換するステップと、
     前記得られた異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成するステップと、
     前記差分波形情報に含まれ、前記鳥瞰視画像を視点変換した際に立体物が倒れ込む方向に沿って、前記差分画像上において所定の差分を示す画素数であるとしてカウントされた度数に基づいて、前記車両後方の右側及び左側のそれぞれに設定された検出領域に存在する立体物を検出するステップと、
     第1の時刻において得られた前記第1鳥瞰視画像の位置と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、所定の差分を示す画素数をカウントして度数分布化して生成した第1差分波形情報の第1積算値を求めるとともに、前記第1の時刻において得られた第1鳥瞰視画像と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像との差分画像上において所定の差分を示す画素数をカウントして度数分布化して生成した第2差分波形情報の第2積算値を求め、前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、検出された立体物が静止物体であるとを判断するステップと、
     前記検出された立体物が前記検出領域に存在する他車両であるか否かを判断するステップと、
     、前記検出された立体物が静止物体であると判断された場合には、前記検出された立体物が他車両であると判断されることを抑制するステップと、を有する立体物検出方法。
    A step of converting the image obtained by the imaging means mounted on the vehicle and imaging the rear of the vehicle into a bird's eye view image;
    The positions of the obtained bird's-eye view images at different times are aligned in bird's-eye view, and the number of pixels indicating a predetermined difference is counted on the difference image of the aligned bird's-eye view images to form a frequency distribution. Generating differential waveform information with:
    Based on the frequency counted as being the number of pixels indicating a predetermined difference on the difference image along the direction in which the three-dimensional object falls when the bird's eye view image is converted to the viewpoint when included in the difference waveform information, Detecting solid objects present in detection areas set on the right and left sides of the vehicle rear, and
    The position of the first bird's eye view image obtained at the first time and the position of the second bird's eye view image obtained at the second time after the first time are aligned on the bird's eye view. The first integrated value of the first difference waveform information generated by counting the number of pixels indicating a predetermined difference and performing frequency distribution on the difference image of the aligned bird's-eye view image is obtained, and the first The number of pixels indicating a predetermined difference is counted on the difference image between the first bird's-eye view image obtained at the time and the second bird's-eye view image obtained at the second time after the first time. A second integrated value of the second differential waveform information generated by frequency distribution is obtained, and an evaluation value corresponding to the number of times that the second integrated value is determined to be greater than the first integrated value is greater than or equal to a predetermined evaluation threshold value. In some cases, the detected solid object is a stationary object. And determining the door,
    Determining whether the detected three-dimensional object is another vehicle existing in the detection area;
    And a step of suppressing the detected three-dimensional object from being determined as another vehicle when it is determined that the detected three-dimensional object is a stationary object.
  22.  車両に搭載され、車両後方を撮像する撮像手段により得られた画像を鳥瞰視画像に視点変換するステップと、
     前記得られた鳥瞰視画像において、互いに隣接する画像領域の輝度差が所定閾値以上である画素を抽出し、当該画素に基づいてエッジ情報を生成するステップと、
     前記エッジ情報に含まれ、前記鳥瞰視画像に視点変換した際に立体物が倒れ込む方向に沿って抽出され、かつ、互いに隣接する画像領域の輝度差が所定閾値以上である画素を含むエッジ情報に基づいて前記車両後方の右側及び左側のそれぞれに設定された検出領域に存在する立体物を検出するステップと、
     第1の時刻において得られた第1鳥瞰視画像の位置と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像の位置とを鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第1輝度分布情報の第1積算値を求めるとともに、前記第1の時刻において得られた第1鳥瞰視画像と、前記第1の時刻の後の第2の時刻において得られた第2鳥瞰視画像との差分画像上において、互いに隣接する画像領域の輝度差が所定閾値以上である画素数をカウントして度数分布化して生成した第2輝度分布情報の第2積算値を求め、前記第2積算値が前記第1積算値よりも大きいと判断された回数に応じた評価値が所定の評価閾値以上である場合には、前記検出された立体物が静止物体であると判断するステップと、
     前記検出された立体物が前記検出領域に存在する他車両であるか否かを判断するステップと、
     前記検出された立体物が静止物体であると判断された場合には、前記立体物が検出され、当該立体物が前記他車両であると判断されることを抑制するステップと、を有する立体物検出方法。
    A step of converting the image obtained by the imaging means mounted on the vehicle and imaging the rear of the vehicle into a bird's eye view image;
    In the obtained bird's-eye view image, extracting pixels whose luminance difference between adjacent image regions is a predetermined threshold or more, and generating edge information based on the pixels;
    Edge information including pixels that are included in the edge information, extracted along the direction in which the three-dimensional object falls when the viewpoint is converted into the bird's-eye view image, and whose luminance difference between adjacent image areas is equal to or greater than a predetermined threshold. Detecting a three-dimensional object existing in detection areas set on the right and left sides of the vehicle rear,
    The position of the first bird's-eye view image obtained at the first time and the position of the second bird's-eye view image obtained at the second time after the first time are aligned on the bird's-eye view, The first integrated value of the first luminance distribution information generated by counting the number of pixels in which the luminance difference between adjacent image areas is equal to or greater than a predetermined threshold on the difference image of the aligned bird's-eye view image and generating a frequency distribution On the difference image between the first bird's-eye view image obtained at the first time and the second bird's-eye view image obtained at the second time after the first time. The second integrated value of the second luminance distribution information generated by counting the number of pixels in which the luminance difference of the image area to be performed is equal to or greater than a predetermined threshold and generating the frequency distribution is obtained, and the second integrated value is greater than the first integrated value. Evaluation value according to the number of times judged to be large If it is more than the predetermined evaluation threshold, the steps of the detected three-dimensional object is determined to be stationary object,
    Determining whether the detected three-dimensional object is another vehicle existing in the detection area;
    When the detected three-dimensional object is determined to be a stationary object, the three-dimensional object is detected and the step of suppressing the determination of the three-dimensional object as the other vehicle is provided. Detection method.
PCT/JP2013/070007 2012-07-27 2013-07-24 Three-dimensional object detection device and three-dimensional object detection method WO2014017518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526959A JP6003987B2 (en) 2012-07-27 2013-07-24 Three-dimensional object detection apparatus and three-dimensional object detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012166499 2012-07-27
JP2012-166499 2012-07-27

Publications (1)

Publication Number Publication Date
WO2014017518A1 true WO2014017518A1 (en) 2014-01-30

Family

ID=49997327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070007 WO2014017518A1 (en) 2012-07-27 2013-07-24 Three-dimensional object detection device and three-dimensional object detection method

Country Status (2)

Country Link
JP (1) JP6003987B2 (en)
WO (1) WO2014017518A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914610A (en) * 2019-05-10 2020-11-10 歌乐株式会社 Three-dimensional object detection device and three-dimensional object detection method
CN116583889A (en) * 2020-11-27 2023-08-11 日产自动车株式会社 Vehicle support method and vehicle support device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219063A (en) * 2007-02-28 2008-09-18 Sanyo Electric Co Ltd Apparatus and method for monitoring vehicle's surrounding
JP2010256995A (en) * 2009-04-21 2010-11-11 Daihatsu Motor Co Ltd Object recognition apparatus
JP2012003662A (en) * 2010-06-21 2012-01-05 Nissan Motor Co Ltd Moving distance detector and moving distance detection method
WO2012023412A1 (en) * 2010-08-19 2012-02-23 日産自動車株式会社 Three-dimensional object detection device and three-dimensional object detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930046B2 (en) * 2006-12-26 2012-05-09 日産自動車株式会社 Road surface discrimination method and road surface discrimination device
JP5108605B2 (en) * 2008-04-23 2012-12-26 三洋電機株式会社 Driving support system and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219063A (en) * 2007-02-28 2008-09-18 Sanyo Electric Co Ltd Apparatus and method for monitoring vehicle's surrounding
JP2010256995A (en) * 2009-04-21 2010-11-11 Daihatsu Motor Co Ltd Object recognition apparatus
JP2012003662A (en) * 2010-06-21 2012-01-05 Nissan Motor Co Ltd Moving distance detector and moving distance detection method
WO2012023412A1 (en) * 2010-08-19 2012-02-23 日産自動車株式会社 Three-dimensional object detection device and three-dimensional object detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914610A (en) * 2019-05-10 2020-11-10 歌乐株式会社 Three-dimensional object detection device and three-dimensional object detection method
CN111914610B (en) * 2019-05-10 2024-05-14 歌乐株式会社 Three-dimensional object detection device and three-dimensional object detection method
CN116583889A (en) * 2020-11-27 2023-08-11 日产自动车株式会社 Vehicle support method and vehicle support device

Also Published As

Publication number Publication date
JP6003987B2 (en) 2016-10-05
JPWO2014017518A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5614504B2 (en) Three-dimensional object detection device
JP5867596B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
JP5997276B2 (en) Three-dimensional object detection device and foreign object detection device
JP5776795B2 (en) Three-dimensional object detection device
JP5896027B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
JP5874831B2 (en) Three-dimensional object detection device
WO2013129356A1 (en) Three-dimensional object detection device
JP5682735B2 (en) Three-dimensional object detection device
JP5733467B2 (en) Three-dimensional object detection device
JP5794378B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
WO2014017318A1 (en) Three-dimensional object detection device, three-dimensional object detection method, and foreign substance detection device
JP6003987B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
JP5783319B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
JP5794379B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
JP5871069B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method
WO2013129355A1 (en) Three-dimensional object detection device
JP5768927B2 (en) Three-dimensional object detection device
JP5817913B2 (en) Three-dimensional object detection apparatus and three-dimensional object detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822910

Country of ref document: EP

Kind code of ref document: A1