WO2014013986A1 - Polysiloxane composition, electrical device, and optical device - Google Patents

Polysiloxane composition, electrical device, and optical device Download PDF

Info

Publication number
WO2014013986A1
WO2014013986A1 PCT/JP2013/069297 JP2013069297W WO2014013986A1 WO 2014013986 A1 WO2014013986 A1 WO 2014013986A1 JP 2013069297 W JP2013069297 W JP 2013069297W WO 2014013986 A1 WO2014013986 A1 WO 2014013986A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mol
polysiloxane
different
same
Prior art date
Application number
PCT/JP2013/069297
Other languages
French (fr)
Japanese (ja)
Inventor
藤原健典
谷垣勇剛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380037773.0A priority Critical patent/CN104487516B/en
Priority to JP2014525823A priority patent/JP6176248B2/en
Priority to KR20147034535A priority patent/KR20150032528A/en
Publication of WO2014013986A1 publication Critical patent/WO2014013986A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a polysiloxane composition useful for a pattern forming ink for an electric device and an optical device, a cured film formed from the composition, and an electronic device and an optical device.
  • a printable electronics technique for forming a coating liquid pattern by printing has attracted attention. Since the printing method can directly form a pattern film, there is an advantage that the use efficiency of the material is high. Further, compared with a photolithography method which is a general pattern forming method, there are fewer steps such as exposure and development, and management of a developing solution and a developing waste solution is unnecessary, leading to cost reduction. In addition, since no development waste liquid is generated, the burden on the environment is also suppressed. The fact that it is easy to produce a pattern-formed film on a plastic substrate is also an advantage of the printing method, and the printing method is useful for making electronic devices flexible.
  • the printing method for printable electronics requires higher definition, higher accuracy, higher surface smoothness, etc. than the conventional printing method.
  • gravure printing, inkjet printing, screen printing, offset printing, reverse offset printing method for example, see Patent Document 1
  • peeling offset printing method for example, see Patent Document 2
  • microcontact printing method for example, Patent Document 3 and Non-Patent Document 1
  • TFTs thin film transistors
  • planarization films for TFTs color filter overcoats
  • photo spacers protective films and insulating films for touch sensors
  • antireflection films antireflections
  • Examples include plates, optical filters, and interlayer insulating films of semiconductor elements.
  • a high-definition printing method capable of directly forming a pattern with a high definition and a smooth surface is desired.
  • an ink composition for forming an insulating film using a letterpress reverse printing method has been reported.
  • An ink composition using polysiloxane has been reported.
  • Patent Document 5 An ink composition using polysiloxane has been reported.
  • Ink compositions for printable electronics are lacking in transferability of printed patterns and adhesion to substrates as compared with conventional ink compositions, and need to be improved.
  • the objective of this invention is providing the polysiloxane composition excellent in the adhesiveness of a pattern cured film, and the transferability of a printing pattern.
  • a further object is to provide cured coatings and electronic or optical devices formed from polysiloxane compositions.
  • the present invention relates to (A1) a polysiloxane obtained by hydrolyzing and condensing a silane compound composition containing at least one silane compound selected from the general formulas (1) to (3), and (B) a solvent. It is a siloxane composition characterized by including.
  • R 0 2-n R 1 n Si (OR 9 ) 2 (1)
  • R 0 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof.
  • R 1 represents a polycyclic aromatic group or a substituted product thereof.
  • R 9 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
  • n is 1 or 2. When n is 2, the plurality of R 1 may be the same or different.
  • R 2 represents a polycyclic aromatic group or a substituted product thereof.
  • R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
  • R 3 represents a divalent polycyclic aromatic group or a substituted product thereof.
  • R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof, and may be the same or different.
  • R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • m and l are each independently an integer of 1 to 3.
  • (A2) by hydrolyzing and condensing a silane compound composition containing one or more silane compounds selected from the general formulas (1) to (3) and the silane compound represented by the general formula (7)
  • a siloxane composition containing the resulting polysiloxane and (B) a solvent
  • R 9 represents an organic group having 3 to 20 carbon atoms including at least one of a vinyl group, an epoxy group, and an oxetanyl group. Each may be the same or different.
  • R 16 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • a is an integer of 1 to 3.
  • (A3) one or more silane compounds selected from the above general formulas (1) to (3), a silane compound represented by the above general formula (7), and a silane compound represented by the general formula (8) It is a siloxane composition containing polysiloxane obtained by hydrolyzing and condensing the silane compound composition containing, and (B) a solvent.
  • R 10 represents an organic group having 3 to 20 carbon atoms including a phenyl group. Each may be the same or different.
  • R 17 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • b is an integer of 1 to 3.
  • an ink composition necessary for printing characteristics excellent in print pattern transferability and pattern cured film adhesion, a cured film formed from the ink composition, and Electronic or optical devices can be manufactured easily and at low cost.
  • the present invention provides (A1) a polysiloxane obtained by hydrolyzing and condensing a silane compound containing at least one silane compound selected from the general formulas (1) to (3), and (B) a solvent. It is a siloxane composition characterized by including.
  • the use for ink in the present invention refers to an application provided for ink for forming a film or a printing pattern by using a printing method. *
  • the (A1) polysiloxane used in the present invention has a polycyclic aromatic ring.
  • this siloxane composition containing polysiloxane is applied to a printing plate, the repellency of the composition is suppressed, the applicability to the printing plate is good, and further to the target substrate (substrate to be printed)
  • the printing pattern has a good transferability. This is because the presence of polycyclic aromatic groups with high ⁇ electron density in the resin enhances the interaction between hydrogen atoms and aromatic rings in the solvent, increasing the affinity between the solvent and polysiloxane. It is thought that it is to do.
  • the cured film formed from the composition for use in the present invention has high visible light transmittance without impairing chemical resistance. This is considered to be derived from the chemical resistance and bulkiness of the polycyclic aromatic group.
  • the polysiloxane (A1) is a silanol having a silanol group by hydrolyzing a silane compound containing at least one silane compound selected from the following general formulas (1) to (3) with an acid or a base catalyst. After producing the compound, it can be obtained by subjecting the silanol compound to a condensation reaction.
  • Two or more silane compounds selected from the general formulas (1) to (3) may be used, or a silane compound represented by any one of the general formulas (4) to (6) described later or the formula (7) ), A silane compound represented by the general formula (8) may be further used.
  • R 0 2-n R 1 n Si (OR 9 ) 2 (1)
  • R 0 is directly connected to a silicon atom and represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof.
  • R 1 is a monovalent group and represents a polycyclic aromatic group or a substituted product thereof.
  • R 9 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
  • n is 1 or 2. When n is 2, the plurality of R 1 may be the same or different.
  • R 0 is an alkyl group
  • the number of carbon atoms is preferably in the range of 1 to 20, and in the case of an alkenyl group, the number of carbon atoms is preferably in the range of 1 to 20, and the phenyl group or a substituent thereof has 1 to 20 carbon atoms.
  • the range of is preferable.
  • Preferred specific examples of R 0 include hydrogen, methyl group, ethyl group, propyl group, methoxy group, butyl group, ethoxy group, propyloxy group, butoxy group, and phenyl group.
  • the polycyclic aromatic group means a group in which two or more aromatic rings are condensed or linked.
  • Preferred examples of the polycyclic aromatic group include naphthalene, anthracene, phenanthrene, tetracene, benz (a) anthracene, benzo (c) phenanthrene, pentacene, pyrene, fluorene, fluorenone, indene, azulene, acenaphthene, acenaphthylene, carbazole, biphenyl. And monovalent groups having a single bond in terphenyl and the like.
  • substituted polycyclic aromatic groups include epoxy groups, amino groups, mercapto groups, carboxylic acid groups, acid anhydride groups, ureido groups, isocyanate groups, acrylic groups, methacrylic groups, and fluorine groups. The thing which was done is mentioned. From the viewpoint of heat resistance and transparency of the cured film, monovalent groups having a structure of naphthalene, phenanthrene, pyrene, fluorene, fluorenone, indene, acenaphthene, acenaphthylene, biphenyl, and terphenyl are preferable.
  • Preferred examples of the silane compound represented by the general formula (1) include di (1-naphthyl) dimethoxysilane, di (1-naphthyl) diethoxysilane, di (1-naphthyl) di-n-propoxysilane, di ( 1-naphthyl) dimethoxysilane, di (1-naphthyl) dimethoxysilane, di (2-naphthyl) dimethoxysilane, 1-naphthylmethyldimethoxysilane, 1-naphthylethyldimethoxysilane, 1-naphthylphenyldimethoxysilane, di (1- Anthracenyl) dimethoxysilane, di (9-anthracenyl) dimethoxysilane, di (9-phenanthrenyl) dimethoxysilane, di (9-fluorenyl) dimethoxysilane
  • R 2 represents a polycyclic aromatic group or a substituted product thereof.
  • R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different. The explanation of the polycyclic aromatic group and the substituted product thereof is the same as described above.
  • Preferred specific examples of the silane compound represented by the general formula (2) include 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltri-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthra.
  • R 3 represents a divalent polycyclic aromatic group or a substituted product thereof.
  • R 4 and R 5 are monovalent groups directly connected to a silicon atom, and each represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof, and may be the same or different.
  • R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • m and l are each independently an integer of 1 to 3. The explanation of the polycyclic aromatic group and the substituted product thereof is the same as described above.
  • (A1) polysiloxane is one of the following general formulas (4) to (6) together with one or more silane compounds represented by any one of the general formulas (1) to (3). It is preferable that it can be obtained by hydrolyzing and condensing one or more silane compounds represented. Two or more silane compounds represented by the general formulas (4) to (6) may be used.
  • R 6 Si (OR 13 ) 3 (4)
  • R 6 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof.
  • R 13 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • R 7 and R 8 are each a monovalent group directly bonded to a silicon atom, and each independently represents hydrogen, an alkyl group, an alkenyl group, a phenyl group, or a substituted product thereof.
  • R 14 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • R 15 represents a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different.
  • Preferred examples of the substituents in the general formulas (4) and (5) include epoxy groups, amino groups, mercapto groups, carboxylic acid groups, acid anhydride groups, ureido groups, isocyanate groups, acrylic groups, methacrylic groups, and fluorine groups. And the like substituted with.
  • Examples of the silane compound represented by the general formula (4) include methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyl.
  • Examples of the silane compound represented by the general formula (5) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, divinyldimethoxysilane, methylvinyldimethoxysilane, and methylvinyl.
  • Examples of the tetrafunctional silane compound represented by the general formula (6) include tetramethoxysilane and tetraethoxysilane.
  • (A1) 100 mol% of the total number of silicon atoms in the polysiloxane is 5 mol of silicon atoms derived from one or more silane compounds represented by any one of the general formulas (1) to (3). % Or more and 70 mol% or less is preferable.
  • the amount of silicon atoms means the sum of silicon atoms derived from the silane compounds of (1) to (3). In order to further improve the transferability of the printed pattern, it is preferably 10 mol% or more, more preferably 15 mol% or more, more preferably 20 mol% or more, and further preferably 25 mol% or more.
  • the content is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less.
  • the mole fraction in the polysiloxane solution state can be analyzed by 1 H-NMR, 13 C-NMR, and 29 Si-NMR, and the mole fraction of the cured film can be analyzed by solid 1 H-NMR, solid 13 Analysis can be performed by C-NMR and solid-state 29 Si-NMR.
  • the silane compounds represented by the general formulas (4) to (6) it is more preferable to have a vinyl group, an epoxy group or an oxetanyl group. These functional groups have ⁇ electrons or oxygen on the cyclic ether, and can improve the coating property of a resist or a semiconductor coating solution on the insulating film, and can also be used for forming a gate insulating film. In this case, an excellent TFT with small hysteresis can be obtained.
  • (A2) one or more silane compounds represented by any one of the general formulas (1) to (3) and a silane compound containing the silane compound represented by the general formula (7) are hydrolyzed. And a polysiloxane obtained by condensation.
  • silane compound containing one or more substituents selected from a vinyl group, an epoxy group, and an oxetanyl group used in the present invention a silane compound represented by the following general formula (7) is preferably used. *
  • R 9 represents an organic group having 2 to 20 carbon atoms including at least one of a vinyl group, an epoxy group, and an oxetanyl group. Each may be the same or different.
  • R 16 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • a is an integer of 1 to 3.
  • silane compound represented by the general formula (7) Specific examples of the silane compound represented by the general formula (7) are shown below. Vinyltrimethoxysilane, vinyltriethoxysilane, divinyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropyl Vinyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) Ethyltriethoxysilane, ⁇ -glycidoxypropy
  • those having an epoxy group are preferred in order to increase the crosslink density and improve chemical resistance and insulation properties, such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl.
  • the silicon content of the structural unit derived from the containing silane compound containing any one of a vinyl group, an epoxy group, and an oxetanyl group is based on the silicon atoms of all the structural units of the silane compound that is a copolymer component of polysiloxane.
  • the content is preferably 0.1 mol% to 40 mol%. If it is 0.1 mol% or more, a cured film having better adhesion to the substrate can be obtained, and 1 mol% or more is more preferable. On the other hand, if it is 40 mol% or less, good solubility of polysiloxane in the solvent can be obtained, and 35 mol% or less is more preferable.
  • the molar fraction of the polysiloxane solution and the molar fraction of the cured film can be analyzed by NMR of the various nuclei described above.
  • the polysiloxane used in the present invention more preferably further has a phenyl group. Thereby, the transferability of the printing pattern can be controlled more precisely.
  • a polysiloxane can be obtained by hydrolyzing and condensing a silane compound containing a phenyl group together with one or more silane compounds represented by any one of the general formulas (1) to (3).
  • silane compound containing a phenyl group used in the present invention a silane compound represented by the following general formula (8) is preferable. *
  • R 10 represents an organic group having 3 to 20 carbon atoms including a phenyl group. Each may be the same or different.
  • R 17 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • b is an integer of 1 to 3.
  • silane compound represented by the general formula (8) Specific examples of the silane compound represented by the general formula (8) are shown below. Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, 4-methylphenylmethoxysilane, 4-methylphenylethoxysilane, 4-methoxyphenylmethoxy Examples thereof include silane, 4-methoxyphenylethoxysilane, phenylethynyltrimethoxysilane, and phenylethynyltriethoxysilane. *
  • the content of the structural unit derived from the phenyl group-containing silane compound is preferably 5 mol% to 60 mol% with respect to all the structural units of the silane compound that is a copolymer component of polysiloxane. If it is 5 mol% or more, transferability is good and a high-resolution pattern film can be obtained, preferably 10 mol% or more, more preferably 15 mol% or more, and still more preferably 20 mol%. On the other hand, if it is 60 mol% or less, good storage stability in the polysiloxane solution can be obtained, preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less. Is more preferable.
  • the molar fraction of the polysiloxane solution can be analyzed by 1 H-NMR, 13 C-NMR, 29 Si-NMR.
  • the mole fraction of the cured film can be analyzed by solid 1 H-NMR, solid 13 C-NMR, and solid 29 Si-NMR.
  • More preferred polysiloxanes in the present invention are (A3) one or more silane compounds represented by any one of the general formulas (1) to (3), the silane compound represented by the general formula (7), and the general formula ( It is a polysiloxane obtained by hydrolyzing and condensing a silane compound containing at least the silane compound represented by 8).
  • the silicon atom of one or more silane compounds represented by any one of the general formulas (1) to (3) with respect to all the structural units of the silane compound that is a copolymer component of polysiloxane A preferred ratio of silicon atoms of one or more silane compounds having a functional group selected from a vinyl group, an epoxy group, and an oxetanyl group, and a silicon atom of a silane compound containing a phenyl group represented by the general formula (8) is: 5 to 70 mol% / 0.1 to 40 mol% / 5 to 60 mol%, more preferably 10 to 50 mol% / 1 to 20 mol% / 10 to 50 mol%, still more preferably 20 to 40 mol% % / 5-15 mol% / 10-30 mol% is preferable.
  • the content of (a) polysiloxane in the siloxane composition of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more based on the total solid content excluding the solvent. By containing (a) polysiloxane within this range, the transmittance and crack resistance of the coating film can be further improved.
  • the polysiloxane is represented by one or more silane compounds represented by any one of the general formulas (1) to (3), and if necessary, represented by any one of the general formulas (4) to (6)
  • the silane compound can be obtained by hydrolyzing the silane compound with an acid or base catalyst, preferably in a solvent, to form a silanol compound and then subjecting the silanol compound to a condensation reaction.
  • the polysiloxane (A2) (A3) is one or more silane compounds represented by any one of the above general formulas (1) to (3), and if necessary, the silane compounds (7) and / or (8) Is preferably obtained by hydrolyzing with an acid or base catalyst in a solvent to produce a silanol compound and then subjecting the silanol compound to a condensation reaction.
  • the hydrolysis reaction is directly linked to one or more silane compounds represented by any one of (1) to (3), and further to silicon atoms contained in the silane compound (7) and / or (8) added as necessary.
  • the generated alkoxy group produces a hydroxyl group by water as a by-product of alcohol.
  • the hydrolysis reaction is preferably carried out at room temperature to 150 ° C. for 1 to 180 minutes after an acid catalyst or base catalyst and water are added to the silane compound solution over 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably 40 to 115 ° C.
  • a general condensation reaction is a reaction in which a silane compound having a hydroxyl group (silanol compound) reacts with another silane compound having a hydroxyl group to form a siloxane bond while dehydrating.
  • a silane compound having an alkoxy group and a silane compound having a hydroxyl group may react to produce a siloxane bond while by-producing alcohol.
  • the polysiloxane obtained by condensation does not need to have completely lost alkoxy groups and hydroxyl groups.
  • the polysiloxane usually has an alkoxy group or a hydroxyl group.
  • the condensation reaction is preferably performed after the hydrolysis reaction by heating the reaction solution at 50 ° C. or more and below the boiling point of the solvent for 1 to 100 hours.
  • reheating or re-addition of the catalyst can be performed.
  • the silane compound represented by any one of (4) to (6) and (7) and (8) may be mixed.
  • Examples of the acid catalyst used in the hydrolysis reaction and the condensation reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins. .
  • acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins.
  • an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferred.
  • the base catalyst includes inorganic alkali such as sodium hydroxide and potassium hydroxide and organic base compounds such as triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, amino group
  • organic base compounds such as triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, amino group
  • An alkoxy base having amino acid, aminopropyltrimethoxysilane, and the like can be used. Since alkali metals cause malfunctions in electronic devices and the like, organic bases are preferred as the base catalyst.
  • the preferred content of these catalysts is preferably 0.1 parts by mass or more and preferably 5 parts by mass or less with respect to 100 parts by mass of the total silane compounds used in the hydrolysis reaction.
  • the total silane compound amount means an amount including all of the silane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the solvent used in the hydrolysis reaction and the condensation reaction is not particularly limited, but a compound having an alcoholic hydroxyl group is preferably used.
  • the compound having an alcoholic hydroxyl group include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy- 4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t- Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 3-methoxy-1- Pentanol, 3-methyl-3-methoxy-1-butanol
  • solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, etc.
  • Ethers ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, propylene carbonate, N-methylpyrrolidone, cyclopentanone, Rohekisanon and cycloheptanone and the like.
  • the amount of the solvent used in the hydrolysis reaction is preferably 80 parts by mass or more and preferably 1000 parts by mass or less with respect to 100 parts by mass of the total silane compounds.
  • water used for a hydrolysis reaction ion-exchange water is preferable.
  • the amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the silane compound.
  • the siloxane composition of the present invention contains (B) a solvent.
  • B) As a quantity of a solvent 50 mass parts or more and 10000 mass parts or less are preferable with respect to 100 mass parts of polysiloxane.
  • the solvent is not particularly limited as long as it can dissolve or satisfactorily disperse polysiloxane and volatilizes by heat treatment. Although it may be used alone or in combination as a solvent, it is a mixed solvent of a slow-drying solvent and a fast-drying solvent from the viewpoint of applicability to a printing plate and transferability to a target substrate. It is preferable.
  • the slow-drying solvent is the evaporation rate specified in ASTM D3539 (If you want to see the Japanese translation, see “Paint Flow and Film Formation”, Toshihiko Nakamichi, Gihodo Publishing, 1995, pages 107-109. ) Is a solvent of 0.8 or less, preferably 0.5 or less.
  • hydrocarbons such as dodecane and undecane
  • aromatic hydrocarbons such as xylene, xylene and mesitylene
  • n-butanol hexanol, 3-methyl-3-methoxybutanol , 3-methoxybutanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol mono-n-butyl ether , Propylene glycol mono-t-butyl ether, ethylene glycol mono-t-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether Ter, dipropylene glycol monopropyl ether
  • the quick-drying solvent is a solvent having an evaporation rate by ASTM D3539 of more than 0.8, preferably a solvent of 1.0 or more.
  • hydrocarbons such as n-hexane, n-octane, isooctane, cyclohexane
  • aromatic hydrocarbons such as toluene, xylene, mesitylene
  • methanol ethanol
  • n-propyl alcohol Alcohols such as isopropyl alcohol
  • ethers such as diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether
  • ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n- Examples include esters such as butyl and ketones such as (vi) ace
  • the dry solvent is preferably a mass ratio of 10/90 to 10/90. If the ratio of the slow-drying solvent is small, the applied ink is dried too much on the plate and tackiness is lost, and it is difficult to transfer to the target substrate. On the other hand, when the ratio of the quick-drying solvent is small, the fluidity of the ink applied to the plate is too high, and the pattern shape is crushed and tends to be defective.
  • wettability to the printing substrate is an important factor, and it is preferable to use one or more aprotic solvents, and from the viewpoint of storage stability, use one or more protic solvents. Is preferred. In light of both, it is preferable to use one or more aprotic solvent solvents and one or more protic solvents.
  • the protic solvent include the alcohols and amides described above, and preferably acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, and 5-hydroxy-2.
  • -Pentanone 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n- Butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether Ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol.
  • aprotic solvent examples include the above-mentioned hydrocarbons, aromatic hydrocarbons, ethers, esters, and ketones. Preferred are ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, diethylene glycol.
  • Methyl ethyl ether diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, dipropylene glycol monomethyl ether acetate, amyl acetate, etc. Is mentioned.
  • the ink composition of the present invention may further contain (C) a thermosetting agent having a thermally crosslinkable group represented by the following general formula (9). *
  • R 18 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of the temporal stability of the resin composition and the reactivity of the thermosetting agent, a methyl group or an ethyl group is preferable.
  • the ink composition of the present invention contains (C) a thermosetting agent, whereby high heat cycle resistance can be obtained, and a cured film having excellent crack resistance after repeated thermal load can be formed.
  • the (C) thermosetting agent in the present invention is not particularly limited as long as it has a heat-crosslinkable group represented by the general formula (9), but the following general point can be given in that the visible light transmittance can be further improved. What has a heat-crosslinkable group represented by Formula (10) is more preferable.
  • R 19 and R 20 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of the stability over time of the composition and the reactivity of the thermosetting agent, a methyl group or an ethyl group is preferred.
  • the (C) thermosetting agent preferably does not contain a phenolic hydroxyl group in order to further improve the visible light transmittance of the cured coating.
  • thermosetting agents (C) Specific examples of thermosetting agents are shown below.
  • NIKALAC registered trademark, the same applies hereinafter
  • MX-290, NIKACALAC” MX-280, “NIKACALAC” MX-270 having the thermally crosslinkable group represented by the general formula (10) (above, The trade name, manufactured by Sanwa Chemical Co., Ltd., is preferable because it can further improve the visible light transmittance of the cured coating.
  • the content of the (c) thermosetting agent is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more in the solid content in the composition. Moreover, 30 mass% or less is preferable, and 20 mass% or less is more preferable.
  • a photocuring agent may be contained in order to impart curing acceleration to the composition of the present invention.
  • stimulation can be provided by containing a photo-acid generator or a photobase generator.
  • Examples of the photoacid generator include onium salt compounds, halogen-containing compounds, diazoketone compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and sulfonimide compounds. Specific examples of these photoacid generators include compounds exemplified in JP2007-246877 and US Pat. No. 7,374,856B2, SI-100, SI-101, SI-105, SI-106, SI-109, PI.
  • the composition of the present invention may contain a crosslinking agent, a curing agent, and a curing aid other than the components (C) and (D) that accelerate the curing of the solid content of the composition or facilitate the curing. good.
  • a crosslinking agent such as silicone resin curing agents, metal alcoholates, metal chelate compounds, isocyanate compounds and polymers thereof, polyfunctional acrylic resins, thermal acid generators that generate strong acids by heat, and the like. Two or more of these may be contained. Of these, thermal acid generators are preferred. Examples of the thermal acid generator include “Sun-Aid” (registered trademark) SI-200, SI-210, SI-220, SI-300 (above, trade name, manufactured by Sanshin Chemical Co., Ltd.) and the like.
  • preferred metal alcoholates include magnesium diethoxide, aluminum triisopropoxide, zirconia tetra (n-butoxide), zirconia tetra (t-butoxide), hafnium tetraisopropoxide, titanium tetraisopropoxide.
  • propoxide examples include propoxide.
  • the metal chelate compound can be easily obtained by reacting a metal alkoxide compound with a chelating agent.
  • metal chelating agents that can be used include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and ⁇ -ketoacid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetylacetonate), etc.
  • Magnesium chelate compounds such as aluminum chelate compounds, ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkylacetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate), zirconia tetrakis (ethylacetoacetate), zirconia Zirconia chelate compounds such as tetrakis (acetylacetonate), Ntetorakisu (ethylacetoacetate), and titanium chelate compounds such as titanium tetrakis (acetylacetonate).
  • metal compounds may be used alone or as a mixture of two or more metal compounds.
  • the content of the metal compound is preferably 0.1% by mass to 30% by mass of the polysiloxane. If content is 0.1 mass% or less, hardening will fully advance and the cured film which has favorable chemical-resistance and insulation will be obtained. On the other hand, if it is 30 mass% or less, storage stability will become favorable as an ink composition.
  • These metal compounds act as a curing agent for polysiloxane, and can obtain the effect of improving durability by crosslinking of the cured film and improving TFT characteristics such as mobility and on / off ratio.
  • the ink composition of the present invention preferably contains a surface conditioner.
  • the surface conditioner refers to a surfactant that can control the surface tension of the solution by being added to the solution, and includes a fluorine-based surfactant, a silicone-based surfactant, an alkyl-based surfactant, and a polar group-modified agent. Silicone and the like can be mentioned, but from the viewpoint of greatly reducing the surface tension, a fluorine-based surfactant, a silicone-based surfactant, and a polar group-modified silicone are preferable.
  • fluorosurfactants examples include “Megafac” (registered trademark) F-444, F-472, F-477, F-552, F-553, F-554, F-555, F-443, F-470, F-470, F-475, F-482, F-482, F-487, F-89, R-30 (above DIC Corporation), “F Top ”(Registered trademark) EF301, 303, 352 (above made by Shin-Akita Kasei Co., Ltd.),“ Florard ”(registered trademark) FC-430, ibid.
  • FC-431 (above made by Sumitomo 3M Ltd.),“ Asahi ” "Guard” (registered trademark) AG710, “Surflon” (registered trademark) S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (and above) Asahi Glass Co., Ltd.), BM 1000, BM-1100 (all manufactured by Yusho Co.) include NBX-15, FTX-218 (or Co. NEOS) a.
  • silicone surfactants include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-330, BYK-331, BYK-333, BYK-337, BYK-341, BYK- 344, BYK-370, BYK375 (above Big Chemie Japan Co., Ltd.), FZ-2110, FZ-2166, FZ-2154, FZ-2120, L-720, L-7002, SH8700, L-7001, FZ-2123 SH8400, FZ-77, FZ-2164, FZ-2203, FZ-2208 (above Toray Dow Corning Co., Ltd.), KF-353, KF-615A, KF-640, KF-642, KF-643, KF -6020, X-22-6191, KF-6011, KF-6015, -22-2516, KF-410, X-22-821, KF-412, KF-413, KF-4701 (above Big
  • polar group-modified silicone a part of the saturated hydrocarbon group of polyalkylsiloxane having the following general formula (11) as a repeating unit is converted into a hydrocarbon group having a polar group. Silicones that are not modified with a polar group have problems such as easy phase separation because of their small interaction with polysiloxane or solvent.
  • the site to be converted into a functional group containing a polar group may be any of the main chain terminal, the main chain, and the side chain.
  • the modifying group equivalent is usually 500 to 10,000 g / mol, but is not limited thereto.
  • R 21 and R 22 each independently represents a saturated hydrocarbon group having 1 to 10 carbon atoms. From the viewpoint of surface tension lowering properties, it is preferable that 50 mol% or more of the total of R 21 and R 22 is a methyl group.
  • examples of the polar group include amino group, hydroxy group, mercapto group, carboxyl group, ester group, amide group, epoxy group, acrylic group, and methacrylic group. These polar groups may be directly bonded to the siloxane main chain, or may be bonded via a carbon chain such as an alkylene group or an arylene group. Moreover, you may have 2 or more types of polar groups in 1 molecule. Of these, amino group-modified silicones and mercapto group-modified silicones are preferably used because they are effective in improving coatability in relatively small amounts.
  • FZ-3760, BY16-849, BY16-892, FZ-3785, BY16-891, FZ-3789 Toray Dow Corning Co., Ltd.
  • KF-868, KF-860, X-22 3939A, KF-2001, KF-8010, X-22-161B, KF-8012, X-22-167B Shin-Etsu Chemical Co., Ltd.
  • the content of the surface conditioner in the ink composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and still more preferably 2% by mass from the viewpoint of forming a uniform coated surface without repellency. As mentioned above, More preferably, it is 3 mass% or more, More preferably, it is 4 mass% or more, More preferably, 8 mass% or more is good. Moreover, 30 mass% or less is preferable and 20 mass% or less is more preferable from a viewpoint of maintaining favorable transferability and not having a bad influence on the function of the formed coating film.
  • polysiloxane becomes a component of the cured film and is a nonvolatile component.
  • a non-volatile component is a component which remains without being vaporized after heat-treating the coating film of the composition at a temperature of 200 ° C. or higher for 1 hour.
  • the cured polysiloxane may remain as it is, or the thermosetting agent, photoacid generator, thermal acid generator, surface conditioner, etc. described above may remain. Furthermore, what was produced
  • the content of the non-volatile component in the ink composition of the present invention is preferably 1 to 90% by mass, more preferably 5 to 70% by mass, from the viewpoints of coatability and film formation. If the content is too low, the coating film becomes too thin and the film thickness unevenness increases. In addition, if the content is too high, leveling of the coating film is difficult to occur due to a decrease in fluidity, uneven coating occurs, and there is no uniformity of the coating film thickness, and a fine pattern cured coating film cannot be realized. Arise.
  • the cured coating of the present invention is coated with the composition of the present invention using any of gravure printing, inkjet printing, screen printing, offset printing, reverse offset printing method, release offset printing method, microcontact printing method, and the like.
  • a pattern film is printed on the printed matter, and this is heat-treated in the range of 100 to 400 ° C. in an oven or a hot plate, or about 10 to 20000 J / m 2 (measured exposure amount at a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA. ) On the entire surface and photocured. From the viewpoint of forming a fine pattern of the printed film, the reverse offset printing method, the peeling offset printing method, and the microcontact printing method are more preferable.
  • the cured film produced using the composition of the present invention preferably has a light transmittance of 90% or more per film thickness of 1 ⁇ m at a wavelength of 400 nm, more preferably 92% or more.
  • a light transmittance 90% or more per film thickness of 1 ⁇ m at a wavelength of 400 nm, more preferably 92% or more.
  • the transmittance per 1 ⁇ m of film thickness at the wavelength of 400 nm can be obtained by the following method.
  • the composition is spin-coated on a Tempax glass plate using a spin coater at a rotation speed that gives a desired film thickness, and prebaked at 100 ° C. for 2 minutes using a hot plate.
  • a cured film having a thickness of 1 ⁇ m is prepared by thermosetting at 220 ° C. in air for 1 hour using an oven.
  • the ultraviolet-visible absorption spectrum of the obtained cured film is measured using “MultiSpec” (registered trademark) -1500 manufactured by Shimadzu Corporation to determine the transmittance at a wavelength of 400 nm.
  • Patent Documents 1 to 3 As an example of printing, it can be performed according to the methods described in Patent Documents 1 to 3 or Non-Patent Document 1.
  • FIG. 1 is a schematic diagram of a reverse offset printing method which is an example of a printing method.
  • ink 4 is applied on a silicone blanket 2 wound around a blanket cylinder 1 using an ink coater 3.
  • the removal relief plate 5 is pressed against the silicone blanket 2 to remove the non-image area ink 4 ′′.
  • the remaining image portion ink 4 ′ is transferred to the substrate 6 to form a print pattern 7.
  • FIG. 2 is a schematic view of peeling offset printing as another example.
  • a printing plate precursor having at least the parent ink layer 9 and the ink release layer 10 in this order on the support 8
  • an ink release portion and an ink affinity portion were formed.
  • ink 4 is applied to the entire surface of the printing plate using a blade coater 11.
  • the silicone blanket 2 wound around the factor transfer cylinder 1 shown in FIG. 2 (c) is pressed against the printing plate to selectively transfer the ink (image portion ink 4 ') on the ink peelable portion.
  • the selective transfer of the ink on the ink peelable portion means that the non-image portion ink 4 ′′ is not substantially transferred and is substantially on the ink peelable portion. This means that only the ink (image portion ink 4 ') is transferred.
  • the ink (image portion ink 4') transferred onto the silicone blanket 2 is retransferred to the substrate 6 and the print pattern 7 is transferred.
  • FIG. 3 is a schematic view of a micro contact printing method which is still another example.
  • a relief plate 12 made of polydimethylsiloxane (PDMS) is pressed against the ink stamp base 13.
  • PDMS polydimethylsiloxane
  • FIGS. 3 (b) and 3 (c) the relief plate 12 on which the image area ink 4 ′ is placed on the relief portions of the relief plate is pressed against the substrate 6.
  • D The PDMS relief 12 is removed to form the print pattern 7.
  • the printed material used in the present invention is not particularly limited, but a heat-resistant material is preferable when heat treatment of the printed material is required for electronic or optical device applications.
  • a heat-resistant material is preferable when heat treatment of the printed material is required for electronic or optical device applications.
  • examples of such materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyethersulfone (PES), polyimide (PI), polyaramid, polycarbonate (PC), and cycloolefin polymer.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • PES polyethersulfone
  • PI polyimide
  • PC polycarbonate
  • cycloolefin polymer examples include heat-resistant plastic films or sheets, glass plates such as soda lime and quartz, and silicon wafers.
  • printing may be performed on the substrate using the composition of the present invention.
  • a gate insulating film is formed on a gate electrode in manufacturing a thin film transistor
  • an interlayer insulating film or a planarizing film is formed on a pixel TFT in manufacturing a liquid crystal display
  • an insulation is formed on an ITO pattern in manufacturing a touch sensor.
  • a film or a protective film may be formed.
  • the cured film of the present invention can be suitably used as a gate insulating film of a TFT.
  • the semiconductor of the TFT of the present invention may be any of polycrystalline silicon, amorphous silicon, organic semiconductor, and oxide semiconductor. Further, any configuration such as a top gate type or a bottom gate type may be used.
  • the cured coating of the present invention can be suitably used for electronic or optical devices.
  • the electronic device include display elements such as liquid crystal displays and organic EL displays, semiconductor elements, solar cells, color filters, touch sensors, and the like.
  • the optical device include an antireflection film, an antireflection plate, an optical filter, and a microlens array used for an image sensor.
  • Specific applications of the cured film of the present invention include, for example, a planarization film for TFT in a display element such as a liquid crystal display or an organic EL display, an interlayer insulating film in a semiconductor element, an overcoat of a color filter, a photo spacer, a touch sensor.
  • Protective films, insulating films, antireflection films, antireflection plates, and antireflection layers (outermost layers) of optical filters can also be used for the outermost layer of a microlens array or a solar cell.
  • the ratio was calculated. As a result, the structure derived from methyltrimethoxysilane was 40 mol%, the structure derived from 1-naphthyltrimethoxysilane was 30 mol, and the structure derived from phenyltrimethoxysilane was 30 mol%.
  • the measurement conditions for 29 SiNMR are shown below.
  • the sample (liquid) was injected into a “Teflon (registered trademark)” NMR sample tube having a diameter of 10 mm and used for measurement.
  • Device JNM GX-270, manufactured by JEOL Ltd.
  • Measurement method Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus), spectral width: 20000 Hz Pulse width: 12 ⁇ sec (45 ° pulse), pulse repetition time: 30.0 sec Reference substance: tetramethylsilane, measurement temperature: room temperature, sample rotation speed: 0.0 Hz.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (b) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured, the silicon atom derived from methyltrimethoxysilane was 60 mol%, the structure derived from 1-naphthyltrimethoxysilane was 30 mol%, 2- ( The silicon atom derived from 3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (c) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the silicon atom derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, 2- The silicon atom derived from (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
  • the ratio of the organosilane structure in the polysiloxane was measured, the structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 40 mol%, and 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane-derived silicon atom was 10 mol%, and 3-acryloxypropyltrimethoxysilane-derived silicon atom was 10 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (e) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the structure derived from methyltrimethoxysilane was 20 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 70 mol%, and 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane contained 10 mol% of silicon atoms.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (f) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 30 mol%, and phenyltrimethoxysilane.
  • the structure derived from 20 mol% and the structure derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (g) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 30 mol%, and phenyltrimethoxysilane.
  • the derived silicon atom was 20 mol%, and the structure derived from vinyltrimethoxysilane was 10 mol%.
  • the addition was carried out at a temperature of 40 ° C. over 30 minutes.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (i) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured, and 40 mol% of silicon atoms derived from methyltrimethoxysilane, 30 mol% of silicon atoms derived from 1-naphthyltrimethoxysilane, The silicon atom derived from methoxysilane was 20 mol%, and the silicon atom derived from 3-ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane was 10 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (j) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the silicon atom derived from methyltrimethoxysilane was 30 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, 3- The silicon atom derived from ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane was 20 mol%.
  • the silicon atom derived from methyltrimethoxysilane was 10 mol%
  • the silicon atom derived from 1-naphthyltrimethoxysilane was 80 mol%
  • 2- The silicon atom derived from (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
  • the ratio of the organosilane structure in the polysiloxane was measured, and the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the silicon atom was 50 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed in an aluminum cup, and the weight after heat drying at 250 ° C. for 30 minutes was weighed to calculate the solid content concentration.
  • a polysiloxane solution (m) having a solid content concentration of 50% was obtained.
  • Example 1 the ratio of the organosilane structure in the polysiloxane was measured, the structure derived from 1-naphthyltrimethoxysilane was 20 mol%, the silicon atom derived from phenyltrimethoxysilane was 70 mol%, 2- ( The silicon atom derived from 3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (n) having a solid content concentration of 50%.
  • the proportion of the organosilane structure in the polysiloxane was measured.
  • the structure was derived from 39 mol% of methyltrimethoxysilane, 40 mol% of silicon atoms derived from 1-naphthyltrimethoxysilane, and phenyltrimethoxysilane.
  • the derived structure was 1 mol%, and the silicon atom derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 20 mol%.
  • the resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice.
  • the polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (o) having a solid content concentration of 50%.
  • the ratio of the organosilane structure in the polysiloxane was measured.
  • the structure derived from methyltrimethoxysilane was 39 mol%, the structure derived from 1-naphthyltrimethoxysilane was 1 mol%, and derived from phenyltrimethoxysilane.
  • the silicon atom was 40 mol%, and the silicon atom derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 20 mol%.
  • Al (acac) aluminum trisacetylacetonate
  • IPAc isopropyl acetate
  • surfactant BYK-333 manufactured by Big Chemie Japan Co., Ltd.
  • the printed glass substrate was heat-treated at 250 ° C. for 1 hour to cure the printed ink composition film. Then, the pattern of the cured film was observed with an optical microscope and evaluated according to the following criteria. The evaluation results are shown in Table 3.
  • a desired line / space pattern is reproduced on the entire surface.
  • PDMS polydimethylsiloxane
  • the ink composition A was formed on the entire surface using a bar coater (# 6, manufactured by Matsuo Sangyo Co., Ltd.).
  • a cured coating is produced on the entire surface of the glass substrate by the above-described reverse offset printing, cross-cut into 100 squares of 1 mm ⁇ 1 mm, and then a tape peeling test (cross-cut method: JIS). K5400 (Japanese Industrial Standard)). About the evaluation of the square after peeling, it evaluated according to the following.
  • Peeling area is less than 5% 4B: Peeling area is 5% or more and less than 15% 3B: Peeling area is 15% or more and less than 35% 2B: Peeling area is 35% or more and less than 65% 1B: Peeling area 65% or more and less than 95% 0B: The peeling area is 95% or more and 100% or less.
  • Diacetone alcohol DAA 3-methoxybutanol: MB Propylene glycol monoethyl ether: PGEE Isopropyl alcohol: IPA Butyl acetate: BAc Isopropyl acetate: IPAc Dipropylene glycol dimethyl ether: DMM Aluminum trisacetylacetonate: Al (acac) Titanium trisacetylacetonate: Ti (acac) Zirconium trisacetylacetonate: Zr (acac) Aluminum triisopropoxide: AlIP Photoacid generator CGI-MDT (manufactured by Heraeus Co., Ltd.): CGI-MDT Thermal acid generator “SAN-AID” (registered trademark) SI-200 (manufactured by Sanshin Chemical Co., Ltd.): SI-200 Surfactant BYK-333 (manufactured by BYK Japan): BYK-
  • Examples 2 to 39, Comparative Examples 1 and 2 >> The ink compositions of Examples 2 to 39 and Comparative Examples 1 and 2 were as shown in Tables 1 and 2, and the other procedures were performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 40 >> ⁇ Preparation of CNT composite dispersion>
  • a conjugated polymer poly-3-hexylthiophene (number average molecular weight (Mn): 13000, hereinafter referred to as P3HT) (0.10 g) is added to a flask containing 5 ml of chloroform, and ultrasonically stirred in an ultrasonic cleaner.
  • P3HT conjugated polymer poly-3-hexylthiophene
  • a chloroform solution of P3HT was obtained.
  • this solution was taken in a dropper, and 0.5 ml was dropped into a mixed solution of 20 ml of methanol and 10 ml of 0.1N hydrochloric acid to perform reprecipitation.
  • the solid P3HT was collected by filtration with a 0.1 ⁇ m pore membrane filter (PTFE) made of tetrafluoroethylene, rinsed thoroughly with methanol, and then the solvent was removed by vacuum drying. Further, dissolution and reprecipitation were performed again to obtain 90 mg of reprecipitation P3HT.
  • PTFE 0.1 ⁇ m pore membrane filter
  • o-DCB o-dichlorobenzene
  • a TFT having the form shown in FIG. 4 was produced.
  • a gate electrode 15 was formed on a glass substrate 14 (thickness 0.7 mm) by vacuum evaporation of chromium with a thickness of 5 nm and then gold with a thickness of 50 nm through a metal mask by a resistance heating method.
  • a printed matter was formed by the reverse offset printing method using the ink composition prepared in Example 1, and this was heat-treated at 220 ° C. for 1 hour in a nitrogen stream to form a gate insulating film having a thickness of 500 nm. As a result, a gate insulating layer 16 was formed.
  • the substrate on which the gate insulating layer was formed gold was vacuum-deposited so as to have a thickness of 50 nm.
  • a positive resist solution was dropped and applied using a spinner, and then dried on a hot plate at 90 ° C. to form a resist film.
  • the obtained resist film was irradiated with ultraviolet rays through a photomask using an exposure machine. Subsequently, the substrate was immersed in an alkaline aqueous solution, the ultraviolet irradiation part was removed, and a resist film patterned into an electrode shape was obtained.
  • the obtained substrate was immersed in a gold etching solution (manufactured by Aldrich, Gold etchant, standard), and the gold in the portion where the resist film was removed was dissolved and removed.
  • the obtained substrate was immersed in acetone, the resist was removed, washed with pure water, and dried on a hot plate at 100 ° C. for 30 minutes.
  • a gold source electrode 18 and a drain electrode 19 having an electrode width (channel width) of 0.2 mm, an electrode interval (channel length) of 20 ⁇ m, and a thickness of 50 nm were obtained.
  • the prepared CNT composite dispersion C is applied to the substrate on which the electrodes are formed by an ink jet method, and is subjected to heat treatment at 150 ° C. for 30 minutes in a nitrogen stream on a hot plate to obtain a CNT composite dispersion film.
  • a TFT having the active layer 17 as a thin film was manufactured.
  • PIJL-1 manufactured by Cluster Technology Co., Ltd.
  • the TFT thus fabricated was measured for the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) was changed.
  • the measurement was performed in the atmosphere using a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.).
  • Examples 40 to 45 A TFT was prepared and evaluated in the same manner as in Example 40 except that the ink composition was changed to that shown in Table 4. The results are shown in Table 4.
  • Comparative Example 3 A TFT was produced in the same manner as in Example 26 using the ink composition Z1 prepared in Comparative Example 1 described in Table 2, but a pattern could not be formed.
  • Blanket cylinder 2 Ink peelable substrate (silicone rubber blanket) 3 Ink coater 4 Ink 4 'Image area ink 4 "Non-image area ink 5 Removal relief plate 6 Printed object 7 Print pattern 8 Support 9 Parent ink layer 10 Ink release layer 11 Blade coater 12 PDMS relief plate 13 Ink stamp stand 14 Substrate 15 Gate electrode 16 Gate insulating layer 17 Active layer 18 Source electrode 19 Drain electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Silicon Polymers (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing: a polysiloxane composition that is suitable for inks, offering an excellent transferability of adhesive print patterns of patterned cured coatings; a cured coating formed from said ink composition; and an electrical or optical device. A siloxane composition suitable for inks, the siloxane composition being characterized by comprising (A) a polysiloxane obtained by hydrolyzing and condensing silane compounds comprising at least one species of silane compound selected from general formulae (1) to (3), and (b) a solvent. R0 2-nR1 nSi(OR9)2 (1) (R0 represents a hydrogen, an alkyl group, an alkenyl group, a phenyl group, or substituted forms thereof. R1 represents a polycyclic aromatic group or a substituted form thereof. R9 represents a hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. n is 1 or 2. If n is 2, then the plurality of R1s may be the same or different.) R2Si(OR10)3 (2) (R2 represents a polycyclic aromatic group or a substituted form thereof. R10 represents a hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.) (R11O)mR4 3-mSi-R3-Si(OR12)lR5 3-l (3) (R3 represents a divalent polycyclic aromatic group or a substituted form thereof. R4 and R5 represent a hydrogen, an alkyl group, an alkenyl group, an aryl group, or substituted forms thereof, and may be the same or different. R11 and R12 represent a hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. m and l each independently are an integer 1 to 3.)

Description

ポリシロキサン組成物、電子デバイスおよび光学デバイスPolysiloxane composition, electronic device and optical device
 本発明は電気デバイスおよび光学デバイスのパターン形成用インキに有用なポリシロキサン組成物および該組成物から形成された硬化被膜、ならびに電子デバイスおよび光学デバイスに関する。 The present invention relates to a polysiloxane composition useful for a pattern forming ink for an electric device and an optical device, a cured film formed from the composition, and an electronic device and an optical device.
 近年、電子デバイスや光学デバイスをより低コストかつ簡便に製造する技術として、コーティング液のパターン形成を印刷により行うプリンタブルエレクトロニクス技術が注目されている。印刷法では直接パターン被膜を形成できるため、材料の使用効率が高い利点がある。また、一般的なパターン形成法であるフォトリソグラフィー法に比べて、露光、現像などの工程が少なく、かつ、現像液や現像廃液の管理などが不要であり、低コスト化につながる。また、現像廃液が発生しないため、環境への負荷も抑制される。プラスチック基板に対するパターン形成被膜の作製が容易である点も印刷法のメリットであり、電子デバイスのフレキシブル化にとって印刷法は有用な方法である。 In recent years, as a technique for manufacturing electronic devices and optical devices at a lower cost and more easily, a printable electronics technique for forming a coating liquid pattern by printing has attracted attention. Since the printing method can directly form a pattern film, there is an advantage that the use efficiency of the material is high. Further, compared with a photolithography method which is a general pattern forming method, there are fewer steps such as exposure and development, and management of a developing solution and a developing waste solution is unnecessary, leading to cost reduction. In addition, since no development waste liquid is generated, the burden on the environment is also suppressed. The fact that it is easy to produce a pattern-formed film on a plastic substrate is also an advantage of the printing method, and the printing method is useful for making electronic devices flexible.
 プリンタブルエレクトロニクス用の印刷法には、従来の印刷法に比べ高精細、高精度、高い表面平滑性などが必要とされている。このような印刷法として、グラビア印刷、インクジェット印刷、スクリーン印刷、オフセット印刷、反転オフセット印刷法(例えば特許文献1参照)、剥離オフセット印刷法(例えば特許文献2参照)、およびマイクロコンタクトプリント法(例えば特許文献3、非特許文献1参照)などが提案されている。 The printing method for printable electronics requires higher definition, higher accuracy, higher surface smoothness, etc. than the conventional printing method. As such printing methods, gravure printing, inkjet printing, screen printing, offset printing, reverse offset printing method (for example, see Patent Document 1), peeling offset printing method (for example, see Patent Document 2), and microcontact printing method (for example, Patent Document 3 and Non-Patent Document 1) have been proposed.
 電子デバイスまたは光学デバイスの用途として、例えば、薄膜トランジスタ(TFT)のゲート絶縁膜、TFT用平坦化膜、カラーフィルターのオーバーコート、フォトスペーサー、タッチセンサーの保護膜や絶縁膜、反射防止フィルム、反射防止板、光学フィルターおよび半導体素子の層間絶縁膜などが挙げられる。これらの製造法として高精細かつ表面が平滑なパターンを直接形成できる高精細な印刷法が望まれており、例えば、凸版反転オフセット印刷法を利用した絶縁膜形成用インキ組成物が報告されている(例えば特許文献4参照)。また、ポリシロキサンを利用したインキ組成物が報告されている。(例えば特許文献5参照)。 Applications of electronic devices or optical devices include, for example, gate insulating films for thin film transistors (TFTs), planarization films for TFTs, color filter overcoats, photo spacers, protective films and insulating films for touch sensors, antireflection films, antireflections Examples include plates, optical filters, and interlayer insulating films of semiconductor elements. As these manufacturing methods, a high-definition printing method capable of directly forming a pattern with a high definition and a smooth surface is desired. For example, an ink composition for forming an insulating film using a letterpress reverse printing method has been reported. (For example, refer to Patent Document 4). An ink composition using polysiloxane has been reported. (For example, refer to Patent Document 5).
特開平11-58921号公報Japanese Patent Laid-Open No. 11-58921 特開2004-249696号公報JP 2004-249696 A 特開2010-147408号公報JP 2010-147408 A 特開2010-265423号公報JP 2010-265423 A 特開2011-219544号公報JP 2011-219544 A
 プリンタブルエレクトロニクス用のインキ組成物には、従来のインキ用組成物に比べ、印刷パターンの転写性、基板との密着性が不足しており、改善が必要とされている。本発明の目的は、パターン硬化被膜の密着性、および、印刷パターンの転写性に優れたポリシロキサン組成物を提供することにある。そして、さらなる課題はポリシロキサン組成物から形成された硬化被膜、および電子または光学デバイスを提供することである。 Ink compositions for printable electronics are lacking in transferability of printed patterns and adhesion to substrates as compared with conventional ink compositions, and need to be improved. The objective of this invention is providing the polysiloxane composition excellent in the adhesiveness of a pattern cured film, and the transferability of a printing pattern. A further object is to provide cured coatings and electronic or optical devices formed from polysiloxane compositions.
 本発明は、(A1)一般式(1)~(3)から選ばれる1種以上のシラン化合物を少なくとも含むシラン化合物組成物を加水分解および縮合させることにより得られるポリシロキサン、および
(B)溶剤
を含むことを特徴とするシロキサン組成物である。 
The present invention relates to (A1) a polysiloxane obtained by hydrolyzing and condensing a silane compound composition containing at least one silane compound selected from the general formulas (1) to (3), and (B) a solvent. It is a siloxane composition characterized by including.
 R 2-n Si(OR2     (1)
は水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。Rは多環式芳香族基またはその置換体を表す。Rは水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。nは1または2である。nが2の場合、複数のRは同一でも異なっていてもよい。 
R 0 2-n R 1 n Si (OR 9 ) 2 (1)
R 0 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof. R 1 represents a polycyclic aromatic group or a substituted product thereof. R 9 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different. n is 1 or 2. When n is 2, the plurality of R 1 may be the same or different.
 RSi(OR10      (2) 
は多環式芳香族基またはその置換体を表す。R10は水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。 
R 2 Si (OR 10 ) 3 (2)
R 2 represents a polycyclic aromatic group or a substituted product thereof. R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
 (R11O) 3-mSi-R-Si(OR12 3-l (3)
は2価の多環式芳香族基またはその置換体を表す。RおよびRは、水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表し、それぞれ同一でも異なっていてもよい。R11およびR12は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。mおよびlはそれぞれ独立に1~3の整数である。 
(R 11 O) m R 4 3-m Si—R 3 —Si (OR 12 ) l R 5 3-l (3)
R 3 represents a divalent polycyclic aromatic group or a substituted product thereof. R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof, and may be the same or different. R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. m and l are each independently an integer of 1 to 3.
 さらには(A2)上記一般式(1)~(3)から選ばれる1種以上のシラン化合物および一般式(7)で表されるシラン化合物を含むシラン化合物組成物を加水分解および縮合させることにより得られるポリシロキサン、および
(B)溶剤
を含むシロキサン組成物である。 
Further, (A2) by hydrolyzing and condensing a silane compound composition containing one or more silane compounds selected from the general formulas (1) to (3) and the silane compound represented by the general formula (7) A siloxane composition containing the resulting polysiloxane and (B) a solvent.
 R Si(OR164-a      (7)
は、ビニル基、エポキシ基およびオキセタニル基の少なくとも1つを含む炭素数3~20の有機基を表す。それぞれ同一でも異なっていてもよい。R16は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。aは1~3の整数である。)
 さらに、(A3)上記一般式(1)~(3)から選ばれる1種以上のシラン化合物、上記一般式(7)で表されるシラン化合物および一般式(8)で表されるシラン化合物を含むシラン化合物組成物を加水分解および縮合させることにより得られるポリシロキサン、および
(B)溶剤
を含むシロキサン組成物である。 
R 9 a Si (OR 16 ) 4-a (7)
R 9 represents an organic group having 3 to 20 carbon atoms including at least one of a vinyl group, an epoxy group, and an oxetanyl group. Each may be the same or different. R 16 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. a is an integer of 1 to 3. )
Further, (A3) one or more silane compounds selected from the above general formulas (1) to (3), a silane compound represented by the above general formula (7), and a silane compound represented by the general formula (8) It is a siloxane composition containing polysiloxane obtained by hydrolyzing and condensing the silane compound composition containing, and (B) a solvent.
 R10 Si(OR174-b      (8)
 ここでR10は、フェニル基を含む炭素数3~20の有機基を表す。それぞれ同一でも異なっていてもよい。R17は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。bは1~3の整数である。)
R 10 b Si (OR 17 ) 4-b (8)
Here, R 10 represents an organic group having 3 to 20 carbon atoms including a phenyl group. Each may be the same or different. R 17 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. b is an integer of 1 to 3. )
 本発明のシロキサン系樹脂組成物を使用することで、印刷パターンの転写性、パターン硬化被膜の密着性に優れた印刷特性に必要なインキ組成物、該インキ組成物から形成された硬化被膜、および電子または光学デバイスを簡便かつ低コストで製造することが可能となる。 By using the siloxane-based resin composition of the present invention, an ink composition necessary for printing characteristics excellent in print pattern transferability and pattern cured film adhesion, a cured film formed from the ink composition, and Electronic or optical devices can be manufactured easily and at low cost.
印刷方法の一例である反転オフセット印刷法を示す概略図である。It is the schematic which shows the inversion offset printing method which is an example of the printing method. 印刷方法の一例である剥離オフセット印刷法を示す概略図である。It is the schematic which shows the peeling offset printing method which is an example of the printing method. 印刷方法の一例であるマイクロコンタクト印刷法を示す概略図である。It is the schematic which shows the micro contact printing method which is an example of the printing method. 絶縁膜をゲート絶縁膜に備えたTFTを示した模式断面図である。It is the schematic cross section which showed TFT provided with the insulating film in the gate insulating film.
 本発明は、(A1)前記一般式(1)~(3)から選ばれる1種以上のシラン化合物を少なくとも含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサン、および(B)溶剤を含むことを特徴とするシロキサン組成物である。なお、本発明におけるインキ用とは、印刷法を利用して膜や印刷パターンを形成するためのインキに供される用途をいう。  The present invention provides (A1) a polysiloxane obtained by hydrolyzing and condensing a silane compound containing at least one silane compound selected from the general formulas (1) to (3), and (B) a solvent. It is a siloxane composition characterized by including. In addition, the use for ink in the present invention refers to an application provided for ink for forming a film or a printing pattern by using a printing method. *
 本発明に用いられる(A1)ポリシロキサンは、多環式芳香族環を有する。このポリシロキサンを含有するシロキサン組成物は、印刷版に塗布した際に、組成物のハジキが抑制され、印刷版への塗布性が良好であり、さらに、対象基材(被印刷基材)への印刷パターンの転写が良好であるという特長を有する。これは、樹脂中の高いπ電子密度をもつ多環式芳香族基の存在により、溶剤中の水素原子と芳香族環の間の相互作用が増強され、溶剤とポリシロキサンとの親和性が増大するためであると考えられる。さらに、本発明の用組成物から形成された硬化被膜は、耐薬品性が損なわれることなく、高い可視光透過率を有する。これは、多環式芳香族基の有する耐薬品性やかさ高さに由来すると考えられる。 The (A1) polysiloxane used in the present invention has a polycyclic aromatic ring. When this siloxane composition containing polysiloxane is applied to a printing plate, the repellency of the composition is suppressed, the applicability to the printing plate is good, and further to the target substrate (substrate to be printed) The printing pattern has a good transferability. This is because the presence of polycyclic aromatic groups with high π electron density in the resin enhances the interaction between hydrogen atoms and aromatic rings in the solvent, increasing the affinity between the solvent and polysiloxane. It is thought that it is to do. Furthermore, the cured film formed from the composition for use in the present invention has high visible light transmittance without impairing chemical resistance. This is considered to be derived from the chemical resistance and bulkiness of the polycyclic aromatic group.
 (A1)のポリシロキサンは、下記一般式(1)~(3)から選ばれる1種以上のシラン化合物を少なくとも含むシラン化合物を、酸または塩基触媒により加水分解することによって、シラノール基を有するシラノール化合物を生成した後、該シラノール化合物を縮合反応させることによって得ることができる。一般式(1)~(3)から選ばれるシラン化合物を2種以上用いてもよいし、後述する一般式(4)~(6)のいずれかで表されるシラン化合物や式一般式(7)、一般式(8)で表されるシラン化合物をさらに用いてもよい。 The polysiloxane (A1) is a silanol having a silanol group by hydrolyzing a silane compound containing at least one silane compound selected from the following general formulas (1) to (3) with an acid or a base catalyst. After producing the compound, it can be obtained by subjecting the silanol compound to a condensation reaction. Two or more silane compounds selected from the general formulas (1) to (3) may be used, or a silane compound represented by any one of the general formulas (4) to (6) described later or the formula (7) ), A silane compound represented by the general formula (8) may be further used.
 まず一般式(1)で表される化合物について説明する。  First, the compound represented by the general formula (1) will be described.
 R 2-n Si(OR2     (1)
はケイ素原子に直結しており、水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。Rは1価の基であり多環式芳香族基またはその置換体を表す。Rは水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。nは1または2である。nが2の場合、複数のRは同一でも異なっていてもよい。
R 0 2-n R 1 n Si (OR 9 ) 2 (1)
R 0 is directly connected to a silicon atom and represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof. R 1 is a monovalent group and represents a polycyclic aromatic group or a substituted product thereof. R 9 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different. n is 1 or 2. When n is 2, the plurality of R 1 may be the same or different.
 Rがアルキル基の場合、炭素数としては1から20の範囲が好ましく、アルケニル基の場合、炭素数としては1から20の範囲が好ましく、フェニル基またはその置換体としては炭素数1から20の範囲が好ましい。Rの好ましい具体例として、水素、メチル基、エチル基、プロピル基、メトキシ基、ブチル基、エトキシ基、プロピルオキシ基、ブトキシ基、フェニル基等が挙げられる。 When R 0 is an alkyl group, the number of carbon atoms is preferably in the range of 1 to 20, and in the case of an alkenyl group, the number of carbon atoms is preferably in the range of 1 to 20, and the phenyl group or a substituent thereof has 1 to 20 carbon atoms. The range of is preferable. Preferred specific examples of R 0 include hydrogen, methyl group, ethyl group, propyl group, methoxy group, butyl group, ethoxy group, propyloxy group, butoxy group, and phenyl group.
 ここで多環式芳香族基は、芳香族環が2個以上縮合または連結した基を意味する。多環式芳香族基の好ましい例として、ナフタレン、アントラセン、フェナントレン、テトラセン、ベンズ(a)アントラセン、ベンゾ(c)フェナントレン、ペンタセン、ピレン、フルオレン、フルオレノン、インデン、アズレン、アセナフテン、アセナフチレン、カルバゾール、ビフェニル、ターフェニル等に単結合を有する1価基が挙げられる。多環式芳香族基の置換体の好ましい例として、エポキシ基、アミノ基、メルカプト基、カルボン酸基、酸無水物基、ウレイド基、イソシアネート基、アクリル基、メタアクリル基、フッ素基などで置換されたものが挙げられる。硬化被膜の耐熱性と透明性の点から、ナフタレン、フェナントレン、ピレン、フルオレン、フルオレノン、インデン、アセナフテン、アセナフチレン、ビフェニル、ターフェニルの構造を有する1価基が好ましい。 Here, the polycyclic aromatic group means a group in which two or more aromatic rings are condensed or linked. Preferred examples of the polycyclic aromatic group include naphthalene, anthracene, phenanthrene, tetracene, benz (a) anthracene, benzo (c) phenanthrene, pentacene, pyrene, fluorene, fluorenone, indene, azulene, acenaphthene, acenaphthylene, carbazole, biphenyl. And monovalent groups having a single bond in terphenyl and the like. Preferred examples of substituted polycyclic aromatic groups include epoxy groups, amino groups, mercapto groups, carboxylic acid groups, acid anhydride groups, ureido groups, isocyanate groups, acrylic groups, methacrylic groups, and fluorine groups. The thing which was done is mentioned. From the viewpoint of heat resistance and transparency of the cured film, monovalent groups having a structure of naphthalene, phenanthrene, pyrene, fluorene, fluorenone, indene, acenaphthene, acenaphthylene, biphenyl, and terphenyl are preferable.
 一般式(1)で表されるシラン化合物の好ましい例として、ジ(1-ナフチル)ジメトキシシラン、ジ(1-ナフチル)ジエトキシシラン、ジ(1-ナフチル)ジ-n-プロポキシシラン、ジ(1-ナフチル)ジメトキシシラン、ジ(1-ナフチル)ジメトキシシラン、ジ(2-ナフチル)ジメトキシシラン、1-ナフチルメチルジメトキシシラン、1-ナフチルエチルジメトキシシラン、1-ナフチルフェニルジメトキシシラン、ジ(1-アントラセニル)ジメトキシシラン、ジ(9-アントラセニル)ジメトキシシラン、ジ(9-フェナントレニル)ジメトキシシラン、ジ(9-フルオレニル)ジメトキシシラン、ジ(2-フルオレニル)ジメトキシシラン、ジ(2-フルオレノンイル)ジメトシキシラン、ジ(1-ピレニル)ジメトキシシラン、ジ(2-インデニル)ジメトキシシラン、ジ(5-アセナフテニル)ジメトキシシラン、ジ(4-ビフェニル)ジメトキシシラン、ジ(2-ビフェニル)ジメトキシシラン、ジ(4-p-ターフェニル)ジメトキシシラン、ジ(4-m-ターフェニル)ジメトキシシラン、ジ(4-o-ターフェニル)ジメトキシシラン、等が挙げられる。 Preferred examples of the silane compound represented by the general formula (1) include di (1-naphthyl) dimethoxysilane, di (1-naphthyl) diethoxysilane, di (1-naphthyl) di-n-propoxysilane, di ( 1-naphthyl) dimethoxysilane, di (1-naphthyl) dimethoxysilane, di (2-naphthyl) dimethoxysilane, 1-naphthylmethyldimethoxysilane, 1-naphthylethyldimethoxysilane, 1-naphthylphenyldimethoxysilane, di (1- Anthracenyl) dimethoxysilane, di (9-anthracenyl) dimethoxysilane, di (9-phenanthrenyl) dimethoxysilane, di (9-fluorenyl) dimethoxysilane, di (2-fluorenyl) dimethoxysilane, di (2-fluorenonyl) dimethoxysilane, Di (1-pyrenyl) dimeth Sisilane, di (2-indenyl) dimethoxysilane, di (5-acenaphthenyl) dimethoxysilane, di (4-biphenyl) dimethoxysilane, di (2-biphenyl) dimethoxysilane, di (4-p-terphenyl) dimethoxysilane, Examples include di (4-m-terphenyl) dimethoxysilane, di (4-o-terphenyl) dimethoxysilane, and the like.
 次に一般式(2)で表される化合物について説明する。  Next, the compound represented by the general formula (2) will be described. *
 RSi(OR10      (2)
は多環式芳香族基またはその置換体を表す。R10は水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。多環式芳香族基およびその置換体の説明は上記と同様である。
R 2 Si (OR 10 ) 3 (2)
R 2 represents a polycyclic aromatic group or a substituted product thereof. R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different. The explanation of the polycyclic aromatic group and the substituted product thereof is the same as described above.
 一般式(2)で表されるシラン化合物の好ましい具体例として、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリ-n-プロポキシシラン、2-ナフチルトリメトキシシラン、1-アントラセニルトリメトキシシラン、9-アントラセニルトリメトキシシラン、9-フェナントレニルトリメトキシシラン、9-フルオレニルトリメトキシシラン、2-フルオレニルトリメトキシシラン、2-フルオレノンイルトリメトシキシラン、1-ピレニルトリメトキシシラン、2-インデニルトリメトキシシラン、5-アセナフテニルトリメトキシシラン、4-ビフェニルトリメトキシシラン、2-ビフェニルトリメトキシシラン、4-p-ターフェニルトリメトキシシラン、4-m-ターフェニルトリメトキシシラン、4-o-ターフェニルトリメトキシシラン等が挙げられる。 Preferred specific examples of the silane compound represented by the general formula (2) include 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltri-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthra. Senyltrimethoxysilane, 9-anthracenyltrimethoxysilane, 9-phenanthrenyltrimethoxysilane, 9-fluorenyltrimethoxysilane, 2-fluorenyltrimethoxysilane, 2-fluorenonyltrimethoxysilane, 1- Pyrenyltrimethoxysilane, 2-indenyltrimethoxysilane, 5-acenaphthenyltrimethoxysilane, 4-biphenyltrimethoxysilane, 2-biphenyltrimethoxysilane, 4-p-terphenyltrimethoxysilane, 4-m- Terphenyl trimethoxy Silanes include 4-o-terphenyl trimethoxysilane.
 次に一般式(3)で表される化合物について説明する。  Next, the compound represented by the general formula (3) will be described. *
 (R11O) 3-mSi-R-Si(OR12 3-l (3)
は2価の多環式芳香族基またはその置換体を表す。RおよびRは、ケイ素原子に直結した1価基であり、水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表し、それぞれ同一でも異なっていてもよい。R11およびR12は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。mおよびlはそれぞれ独立に1~3の整数である。多環式芳香族基およびその置換体の説明は上記と同様である。
(R 11 O) m R 4 3-m Si—R 3 —Si (OR 12 ) l R 5 3-l (3)
R 3 represents a divalent polycyclic aromatic group or a substituted product thereof. R 4 and R 5 are monovalent groups directly connected to a silicon atom, and each represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof, and may be the same or different. R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. m and l are each independently an integer of 1 to 3. The explanation of the polycyclic aromatic group and the substituted product thereof is the same as described above.
 一般式(3)で表されるシラン化合物の好ましい具体例を下記に示す。 Preferred specific examples of the silane compound represented by the general formula (3) are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明において、(A1)ポリシロキサンは、前記一般式(1)~(3)のいずれかで表される1種以上のシラン化合物とともに、下記一般式(4)~(6)のいずれかで表される1種以上のシラン化合物を加水分解および縮合させることにより得られうるものであることが好ましい。一般式(4)~(6)で表されるシラン化合物は2種以上用いてもよい。 In the present invention, (A1) polysiloxane is one of the following general formulas (4) to (6) together with one or more silane compounds represented by any one of the general formulas (1) to (3). It is preferable that it can be obtained by hydrolyzing and condensing one or more silane compounds represented. Two or more silane compounds represented by the general formulas (4) to (6) may be used.
 RSi(OR13     (4)
は水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。R13は、水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。
R 6 Si (OR 13 ) 3 (4)
R 6 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof. R 13 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
 RSi(OR14    (5)
およびRはそれぞれケイ素原子に直結した1価基であり、それぞれ独立に、水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。R14は水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。
R 7 R 8 Si (OR 14 ) 2 (5)
R 7 and R 8 are each a monovalent group directly bonded to a silicon atom, and each independently represents hydrogen, an alkyl group, an alkenyl group, a phenyl group, or a substituted product thereof. R 14 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
 Si(OR15       (6)
15はメチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。
Si (OR 15 ) 4 (6)
R 15 represents a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different.
 一般式(4)および(5)における置換体の好ましい例として、エポキシ基、アミノ基、メルカプト基、カルボン酸基、酸無水物基、ウレイド基、イソシアネート基、アクリル基、メタアクリル基、フッ素基などで置換されたものが挙げられる。 Preferred examples of the substituents in the general formulas (4) and (5) include epoxy groups, amino groups, mercapto groups, carboxylic acid groups, acid anhydride groups, ureido groups, isocyanate groups, acrylic groups, methacrylic groups, and fluorine groups. And the like substituted with.
 一般式(4)で表されるシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、4-メチルフェニルメトキシシラン、4-メチルフェニルエトキシシラン、4-メトキシフェニルメトキシシラン、4-メトキシフェニルエトキシシラン、フェニルエチニルトリメトキシシラン、フェニルエチニルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシシラン、γ-グリシドキシプロピルトリイソプロポキシシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリ(メトキシエトキシ)シラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルエチルトリメトキシシラン、パーフルオロプロピルエチルトリエトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロペンチルエチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、p-スチリルトリメトキシラン、3-メタクリロキシプロピルトリメトキシラン、3-メタクリロキシプロピルトリエトキシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン、アリルトリメトキシシランなどが挙げられる。これらのうち、得られる塗膜のクラック耐性の観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、およびフェニルトリエトキシシランが好ましい。 Examples of the silane compound represented by the general formula (4) include methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyl. Trimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 4-methylphenylmethoxysilane, 4-methyl Phenylethoxysilane, 4-methoxyphenylmethoxysilane, 4-methoxyphenylethoxysilane, phenylethynyltrimethoxysilane, phenylethynyltriethoxy Silane, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ- Aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycy Xymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycid Xylpropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid Xylpropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltri (methoxyethoxy) Silane, α-glycidoxy Sibutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycid Xibutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxy Silane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltributoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl ) Ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxy Silane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltri Methoxysilane, trifluoropropyltriethoxysilane, perfluoropropylethyltrimethoxysilane, perfluoropropylethyltriethoxysilane, perfluoropentylethyltrimethoxysilane, perfluoropen Tylethyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltripropoxysilane, tridecafluorooctyltripropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluoro Decyltriethoxysilane, p-styryltrimethoxylane, 3-methacryloxypropyltrimethoxylane, 3-methacryloxypropyltriethoxylane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercapto Propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane, Such as Lil trimethoxysilane. Of these, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferred from the viewpoint of crack resistance of the resulting coating film.
 一般式(5)で表されるシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、ジビニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、3-メトクリロキシプロピルメチルジメトキシシランなどが挙げられる。これらのうち、得られる塗膜に可とう性を付与させる目的には、ジメチルジアルコキシシラン、ジフェニルジアルコキシシランが好ましく用いられる。 Examples of the silane compound represented by the general formula (5) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, divinyldimethoxysilane, methylvinyldimethoxysilane, and methylvinyl. Diethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, γ- Methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycid Cyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α- Glycidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane , Γ-glycidoxypropylmethyldipropoxysilane, β-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldi (methoxyethoxy) silane, γ-glycidoxypropylethyldimethoxysilane, γ-glyci Xypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylethyldimethoxysilane, Trifluoropropylethyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, cyclohexylmethyl Examples include dimethoxysilane, octadecylmethyldimethoxysilane, and 3-methacryloxypropylmethyldimethoxysilane.Of these, dimethyl dialkoxysilane and diphenyl dialkoxysilane are preferably used for the purpose of imparting flexibility to the resulting coating film.
 一般式(6)で表される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。 Examples of the tetrafunctional silane compound represented by the general formula (6) include tetramethoxysilane and tetraethoxysilane.
 本発明における(A1)ポリシロキサン中の全ケイ素原子数100モル%中、一般式(1)から(3)のいずれかで表される1種以上のシラン化合物に由来するケイ素原子は、5モル%以上、70モル%以下であることが好ましい。一般式(1)から(3)のシラン化合物を併用する場合、ケイ素原子の量は、(1)~(3)のシラン化合物に由来するケイ素原子の和を意味する。印刷パターンの転写性をより向上させるために、10モル%以上が好ましく、さらに15モル%以上、より好ましくは20モル%以上、さらに好ましくは25モル%以上が好ましい。また、硬化被膜の耐薬品性をより高めるために、60モル%以下が好ましく、より好ましくは50モル%以下、さらに好ましくは、40モル%以下が好ましい。ポリシロキサン溶液状態でのモル分率は、H-NMR、13C-NMR、29Si-NMRにより分析することが可能であり、硬化膜のモル分率は、固体H-NMR、固体13C-NMR、固体29Si-NMRにより、分析することが可能である。 In the present invention, (A1) 100 mol% of the total number of silicon atoms in the polysiloxane is 5 mol of silicon atoms derived from one or more silane compounds represented by any one of the general formulas (1) to (3). % Or more and 70 mol% or less is preferable. When the silane compounds of general formulas (1) to (3) are used in combination, the amount of silicon atoms means the sum of silicon atoms derived from the silane compounds of (1) to (3). In order to further improve the transferability of the printed pattern, it is preferably 10 mol% or more, more preferably 15 mol% or more, more preferably 20 mol% or more, and further preferably 25 mol% or more. In order to further improve the chemical resistance of the cured film, the content is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less. The mole fraction in the polysiloxane solution state can be analyzed by 1 H-NMR, 13 C-NMR, and 29 Si-NMR, and the mole fraction of the cured film can be analyzed by solid 1 H-NMR, solid 13 Analysis can be performed by C-NMR and solid-state 29 Si-NMR.
 本発明の好ましいポリシロキサンの構成成分において、一般式(4)~(6)のシラン化合物の中でも、ビニル基、エポキシ基またはオキセタニル基を有することがより好ましい。これらの官能基は、π電子または環状エーテル上の酸素を有しており、絶縁膜上へのレジストや半導体塗液の塗布性を良好にすることができ、またゲート絶縁膜形成用として利用する場合、ヒステリシスが小さい優れたTFTが得られる。 Among the preferred polysiloxane components of the present invention, among the silane compounds represented by the general formulas (4) to (6), it is more preferable to have a vinyl group, an epoxy group or an oxetanyl group. These functional groups have π electrons or oxygen on the cyclic ether, and can improve the coating property of a resist or a semiconductor coating solution on the insulating film, and can also be used for forming a gate insulating film. In this case, an excellent TFT with small hysteresis can be obtained.
 そして好ましいポリシロキサンとしては(A2)一般式(1)~(3)のいずれかで表される1種以上のシラン化合物および一般式(7)で表されるシラン化合物を含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサンである。 As a preferred polysiloxane, (A2) one or more silane compounds represented by any one of the general formulas (1) to (3) and a silane compound containing the silane compound represented by the general formula (7) are hydrolyzed. And a polysiloxane obtained by condensation.
 本発明に用いられるビニル基、エポキシ基、オキセタニル基から選ばれる1種以上の置換基を含むシラン化合物としては、下記、一般式(7)で表されるシラン化合物が好ましく使用される。  As the silane compound containing one or more substituents selected from a vinyl group, an epoxy group, and an oxetanyl group used in the present invention, a silane compound represented by the following general formula (7) is preferably used. *
 R Si(OR164-a      (7)
 Rは、ビニル基、エポキシ基、オキセタニル基の少なくとも1つを含む炭素数2~20の有機基を表す。それぞれ同一でも異なっていてもよい。R16は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。aは1~3の整数である。
R 9 a Si (OR 16 ) 4-a (7)
R 9 represents an organic group having 2 to 20 carbon atoms including at least one of a vinyl group, an epoxy group, and an oxetanyl group. Each may be the same or different. R 16 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. a is an integer of 1 to 3.
 一般式(7)で表されるシラン化合物の具体例を下記に示す。ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジビニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリイソプロポキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジイソプロポキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシラン、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン、アリルトリメトキシシランなどが挙げられる。 Specific examples of the silane compound represented by the general formula (7) are shown below. Vinyltrimethoxysilane, vinyltriethoxysilane, divinyldimethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropyl Vinyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) Ethyltriethoxysilane, γ-glycidoxypropyltriisopropoxysilane, β- (3,4-epoxycyclohexyl) ethyltriisopropoxysilane, γ-glycidoxypro Rumethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, γ-glycyl Sidoxypropylmethyldiisopropoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldiisopropoxysilane, γ-glycidoxypropylethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethylethyldimethoxysilane , Γ-glycidoxypropylethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethylethyldiethoxysilane, γ-glycidoxypropylethyldiisopropoxysilane, β- (3,4-epoxycyclohexyl) Ethyl ethyl Diisopropoxysilane, β- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ-glycidoxyethyltrimethoxysilane, 3-ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane, allyl Examples include trimethoxysilane.
 これらのうち、架橋密度を上げ、耐薬品性と絶縁特性を向上させるために、エポキシ基を有するものが好ましく、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシランを用いることが好ましい。また、量産性の観点から、R16がメチル基であるγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシランを用いることが特に好ましい。 Of these, those having an epoxy group are preferred in order to increase the crosslink density and improve chemical resistance and insulation properties, such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ-glycidoxypropyltriisopropoxysilane, β- (3,4-epoxycyclohexyl) Ethyl triisopropoxysilane, β- (3,4-epoxycyclohexyl) propyltrimethoxysilane, and γ-glycidoxyethyltrimethoxysilane are preferably used. From the viewpoint of mass productivity, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) in which R 16 is a methyl group It is particularly preferable to use propyltrimethoxysilane or γ-glycidoxyethyltrimethoxysilane.
 ここで、ビニル基、エポキシ基、オキセタニル基のいずれかひとつを含む含有シラン化合物に由来する構成単位のケイ素の含有量は、ポリシロキサンの共重合成分であるシラン化合物の全構成単位のケイ素原子に対して0.1モル%~40モル%であることが好ましい。0.1モル%以上であれば、下地との密着性のより良好な硬化被膜を得ることができ、1モル%以上がより好ましい。一方、40モル%以下であれば、ポリシロキサンの溶剤への良好な溶解性を得ることができ、35モル%以下がより好ましい。ポリシロキサン溶液時のモル分率、硬化膜のモル分率は上述の各種核のNMRにより、分析することが可能である。 Here, the silicon content of the structural unit derived from the containing silane compound containing any one of a vinyl group, an epoxy group, and an oxetanyl group is based on the silicon atoms of all the structural units of the silane compound that is a copolymer component of polysiloxane. The content is preferably 0.1 mol% to 40 mol%. If it is 0.1 mol% or more, a cured film having better adhesion to the substrate can be obtained, and 1 mol% or more is more preferable. On the other hand, if it is 40 mol% or less, good solubility of polysiloxane in the solvent can be obtained, and 35 mol% or less is more preferable. The molar fraction of the polysiloxane solution and the molar fraction of the cured film can be analyzed by NMR of the various nuclei described above.
 本発明に用いられるポリシロキサンは、フェニル基をさらに有することがより好ましい。これにより、印刷パターンの転写性をより精密に制御することができる。そのようなポリシロキサンは、一般式(1)~(3)のいずれかで表される1種以上のシラン化合物とともに、フェニル基を含むシラン化合物を加水分解および縮合させることにより得られる。 The polysiloxane used in the present invention more preferably further has a phenyl group. Thereby, the transferability of the printing pattern can be controlled more precisely. Such a polysiloxane can be obtained by hydrolyzing and condensing a silane compound containing a phenyl group together with one or more silane compounds represented by any one of the general formulas (1) to (3).
 本発明に用いられるフェニル基を含むシラン化合物としては、下記、一般式(8)で表されるシラン化合物が好ましい。  As the silane compound containing a phenyl group used in the present invention, a silane compound represented by the following general formula (8) is preferable. *
 R10 Si(OR174-b      (8)
10は、フェニル基を含む炭素数3~20の有機基を表す。それぞれ同一でも異なっていてもよい。R17は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。bは1~3の整数である。
R 10 b Si (OR 17 ) 4-b (8)
R 10 represents an organic group having 3 to 20 carbon atoms including a phenyl group. Each may be the same or different. R 17 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. b is an integer of 1 to 3.
 一般式(8)で表されるシラン化合物の具体例を下記に示す。フェニルトリメトシキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、4-メチルフェニルメトキシシラン、4-メチルフェニルエトキシシラン、4-メトキシフェニルメトキシシラン、4-メトキシフェニルエトキシシラン、フェニルエチニルトリメトキシシラン、フェニルエチニルトリエトキシシランなどが挙げられる。  Specific examples of the silane compound represented by the general formula (8) are shown below. Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, 4-methylphenylmethoxysilane, 4-methylphenylethoxysilane, 4-methoxyphenylmethoxy Examples thereof include silane, 4-methoxyphenylethoxysilane, phenylethynyltrimethoxysilane, and phenylethynyltriethoxysilane. *
 ここで、フェニル基含有シラン化合物に由来する構成単位の含有量は、ポリシロキサンの共重合成分であるシラン化合物の全構成単位に対して5モル%~60モル%であることが好ましい。5モル%以上であれば、転写性が良好で、高解像度パターン被膜を得ることができ、好ましくは10モル%以上、より好ましくは15モル%以上が、さらに好ましくは20モル%が好ましい。一方、60モル%以下であれば、ポリシロキサン溶液中での良好な保存安定性を得ることができ、好ましくは50モル%以下、より好ましくは40モル%以下、さらに好ましくは、30モル%以下がより好ましい。ポリシロキサン溶液のモル分率はH-NMR、13C-NMR、29Si-NMRにより、分析することが可能である。硬化膜のモル分率は、固体H-NMR、固体13C-NMR、固体29Si-NMRにより、分析することが可能である。 Here, the content of the structural unit derived from the phenyl group-containing silane compound is preferably 5 mol% to 60 mol% with respect to all the structural units of the silane compound that is a copolymer component of polysiloxane. If it is 5 mol% or more, transferability is good and a high-resolution pattern film can be obtained, preferably 10 mol% or more, more preferably 15 mol% or more, and still more preferably 20 mol%. On the other hand, if it is 60 mol% or less, good storage stability in the polysiloxane solution can be obtained, preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less. Is more preferable. The molar fraction of the polysiloxane solution can be analyzed by 1 H-NMR, 13 C-NMR, 29 Si-NMR. The mole fraction of the cured film can be analyzed by solid 1 H-NMR, solid 13 C-NMR, and solid 29 Si-NMR.
 本発明でさらに好ましいポリシロキサンは、(A3)一般式(1)~(3)のいずれかで表される1種以上のシラン化合物、一般式(7)で表されるシラン化合物および一般式(8)で表されるシラン化合物を少なくとも含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサンである。 More preferred polysiloxanes in the present invention are (A3) one or more silane compounds represented by any one of the general formulas (1) to (3), the silane compound represented by the general formula (7), and the general formula ( It is a polysiloxane obtained by hydrolyzing and condensing a silane compound containing at least the silane compound represented by 8).
 この組み合わせにすることにより印刷性が良好となり、高解像度のパターンが実現できるので好ましい。ポリシロキサンの共重合成分であるシラン化合物の全構成単位に対して、一般式(1)~(3)のいずれかで表される1種以上のシラン化合物のケイ素原子、一般式(7)で表されるビニル基、エポキシ基およびオキセタニル基から選ばれる官能基を有する1種以上シラン化合物のケイ素原子、一般式(8)で表されるフェニル基を含むシラン化合物のケイ素原子の好ましい比率は、5~70モル%/0.1~40モル%/5~60モル%、より好ましくは、10~50モル%/1~20モル%/10~50モル%、さらに好ましくは、20~40モル%/5~15モル%/10~30モル%であることが良い。 This combination is preferable because printability is improved and a high-resolution pattern can be realized. The silicon atom of one or more silane compounds represented by any one of the general formulas (1) to (3) with respect to all the structural units of the silane compound that is a copolymer component of polysiloxane, A preferred ratio of silicon atoms of one or more silane compounds having a functional group selected from a vinyl group, an epoxy group, and an oxetanyl group, and a silicon atom of a silane compound containing a phenyl group represented by the general formula (8) is: 5 to 70 mol% / 0.1 to 40 mol% / 5 to 60 mol%, more preferably 10 to 50 mol% / 1 to 20 mol% / 10 to 50 mol%, still more preferably 20 to 40 mol% % / 5-15 mol% / 10-30 mol% is preferable.
 本発明のシロキサン組成物における(a)ポリシロキサンの含有量は、溶剤を除く固形分全量に対して10質量%以上が好ましく、20質量%以上がより好ましい。この範囲で(a)ポリシロキサンを含有することにより、塗膜の透過率と耐クラック性をより高めることができる。 The content of (a) polysiloxane in the siloxane composition of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more based on the total solid content excluding the solvent. By containing (a) polysiloxane within this range, the transmittance and crack resistance of the coating film can be further improved.
 (A1)ポリシロキサンは、前記一般式(1)から(3)のいずれかで表される1種以上のシラン化合物、さらに必要により一般式(4)~(6)のいずれかで表されるシラン化合物を、好ましくは溶剤中、酸または塩基触媒により加水分解することによって、シラノール化合物を生成した後、該シラノール化合物を縮合反応させることによって得ることができる。 (A1) The polysiloxane is represented by one or more silane compounds represented by any one of the general formulas (1) to (3), and if necessary, represented by any one of the general formulas (4) to (6) The silane compound can be obtained by hydrolyzing the silane compound with an acid or base catalyst, preferably in a solvent, to form a silanol compound and then subjecting the silanol compound to a condensation reaction.
 また(A2)(A3)ポリシロキサンは、前記一般式(1)から(3)のいずれかで表される1種以上のシラン化合物、さらに必要により(7)および/または(8)のシラン化合物を、好ましくは溶剤中、酸または塩基触媒により加水分解することによって、シラノール化合物を生成した後、該シラノール化合物を縮合反応させることによって得ることができる。 The polysiloxane (A2) (A3) is one or more silane compounds represented by any one of the above general formulas (1) to (3), and if necessary, the silane compounds (7) and / or (8) Is preferably obtained by hydrolyzing with an acid or base catalyst in a solvent to produce a silanol compound and then subjecting the silanol compound to a condensation reaction.
 加水分解反応は、(1)から(3)のいずれかで表される1種以上のシラン化合物、さらに必要により添加される(7)および/または(8)のシラン化合物が有するケイ素原子に直結したアルコキシ基が水により、アルコールを副生しながら水酸基を生じるものである。加水分解反応は、シラン化合物の溶液に酸触媒または塩基触媒、および水を1~180分間かけて添加した後、室温~150℃で1~180分間行うことが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは40~115℃である。 The hydrolysis reaction is directly linked to one or more silane compounds represented by any one of (1) to (3), and further to silicon atoms contained in the silane compound (7) and / or (8) added as necessary. The generated alkoxy group produces a hydroxyl group by water as a by-product of alcohol. The hydrolysis reaction is preferably carried out at room temperature to 150 ° C. for 1 to 180 minutes after an acid catalyst or base catalyst and water are added to the silane compound solution over 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. The reaction temperature is more preferably 40 to 115 ° C.
 一般的な縮合反応は、水酸基を有するシラン化合物(シラノール化合物)と水酸基を有する別のシラン化合物とが反応し、脱水しながら、シロキサン結合を生じる反応である。条件によってはアルコキシ基を有するシラン化合物と水酸基を有するシラン化合物とが反応し、アルコールを副生しながら、シロキサン結合を生じるものもある。 A general condensation reaction is a reaction in which a silane compound having a hydroxyl group (silanol compound) reacts with another silane compound having a hydroxyl group to form a siloxane bond while dehydrating. Depending on conditions, a silane compound having an alkoxy group and a silane compound having a hydroxyl group may react to produce a siloxane bond while by-producing alcohol.
 縮合により得られるポリシロキサンは、完全にアルコキシ基および水酸基が消滅している必要はない。逆にポリシロキサンがアルコキシ基または水酸基を有しているのが普通である。 The polysiloxane obtained by condensation does not need to have completely lost alkoxy groups and hydroxyl groups. On the other hand, the polysiloxane usually has an alkoxy group or a hydroxyl group.
 縮合反応は、加水分解反応後、反応液を50℃以上、溶剤の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。ポリシロキサンの重合度を上げるために、再加熱もしくは触媒の再添加を行うことも可能である。また、シラン化合物の部分縮合物を得た後に、(4)~(6)ならびに(7)および(8)のいずれかで表されるシラン化合物を混合してもよい。 The condensation reaction is preferably performed after the hydrolysis reaction by heating the reaction solution at 50 ° C. or more and below the boiling point of the solvent for 1 to 100 hours. In order to increase the degree of polymerization of the polysiloxane, reheating or re-addition of the catalyst can be performed. Further, after obtaining the partial condensate of the silane compound, the silane compound represented by any one of (4) to (6) and (7) and (8) may be mixed.
 加水分解反応および縮合反応における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、たとえば触媒濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。 Various conditions in the hydrolysis reaction and condensation reaction are suitable for the intended application by setting the catalyst concentration, reaction temperature, reaction time, etc., taking into account the reaction scale, reaction vessel size, shape, etc. Physical properties can be obtained.
 加水分解反応および縮合反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸またはリン酸を用いた酸性水溶液が好ましい。また、塩基触媒としては、無機アルカリである水酸化ナトリウム、水酸化カリウムなどや有機塩基化合物であるトリエチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、アンモニア水、テトラメチルアンモニウムハイドロオキサイド、アミノ基を有するアルコキシラン、アミノプロピルトリメトキシシランなどが挙げられるが、アルカリ金属は、電子デバイスなどで誤作動を引き起こすため、塩基触媒としては有機塩基が好ましい。 Examples of the acid catalyst used in the hydrolysis reaction and the condensation reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins. . In particular, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferred. In addition, the base catalyst includes inorganic alkali such as sodium hydroxide and potassium hydroxide and organic base compounds such as triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, aqueous ammonia, tetramethylammonium hydroxide, amino group An alkoxy base having amino acid, aminopropyltrimethoxysilane, and the like can be used. Since alkali metals cause malfunctions in electronic devices and the like, organic bases are preferred as the base catalyst.
 これら触媒の好ましい含有量としては、加水分解反応時に使用される全シラン化合物100質量部に対して好ましくは0.1質量部以上であり、また、好ましくは5質量部以下である。ここで、全シラン化合物量とは、シラン化合物、その加水分解物およびその縮合物の全てを含んだ量のことを言い、以下同じとする。 The preferred content of these catalysts is preferably 0.1 parts by mass or more and preferably 5 parts by mass or less with respect to 100 parts by mass of the total silane compounds used in the hydrolysis reaction. Here, the total silane compound amount means an amount including all of the silane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
 加水分解反応および縮合反応に用いられる溶剤は特に限定されないが、好ましくはアルコール性水酸基を有する化合物が用いられる。アルコール性水酸基を有する化合物の具体例としては、アセトール、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノールなどが挙げられる。なお、これらのアルコール性水酸基を有する化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。 The solvent used in the hydrolysis reaction and the condensation reaction is not particularly limited, but a compound having an alcoholic hydroxyl group is preferably used. Specific examples of the compound having an alcoholic hydroxyl group include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy- 4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t- Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 3-methoxy-1- Pentanol, 3-methyl-3-methoxy-1-butanol. In addition, you may use the compound which has these alcoholic hydroxyl groups individually or in combination of 2 or more types.
 その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチルなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、などのエーテル類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。 Other solvents may be included. Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, etc. Ethers, γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, N-methylpyrrolidone, cyclopentanone, Rohekisanon and cycloheptanone and the like.
 また、加水分解反応終了後または縮合反応終了後に、さらに溶剤を添加することにより、組成物として適切な濃度に調整することも好ましい操作である。また、加水分解反応後または縮合反応後に加熱および/または減圧することにより生成したアルコール等の全量あるいは一部を留出、除去してもよい。その後好適な溶剤を添加してもよい。 It is also a preferable operation to adjust the concentration to an appropriate concentration as a composition by adding a solvent after completion of the hydrolysis reaction or after the completion of the condensation reaction. Moreover, you may distill and remove the whole quantity or one part, such as alcohol produced | generated by heating and / or pressure-reducing after a hydrolysis reaction or after a condensation reaction. A suitable solvent may then be added.
 加水分解反応時に使用される溶剤の量は、全シラン化合物100質量部に対して、好ましくは80質量部以上であり、また、好ましくは1000質量部以下である。また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、シラン化合物1モルに対して、1.0~4.0モルの範囲で用いることが好ましい。 The amount of the solvent used in the hydrolysis reaction is preferably 80 parts by mass or more and preferably 1000 parts by mass or less with respect to 100 parts by mass of the total silane compounds. Moreover, as water used for a hydrolysis reaction, ion-exchange water is preferable. The amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the silane compound.
 本発明のシロキサン組成物は、(B)溶剤を含有する。(B)溶剤の量としては、ポリシロキサン100質量部に対して、50質量部以上、10000質量部以下が好ましい。 The siloxane composition of the present invention contains (B) a solvent. (B) As a quantity of a solvent, 50 mass parts or more and 10000 mass parts or less are preferable with respect to 100 mass parts of polysiloxane.
 (B)溶剤としては、ポリシロキサンを溶解または良好に分散させることが可能であり、かつ加熱処理によって揮発するものであれば特に限定されない。溶剤として単独で用いても複数を混合して用いてもよいが、印刷版への塗布性と、対象基材への転写性の観点から、遅乾性溶剤と速乾性溶剤との混合溶剤であることが好ましい。 (B) The solvent is not particularly limited as long as it can dissolve or satisfactorily disperse polysiloxane and volatilizes by heat treatment. Although it may be used alone or in combination as a solvent, it is a mixed solvent of a slow-drying solvent and a fast-drying solvent from the viewpoint of applicability to a printing plate and transferability to a target substrate. It is preferable.
 ここで遅乾性溶剤とはASTM D3539に定める蒸発速度(日本語訳を見たければ、”塗料の流動と塗膜形成”、中道敏彦著、技報堂出版社、1995年発行、107~109頁参照)が0.8以下の溶剤であり、好ましくは0.5以下の溶剤である。具体的には、(i)ドデカン、ウンデカンなどの炭化水素類、(ii)キシレン、キシレン、メシチレンなどの芳香族炭化水素類、(iii)n-ブタノール、ヘキサノール、3-メチル-3-メトキシブタノール、3-メトキシブタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジアセトンアルコールなどのアルコール類、(iv)ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、酢酸アミルなどのエーテル/エステル類、(v)ジイソブチルケトン、エチルアミルケトン、2-ヘプタノン、2-ヘキサノン、2-オクタノン、シクロペンタノン、シクロヘキサノンなどのケトン類、(vi)N,N-ジメチルホルムアミド、N,N-ジメチルアセトムアミドなどのアミド類、(vii)γ-ブチロラクトンなどのラクトン類が例示される。 Here, the slow-drying solvent is the evaporation rate specified in ASTM D3539 (If you want to see the Japanese translation, see “Paint Flow and Film Formation”, Toshihiko Nakamichi, Gihodo Publishing, 1995, pages 107-109. ) Is a solvent of 0.8 or less, preferably 0.5 or less. Specifically, (i) hydrocarbons such as dodecane and undecane, (ii) aromatic hydrocarbons such as xylene, xylene and mesitylene, (iii) n-butanol, hexanol, 3-methyl-3-methoxybutanol , 3-methoxybutanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol mono-n-butyl ether , Propylene glycol mono-t-butyl ether, ethylene glycol mono-t-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether Ter, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, diacetone alcohol and other alcohols, (iv) diethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl Ether / esters such as ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, dipropylene glycol monomethyl ether acetate, amyl acetate, (v) diisobutyl ketone, ethyl amyl ketone, 2-heptanone, 2-hexanone , 2-oct Non, ketones such as cyclopentanone, cyclohexanone, (vi) N, N- dimethylformamide, N, amides such as N- dimethylacetamide beam amides is exemplified lactones, such as (vii) .gamma.-butyrolactone.
 速乾性溶剤とはASTM D3539による蒸発速度が0.8より大きい溶剤であり、好ましくは1.0以上の溶剤である。具体的には(i)n-ヘキサン、n-オクタン、イソオクタン、シクロヘキサンなどの炭化水素、(ii)トルエン、キシレン、メシチレンなどの芳香族炭化水素、(iii)メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、などのアルコール、(iv)ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテルなどのエーテル、(v)酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチルなどのエステル、(vi)アセトン、メチルエチルケトン、メチル-n-ブチルケトンメチルイソブチルケトン、などのケトンが例示される。 The quick-drying solvent is a solvent having an evaporation rate by ASTM D3539 of more than 0.8, preferably a solvent of 1.0 or more. Specifically, (i) hydrocarbons such as n-hexane, n-octane, isooctane, cyclohexane, (ii) aromatic hydrocarbons such as toluene, xylene, mesitylene, (iii) methanol, ethanol, n-propyl alcohol, Alcohols such as isopropyl alcohol, (iv) ethers such as diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, (v) ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n- Examples include esters such as butyl and ketones such as (vi) acetone, methyl ethyl ketone, methyl-n-butyl ketone methyl isobutyl ketone, and the like.
 これらの溶剤はポリシロキサンの重縮合反応に使用した溶剤を用いても、後から添加してもよい。また遅乾性溶剤と速乾性溶剤の比率は遅乾性溶剤/速乾性溶剤=100/0~0/100から選ばれる任意の質量比でよいが、塗布性と転写性のバランスから遅乾性溶剤/速乾性溶剤=10/90~10/90の質量比であることが好ましい。遅乾性溶剤の比率が少ないと塗布したインキが版上で乾燥しすぎてタック性がなくなってしまい、対象基材へ転写されにくい。一方、速乾性溶剤の比率が少ないと版に塗布したインキの流動性が大きすぎ、パターン形状が潰れて不良となりやすい。 These solvents may be the same as those used for polysiloxane polycondensation reaction or may be added later. The ratio of the slow-drying solvent to the fast-drying solvent may be any mass ratio selected from slow-drying solvent / fast-drying solvent = 100/0 to 0/100. The dry solvent is preferably a mass ratio of 10/90 to 10/90. If the ratio of the slow-drying solvent is small, the applied ink is dried too much on the plate and tackiness is lost, and it is difficult to transfer to the target substrate. On the other hand, when the ratio of the quick-drying solvent is small, the fluidity of the ink applied to the plate is too high, and the pattern shape is crushed and tends to be defective.
 微細パターンの形状は、印刷基材への濡れ性が重要な因子となり、1種以上の非プロトン性溶剤を用いることが好ましく、保存安定性の観点から、1種以上のプロトン性溶剤を用いることが好ましい。両者を踏まえ、1種以上の非プロトン性溶剤の溶剤および1種以上のプロトン性溶剤を用いることが好ましい。プロトン性溶剤として、前述のアルコール、アミド類が挙げられるが、好ましくは、アセトール、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノールなどが挙げられる。 For the shape of the fine pattern, wettability to the printing substrate is an important factor, and it is preferable to use one or more aprotic solvents, and from the viewpoint of storage stability, use one or more protic solvents. Is preferred. In light of both, it is preferable to use one or more aprotic solvent solvents and one or more protic solvents. Examples of the protic solvent include the alcohols and amides described above, and preferably acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, and 5-hydroxy-2. -Pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n- Butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether Ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol.
 また、非プロトン性溶剤として、前述の炭化水素、芳香族炭化水素、エーテル、エステル、ケトンが挙げられるが、好ましくは、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、酢酸アミルなどが挙げられる。 Examples of the aprotic solvent include the above-mentioned hydrocarbons, aromatic hydrocarbons, ethers, esters, and ketones. Preferred are ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, diethylene glycol. Methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, dipropylene glycol monomethyl ether acetate, amyl acetate, etc. Is mentioned.
 本発明のインキ用組成物は、さらに下記一般式(9)で表される熱架橋性基を有する(C)熱硬化剤を含有してもよい。  The ink composition of the present invention may further contain (C) a thermosetting agent having a thermally crosslinkable group represented by the following general formula (9). *
 -(CH-OR18)     (9)  
上記一般式(9)中、R18は水素原子または炭素数1~4のアルキル基を示す。樹脂組成物の経時安定性と熱硬化剤の反応性の観点から、メチル基またはエチル基が好ましい。
-(CH 2 -OR 18 ) (9)
In the general formula (9), R 18 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of the temporal stability of the resin composition and the reactivity of the thermosetting agent, a methyl group or an ethyl group is preferable.
 本発明のインキ用組成物は、(C)熱硬化剤を含有することにより、高いヒートサイクル耐性が得られ、繰り返し熱負荷後の耐クラック性に優れた硬化被膜を形成することができる。本発明における(C)熱硬化剤は、前記一般式(9)で表される熱架橋性基を有すれば特に限定されないが、可視光透過率をより向上させることができる点で、下記一般式(10)で表される熱架橋性基を有するものがより好ましい。 The ink composition of the present invention contains (C) a thermosetting agent, whereby high heat cycle resistance can be obtained, and a cured film having excellent crack resistance after repeated thermal load can be formed. The (C) thermosetting agent in the present invention is not particularly limited as long as it has a heat-crosslinkable group represented by the general formula (9), but the following general point can be given in that the visible light transmittance can be further improved. What has a heat-crosslinkable group represented by Formula (10) is more preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(10)中、R19、R20は水素原子または炭素数1~4のアルキル基を示す。組成物の経時安定性と熱硬化剤の反応性の観点から、メチル基またはエチル基が好ましい。 In the general formula (10), R 19 and R 20 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of the stability over time of the composition and the reactivity of the thermosetting agent, a methyl group or an ethyl group is preferred.
 また、上記(C)熱硬化剤は、硬化被膜の可視光透過率をより向上させるため、フェノール性水酸基を含まないものが好ましい。 The (C) thermosetting agent preferably does not contain a phenolic hydroxyl group in order to further improve the visible light transmittance of the cured coating.
 (C)熱硬化剤の具体例を以下に示す。 (C) Specific examples of thermosetting agents are shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記の中でも、一般式(10)で表される熱架橋性基を有する“NIKALAC” (登録商標。以下同じ。)MX-290,“NIKALAC”MX-280,“NIKALAC”MX-270(以上、商品名、(株)三和ケミカル製)は、硬化被膜の可視光透過率をより向上させることができ好ましい。 Among the above, “NIKALAC” (registered trademark, the same applies hereinafter) MX-290, “NIKACALAC” MX-280, “NIKACALAC” MX-270 having the thermally crosslinkable group represented by the general formula (10) (above, The trade name, manufactured by Sanwa Chemical Co., Ltd., is preferable because it can further improve the visible light transmittance of the cured coating.
 本発明において、(c)熱硬化剤の含有量は、組成物中の固形分中0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、30質量%以下が好ましく、20質量%以下がより好ましい。 In the present invention, the content of the (c) thermosetting agent is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more in the solid content in the composition. Moreover, 30 mass% or less is preferable, and 20 mass% or less is more preferable.
 また、本発明の組成物に硬化促進性を付与するため、光硬化剤を含有してもよい。例えば、(D)光酸発生剤または光塩基発生剤を含有することにより、光硬化促進を付与することができる。 Further, a photocuring agent may be contained in order to impart curing acceleration to the composition of the present invention. For example, (D) Photocuring acceleration | stimulation can be provided by containing a photo-acid generator or a photobase generator.
 (D)光酸発生剤としては、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物などを例として挙げることができる。これら光酸発生剤の具体例としては、特開2007-246877号公報や米国特許明細書7374856B2に例示した化合物やSI-100、SI-101、SI-105、SI-106、SI-109、PI-105、PI-106、PI-109、NAI-100、NAI-1002、NAI-1003、NAI-1004、NAI-101、NAI-105、NAI-106、NAI-109、NDI-101、NDI-105、NDI-106、NDI-109、PAI-01、PAI-101、PAI-106、PAI-1001(以上商品名、みどり化学(株)製)、SP-077、SP-082(以上商品名、(株)ADEKA製)、TPS-PFBS(以上商品名、東洋合成工業(株)製)、CGI-MDT(以上商品名、ヘレウス(株)製)、WPAG-281、WPAG-336、WPAG-339、WPAG-342、WPAG-344、WPAG-350、WPAG-370、WPAG-372、WPAG-449、WPAG-469、WPAG-505、WPAG-506(以上商品名、和光純薬工業(株)製)を挙げることができ、光酸発生剤を2種以上含有してもよい。光酸発生剤の含有量は、ポリシロキサンの総量100質量部に対して0.01~20質量部が一般的である。 (D) Examples of the photoacid generator include onium salt compounds, halogen-containing compounds, diazoketone compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and sulfonimide compounds. Specific examples of these photoacid generators include compounds exemplified in JP2007-246877 and US Pat. No. 7,374,856B2, SI-100, SI-101, SI-105, SI-106, SI-109, PI. -105, PI-106, PI-109, NAI-100, NAI-1002, NAI-1003, NAI-1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105 , NDI-106, NDI-109, PAI-01, PAI-101, PAI-106, PAI-1001 (above trade name, manufactured by Midori Chemical Co., Ltd.), SP-077, SP-082 (above trade name, ( ADEKA Co., Ltd.), TPS-PFBS (above trade name, manufactured by Toyo Gosei Co., Ltd.), CGI-MDT (above product) , Made by Heraeus Co., Ltd.), WPAG-281, WPAG-336, WPAG-339, WPAG-342, WPAG-344, WPAG-350, WPAG-370, WPAG-372, WPAG-449, WPAG-469, WPAG- 505, WPAG-506 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.), and may contain two or more photoacid generators. The content of the photoacid generator is generally 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of polysiloxane.
 本発明の組成物には、組成物の固形分の硬化を促進させる、あるいは硬化を容易ならしめる、(C)、(D)成分以外の架橋剤や硬化剤、硬化助剤を含有しても良い。具体例としては、シリコーン樹脂硬化剤、金属アルコレート、金属キレート化合物、イソシアネート化合物およびその重合体、多官能アクリル樹脂、熱により強酸が発生する熱酸発生剤等を挙げることができる。これらを2種以上含有してもよい。なかでも熱酸発生剤が好ましい。熱酸発生剤としては、例えば、“サンエイド”(登録商標)SI-200、SI-210、SI-220、SI-300(以上、商品名、三新化学(株)製)等が挙げられる。 The composition of the present invention may contain a crosslinking agent, a curing agent, and a curing aid other than the components (C) and (D) that accelerate the curing of the solid content of the composition or facilitate the curing. good. Specific examples include silicone resin curing agents, metal alcoholates, metal chelate compounds, isocyanate compounds and polymers thereof, polyfunctional acrylic resins, thermal acid generators that generate strong acids by heat, and the like. Two or more of these may be contained. Of these, thermal acid generators are preferred. Examples of the thermal acid generator include “Sun-Aid” (registered trademark) SI-200, SI-210, SI-220, SI-300 (above, trade name, manufactured by Sanshin Chemical Co., Ltd.) and the like.
 また、金属アルコレートの好ましい具体的な例としては、マグネシウムジエトキシド、アルミニウムトリイソプロポキシド、ジルコニアテトラ(n-ブトキシド)、ジルコニアテトラ(t-ブトキシド)、ハフニウムテトライソプロポキシド、チタンテトライソプロポキシドなどが挙げられる。金属キレート化合物は、金属アルコキシド化合物にキレート化剤を反応させることにより容易に得ることができる。金属キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン、アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを用いることができる。具体的には、例えばエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート化合物、ジルコニアテトラキス(エチルアセトアセテート)、ジルコニアテトラキス(アセチルアセトネート)等ジルコニアキレート化合物、チタンテトラキス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)等のチタンキレート化合物が挙げられる。 Specific examples of preferred metal alcoholates include magnesium diethoxide, aluminum triisopropoxide, zirconia tetra (n-butoxide), zirconia tetra (t-butoxide), hafnium tetraisopropoxide, titanium tetraisopropoxide. Examples include propoxide. The metal chelate compound can be easily obtained by reacting a metal alkoxide compound with a chelating agent. Examples of metal chelating agents that can be used include β-diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and β-ketoacid esters such as ethyl acetoacetate and ethyl benzoylacetate. Specifically, for example, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetylacetonate), etc. Magnesium chelate compounds such as aluminum chelate compounds, ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkylacetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate), zirconia tetrakis (ethylacetoacetate), zirconia Zirconia chelate compounds such as tetrakis (acetylacetonate), Ntetorakisu (ethylacetoacetate), and titanium chelate compounds such as titanium tetrakis (acetylacetonate).
 これらの金属化合物は単独で用いてもよく、また2種以上の金属化合物を混合して用いてもよい。金属化合物の含有量は、ポリシロキサンの0.1質量%~30質量%であることが好ましい。含有量が0.1質量%以下であれば、硬化が十分進行し、良好な耐薬品性や絶縁性を有する硬化被膜が得られる。一方、30質量%以下であれば、インキ用組成物として保存安定性が良好となる。これらの金属化合物はポリシロキサンの硬化剤として働き、硬化被膜の架橋による耐久性の向上、および移動度やオンオフ比などのTFT特性の向上の効果を得ることができる。 These metal compounds may be used alone or as a mixture of two or more metal compounds. The content of the metal compound is preferably 0.1% by mass to 30% by mass of the polysiloxane. If content is 0.1 mass% or less, hardening will fully advance and the cured film which has favorable chemical-resistance and insulation will be obtained. On the other hand, if it is 30 mass% or less, storage stability will become favorable as an ink composition. These metal compounds act as a curing agent for polysiloxane, and can obtain the effect of improving durability by crosslinking of the cured film and improving TFT characteristics such as mobility and on / off ratio.
 本発明のインキ用組成物は、表面調整剤を含有することが好ましい。ここで表面調整剤とは溶液に添加することにより該溶液の表面張力を制御できる界面活性剤のことを指し、フッ素系界面活性剤、シリコーン系界面活性剤、アルキル系界面活性剤および極性基変性シリコーンなどが挙げられるが、表面張力を大きく低下させる観点からフッ素系界面活性剤、シリコーン系界面活性剤、極性基変性シリコーンが好ましい。 The ink composition of the present invention preferably contains a surface conditioner. Here, the surface conditioner refers to a surfactant that can control the surface tension of the solution by being added to the solution, and includes a fluorine-based surfactant, a silicone-based surfactant, an alkyl-based surfactant, and a polar group-modified agent. Silicone and the like can be mentioned, but from the viewpoint of greatly reducing the surface tension, a fluorine-based surfactant, a silicone-based surfactant, and a polar group-modified silicone are preferable.
 フッ素系界面活性剤としては例えば“メガファック”(登録商標)F-444、同F-472、同F-477、同F-552、同F-553、同F-554、同F-555、F-443、同F-470、同F-470、同F-475、同F-482、同F-483、同F-489、同R-30(以上 DIC(株)製)、“エフトップ”(登録商標)EF301、同303、同352(以上 新秋田化成(株)製)、“フロラード”(登録商標)FC-430、同FC-431(以上 住友スリーエム(株)製)、“アサヒガード”(登録商標)AG710、“サーフロン”(登録商標)S-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上 旭硝子(株)製)、BM-1000、BM-1100(以上 裕商(株)製)、NBX-15、FTX-218(以上 (株)ネオス製)を挙げることができる。 Examples of fluorosurfactants include “Megafac” (registered trademark) F-444, F-472, F-477, F-552, F-553, F-554, F-555, F-443, F-470, F-470, F-475, F-482, F-482, F-487, F-89, R-30 (above DIC Corporation), "F Top ”(Registered trademark) EF301, 303, 352 (above made by Shin-Akita Kasei Co., Ltd.),“ Florard ”(registered trademark) FC-430, ibid. FC-431 (above made by Sumitomo 3M Ltd.),“ Asahi ” "Guard" (registered trademark) AG710, "Surflon" (registered trademark) S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (and above) Asahi Glass Co., Ltd.), BM 1000, BM-1100 (all manufactured by Yusho Co.) include NBX-15, FTX-218 (or Co. NEOS) a.
 シリコーン系界面活性剤としては例えばBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-330、BYK-331、BYK-333、BYK-337、BYK-341、BYK-344、BYK-370、BYK375(以上 ビックケミー・ジャパン(株))、FZ-2110、FZ-2166、FZ-2154、FZ-2120、L-720、L-7002、SH8700、L-7001、FZ-2123、SH8400、FZ-77、FZ-2164、FZ-2203、FZ-2208(以上 東レ・ダウコーニング(株))、KF-353、KF-615A、KF-640、KF-642、KF-643、KF-6020、X-22-6191、KF-6011、KF-6015、X-22-2516、KF-410、X-22-821、KF-412、KF-413、KF-4701(以上 信越化学(株))を挙げることができる。 Examples of silicone surfactants include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-330, BYK-331, BYK-333, BYK-337, BYK-341, BYK- 344, BYK-370, BYK375 (above Big Chemie Japan Co., Ltd.), FZ-2110, FZ-2166, FZ-2154, FZ-2120, L-720, L-7002, SH8700, L-7001, FZ-2123 SH8400, FZ-77, FZ-2164, FZ-2203, FZ-2208 (above Toray Dow Corning Co., Ltd.), KF-353, KF-615A, KF-640, KF-642, KF-643, KF -6020, X-22-6191, KF-6011, KF-6015, -22-2516, KF-410, X-22-821, KF-412, KF-413, KF-4701 (above-Etsu Chemical Co.) and the like.
 極性基変性シリコーンとしては、下記一般式(11)を繰り返し単位に持つポリアルキルシロキサンの飽和炭化水素基の一部を、極性基を有する炭化水素基に変換したものである。極性基変性されていないシリコーンはポリシロキサンまたは溶剤との相互作用が小さいため、相分離が起きやすいなどの問題がある。極性基を含有する官能基に変換する部位は、主鎖末端、主鎖中、側鎖のいずれでもよい。また、変性基当量は通常500~10、000g/molであるが、これらに限定されるものではない。 As the polar group-modified silicone, a part of the saturated hydrocarbon group of polyalkylsiloxane having the following general formula (11) as a repeating unit is converted into a hydrocarbon group having a polar group. Silicones that are not modified with a polar group have problems such as easy phase separation because of their small interaction with polysiloxane or solvent. The site to be converted into a functional group containing a polar group may be any of the main chain terminal, the main chain, and the side chain. The modifying group equivalent is usually 500 to 10,000 g / mol, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 xは2以上の整数である。R21およびR22はそれぞれ独立に炭素数1~10の飽和炭化水素基を表す。表面張力低下性の観点から、R21およびR22の全体の50モル%以上がメチル基であることが好ましい。 x is an integer of 2 or more. R 21 and R 22 each independently represents a saturated hydrocarbon group having 1 to 10 carbon atoms. From the viewpoint of surface tension lowering properties, it is preferable that 50 mol% or more of the total of R 21 and R 22 is a methyl group.
 ここで、極性基とは、アミノ基、ヒドロキシ基、メルカプト基、カルボキシル基、エステル基、アミド基、エポキシ基、アクリル基、メタクリル基などが例示される。これらの極性基はシロキサン主鎖に直接結合していてもよいし、アルキレン基、アリーレン基などの炭素鎖を介して結合していてもよい。また、一分子に二種以上の極性基を有していてもよい。これらの中で比較的少量で塗布性の向上に効果があることから、アミノ基変性シリコーン、メルカプト基変性シリコーンが好ましく用いられる。具体的にはFZ-3760、BY16-849、BY16-892、FZ-3785、BY16-891、FZ-3789(以上 東レ・ダウコーニング(株))、KF-868、KF-860、X-22-3939A、KF-2001、KF-8010、X-22-161B、KF-8012、X-22-167B(以上 信越化学(株))が例示される。 Here, examples of the polar group include amino group, hydroxy group, mercapto group, carboxyl group, ester group, amide group, epoxy group, acrylic group, and methacrylic group. These polar groups may be directly bonded to the siloxane main chain, or may be bonded via a carbon chain such as an alkylene group or an arylene group. Moreover, you may have 2 or more types of polar groups in 1 molecule. Of these, amino group-modified silicones and mercapto group-modified silicones are preferably used because they are effective in improving coatability in relatively small amounts. Specifically, FZ-3760, BY16-849, BY16-892, FZ-3785, BY16-891, FZ-3789 (Toray Dow Corning Co., Ltd.), KF-868, KF-860, X-22 3939A, KF-2001, KF-8010, X-22-161B, KF-8012, X-22-167B (Shin-Etsu Chemical Co., Ltd.) are exemplified.
 これらの表面調整剤は単独で用いても、2種以上を混合して用いてもよい。また、表面調整剤のインキ用組成物における含有量はハジキのない均質な塗布面を形成する観点から、0.1質量%以上が好ましく、1質量%以上がより好ましく、さらに好ましくは2質量%以上、さらに好ましくは3質量%以上、さらに好ましくは4質量%以上、さらに好ましくは8質量%以上がよい。また、良好な転写性を保ちかつ形成した塗膜の機能に悪影響を及ぼさないという観点から30質量%以下が好ましく、20質量%以下がより好ましい。 These surface conditioners may be used alone or in combination of two or more. In addition, the content of the surface conditioner in the ink composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and still more preferably 2% by mass from the viewpoint of forming a uniform coated surface without repellency. As mentioned above, More preferably, it is 3 mass% or more, More preferably, it is 4 mass% or more, More preferably, 8 mass% or more is good. Moreover, 30 mass% or less is preferable and 20 mass% or less is more preferable from a viewpoint of maintaining favorable transferability and not having a bad influence on the function of the formed coating film.
 本発明の組成物においてポリシロキサンは、硬化被膜の成分となり、不揮発性成分である。不揮発成分とは、組成物の被膜を200℃以上の温度で1時間加熱処理した後に、気化することなく残存する成分である。硬化されたポリシロキサンがそのまま残存していてもよく、その他、上で説明したの熱硬化剤や光酸発生剤、熱酸発生剤、表面調整剤などが残っていてもいい。さらに加熱硬化、または光硬化時に生成したものが残存してもよい。 In the composition of the present invention, polysiloxane becomes a component of the cured film and is a nonvolatile component. A non-volatile component is a component which remains without being vaporized after heat-treating the coating film of the composition at a temperature of 200 ° C. or higher for 1 hour. The cured polysiloxane may remain as it is, or the thermosetting agent, photoacid generator, thermal acid generator, surface conditioner, etc. described above may remain. Furthermore, what was produced | generated at the time of heat-curing or photocuring may remain | survive.
 本発明のインキ用組成物に対する不揮発性成分の含有量は、塗布性と膜形成性の観点から1~90質量%であることが好ましく、5~70質量%であることがより好ましい。含有量が低すぎると塗膜が薄くなりすぎて膜厚ムラが大きくなる。また含有量が多すぎると流動性の低下により塗膜のレベリングが起こりにくく塗布ムラが発生したり、塗布膜厚の均一性がなく、微細なパターン硬化被膜を実現できなかったり、などの不具合が生じる。 The content of the non-volatile component in the ink composition of the present invention is preferably 1 to 90% by mass, more preferably 5 to 70% by mass, from the viewpoints of coatability and film formation. If the content is too low, the coating film becomes too thin and the film thickness unevenness increases. In addition, if the content is too high, leveling of the coating film is difficult to occur due to a decrease in fluidity, uneven coating occurs, and there is no uniformity of the coating film thickness, and a fine pattern cured coating film cannot be realized. Arise.
 次に、本発明の硬化被膜について説明する。本発明の硬化被膜は、本発明の組成物を用いて、グラビア印刷、インクジェット印刷、スクリーン印刷、オフセット印刷、反転オフセット印刷法、剥離オフセット印刷法、マイクロコンタクト印刷法などのいずれかを用いて被印刷物にパターン被膜を印刷し、これをオーブンまたはホットプレートで100~400℃の範囲で熱処理、またはPLAなどの紫外可視露光機を用い、10~20000J/m程度(波長365nmでの測定露光量)を全面に露光して光硬化することにより得ることができる。印刷被膜の微細パターンが形成できる観点から、反転オフセット印刷法、剥離オフセット印刷法、マイクロコンタクト印刷法がより好ましい。 Next, the cured film of the present invention will be described. The cured coating of the present invention is coated with the composition of the present invention using any of gravure printing, inkjet printing, screen printing, offset printing, reverse offset printing method, release offset printing method, microcontact printing method, and the like. A pattern film is printed on the printed matter, and this is heat-treated in the range of 100 to 400 ° C. in an oven or a hot plate, or about 10 to 20000 J / m 2 (measured exposure amount at a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA. ) On the entire surface and photocured. From the viewpoint of forming a fine pattern of the printed film, the reverse offset printing method, the peeling offset printing method, and the microcontact printing method are more preferable.
 本発明の組成物を用いて作製した硬化被膜は、波長400nmにおける膜厚1μmあたりの光透過率が90%以上であることが好ましく、さらに好ましくは92%以上である。光透過率が90%より低いと、液晶表示素子のTFT基板用平坦化膜として用いた場合、バックライトが通過する際に色変化が起こり、白色表示が黄色味を帯びる。 The cured film produced using the composition of the present invention preferably has a light transmittance of 90% or more per film thickness of 1 μm at a wavelength of 400 nm, more preferably 92% or more. When the light transmittance is lower than 90%, when it is used as a planarizing film for a TFT substrate of a liquid crystal display element, a color change occurs when the backlight passes, and the white display becomes yellowish.
 前記の波長400nmにおける膜厚1μmあたりの透過率は、以下の方法により求めることができる。組成物をテンパックスガラス板にスピンコーターを用いて、所望の膜厚がえられる回転数でスピンコートし、ホットプレートを用いて100℃で2分間プリベークする。オーブンを用いて空気中220℃で1時間熱硬化して膜厚1μmの硬化被膜を作製する。得られた硬化被膜の紫外可視吸収スペクトルを(株)島津製作所製“MultiSpec”(登録商標)-1500を用いて測定し、波長400nmでの透過率を求める。 The transmittance per 1 μm of film thickness at the wavelength of 400 nm can be obtained by the following method. The composition is spin-coated on a Tempax glass plate using a spin coater at a rotation speed that gives a desired film thickness, and prebaked at 100 ° C. for 2 minutes using a hot plate. A cured film having a thickness of 1 μm is prepared by thermosetting at 220 ° C. in air for 1 hour using an oven. The ultraviolet-visible absorption spectrum of the obtained cured film is measured using “MultiSpec” (registered trademark) -1500 manufactured by Shimadzu Corporation to determine the transmittance at a wavelength of 400 nm.
 印刷の例として、特許文献1~3または非特許文献1に記載の方法に従って行うことができる。 As an example of printing, it can be performed according to the methods described in Patent Documents 1 to 3 or Non-Patent Document 1.
 本発明のシロキサン組成物をインキとして用いた印刷方法の一例について説明する。図1は印刷方法の一例である反転オフセット印刷法の概略図である。図1(a)に示すようにブランケット胴1に巻き付けたシリコーンブランケット2上にインキコーター3を用いてインキ4を塗布する。次に図1(b)に示すようにシリコーンブランケット2に除去凸版5を押し当てて、非画線部インキ4”を除去する。次に図1(c)に示すようにシリコーンブランケット2上に残った画線部インキ4’を被印刷物6に転写し、印刷パターン7を形成する。 An example of a printing method using the siloxane composition of the present invention as an ink will be described. FIG. 1 is a schematic diagram of a reverse offset printing method which is an example of a printing method. As shown in FIG. 1A, ink 4 is applied on a silicone blanket 2 wound around a blanket cylinder 1 using an ink coater 3. Next, as shown in FIG. 1 (b), the removal relief plate 5 is pressed against the silicone blanket 2 to remove the non-image area ink 4 ″. Next, as shown in FIG. The remaining image portion ink 4 ′ is transferred to the substrate 6 to form a print pattern 7.
 図2は別の一例である剥離オフセット印刷の概略図である。図2(a)に示すように支持体8上に少なくとも親インキ層9とインキ剥離層10をこの順に有する印刷版原版をパターン加工することにより、インキ剥離性部位と親インキ性部位を形成した印刷版を得る。図2(b)に示すように印刷版の全面にブレードコーター11を用いてインキ4を塗布する。図2(c)に示す要因転写胴1に巻き付けたシリコーンブランケット2を印刷版に押し当ててインキ剥離性部位上のインキ(画線部インキ4’)を選択的に転写する。ここで、インキ剥離性部位上のインキ(画線部インキ4’)を選択的に転写するとは、非画線部インキ4”を実質的に転写せず、実質的にインキ剥離性部位上のインキ(画線部インキ4’)のみを転写することを意味する。(d)シリコーンブランケット2上に転写されたインキ(画線部インキ4’)を被印刷物6に再転写し、印刷パターン7を形成する。 FIG. 2 is a schematic view of peeling offset printing as another example. As shown in FIG. 2 (a), by patterning a printing plate precursor having at least the parent ink layer 9 and the ink release layer 10 in this order on the support 8, an ink release portion and an ink affinity portion were formed. Get a print version. As shown in FIG. 2B, ink 4 is applied to the entire surface of the printing plate using a blade coater 11. The silicone blanket 2 wound around the factor transfer cylinder 1 shown in FIG. 2 (c) is pressed against the printing plate to selectively transfer the ink (image portion ink 4 ') on the ink peelable portion. Here, the selective transfer of the ink on the ink peelable portion (image portion ink 4 ′) means that the non-image portion ink 4 ″ is not substantially transferred and is substantially on the ink peelable portion. This means that only the ink (image portion ink 4 ') is transferred. (D) The ink (image portion ink 4') transferred onto the silicone blanket 2 is retransferred to the substrate 6 and the print pattern 7 is transferred. Form.
 図3はさらに別の一例であるマイクロコンタクト印刷法の概略図である。図3(a)に示すようにポリジメチルシロキサン(PDMS)からなる凸版12をインキスタンプ台13に押し当てる。図3(b)および図3(c)に示すように凸版の凸部に画線部インキ4’をのせた凸版12を被印刷物6に押し当てる。(d)PDMS凸版12を取り外して印刷パターン7を形成する。 FIG. 3 is a schematic view of a micro contact printing method which is still another example. As shown in FIG. 3A, a relief plate 12 made of polydimethylsiloxane (PDMS) is pressed against the ink stamp base 13. As shown in FIGS. 3 (b) and 3 (c), the relief plate 12 on which the image area ink 4 ′ is placed on the relief portions of the relief plate is pressed against the substrate 6. (D) The PDMS relief 12 is removed to form the print pattern 7.
 本発明に用いられる被印刷物は特に限定されるものではないが、電子または光学デバイス用途において印刷物の熱処理が必要になる場合には、耐熱性のある材料が好ましい。このような材料として、例えば、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリアラミド、ポリカーボネート(PC)、シクロオレフィンポリマーなどの耐熱プラスチックのフィルムまたはシート、ソーダライムや石英などのガラス板、シリコンウエハーなどが挙げられる。 The printed material used in the present invention is not particularly limited, but a heat-resistant material is preferable when heat treatment of the printed material is required for electronic or optical device applications. Examples of such materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyethersulfone (PES), polyimide (PI), polyaramid, polycarbonate (PC), and cycloolefin polymer. Examples include heat-resistant plastic films or sheets, glass plates such as soda lime and quartz, and silicon wafers.
 また、基板上に他の方法により何らかのパターンを形成したのち、その上に本発明の組成物を用いて印刷してもよい。例えば薄膜トランジスタの製造においてゲート電極の上にゲート絶縁膜を形成する場合、液晶ディスプレイの製造において画素TFT上に層間絶縁膜や平坦化膜を形成する場合、タッチセンサーの製造において、ITOパターン上に絶縁膜や保護膜を形成する場合等が挙げられる。 Alternatively, after some pattern is formed on the substrate by another method, printing may be performed on the substrate using the composition of the present invention. For example, when a gate insulating film is formed on a gate electrode in manufacturing a thin film transistor, an interlayer insulating film or a planarizing film is formed on a pixel TFT in manufacturing a liquid crystal display, and an insulation is formed on an ITO pattern in manufacturing a touch sensor. For example, a film or a protective film may be formed.
 本発明の硬化被膜はTFTのゲート絶縁膜として好適に用いることができる。本発明のTFTの半導体は多結晶シリコン、非晶質シリコン、有機半導体、酸化物半導体のいずれでもよい。またトップゲート型やボトムゲート型等のいずれの構成でもよい。 The cured film of the present invention can be suitably used as a gate insulating film of a TFT. The semiconductor of the TFT of the present invention may be any of polycrystalline silicon, amorphous silicon, organic semiconductor, and oxide semiconductor. Further, any configuration such as a top gate type or a bottom gate type may be used.
 また、本発明の硬化被膜は、電子または光学デバイスに好適に用いることができる。電子デバイスとは、例えば液晶ディスプレイや有機ELディスプレイ等の表示素子、半導体素子、太陽電池、カラーフィルター、タッチセンサーなどが挙げられる。光学デバイスとは、例えば反射防止フィルム、反射防止板、光学フィルターや、イメージセンサー等に用いられるマイクロレンズアレイなどが挙げられる。ただしいずれもこれらに限られるものではない。本発明の硬化被膜の具体的な用途としては、例えば、液晶ディスプレイや有機ELディスプレイ等の表示素子におけるTFT用平坦化膜や半導体素子における層間絶縁膜、カラーフィルターのオーバーコート、フォトスペーサー、タッチセンサーの保護膜や絶縁膜、反射防止フィルム、反射防止板、光学フィルターの反射防止層(最表層)などである。また、マイクロレンズアレイや太陽電池の最表層に用いることもできる。 Also, the cured coating of the present invention can be suitably used for electronic or optical devices. Examples of the electronic device include display elements such as liquid crystal displays and organic EL displays, semiconductor elements, solar cells, color filters, touch sensors, and the like. Examples of the optical device include an antireflection film, an antireflection plate, an optical filter, and a microlens array used for an image sensor. However, neither is limited to these. Specific applications of the cured film of the present invention include, for example, a planarization film for TFT in a display element such as a liquid crystal display or an organic EL display, an interlayer insulating film in a semiconductor element, an overcoat of a color filter, a photo spacer, a touch sensor. Protective films, insulating films, antireflection films, antireflection plates, and antireflection layers (outermost layers) of optical filters. Moreover, it can also be used for the outermost layer of a microlens array or a solar cell.
 以下に実施例を用いて本発明を説明する。 Hereinafter, the present invention will be described using examples.
 <ポリシロキサン溶液(a)の調製>
 メチルトリメトキシシラン54.48g(0.40モル)、1-ナフチルトリメトキシシラン74.51g(0.30モル)、フェニルトリメトキシシラン59.49g(0.30モル)、ジアセトンアルコール(以下、DAA)176.36gをセパラブルフラスコに入れ、水54.00gにリン酸0.56gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらに、バス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(a)を得た。ポリシロキサン中のオルガノシラン構造の比率について、H-NMR、 13C-NMR、29Si-NMRの測定を行い、全体の積分値から、それぞれのオルガノシランに対する積分値の割合を算出して、比率を計算した。その結果、メチルトリメトキシシラン由来の構造が、40モル%、1-ナフチルトリメトキシシラン由来の構造が30モル、フェニルトリメトキシシラン由来の構造が30モル%であった。
29SiNMRの 測定条件を以下に示す。試料(液体)は直径10mm の“テフロン(登録商標)”製 NMR サンプル管に注入し測定に用いた。
装置:日本電子社製 JNM GX-270、測定法:ゲーテッドデカップリング法
測定核周波数:53.6693 MHz(29Si 核)、スペクトル幅:20000 Hz
パルス幅:12μsec(45°パルス)、パルス繰り返し時間:30.0 sec
基準物質:テトラメチルシラン、測定温度:室温、試料回転数:0.0 Hz。
<Preparation of polysiloxane solution (a)>
54.48 g (0.40 mol) of methyltrimethoxysilane, 74.51 g (0.30 mol) of 1-naphthyltrimethoxysilane, 59.49 g (0.30 mol) of phenyltrimethoxysilane, diacetone alcohol (hereinafter, DAA) 176.36 g was placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.56 g of phosphoric acid in 54.00 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water as by-products by hydrolysis. . After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (a) having a solid content concentration of 50%. Regarding the ratio of the organosilane structure in the polysiloxane, 1 H-NMR, 13 C-NMR, and 29 Si-NMR are measured, and the ratio of the integrated value with respect to each organosilane is calculated from the total integrated value. The ratio was calculated. As a result, the structure derived from methyltrimethoxysilane was 40 mol%, the structure derived from 1-naphthyltrimethoxysilane was 30 mol, and the structure derived from phenyltrimethoxysilane was 30 mol%.
The measurement conditions for 29 SiNMR are shown below. The sample (liquid) was injected into a “Teflon (registered trademark)” NMR sample tube having a diameter of 10 mm and used for measurement.
Device: JNM GX-270, manufactured by JEOL Ltd. Measurement method: Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus), spectral width: 20000 Hz
Pulse width: 12μsec (45 ° pulse), pulse repetition time: 30.0 sec
Reference substance: tetramethylsilane, measurement temperature: room temperature, sample rotation speed: 0.0 Hz.
 <ポリシロキサン溶液(b)の調製>
 メチルトリメトキシシラン81.72g(0.60モル)、1-ナフチルトリメトキシシラン74.51g(0.30モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、3-メトキシブタノール(以下、MB)165.36gをセパラブルフラスコに入れ、水55.80gにリン酸0.54gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(b)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が60モル%、1-ナフチルトリメトキシシラン由来の構造が30モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (b)>
81.72 g (0.60 mol) of methyltrimethoxysilane, 74.51 g (0.30 mol) of 1-naphthyltrimethoxysilane, 24.46 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0. 10 mol), 165.36 g of 3-methoxybutanol (hereinafter referred to as MB) was placed in a separable flask, and a phosphoric acid solution in which 0.54 g of phosphoric acid was dissolved in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes Added. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (b) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, the silicon atom derived from methyltrimethoxysilane was 60 mol%, the structure derived from 1-naphthyltrimethoxysilane was 30 mol%, 2- ( The silicon atom derived from 3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(c)の調製>
 メチルトリメトキシシラン54.48g(0.4モル)、1-ナフチルトリメトキシシラン124.18g(0.50モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、DAA192.67gをセパラブルフラスコに入れ、水55.80gにリン酸0.61gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(c)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が40モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が50モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (c)>
54.48 g (0.4 mol) of methyltrimethoxysilane, 124.18 g (0.50 mol) of 1-naphthyltrimethoxysilane, 24.46 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.2 mol). 10 mol), 192.67 g of DAA was placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.61 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (c) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The silicon atom derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, 2- The silicon atom derived from (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(d)の調製>
 メチルトリメトキシシラン54.48g(0.4モル)、1-ナフチルトリメトキシシラン99.34g(0.40モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、3-アクリロキシプロピルトリメトキシシラン66.97g(0.10モル)、プロピレングリコールモノエチルエーテル(以下、PGEE)147.67gをセパラブルフラスコに入れ、水55.80gにリン酸0.61gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(d)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造40モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が40モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%、3-アクリロキシプロピルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (d)>
54.48 g (0.4 mol) of methyltrimethoxysilane, 99.34 g (0.40 mol) of 1-naphthyltrimethoxysilane, 24.46 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.2 mol). 10 mol), 3-acryloxypropyltrimethoxysilane 66.97 g (0.10 mol) and propylene glycol monoethyl ether (hereinafter referred to as PGEE) 147.67 g were placed in a separable flask, water 55.80 g was added with phosphoric acid 0 A phosphoric acid solution in which .61 g was dissolved was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (d) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, the structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 40 mol%, and 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane-derived silicon atom was 10 mol%, and 3-acryloxypropyltrimethoxysilane-derived silicon atom was 10 mol%.
 <ポリシロキサン溶液(e)の調製>
 メチルトリメトキシシラン27.24g(0.2モル)、1-ナフチルトリメトキシシラン173.85g(0.70モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、DAA220.09gをセパラブルフラスコに入れ、水55.80gにリン酸0.61gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(e)を得た。
実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造20モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が70モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (e)>
27.24 g (0.2 mol) of methyltrimethoxysilane, 173.85 g (0.70 mol) of 1-naphthyltrimethoxysilane, 24.46 g (0. 0.2 g) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. 10 mol), 220.09 g of DAA was placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.61 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (e) having a solid content concentration of 50%.
In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The structure derived from methyltrimethoxysilane was 20 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 70 mol%, and 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane contained 10 mol% of silicon atoms.
 <ポリシロキサン溶液(f)の調製>
 メチルトリメトキシシラン54.48g(0.4モル)、1-ナフチルトリメトキシシラン74.51g(0.3モル)、フェニルトリメトキシシラン39.66g(0.20モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、DAA180.44gをセパラブルフラスコに入れ、水55.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(f)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造40モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が30モル%、フェニルトリメトキシシラン由来の構造が20モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来の構造が10モル%であった。
<Preparation of polysiloxane solution (f)>
54.48 g (0.4 mol) of methyltrimethoxysilane, 74.51 g (0.3 mol) of 1-naphthyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 2- (3, 4 -Epoxycyclohexyl) Ethyltrimethoxysilane 24.46 g (0.10 mol) and DAA 180.44 g were placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.58 g of phosphoric acid in 55.80 g of water was brought to a bath temperature of 40 ° C. Over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (f) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 30 mol%, and phenyltrimethoxysilane. The structure derived from 20 mol% and the structure derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(g)の調製>
 メチルトリメトキシシラン54.48g(0.40モル)、1-ナフチルトリメトキシシラン74.51g(0.30モル)、フェニルトリメトキシシラン39.66g(0.20モル)、ビニルトリメトキシシラン14.82g(0.10モル)、DAA160.44gをセパラブルフラスコに入れ、水55.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(g)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造40モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が30モル%、フェニルトリメトキシシラン由来のケイ素原子が20モル%、ビニルトリメトキシシラン由来の構造が10モル%であった。
<Preparation of polysiloxane solution (g)>
Methyltrimethoxysilane 54.48 g (0.40 mol), 1-naphthyltrimethoxysilane 74.51 g (0.30 mol), phenyltrimethoxysilane 39.66 g (0.20 mol), vinyltrimethoxysilane 14. 82 g (0.10 mol) and 160.44 g of DAA were placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.58 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (g) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The structure derived from methyltrimethoxysilane was 40 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 30 mol%, and phenyltrimethoxysilane. The derived silicon atom was 20 mol%, and the structure derived from vinyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(h)の調製>
メチルトリメトキシシラン47.67g(0.35モル)、1-ナフチルトリメトキシシラン124.18g(0.50モル)、ビニルトリメトキシシラン22.23g(0.15モル)、DAA185.44gをセパラブルフラスコに入れ、水55.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(h)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が35モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が50モル%、ビニルトリメトキシシラン由来のケイ素原子が15モル%であった。
<Preparation of polysiloxane solution (h)>
Separable methyltrimethoxysilane 47.67 g (0.35 mol), 1-naphthyltrimethoxysilane 124.18 g (0.50 mol), vinyltrimethoxysilane 22.23 g (0.15 mol), DAA 185.44 g The solution was put in a flask, and a phosphoric acid solution prepared by dissolving 0.58 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (h) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The silicon atom derived from methoxysilane was 15 mol%.
 <ポリシロキサン溶液(i)の調製>
 メチルトリメトキシシラン54.48g(0.40モル)、1-ナフチルトリメトキシシラン74.51g(0.30モル)、フェニルトリメトキシシラン39.66g(0.20モル)、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン27.84g(0.10モル)、DAA160.44gをセパラブルフラスコに入れ、水55.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(i)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が40モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が30モル%、フェニルトリメトキシシラン由来のケイ素原子が20モル%、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (i)>
54.48 g (0.40 mol) of methyltrimethoxysilane, 74.51 g (0.30 mol) of 1-naphthyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-ethyl-3- [3- (Trimethoxysilyl) propoxymethyl] oxetane (27.84 g, 0.10 mol) and DAA (160.44 g) were placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.58 g of phosphoric acid in 55.80 g of water was bathed. The addition was carried out at a temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (i) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, and 40 mol% of silicon atoms derived from methyltrimethoxysilane, 30 mol% of silicon atoms derived from 1-naphthyltrimethoxysilane, The silicon atom derived from methoxysilane was 20 mol%, and the silicon atom derived from 3-ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane was 10 mol%.
 <ポリシロキサン溶液(j)の調製>
 メチルトリメトキシシラン48.86g(0.30モル)、1-ナフチルトリメトキシシラン124.18g(0.50モル)、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン55.68g(0.20モル)、DAA215.8gをセパラブルフラスコに入れ、水55.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(j)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が30モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が50モル%、3-エチル-3-[3-(トリメトキシシリル)プロポキシメチル]オキセタン由来のケイ素原子が20モル%であった。
<Preparation of polysiloxane solution (j)>
48.86 g (0.30 mol) of methyltrimethoxysilane, 124.18 g (0.50 mol) of 1-naphthyltrimethoxysilane, 3-ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane 55. 68 g (0.20 mol) and 215.8 g of DAA were put in a separable flask, and a phosphoric acid solution in which 0.58 g of phosphoric acid was dissolved in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (j) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The silicon atom derived from methyltrimethoxysilane was 30 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, 3- The silicon atom derived from ethyl-3- [3- (trimethoxysilyl) propoxymethyl] oxetane was 20 mol%.
 <ポリシロキサン溶液(k)の調製>
 メチルトリメトキシシラン13.62g(0.10モル)、1-ナフチルトリメトキシシラン198.68g(0.80モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.64g(0.10モル)、DAA222.12gをセパラブルフラスコに入れ、水55.80gにリン酸0.68gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(k)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子が10モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が80モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (k)>
Methyltrimethoxysilane 13.62 g (0.10 mol), 1-naphthyltrimethoxysilane 198.68 g (0.80 mol), 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 24.64 g (0. 10 mol), 222.12 g of DAA was placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.68 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed to calculate the solid content concentration, and a polysiloxane solution (k) having a solid content concentration of 50% was obtained. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The silicon atom derived from methyltrimethoxysilane was 10 mol%, the silicon atom derived from 1-naphthyltrimethoxysilane was 80 mol%, 2- The silicon atom derived from (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(l)の調製>
 1-ナフチルトリメトキシシラン124.18g(0.50モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.50モル)、DAA239.44gをセパラブルフラスコに入れ、水63.80gにリン酸0.74gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(l)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、1-ナフチルトリメトキシシラン由来のケイ素原子が50モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が50モル%であった。
<Preparation of polysiloxane solution (l)>
124.18 g (0.50 mol) of 1-naphthyltrimethoxysilane, 24.46 g (0.50 mol) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 239.44 g of DAA were placed in a separable flask. A phosphoric acid solution obtained by dissolving 0.74 g of phosphoric acid in 63.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (l) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, and the silicon atom derived from 1-naphthyltrimethoxysilane was 50 mol%, derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. The silicon atom was 50 mol%.
 <ポリシロキサン溶液(m)の調製>
 1-ナフチルトリメトキシシラン49.67g(0.20モル)、フェニルトリメトキシシラン39.66g(0.70モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン24.46g(0.10モル)、DAA160.44gをセパラブルフラスコに入れ、水55.80gにリン酸0.64gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(m)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、1-ナフチルトリメトキシシラン由来の構造が20モル%、フェニルトリメトキシシラン由来のケイ素原子が70モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が10モル%であった。
<Preparation of polysiloxane solution (m)>
49.67 g (0.20 mol) of 1-naphthyltrimethoxysilane, 39.66 g (0.70 mol) of phenyltrimethoxysilane, 24.46 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0. 10 mol), 160.44 g of DAA was placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.64 g of phosphoric acid in 55.80 g of water was added at a bath temperature of 40 ° C. over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, and the weight after heat drying at 250 ° C. for 30 minutes was weighed to calculate the solid content concentration. Thus, a polysiloxane solution (m) having a solid content concentration of 50% was obtained. As in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, the structure derived from 1-naphthyltrimethoxysilane was 20 mol%, the silicon atom derived from phenyltrimethoxysilane was 70 mol%, 2- ( The silicon atom derived from 3,4-epoxycyclohexyl) ethyltrimethoxysilane was 10 mol%.
 <ポリシロキサン溶液(n)の調製>
 メチルトリメトキシシラン53.12g(0.39モル)、1-ナフチルトリメトキシシラン99.34g(0.40モル)、フェニルトリメトキシシラン1.98g(0.01モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン49.28g(0.20モル)、DAA191.40gをセパラブルフラスコに入れ、水57.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(n)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造39モル%、1-ナフチルトリメトキシシラン由来のケイ素原子が40モル%、フェニルトリメトキシシラン由来の構造が1モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が20モル%であった。
<Preparation of polysiloxane solution (n)>
53.12 g (0.39 mol) of methyltrimethoxysilane, 99.34 g (0.40 mol) of 1-naphthyltrimethoxysilane, 1.98 g (0.01 mol) of phenyltrimethoxysilane, 2- (3,4, -Epoxycyclohexyl) Ethyltrimethoxysilane 49.28 g (0.20 mol) and DAA 191.40 g were placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.58 g of phosphoric acid in 57.80 g of water was brought to a bath temperature of 40 ° C. Over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (n) having a solid content concentration of 50%. In the same manner as in Example 1, the proportion of the organosilane structure in the polysiloxane was measured. The structure was derived from 39 mol% of methyltrimethoxysilane, 40 mol% of silicon atoms derived from 1-naphthyltrimethoxysilane, and phenyltrimethoxysilane. The derived structure was 1 mol%, and the silicon atom derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 20 mol%.
 <ポリシロキサン溶液(o)の調製>
 メチルトリメトキシシラン53.12g(0.39モル)、1-ナフチルトリメトキシシラン2.48g(0.01モル)、フェニルトリメトキシシラン79.32g(0.40モル)、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン49.28g(0.20モル)、DAA168.44gをセパラブルフラスコに入れ、水57.80gにリン酸0.58gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度115℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(o)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来の構造39モル%、1-ナフチルトリメトキシシラン由来の構造が1モル%、フェニルトリメトキシシラン由来のケイ素原子が40モル%、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン由来のケイ素原子が20モル%であった。
<Preparation of polysiloxane solution (o)>
53.12 g (0.39 mol) of methyltrimethoxysilane, 2.48 g (0.01 mol) of 1-naphthyltrimethoxysilane, 79.32 g (0.40 mol) of phenyltrimethoxysilane, 2- (3, 4 -Epoxycyclohexyl) Ethyltrimethoxysilane 49.28 g (0.20 mol) and DAA 168.44 g were placed in a separable flask, and a phosphoric acid solution obtained by dissolving 0.58 g of phosphoric acid in 57.80 g of water was brought to a bath temperature of 40 ° C. Over 30 minutes. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 115 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (o) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured. The structure derived from methyltrimethoxysilane was 39 mol%, the structure derived from 1-naphthyltrimethoxysilane was 1 mol%, and derived from phenyltrimethoxysilane. The silicon atom was 40 mol%, and the silicon atom derived from 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 20 mol%.
 <ポリシロキサン溶液(p)の調製>
 メチルトリメトキシシラン136.20g(1.00モル)、DAA88.37gをセパラブルフラスコに入れ、水54.00gにリン酸0.41gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(p)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、メチルトリメトキシシラン由来のケイ素原子は100モル%であった。
<Preparation of polysiloxane solution (p)>
136.20 g (1.00 mol) of methyltrimethoxysilane and 88.37 g of DAA were placed in a separable flask, and a phosphoric acid solution in which 0.41 g of phosphoric acid was dissolved in 54.00 g of water was applied at a bath temperature of 40 ° C. for 30 minutes. Added. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed in an aluminum cup, the weight after heat drying at 250 ° C. for 30 minutes was weighed, and the solid content concentration was calculated to obtain a polysiloxane solution (p) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured, and the silicon atom derived from methyltrimethoxysilane was 100 mol%.
 <ポリシロキサン溶液(q)の調製>
 フェニルトリメトキシシラン198.30g(1.00モル)、DAA160.44gをセパラブルフラスコに入れ、水54.00gにリン酸0.59gを溶かしたリン酸溶液をバス温度40℃にて30分間かけて添加した。得られた溶液をバス温度70℃にて1時間加熱撹拌し、さらにバス温度105℃にて3時間加熱撹拌し、加水分解による副生成物であるメタノール、水を留去しつつ反応させた。反応終了後、氷冷した。重合溶液をアルミカップに秤量し、250℃で30分間加熱乾燥後の重量を秤量して固形分濃度を計算し、固形分濃度 50%のポリシロキサン溶液(q)を得た。実施例1と同様に、ポリシロキサン中のオルガノシラン構造の比率を測定し、フェニルトリメトキシシラン由来のケイ素原子100モル%であった。
<Preparation of polysiloxane solution (q)>
198.30 g (1.00 mol) of phenyltrimethoxysilane and 160.44 g of DAA were placed in a separable flask, and a phosphoric acid solution prepared by dissolving 0.59 g of phosphoric acid in 54.00 g of water was applied at a bath temperature of 40 ° C. for 30 minutes. Added. The resulting solution was heated and stirred at a bath temperature of 70 ° C. for 1 hour, and further heated and stirred at a bath temperature of 105 ° C. for 3 hours, and reacted while distilling off methanol and water, which were by-products by hydrolysis. After completion of the reaction, it was cooled with ice. The polymerization solution was weighed into an aluminum cup, and the weight after heat drying at 250 ° C. for 30 minutes was weighed to calculate the solid content concentration to obtain a polysiloxane solution (q) having a solid content concentration of 50%. In the same manner as in Example 1, the ratio of the organosilane structure in the polysiloxane was measured and found to be 100 mol% of silicon atoms derived from phenyltrimethoxysilane.
 <<実施例1>>
 <インキ用組成物の調製>
 ポリシロキサン溶液(a) 20gとアルミニウムトリスアセチルアセトネート(以下、 Al(acac))0.1g(ポリシロキサンに対して1質量%)をDAA8g、酢酸イソプロピル(以下、IPAc) 64gに加え撹拌した(DAA/IPAc=20/80)。これに、界面活性剤BYK-333(ビックケミー・ジャパン株式会社製)0.5g(ポリシロキサンに対して5質量%)を加えてさらに撹拌し、インキ用組成物Aを得た。
<< Example 1 >>
<Preparation of ink composition>
20 g of polysiloxane solution (a) and 0.1 g of aluminum trisacetylacetonate (hereinafter referred to as Al (acac)) (1% by mass with respect to polysiloxane) were added to 8 g of DAA and 64 g of isopropyl acetate (hereinafter referred to as IPAc) and stirred ( DAA / IPAc = 20/80). To this, 0.5 g of surfactant BYK-333 (manufactured by Big Chemie Japan Co., Ltd.) (5% by mass with respect to polysiloxane) was added and further stirred to obtain ink composition A.
 <印刷パターンの転写性の評価>
 10cm四方のシリコーンゴムブランケット(商品名:“シルブラン”(登録商標)、(株)金陽社製)上に、インキ用組成物Aをバーコーター(#6、松尾産業(株)製)を用いて、全面に厚み0.5μmにて製膜した。その後、この塗膜を、ライン/スペース=15μm/15μm、高さ10μmのパターンが形成してあるシリコンウエハ上に押し付け、ブランケット上からローラーで1往復圧力をかけた。その後、1分間放置した後、ブランケットをシリコンウエハから引き離した。このとき、シリコンウエハの凸の部分(ライン部分)にシリコンブランケット上の膜が転写され、シリコーンゴムブランケット上にパターン膜が形成された。その後、シリコーンゴムブランケット上にガラス基板上に1分間押し付け、パターン形成された膜をガラス基板上に転写させ、ライン/スペース=15μm/15μmのパターンを反転オフセット印刷法により印刷した。印刷されたガラス基板を250℃で1時間加熱処理して、印刷されたインキ用組成物の膜を硬化させた。その後、光学顕微鏡で硬化膜のパターンを観察し、下記の基準に従って評価した。評価結果を表3に示す。 
<Evaluation of print pattern transferability>
Using a bar coater (# 6, manufactured by Matsuo Sangyo Co., Ltd.) on the 10 cm square silicone rubber blanket (trade name: “Syl Blanc” (registered trademark), manufactured by Kinyo Co., Ltd.) A film was formed on the entire surface with a thickness of 0.5 μm. Thereafter, this coating film was pressed onto a silicon wafer on which a pattern of line / space = 15 μm / 15 μm and a height of 10 μm was formed, and one reciprocating pressure was applied from above the blanket with a roller. Then, after leaving for 1 minute, the blanket was pulled away from the silicon wafer. At this time, the film on the silicon blanket was transferred to the convex part (line part) of the silicon wafer, and a pattern film was formed on the silicone rubber blanket. Thereafter, the film was pressed onto a glass substrate for 1 minute on a silicone rubber blanket, the patterned film was transferred onto the glass substrate, and a pattern of line / space = 15 μm / 15 μm was printed by the reverse offset printing method. The printed glass substrate was heat-treated at 250 ° C. for 1 hour to cure the printed ink composition film. Then, the pattern of the cured film was observed with an optical microscope and evaluated according to the following criteria. The evaluation results are shown in Table 3.
 S:所望のライン/スペースのパターンが全面に再現されている
 A:パターンが再現されているが、一部のパターンにゆがみがある
 B:全面にパターンにゆがみもしくはぎざぎざがある。またはピンホール状のハジキが見られる
 C:転写不良またはハジキにより、パターンが潰れている
 D:パターンができていない。
S: A desired line / space pattern is reproduced on the entire surface. A: The pattern is reproduced, but some patterns are distorted. B: The pattern is distorted or jagged on the entire surface. Or pinhole-shaped repellency is observed. C: Pattern is crushed due to transfer failure or repellency. D: Pattern is not formed.
 また、最上層にあるシリコーンゴム層をインキ反発層とする水なし平版(商品名:“東レ水なし平版”(登録商標) TAN-E(ネガタイプ)、東レ(株)製、10cm四方)を用いて、露光、現像により、ライン/スペース=15μm/15μmのシリコーンゴム層のパターンを形成した。ラインにはシリコーンゴム層があり、スペースにはシリコーンゴム層がない。パターンが形成された平版上に、インキ用組成物Aをバーコーター(#6、松尾産業(株)製)を用いて、全面に製膜した。製膜した平版に、上記で用いたものとおなじシリコーゴムブランケットに押し付け、ローラーで1往復圧力をかけた。その後、1分間放置した後、シリコーンゴムブランケットを平版から引き離した。このとき、前記平版の凸の部分(ライン部分)の膜が転写され、シリコーンゴムブランケット上にパターン膜が形成された。その後、パターン膜を有するシリコーンゴムブランケットをガラス基板上に1分間押し付けた。シリコーンゴムブランケットを取り外し、ガラス基板上にライン/スペース=15μm/15μmのインキ用組成物の膜のパターンを剥離オフセット印刷法により印刷した。以外は上記の方法と同様にして硬化被膜を作製し、上記と同じ基準で評価を行った。評価結果を表3に示す。 Also, a waterless flat plate (trade name: “Toray Waterless Flat Plate” (registered trademark), TAN-E (negative type), 10 cm square, manufactured by Toray Industries, Inc.) with the silicone rubber layer at the top as the ink repellent layer is used. Then, a pattern of a silicone rubber layer of line / space = 15 μm / 15 μm was formed by exposure and development. The line has a silicone rubber layer and the space has no silicone rubber layer. On the lithographic plate on which the pattern was formed, the ink composition A was formed on the entire surface using a bar coater (# 6, manufactured by Matsuo Sangyo Co., Ltd.). The formed lithographic plate was pressed against the same silicone rubber blanket as used above, and one reciprocating pressure was applied with a roller. Then, after leaving for 1 minute, the silicone rubber blanket was pulled away from the planographic plate. At this time, the film of the convex part (line part) of the lithographic plate was transferred, and a pattern film was formed on the silicone rubber blanket. Thereafter, a silicone rubber blanket having a pattern film was pressed onto the glass substrate for 1 minute. The silicone rubber blanket was removed, and a film pattern of an ink composition having a line / space = 15 μm / 15 μm was printed on a glass substrate by a peeling offset printing method. Except for the above, a cured film was prepared in the same manner as described above, and evaluated according to the same criteria as above. The evaluation results are shown in Table 3.
 また、シリコンエラストマー(商品名:“Sylgard”(登録商標)184 Silicone Elastamer、東レ・ダウコーニング(株)製)をライン/スペース=15μm/15μm、高さ10μmのパターンが形成してあるシリコンウエハ上に流し込み、脱気し、150℃10分間加熱硬化させて、全面にシリコンエラストマーが形成され、凸部の高さが10μmであるポリジメチルシロキサン(PDMS)スタンプを形成した。このPDMSスタンプに上に、インキ組成物Aをバーコーター(#6、松尾産業(株)製)を用いて、全面に製膜した。このPDMSスタンプをガラス基板に押し付け、マイクロコンタクト印刷法によりガラス基板上にライン/スペース=15μm/15μmのインキ用組成物の膜のパターンをマイクロコンタクト印刷法により印刷した。その後上記の方法と同様にして硬化被膜を作製し、上記と同じ基準で評価を行った。評価結果を表3に示す。 Also, a silicon elastomer (trade name: “Sylgard” (registered trademark) 184, Silicone Elastomer, manufactured by Toray Dow Corning Co., Ltd.) on a silicon wafer on which a pattern of line / space = 15 μm / 15 μm and height of 10 μm is formed. Then, it was deaerated and cured by heating at 150 ° C. for 10 minutes to form a polydimethylsiloxane (PDMS) stamp having a silicon elastomer formed on the entire surface and a height of the convex portion of 10 μm. On this PDMS stamp, the ink composition A was formed on the entire surface using a bar coater (# 6, manufactured by Matsuo Sangyo Co., Ltd.). This PDMS stamp was pressed against a glass substrate, and a film pattern of an ink composition having a line / space = 15 μm / 15 μm was printed on the glass substrate by a microcontact printing method. Thereafter, a cured film was prepared in the same manner as described above, and evaluated according to the same criteria as described above. The evaluation results are shown in Table 3.
 <硬化被膜の密着性試験>
 上述の反転オフセット印刷で、ガラス基板上全面に硬化被膜を作製し、1mm×1mmの100マスにクロスカットし、その後、テープ剥離試験(クロスカット法:JIS
K5400(日本工業規格))を行った。剥離後のマス目の評価について、下記に従い評価を行った。 
<Adhesion test of cured film>
A cured coating is produced on the entire surface of the glass substrate by the above-described reverse offset printing, cross-cut into 100 squares of 1 mm × 1 mm, and then a tape peeling test (cross-cut method: JIS).
K5400 (Japanese Industrial Standard)). About the evaluation of the square after peeling, it evaluated according to the following.
 5B:剥がれの面積が5%未満
 4B:剥がれの面積が5%以上15%未満
 3B:剥がれの面積が15%以上35%未満
 2B:剥がれの面積が35%以上65%未満
 1B:剥がれの面積が65%以上95%未満
 0B:剥がれの面積が95%以上100%以下。
5B: Peeling area is less than 5% 4B: Peeling area is 5% or more and less than 15% 3B: Peeling area is 15% or more and less than 35% 2B: Peeling area is 35% or more and less than 65% 1B: Peeling area 65% or more and less than 95% 0B: The peeling area is 95% or more and 100% or less.
 実施例にて使用した化合物について、略号を下記する。
ジアセトンアルコール:DAA
3-メトキシブタノール:MB
プロピレングリコールモノエチルエーテル:PGEE
イソプロピルアルコール:IPA
酢酸ブチル:BAc
酢酸イソプロピル:IPAc
ジプロピレングリコールジメチルエーテル:DMM
アルミニウムトリスアセチルアセトネート:Al(acac)
チタントリスアセチルアセトネート:Ti(acac)
ジルコニウムトリスアセチルアセトネート:Zr(acac)
アルミニウムトリイソプロポキシド:AlIP
光酸発生剤CGI-MDT(ヘレウス(株)製):CGI-MDT
熱酸発生剤“サンエイド”(登録商標)SI-200(三新化学(株)製):SI-200
界面活性剤BYK-333(ビックケミー・ジャパン株式会社製):BYK-333
界面活性剤BYK-307(ビックケミー・ジャパン株式会社製):BYK-307
界面活性剤X-22-161B(信越化学(株)):X-22-161B
界面活性剤“メガファック”(登録商標)F-554(DIC(株)製)):F-554。
Abbreviations are described below for the compounds used in the examples.
Diacetone alcohol: DAA
3-methoxybutanol: MB
Propylene glycol monoethyl ether: PGEE
Isopropyl alcohol: IPA
Butyl acetate: BAc
Isopropyl acetate: IPAc
Dipropylene glycol dimethyl ether: DMM
Aluminum trisacetylacetonate: Al (acac)
Titanium trisacetylacetonate: Ti (acac)
Zirconium trisacetylacetonate: Zr (acac)
Aluminum triisopropoxide: AlIP
Photoacid generator CGI-MDT (manufactured by Heraeus Co., Ltd.): CGI-MDT
Thermal acid generator “SAN-AID” (registered trademark) SI-200 (manufactured by Sanshin Chemical Co., Ltd.): SI-200
Surfactant BYK-333 (manufactured by BYK Japan): BYK-333
Surfactant BYK-307 (manufactured by BYK Japan): BYK-307
Surfactant X-22-161B (Shin-Etsu Chemical Co., Ltd.): X-22-161B
Surfactant “Megafac” (registered trademark) F-554 (manufactured by DIC Corporation)): F-554.
 <<実施例2~39、比較例1~2>>
 実施例2~39、比較例1~2のインキ用組成物について、表1~2に示したとおりとし、それ以外は実施例1と同様に行った。評価結果を表3に示す。
<< Examples 2 to 39, Comparative Examples 1 and 2 >>
The ink compositions of Examples 2 to 39 and Comparative Examples 1 and 2 were as shown in Tables 1 and 2, and the other procedures were performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
 表3からも分かるように、多環式芳香族基を含有するシロキサン化合物をインキ用のポリシロキサン組成物に含むことで、印刷パターンの転写性および密着性が良好であることが分かる。 As can be seen from Table 3, it can be seen that by including a siloxane compound containing a polycyclic aromatic group in the polysiloxane composition for ink, the transferability and adhesion of the printed pattern are good.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <<実施例40>>
 <CNT複合体分散液の作製>
 共役系重合体であるポリ-3-ヘキシルチオフェン(数平均分子量(Mn):13000、以下P3HT)0.10gをクロロホルム5mlの入ったフラスコの中に加え、超音波洗浄機中で超音波撹拌することによりP3HTのクロロホルム溶液を得た。次いでこの溶液をスポイトにとり、メタノール20mlと0.1規定塩酸10mlの混合溶液の中に0.5mlずつ滴下して、再沈殿を行った。固体になったP3HTを4フッ化エチレン製0.1μm孔径のメンブレンフィルター(PTFE社製)によって濾別捕集し、メタノールでよくすすいだ後、真空乾燥により溶媒を除去した。さらにもう一度溶解と再沈殿を行い、90mgの再沈殿P3HTを得た。
<< Example 40 >>
<Preparation of CNT composite dispersion>
A conjugated polymer poly-3-hexylthiophene (number average molecular weight (Mn): 13000, hereinafter referred to as P3HT) (0.10 g) is added to a flask containing 5 ml of chloroform, and ultrasonically stirred in an ultrasonic cleaner. As a result, a chloroform solution of P3HT was obtained. Subsequently, this solution was taken in a dropper, and 0.5 ml was dropped into a mixed solution of 20 ml of methanol and 10 ml of 0.1N hydrochloric acid to perform reprecipitation. The solid P3HT was collected by filtration with a 0.1 μm pore membrane filter (PTFE) made of tetrafluoroethylene, rinsed thoroughly with methanol, and then the solvent was removed by vacuum drying. Further, dissolution and reprecipitation were performed again to obtain 90 mg of reprecipitation P3HT.
 単層CNT(CNI社製の単層カーボンナノチューブ、純度95%)1.0mgと、上記P3HT1.0mgを10mlのクロロホルム中に加え、氷冷しながら超音波ホモジナイザー(東京理化器械(株)製VCX-500)を用いて出力250Wで30分間超音波撹拌した。超音波照射を30分間行った時点で一度照射を停止し、上記P3HTを1.0mg追加し、さらに1分間超音波照射することによって、CNT複合体分散液A(溶媒に対するCNT濃度0.1g/l)を得た。 Add 1.0 mg of single-walled CNT (single-walled carbon nanotubes manufactured by CNI, purity 95%) and 1.0 mg of the above P3HT into 10 ml of chloroform, and ultrasonically homogenizer (VCX manufactured by Tokyo Rika Kikai Co., Ltd.) -500) for 30 minutes with an output of 250 W. When the ultrasonic irradiation was performed for 30 minutes, the irradiation was stopped once, 1.0 mg of the above P3HT was added, and further ultrasonic irradiation was performed for 1 minute, whereby the CNT composite dispersion A (CNT concentration 0.1 g / l) was obtained.
 CNT複合体分散液A中で、P3HTがCNTに付着しているかどうかを調べるため、分散液A5mlをメンブレンフィルターを用いてろ過を行い、フィルター上にCNTを捕集した。捕集したCNTを、溶媒が乾かないうちに素早くシリコンウエハー上に転写し、乾燥したCNTを得た。このCNTを、X線光電子分光法(XPS)を用いて元素分析したところP3HTに含まれる硫黄元素が検出された。従って、CNT複合体分散液A中のCNTにはP3HTが付着していることが確認できた。 In the CNT complex dispersion A, in order to examine whether P3HT was adhered to the CNTs, 5 ml of the dispersion A was filtered using a membrane filter, and CNTs were collected on the filter. The collected CNTs were quickly transferred onto a silicon wafer before the solvent was dried to obtain dried CNTs. When this CNT was subjected to elemental analysis using X-ray photoelectron spectroscopy (XPS), sulfur element contained in P3HT was detected. Therefore, it was confirmed that P3HT was adhered to the CNT in the CNT composite dispersion A.
 上記CNT複合体分散液Aにo-ジクロロベンゼン(沸点180℃、以下o-DCB)5mlを加えた後、ロータリーエバポレーターを用いて、低沸点溶媒であるクロロホルムを留去し、溶媒をo-DCBで置換し、CNT複合体分散液Bを得た。次に分散液Bをメンブレンフィルター(孔径3μm、直径25mm、ミリポア社製オムニポアメンブレン)を用いてろ過を行い、長さ10μm以上のCNTを除去した。得られたろ液にo-DCBを加えて希釈し、CNT複合体分散液C(溶媒に対するCNT濃度0.06g/l)とした。 After adding 5 ml of o-dichlorobenzene (boiling point 180 ° C., hereinafter referred to as o-DCB) to the CNT complex dispersion A, chloroform, which is a low boiling point solvent, was distilled off using a rotary evaporator, and the solvent was removed from o-DCB. To obtain a CNT composite dispersion B. Next, the dispersion B was filtered using a membrane filter (pore size: 3 μm, diameter: 25 mm, Omnipore membrane manufactured by Millipore) to remove CNTs having a length of 10 μm or more. The obtained filtrate was diluted by adding o-DCB to obtain a CNT composite dispersion C (CNT concentration 0.06 g / l with respect to the solvent).
 <TFTの作製と評価>
 図4に示す形態のTFTを作製した。ガラス製の基板14(厚み0.7mm)上に、抵抗加熱法により、メタルマスクを介して、クロムを厚み5nm、続いて金を厚み50nmで真空蒸着し、ゲート電極15を形成した。次に実施例1で調製したインキ用組成物を用いて反転オフセット印刷法により印刷物を形成し、これを窒素気流下220℃、1時間加熱処理することによって、膜厚が500nmのゲート絶縁膜を得て、ゲート絶縁層16を形成した。このゲート絶縁層が形成された基板上に、金を厚み50nmになるように真空蒸着した。次に、ポジ型レジスト溶液を滴下し、スピナーを用いて塗布した後、90℃のホットプレートで乾燥し、レジスト膜を形成した。得られたレジスト膜に対して、露光機を用いて、フォトマスクを通して紫外線照射を行った。続いて、基板をアルカリ水溶液に浸漬し、紫外線照射部を除去し、電極形状にパターン加工されたレジスト膜を得た。得られた基板を金エッチング液(アルドリッチ社製、Gold etchant,standard)中に浸漬し、レジスト膜が除去された部分の金を溶解・除去した。得られた基板をアセトン中に浸漬し、レジストを除去した後、純水で洗浄し、100℃のホットプレートで30分間乾燥した。このようにして、電極の幅(チャネル幅)0.2mm、電極の間隔(チャネル長)20μm、厚み50nmの金ソース電極18およびドレイン電極19を得た。
<Production and evaluation of TFT>
A TFT having the form shown in FIG. 4 was produced. A gate electrode 15 was formed on a glass substrate 14 (thickness 0.7 mm) by vacuum evaporation of chromium with a thickness of 5 nm and then gold with a thickness of 50 nm through a metal mask by a resistance heating method. Next, a printed matter was formed by the reverse offset printing method using the ink composition prepared in Example 1, and this was heat-treated at 220 ° C. for 1 hour in a nitrogen stream to form a gate insulating film having a thickness of 500 nm. As a result, a gate insulating layer 16 was formed. On the substrate on which the gate insulating layer was formed, gold was vacuum-deposited so as to have a thickness of 50 nm. Next, a positive resist solution was dropped and applied using a spinner, and then dried on a hot plate at 90 ° C. to form a resist film. The obtained resist film was irradiated with ultraviolet rays through a photomask using an exposure machine. Subsequently, the substrate was immersed in an alkaline aqueous solution, the ultraviolet irradiation part was removed, and a resist film patterned into an electrode shape was obtained. The obtained substrate was immersed in a gold etching solution (manufactured by Aldrich, Gold etchant, standard), and the gold in the portion where the resist film was removed was dissolved and removed. The obtained substrate was immersed in acetone, the resist was removed, washed with pure water, and dried on a hot plate at 100 ° C. for 30 minutes. Thus, a gold source electrode 18 and a drain electrode 19 having an electrode width (channel width) of 0.2 mm, an electrode interval (channel length) of 20 μm, and a thickness of 50 nm were obtained.
 次に、電極が形成された基板上に、調製したCNT複合体分散液Cをインクジェット法により塗布し、ホットプレート上で窒素気流下、150℃、30分間の熱処理を行い、CNT複合体分散膜を活性層17とするTFTを作製した。この際、インクジェット装置に、簡易吐出実験セットPIJL-1(クラスターテクノロジー株式会社製)を用いた。 Next, the prepared CNT composite dispersion C is applied to the substrate on which the electrodes are formed by an ink jet method, and is subjected to heat treatment at 150 ° C. for 30 minutes in a nitrogen stream on a hot plate to obtain a CNT composite dispersion film. A TFT having the active layer 17 as a thin film was manufactured. At this time, a simple discharge experiment set PIJL-1 (manufactured by Cluster Technology Co., Ltd.) was used for the ink jet apparatus.
 このようにして作製したTFTについて、ゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)-ソース・ドレイン間電圧(Vsd)特性を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ株式会社製)を用い、大気中で測定した。Vg=+30~-30Vに変化させたときのVsd=-5VにおけるIdの値の変化から線形領域の移動度を求めたところ、0.5cm/Vsecであった。また、このときのIdの最大値と最小値の比からオンオフ比を求めたところ1×10であった。また、ヒステリシスについて、Id=10-9Aにおけるゲート電圧を正から負にスイープした場合のゲート電圧(Vg1)と負から正にスイープした場合のゲート電圧(Vg2)を測定し、その差をヒステリシスと定義して算出したところ、10Vであった。 The TFT thus fabricated was measured for the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) was changed. The measurement was performed in the atmosphere using a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.). The mobility in the linear region was determined from the change in the value of Id at Vsd = −5V when Vg = + 30 to −30V, and it was 0.5 cm 2 / Vsec. Further, when the on / off ratio was determined from the ratio between the maximum value and the minimum value of Id at this time, it was 1 × 10 6 . As for hysteresis, the gate voltage (Vg1) when the gate voltage at Id = 10 −9 A is swept from positive to negative and the gate voltage (Vg2) when swept from negative to positive are measured, and the difference is hysteresis. It was 10V when it defined and calculated.
 <<実施例40~45>>
 インキ用組成物を表4に示すものに変更した以外は実施例40と同様にしてTFTの作製、評価を行った。結果を表4に示す。
<< Examples 40 to 45 >>
A TFT was prepared and evaluated in the same manner as in Example 40 except that the ink composition was changed to that shown in Table 4. The results are shown in Table 4.
 <<比較例3>>
 表2に記載している比較例1で調整したインキ用組成物Z1を用いて実施例26と同様にしてTFTの作製を行ったが、パターンが形成できなかった。
<< Comparative Example 3 >>
A TFT was produced in the same manner as in Example 26 using the ink composition Z1 prepared in Comparative Example 1 described in Table 2, but a pattern could not be formed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
1  ブランケット胴
2  インキ剥離性基材(シリコーンゴムブランケット)
3  インキコーター
4  インキ
4’ 画線部インキ
4” 非画線部インキ
5  除去凸版
6  被印刷物
7  印刷パターン
8  支持体
9  親インキ層
10 インキ剥離層
11 ブレードコーター
12 PDMS凸版
13 インキスタンプ台
14 基板
15 ゲート電極
16 ゲート絶縁層
17 活性層
18 ソース電極
19 ドレイン電極
1 Blanket cylinder 2 Ink peelable substrate (silicone rubber blanket)
3 Ink coater 4 Ink 4 'Image area ink 4 "Non-image area ink 5 Removal relief plate 6 Printed object 7 Print pattern 8 Support 9 Parent ink layer 10 Ink release layer 11 Blade coater 12 PDMS relief plate 13 Ink stamp stand 14 Substrate 15 Gate electrode 16 Gate insulating layer 17 Active layer 18 Source electrode 19 Drain electrode

Claims (12)

  1. (A1)一般式(1)~(3)から選ばれる1種以上のシラン化合物を少なくとも含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサン、および
    (B)溶剤
    を含むことを特徴とするポリシロキサン組成物。
    2-n Si(OR2     (1)
    (Rはケイ素原子に直結する水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。Rは1価の基であり多環式芳香族基またはその置換体を表す。Rは水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。nは1または2である。nが2の場合、複数のRは同一でも異なっていてもよい。)
    Si(OR10      (2)
    (Rは多環式芳香族基またはその置換体を表す。R10は水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。)
    (R11O) 3-mSi-R-Si(OR12 3-l (3)
    (Rは2価の多環式芳香族基またはその置換体を表す。RおよびRは、水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表し、それぞれ同一でも異なっていてもよい。R11およびR12は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。mおよびlはそれぞれ独立に1~3の整数である。)
    (A1) comprising a polysiloxane obtained by hydrolysis and condensation of a silane compound containing at least one silane compound selected from the general formulas (1) to (3), and (B) a solvent. A polysiloxane composition.
    R 0 2-n R 1 n Si (OR 9 ) 2 (1)
    (R 0 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituted product thereof directly bonded to a silicon atom. R 1 is a monovalent group and represents a polycyclic aromatic group or a substituted product thereof. 9 represents hydrogen, a methyl group, an ethyl group, a propyl group or a butyl group, which may be the same or different, and n is 1 or 2. When n is 2, a plurality of R 1 may be the same or different. May be good.)
    R 2 Si (OR 10 ) 3 (2)
    (R 2 represents a polycyclic aromatic group or a substituted product thereof. R 10 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.)
    (R 11 O) m R 4 3-m Si—R 3 —Si (OR 12 ) l R 5 3-l (3)
    (R 3 represents a divalent polycyclic aromatic group or a substituted product thereof. R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, an aryl group or a substituted product thereof, and each is the same or different. R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different, and m and l are each independently an integer of 1 to 3. )
  2. (A1)ポリシロキサンの全ケイ素原子に対して、一般式(1)から(3)のいずれかで表される1種以上のシラン化合物に由来するケイ素原子が5モル%以上、70モル%以下である請求項1記載のシロキサン組成物。 (A1) 5 mol% or more and 70 mol% or less of silicon atoms derived from one or more silane compounds represented by any one of the general formulas (1) to (3) with respect to all silicon atoms of polysiloxane The siloxane composition according to claim 1.
  3. (A2)一般式(1)~(3)から選ばれる1種以上のシラン化合物および一般式(7)で表されるシラン化合物を少なくとも含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサン、および
    (B)溶剤を含み、
    ポリシロキサンの共重合成分であるシラン化合物の全構成単位のケイ素原子に対して、一般式(1)~(3)のシラン化合物由来のケイ素原子、および、一般式(7)で表されるシラン化合物由来のケイ素原子の比率が、それぞれ、10~70モル%/0.1~40モル%の範囲であることを特徴とするポリシロキサン組成物。
    2-n Si(OR2     (1)
    (Rはケイ素原子に直結する水素、アルキル基、アルケニル基、フェニル基またはそれらの置換体を表す。Rはケイ素原子に直結する1価基であり多環式芳香族基またはその置換体を表す。Rは水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。nは1または2である。nが2の場合、複数のRは同一でも異なっていてもよい。)
    Si(OR10      (2)
    (Rは多環式芳香族基またはその置換体を表す。R10は水素、メチル基、エチル基、プロピル基またはブチル基を表し、同一でも異なっていてもよい。)
    (R11O) 3-mSi-R-Si(OR12 3-l (3)
    (Rは2価の多環式芳香族基またはその置換体を表す。RおよびRは、水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表し、それぞれ同一でも異なっていてもよい。R11およびR12は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。mおよびlはそれぞれ独立に1~3の整数である。)
     R Si(OR164-a      (7)
     (Rは、ビニル基、エポキシ基、オキセタニル基の少なくとも1つを含む炭素数3~20の有機基を表す。それぞれ同一でも異なっていてもよい。R16は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。aは1~3の整数である。)
    (A2) Polysiloxane obtained by hydrolysis and condensation of at least one silane compound selected from general formulas (1) to (3) and a silane compound containing at least the silane compound represented by general formula (7) And (B) a solvent,
    A silicon atom derived from the silane compound of the general formulas (1) to (3) and a silane represented by the general formula (7) with respect to the silicon atoms of all the structural units of the silane compound that is a copolymer component of polysiloxane A polysiloxane composition characterized in that the ratio of silicon atoms derived from a compound is in the range of 10 to 70 mol% / 0.1 to 40 mol%, respectively.
    R 0 2-n R 1 n Si (OR 9 ) 2 (1)
    (R 0 represents hydrogen, an alkyl group, an alkenyl group, a phenyl group or a substituent thereof directly bonded to a silicon atom. R 1 is a monovalent group directly bonded to a silicon atom, and a polycyclic aromatic group or a substituent thereof. R 9 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different, n is 1 or 2. When n is 2, a plurality of R 1 are the same But it may be different.)
    R 2 Si (OR 10 ) 3 (2)
    (R 2 represents a polycyclic aromatic group or a substituted product thereof. R 10 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.)
    (R 11 O) m R 4 3-m Si—R 3 —Si (OR 12 ) l R 5 3-l (3)
    (R 3 represents a divalent polycyclic aromatic group or a substituted product thereof. R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, an aryl group or a substituted product thereof, and each is the same or different. R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different, and m and l are each independently an integer of 1 to 3. )
    R 9 a Si (OR 16 ) 4-a (7)
    (R 9 represents an organic group having 3 to 20 carbon atoms including at least one of a vinyl group, an epoxy group, and an oxetanyl group. They may be the same or different. R 16 represents hydrogen, a methyl group, an ethyl group, A propyl group or a butyl group, which may be the same or different, a is an integer of 1 to 3)
  4. (A3)一般式(1)~(3)から選ばれる1種以上のシラン化合物、一般式(7)で表されるシラン化合物および一般式(8)で表されるシラン化合物を少なくとも含むシラン化合物を加水分解および縮合させることにより得られるポリシロキサン、および
    (B)溶剤を含み、
    (a)ポリシロキサンの共重合成分であるシラン化合物の全構成単位に対して、一般式(1)~(3)のいずれかで表される1種以上のシラン化合物由来のケイ素原子、一般式(7)で表されるシラン化合物に由来するケイ素原子、一般式(8)で表されるシラン化合物に由来するケイ素原子の比率が、それぞれ、10~70モル%/0.1~40モル%/5~50モル%の範囲であることを特徴とする請求項3記載のポリシロキサン組成物。
     R10 Si(OR174-b      (8)
     (R10は、フェニル基を含む炭素数3~20の有機基を表す。それぞれ同一でも異なっていてもよい。R17は水素、メチル基、エチル基、プロピル基またはブチル基を表し、それぞれ同一でも異なっていてもよい。bは1~3の整数である。)
    (A3) One or more silane compounds selected from general formulas (1) to (3), a silane compound represented by general formula (7), and a silane compound containing at least a silane compound represented by general formula (8) A polysiloxane obtained by hydrolyzing and condensing, and (B) a solvent,
    (A) A silicon atom derived from one or more silane compounds represented by any one of the general formulas (1) to (3), a general formula of all structural units of the silane compound that is a copolymer component of polysiloxane The ratio of the silicon atom derived from the silane compound represented by (7) and the silicon atom derived from the silane compound represented by the general formula (8) is 10 to 70 mol% / 0.1 to 40 mol%, respectively. The polysiloxane composition according to claim 3, which is in the range of / 5 to 50 mol%.
    R 10 b Si (OR 17 ) 4-b (8)
    (R 10 represents an organic group having 3 to 20 carbon atoms including a phenyl group, and may be the same or different. R 17 represents hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and each is the same. Or b may be different, and b is an integer of 1 to 3.)
  5. さらに表面調整剤をポリシロキサンに対して1質量%以上含む請求項1~4いずれかに記載のポリシロキサン組成物。 The polysiloxane composition according to any one of claims 1 to 4, further comprising a surface conditioning agent in an amount of 1% by mass or more based on the polysiloxane.
  6. さらに、溶剤がプロトン性溶剤および非プロトン性溶剤を請求項1~5いずれかに記載のポリシロキサン組成物。 The polysiloxane composition according to any one of claims 1 to 5, wherein the solvent is a protic solvent or an aprotic solvent.
  7. 表面調整剤がフッ素系界面活性剤、シリコーン系界面活性剤および極性基変性シリコーンから選ばれる1種以上を含む請求項1~6いずれかに記載のポリシロキサン組成物。 The polysiloxane composition according to any one of claims 1 to 6, wherein the surface conditioner comprises one or more selected from a fluorine-based surfactant, a silicone-based surfactant, and a polar group-modified silicone.
  8. さらに、金属キレート化合物かつ/または金属アルコキシド化合物を含む請求項1~7いずれかに記載のポリシロキサン組成物。 The polysiloxane composition according to any one of claims 1 to 7, further comprising a metal chelate compound and / or a metal alkoxide compound.
  9. 請求項1~8のいずれかに記載のポリシロキサン組成物を用いて形成されることを特徴とする硬化被膜。 A cured film formed using the polysiloxane composition according to any one of claims 1 to 8.
  10. 請求項9記載の硬化被膜を有する電子または光学デバイス。 An electronic or optical device having the cured coating according to claim 9.
  11. 請求項1~8のいずれかに記載のポリシロキサン組成物を基板に塗布し、加熱して硬化させる工程を有する電子または光学デバイスの製造方法。 A method for producing an electronic or optical device, comprising a step of applying the polysiloxane composition according to any one of claims 1 to 8 to a substrate and heating and curing the composition.
  12. 基板がTFT用基板である請求項11記載の電子または光学デバイスの製造方法。 The method for manufacturing an electronic or optical device according to claim 11, wherein the substrate is a substrate for TFT.
PCT/JP2013/069297 2012-07-19 2013-07-16 Polysiloxane composition, electrical device, and optical device WO2014013986A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380037773.0A CN104487516B (en) 2012-07-19 2013-07-16 Polysiloxane composition, electronic device and optics
JP2014525823A JP6176248B2 (en) 2012-07-19 2013-07-16 Polysiloxane composition, electronic device and optical device
KR20147034535A KR20150032528A (en) 2012-07-19 2013-07-16 Polysiloxane composition, electrical device, and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-160155 2012-07-19
JP2012160155 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014013986A1 true WO2014013986A1 (en) 2014-01-23

Family

ID=49948812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069297 WO2014013986A1 (en) 2012-07-19 2013-07-16 Polysiloxane composition, electrical device, and optical device

Country Status (5)

Country Link
JP (1) JP6176248B2 (en)
KR (1) KR20150032528A (en)
CN (1) CN104487516B (en)
TW (1) TWI591136B (en)
WO (1) WO2014013986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018097284A1 (en) * 2016-11-28 2019-10-17 国立大学法人 奈良先端科学技術大学院大学 Thin film transistor substrate having protective film and method for manufacturing the same
US20210063871A1 (en) * 2019-08-30 2021-03-04 Shin-Etsu Chemical Co., Ltd. Resist material and patterning process

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626301B2 (en) * 2015-03-18 2020-04-21 Dexerials Corporation Method for manufacturing light emitting device
KR102478337B1 (en) * 2016-10-04 2022-12-19 닛산 가가쿠 가부시키가이샤 Coating composition for pattern reversal
CN108587448B (en) * 2018-04-09 2020-05-29 歌尔股份有限公司 Electronic device surface treatment method and electronic product
CN110172155A (en) * 2019-05-27 2019-08-27 武汉华星光电半导体显示技术有限公司 The preparation method and display device hardened layer material, harden layer material
CN110845961A (en) * 2019-10-23 2020-02-28 武汉华星光电半导体显示技术有限公司 Hardened layer material, preparation method of hardened layer material and display device
JP2021082755A (en) * 2019-11-21 2021-05-27 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Composition for amorphous silicon formation, and production method of amorphous silicon film by use thereof
CN111574715A (en) * 2020-05-22 2020-08-25 中国乐凯集团有限公司 Composition, packaging film containing composition, preparation method of packaging film and electronic device
CN116472319A (en) * 2020-09-21 2023-07-21 株式会社世可 Compound for ultra-thin strength-enhancing coating agent and strength-enhancing coating agent comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536210A (en) * 2001-07-28 2004-12-02 ダウ・コ−ニング・コ−ポレ−ション High refractive index polysiloxanes and their preparation
JP2005350558A (en) * 2004-06-10 2005-12-22 Shin Etsu Chem Co Ltd Composition for forming porous film, method for forming pattern and porous sacrifice film
JP2010007057A (en) * 2008-05-30 2010-01-14 Toray Ind Inc Siloxane-based resin composition and optical device using the same
WO2011040248A1 (en) * 2009-09-29 2011-04-07 東レ株式会社 Positive photosensitive resin composition, cured film obtained using same, and optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407860B2 (en) * 2008-03-18 2014-02-05 東レ株式会社 Gate insulating material, gate insulating film, and organic field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536210A (en) * 2001-07-28 2004-12-02 ダウ・コ−ニング・コ−ポレ−ション High refractive index polysiloxanes and their preparation
JP2005350558A (en) * 2004-06-10 2005-12-22 Shin Etsu Chem Co Ltd Composition for forming porous film, method for forming pattern and porous sacrifice film
JP2010007057A (en) * 2008-05-30 2010-01-14 Toray Ind Inc Siloxane-based resin composition and optical device using the same
WO2011040248A1 (en) * 2009-09-29 2011-04-07 東レ株式会社 Positive photosensitive resin composition, cured film obtained using same, and optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018097284A1 (en) * 2016-11-28 2019-10-17 国立大学法人 奈良先端科学技術大学院大学 Thin film transistor substrate having protective film and method for manufacturing the same
JP7033259B2 (en) 2016-11-28 2022-03-10 国立大学法人 奈良先端科学技術大学院大学 Thin film transistor substrate provided with a protective film and its manufacturing method
US20210063871A1 (en) * 2019-08-30 2021-03-04 Shin-Etsu Chemical Co., Ltd. Resist material and patterning process
US11994798B2 (en) * 2019-08-30 2024-05-28 Shin-Etsu Chemical Co., Ltd. Resist material and patterning process

Also Published As

Publication number Publication date
JPWO2014013986A1 (en) 2016-06-30
JP6176248B2 (en) 2017-08-09
KR20150032528A (en) 2015-03-26
TW201406876A (en) 2014-02-16
TWI591136B (en) 2017-07-11
CN104487516A (en) 2015-04-01
CN104487516B (en) 2017-10-24

Similar Documents

Publication Publication Date Title
JP6176248B2 (en) Polysiloxane composition, electronic device and optical device
JP5407860B2 (en) Gate insulating material, gate insulating film, and organic field effect transistor
KR101271783B1 (en) Siloxane resin composition and method for producing same
JP5874819B2 (en) Field effect transistor
JP4973093B2 (en) Siloxane resin composition, optical article, and method for producing siloxane resin composition
JP5509675B2 (en) Siloxane resin composition and optical device using the same
JP6455636B1 (en) Negative photosensitive resin composition and cured film
US20190382617A1 (en) Polysilsesquioxane resin composition and light-shielding black resist composition containing same
JP5821313B2 (en) A printing ink composition for forming an insulating film, and an insulating film formed from the printing ink composition for forming an insulating film.
JP2010026360A (en) Negative photosensitive siloxane resin composition
JP5418617B2 (en) Siloxane resin composition, cured film and optical article
JP5353011B2 (en) Siloxane resin composition, optical device using the same, and method for producing siloxane resin composition
KR102528774B1 (en) Transparent resin composition, transparent film and transparent resin-coated glass substrate
JP2011219544A (en) Printing ink composition and method for producing printed matter
JP2012158743A (en) Non-photosensitive resin composition, cured film formed therefrom, and element for touch panel having cured film
JP2010222431A (en) Siloxane-based resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034535

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014525823

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13820081

Country of ref document: EP

Kind code of ref document: A1