WO2014017331A1 - Resist upper layer film forming composition for lithography and method for manufacturing semiconductor device using same - Google Patents

Resist upper layer film forming composition for lithography and method for manufacturing semiconductor device using same Download PDF

Info

Publication number
WO2014017331A1
WO2014017331A1 PCT/JP2013/069278 JP2013069278W WO2014017331A1 WO 2014017331 A1 WO2014017331 A1 WO 2014017331A1 JP 2013069278 W JP2013069278 W JP 2013069278W WO 2014017331 A1 WO2014017331 A1 WO 2014017331A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper layer
resist
layer film
resist upper
forming composition
Prior art date
Application number
PCT/JP2013/069278
Other languages
French (fr)
Japanese (ja)
Inventor
竜慈 大西
徳昌 藤谷
木村 茂雄
坂本 力丸
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2014017331A1 publication Critical patent/WO2014017331A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Definitions

  • the present invention is used in a manufacturing process of a semiconductor device using photolithography, reduces an adverse effect exerted by exposure light, and is effective for obtaining a good resist pattern.
  • the present invention relates to a resist pattern forming method using a resist upper layer film forming composition and a method for manufacturing a semiconductor device using the forming method.
  • a thin film of a photoresist composition is formed on a substrate to be processed such as a silicon wafer, and then actinic rays such as ultraviolet rays are irradiated and developed through a mask pattern on which a semiconductor device pattern is drawn.
  • the substrate to be processed such as a silicon wafer is etched using the obtained photoresist pattern as a protective film (mask).
  • the degree of integration of semiconductor devices has increased, and the active light used has also been shortened from a KrF excimer laser (wavelength 248 nm) to an ArF excimer laser (wavelength 193 nm).
  • an antireflection film (Bottom Anti-Reflective Coating, The method of providing BARC) has been widely adopted.
  • an inorganic antireflection film such as titanium, titanium dioxide, titanium nitride, chromium oxide, carbon, and ⁇ -silicon, and an organic antireflection film made of a light-absorbing substance and a polymer compound are known.
  • the former requires equipment such as a vacuum deposition apparatus, a CVD apparatus, and a sputtering apparatus for film formation, whereas the latter is advantageous in that no special equipment is required, and many studies have been made.
  • the upper layer of the EUV resist is beryllium, boron, carbon, silicon, zirconium, niobium.
  • a method comprising a polymer comprising a group comprising one or more of molybdenum (Patent Document 1, Patent Document 2).
  • Non-patent Document 1 a top coat formed of a polyhydroxystyrene (PHS) compound or an acrylic compound is applied to the upper layer of the EUV resist to reduce OOB (Non-patent Document 1),
  • PHS polyhydroxystyrene
  • Non-Patent Document 2 a EUV resolution enhancement layer film is applied to the upper layer of the EUV resist and the EUV resist resolution is improved by absorbing OOB (Non-Patent Document 2), but what composition is optimal is disclosed. Absent.
  • the present invention has been made to provide an optimal resist upper layer film forming composition that solves the above-mentioned problems, and is used as a resist upper layer film, particularly as an upper layer film of an EUV resist, without intermixing with the resist.
  • a composition for forming a resist upper layer film used in a lithography process for manufacturing a semiconductor device which is capable of selectively transmitting only EUV by blocking exposure light, such as UV or DUV, which is not preferable in EUV exposure, and capable of developing with a developer after exposure. Offer things.
  • (Formula 1-1) (Substituents A 1 to A 3 in (Formula 1-1) are each a substituent containing at least one hydroxyl group, and at least one substituent is a naphthalene ring or an anthracene ring.
  • a benzene ring, the hydrogen atoms of the naphthalene ring, anthracene ring or benzene ring are each independently substituted with a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms.
  • a resist upper layer film-forming composition comprising a cyanurate derivative represented by formula (II) and an alcohol solvent
  • the resist upper layer film-forming composition according to the first aspect wherein the cyanurate derivative is synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate
  • the cyanurate derivative is a cyanurate derivative synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a hydroxyl group-containing compound D.
  • the hydroxyl group-containing compound D is a compound represented by i) or a combination of compounds represented by ii).
  • the cyanurate derivative may be 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a compound represented by the following (formula 1-2), or (formula 1-2):
  • n1 and n4 are each independently an integer of 1 to 5
  • n2 and n3 are each independently an integer of 0 to 8
  • n6 is each independently an integer of 0 to 4
  • (n1 + n2 + n3) is an integer of 1 to 9
  • (n4 + n5 + n6) is an integer of 1 to 5
  • (n1 + n4) is an integer of 2 to
  • the alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms.
  • the resist upper layer film-forming composition according to any one of the viewpoints to the fourth aspect,
  • the alcohol solvent is 1-heptanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol.
  • the resist upper layer film-forming composition according to any one of the five aspects As a seventh aspect, the resist upper layer film-forming composition according to any one of the first aspect to the sixth aspect, further including an acid compound, As an eighth aspect, the resist upper layer film-forming composition according to the seventh aspect, in which the acid compound is a sulfonic acid compound or a sulfonic acid ester compound, As a ninth aspect, the resist upper layer film-forming composition according to the seventh aspect, wherein the acid compound is an onium salt-based acid generator, a halogen-containing compound-based acid generator, or a sulfonic acid-based acid generator, As a tenth aspect, the resist upper layer film-forming composition according to any one of the first to ninth aspects, further including a basic compound, As an eleventh aspect, the resist upper layer film forming composition according to any one of the first aspect to the tenth aspect, wherein the resist used together with the composition is a resist for EUV (wavelength 13.5 nm), As a twelfth
  • the present invention provides a resist upper layer film-forming composition, in particular, an EUV resist upper layer film-forming composition, which does not intermix with the EUV resist, and blocks EUV exposure, such as UV or DUV, which is not preferable for EUV exposure.
  • the present invention relates to a resist upper layer film-forming composition that is selectively transmitted and can be developed with a developer after exposure.
  • the EUV light when the EUV resist is exposed, the EUV light emits UV light and DUV light together with the EUV light. That is, this EUV light contains about 5% of light having a wavelength of 300 nm or less in addition to EUV light.
  • the wavelength region in the vicinity of 190 nm to 300 nm, particularly 220 nm to 260 nm has the highest intensity.
  • the solvent used for the EUV resist is not used, and the resist upper layer film forming composition is an alcohol solvent. It is better to use in the resist upper layer film forming composition of the present invention, a cyanurate derivative containing a hydroxyl group is used in order to enhance the solubility in an alcohol solvent. Since the cyanurate derivative used in the resist upper layer film-forming composition of the present invention contains a hydroxyl group, it can be dissolved in a developer (for example, an alkaline developer) together with an EUV resist during development after exposure. Dissolution removal with a liquid is possible.
  • a developer for example, an alkaline developer
  • the present invention is a resist upper layer film-forming composition containing a cyanurate derivative and an alcohol solvent. Although suitable as a resist upper layer film, it is particularly suitable as a resist upper layer film forming composition used in an EUV lithography process using EUV as an exposure wavelength.
  • the cyanurate compound for forming the cyanurate derivative used in the resist upper layer film-forming composition of the present invention has the following structure.
  • each of R 1 , R 2 , and R 3 is independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a benzene derivative group, vinyl Derivative group or epoxy derivative group is represented.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-octyl, and n-dodecyl. Is done.
  • the benzene derivative group include a phenyl group, a benzyl group, a tolyl group, a methoxyphenyl group, a xylyl group, a biphenyl group, a naphthyl group, and an anthryl group.
  • Examples of the vinyl derivative group include an ethenyl group, a propenyl group, a butenyl group, a butadienyl group, a hexenyl group, and an octadienyl group.
  • Examples of the epoxy derivative group include a glycidyl group and a ⁇ -methyl-glycidyl group. These alkyl groups, benzene derivative groups, and vinyl derivative groups may be substituted in addition to unsubstituted groups.
  • Examples of the substituents include halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms, Examples are a hydroxyl group, an alkoxy group and an acyl group. A particularly preferred substituent is a hydroxyl group.
  • 1,3,5-tris- (2,3-epoxypropyl) isocyanurate represented by (Formula 3-2) is more preferably used.
  • the above isocyanurate compound is reacted with an aromatic ring compound having a specific structure described below to synthesize a cyanurate derivative used in the resist upper layer film-forming composition of the present invention.
  • the cyanurate derivative used in the present invention has the following structure (formula 1-1).
  • the compound of the formula (1-1) is synthesized by reacting a cyanurate compound with an aromatic ring compound having a specific structure.
  • the aromatic ring compound having a specific structure is a compound containing a naphthalene ring or anthracene ring containing at least one hydroxyl group in the structure.
  • Substituents A 1 to substituents A 3 are each a substituent containing at least one hydroxyl group, further at least one substituent is a naphthalene ring or an anthracene ring, the other When a substituent is present, it is a benzene ring.
  • a compound containing a naphthalene ring or an anthracene ring and a compound containing a benzene ring When a compound containing a naphthalene ring or an anthracene ring and a compound containing a benzene ring are reacted at the same time, a compound containing a naphthalene ring or an anthracene ring and a benzene ring coexists in the substituent A 1 to the substituent A 3.
  • the hydrogen atoms of the naphthalene ring, anthracene ring or benzene ring may be each independently substituted with a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms.
  • the hydroxyl group is a hydrophilic group and is excellent in solubility in an alcohol solvent and in a developer.
  • the reason for introducing a naphthalene ring or an anthracene ring into the cyanurate derivative is to absorb the UV light or DUV light.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the linear or branched saturated alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. It is done.
  • the hydroxyl group-containing compound D to be reacted with the cyanurate compound is a compound represented by the following i) or a combination of compounds represented by ii).
  • i) 1 selected from naphthoic acid or anthracenecarboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent.
  • the compound represented by i) or the combination of compounds represented by ii) includes a compound containing two or more carboxyl groups, a compound in which two or more cyanurate compounds are linked by the compound is formed.
  • the compound constituting i) may be one kind or a combination of two or more kinds, but is preferably within 4 kinds, more preferably within 3 kinds.
  • the compound constituting ii) may be a combination of one or more compounds selected from the naphthoic acid or anthracene carboxylic acid and one or more combinations of the benzoic acid, more preferably the naphthoic acid or anthracene carboxylic acid. A combination of 3 or less compounds selected from acids and 3 or less of the above benzoic acids.
  • the compound to be reacted with the cyanurate compound is a compound represented by the general formula (formula 1-2), or a compound represented by the formula (1-2)
  • a compound containing one carboxyl group represented by a combination of compounds represented by 1-3) is preferably used.
  • the compound having the structure of (Formula 1-2) may be one kind or a combination of two or more kinds, but is preferably within 4 kinds, more preferably within 3 kinds.
  • the compound having the structure of (Formula 1-3) may be one kind or a combination of two or more kinds, but preferably within 4 kinds, more preferably within 3 kinds.
  • a compound in which two or more cyanurate compounds are linked with each other may be formed, which is not preferable as the composition component of the present invention.
  • the carboxyl group in the compound represented by (Formula 1-2) or (Formula 1-3) reacts with a cyanurate derivative, particularly preferably reacts with an epoxy group to form a trimethyl group such as (Formula 1-1). An ester compound is produced.
  • n1 and n4 are each independently an integer of 1 to 5, preferably an integer of 1 to 3, and n2 and n3 are each independently 0 Is an integer from 1 to 8, more preferably an integer from 0 to 3, n5 and n6 are each independently an integer from 0 to 4, more preferably an integer from 0 to 3, and (n1 + n2 + n3) is 1. Is an integer from 1 to 9, (n4 + n5 + n6) is an integer from 1 to 5, and (n1 + n4) is an integer from 2 to 9.
  • m1 represents 1 or 2.
  • X represents a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • the resist upper layer film-forming composition of the present invention contains the above cyanurate derivative and an alcohol solvent, and may further contain an acid compound, a basic compound, a crosslinking agent, a crosslinking catalyst, a surfactant, a rheology modifier and the like.
  • the molecular weight of the cyanurate compound used in the present invention is 129 to 1000, preferably 129 to 600.
  • combined from a cyanurate compound is fluctuate
  • the resist upper layer film using the cyanurate derivative may diffuse into the photoresist to deteriorate the lithography performance.
  • the weight average molecular weight is 10,000 or more, the solubility of the resist upper layer film to be formed in the photoresist developer is insufficient, and a residue may be present after development.
  • the total compound to be reacted with the cyanurate compound is 100% by mass, 30% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, More preferably, it is 76 mass% to 100 mass%.
  • the content of the cyanurate derivative in the resist upper layer film forming composition in the solid content is 20% by mass or more, for example, 20 to 100% by mass, or 30 to 100% by mass, or 50 to 90% by mass, or 60 to 80% by mass. %.
  • the solid content of the resist upper layer film-forming composition of the present invention is 0.1 to 50% by mass, preferably 0.3 to 30% by mass.
  • the solid content is obtained by removing the solvent component from the resist upper layer film-forming composition.
  • the reaction between the cyanurate compound and the aromatic ring-containing compound is preferably performed in a nitrogen atmosphere.
  • the reaction temperature may be selected from 50 ° C. to 200 ° C., preferably 80 ° C. to 180 ° C.
  • a high molecular weight cyanurate derivative can be obtained in a reaction time of 1 to 48 hours.
  • a reaction time of 1 to 24 hours at 80 to 150 ° C. is more preferable.
  • solvents that can be used in this case include alcohol solvents such as 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2 -Heptanol, tert-amyl alcohol, neopentyl alcohol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-3- Pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2 -Diethyl-1-butanol, 2-methyl-1
  • solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol Propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-hydroxyethyl propionate, 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, hydroxyethyl acetate, 2-hydroxy-3-methylbutanoate, 3-methoxy Methyl propionate 3 over methoxypropionate, ethyl 3 over ethyl ethoxypropionate, 3 over ethoxypropionate, methyl pyru
  • the solution containing the cyanurate derivative thus obtained can be used as it is for the preparation of the resist upper layer film-forming composition.
  • the cyanurate derivative may be precipitated and isolated in a poor solvent such as methanol, ethanol, ethyl acetate, hexane, toluene, acetonitrile, water, and recovered for use.
  • the drying conditions after isolating the cyanurate derivative are preferably 6 to 48 hours at 40 to 100 ° C. in an oven or the like.
  • the cyanurate derivative After the cyanurate derivative is recovered, it can be redissolved in an arbitrary solvent, preferably the alcohol solvent described below, and used as a resist upper layer film composition.
  • the resist upper layer film-forming composition of the present invention is applied to the above cyanurate derivative in place of a solvent usually used for resists and the film is formed on the resist.
  • the following alcohol solvents are preferably used.
  • the saturated alkyl alcohol may be a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, such as 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1- Pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, tert-amyl alcohol, neopentyl alcohol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl- 2-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3 -Dimethyl-1-butanol, 3,3-dimethyl-2-butane 2-diethyl-1-butanol,
  • aromatic alcohol examples include aromatic alcohols having 6 to 20 carbon atoms such as 1-phenylpropanol, 2-phenylpropanol, 3-phenylpropanol, 2-phenoxyethanol, phenethyl alcohol, and styryl alcohol.
  • Preferred alcohol solvents are 1-heptanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 4-methyl-2-pentanol or cyclopentanol. These alcohol solvents can be used alone or as a mixture.
  • the following solvents may be mixed together with the alcohol solvent.
  • the solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether Acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxypropionic acid Methyl
  • the resist upper layer film forming composition of the present invention may further contain an acid compound in order to match the acidity with the resist present in the lower layer in the lithography process.
  • an acid compound a sulfonic acid compound or a sulfonic acid ester compound can be used.
  • the blending amount is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
  • an acid is irradiated by exposure light (for example, ArF excimer laser irradiation, EUV irradiation, electron beam irradiation, etc.).
  • a generated acid generator can be added.
  • Preferred acid generators include, for example, onium salt acid generators such as bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s-triazine.
  • halogen-containing compound acid generators such as benzoin tosylate and sulfonic acid acid generators such as N-hydroxysuccinimide trifluoromethanesulfonate.
  • the amount of the acid generator added is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
  • the resist upper layer film-forming composition of the present invention can contain a basic compound.
  • a basic compound such as amine reacts with an acid generated from a photoacid generator during exposure to reduce the sensitivity of the resist underlayer film, thereby controlling the upper shape of the resist after exposure and development (after exposure and development).
  • the resist shape is preferably rectangular.
  • the basic compound include amines.
  • r 1 to r 5 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an amino group.
  • alkyl group examples include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, -Methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1 -Dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2 -Methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclo
  • Examples of the compound include the following formulas (13-2) to (13-47).
  • tertiary amines such as zabicyclooctane and aromatic amines such as pyridine and 4-dimethylaminopyridine.
  • primary amines such as benzylamine and normal butylamine, and secondary amines such as diethylamine and dinormalbutylamine are also included. These compounds can be used alone or in combination of two or more.
  • composition for forming a resist upper layer film of the present invention may contain additional rheology modifiers, surfactants and the like as necessary.
  • the rheology modifier is added mainly for the purpose of improving the fluidity of the resist upper layer film-forming composition.
  • phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; Mention may be made of maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate, or stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can.
  • These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to 100% by mass of the total composition of the resist upper layer film-forming composition.
  • a surfactant can be blended in order to further improve the applicability to surface unevenness.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl aryl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbititan sorbit
  • the compounding amount of these surfactants is usually 0.2% by mass or less, preferably 0.1% by mass or less, per 100% by mass of the total composition of the resist upper layer film-forming composition of the present invention.
  • These surfactants may be added alone or in combination of two or more.
  • an EUV resist can be used.
  • the EUV resist applied to the lower layer of the resist upper layer film formed from the composition of the present invention either a negative type or a positive type can be used.
  • Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist
  • a chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist,
  • non-chemically amplified resists composed of binders having groups that decompose by EUV to change the alkali dissolution rate, and non-chemical
  • EUV resist As the material system of EUV resist, there are methacrylic system, polyhydroxystyrene (PHS) system, and the like. When these EUV resists are used, a resist pattern can be formed in the same manner as when a resist is used with the irradiation source as an electron beam.
  • PHS polyhydroxystyrene
  • a KrF resist or an ArF resist can be used.
  • a negative photoresist or a positive photoresist can be used.
  • a positive photoresist comprising a novolac resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemically amplified photoresist comprising a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, an acid
  • a chemically amplified photoresist comprising a low-molecular compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate
  • a chemically amplified photoresist composed of a low molecular weight compound that decomposes with an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator.
  • an electron beam resist can be used.
  • a negative photoresist or a positive photoresist can be used.
  • Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist
  • a chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist,
  • non-chemically amplified resists composed of a binder having a group that changes the alkali dissolution rate by being decom
  • sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, and cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used.
  • amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amine
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution.
  • preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
  • a step of forming an EUV resist film on a substrate having a film to be processed for forming a transfer pattern, with or without using an EUV resist lower layer film, the EUV resist upper layer of the present invention on the resist film A step of applying and baking a film-forming composition to form an EUV resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, and developing after exposure to remove the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed by EUV (wavelength 13.5 nm).
  • the resist upper layer film is generally formed by a spin coating method in the same manner as the resist film formation.
  • a resist coat is formed on a substrate to be processed (for example, a silicon / silicon dioxide coated substrate, a glass substrate, an ITO substrate, etc.) on a spin coater manufactured by Tokyo Electron, and the resist upper layer film of the present invention is formed.
  • the forming composition (varnish) is applied to the substrate to be processed at a spin speed of 700 rpm to 3000 rpm and then baked on a hot plate at 50 ° C. to 150 ° C. for 30 to 300 seconds to form the resist upper layer film.
  • the film thickness of the resist upper layer film is 3 to 100 nm, 5 to 100 nm, or 5 to 50 nm.
  • the dissolution rate of the resist upper layer film formed from the composition of the present invention in the photoresist developer is 1 nm or more per second, preferably 3 nm or more per second, and more preferably 10 nm or more per second.
  • the dissolution rate is smaller than this, the time required for removing the resist upper layer film becomes longer, resulting in a decrease in productivity.
  • development is performed using a resist developer, thereby removing the resist and unnecessary portions of the resist upper layer film to form a resist pattern.
  • the semiconductor device to which the composition for forming an EUV resist upper layer film of the present invention is applied has a structure in which a film to be processed to transfer a pattern, a resist film, and a resist upper layer film formed from the composition are sequentially formed on a substrate.
  • This resist upper layer film can form a resist pattern having a good straight shape by reducing adverse effects exerted by the base substrate and EUV, and can provide a sufficient margin for the EUV irradiation amount.
  • the resist upper layer film according to the present invention has a wet etching rate equal to or greater than that of the resist film formed in the lower layer, and can be easily removed with an alkali developer together with unnecessary portions of the resist film after exposure. Is possible.
  • the substrate to be processed of the semiconductor device can be processed by either dry etching or wet etching.
  • a resist pattern that is well formed can be used as a mask, and dry etching or wet etching can be used. It is possible to transfer a good shape to the substrate to be processed.
  • a step of forming a KrF resist film with or without a KrF resist underlayer film on a substrate having a processing target film for forming a transfer pattern, and the KrF resist according to the present invention on the resist film A step of applying and baking an upper layer film-forming composition to form a KrF resist upper layer film, a step of exposing a semiconductor substrate covered with the resist upper layer film and the resist film, and developing after exposure to develop the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed with KrF.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • an ArF resist film is formed on a substrate having a film to be processed on which a transfer pattern is to be formed, with or without an ArF resist underlayer film, and the ArF resist according to the present invention is formed on the resist film.
  • a step of applying and baking an upper layer film forming composition to form an ArF resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, and developing after exposure to develop the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed with ArF.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • an electron beam resist film is formed on a substrate having a processing target film for forming a transfer pattern, with or without an electron beam resist underlayer film, and the present invention is applied to the resist film.
  • a step of applying and baking an electron beam resist upper layer film forming composition to form an electron beam resist upper layer film a step of exposing the resist upper layer film and a semiconductor substrate coated with the resist film, and developing after exposure to the resist upper layer film
  • a step of removing the resist film a semiconductor device can be manufactured. Exposure is performed with an electron beam.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • the weight average molecular weight shown in the following synthesis examples of this specification is a measurement result by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • the measurement conditions etc. are as follows using the GPC apparatus by Tosoh Corporation for the measurement.
  • the dispersity shown in the following synthesis examples of the present specification is calculated from the measured weight average molecular weight and number average molecular weight.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1673 in terms of standard polystyrene and a dispersity of 1.69.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1453 and a dispersity of 1.41 in terms of standard polystyrene.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1373 in terms of standard polystyrene and a dispersity of 1.25.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1073 and a dispersity of 1.41 in terms of standard polystyrene.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1546 in terms of standard polystyrene and a dispersity of 1.90.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1559 in terms of standard polystyrene and a dispersity of 1.75.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1166 in terms of standard polystyrene and a dispersity of 1.40.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1225 and a dispersity of 1.11.
  • cyanurate derivative had a weight average molecular weight of 756 and a dispersity of 1.05 in terms of standard polystyrene.
  • the cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol.
  • the obtained cyanurate derivative had a weight average molecular weight of 1265 and a dispersity of 1.12.
  • Example 1 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 2 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 2 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 3 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 3 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 4 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 4 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 5 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 5 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 6 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 6 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 7 To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 7, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography. (Example 8) 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 8 above.
  • Example 9 20.4 g of 1-heptanol was added to 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 10 20.4 g of cyclopentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above.
  • Example 11 20.4 g of 2-methyl-1-butanol was added to 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 12 To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above and 0.0032 g of bis (4-hydroxyphenyl) sulfone, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography. (Example 13) To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and 0.0032 g of 2,6-diisopropylaniline, 20.4 g of 4-methyl-2-pentanol was added and dissolved.
  • the maximum value of the absorptance was 40% or more as good and less than 40% as bad.
  • the transmittance of EUV light (13.5 nm)
  • a transmittance of 80% or more was considered good and less than 80% was regarded as defective.
  • the resist upper layer film obtained from the resist upper layer film forming composition of each example is superior to the resist upper layer film obtained from the resist upper layer film forming composition of Comparative Example 1 and Comparative Example 2 in DUV light shielding properties. It became the result.
  • Comparative Example 3 the light shielding property of the DUV light was good, but it did not dissolve in the developer in the resist intermixing test described above, and thus the desired required characteristics were not satisfied.
  • the present invention provides an EUV lithography process that selectively transmits only EUV by blocking unwanted exposure light, such as UV and DUV, for example, without intermixing with a resist, and developing with a developer after exposure. It can be used as a composition for forming an EUV resist upper layer film to be used or a resist upper layer film for a lithography process at other exposure wavelengths.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Epoxy Resins (AREA)

Abstract

[Problem] To provide a resist upper layer film forming composition to be used for a lithography process in a manufacturing procedure of a semiconductor device, which is free from intermixing with a resist and selectively transmits EUV only, while blocking undesirable exposure light such as UV and DUV especially during EUV exposure. This resist upper layer film forming composition can be developed with a developer liquid after the exposure. [Solution] Provided is a resist upper layer film forming composition which contains: a derivative obtained by reacting a cyanurate derivative with a compound containing a naphthalene ring or an anthracene ring; and an alcohol solvent.

Description

リソグラフィー用レジスト上層膜形成組成物及びそれを用いた半導体装置の製造方法Composition for forming resist upper layer film for lithography and method for manufacturing semiconductor device using the same
 本発明は、フォトリソグラフィーを利用した半導体装置の製造工程に用いられ、露光光によって及ぼされる悪影響を低減し、良好なレジストパターンを得るのに有効なリソグラフィー用レジスト上層膜形成組成物、並びに該リソグラフィー用レジスト上層膜形成組成物を用いるレジストパターン形成法、及び当該形成方法を用いた半導体装置の製造方法に関するものである。 The present invention is used in a manufacturing process of a semiconductor device using photolithography, reduces an adverse effect exerted by exposure light, and is effective for obtaining a good resist pattern. The present invention relates to a resist pattern forming method using a resist upper layer film forming composition and a method for manufacturing a semiconductor device using the forming method.
 従来から半導体装置の製造において、フォトリソグラフィー技術を用いた微細加工が行われている。前記微細加工はシリコンウェハー等の被加工基板上にフォトレジスト組成物の薄膜を形成し、その上に半導体装置のパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜(マスク)としてシリコンウェハー等の被加工基板をエッチング処理する加工法である。近年、半導体装置の高集積度化が進み、使用される活性光線もKrFエキシマレーザー(波長248nm)からArFエキシマレーザー(波長193nm)へと短波長化されていった。これに伴い活性光線の基板からの乱反射や定在波の影響が大きな問題となり、フォトレジストと被加工基板の間に反射を防止する役目を担うレジスト下層膜として、反射防止膜(BottomAnti-ReflectiveCoating、BARC)を設ける方法が広く採用されるようになってきた。
反射防止膜としては、チタン、二酸化チタン、窒化チタン、酸化クロム、カーボン、α-シリコン等の無機反射防止膜と、吸光性物質と高分子化合物とからなる有機反射防止膜が知られている。前者は膜形成に真空蒸着装置、CVD装置、スパッタリング装置等の設備を必要とするのに対し、後者は特別の設備を必要としない点で有利とされ数多くの検討が行われている。
Conventionally, fine processing using a photolithography technique has been performed in the manufacture of semiconductor devices. In the fine processing, a thin film of a photoresist composition is formed on a substrate to be processed such as a silicon wafer, and then actinic rays such as ultraviolet rays are irradiated and developed through a mask pattern on which a semiconductor device pattern is drawn. In this processing method, the substrate to be processed such as a silicon wafer is etched using the obtained photoresist pattern as a protective film (mask). In recent years, the degree of integration of semiconductor devices has increased, and the active light used has also been shortened from a KrF excimer laser (wavelength 248 nm) to an ArF excimer laser (wavelength 193 nm). Along with this, the influence of diffuse reflection and standing wave of actinic rays from the substrate becomes a big problem, and as a resist underlayer film that plays a role of preventing reflection between the photoresist and the substrate to be processed, an antireflection film (Bottom Anti-Reflective Coating, The method of providing BARC) has been widely adopted.
As the antireflection film, an inorganic antireflection film such as titanium, titanium dioxide, titanium nitride, chromium oxide, carbon, and α-silicon, and an organic antireflection film made of a light-absorbing substance and a polymer compound are known. The former requires equipment such as a vacuum deposition apparatus, a CVD apparatus, and a sputtering apparatus for film formation, whereas the latter is advantageous in that no special equipment is required, and many studies have been made.
近年では、ArFエキシマレーザー(波長193nm)を用いたフォトリソグラフィー技術の後を担う次世代のフォトリソグラフィー技術として、水を介して露光するArF液浸リソグラフィー技術が実用化されている。しかし光を用いるフォトリソグラフィー技術は限界を迎えつつあり、ArF液浸リソグラフィー技術以降の新しいリソグラフィー技術として、EUV(波長13.5nm)を用いるEUVリソグラフィー技術が注目されている。
EUVリソグラフィーを用いた半導体装置製造工程では、EUVレジストを被覆した基板にEUVを照射して露光し、現像し、レジストパターンを形成する。
 EUVレジストを汚染物質から保護し、好ましくない放射線、例えばUVやDUV(OUT of BAND/帯域外放射、OOB)を遮断するためにEUVレジストの上層に、ベリリウム、硼素、炭素、珪素、ジルコニウム、ニオブおよびモリブデンの一つ以上を包含するグループを含むポリマーを含む方法が開示されている(特許文献1、特許文献2)。
In recent years, an ArF immersion lithography technique in which exposure is performed through water has been put into practical use as a next-generation photolithography technique that bears the photolithography technique using an ArF excimer laser (wavelength 193 nm). However, photolithographic technology using light is reaching its limit, and EUV lithography technology using EUV (wavelength 13.5 nm) is attracting attention as a new lithography technology after ArF immersion lithography technology.
In a semiconductor device manufacturing process using EUV lithography, a substrate coated with an EUV resist is irradiated with EUV, exposed, developed, and a resist pattern is formed.
To protect the EUV resist from contaminants and to block unwanted radiation such as UV and DUV (OUT of BAND / Out of Band, OOB), the upper layer of the EUV resist is beryllium, boron, carbon, silicon, zirconium, niobium. And a method comprising a polymer comprising a group comprising one or more of molybdenum (Patent Document 1, Patent Document 2).
 またOOBを遮断するために、EUVレジストの上層にポリヒドロキシスチレン(PHS)系化合物や、アクリル系化合物などで形成されるトップコートを塗布してOOBを低減させることや(非特許文献1)、EUVレジストの上層にEUV resolution enhancement layerなる膜を塗布し、OOBを吸収してEUVレジスト解像度を向上させた例があるが(非特許文献2)、どのような組成物が最適かは開示されていない。 In order to block OOB, a top coat formed of a polyhydroxystyrene (PHS) compound or an acrylic compound is applied to the upper layer of the EUV resist to reduce OOB (Non-patent Document 1), There is an example in which a EUV resolution enhancement layer film is applied to the upper layer of the EUV resist and the EUV resist resolution is improved by absorbing OOB (Non-Patent Document 2), but what composition is optimal is disclosed. Absent.
特開2004-348133JP 2004-348133 A 特開2008-198788JP2008-198788
 本発明は上記の問題を解決する、最適なレジスト上層膜形成組成物を提供するためになされたものであって、レジスト上層膜として、特にEUVレジストの上層膜として、レジストとインターミキシングすることなく、特にEUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能な、半導体装置製造のリソグラフィープロセスに用いるレジスト上層膜形成組成物を提供する。 The present invention has been made to provide an optimal resist upper layer film forming composition that solves the above-mentioned problems, and is used as a resist upper layer film, particularly as an upper layer film of an EUV resist, without intermixing with the resist. In particular, a composition for forming a resist upper layer film used in a lithography process for manufacturing a semiconductor device, which is capable of selectively transmitting only EUV by blocking exposure light, such as UV or DUV, which is not preferable in EUV exposure, and capable of developing with a developer after exposure. Offer things.
本発明は第1観点として、(式1-1):
Figure JPOXMLDOC01-appb-C000003
((式1-1)の置換基A乃至置換基Aは、各々少なくとも1個のヒドロキシル基を含む置換基であり、さらに少なくとも1個の置換基はナフタレン環又はアントラセン環であり、他の置換基が存在する場合はベンゼン環である。上記ナフタレン環、アントラセン環又はベンゼン環の水素原子は、各々独立にハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基で置換されていてもよい。)で表されるシアヌレート誘導体と、アルコール系溶剤を含むレジスト上層膜形成組成物、
第2観点として、上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートから合成される、第1観点に記載のレジスト上層膜形成組成物、
第3観点として、上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートと、ヒドロキシル基含有化合物Dとから合成されるシアヌレート誘導体である、第1観点に記載のレジスト上層膜形成組成物、
ヒドロキシル基含有化合物Dはi)で表される化合物又はii)で表される化合物の組み合わせである。
i)置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物、
ii)置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物と、置換基として少なくとも1つのヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよい1種以上の安息香酸との組み合わせ、
第4観点として、上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートと、下記(式1-2)で表される化合物、又は(式1-2)で表される化合物と(式1-3)で表される化合物の組み合わせ、

Figure JPOXMLDOC01-appb-C000004
((式1-2)又は(式1-3)中、n1及びn4は各々独立して1乃至5の整数であり、n2及びn3は各々独立して0乃至8の整数であり、n5及びn6は各々独立して0乃至4の整数であり、(n1+n2+n3)は1乃至9の整数であり、(n4+n5+n6)は1乃至5の整数であり、且つ(n1+n4)は2乃至9の整数である。m1は1又は2を表す。Xはハロゲン原子を表す。)とから合成されるシアヌレート誘導体である、第1観点に記載のレジスト上層膜形成組成物、
第5観点として、上記アルコール系溶剤が、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール又は、炭素数6乃至20個の芳香族アルコールである第1観点乃至第4観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第6観点として、上記アルコール系溶剤が、1-ヘプタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、4-メチル-2-ペンタノール又はシクロペンタノールである第1観点乃至第5観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第7観点として、更に酸化合物を含む第1観点乃至第6観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第8観点として、上記酸化合物がスルホン酸化合物又はスルホン酸エステル化合物である第7観点に記載のレジスト上層膜形成組成物、
第9観点として、上記酸化合物がオニウム塩系酸発生剤、ハロゲン含有化合物系酸発生剤又はスルホン酸系酸発生剤である第7観点に記載のレジスト上層膜形成組成物、
第10観点として、更に塩基性化合物を含む第1観点乃至第9観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第11観点として、上記組成物とともに使用されるレジストがEUV(波長13.5nm)用レジストである、第1観点乃至第10観点いずれか1観点に記載のレジスト上層膜形成組成物、
第12観点として、基板上にレジスト膜を形成する工程、該レジスト膜上に第1観点乃至第11観点のいずれか1観点に記載のレジスト上層膜形成組成物を塗布し焼成してレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含む半導体装置の製造方法、
第13観点として、上記露光がEUV(波長13.5nm)により行われる第12観点に記載の半導体装置の製造方法、である。
As a first aspect of the present invention, (Formula 1-1):
Figure JPOXMLDOC01-appb-C000003
(Substituents A 1 to A 3 in (Formula 1-1) are each a substituent containing at least one hydroxyl group, and at least one substituent is a naphthalene ring or an anthracene ring. A benzene ring, the hydrogen atoms of the naphthalene ring, anthracene ring or benzene ring are each independently substituted with a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms. And a resist upper layer film-forming composition comprising a cyanurate derivative represented by formula (II) and an alcohol solvent,
As a second aspect, the resist upper layer film-forming composition according to the first aspect, wherein the cyanurate derivative is synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate,
As a third aspect, the cyanurate derivative is a cyanurate derivative synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a hydroxyl group-containing compound D. A resist upper layer film-forming composition,
The hydroxyl group-containing compound D is a compound represented by i) or a combination of compounds represented by ii).
i) 1 selected from naphthoic acid or anthracenecarboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent. More than one species,
ii) 1 selected from naphthoic acid or anthracenecarboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent. One or more compounds and at least one hydroxyl group as a substituent, and one or more benzoic acid which may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent, A combination of
As a fourth aspect, the cyanurate derivative may be 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a compound represented by the following (formula 1-2), or (formula 1-2): A combination of the compound represented by (Formula 1-3) and

Figure JPOXMLDOC01-appb-C000004
(In (Formula 1-2) or (Formula 1-3), n1 and n4 are each independently an integer of 1 to 5, n2 and n3 are each independently an integer of 0 to 8, n6 is each independently an integer of 0 to 4, (n1 + n2 + n3) is an integer of 1 to 9, (n4 + n5 + n6) is an integer of 1 to 5, and (n1 + n4) is an integer of 2 to 9 M1 represents 1 or 2. X represents a halogen atom), and is a cyanurate derivative synthesized from the first aspect,
As a fifth aspect, the alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms. The resist upper layer film-forming composition according to any one of the viewpoints to the fourth aspect,
As a sixth aspect, the alcohol solvent is 1-heptanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol. The resist upper layer film-forming composition according to any one of the five aspects,
As a seventh aspect, the resist upper layer film-forming composition according to any one of the first aspect to the sixth aspect, further including an acid compound,
As an eighth aspect, the resist upper layer film-forming composition according to the seventh aspect, in which the acid compound is a sulfonic acid compound or a sulfonic acid ester compound,
As a ninth aspect, the resist upper layer film-forming composition according to the seventh aspect, wherein the acid compound is an onium salt-based acid generator, a halogen-containing compound-based acid generator, or a sulfonic acid-based acid generator,
As a tenth aspect, the resist upper layer film-forming composition according to any one of the first to ninth aspects, further including a basic compound,
As an eleventh aspect, the resist upper layer film forming composition according to any one of the first aspect to the tenth aspect, wherein the resist used together with the composition is a resist for EUV (wavelength 13.5 nm),
As a twelfth aspect, a step of forming a resist film on a substrate, a resist upper layer film formed by applying and baking the resist upper layer film forming composition according to any one of the first aspect to the eleventh aspect on the resist film A method of manufacturing a semiconductor device, comprising: a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film; a step of developing after exposure to remove the resist upper layer film and the resist film;
A thirteenth aspect is the method for manufacturing a semiconductor device according to the twelfth aspect, in which the exposure is performed by EUV (wavelength: 13.5 nm).
 本発明はレジスト上層膜形成組成物として、特にEUVレジストの上層膜形成組成物として、EUVレジストとインターミキシングすることなく、EUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能なレジスト上層膜形成組成物に関するものである。
特にEUVレジストの露光に際し、EUV光はEUV光と共にUV光やDUV光が放射される。すなわち、このEUV光はEUV光以外に300nm以下の波長の光を5%程度含むが、例えば190nm乃至300nm、特に220nm乃至260nm付近の波長領域が最も強度が高く、それはEUVレジストの感度低下やパターン形状の劣化をもたらす。具体的には線幅が22nm以下になると、このUV光やDUV光(OUTofBAND/帯域外放射)の影響が出始めEUVレジストの解像性に悪影響を与える。
220nm乃至260nm付近の波長光を除去するためにリソグラフィーシステムにフィルターを設置する方法もあるが、工程上複雑になる。本発明ではEUV露光光に含まれるDUV光(OUTofBAND/帯域外放射)のなかでも220nm乃至260nmの望まれないDUV光を、本発明の組成物中に含まれるナフタレン環又はアントラセン環を含有するシアヌレート誘導体で吸収することで、EUVレジストの解像性の向上を行うことができる。
The present invention provides a resist upper layer film-forming composition, in particular, an EUV resist upper layer film-forming composition, which does not intermix with the EUV resist, and blocks EUV exposure, such as UV or DUV, which is not preferable for EUV exposure. The present invention relates to a resist upper layer film-forming composition that is selectively transmitted and can be developed with a developer after exposure.
In particular, when the EUV resist is exposed, the EUV light emits UV light and DUV light together with the EUV light. That is, this EUV light contains about 5% of light having a wavelength of 300 nm or less in addition to EUV light. For example, the wavelength region in the vicinity of 190 nm to 300 nm, particularly 220 nm to 260 nm has the highest intensity. Deteriorating the shape. Specifically, when the line width is 22 nm or less, the influence of the UV light or DUV light (OUTofBAND / out-of-band radiation) starts to appear and adversely affects the resolution of the EUV resist.
Although there is a method of installing a filter in the lithography system in order to remove light having a wavelength in the vicinity of 220 nm to 260 nm, the process is complicated. In the present invention, among DUV light (OUTofBAND / out-of-band radiation) contained in EUV exposure light, unwanted DUV light of 220 nm to 260 nm is used as cyanurate containing a naphthalene ring or anthracene ring contained in the composition of the present invention. By absorbing with a derivative, the resolution of the EUV resist can be improved.
 また、EUVレジストの上層に被覆する際に、EUVレジストとのインターミキシング(層の混合)を防止するために、EUVレジストに用いられる溶剤は使用せず、レジスト上層膜形成組成物はアルコール系溶剤を用いた方がよい。この場合に、本発明のレジスト上層膜形成組成物は、アルコール系溶剤への溶解性を高めるため、ヒドロキシル基を含有するシアヌレート誘導体が用いられる。
そして本発明のレジスト上層膜形成組成物に用いられるシアヌレート誘導体は、ヒドロキシル基を含有するため、露光後の現像時にEUVレジストと共に現像液(例えば、アルカリ性現像液)に溶解可能であるために、現像液による溶解除去が可能である。  
In addition, in order to prevent intermixing (mixing of layers) with the EUV resist when coating the upper layer of the EUV resist, the solvent used for the EUV resist is not used, and the resist upper layer film forming composition is an alcohol solvent. It is better to use In this case, in the resist upper layer film forming composition of the present invention, a cyanurate derivative containing a hydroxyl group is used in order to enhance the solubility in an alcohol solvent.
Since the cyanurate derivative used in the resist upper layer film-forming composition of the present invention contains a hydroxyl group, it can be dissolved in a developer (for example, an alkaline developer) together with an EUV resist during development after exposure. Dissolution removal with a liquid is possible.
 本発明は、シアヌレート誘導体と、アルコール系溶剤を含むレジスト上層膜形成組成物である。レジスト上層膜として好適であるが、特に露光波長としてEUVを用いる、EUVリソグラフィー工程に用いるレジスト上層膜形成組成物として好適である。 The present invention is a resist upper layer film-forming composition containing a cyanurate derivative and an alcohol solvent. Although suitable as a resist upper layer film, it is particularly suitable as a resist upper layer film forming composition used in an EUV lithography process using EUV as an exposure wavelength.
 以下本発明のレジスト上層膜形成組成物の詳細について説明する。
本発明のレジスト上層膜形成組成物で使用されるシアヌレート誘導体を形成するためのシアヌレート化合物は、以下の構造を有する。
Details of the resist upper layer film-forming composition of the present invention will be described below.
The cyanurate compound for forming the cyanurate derivative used in the resist upper layer film-forming composition of the present invention has the following structure.
Figure JPOXMLDOC01-appb-C000005

(式3-1)の化合物において、各R、R、及びRはそれぞれ独立で、水素原子、ハロゲン原子、置換若しくは非置換の炭素数1乃至10のアルキル基、ベンゼン誘導体基、ビニル誘導体基、又はエポキシ誘導体基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-オクチル基、n-ドデシル基が例示される。ベンゼン誘導体基としてはフェニル基、ベンジル基、トリル基、メトキシフェニル基、キシリル基、ビフェニル基、ナフチル基、アントリル基が例示される。ビニル誘導体基としてはエテニル基、プロペニル基、ブテニル基、ブタジエニル基、ヘキセニル基、オクタジエニル基が例示される。エポキシ誘導体基としては、グリシジル基、β-メチル-グリシジル基が例示される。
これらアルキル基、ベンゼン誘導体基、及びビニル誘導体基は、未置換の基の他、置換されていてもよく、その置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシル基、アルコキシ基、アシル基が例示される。特に好ましい置換基としてヒドロキシル基が挙げられる。
Figure JPOXMLDOC01-appb-C000005

In the compound of formula (3-1), each of R 1 , R 2 , and R 3 is independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a benzene derivative group, vinyl Derivative group or epoxy derivative group is represented. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-octyl, and n-dodecyl. Is done. Examples of the benzene derivative group include a phenyl group, a benzyl group, a tolyl group, a methoxyphenyl group, a xylyl group, a biphenyl group, a naphthyl group, and an anthryl group. Examples of the vinyl derivative group include an ethenyl group, a propenyl group, a butenyl group, a butadienyl group, a hexenyl group, and an octadienyl group. Examples of the epoxy derivative group include a glycidyl group and a β-methyl-glycidyl group.
These alkyl groups, benzene derivative groups, and vinyl derivative groups may be substituted in addition to unsubstituted groups. Examples of the substituents include halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms, Examples are a hydroxyl group, an alkoxy group and an acyl group. A particularly preferred substituent is a hydroxyl group.
これらの中でも特に、(式3-2)に示される1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートがより好ましく用いられる。
Figure JPOXMLDOC01-appb-C000006
上記のイソシアヌレート化合物に、以下に説明する特定構造の芳香環化合物を反応させ、本発明のレジスト上層膜形成組成物に用いられるシアヌレート誘導体が合成される。
Among these, 1,3,5-tris- (2,3-epoxypropyl) isocyanurate represented by (Formula 3-2) is more preferably used.
Figure JPOXMLDOC01-appb-C000006
The above isocyanurate compound is reacted with an aromatic ring compound having a specific structure described below to synthesize a cyanurate derivative used in the resist upper layer film-forming composition of the present invention.
本発明に用いられるシアヌレート誘導体は下記の(式1-1)の構造を有する。
Figure JPOXMLDOC01-appb-C000007
The cyanurate derivative used in the present invention has the following structure (formula 1-1).
Figure JPOXMLDOC01-appb-C000007
(式1-1)の化合物は、シアヌレート化合物と、特定構造の芳香環化合物を反応させて合成される。特定構造の芳香環化合物は、その構造中に少なくとも1個のヒドロキシル基を含有するナフタレン環又はアントラセン環を含む化合物である。
(式1-1)の置換基A乃至置換基Aは、各々少なくとも1個のヒドロキシル基を含む置換基であり、さらに少なくとも1個の置換基はナフタレン環又はアントラセン環であり、他の置換基が存在する場合はベンゼン環である。ナフタレン環又はアントラセン環を含む化合物と、ベンゼン環を含む化合物を同時に反応させた場合、置換基A乃至置換基A中にナフタレン環又はアントラセン環とベンゼン環を含む化合物が共存することになる。上記ナフタレン環、アントラセン環又はベンゼン環の水素原子は、各々独立にハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基で置換されていてもよい。ヒドロキシル基は親水性基であり、アルコール系溶媒へ溶解性や、現像液への溶解性に優れる。上記シアヌレート誘導体中にナフタレン環又はアントラセン環を導入する理由は、上記UV光やDUV光を吸収するためである。
上記ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1乃至4の直鎖又は分岐飽和アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
The compound of the formula (1-1) is synthesized by reacting a cyanurate compound with an aromatic ring compound having a specific structure. The aromatic ring compound having a specific structure is a compound containing a naphthalene ring or anthracene ring containing at least one hydroxyl group in the structure.
Substituents A 1 to substituents A 3 (Formula 1-1) are each a substituent containing at least one hydroxyl group, further at least one substituent is a naphthalene ring or an anthracene ring, the other When a substituent is present, it is a benzene ring. When a compound containing a naphthalene ring or an anthracene ring and a compound containing a benzene ring are reacted at the same time, a compound containing a naphthalene ring or an anthracene ring and a benzene ring coexists in the substituent A 1 to the substituent A 3. . The hydrogen atoms of the naphthalene ring, anthracene ring or benzene ring may be each independently substituted with a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms. The hydroxyl group is a hydrophilic group and is excellent in solubility in an alcohol solvent and in a developer. The reason for introducing a naphthalene ring or an anthracene ring into the cyanurate derivative is to absorb the UV light or DUV light.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the linear or branched saturated alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. It is done.
 本発明に用いられるシアヌレート誘導体を合成するために、シアヌレート化合物と反応させる、ヒドロキシル基含有化合物Dは、下記i)で表される化合物又はii)で表される化合物の組み合わせである。
i)置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物、又は
ii)置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物、置換基として少なくとも1つのヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよい1種以上の安息香酸との組み合わせ、である。
i)で表される化合物又はii)で表される化合物の組み合わせが、2個以上のカルボキシル基を含有する化合物を含むと、2個以上のシアヌレート化合物同士が当該化合物で連結された化合物が形成される可能性があり、本発明の組成物成分として好ましくない。
i)を構成する化合物は1種でもよいし、又は2種以上の組み合わせでもよいが、好ましくは4種以内、より好ましくは3種以内である。
ii)を構成する化合物は上記ナフトエ酸又はアントラセンカルボン酸から選ばれる化合物1種又は2種以上と、上記安息香酸1種又は2種以上の組み合わせでもよいが、より好ましくは上記ナフトエ酸又はアントラセンカルボン酸から選ばれる化合物3種以内と、上記安息香酸3種以内の組み合わせである。
In order to synthesize the cyanurate derivative used in the present invention, the hydroxyl group-containing compound D to be reacted with the cyanurate compound is a compound represented by the following i) or a combination of compounds represented by ii).
i) 1 selected from naphthoic acid or anthracenecarboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent. Two or more kinds of compounds, or ii) naphthoic acid or anthracene which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent 1 or more types of compounds chosen from carboxylic acid, 1 type which may contain at least 1 hydroxyl group as a substituent, and may contain a halogen atom or a C1-C4 linear or branched saturated alkyl group as a substituent A combination with the above benzoic acid.
When the compound represented by i) or the combination of compounds represented by ii) includes a compound containing two or more carboxyl groups, a compound in which two or more cyanurate compounds are linked by the compound is formed. This is not preferable as the composition component of the present invention.
The compound constituting i) may be one kind or a combination of two or more kinds, but is preferably within 4 kinds, more preferably within 3 kinds.
The compound constituting ii) may be a combination of one or more compounds selected from the naphthoic acid or anthracene carboxylic acid and one or more combinations of the benzoic acid, more preferably the naphthoic acid or anthracene carboxylic acid. A combination of 3 or less compounds selected from acids and 3 or less of the above benzoic acids.
 本発明に用いられるシアヌレート誘導体を合成するために、シアヌレート化合物と反応させる化合物は一般式で(式1-2)で表される化合物、又は(式1-2)で表される化合物と(式1-3)で表される化合物の組み合わせで表される1個のカルボキシル基を含有する化合物が好ましく用いられる。(式1-2)の構造を有する化合物は1種でもよいし、又は2種以上の組み合わせでもよいが、好ましくは4種以内、より好ましくは3種以内である。(式1-3)の構造を有する化合物は1種でもよいし、又は2種以上の組み合わせでもよいが、好ましくは4種以内、より好ましくは3種以内である。また、これらの化合物が2個以上のカルボキシル基を含有すると、2個以上のシアヌレート化合物同士が当該化合物で連結された化合物が形成される可能性があり、本発明の組成物成分として好ましくない。(式1-2)又は(式1-3)で表される化合物中のカルボキシル基は、シアヌレート誘導体と反応して、特に好ましくはエポキシ基と反応して(式1-1)のようなトリエステル化合物を生成する。 In order to synthesize the cyanurate derivative used in the present invention, the compound to be reacted with the cyanurate compound is a compound represented by the general formula (formula 1-2), or a compound represented by the formula (1-2) A compound containing one carboxyl group represented by a combination of compounds represented by 1-3) is preferably used. The compound having the structure of (Formula 1-2) may be one kind or a combination of two or more kinds, but is preferably within 4 kinds, more preferably within 3 kinds. The compound having the structure of (Formula 1-3) may be one kind or a combination of two or more kinds, but preferably within 4 kinds, more preferably within 3 kinds. Moreover, when these compounds contain two or more carboxyl groups, a compound in which two or more cyanurate compounds are linked with each other may be formed, which is not preferable as the composition component of the present invention. The carboxyl group in the compound represented by (Formula 1-2) or (Formula 1-3) reacts with a cyanurate derivative, particularly preferably reacts with an epoxy group to form a trimethyl group such as (Formula 1-1). An ester compound is produced.
Figure JPOXMLDOC01-appb-C000008
(式1-2)又は(式1-3)中、n1及びn4は各々独立して1乃至5の整数であり、好ましくは1乃至3の整数であり、n2及びn3は各々独立して0乃至8の整数であり、より好ましくは0乃至3の整数であり、n5及びn6は各々独立して0乃至4の整数であり、より好ましくは0乃至3の整数であり、(n1+n2+n3)は1乃至9の整数であり、(n4+n5+n6)は1乃至5の整数であり、且つ(n1+n4)は2乃至9の整数である。m1は1又は2を表す。Xはハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。
Figure JPOXMLDOC01-appb-C000008
In (Formula 1-2) or (Formula 1-3), n1 and n4 are each independently an integer of 1 to 5, preferably an integer of 1 to 3, and n2 and n3 are each independently 0 Is an integer from 1 to 8, more preferably an integer from 0 to 3, n5 and n6 are each independently an integer from 0 to 4, more preferably an integer from 0 to 3, and (n1 + n2 + n3) is 1. Is an integer from 1 to 9, (n4 + n5 + n6) is an integer from 1 to 5, and (n1 + n4) is an integer from 2 to 9. m1 represents 1 or 2. X represents a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
(式1-2)又は(式1-3)で表される化合物の具体例としては、以下の(式2-1)乃至(式2-10)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
Specific examples of the compound represented by (Formula 1-2) or (Formula 1-3) include those represented by the following (Formula 2-1) to (Formula 2-10).
Figure JPOXMLDOC01-appb-C000009
 本発明のレジスト上層膜形成組成物は、上記シアヌレート誘導体及びアルコール系溶剤を含有し、更に酸化合物、塩基性化合物、架橋剤、架橋触媒、界面活性剤、レオロジー調整剤などを含むことが出来る。
本発明に用いられるシアヌレート化合物の分子量は、129乃至1000、好ましくは129乃至600である。また、シアヌレート化合物から合成されるシアヌレート誘導体のGPC(Gel Permeation Chromatography)法で測定した重量平均分子量は、使用する塗布溶剤、溶液粘度、膜形状等により変動するが、ポリスチレン換算で例えば500乃至10000であり、または1000乃至5000であり、好ましくは1000乃至2000である。重量平均分子量が500以下の場合には、当該シアヌレート誘導体を使用したレジスト上層膜がフォトレジスト中に拡散しリソグラフィー性能を悪化させる場合が生じる。重量平均分子量が10000以上の場合には、形成されるレジスト上層膜のフォトレジスト用現像液に対する溶解性が不十分となり、現像後に残渣が存在する場合が生じる。
(式1-1)の構造を有する本発明に用いられるシアヌレート誘導体を合成するために、シアヌレート化合物に少なくとも1個のヒドロキシル基を含むナフタレン環又はアントラセン環を含む化合物を反応させることが必要であり、シアヌレート化合物に反応させる化合物全体を100質量%としたときの割合としては、30質量%乃至100質量%、より好ましくは50質量%乃至100質量%、より好ましくは70質量%乃至100質量%、さらに好ましくは76質量%乃至100質量%である。
上記シアヌレート誘導体のレジスト上層膜形成組成物における固形分中の含有量は、20質量%以上、例えば20乃至100質量%、又は30乃至100質量%、又は50乃至90質量%、又は60乃至80質量%である。
The resist upper layer film-forming composition of the present invention contains the above cyanurate derivative and an alcohol solvent, and may further contain an acid compound, a basic compound, a crosslinking agent, a crosslinking catalyst, a surfactant, a rheology modifier and the like.
The molecular weight of the cyanurate compound used in the present invention is 129 to 1000, preferably 129 to 600. Moreover, although the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method of the cyanurate derivative synthesize | combined from a cyanurate compound is fluctuate | varied with the coating solvent to be used, solution viscosity, film | membrane shape, etc., it is 500 to 10000 in polystyrene conversion, for example. Or 1000 to 5000, preferably 1000 to 2000. When the weight average molecular weight is 500 or less, the resist upper layer film using the cyanurate derivative may diffuse into the photoresist to deteriorate the lithography performance. When the weight average molecular weight is 10,000 or more, the solubility of the resist upper layer film to be formed in the photoresist developer is insufficient, and a residue may be present after development.
In order to synthesize the cyanurate derivative used in the present invention having the structure of (formula 1-1), it is necessary to react the cyanurate compound with a compound containing a naphthalene ring or an anthracene ring containing at least one hydroxyl group. As a ratio when the total compound to be reacted with the cyanurate compound is 100% by mass, 30% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, More preferably, it is 76 mass% to 100 mass%.
The content of the cyanurate derivative in the resist upper layer film forming composition in the solid content is 20% by mass or more, for example, 20 to 100% by mass, or 30 to 100% by mass, or 50 to 90% by mass, or 60 to 80% by mass. %.
 本発明のレジスト上層膜形成組成物の固形分は、0.1乃至50質量%であり、好ましくは0.3乃至30質量%である。固形分とはレジスト上層膜形成組成物から溶剤成分を取り除いたものである。  The solid content of the resist upper layer film-forming composition of the present invention is 0.1 to 50% by mass, preferably 0.3 to 30% by mass. The solid content is obtained by removing the solvent component from the resist upper layer film-forming composition. *
 本発明に用いられるシアヌレート誘導体の製造において、シアヌレート化合物と、芳香環含有化合物との反応は、窒素雰囲気下で行われるのが望ましい。反応温度は50℃乃至200℃、好ましくは80℃乃至180℃の任意の温度を選択することができる。反応時間1乃至48時間で高分子量のシアヌレート誘導体を得ることが出来る。低分子量で保存安定性の高いシアヌレート誘導体を得るには80℃乃至150℃で反応時間1乃至24時間がより好ましい。 In the production of the cyanurate derivative used in the present invention, the reaction between the cyanurate compound and the aromatic ring-containing compound is preferably performed in a nitrogen atmosphere. The reaction temperature may be selected from 50 ° C. to 200 ° C., preferably 80 ° C. to 180 ° C. A high molecular weight cyanurate derivative can be obtained in a reaction time of 1 to 48 hours. In order to obtain a cyanurate derivative having a low molecular weight and high storage stability, a reaction time of 1 to 24 hours at 80 to 150 ° C. is more preferable.
 シアヌレート化合物と、芳香環含有化合物との反応は溶剤中で行なうことができる。その際に使用できる溶剤としては、アルコール系溶媒として、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、tert-アミルアルコール、ネオペンチルアルコール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-ジエチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール、1-ブトキシ-2-プロパノール及びシクロヘキサノール等を挙げることができる。 The reaction between the cyanurate compound and the aromatic ring-containing compound can be performed in a solvent. Solvents that can be used in this case include alcohol solvents such as 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2 -Heptanol, tert-amyl alcohol, neopentyl alcohol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-3- Pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2 -Diethyl-1-butanol, 2-methyl-1-pentanol, 2-me 2-Pentanol, 2-Methyl-3-pentanol, 3-Methyl-1-pentanol, 3-Methyl-2-pentanol, 3-Methyl-3-pentanol, 4-Methyl-1-pen Examples include butanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol, 1-butoxy-2-propanol, and cyclohexanol.
 またその他の溶媒として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2ーヒドロキシー2ーメチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル、3ーエトキシプロピオン酸エチル、3ーエトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。
これらは単独でも、混合して使用しても良い。さらにシアヌレート誘導体を溶解しない溶剤であっても、重合反応により生成したシアヌレート誘導体が析出しない範囲で、上記溶剤に混合して使用してもよい。
Other solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol Propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-hydroxyethyl propionate, 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, hydroxyethyl acetate, 2-hydroxy-3-methylbutanoate, 3-methoxy Methyl propionate 3 over methoxypropionate, ethyl 3 over ethyl ethoxypropionate, 3 over ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, can be used butyl lactate and the like.
These may be used alone or in combination. Further, even a solvent that does not dissolve the cyanurate derivative may be used by mixing with the above solvent as long as the cyanurate derivative produced by the polymerization reaction does not precipitate.
 このようにして得られたシアヌレート誘導体を含む溶液は、レジスト上層膜形成組成物の調製にそのまま用いることができる。また、シアヌレート誘導体をメタノール、エタノール、酢酸エチル、ヘキサン、トルエン、アセトニトリル、水等の貧溶剤に沈殿単離させて回収して用いることもできる。シアヌレート誘導体を単離した後の乾燥条件は、オーブンなどで40乃至100℃にて6乃至48時間が望ましい。該シアヌレート誘導体を回収後、任意の溶媒、好ましくは下記に記載のアルコール系溶剤に再溶解してレジスト上層膜組成物として使用することが出来る。 The solution containing the cyanurate derivative thus obtained can be used as it is for the preparation of the resist upper layer film-forming composition. In addition, the cyanurate derivative may be precipitated and isolated in a poor solvent such as methanol, ethanol, ethyl acetate, hexane, toluene, acetonitrile, water, and recovered for use. The drying conditions after isolating the cyanurate derivative are preferably 6 to 48 hours at 40 to 100 ° C. in an oven or the like. After the cyanurate derivative is recovered, it can be redissolved in an arbitrary solvent, preferably the alcohol solvent described below, and used as a resist upper layer film composition.
 本発明のレジスト上層膜形成組成物は、上記シアヌレート誘導体に、通常レジストに使用される溶媒に代えて、レジスト上に当該組成物を塗布、膜形成した際のインターミキシング(層混合)を防ぐため、下記のようなアルコール系溶剤を好ましく用いる。
 例えば飽和アルキルアルコールとしては、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール、例えば1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、tert-アミルアルコール、ネオペンチルアルコール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-ジエチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール、1-ブトキシ-2-プロパノール及びシクロヘキサノールが挙げられる。芳香族アルコールとしては、炭素数6乃至20個の芳香族アルコール例えば、1-フェニルプロパノール、2-フェニルプロパノール、3-フェニルプロパノール、2-フェノキシエタノール、フェネチルアルコール、スチラリルアルコールが挙げられる。
 好ましいアルコール系溶剤は、1-ヘプタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、4-メチル-2-ペンタノール又はシクロペンタノールである。
これらアルコール系溶剤を単独で、又は混合物として用いることができる。
In order to prevent intermixing (layer mixing) when the resist upper layer film-forming composition of the present invention is applied to the above cyanurate derivative in place of a solvent usually used for resists and the film is formed on the resist. The following alcohol solvents are preferably used.
For example, the saturated alkyl alcohol may be a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, such as 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1- Pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, tert-amyl alcohol, neopentyl alcohol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl- 2-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3 -Dimethyl-1-butanol, 3,3-dimethyl-2-butane 2-diethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl -2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol, 1-butoxy-2-propanol and And cyclohexanol. Examples of the aromatic alcohol include aromatic alcohols having 6 to 20 carbon atoms such as 1-phenylpropanol, 2-phenylpropanol, 3-phenylpropanol, 2-phenoxyethanol, phenethyl alcohol, and styryl alcohol.
Preferred alcohol solvents are 1-heptanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 4-methyl-2-pentanol or cyclopentanol.
These alcohol solvents can be used alone or as a mixture.
 また、例えば本発明に用いられるシアヌレート誘導体の合成の都合上、上記アルコール系溶剤と共に以下の溶剤が混合していてもよい。その溶剤は、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2ーヒドロキシー2ーメチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル、3ーエトキシプロピオン酸エチル、3ーエトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。これらの有機溶剤は単独で、または2種以上の組合せで使用される。アルコール系溶剤に対して0.01乃至30.00質量%の割合で上記その他の溶剤を含有することができる。 Further, for example, for the convenience of synthesis of the cyanurate derivative used in the present invention, the following solvents may be mixed together with the alcohol solvent. The solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether Acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxypropionic acid Methyl, 3-methoxy Ethyl propionate, 3 over ethyl ethoxypropionate, 3 over ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, can be used butyl lactate and the like. These organic solvents are used alone or in combination of two or more. The above-mentioned other solvents can be contained at a ratio of 0.01 to 30.00% by mass with respect to the alcohol solvent.
 本発明のレジスト上層膜形成組成物は、リソグラフィー工程で下層に存在するレジストとの酸性度を一致させる為に、更に酸化合物を含むことができる。酸化合物はスルホン酸化合物又はスルホン酸エステル化合物を用いることができる。例えば、ビス(4-ヒドロキシフェニル)スルホン、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸などの酸性化合物、及び/又は2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシラート、2-ニトロベンジルトシラート等の熱酸発生剤を配合する事が出来る。配合量は全固形分100質量%当たり、0.02乃至10質量%、好ましくは0.04乃至5質量%である。 The resist upper layer film forming composition of the present invention may further contain an acid compound in order to match the acidity with the resist present in the lower layer in the lithography process. As the acid compound, a sulfonic acid compound or a sulfonic acid ester compound can be used. For example, bis (4-hydroxyphenyl) sulfone, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid and other acidic compounds, and / or Alternatively, a thermal acid generator such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate can be blended. The blending amount is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
 本発明のレジスト上層膜形成組成物は、リソグラフィー工程で下層に存在するレジストとの酸性度を一致させる為に、露光光(例えば、ArFエキシマレーザー照射、EUV照射、電子線照射等)により酸を発生する酸発生剤を添加する事が出来る。好ましい酸発生剤としては、例えば、ビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート等のオニウム塩系酸発生剤類、フェニル-ビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系酸発生剤類、ベンゾイントシレート、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート等のスルホン酸系酸発生剤類等が挙げられる。上記酸発生剤の添加量は全固形分100質量%当たり0.02乃至10質量%、好ましくは0.04乃至5質量%である。 In order to make the acidity of the resist upper layer film-forming composition of the present invention coincide with the acidity of the resist present in the lower layer in the lithography process, an acid is irradiated by exposure light (for example, ArF excimer laser irradiation, EUV irradiation, electron beam irradiation, etc.). A generated acid generator can be added. Preferred acid generators include, for example, onium salt acid generators such as bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s-triazine. And halogen-containing compound acid generators such as benzoin tosylate and sulfonic acid acid generators such as N-hydroxysuccinimide trifluoromethanesulfonate. The amount of the acid generator added is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
 本発明のレジスト上層膜形成組成物は、塩基性化合物を含むことができる。塩基性化合物を添加することにより、レジストの露光時の感度調節を行うことができる。即ち、アミン等の塩基性化合物が露光時に光酸発生剤より発生された酸と反応し、レジスト下層膜の感度を低下させることで露光現像後のレジストの上部形状の制御(露光、現像後のレジスト形状は矩形が好ましい)が可能になる。
塩基性化合物としては、アミンを例示することができる。例えば式(13-1)で示すアミノベンゼン化合物がある。
Figure JPOXMLDOC01-appb-C000010
式(13-1)中、r乃至rはそれぞれ独立に、水素原子、炭素数1乃至10のアルキル基、又はアミノ基である。
The resist upper layer film-forming composition of the present invention can contain a basic compound. By adding a basic compound, the sensitivity can be adjusted during exposure of the resist. That is, a basic compound such as amine reacts with an acid generated from a photoacid generator during exposure to reduce the sensitivity of the resist underlayer film, thereby controlling the upper shape of the resist after exposure and development (after exposure and development). The resist shape is preferably rectangular.
Examples of the basic compound include amines. For example, there is an aminobenzene compound represented by the formula (13-1).
Figure JPOXMLDOC01-appb-C000010
In formula (13-1), r 1 to r 5 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an amino group.
 上記アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
中でも炭素数1乃至5の直鎖アルキル基、分岐状アルキル基が好ましく、例えばメチル基、エチル基、イソプロピル基等が好ましく挙げられる。
Examples of the alkyl group include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, -Methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1 -Dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2 -Methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group Pyr group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl- n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2,3-dimethyl-n-butyl group, 3 , 3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl group, 1,2,2-trimethyl-n -Propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl -Cyclopentyl group, 1-ethyl-cyclobutyl group, 2- Ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2, 4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1-i-propyl-cyclopropyl group, 2-i- Propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl- Cyclopropyl, 2-ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-cyclopropyl and 2-ethyl-3-methyl-cyclo A propyl group etc. are mentioned.
Of these, a linear alkyl group having 1 to 5 carbon atoms and a branched alkyl group are preferable, and examples thereof include a methyl group, an ethyl group, and an isopropyl group.
 上記化合物としては例えば以下の式(13-2)乃至式(13-47)に例示される。
Figure JPOXMLDOC01-appb-C000011
Examples of the compound include the following formulas (13-2) to (13-47).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
また、トリエタノールアミン、トリブタノールアミン、トリメチルアミン、トリエチルアミン、トリノルマルプロピルアミン、トリイソプロピルアミン、トリノルマルブチルアミン、トリ-tert-ブチルアミン、トリノルマルオクチルアミン、トリイソプロパノールアミン、フェニルジエタノールアミン、ステアリルジエタノールアミン、及びジアザビシクロオクタン等の3級アミンや、ピリジン及び4-ジメチルアミノピリジン等の芳香族アミンを挙げることができる。更に、ベンジルアミン及びノルマルブチルアミン等の1級アミンや、ジエチルアミン及びジノルマルブチルアミン等の2級アミンも挙げられる。これらの化合物は単独または二種以上の組み合わせで使用することが出来る。 Also, triethanolamine, tributanolamine, trimethylamine, triethylamine, trinormalpropylamine, triisopropylamine, trinormalbutylamine, tri-tert-butylamine, trinormaloctylamine, triisopropanolamine, phenyldiethanolamine, stearyldiethanolamine, and dia There may be mentioned tertiary amines such as zabicyclooctane and aromatic amines such as pyridine and 4-dimethylaminopyridine. Further, primary amines such as benzylamine and normal butylamine, and secondary amines such as diethylamine and dinormalbutylamine are also included. These compounds can be used alone or in combination of two or more.
 本発明のレジスト上層膜形成組成物には、上記以外に必要に応じて更なるレオロジー調整剤、界面活性剤などを添加することができる。
レオロジー調整剤は、主にレジスト上層膜形成組成物の流動性を向上させるための目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、レジスト上層膜形成組成物の全組成物100質量%に対して通常30質量%未満の割合で配合される。
In addition to the above, the composition for forming a resist upper layer film of the present invention may contain additional rheology modifiers, surfactants and the like as necessary.
The rheology modifier is added mainly for the purpose of improving the fluidity of the resist upper layer film-forming composition. Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; Mention may be made of maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate, or stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can. These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to 100% by mass of the total composition of the resist upper layer film-forming composition.
 本発明のレジスト上層膜形成組成物には、ピンホールやストリエーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトツプEF301、EF303、EF352((株)トーケムプロダクツ製)、メガフアツクF171、F173(大日本インキ(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンSー382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)、フタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、本発明のレジスト上層膜形成組成物の全組成物100質量%当たり通常0.2質量%以下、好ましくは0.1質量%以下である。これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。 In the resist upper layer film forming composition of the present invention, there is no occurrence of pinholes or striations, and a surfactant can be blended in order to further improve the applicability to surface unevenness. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl aryl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as bitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc., EFTOP EF301, EF303, EF352 (Manufactured by Tochem Products Co., Ltd.), Megafuk F171, F173 (manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, Fluorosurfactants such as SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.), and Footent Series (Neos Co., Ltd.), organosiloxane polymer KP341 (Shinsei) Chemical Industries Co., Ltd.), and the like. The compounding amount of these surfactants is usually 0.2% by mass or less, preferably 0.1% by mass or less, per 100% by mass of the total composition of the resist upper layer film-forming composition of the present invention. These surfactants may be added alone or in combination of two or more.
 本発明ではEUVレジストを用いることができる。本発明の組成物から形成されるレジスト上層膜の下層に塗布されるEUVレジストとしてはネガ型、ポジ型いずれも使用できる。酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、EUVによって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、EUVによって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。      
例えばEUVレジストの材料系としては、メタクリル系、ポリヒドロキシスチレン(PHS)系などがある。これらのEUVレジストを用いた場合も照射源を電子線としてレジストを用いた場合と同様にレジストパターンを形成することができる。
In the present invention, an EUV resist can be used. As the EUV resist applied to the lower layer of the resist upper layer film formed from the composition of the present invention, either a negative type or a positive type can be used. Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist A chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist, There are non-chemically amplified resists composed of binders having groups that decompose by EUV to change the alkali dissolution rate, and non-chemically amplified resists composed of binders having sites that are cut by EUV to change the alkali dissolution rate.
For example, as the material system of EUV resist, there are methacrylic system, polyhydroxystyrene (PHS) system, and the like. When these EUV resists are used, a resist pattern can be formed in the same manner as when a resist is used with the irradiation source as an electron beam.
 本発明ではKrFレジストまたはArFレジストを用いることが出来る。本発明の組成物から形成されるレジスト上層膜の下層に塗布されるKrFレジストまたはArFレジストとしてはネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、ザ・ダウ・ケミカルカンパニー(旧ローム・アンド・ハース電子材料(株))製商品名APEX-E、住友化学工業(株)製商品名PAR710、及び信越化学工業(株)製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。 In the present invention, a KrF resist or an ArF resist can be used. As the KrF resist or ArF resist applied to the lower layer of the resist upper layer film formed from the composition of the present invention, either a negative photoresist or a positive photoresist can be used. A positive photoresist comprising a novolac resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemically amplified photoresist comprising a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, an acid A chemically amplified photoresist comprising a low-molecular compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate There is a chemically amplified photoresist composed of a low molecular weight compound that decomposes with an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator. For example, the Dow Chemical Company (formerly Rohm and Haas Electronic Materials Co., Ltd.) trade name APEX-E, Sumitomo Chemical Co., Ltd. trade name PAR710, and Shin-Etsu Chemical Co., Ltd. trade name SEPR430 Etc. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), Proc. SPIE, Vol. 3999, 365-374 (2000), and fluorine-containing polymer-based photoresists.
 本発明では電子線レジストを用いることが出来る。本発明の組成物から形成されるレジスト上層膜の下層に塗布される電子線レジストとしてはネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、電子線によって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、電子線によって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。これらの電子線レジストを用いた場合も照射源をKrF、ArF光としてフォトレジストを用いた場合と同様にレジストパターンを形成することができる。 In the present invention, an electron beam resist can be used. As the electron beam resist applied to the lower layer of the resist upper layer film formed from the composition of the present invention, either a negative photoresist or a positive photoresist can be used. Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist A chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist, There are non-chemically amplified resists composed of a binder having a group that changes the alkali dissolution rate by being decomposed by an electron beam, and non-chemically amplified resists composed of a binder having a portion that is cut by an electron beam to change the alkali dissolution rate. Even when these electron beam resists are used, a resist pattern can be formed in the same manner as when a photoresist is used as the irradiation source with KrF and ArF light.
 本発明のレジスト上層膜形成組成物を使用して形成したレジスト上層膜を有するポジ型レジストの現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。 As a developer for a positive resist having a resist upper layer film formed using the resist upper layer film-forming composition of the present invention, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, and cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used. Furthermore, an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution. Of these, preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、EUVレジスト下層膜を用いるか又は用いずに、EUVレジスト膜を形成する工程、該レジスト膜上に本発明のEUVレジスト上層膜形成組成物を塗布し焼成してEUVレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はEUV(波長13.5nm)により行われる。 In the present invention, for example, a step of forming an EUV resist film on a substrate having a film to be processed for forming a transfer pattern, with or without using an EUV resist lower layer film, the EUV resist upper layer of the present invention on the resist film A step of applying and baking a film-forming composition to form an EUV resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, and developing after exposure to remove the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed by EUV (wavelength 13.5 nm).
 本発明におけるレジスト上層膜の形成は、レジスト膜形成などと同様にスピン塗布法にて行われるのが一般的である。例えば東京エレクトロン社製スピンコーターに、加工対象基板(例えばシリコン/二酸化シリコン被覆基板、ガラス基板、ITO基板等)にセットして、レジスト膜を該加工対象基板に形成し、本発明のレジスト上層膜形成組成物(ワニス)を加工対象基板にスピン回転数700rpm乃至3000rpmにて塗布後、ホットプレートにて50℃乃至150℃で30乃至300秒間焼成し、該レジスト上層膜が形成される。該レジスト上層膜の形成膜厚は3乃至100nm、又は5乃至100nm又は5乃至50nmである。 In the present invention, the resist upper layer film is generally formed by a spin coating method in the same manner as the resist film formation. For example, a resist coat is formed on a substrate to be processed (for example, a silicon / silicon dioxide coated substrate, a glass substrate, an ITO substrate, etc.) on a spin coater manufactured by Tokyo Electron, and the resist upper layer film of the present invention is formed. The forming composition (varnish) is applied to the substrate to be processed at a spin speed of 700 rpm to 3000 rpm and then baked on a hot plate at 50 ° C. to 150 ° C. for 30 to 300 seconds to form the resist upper layer film. The film thickness of the resist upper layer film is 3 to 100 nm, 5 to 100 nm, or 5 to 50 nm.
 本発明の組成物から形成されるレジスト上層膜のフォトレジスト用現像液に対する溶解速度としては、毎秒1nm以上であり、好ましくは毎秒3nm以上であり、より好ましくは毎秒10nm以上である。溶解速度がこれより小さい場合は、レジスト上層膜の除去に必要な時間が長くなり、生産性の低下をもたらすことになる。その後適切な露光光にてパターン形成後、レジスト現像液を用いて現像することで、レジストおよび該レジスト上層膜の不要部分を除去し、レジストパターンが形成される。 The dissolution rate of the resist upper layer film formed from the composition of the present invention in the photoresist developer is 1 nm or more per second, preferably 3 nm or more per second, and more preferably 10 nm or more per second. When the dissolution rate is smaller than this, the time required for removing the resist upper layer film becomes longer, resulting in a decrease in productivity. Thereafter, after pattern formation with appropriate exposure light, development is performed using a resist developer, thereby removing the resist and unnecessary portions of the resist upper layer film to form a resist pattern.
 本発明のEUVレジスト上層膜形成組成物を適用する半導体装置は、基板上に、パターンを転写する加工対象膜と、レジスト膜と、該組成物から形成されるレジスト上層膜が順に形成された構成を有する。このレジスト上層膜は、下地基板やEUVによって及ぼされる悪影響を低減することにより、ストレート形状の良好なレジストパターンを形成し、充分なEUV照射量に対するマージンを得ることができる。また本発明にかかるレジスト上層膜は、下層に形成されるレジスト膜と同等もしくはそれ以上の大きなウエットエッチング速度を有し、露光後のレジスト膜の不要な部分とともに、アルカリ現像液などで容易に除去可能である。
また半導体装置の加工対象基板は、ドライエッチング、ウエットエッチングいずれの工程によっても加工可能であり、前記レジスト上層膜を用いることで良好に形成されるレジストパターンをマスクとし、ドライエッチングやウエットエッチングにて加工対象基板に良好な形状を転写することが可能である。
The semiconductor device to which the composition for forming an EUV resist upper layer film of the present invention is applied has a structure in which a film to be processed to transfer a pattern, a resist film, and a resist upper layer film formed from the composition are sequentially formed on a substrate. Have This resist upper layer film can form a resist pattern having a good straight shape by reducing adverse effects exerted by the base substrate and EUV, and can provide a sufficient margin for the EUV irradiation amount. The resist upper layer film according to the present invention has a wet etching rate equal to or greater than that of the resist film formed in the lower layer, and can be easily removed with an alkali developer together with unnecessary portions of the resist film after exposure. Is possible.
In addition, the substrate to be processed of the semiconductor device can be processed by either dry etching or wet etching. Using the resist upper layer film as a mask, a resist pattern that is well formed can be used as a mask, and dry etching or wet etching can be used. It is possible to transfer a good shape to the substrate to be processed.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、KrFレジスト下層膜を用いるか又は用いずに、KrFレジスト膜を形成する工程、該レジスト膜上に本発明にかかるKrFレジスト上層膜形成組成物を塗布し焼成してKrFレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はKrFにより行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, a step of forming a KrF resist film with or without a KrF resist underlayer film on a substrate having a processing target film for forming a transfer pattern, and the KrF resist according to the present invention on the resist film A step of applying and baking an upper layer film-forming composition to form a KrF resist upper layer film, a step of exposing a semiconductor substrate covered with the resist upper layer film and the resist film, and developing after exposure to develop the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed with KrF. The resist upper layer film is formed in the same manner as in the EUV exposure.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、ArFレジスト下層膜を用いるか又は用いずに、ArFレジスト膜を形成する工程、該レジスト膜上に本発明にかかるArFレジスト上層膜形成組成物を塗布し焼成してArFレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はArFにより行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, an ArF resist film is formed on a substrate having a film to be processed on which a transfer pattern is to be formed, with or without an ArF resist underlayer film, and the ArF resist according to the present invention is formed on the resist film. A step of applying and baking an upper layer film forming composition to form an ArF resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, and developing after exposure to develop the resist upper layer film and the resist film A semiconductor device can be manufactured. Exposure is performed with ArF. The resist upper layer film is formed in the same manner as in the EUV exposure.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、電子線レジスト下層膜を用いるか又は用いずに、電子線レジスト膜を形成する工程、該レジスト膜上に本発明にかかる電子線レジスト上層膜形成組成物を塗布し焼成して電子線レジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光は電子線により行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, an electron beam resist film is formed on a substrate having a processing target film for forming a transfer pattern, with or without an electron beam resist underlayer film, and the present invention is applied to the resist film. A step of applying and baking an electron beam resist upper layer film forming composition to form an electron beam resist upper layer film, a step of exposing the resist upper layer film and a semiconductor substrate coated with the resist film, and developing after exposure to the resist upper layer film And a step of removing the resist film, a semiconductor device can be manufactured. Exposure is performed with an electron beam. The resist upper layer film is formed in the same manner as in the EUV exposure.
 以下、本発明について合成例及び実施例を挙げて詳述するが、本発明は下記記載に何ら限定されるものではない。
本明細書の下記合成例に示す重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー株式会社製GPC装置を用い、測定条件等は次のとおりである。また、本明細書の下記合成例に示す分散度は、測定された重量平均分子量、及び数平均分子量から算出される。
GPCカラム:Shodex〔登録商標〕Asahipak〔登録商標〕(昭和電工株式会社製)
カラム温度: 40℃
溶媒:N,N-ジメチルホルムアミド(DMF)
流量:0.6ml/分
標準試料: 標準ポリスチレン試料(東ソー株式会社製)
ディテクター:RIディテクター(東ソー株式会社製、RI-8020)
EXAMPLES Hereinafter, although a synthesis example and an Example are given and explained in full detail about this invention, this invention is not limited to the following description at all.
The weight average molecular weight shown in the following synthesis examples of this specification is a measurement result by gel permeation chromatography (hereinafter abbreviated as GPC). The measurement conditions etc. are as follows using the GPC apparatus by Tosoh Corporation for the measurement. Further, the dispersity shown in the following synthesis examples of the present specification is calculated from the measured weight average molecular weight and number average molecular weight.
GPC column: Shodex (registered trademark) Asahipak (registered trademark) (manufactured by Showa Denko KK)
Column temperature: 40 ° C
Solvent: N, N-dimethylformamide (DMF)
Flow rate: 0.6 ml / min Standard sample: Standard polystyrene sample (manufactured by Tosoh Corporation)
Detector: RI detector (manufactured by Tosoh Corporation, RI-8020)
<合成例1>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、1、4-ジヒドロキシ-2-ナフトエ酸(式2-1)6.1g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.9gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1673、分散度は1.69であった。
<合成例2>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、3、5-ジヒドロキシ-2-ナフトエ酸(式2-2)6.1g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.9gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1453、分散度は1.41であった。
<合成例3>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、3、7-ジヒドロキシ-2-ナフトエ酸(式2-3)6.1g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.9gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1373、分散度は1.25であった。
<合成例4>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、6-ヒドロキシ-1-ナフトエ酸(式2-4)5.6g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.1gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1073、分散度は1.41であった。
<Synthesis Example 1>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 1,4-dihydroxy-2- 6.1 g of naphthoic acid (Formula 2-1) and 0.17 g of benzyltriethylammonium chloride were added to 13.9 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1673 in terms of standard polystyrene and a dispersity of 1.69.
<Synthesis Example 2>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 3,5-dihydroxy-2- 6.1 g of naphthoic acid (Formula 2-2) and 0.17 g of benzyltriethylammonium chloride were added to 13.9 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1453 and a dispersity of 1.41 in terms of standard polystyrene.
<Synthesis Example 3>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g 3,7-dihydroxy-2- Naphthoic acid (formula 2-3) 6.1 g and benzyltriethylammonium chloride 0.17 g were added to cyclohexanol 13.9 g and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1373 in terms of standard polystyrene and a dispersity of 1.25.
<Synthesis Example 4>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 6-hydroxy-1-naphthoic acid 5.6 g of (Formula 2-4) and 0.17 g of benzyltriethylammonium chloride were added to 13.1 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. When GPC analysis was performed, the obtained cyanurate derivative had a weight average molecular weight of 1073 and a dispersity of 1.41 in terms of standard polystyrene.
<合成例5>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、1-ヒドロキシ-2-ナフトエ酸(式2-5)5.6g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.1gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1546、分散度は1.90であった。
<合成例6>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、2-ヒドロキシ-1-ナフトエ酸(式2-6)5.6g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.1gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1559、分散度は1.75であった。
<合成例7>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、6-ヒドロキシ-2-ナフトエ酸(式2-7)5.6g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール13.1gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1166、分散度は1.40であった。
<合成例8>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)2.0g、3、7-ジヒドロキシ-2-ナフトエ酸(式2-8)3.6g、3,5-ジ-tert-ブチルサリチル酸水和物(式2-9)1.1g及びベンジルトリエチルアンモニウムクロライド0.113gを、シクロヘキサノール27.1gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1225、分散度は1.11であった。
<Synthesis Example 5>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 1-hydroxy-2-naphthoic acid 5.6 g of (Formula 2-5) and 0.17 g of benzyltriethylammonium chloride were added to 13.1 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1546 in terms of standard polystyrene and a dispersity of 1.90.
<Synthesis Example 6>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 2-hydroxy-1-naphthoic acid 5.6 g of (Formula 2-6) and 0.17 g of benzyltriethylammonium chloride were added to 13.1 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1559 in terms of standard polystyrene and a dispersity of 1.75.
<Synthesis Example 7>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 6-hydroxy-2-naphthoic acid 5.6 g of (Formula 2-7) and 0.17 g of benzyltriethylammonium chloride were added to 13.1 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1166 in terms of standard polystyrene and a dispersity of 1.40.
<Synthesis Example 8>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (Product name: TEPIC (registered trademark) -SS, manufactured by Nissan Chemical Industries, Ltd.) 2.0 g, 3,7-dihydroxy-2- 3.6 g of naphthoic acid (Formula 2-8), 1.1 g of 3,5-di-tert-butylsalicylic acid hydrate (Formula 2-9) and 0.113 g of benzyltriethylammonium chloride were added to 27.1 g of cyclohexanol. Added and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1225 and a dispersity of 1.11.
<比較合成例1>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、安息香酸4.01g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール10.7gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量756、分散度は1.05であった。
<比較合成例2>
1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレート(製品名:TEPIC〔登録商標〕-SS、日産化学工業(株)製)3.0g、6-ブロモ-2-ナフトエ酸7.75g及びベンジルトリエチルアンモニウムクロライド0.17gを、シクロヘキサノール16.3gに加え溶解した。反応容器を窒素置換後、135℃で4時間反応させ、シアヌレート誘導体溶液を得た。当該シアヌレート誘導体溶液は、室温に冷却しても白濁等を生じることはなく、シクロヘキサノールに対する溶解性は良好である。GPC分析を行ったところ、得られたシアヌレート誘導体は標準ポリスチレン換算にて重量平均分子量1265、分散度は1.12であった。
<Comparative Synthesis Example 1>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, benzoic acid 4.01 g and benzyltriethyl 0.17 g of ammonium chloride was added to 10.7 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 756 and a dispersity of 1.05 in terms of standard polystyrene.
<Comparative Synthesis Example 2>
1,3,5-tris- (2,3-epoxypropyl) isocyanurate (product name: TEPIC [registered trademark] -SS, manufactured by Nissan Chemical Industries, Ltd.) 3.0 g, 6-bromo-2-naphthoic acid 7.75 g and 0.17 g of benzyltriethylammonium chloride were added to 16.3 g of cyclohexanol and dissolved. The reaction vessel was purged with nitrogen and reacted at 135 ° C. for 4 hours to obtain a cyanurate derivative solution. The cyanurate derivative solution does not cause white turbidity even when cooled to room temperature, and has good solubility in cyclohexanol. As a result of GPC analysis, the obtained cyanurate derivative had a weight average molecular weight of 1265 and a dispersity of 1.12.
(実施例1)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例2)
上記合成例2で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例3)
上記合成例3で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例4)
上記合成例4で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例5)
上記合成例5で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例6)
上記合成例6で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例7)
上記合成例7で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例8)
上記合成例8で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例9)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gに1-ヘプタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例10)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gにシクロペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例11)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gに2-メチル-1-ブタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例12)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gとビス(4-ヒドロキシフェニル)スルホン0.0032gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例13)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gと2、6-ジイソプロピルアニリン0.0032gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例14)
上記合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gに2-メチル-2-ブタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 1)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 2)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 2 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 3)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 3 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
Example 4
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 4 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 5)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 5 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 6)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 6 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 7)
To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 7, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 8)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 8 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
Example 9
20.4 g of 1-heptanol was added to 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 10)
20.4 g of cyclopentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 11)
20.4 g of 2-methyl-1-butanol was added to 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
Example 12
To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above and 0.0032 g of bis (4-hydroxyphenyl) sulfone, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 13)
To 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 and 0.0032 g of 2,6-diisopropylaniline, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 14)
20.4 g of 2-methyl-2-butanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Synthesis Example 1 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(比較例1)
ポリヒドロキシスチレン樹脂(市販品。重量平均分子量は8,000)1gを4-メチル-2-ペンタノール99gに溶解させ、EUVレジスト上層膜形成組成物溶液を得た。
(比較例2)
上記比較合成例1で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(比較例3)
上記比較合成例2で得られたシアヌレート誘導体0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Comparative Example 1)
1 g of polyhydroxystyrene resin (commercial product, weight average molecular weight: 8,000) was dissolved in 99 g of 4-methyl-2-pentanol to obtain an EUV resist upper layer film forming composition solution.
(Comparative Example 2)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Comparative Synthesis Example 1 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Comparative Example 3)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the cyanurate derivative obtained in Comparative Synthesis Example 2 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(レジストとのインターミキシング試験)
EUVレジスト溶液(メタクリル系レジスト)を、スピナーを用いて石英基板上に塗布した。ホットプレート上で、100℃で1分間加熱することによりレジスト膜を形成し、膜厚測定を行なった(膜厚A:レジスト膜厚)。
本発明の実施例1乃至実施例14、比較例1乃至比較例3で調製されたレジスト上層膜形成組成物溶液を、スピナーを用いてレジスト膜上に塗布し、ホットプレート上で、100℃で1分間加熱し、レジスト上層膜を形成し、膜厚測定を行なった(膜厚B:レジストとレジスト上層膜の膜厚の和)。
そのレジスト上層膜上に市販の現像液(東京応化社製、製品名:NMD-3)を液盛りして60秒放置し、3000rpmで回転させながら、30秒間純水でリンスを行った。リンス後、100℃で60秒間ベークし、膜厚測定を行なった(膜厚C)。
膜厚Aが膜厚Cに等しい場合、レジストとインターミキシングがないと言える。実施例1乃至実施例14又は比較例1と比較例2においては、レジストとのインターミキシングは観察されなかった。比較例3においては、当該材料が上記現像液により溶解しなかった。
〔表1〕
Figure JPOXMLDOC01-appb-I000013
(Intermixing test with resist)
An EUV resist solution (methacrylic resist) was applied onto a quartz substrate using a spinner. A resist film was formed by heating at 100 ° C. for 1 minute on a hot plate, and the film thickness was measured (film thickness A: resist film thickness).
The resist upper layer film forming composition solutions prepared in Examples 1 to 14 and Comparative Examples 1 to 3 of the present invention were applied onto the resist film using a spinner, and then on a hot plate at 100 ° C. Heating was performed for 1 minute to form a resist upper layer film, and the film thickness was measured (film thickness B: sum of film thickness of resist and resist upper layer film).
A commercially available developer (product name: NMD-3, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was placed on the resist upper layer film, allowed to stand for 60 seconds, and rinsed with pure water for 30 seconds while rotating at 3000 rpm. After rinsing, the film was baked at 100 ° C. for 60 seconds to measure the film thickness (film thickness C).
When the film thickness A is equal to the film thickness C, it can be said that there is no intermixing with the resist. In Examples 1 to 14 or Comparative Examples 1 and 2, no intermixing with the resist was observed. In Comparative Example 3, the material was not dissolved by the developer.
[Table 1]
Figure JPOXMLDOC01-appb-I000013
〔光学パラメーター試験〕
本発明の実施例1乃至実施例14で調製されたレジスト上層膜形成組成物溶液、及び比較例1乃至比較例3で示したレジスト上層膜形成組成物溶液を、それぞれスピナーを用いて石英基板上に塗布した。ホットプレート上で、100℃で1分間加熱し、レジスト上層膜(膜厚30nm)を形成した。そして、これら17種類のレジスト上層膜を、分光光度計を用い、波長190nm乃至260nmでの吸収率を測定した。
 13.5nmでの透過率は元素組成比と膜密度の関係からシミュレーションにより計算した。
 DUV光の遮光性に関しては、220nm乃至260nmの波長域において、吸収率の最大値が40%以上を良好、40%未満を不良とした。また、EUV光(13.5nm)の透過性は80%以上の透過率を良好として、80%未満を不良とした。
[Optical parameter test]
The resist upper layer film-forming composition solution prepared in Examples 1 to 14 of the present invention and the resist upper layer film-forming composition solution shown in Comparative Examples 1 to 3 were each applied to a quartz substrate using a spinner. It was applied to. On the hot plate, it heated at 100 degreeC for 1 minute, and formed the resist upper layer film | membrane (film thickness of 30 nm). And the absorptance in wavelength 190nm thru | or 260nm was measured for these 17 types of resist upper layer films | membranes using the spectrophotometer.
The transmittance at 13.5 nm was calculated by simulation from the relationship between the elemental composition ratio and the film density.
Regarding the light shielding property of DUV light, in the wavelength range of 220 nm to 260 nm, the maximum value of the absorptance was 40% or more as good and less than 40% as bad. In addition, regarding the transmittance of EUV light (13.5 nm), a transmittance of 80% or more was considered good and less than 80% was regarded as defective.
 各実施例のレジスト上層膜形成組成物から得られたレジスト上層膜は、比較例1と比較例2のレジスト上層膜形成組成物から得られたレジスト上層膜よりも、DUV光の遮光性が優れた結果となった。比較例3はDUV光の遮光性は良好であったが、上述のレジストインターミキシング試験において現像液に溶解しないため、所望の要求特性を満たさないことになる。
〔表2〕
Figure JPOXMLDOC01-appb-I000014
The resist upper layer film obtained from the resist upper layer film forming composition of each example is superior to the resist upper layer film obtained from the resist upper layer film forming composition of Comparative Example 1 and Comparative Example 2 in DUV light shielding properties. It became the result. In Comparative Example 3, the light shielding property of the DUV light was good, but it did not dissolve in the developer in the resist intermixing test described above, and thus the desired required characteristics were not satisfied.
[Table 2]
Figure JPOXMLDOC01-appb-I000014
 本発明はレジストとインターミキシングすることなく、例えばEUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能なEUVリソグラフィープロセスに用いるEUVレジスト上層膜や、その他の露光波長におけるリソグラフィープロセスのためのレジスト上層膜を形成するための組成物として利用できる。 The present invention provides an EUV lithography process that selectively transmits only EUV by blocking unwanted exposure light, such as UV and DUV, for example, without intermixing with a resist, and developing with a developer after exposure. It can be used as a composition for forming an EUV resist upper layer film to be used or a resist upper layer film for a lithography process at other exposure wavelengths.

Claims (13)

  1. (式1-1):
    Figure JPOXMLDOC01-appb-C000001
    ((式1-1)の置換基A乃至置換基Aは、各々少なくとも1個のヒドロキシル基を含む置換基であり、さらに少なくとも1個の置換基はナフタレン環又はアントラセン環であり、他の置換基が存在する場合はベンゼン環である。上記ナフタレン環、アントラセン環又はベンゼン環の水素原子は、各々独立にハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基で置換されていてもよい。)で表されるシアヌレート誘導体と、アルコール系溶剤を含むレジスト上層膜形成組成物。
    (Formula 1-1):
    Figure JPOXMLDOC01-appb-C000001
    (Substituents A 1 to A 3 in (Formula 1-1) are each a substituent containing at least one hydroxyl group, and at least one substituent is a naphthalene ring or an anthracene ring. A benzene ring, the hydrogen atoms of the naphthalene ring, anthracene ring or benzene ring are each independently substituted with a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms. And a resist upper layer film-forming composition comprising a cyanurate derivative represented by formula (II) and an alcohol solvent.
  2. 上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートから合成される、請求項1に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to claim 1, wherein the cyanurate derivative is synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate.
  3. 上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートと、ヒドロキシル基含有化合物Dとから合成されるシアヌレート誘導体である、請求項1に記載のレジスト上層膜形成組成物。
    ヒドロキシル基含有化合物Dはi)で表される化合物又はii)で表される化合物の組み合わせである。
    i) 置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物。
    ii)置換基として少なくとも1個のヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよいナフトエ酸又はアントラセンカルボン酸から選ばれる1種以上の化合物と、置換基として少なくとも1つのヒドロキシル基を含み、且つ置換基としてハロゲン原子又は炭素数1乃至4の直鎖又は分岐飽和アルキル基を含んでいてもよい1種以上の安息香酸との組み合わせ。
    2. The resist upper layer film formation according to claim 1, wherein the cyanurate derivative is a cyanurate derivative synthesized from 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a hydroxyl group-containing compound D. Composition.
    The hydroxyl group-containing compound D is a compound represented by i) or a combination of compounds represented by ii).
    i) 1 selected from naphthoic acid or anthracene carboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent. More than one compound.
    ii) 1 selected from naphthoic acid or anthracenecarboxylic acid which contains at least one hydroxyl group as a substituent and may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent. One or more compounds and at least one hydroxyl group as a substituent, and one or more benzoic acid which may contain a halogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms as a substituent, Combination.
  4. 上記シアヌレート誘導体が、1,3,5-トリス-(2,3-エポキシプロピル)イソシアヌレートと、下記(式1-2)で表される化合物、又は(式1-2)で表される化合物と(式1-3)で表される化合物の組み合わせ、
    Figure JPOXMLDOC01-appb-C000002
    ((式1-2)又は(式1-3)中、n1及びn4は各々独立して1乃至5の整数であり、n2及びn3は各々独立して0乃至8の整数であり、n5及びn6は各々独立して0乃至4の整数であり、(n1+n2+n3)は1乃至9の整数であり、(n4+n5+n6)は1乃至5の整数であり、且つ(n1+n4)は2乃至9の整数である。m1は1又は2を表す。Xはハロゲン原子を表す。)とから合成されるシアヌレート誘導体である、請求項1に記載のレジスト上層膜形成組成物。
    The cyanurate derivative is 1,3,5-tris- (2,3-epoxypropyl) isocyanurate and a compound represented by the following (formula 1-2) or a compound represented by (formula 1-2) And a combination of compounds represented by (Formula 1-3)
    Figure JPOXMLDOC01-appb-C000002
    (In (Formula 1-2) or (Formula 1-3), n1 and n4 are each independently an integer of 1 to 5, n2 and n3 are each independently an integer of 0 to 8, n6 is each independently an integer of 0 to 4, (n1 + n2 + n3) is an integer of 1 to 9, (n4 + n5 + n6) is an integer of 1 to 5, and (n1 + n4) is an integer of 2 to 9 2. The resist upper layer film-forming composition according to claim 1, wherein m1 represents 1 or 2. X represents a halogen atom.
  5. 上記アルコール系溶剤が、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール又は、炭素数6乃至20個の芳香族アルコールである請求項1乃至請求項4のいずれか1項に記載のレジスト上層膜形成組成物。 5. The alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms. The resist upper layer film forming composition of any one of these.
  6. 上記アルコール系溶剤が、1-ヘプタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、4-メチル-2-ペンタノール又はシクロペンタノールである請求項1乃至請求項5のいずれか1項に記載のレジスト上層膜形成組成物。 6. The alcohol solvent according to claim 1, wherein the alcohol solvent is 1-heptanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol. 2. The resist upper layer film-forming composition according to item 1.
  7. 更に酸化合物を含む請求項1乃至請求項6のいずれか1項に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to any one of claims 1 to 6, further comprising an acid compound.
  8. 上記酸化合物がスルホン酸化合物又はスルホン酸エステル化合物である請求項7に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to claim 7, wherein the acid compound is a sulfonic acid compound or a sulfonic acid ester compound.
  9. 上記酸化合物がオニウム塩系酸発生剤、ハロゲン含有化合物系酸発生剤又はスルホン酸系酸発生剤である請求項7に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to claim 7, wherein the acid compound is an onium salt acid generator, a halogen-containing compound acid generator, or a sulfonic acid generator.
  10. 更に塩基性化合物を含む請求項1乃至請求項9のいずれか1項に記載のレジスト上層膜形成組成物。 The composition for forming a resist upper layer film according to any one of claims 1 to 9, further comprising a basic compound.
  11. 上記組成物とともに使用されるレジストがEUV(波長13.5nm)用レジストである、請求項1乃至請求項10いずれか1項に記載のレジスト上層膜形成組成物。 The resist upper film | membrane formation composition of any one of Claims 1 thru | or 10 whose resist used with the said composition is a resist for EUV (wavelength 13.5nm).
  12. 基板上にレジスト膜を形成する工程、該レジスト膜上に請求項1乃至請求項11のいずれか1項に記載のレジスト上層膜形成組成物を塗布し焼成してレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含む半導体装置の製造方法。 A step of forming a resist film on the substrate, a step of applying and baking the resist upper layer film-forming composition according to any one of claims 1 to 11 on the resist film, and forming a resist upper layer film; A method for manufacturing a semiconductor device, comprising: exposing the resist upper layer film and a semiconductor substrate coated with the resist film; and developing the resist upper layer film and the resist film after exposure.
  13. 上記露光がEUV(波長13.5nm)により行われる請求項12に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 12, wherein the exposure is performed by EUV (wavelength: 13.5 nm).
PCT/JP2013/069278 2012-07-25 2013-07-16 Resist upper layer film forming composition for lithography and method for manufacturing semiconductor device using same WO2014017331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-165086 2012-07-25
JP2012165086A JP2015172606A (en) 2012-07-25 2012-07-25 Resist upper-layer film forming composition for lithography and semiconductor-device manufacturing process using the same

Publications (1)

Publication Number Publication Date
WO2014017331A1 true WO2014017331A1 (en) 2014-01-30

Family

ID=49997145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069278 WO2014017331A1 (en) 2012-07-25 2013-07-16 Resist upper layer film forming composition for lithography and method for manufacturing semiconductor device using same

Country Status (3)

Country Link
JP (1) JP2015172606A (en)
TW (1) TW201411288A (en)
WO (1) WO2014017331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041791A (en) * 2014-08-19 2016-03-31 信越化学工業株式会社 Ultraviolet absorber, composition for forming resist under layer film, and patterning process
CN111718685A (en) * 2020-07-07 2020-09-29 遂宁立讯精密工业有限公司 Cyanate ester adhesive with low curing temperature and high storage stability and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004348133A (en) * 2003-05-21 2004-12-09 Asml Netherlands Bv Method for coating substrate for euv lithography and substrate with photoresist layer
WO2005111724A1 (en) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. Antireflective film-forming composition containing vinyl ether compound
JP2008166416A (en) * 2006-12-27 2008-07-17 Az Electronic Materials Kk Composition for forming antireflection film, and pattern formation method using same
JP2008198788A (en) * 2007-02-13 2008-08-28 Toshiba Corp Method of forming resist pattern
WO2009038126A1 (en) * 2007-09-20 2009-03-26 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing branched polyhydroxystyrene
JP2010107996A (en) * 1996-03-07 2010-05-13 Az Electronic Materials Kk Light-absorbing antireflective layer with improved performance due to refractive index optimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107996A (en) * 1996-03-07 2010-05-13 Az Electronic Materials Kk Light-absorbing antireflective layer with improved performance due to refractive index optimization
JP2004348133A (en) * 2003-05-21 2004-12-09 Asml Netherlands Bv Method for coating substrate for euv lithography and substrate with photoresist layer
WO2005111724A1 (en) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. Antireflective film-forming composition containing vinyl ether compound
JP2008166416A (en) * 2006-12-27 2008-07-17 Az Electronic Materials Kk Composition for forming antireflection film, and pattern formation method using same
JP2008198788A (en) * 2007-02-13 2008-08-28 Toshiba Corp Method of forming resist pattern
WO2009038126A1 (en) * 2007-09-20 2009-03-26 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing branched polyhydroxystyrene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041791A (en) * 2014-08-19 2016-03-31 信越化学工業株式会社 Ultraviolet absorber, composition for forming resist under layer film, and patterning process
CN111718685A (en) * 2020-07-07 2020-09-29 遂宁立讯精密工业有限公司 Cyanate ester adhesive with low curing temperature and high storage stability and preparation method thereof
CN111718685B (en) * 2020-07-07 2022-07-29 遂宁立讯精密工业有限公司 Cyanate ester adhesive with low curing temperature and high storage stability and preparation method thereof

Also Published As

Publication number Publication date
JP2015172606A (en) 2015-10-01
TW201411288A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
TWI628514B (en) Resist overlayer film forming composition for lithography and method for producing semiconductor device by using the composition
TWI810152B (en) Composition for forming resist underlayer film having increased film density
TWI765872B (en) Indolocarbazole novolac resin-containing resist underlayer film forming composition
KR102312211B1 (en) Composition for forming upper-layer resist film, and method for manufacturing semiconductor device using said composition
TWI627222B (en) Resist overlayer film forming composition for lithography and production method for semiconductor device using the same
CN106233206B (en) Resist underlayer film forming composition for lithography containing polymer having blocked isocyanate structure
JP7303495B2 (en) Stepped substrate coating composition containing polyether resin having photocrosslinking group
JP2014174329A (en) Composition for forming resist overlay film for lithography and method for manufacturing semiconductor device using the composition
JP6119983B2 (en) Composition for forming resist upper layer film for lithography and method for manufacturing semiconductor device using the same
US9046768B2 (en) Resist overlayer film forming composition for lithography
WO2014017331A1 (en) Resist upper layer film forming composition for lithography and method for manufacturing semiconductor device using same
WO2021153698A1 (en) Composition for forming euv resist underlayer film
WO2022019248A1 (en) Composition for forming euv resist underlayer film
WO2023063237A1 (en) Underlayer film-forming composition
KR20240051144A (en) Resist underlayer film forming composition
WO2022039246A1 (en) Composition for forming euv resist underlayer film
CN117083569A (en) Composition for forming resist underlayer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP