WO2014010258A1 - Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof - Google Patents

Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof Download PDF

Info

Publication number
WO2014010258A1
WO2014010258A1 PCT/JP2013/050231 JP2013050231W WO2014010258A1 WO 2014010258 A1 WO2014010258 A1 WO 2014010258A1 JP 2013050231 W JP2013050231 W JP 2013050231W WO 2014010258 A1 WO2014010258 A1 WO 2014010258A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
semiconductor
resin composition
circuit board
sealing
Prior art date
Application number
PCT/JP2013/050231
Other languages
French (fr)
Japanese (ja)
Inventor
繁 山津
長谷川 貴志
津 金
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014010258A1 publication Critical patent/WO2014010258A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81022Cleaning the bonding area, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to an acrylic resin composition for semiconductor encapsulation, a semiconductor device using the same, and a method for manufacturing the same. More specifically, the present invention relates to an acrylic resin composition for semiconductor encapsulation used for flip chip mounting in which electrical connection and curing of the encapsulation resin are simultaneously performed during reflow by a method of supplying the encapsulation resin to the circuit board first. And a semiconductor device using the same and a manufacturing method thereof.
  • a bump electrode is formed by solder on a semiconductor chip of a mounting component, and a circuit board on which a mounting electrode pad provided to correspond to the bump electrode is formed, A semiconductor chip is placed face down. Then, the solder is melted by reflow treatment to directly connect the bump electrode and the electrode pad.
  • connection by mounting a flip-chip type semiconductor device there has been a problem in reliability, for example, in the temperature cycle test, there is a possibility of causing electrical connection failure due to distortion due to thermal stress. That is, the thermal stress derived from the difference in thermal expansion coefficient between the semiconductor chip and the circuit board may concentrate on the connection part and break the connection part.
  • the gap formed between the semiconductor chip and the circuit board is sealed with a resin composition, so that this thermal stress is dispersed and connection reliability is achieved. Underfill technology that enhances performance is widely used.
  • a semiconductor chip is mounted on a circuit board, the electrodes are joined together by reflow treatment, and then a sealing resin (underfill resin) is injected into the gap between the circuit board and the semiconductor chip.
  • the method is widely used.
  • the semiconductor chip before the semiconductor chip is bonded to the circuit board by thermocompression bonding, the semiconductor chip is mounted after the sealing resin is supplied to the circuit board in advance by coating or the like. Then, by reflowing them, the sealing resin is cured by heating at the time of thermocompression bonding together with the bonding between the electrodes.
  • Patent Documents 1 to 3 Conventionally, an epoxy resin composition has been studied as this pre-feed type sealing resin.
  • this PoP semiconductor device uses a logic package in the lower stage and a memory package in the upper stage.
  • a logic package in the lower stage For PoP semiconductor devices, only good logic packages and memory packages can be selected and used, and various combinations of memory capacity packages and logic packages can be freely used. It is particularly suitable for applications that need to be made.
  • bumps formed of solder or gold have been used as bumps formed on a semiconductor chip.
  • Bump electrodes having a structure in which solder is formed at the tip have been used.
  • the technique using an epoxy resin composition as a sealing resin has a problem that voids remain in the sealing resin cured after reflow.
  • Factors for the generation of voids include decomposition and volatilization of components in the resin composition, evaporation of moisture, volatilization of uncured low molecular components contained in a solder resist that protects the circuit board surface, and the like.
  • the sealing resin is cured simultaneously with the thermocompression bonding, it is necessary to prevent the wetting of the solder from being inhibited by the curing. That is, when the curing of the sealing resin proceeds and the viscosity increases, deformation of the solder is hindered and sufficient wettability cannot be exhibited.
  • the present invention has been made in view of the circumstances as described above, and in a flip chip mounting that simultaneously performs electrical connection and curing of the sealing resin during thermocompression bonding by a method of supplying the sealing resin to the circuit board first. It is an object of the present invention to provide an acrylic resin composition for semiconductor encapsulation, a semiconductor device using the same, and a method for manufacturing the same, in which voids hardly remain in the cured encapsulating resin and solder wettability is excellent. .
  • an acrylic resin composition for semiconductor encapsulation supplies a sealing resin to a surface having an electrode pad of a circuit board, and then bump electrodes of a semiconductor chip and electrode pads of the circuit board
  • the semiconductor sealing acrylic used as the sealing resin when the semiconductor chip and the circuit board are electrically connected and the sealing resin is cured simultaneously by arranging and heating the semiconductor chip in alignment with
  • a resin composition comprising a thermosetting acrylic resin that is liquid at room temperature, a radical initiator of the thermosetting acrylic resin, an activator, and an inorganic filler.
  • acrylic resin composition for semiconductor encapsulation it is preferable to contain an organic peroxide as a radical initiator.
  • acrylic resin composition for semiconductor encapsulation it is preferable to contain an organic acid as an activator.
  • the content of the activator is preferably in the range of 0.1 to 20.0 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation.
  • the maximum particle size of the inorganic filler is preferably 10 ⁇ m or less.
  • This semiconductor sealing acrylic resin composition preferably further contains an epoxy resin.
  • the content of the epoxy resin is preferably in the range of 0.1 to 50% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation.
  • the semiconductor device of the present invention is characterized in that a gap between a semiconductor chip and a circuit board is sealed with a cured product of the above-described acrylic resin composition for sealing a semiconductor.
  • the method for manufacturing a semiconductor device of the present invention includes a step of supplying the semiconductor sealing acrylic resin composition to the surface of the circuit board having the electrode pads, and positions of the bump electrodes of the semiconductor chip and the electrode pads of the circuit board.
  • the semiconductor chip is disposed and heated to electrically connect the semiconductor chip and the circuit board and to cure the acrylic resin composition for semiconductor encapsulation.
  • the acrylic resin composition for semiconductor encapsulation of the present invention a semiconductor device using the same, and a method for manufacturing the same, electrical connection and curing of the encapsulation resin during reflow are performed by a method of supplying the encapsulation resin to the circuit board first.
  • voids hardly remain in the cured sealing resin and the solder wettability is excellent.
  • thermosetting acrylic resin that is liquid at room temperature is blended.
  • the generation of voids in the sealing resin can be suppressed by using a thermosetting acrylic resin and curing by radical reaction.
  • liquid at room temperature means having fluidity in a temperature range of 5 to 28 ° C. under atmospheric pressure, particularly at a room temperature of 18 ° C.
  • thermosetting acrylic resin As a component used for the thermosetting acrylic resin, a compound having two or more (meth) acryloyl groups is preferable in view of ensuring heat resistance, and has 2 to 6 (meth) acryloyl groups. A compound is more preferable, and a compound having two (meth) acryloyl groups is more preferable.
  • Examples of the compound having two (meth) acryloyl groups include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimer diol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, etc. Is mentioned.
  • Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) An acrylate etc. are mentioned.
  • glycerin di (meth) acrylate trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, zinc di (meth) acrylate, cyclohexanediol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, cyclohexane
  • Examples include diethanol di (meth) acrylate, cyclohexanedialkyl alcohol di (meth) acrylate, dimethanol tricyclodecane di (meth) acrylate, and the like.
  • reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl acrylate a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl methacrylate, and the like.
  • a (meth) acrylate having a crosslinked polycyclic structure represented by the following formula (I) or (II) is preferable.
  • a (meth) acrylate having this crosslinked polycyclic structure is used, a cured product having excellent heat resistance can be obtained.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, a is 1 or 2, and b is 0 or 1.
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group, X represents a hydrogen atom, a methyl group, a methylol group, an amino group, or a (meth) acryloyloxymethyl group, and c represents 0 or 1)
  • Examples of the (meth) acrylate having such a crosslinked polycyclic structure include a (meth) acrylate having a dicyclopentadiene skeleton in which a in the formula (I) is 1 and b is 0, and in the formula (II) a (meth) acrylate having a perhydro-1,4: 5,8-dimethananaphthalene skeleton in which c is 1, a (meth) acrylate having a norbornane skeleton in which c in the formula (II) is 0; Dicyclopentadienyl diacrylate (tricyclodecane dimethanol diacrylate) in which R 1 and R 2 are hydrogen atoms and a
  • di (meth) acrylate having a structure in which an alkylene oxide is added to a bisphenol skeleton represented by the following formula (III) or (IV) is preferable.
  • di (meth) acrylate having a structure in which alkylene oxide is added to this bisphenol skeleton is used, a cured product having excellent heat resistance and adhesion can be obtained.
  • R 5 represents hydrogen, a methyl group, or an ethyl group
  • R 6 represents a divalent organic group
  • m and n represent an integer of 1 to 20.
  • R 5 represents hydrogen, a methyl group, or an ethyl group
  • R 6 represents a divalent organic group
  • m and n represent an integer of 1 to 20.
  • Examples of the di (meth) acrylate having a structure in which an alkylene oxide is added to the bisphenol skeleton include, for example, Aronix M-210 and M-211B (manufactured by Toagosei), NK ester ABE-300, and A-BPE-4.
  • A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-100, BPE-200, BPE-500, BPE-900, BPE-1300N (manufactured by Shin-Nakamura Chemical)
  • epoxy (meth) acrylate is preferable as the compound having two or more (meth) acryloyl groups.
  • epoxy (meth) acrylate is used, a cured product excellent in reactivity, heat resistance, and adhesion can be obtained when an epoxy resin described later is used in combination.
  • an oligomer that is an addition reaction product of an epoxy resin and an unsaturated monobasic acid such as acrylic acid or methacrylic acid can be used.
  • a diglycidyl compound bisphenol type epoxy resin
  • bisphenol type epoxy resin obtained by condensation of bisphenols typified by bisphenols such as bisphenol A and bisphenol F and epihalohydrin
  • an epoxy resin having a phenol skeleton a polyvalent glycidyl ether (phenol novolac-type epoxy resin, cresol novolak) obtained by condensation of phenol or cresol and phenol novolaks which are condensates of aldehydes typified by formalin and epihalohydrin is used.
  • Type epoxy resin An epoxy resin having a cyclohexyl ring can be used.
  • epoxy (meth) acrylate for example, a bisphenol A type epoxy acrylate represented by the following formula, which is a solid at 25 ° C. or a liquid having a viscosity of 10 Pa ⁇ s or more, can be preferably used.
  • n represents a positive integer.
  • Commercially available bisphenol A type epoxy acrylates include, for example, Denacol acrylate DA-250 (Nagase Kasei, 60 Pa ⁇ s at 25 ° C.), Denacol acrylate DA-721 (Nagase Kasei, 100 Pa ⁇ s at 25 ° C.), Lipoxy VR-60 (Showa Polymer, solid at room temperature), Lipoxy VR-77 (Showa Polymer, 100 Pa ⁇ s at 25 ° C.), and the like.
  • the compound having three or more (meth) acryloyl groups include pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol pentaacrylate, ethoxylation (3) trimethylolpropane triacrylate, ethoxylation (6) Trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate, propoxylated (3) glyceryl triacrylate, highly propoxylated (55) glyceryl triacrylate, ethoxylated ( 15) Trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetraethylene glycol diacrylate, dimethylol group Pantetraacrylate, tripropylene glycol diacrylate, pentaacrylate ester, 1,3-adamantanediol dimethacrylate
  • thermosetting acrylic resin has a structure in which (meth) acrylate having a crosslinked polycyclic structure is 10 to 50% by mass with respect to the total amount of the thermosetting acrylic resin, and an alkylene oxide is added to the bisphenol skeleton. It is within the range of 3 to 20% by mass of di (meth) acrylate and 5 to 30% by mass of epoxy (meth) acrylate.
  • thermosetting acrylic resin various vinyl monomers such as a monofunctional vinyl monomer may be added to the thermosetting acrylic resin.
  • a radical initiator is blended in the acrylic resin composition for semiconductor encapsulation of the present invention.
  • organic peroxides are preferred as radical initiators. Since the organic peroxide can adjust the reactivity at the time of reflow by appropriate selection, the balance between resin curing and solder melting can be controlled.
  • the organic peroxide as the radical initiator preferably has a decomposition temperature in the range of 50 to 200 ° C. in consideration of the curability and viscosity stability of the acrylic resin composition for semiconductor encapsulation.
  • organic peroxide as the radical initiator examples include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, acetylacetone peroxide, isobutyl peroxide, o-methylbenzoyl peroxide, and bis-3.
  • the content of the radical initiator is not particularly limited, but is preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the thermosetting acrylic resin. If it is in this range, the viscosity stability of the acrylic resin composition for semiconductor encapsulation is good, and a decrease in adhesion can also be suppressed.
  • Activator is blended in the acrylic resin composition for semiconductor encapsulation of the present invention.
  • the oxide film on the surface of the solder metal is removed by heating during reflow, and electrical connection reliability can be ensured.
  • the activator is not particularly limited, and for example, organic acids, various amines and salts thereof can be used.
  • an organic acid is preferable as the activator.
  • the organic acid By using the organic acid, the wettability of the solder can be particularly improved.
  • organic acids examples include abietic acid, glutaric acid, succinic acid, malonic acid, oxalic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, diglycolic acid, thiodiglycolic acid, phthalic acid, isophthalic acid, terephthalic acid Acid, propanetricarboxylic acid, citric acid, tartaric acid and the like can be mentioned.
  • abietic acid glutaric acid, and oxalic acid are preferable because the solder wettability can be particularly improved.
  • the content of the activator is preferably in the range of 0.1 to 20.0 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the flux activity can be exhibited and the wettability between the solder and the electrode pad or bump electrode can be improved. Moreover, it can suppress that hardened
  • An inorganic filler is blended in the acrylic resin composition for semiconductor encapsulation of the present invention.
  • the thermal expansion coefficient of the cured product can be adjusted by blending the inorganic filler.
  • the inorganic filler examples include silica powder such as fused silica (fused spherical silica and fused crushed silica), synthetic silica and crystalline silica, oxides such as alumina and titanium oxide, talc, fired clay, unfired clay, mica, Silicates such as glass, carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates such as barium sulfate, calcium sulfate and calcium sulfite Alternatively, borates such as sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride can be used.
  • silica powder such as fused silica (fused spherical silica and fused crushed silica)
  • fused silica, crystalline silica, and synthetic silica are preferable because heat resistance, moisture resistance, strength, and the like can be improved.
  • the shape of the inorganic filler is not particularly limited, such as a crushed shape, a needle shape, a flake shape, and a spherical shape, but it is preferable to use a spherical shape from the viewpoint of dispersibility and viscosity control.
  • the inorganic filler may be any size as long as the average particle size is smaller than the gap between the semiconductor chip and the circuit board when flip-chip connected. From the viewpoint of filling density and viscosity control, the average particle size is 10 ⁇ m. The following are preferable, those having 5 ⁇ m or less are more preferable, those having 3 ⁇ m or less are more preferable, and those having 0.2 to 3 ⁇ m are particularly preferable.
  • the average particle diameter can be measured, for example, by particle size distribution measurement by a laser light diffraction method. Moreover, an average particle diameter can be calculated
  • the inorganic filler preferably has a maximum particle size of 10 ⁇ m or less, more preferably 0.5 to 10 ⁇ m.
  • a maximum particle size 10 ⁇ m or less
  • a narrow gap of 20 ⁇ m or less can be handled.
  • an increase in viscosity can be suppressed.
  • two or more kinds of inorganic fillers having different particle sizes may be used in combination.
  • the blending amount of the inorganic filler in the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 25 to 75% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the thermal expansion coefficient can be reduced to improve the connection reliability, and the viscosity can be increased too much to prevent the workability from decreasing.
  • an epoxy resin is blended.
  • the reactivity during reflow is adjusted, and the wettability of the solder can be improved.
  • adhesiveness can be improved and bleeding can also be suppressed.
  • the epoxy resin as long as it has two or more epoxy groups in one molecule, its molecular weight and molecular structure are not particularly limited, and various types can be used.
  • epoxy resins such as glycidyl ether type, glycidyl amine type, glycidyl ester type, and olefin oxidation type (alicyclic) can be used.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins
  • hydrogenated bisphenol type epoxy resins such as hydrogenated bisphenol A type epoxy resins and hydrogenated bisphenol F type epoxy resins
  • Biphenyl type epoxy resin naphthalene type epoxy resin, alicyclic epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, aliphatic epoxy resin, triglycidyl Isocyanurate and the like
  • bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins
  • Biphenyl type epoxy resin naphthalene type epoxy resin
  • alicyclic epoxy resin dicyclopentadiene type epoxy resin
  • phenol novolac type epoxy resin cresol novolac type epoxy resin
  • triphenylmethane type epoxy resin aliphatic epoxy resin
  • bisphenol-type epoxy resins bisphenol-type epoxy resins, hydrogenated bisphenol-type epoxy resins, and naphthalene-type epoxy resins are preferable, and the epoxy equivalent thereof is preferably in the range of 120 to 200.
  • examples of the bisphenol A type epoxy resin include an epoxy resin represented by the following formula (VI).
  • R 11 to R 18 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms. All may be the same or different from each other, and p represents an integer of 0 to 20, preferably 0 to 10.
  • examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following formula (VII).
  • R 11 to R 18 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms. All may be the same or different from each other, q represents an integer of 0 to 3.
  • Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following formula (VIII).
  • R 21 to R 23 represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, which may be all the same or different from each other.
  • 0, l and m each represent an integer of 0 to 11, and (l + m) is selected to be an integer of 1 to 11 and (l + r) is selected to be an integer of 1 to 12.
  • naphthalene type epoxy resin represented by the formula (VIII) there are random copolymers containing 1 constituent unit and m constituent units at random, alternating copolymers containing alternating units, and copolymers containing regular units. And a block copolymer contained in a block form.
  • the blending amount of the epoxy resin in the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 0.1 to 50% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the solder wettability can be improved. Moreover, adhesiveness can be improved and bleeding can also be suppressed.
  • the rise of the curing reaction (rise of viscosity) is about 150 ° C., but by adding an epoxy resin, the rise of the curing reaction is adjusted to about 160 ° C. While suppressing, wettability can be improved.
  • additives can be further blended within a range not impairing the effects of the present invention.
  • examples of such other additives include silane coupling agents, antifoaming agents, leveling agents, low stress agents, and pigments.
  • the acrylic resin composition for semiconductor encapsulation of the present invention can be produced, for example, by the following procedure.
  • the above components are blended simultaneously or separately, and stirring, dissolution, mixing, and dispersion are performed while performing heat treatment or cooling treatment as necessary.
  • an inorganic filler is added to the mixture, and stirring, mixing, and dispersion are performed again while performing heat treatment and cooling treatment as necessary, thereby obtaining the acrylic resin composition for semiconductor encapsulation of the present invention.
  • stirring, dissolution, mixing, and dispersion a disper, a planetary mixer, a ball mill, a three roll, etc. can be used in combination.
  • the acrylic resin composition for semiconductor encapsulation of the present invention is preferably liquid at 25 ° C. from the viewpoints of workability and workability.
  • the viscosity of the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 1 to 1000 Pa ⁇ s at 25 ° C., more preferably 1 to 500 Pa ⁇ s, and more preferably 1 to 200 Pa ⁇ s. More preferably. When the viscosity is in this range, it is possible to suppress a decrease in workability when supplying the semiconductor sealing acrylic resin composition onto the circuit board.
  • the viscosity is a value when measured using an E-type rotational viscometer at 25 ° C. and a rotational speed of 0.5 rpm.
  • the curing temperature of the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 140 to 200 ° C., more preferably 150 to 180 ° C.
  • the acrylic resin composition for semiconductor encapsulation of the present invention is used in a mounting process in which a semiconductor chip is pressed against a circuit board after supplying the sealing resin onto the circuit board.
  • the electrical connection and the curing of the acrylic resin composition for semiconductor sealing are simultaneously performed by heating to a temperature equal to or higher than the melting point of the solder of the bump electrode.
  • semiconductor device of the present invention manufactured through this mounting process include flip chip type semiconductor devices such as BGA, LGA, and CSP that mount a semiconductor chip face down on a circuit board.
  • flip chip type semiconductor devices such as BGA, LGA, and CSP that mount a semiconductor chip face down on a circuit board.
  • a PoP type semiconductor device that stacks and joins a plurality of flip chip type surface mount components can be used.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of a method for manufacturing a semiconductor device of the present invention.
  • the above-mentioned acrylic resin composition 30a for semiconductor encapsulation is supplied to the surface of the circuit board 13 on which the semiconductor chip 10 is mounted, on which the electrode pads 14 are formed.
  • circuit board 13 for example, a circuit board 13 in which an unnecessary portion of a metal layer such as copper formed on the surface of an insulating substrate such as glass epoxy, polyimide, polyester, or ceramic is removed by etching is used. it can. Further, it is possible to use a wiring pattern formed on the surface of the insulating substrate by copper plating or the like, or a wiring pattern formed by printing a conductive material on the surface of the insulating substrate.
  • any surface treatment layer selected from a gold layer, a solder layer, a tin layer, and a rust preventive film layer is formed on the surface of the wiring pattern.
  • the gold layer and the tin layer can be formed by electroless or electrolytic plating.
  • the solder layer may be formed by plating, or may be formed by a method in which a solder paste is applied by printing and then heated and melted, or a method in which fine solder particles are placed on a wiring pattern and heated and melted.
  • the anticorrosive film layer (for example, Cu-OSP) is also called preflux.
  • the oxide film on the surface of the wiring pattern formed of copper or the like is removed, and an organic component is formed on the surface. It is possible to form a rust-proof coating layer made of The rust preventive coating layer can secure good wettability with respect to the solder 12, and is suitable from the viewpoint of adapting to fine connection.
  • the electrode pad 14 may be formed with a solder paste or a solder layer having a relatively low melting point, or with copper plating, Ni / Cu plating, or Sn plating.
  • the supply method of the acrylic resin composition 30a for semiconductor encapsulation is performed by coating or the like, and can be performed by, for example, a dispenser, screen printing, inkjet, or the like. It is desirable that the supply amount be an amount necessary for sealing and a minimum amount that is not excessive.
  • a normal flip chip bonder can be used as an apparatus for connecting the semiconductor chip 10 and the circuit board 13, for example.
  • the semiconductor chip 10 is placed face-down at a predetermined position by the heating head 20 of the chip mounter, and the semiconductor chip 10 and the circuit board 13 are aligned and heated.
  • the head 20 is lowered and the bump electrodes 11 of the semiconductor chip 10 are grounded to the electrode pads 14 of the circuit board 13 as shown in FIG.
  • a reflow process is performed while heating and pressurizing from the back surface of the semiconductor chip 10.
  • the circuit board 13 on the stage of the flip chip bonder is heated to the temperature of the heating head 20.
  • the temperature of the heating head 20 is raised to raise the temperature to a region above the melting point of the solder 12 of the bump electrode 11.
  • the solder 12 of the bump electrode 11 is melted as shown in FIG. 1C while the curing reaction of the acrylic resin composition 30a for semiconductor encapsulation proceeds.
  • FIG.1 (e) As shown, the heating head 20 is raised from the semiconductor chip 10.
  • the semiconductor chip 10 is not particularly limited.
  • an elemental semiconductor such as silicon or germanium, or a compound semiconductor such as gallium arsenide or indium phosphide can be used.
  • the bump electrode 11 formed on the semiconductor chip 10 for example, a structure in which a solder 12 or a tin layer is formed at the tip of a copper pillar, a solder bump, a copper bump, a gold bump, or the like can be used. Considering the correspondence to fine connection, a bump electrode 11 having a structure in which solder 12 is formed at the tip of a copper pillar as shown in FIG. 1 is suitable.
  • solder 12 As the solder 12, Sn-37Pb (melting point 183 ° C.) may be used, but considering the influence on the environment, Sn-3.5Ag (melting point 221 ° C.), Sn-2.5Ag-0.5Cu-1Bi It is desirable to use lead-free solder such as (melting point 214 ° C.), Sn-0.7Cu (melting point 227 ° C.), Sn-3Ag-0.5Cu (melting point 217 ° C.), Sn-92Zn (melting point 198 ° C.).
  • the pressurizing conditions in the heating profiles from FIG. 1B to FIG. 1D are not particularly limited and can be appropriately set depending on the area of the semiconductor chip 10 and the number of bump electrodes 11.
  • the area of the semiconductor chip 10 is within a range of 10 to 50 N.
  • the range of 15 to 40N is more preferable.
  • the heating profile from the grounding in FIG. 1 (b) to the resin curing in FIG. 1 (d) is performed in the range of, for example, 3.0 to 10 s, preferably 3.0 to 5.0 s as a whole.
  • the temperature of the circuit board 13 on the stage rises rapidly to the temperature of the heating head 20. Thereafter, the temperature of the heating head 20 is increased, and from a temperature not lower than the activation temperature of the activator contained in the semiconductor sealing acrylic resin composition 30a and lower than the melting point of the solder 12, as shown in FIG. Heating is performed so that the temperature is equal to or higher than the melting point of the solder 12, and the semiconductor chip 10 and the circuit board 13 are connected by metal bonding using the solder 12.
  • the acrylic resin composition 30a for semiconductor encapsulation whose viscosity has been reduced by heating is excluded from between the bump electrode 11 and the electrode pad 14, and the oxide film on the surface of the solder 12 is reduced by an activator and removed. To do.
  • connection portion is not formed by metal bonding.
  • the gelled semiconductor sealing acrylic resin composition 30a flows to form an electrical connection. Disturb. Although details are not shown in FIG. 1 at the time of grounding in FIG. 1B, the shape of the solder 12 is actually crushed by the applied pressure. Here, when the curing of the acrylic resin composition 30a for semiconductor encapsulation is quick, the wetting of the solder 12 is suppressed and the grounded shape is maintained. On the other hand, when the solder 12 is melted, if the semiconductor sealing acrylic resin composition 30 a has fluidity, the solder 12 wets well with respect to the electrode pads 14 and the bump electrodes 11.
  • thermosetting acrylic resin by adding a thermosetting acrylic resin to the acrylic resin composition 30a for semiconductor encapsulation, voids can be suppressed by curing by radical polymerization. Then, wettability is improved by using an activator, and when an epoxy resin is used in combination with a thermosetting acrylic resin, the reactivity is controlled and the wettability is further improved while suppressing voids.
  • the thermosetting acrylic resin when used alone, the rising of the curing reaction (rising of the viscosity) is about 150 ° C., but when the rising of the curing reaction is adjusted to about 160 ° C. by adding an epoxy resin, Excellent balance between suppression and wettability.
  • the time from the temperature after grounding in FIG. 1B to the rise to the peak temperature above the melting point of the solder 12 is 1.0 to 1.0 in consideration of productivity, control of rheological characteristics, wettability of the solder 12, and the like. 10 s is preferable, and 1.0 to 3.0 s is more preferable.
  • the solder 12 is melted and the semiconductor chip 10 and the circuit board 13 are connected by metal bonding with the solder 12 while maintaining the peak temperature equal to or higher than the melting point of the solder 12, and As shown in FIG. 1D, the semiconductor sealing acrylic resin composition 30a is cured to obtain a cured product 30b.
  • the heating time is set so as to be equal to or longer than the gelation time of the acrylic resin composition 30a for semiconductor encapsulation, and the gelated cured product 30b reinforces the connection portion by metal bonding.
  • a connection failure such as a crack caused by thermal stress caused by a difference in thermal expansion coefficient between the semiconductor chip 10 and the circuit board 13 concentrating on a connection portion by metal bonding. it can.
  • the heating time for maintaining the peak temperature that is equal to or higher than the melting point of the solder 12 is preferably 1.0 to 10 s, and preferably 1.0 to 3.0 s. Is more preferable.
  • the peak temperature is usually in the range of 150 to 300 ° C., preferably in the range of 200 to 280 ° C., more preferably in the range of 220 to 260 ° C.
  • the semiconductor device of the present invention thus obtained includes a semiconductor chip on which a plurality of bump electrodes are formed, a circuit board having a plurality of electrode pads electrically connected to the bump electrodes, a circuit board, and a semiconductor chip. And a sealing resin disposed between the two.
  • the electrically connected semiconductor device has a form in which bump electrodes exist in a columnar shape in a parallel gap between the semiconductor chip and the circuit board.
  • the sealing resin is formed from a cured product of the acrylic resin composition for semiconductor sealing of the present invention, and seals the gap between the circuit board and the semiconductor chip.
  • the circuit board includes an insulating substrate such as an interposer and a wiring pattern provided on one surface of the circuit board.
  • the wiring pattern of the circuit board and the semiconductor chip are electrically connected by a plurality of bump electrodes and electrode pads.
  • solder bumps can be formed by a screen printing method or a solder ball method.
  • a solder alloy is made into fine solder powder, and then mixed with flux to form a paste.
  • squeezing is performed on the electrode pad using a metal mask, and after a certain amount of paste is placed on the electrode pad, solder bumps can be formed by reflowing.
  • solder bumps can be formed by arranging and reflowing solder balls on electrode pads coated with flux or paste.
  • a logic package is used in the lower stage and a memory package is mounted in the upper stage.
  • the acrylic resin composition for semiconductor encapsulation of the present invention can be used for the underfill of the lower logic package.
  • the semiconductor device of the present invention can be used for mobile devices such as mobile phones, multi-function mobile phones, personal digital assistants, digital cameras, and notebook computers.
  • Semiconductor chip (size 7.3 mm ⁇ 7.3 mm, bump pitch 50 ⁇ m, number of bumps 544, thickness) having a bump electrode having a lead-free solder layer (Sn-3.5Ag: melting point 221 ° C.) at the tip of the copper pillar 0.15 mm), and a glass epoxy substrate having a copper wiring pattern on the surface of which a rust preventive film was formed by preflux treatment was prepared as a circuit board.
  • circuit board was adsorbed and fixed on a stage set to 70 to 100 ° C. of a flip chip bonder, and 3.0 to 4.0 mg of an acrylic resin composition for semiconductor encapsulation was dispensed.
  • pressure bonding is performed at a load of 1 to 10 N and a head temperature of 120 to 180 ° C. for 0.1 to 5.0 seconds, and then the head temperature of the flip chip bonder is set appropriately and the load Pressure bonding was performed at 10 to 50 N for 2.0 to 6.0 seconds (arrival 230 to 270 ° C.).
  • SAT Hitachi Engineering Co., Ltd.
  • Zero voids ⁇ : Zero voids under the chip, 1 to 5 voids outside the peripheral ⁇ : One or more voids under the chip [Wet spread] About the sample produced on the said conditions using the composition according to Table 1 and Table 2, the solder ball was mounted on the resin, and the solder was melted on a heated hot plate. Thus, whether or not the solder is sufficiently wet was evaluated according to the following criteria.
  • Resistance increase is less than 10% at 1000 cycles or more.
  • Resistance increase is less than 10% at 500 cycles or more.
  • X Resistance increase is 10% or more at 100 cycles or more The evaluation results are shown in Tables 1 and 2.
  • the acrylic resin composition for semiconductor encapsulation of Examples 1 to 10 containing a thermosetting acrylic resin that is liquid at normal temperature, a radical initiator, an activator, and an inorganic filler suppresses voids.
  • the wettability was also good. Moreover, it was excellent in adhesiveness and had reliability. In particular, by incorporating an epoxy resin, wettability was improved and adhesion was also improved.
  • Comparative Example 1 On the other hand, the wettability deteriorated in Comparative Example 1 in which no activator was added.
  • Comparative Examples 2 and 3 in which an epoxy resin and its curing agent were blended without mixing a liquid thermosetting acrylic resin at room temperature, both of Comparative Example 2 in which an activator was not blended and Comparative Example 3 in which an activator was blended were voids. There has occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is an acrylic resin composition for semiconductor sealing which has excellent solder wettability and is not prone to leave voids when cured, and which is used in a flip chip mounting in which the sealing resin is cured and an electrical connection is made simultaneously during thermocompression by means of a method of first supplying a sealing resin to the circuit substrate; also provided are a semiconductor device using the acrylic resin composition, and a manufacturing method thereof. After supplying a sealing resin to the surface of a circuit substrate (13) having electrode pads (14), by arranging the semiconductor chip (10) by matching the positions of bump electrodes (11) on the semiconductor chip (10) and the electrode pads (14) on the circuit substrate (13) and heating said semiconductor chip (10), the sealing resin is cured and the semiconductor chip (10) and the circuit substrate (13) are electrically connected simultaneously; at this time, the acrylic resin composition (30a) for semiconductor sealing is used as the aforementioned sealing resin. This acrylic resin composition is characterized by containing a thermosetting acrylic resin that is liquid at room temperature, a radical initiator of the thermosetting acrylic resin, an active agent, and an inorganic filler.

Description

半導体封止用アクリル樹脂組成物とそれを用いた半導体装置およびその製造方法Acrylic resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing the same
 本発明は、半導体封止用アクリル樹脂組成物とそれを用いた半導体装置およびその製造方法に関する。さらに詳しくは、本発明は、封止樹脂を回路基板へ先に供給する方法によってリフロー時に電気的接続と封止樹脂の硬化を同時に行うフリップチップ実装に使用される半導体封止用アクリル樹脂組成物とそれを用いた半導体装置およびその製造方法に関する。 The present invention relates to an acrylic resin composition for semiconductor encapsulation, a semiconductor device using the same, and a method for manufacturing the same. More specifically, the present invention relates to an acrylic resin composition for semiconductor encapsulation used for flip chip mounting in which electrical connection and curing of the encapsulation resin are simultaneously performed during reflow by a method of supplying the encapsulation resin to the circuit board first. And a semiconductor device using the same and a manufacturing method thereof.
 近年、BGA(Ball grid array)、LGA(Land grid array)、CSP(Chip size package)などのパッケージを有するフリップチップ型の半導体装置の高密度化が求められており、それに伴い、回路の狭ピッチ化も求められている。 In recent years, there has been a demand for higher density of flip chip type semiconductor devices having packages such as BGA (Ball grid array), LGA (Land grid array), and CSP (Chip chip package). There is also a need to make it.
 フリップチップ型の半導体装置の実装においては、実装部品の半導体チップにはんだによりバンプ電極を形成しておき、バンプ電極に対応するように設けられた実装用の電極パッドが形成された回路基板に、フェースダウンで半導体チップを載置する。そしてリフロー処理することによりはんだを溶融させてバンプ電極と電極パッドとを直接接続する。 In mounting a flip chip type semiconductor device, a bump electrode is formed by solder on a semiconductor chip of a mounting component, and a circuit board on which a mounting electrode pad provided to correspond to the bump electrode is formed, A semiconductor chip is placed face down. Then, the solder is melted by reflow treatment to directly connect the bump electrode and the electrode pad.
 フリップチップ型の半導体装置の実装による接続においては、例えば、温度サイクル試験時において、熱応力による歪により、電気的な接合不良を引き起こすおそれがあるなど、信頼性が問題になることがあった。すなわち、半導体チップと回路基板の熱膨張係数差に由来する熱応力が接続部に集中して接続部を破壊する場合がある。 In connection by mounting a flip-chip type semiconductor device, there has been a problem in reliability, for example, in the temperature cycle test, there is a possibility of causing electrical connection failure due to distortion due to thermal stress. That is, the thermal stress derived from the difference in thermal expansion coefficient between the semiconductor chip and the circuit board may concentrate on the connection part and break the connection part.
 信頼性を高める方法として、リフロー処理により電極同士を接合した後、半導体チップと回路基板との間に形成される隙間を樹脂組成物で封止することにより、この熱応力を分散して接続信頼性を高めるアンダーフィル技術が広く用いられている。 As a method to increase reliability, after joining the electrodes by reflow treatment, the gap formed between the semiconductor chip and the circuit board is sealed with a resin composition, so that this thermal stress is dispersed and connection reliability is achieved. Underfill technology that enhances performance is widely used.
 アンダーフィル技術としては、半導体チップを回路基板上に搭載し、リフロー処理することにより電極同士を接合した後に、回路基板と半導体チップとの隙間に封止樹脂(アンダーフィル樹脂)を注入する後供給方式が広く用いられている。 As an underfill technology, a semiconductor chip is mounted on a circuit board, the electrodes are joined together by reflow treatment, and then a sealing resin (underfill resin) is injected into the gap between the circuit board and the semiconductor chip. The method is widely used.
 しかしながら、この後供給方式は、リフロー処理と、封止樹脂の充填工程やその後の硬化処理工程とがそれぞれ別の工程であるために、工程が増加して煩雑になり、生産性が低下するという問題があった。 However, in this post-supply method, the reflow process, the sealing resin filling process and the subsequent curing process process are separate processes. There was a problem.
 このような問題を解決するために、近年では、リフロー処理の前に予め封止樹脂を回路基板に供給しておく先供給方式が注目を集めてきている。 In order to solve such a problem, in recent years, a pre-feeding system in which a sealing resin is supplied to a circuit board in advance before the reflow process has attracted attention.
 この先供給方式では、熱圧着により回路基板に半導体チップを接合する前に、予め、回路基板に封止樹脂を塗布などによって供給した後に、半導体チップを搭載する。そしてこれらをリフロー処理することにより、電極間の接合と併せて、熱圧着時の加熱により封止樹脂を硬化させる。 In this prior supply method, before the semiconductor chip is bonded to the circuit board by thermocompression bonding, the semiconductor chip is mounted after the sealing resin is supplied to the circuit board in advance by coating or the like. Then, by reflowing them, the sealing resin is cured by heating at the time of thermocompression bonding together with the bonding between the electrodes.
 従来、この先供給方式の封止樹脂には、エポキシ樹脂組成物が検討されている(特許文献1~3)。 Conventionally, an epoxy resin composition has been studied as this pre-feed type sealing resin (Patent Documents 1 to 3).
 また、近年、電子機器の小型化、軽量化、高機能化の市場動向において、半導体装置の高集積化、表面実装化が年々進んでいる。例えば、多ピン化、高速化への要求に対応するため、半導体パッケージを垂直方向に積層したPackage-on-Package(パッケージオンパッケージ:PoP)構造の半導体装置の開発も行われている。 In recent years, in the market trend of electronic devices that are becoming smaller, lighter, and more functional, semiconductor devices are increasingly integrated and surface-mounted. For example, in order to meet the demand for higher pin count and higher speed, a semiconductor device having a package-on-package (package on package: PoP) structure in which semiconductor packages are stacked in the vertical direction has been developed.
 このPoP構造の半導体装置では、下段にロジックパッケージを使用し、上段にメモリパッケージを搭載する場合が多い。PoP構造の半導体装置は、良品のロジックパッケージやメモリパッケージのみを選定して使用でき、かつ、種々のメモリ容量パッケージとロジックパッケージとの組み合わせが自由で、携帯電話機器などの製品サイクルが短く小型軽量化が必要な用途に特に適している。 In many cases, this PoP semiconductor device uses a logic package in the lower stage and a memory package in the upper stage. For PoP semiconductor devices, only good logic packages and memory packages can be selected and used, and various combinations of memory capacity packages and logic packages can be freely used. It is particularly suitable for applications that need to be made.
 従来、半導体チップに形成されるバンプとしては、はんだや金で構成されたバンプが用いられているが、PoP構造の半導体装置などのような近年の微細接続化に対応するために、銅ピラーの先端にはんだを形成した構造のバンプ電極が用いられるようになってきている。 Conventionally, bumps formed of solder or gold have been used as bumps formed on a semiconductor chip. However, in order to cope with recent fine connection such as a semiconductor device having a PoP structure, Bump electrodes having a structure in which solder is formed at the tip have been used.
特開2008-239822号公報JP 2008-239822 A 特表2004-530740号公報JP-T-2004-530740 特開2009-242685号公報JP 2009-242585 A
 しかしながら、上述の先供給方式において、封止樹脂としてエポキシ樹脂組成物を使用する技術では、リフロー後に硬化した封止樹脂中にボイドが残るという問題があった。このボイドの発生要因としては、樹脂組成物中の成分の分解や揮発、水分の蒸発、回路基板表面を保護するソルダーレジストに含有される未硬化の低分子成分の揮発などが挙げられる。 However, in the above-described first supply method, the technique using an epoxy resin composition as a sealing resin has a problem that voids remain in the sealing resin cured after reflow. Factors for the generation of voids include decomposition and volatilization of components in the resin composition, evaporation of moisture, volatilization of uncured low molecular components contained in a solder resist that protects the circuit board surface, and the like.
 そして硬化された封止樹脂中に残されたボイドは、半導体チップと回路基板との接合の信頼性を低下させる原因になる。 And the voids left in the cured sealing resin cause a decrease in the reliability of the bonding between the semiconductor chip and the circuit board.
 また、先供給方式では、熱圧着と同時に封止樹脂を硬化するため、硬化によってはんだの濡れが阻害されないようにすることが必要である。すなわち封止樹脂の硬化が進行して増粘すると、はんだの変形が阻害され、十分な濡れ性を発揮させることができない。 Also, in the first supply method, since the sealing resin is cured simultaneously with the thermocompression bonding, it is necessary to prevent the wetting of the solder from being inhibited by the curing. That is, when the curing of the sealing resin proceeds and the viscosity increases, deformation of the solder is hindered and sufficient wettability cannot be exhibited.
 特に、上述したような、銅ピラーの先端にはんだを形成した構造のバンプ電極が用いられる技術において、アンダーフィルのボイド抑制とはんだの濡れ性の向上が求められている。 In particular, in the technique using the bump electrode having the solder formed on the tip of the copper pillar as described above, it is required to suppress the underfill void and improve the wettability of the solder.
 本発明は、以上の通りの事情に鑑みてなされたものであり、封止樹脂を回路基板へ先に供給する方法によって熱圧着時に電気的接続と封止樹脂の硬化を同時に行うフリップチップ実装において、硬化された封止樹脂中にボイドが残りにくく、かつ、はんだの濡れ性に優れた半導体封止用アクリル樹脂組成物とそれを用いた半導体装置およびその製造方法を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, and in a flip chip mounting that simultaneously performs electrical connection and curing of the sealing resin during thermocompression bonding by a method of supplying the sealing resin to the circuit board first. It is an object of the present invention to provide an acrylic resin composition for semiconductor encapsulation, a semiconductor device using the same, and a method for manufacturing the same, in which voids hardly remain in the cured encapsulating resin and solder wettability is excellent. .
 上記の課題を解決するために、本発明の半導体封止用アクリル樹脂組成物は、回路基板の電極パッドを有する面に封止樹脂を供給した後、半導体チップのバンプ電極と回路基板の電極パッドとの位置を合わせて半導体チップを配置し加熱することにより、半導体チップと回路基板との電気的接続および封止樹脂の硬化を同時に行う際に、封止樹脂として使用される半導体封止用アクリル樹脂組成物であって、常温で液状の熱硬化性アクリル樹脂、前記熱硬化性アクリル樹脂のラジカル開始剤、活性剤、および無機充填剤を含有することを特徴とする。 In order to solve the above problems, an acrylic resin composition for semiconductor encapsulation according to the present invention supplies a sealing resin to a surface having an electrode pad of a circuit board, and then bump electrodes of a semiconductor chip and electrode pads of the circuit board The semiconductor sealing acrylic used as the sealing resin when the semiconductor chip and the circuit board are electrically connected and the sealing resin is cured simultaneously by arranging and heating the semiconductor chip in alignment with A resin composition comprising a thermosetting acrylic resin that is liquid at room temperature, a radical initiator of the thermosetting acrylic resin, an activator, and an inorganic filler.
 この半導体封止用アクリル樹脂組成物において、ラジカル開始剤として有機過酸化物を含有することが好ましい。 In this acrylic resin composition for semiconductor encapsulation, it is preferable to contain an organic peroxide as a radical initiator.
 この半導体封止用アクリル樹脂組成物において、活性剤として有機酸を含有することが好ましい。 In this acrylic resin composition for semiconductor encapsulation, it is preferable to contain an organic acid as an activator.
 この半導体封止用アクリル樹脂組成物において、活性剤の含有量が、半導体封止用アクリル樹脂組成物の全量に対して0.1~20.0質量%の範囲内であることが好ましい。 In this acrylic resin composition for semiconductor encapsulation, the content of the activator is preferably in the range of 0.1 to 20.0 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation.
 この半導体封止用アクリル樹脂組成物において、無機充填剤の最大粒径が10μm以下であることが好ましい。 In this acrylic resin composition for semiconductor encapsulation, the maximum particle size of the inorganic filler is preferably 10 μm or less.
 この半導体封止用アクリル樹脂組成物において、さらにエポキシ樹脂を含有することが好ましい。 This semiconductor sealing acrylic resin composition preferably further contains an epoxy resin.
 この半導体封止用アクリル樹脂組成物において、エポキシ樹脂の含有量が、半導体封止用アクリル樹脂組成物の全量に対して0.1~50質量%の範囲内であることが好ましい。 In this acrylic resin composition for semiconductor encapsulation, the content of the epoxy resin is preferably in the range of 0.1 to 50% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation.
 本発明の半導体装置は、前記の半導体封止用アクリル樹脂組成物の硬化物により半導体チップと回路基板との間が封止されていることを特徴とする。 The semiconductor device of the present invention is characterized in that a gap between a semiconductor chip and a circuit board is sealed with a cured product of the above-described acrylic resin composition for sealing a semiconductor.
 本発明の半導体装置の製造方法は、回路基板の電極パッドを有する面に前記の半導体封止用アクリル樹脂組成物を供給する工程と、半導体チップのバンプ電極と回路基板の電極パッドとの位置を合わせて半導体チップを配置し加熱することにより、半導体チップと回路基板との電気的接続および半導体封止用アクリル樹脂組成物の硬化を行う工程とを含むことを特徴とする。 The method for manufacturing a semiconductor device of the present invention includes a step of supplying the semiconductor sealing acrylic resin composition to the surface of the circuit board having the electrode pads, and positions of the bump electrodes of the semiconductor chip and the electrode pads of the circuit board. In addition, the semiconductor chip is disposed and heated to electrically connect the semiconductor chip and the circuit board and to cure the acrylic resin composition for semiconductor encapsulation.
 本発明の半導体封止用アクリル樹脂組成物とそれを用いた半導体装置およびその製造方法によれば、封止樹脂を回路基板へ先に供給する方法によってリフロー時に電気的接続と封止樹脂の硬化を同時に行うフリップチップ実装において、硬化された封止樹脂中にボイドが残りにくく、かつ、はんだの濡れ性に優れている。 According to the acrylic resin composition for semiconductor encapsulation of the present invention, a semiconductor device using the same, and a method for manufacturing the same, electrical connection and curing of the encapsulation resin during reflow are performed by a method of supplying the encapsulation resin to the circuit board first. In flip-chip mounting in which the steps are simultaneously performed, voids hardly remain in the cured sealing resin and the solder wettability is excellent.
本発明の半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device of this invention.
 以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の半導体封止用アクリル樹脂組成物には、常温で液状の熱硬化性アクリル樹脂が配合される。 In the acrylic resin composition for semiconductor encapsulation of the present invention, a thermosetting acrylic resin that is liquid at room temperature is blended.
 熱硬化性アクリル樹脂を使用し、ラジカル反応によって硬化することにより、封止樹脂中でのボイドの発生を抑制できる。 The generation of voids in the sealing resin can be suppressed by using a thermosetting acrylic resin and curing by radical reaction.
 なお、ここで「常温で液状」とは、大気圧下での5~28℃の温度範囲、特に室温18℃において流動性を持つことを意味する。 Here, “liquid at room temperature” means having fluidity in a temperature range of 5 to 28 ° C. under atmospheric pressure, particularly at a room temperature of 18 ° C.
 熱硬化性アクリル樹脂に使用される成分としては、耐熱性を確保する点を考慮すると、2個以上の(メタ)アクリロイル基を持つ化合物が好ましく、2~6個の(メタ)アクリロイル基を持つ化合物がより好ましく、2個の(メタ)アクリロイル基を持つ化合物がさらに好ましい。 As a component used for the thermosetting acrylic resin, a compound having two or more (meth) acryloyl groups is preferable in view of ensuring heat resistance, and has 2 to 6 (meth) acryloyl groups. A compound is more preferable, and a compound having two (meth) acryloyl groups is more preferable.
 2個の(メタ)アクリロイル基を持つ化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ダイマージオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートなどが挙げられる。 Examples of the compound having two (meth) acryloyl groups include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimer diol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, etc. Is mentioned.
 また、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。 Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) An acrylate etc. are mentioned.
 また、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジンクジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、シクロヘキサンジエタノールジ(メタ)アクリレート、シクロヘキサンジアルキルアルコールジ(メタ)アクリレート、ジメタノールトリシクロデカンジ(メタ)アクリレートなどが挙げられる。 Also, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, zinc di (meth) acrylate, cyclohexanediol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, cyclohexane Examples include diethanol di (meth) acrylate, cyclohexanedialkyl alcohol di (meth) acrylate, dimethanol tricyclodecane di (meth) acrylate, and the like.
 また、ビスフェノールA、ビスフェノールFまたはビスフェノールAD1モルとグリシジルアクリレート2モルとの反応物、ビスフェノールA、ビスフェノールFまたはビスフェノールAD1モルとグリシジルメタクリレート2モルとの反応物などが挙げられる。 Further, there may be mentioned a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl acrylate, a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl methacrylate, and the like.
 また、2個以上の(メタ)アクリロイル基を持つ化合物として、次式(I)または(II)で表わされる架橋多環構造を有する(メタ)アクリレートが好ましい。この架橋多環構造を有する(メタ)アクリレートを用いると、耐熱性に優れた硬化物を得ることができる。 Further, as the compound having two or more (meth) acryloyl groups, a (meth) acrylate having a crosslinked polycyclic structure represented by the following formula (I) or (II) is preferable. When a (meth) acrylate having this crosslinked polycyclic structure is used, a cured product having excellent heat resistance can be obtained.
Figure JPOXMLDOC01-appb-C000001
(式中、R1およびR2はそれぞれ独立に水素原子またはメチル基を示し、aは1または2であり、bは0または1である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, a is 1 or 2, and b is 0 or 1.)
Figure JPOXMLDOC01-appb-C000002
(式中、R3およびR4はそれぞれ独立に水素原子またはメチル基を示し、Xは水素原子、メチル基、メチロール基、アミノ基、または(メタ)アクリロイルオキシメチル基を示し、cは0または1である。)
 このような架橋多環構造を有する(メタ)アクリレートとしては、例えば、前記式(I)のaが1、bが0であるジシクロペンタジエン骨格を有する(メタ)アクリレート、前記式(II)のcが1であるパーヒドロ-1,4:5,8-ジメタノナフタレン骨格を有する(メタ)アクリレート、前記式(II)のcが0であるノルボルナン骨格を有する(メタ)アクリレート、前記式(I)のR1およびR2が水素原子であり、a=1、b=0であるジシクロペンタジエニルジアクリレート(トリシクロデカンジメタノールジアクリレート)、前記式(II)のXがアクリロイルオキシメチル基であり、R3およびR4が水素原子であり、cが1であるパーヒドロ-1,4:5,8-ジメタノナフタレン-2,3,7-トリメチロールトリアクリレート、前記式(II)のX、R3およびR4が水素原子であり、cが0であるノルボルナンジメチロールジアクリレート、前記式(II)のX、R3およびR4が水素原子であり、cが1であるパーヒドロ-1,4:5,8-ジメタノナフタレン-2,3-ジメチロールジアクリレートなどが挙げられる。中でも、ジシクロペンタジエニルジアクリレートおよびノルボルナンジメチロールジアクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000002
(Wherein R 3 and R 4 each independently represent a hydrogen atom or a methyl group, X represents a hydrogen atom, a methyl group, a methylol group, an amino group, or a (meth) acryloyloxymethyl group, and c represents 0 or 1)
Examples of the (meth) acrylate having such a crosslinked polycyclic structure include a (meth) acrylate having a dicyclopentadiene skeleton in which a in the formula (I) is 1 and b is 0, and in the formula (II) a (meth) acrylate having a perhydro-1,4: 5,8-dimethananaphthalene skeleton in which c is 1, a (meth) acrylate having a norbornane skeleton in which c in the formula (II) is 0; Dicyclopentadienyl diacrylate (tricyclodecane dimethanol diacrylate) in which R 1 and R 2 are hydrogen atoms and a = 1 and b = 0, and X in the formula (II) is acryloyloxymethyl Perhydro-1,4: 5,8-dimethananaphthalene-2,3,7-trimethylol triacrylate, wherein R 3 and R 4 are hydrogen atoms and c is 1 X, R 3 and R 4 in the formula (II) are hydrogen atoms, and norbornane dimethylol diacrylate in which c is 0, X, R 3 and R 4 in the formula (II) are hydrogen atoms, c Perhydro-1,4: 5,8-dimethananaphthalene-2,3-dimethylol diacrylate in which is 1. Of these, dicyclopentadienyl diacrylate and norbornane dimethylol diacrylate are preferable.
 また、2個以上の(メタ)アクリロイル基を持つ化合物として、次式(III)または(IV)で表わされる、ビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートが好ましい。このビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートを用いると、耐熱性および密着性に優れた硬化物を得ることができる。 Further, as a compound having two or more (meth) acryloyl groups, di (meth) acrylate having a structure in which an alkylene oxide is added to a bisphenol skeleton represented by the following formula (III) or (IV) is preferable. When di (meth) acrylate having a structure in which alkylene oxide is added to this bisphenol skeleton is used, a cured product having excellent heat resistance and adhesion can be obtained.
Figure JPOXMLDOC01-appb-C000003
(式中、R5は水素、メチル基、またはエチル基を示し、R6は2価の有機基を示し、mおよびnは1~20の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 5 represents hydrogen, a methyl group, or an ethyl group, R 6 represents a divalent organic group, and m and n represent an integer of 1 to 20.)
Figure JPOXMLDOC01-appb-C000004
(式中、R5は水素、メチル基、またはエチル基を示し、R6は2価の有機基を示し、mおよびnは1~20の整数を示す。)
 このようなビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートとしては、例えば、アロニックスM-210、M-211B(東亞合成製)、NKエステルABE-300、A-BPE-4、A-BPE-6、A-BPE-10、A-BPE-20、A-BPE-30、BPE-100、BPE-200、BPE-500、BPE-900、BPE-1300N(新中村化学製)などのEO変性ビスフェノールA型ジ(メタ)アクリレート(n=2~20)、アロニックスM-208(東亞合成製)などのEO変性ビスフェノールF型ジ(メタ)アクリレート(n=2~20)、デナコールアクリレートDA-250(ナガセ化成製)、ビスコート540(大阪有機化学工業製)などのPO変性ビスフェノールA型ジ(メタ)アクリレート(n=2~20)、デナコールアクリレートDA-721(ナガセ化成製)などのPO変性フタル酸ジアクリレートなどが挙げられる。
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 5 represents hydrogen, a methyl group, or an ethyl group, R 6 represents a divalent organic group, and m and n represent an integer of 1 to 20.)
Examples of the di (meth) acrylate having a structure in which an alkylene oxide is added to the bisphenol skeleton include, for example, Aronix M-210 and M-211B (manufactured by Toagosei), NK ester ABE-300, and A-BPE-4. A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-100, BPE-200, BPE-500, BPE-900, BPE-1300N (manufactured by Shin-Nakamura Chemical) EO-modified bisphenol A type di (meth) acrylate (n = 2 to 20) such as EO modified bisphenol F type di (meth) acrylate (n = 2 to 20) such as Aronix M-208 (manufactured by Toagosei), Dena PO-modified bisphenol such as coal acrylate DA-250 (manufactured by Nagase Kasei) and biscoat 540 (manufactured by Osaka Organic Chemical Industry) And PO-modified phthalic acid diacrylates such as diol A type di (meth) acrylate (n = 2 to 20) and Denacol acrylate DA-721 (manufactured by Nagase Kasei).
 また、2個以上の(メタ)アクリロイル基を持つ化合物としては、エポキシ(メタ)アクリレートが好ましい。エポキシ(メタ)アクリレートを用いると、後述のエポキシ樹脂を併用する際に反応性、耐熱性、および密着性に優れた硬化物を得ることができる。 In addition, as the compound having two or more (meth) acryloyl groups, epoxy (meth) acrylate is preferable. When epoxy (meth) acrylate is used, a cured product excellent in reactivity, heat resistance, and adhesion can be obtained when an epoxy resin described later is used in combination.
 エポキシ(メタ)アクリレートは、エポキシ樹脂と、アクリル酸、メタクリル酸などの不飽和一塩基酸との付加反応物であるオリゴマーを用いることができる。その原料のエポキシ樹脂としては、ビスフェノールA、ビスフェノールFなどのビスフェノールに代表されるビスフェノール類とエピハロヒドリンとの縮合によって得られるジグリシジル化合物(ビスフェノール型エポキシ樹脂)を用いることができる。また、フェノール骨格を有するエポキシ樹脂として、フェノールまたはクレゾールとホルマリンに代表されるアルデヒドとの縮合物であるフェノールノボラック類とエピハロヒドリンとの縮合によって得られる多価グリシジルエーテル(フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂)を用いることができる。また、シクロヘキシル環を有するエポキシ樹脂を用いることができる。 As the epoxy (meth) acrylate, an oligomer that is an addition reaction product of an epoxy resin and an unsaturated monobasic acid such as acrylic acid or methacrylic acid can be used. As the raw material epoxy resin, a diglycidyl compound (bisphenol type epoxy resin) obtained by condensation of bisphenols typified by bisphenols such as bisphenol A and bisphenol F and epihalohydrin can be used. In addition, as an epoxy resin having a phenol skeleton, a polyvalent glycidyl ether (phenol novolac-type epoxy resin, cresol novolak) obtained by condensation of phenol or cresol and phenol novolaks which are condensates of aldehydes typified by formalin and epihalohydrin is used. Type epoxy resin). An epoxy resin having a cyclohexyl ring can be used.
 エポキシ(メタ)アクリレートとして、例えば、25℃で固体または粘度10Pa・s以上の液体である、次式で表わされるビスフェノールA型エポキシアクリレートを好ましく用いることができる。 As the epoxy (meth) acrylate, for example, a bisphenol A type epoxy acrylate represented by the following formula, which is a solid at 25 ° C. or a liquid having a viscosity of 10 Pa · s or more, can be preferably used.
Figure JPOXMLDOC01-appb-C000005
(式中、nは正の整数を示す。)
 ビスフェノールA型エポキシアクリレートの市販品としては、例えば、デナコールアクリレートDA-250(長瀬化成、25℃で60Pa・s)、デナコールアクリレートDA-721(長瀬化成、25℃で100Pa・s)、リポキシVR-60(昭和高分子、常温固体)、リポキシVR-77(昭和高分子、25℃で100Pa・s)などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
(In the formula, n represents a positive integer.)
Commercially available bisphenol A type epoxy acrylates include, for example, Denacol acrylate DA-250 (Nagase Kasei, 60 Pa · s at 25 ° C.), Denacol acrylate DA-721 (Nagase Kasei, 100 Pa · s at 25 ° C.), Lipoxy VR-60 (Showa Polymer, solid at room temperature), Lipoxy VR-77 (Showa Polymer, 100 Pa · s at 25 ° C.), and the like.
 その他、3個以上の(メタ)アクリロイル基を持つ化合物としては、例えば、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールペンタアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、エトキシ化(6)トリメチロールプロパントリアクリレート、エトキシ化(9)トリメチロールプロパントリアクリレート、プロポキシ化(6)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、高プロポキシ化(55)グリセリルトリアクリレート、エトキシ化(15)トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラエチレングリコールジアクリレート、ジメチロールプロパンテトラアクリレート、トリプロピレングリコールジアクリレート、ペンタアクリレートエステル、1,3-アダマンタンジオールジメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3-アダマンタンジメタノールジメタクリレート、1,3-アダマンタンジメタノールジアクリレートなどが挙げられる。 Other examples of the compound having three or more (meth) acryloyl groups include pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol pentaacrylate, ethoxylation (3) trimethylolpropane triacrylate, ethoxylation (6) Trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate, propoxylated (3) glyceryl triacrylate, highly propoxylated (55) glyceryl triacrylate, ethoxylated ( 15) Trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetraethylene glycol diacrylate, dimethylol group Pantetraacrylate, tripropylene glycol diacrylate, pentaacrylate ester, 1,3-adamantanediol dimethacrylate, 1,3-adamantanediol diacrylate, 1,3-adamantane dimethanol dimethacrylate, 1,3-adamantane dimethanol dimethacrylate An acrylate etc. are mentioned.
 熱硬化性アクリル樹脂における好ましい配合の一例は、熱硬化性アクリル樹脂の全量に対して架橋多環構造を有する(メタ)アクリレート10~50質量%、ビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレート3~20質量%、エポキシ(メタ)アクリレート5~30質量%の範囲内である。 An example of a preferable blend in the thermosetting acrylic resin has a structure in which (meth) acrylate having a crosslinked polycyclic structure is 10 to 50% by mass with respect to the total amount of the thermosetting acrylic resin, and an alkylene oxide is added to the bisphenol skeleton. It is within the range of 3 to 20% by mass of di (meth) acrylate and 5 to 30% by mass of epoxy (meth) acrylate.
 その他、熱硬化性アクリル樹脂には、前記の各成分以外に、各種のビニルモノマー、例えば、単官能ビニルモノマーなどを配合してもよい。 In addition to the above components, various vinyl monomers such as a monofunctional vinyl monomer may be added to the thermosetting acrylic resin.
 本発明の半導体封止用アクリル樹脂組成物には、ラジカル開始剤が配合される。 A radical initiator is blended in the acrylic resin composition for semiconductor encapsulation of the present invention.
 中でも、ラジカル開始剤として有機過酸化物が好ましい。有機過酸化物は、適宜の選択によってリフロー時の反応性を調整することができるので、樹脂硬化とはんだ溶融のバランスを制御することができる。 Of these, organic peroxides are preferred as radical initiators. Since the organic peroxide can adjust the reactivity at the time of reflow by appropriate selection, the balance between resin curing and solder melting can be controlled.
 ラジカル開始剤の有機過酸化物は、半導体封止用アクリル樹脂組成物の硬化性および粘度安定性などの点を考慮すると、分解温度が50~200℃の範囲内のものが好ましい。 The organic peroxide as the radical initiator preferably has a decomposition temperature in the range of 50 to 200 ° C. in consideration of the curability and viscosity stability of the acrylic resin composition for semiconductor encapsulation.
 ラジカル開始剤の有機過酸化物としては、例えば、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド、アセチルアセトンパーオキシド、イソブチルパーオキシド、o-メチルベンゾイルパーオキシド、ビス-3,5,5-トリメチルヘキサノイルパーオキシド、ラウロイルパーオキシド、ベンゾイルパーオキシド、2,4,4-トリメチルペンチル-2-ヒドロパーオキシド、ジイソプロピルベンゼンパーオキシド、クメンヒドロパーオキシド、tert-ブチルヒドロパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、tert-ブチルクミルパーオキシド、ジ-tert-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、1,1-ジ-tert-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、1,1-ジ-tert-ブチルパーオキシシクロヘキサン、2,2-ジ(tert-ブチルパーオキシ)ブタン、4,4-ジ-tert-ブチルパーオキシバレリック酸-n-ブチルエステル、2,4,4-トリメチルペンチルパーオキシフェノキシアセトン、α-クミルパーオキシネオデカノエート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、ジ-tert-ブチルパーオキシヘキサヒドロテレフタレート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエートなどが挙げられる。 Examples of the organic peroxide as the radical initiator include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, acetylacetone peroxide, isobutyl peroxide, o-methylbenzoyl peroxide, and bis-3. , 5,5-trimethylhexanoyl peroxide, lauroyl peroxide, benzoyl peroxide, 2,4,4-trimethylpentyl-2-hydroperoxide, diisopropylbenzene peroxide, cumene hydroperoxide, tert-butyl hydroperoxide Dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 1,3-bis (tert-butylperoxyisopropyl) ) Benzene, tert-butylcumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,1-di-tert-butylper Oxy-3,3,5-trimethylcyclohexane, 1,1-di-tert-butylperoxycyclohexane, 2,2-di (tert-butylperoxy) butane, 4,4-di-tert-butylperoxyvale Rick acid-n-butyl ester, 2,4,4-trimethylpentylperoxyphenoxyacetone, α-cumylperoxyneodecanoate, tert-butylperoxyneodecanoate, tert-butylperoxy-2-ethyl Hexanoate, tert-butyl peroxyisobutyrate, di-tert-butyl -Oxyhexahydroterephthalate, tert-butyl peroxyacetate, tert-butyl peroxybenzoate and the like.
 ラジカル開始剤の含有量としては、特に限定されないが、熱硬化性アクリル樹脂100質量部に対して、0.2~5質量部が好ましい。この範囲内にすると、半導体封止用アクリル樹脂組成物の粘度安定性が良く、密着力の低下も抑制できる。 The content of the radical initiator is not particularly limited, but is preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the thermosetting acrylic resin. If it is in this range, the viscosity stability of the acrylic resin composition for semiconductor encapsulation is good, and a decrease in adhesion can also be suppressed.
 本発明の半導体封止用アクリル樹脂組成物には、活性剤が配合される。活性剤を配合することで、リフロー時の加熱によってはんだ金属表面の酸化膜が除去され、電気的な接続信頼性を確保することができる。 Activator is blended in the acrylic resin composition for semiconductor encapsulation of the present invention. By blending the activator, the oxide film on the surface of the solder metal is removed by heating during reflow, and electrical connection reliability can be ensured.
 活性剤としては、特に限定されないが、例えば、有機酸、各種アミンおよびその塩などを用いることができる。 The activator is not particularly limited, and for example, organic acids, various amines and salts thereof can be used.
 中でも、活性剤としては有機酸が好ましい。有機酸を用いることで、はんだの濡れ性を特に向上させることができる。 Among them, an organic acid is preferable as the activator. By using the organic acid, the wettability of the solder can be particularly improved.
 有機酸としては、例えば、アビエチン酸、グルタル酸、コハク酸、マロン酸、シュウ酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、ジグリコール酸、チオジグリコール酸、フタル酸、イソフタル酸、テレフタル酸、プロパントリカルボン酸、クエン酸、酒石酸などが挙げられる。 Examples of organic acids include abietic acid, glutaric acid, succinic acid, malonic acid, oxalic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, diglycolic acid, thiodiglycolic acid, phthalic acid, isophthalic acid, terephthalic acid Acid, propanetricarboxylic acid, citric acid, tartaric acid and the like can be mentioned.
 中でも、はんだの濡れ性を特に向上させることができる点から、アビエチン酸、グルタル酸、シュウ酸が好ましい。 Among them, abietic acid, glutaric acid, and oxalic acid are preferable because the solder wettability can be particularly improved.
 活性剤の含有量は、半導体封止用アクリル樹脂組成物の全量に対して0.1~20.0質量%の範囲内が好ましい。この範囲内にすると、フラックス活性を発揮しはんだと電極パッドやバンプ電極との濡れ性を向上させることができる。また、硬化物が脆くなったり絶縁信頼性が損なわれたりすることも抑制でき、ブリードも抑制できる。 The content of the activator is preferably in the range of 0.1 to 20.0 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the flux activity can be exhibited and the wettability between the solder and the electrode pad or bump electrode can be improved. Moreover, it can suppress that hardened | cured material becomes brittle or insulation reliability is impaired, and a bleed can also be suppressed.
 本発明の半導体封止用アクリル樹脂組成物には、無機充填剤が配合される。無機充填剤を配合することで、硬化物の熱膨張係数を調整することができる。 An inorganic filler is blended in the acrylic resin composition for semiconductor encapsulation of the present invention. The thermal expansion coefficient of the cured product can be adjusted by blending the inorganic filler.
 無機充填剤としては、例えば、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカなどのシリカ粉末、アルミナ、酸化チタンなどの酸化物、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの窒化物などを用いることができる。 Examples of the inorganic filler include silica powder such as fused silica (fused spherical silica and fused crushed silica), synthetic silica and crystalline silica, oxides such as alumina and titanium oxide, talc, fired clay, unfired clay, mica, Silicates such as glass, carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates such as barium sulfate, calcium sulfate and calcium sulfite Alternatively, borates such as sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride can be used.
 これらの中でも、耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、合成シリカが好ましい。 Among these, fused silica, crystalline silica, and synthetic silica are preferable because heat resistance, moisture resistance, strength, and the like can be improved.
 無機充填剤の形状は、破砕状、針状、リン片状、球状など特に限定されないが、分散性や粘度制御の観点から、球状のものを用いることが好ましい。 The shape of the inorganic filler is not particularly limited, such as a crushed shape, a needle shape, a flake shape, and a spherical shape, but it is preferable to use a spherical shape from the viewpoint of dispersibility and viscosity control.
 無機充填剤のサイズは、フリップチップ接続した際の半導体チップと回路基板との間の空隙よりも平均粒径が小さいものであればよいが、充填密度や粘度制御の観点から、平均粒径10μm以下のものが好ましく、5μm以下のものがより好ましく、3μm以下のものがさらに好ましく、0.2~3μmのものが特に好ましい。 The inorganic filler may be any size as long as the average particle size is smaller than the gap between the semiconductor chip and the circuit board when flip-chip connected. From the viewpoint of filling density and viscosity control, the average particle size is 10 μm. The following are preferable, those having 5 μm or less are more preferable, those having 3 μm or less are more preferable, and those having 0.2 to 3 μm are particularly preferable.
 なお、ここで平均粒径は、例えばレーザー光回折法による粒度分布測定により測定することができる。また、平均粒径はメジアン径として求めることができる。 Here, the average particle diameter can be measured, for example, by particle size distribution measurement by a laser light diffraction method. Moreover, an average particle diameter can be calculated | required as a median diameter.
 無機充填剤は、最大粒径が10μm以下であることが好ましく、0.5~10μmであることがより好ましい。最大粒径が10μm以下であると、20μm以下の狭いギャップにも対応することができる。また最大粒径が0.5μm以上であると、粘度増加を抑制することができる。 The inorganic filler preferably has a maximum particle size of 10 μm or less, more preferably 0.5 to 10 μm. When the maximum particle size is 10 μm or less, a narrow gap of 20 μm or less can be handled. Further, when the maximum particle size is 0.5 μm or more, an increase in viscosity can be suppressed.
 さらに、粘度や硬化物の物性を調整するために、粒径の異なる無機充填剤を2種以上組み合わせて用いてもよい。 Furthermore, in order to adjust the viscosity and physical properties of the cured product, two or more kinds of inorganic fillers having different particle sizes may be used in combination.
 本発明の半導体封止用アクリル樹脂組成物における無機充填剤の配合量は、半導体封止用アクリル樹脂組成物の全量に対して25~75質量%が好ましい。この範囲内にすると、熱膨張係数を小さくして接続信頼性を向上させ、粘度が高くなりすぎて作業性が低下することも抑制できる。 The blending amount of the inorganic filler in the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 25 to 75% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the thermal expansion coefficient can be reduced to improve the connection reliability, and the viscosity can be increased too much to prevent the workability from decreasing.
 本発明の半導体封止用アクリル樹脂組成物において、好ましい態様の1つでは、エポキシ樹脂が配合される。エポキシ樹脂を配合することで、リフロー時の反応性が調整され、はんだの濡れ性を向上させることができる。また密着性を高めることができ、ブリードも抑制することができる。 In the acrylic resin composition for semiconductor encapsulation of the present invention, in one of the preferred embodiments, an epoxy resin is blended. By compounding the epoxy resin, the reactivity during reflow is adjusted, and the wettability of the solder can be improved. Moreover, adhesiveness can be improved and bleeding can also be suppressed.
 エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するものであれば、その分子量、分子構造は特に限定されず各種のものを用いることができる。 As the epoxy resin, as long as it has two or more epoxy groups in one molecule, its molecular weight and molecular structure are not particularly limited, and various types can be used.
 具体的には、例えば、グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型、オレフィン酸化型(脂環式)などの各種のエポキシ樹脂を用いることができる。 Specifically, for example, various epoxy resins such as glycidyl ether type, glycidyl amine type, glycidyl ester type, and olefin oxidation type (alicyclic) can be used.
 さらに具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂などの水添ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂肪族系エポキシ樹脂、トリグリシジルイソシアヌレートなどを用いることができる。 More specifically, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, hydrogenated bisphenol type epoxy resins such as hydrogenated bisphenol A type epoxy resins and hydrogenated bisphenol F type epoxy resins, Biphenyl type epoxy resin, naphthalene type epoxy resin, alicyclic epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, aliphatic epoxy resin, triglycidyl Isocyanurate and the like can be used.
 これらの中でも、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂が好ましく、これらのエポキシ当量は120~200の範囲内が好ましい。 Among these, bisphenol-type epoxy resins, hydrogenated bisphenol-type epoxy resins, and naphthalene-type epoxy resins are preferable, and the epoxy equivalent thereof is preferably in the range of 120 to 200.
 ビスフェノール型エポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂としては、例えば、次式(VI)で表わされるエポキシ樹脂などが挙げられる。 Among the bisphenol type epoxy resins, examples of the bisphenol A type epoxy resin include an epoxy resin represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000006
(式中、R11~R18は、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数6~10のアリール基、または炭素数6~10のアラルキル基を示し、全てが同一でも互いに異なっていてもよい。pは0~20、好ましくは0~10の整数を示す。)
 ビスフェノール型エポキシ樹脂のうち、ビスフェノールF型エポキシ樹脂としては、例えば、次式(VII)で表わされるエポキシ樹脂などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
Wherein R 11 to R 18 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms. All may be the same or different from each other, and p represents an integer of 0 to 20, preferably 0 to 10.)
Among the bisphenol type epoxy resins, examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following formula (VII).
Figure JPOXMLDOC01-appb-C000007
(式中、R11~R18は、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数6~10のアリール基、または炭素数6~10のアラルキル基を示し、全てが同一でも互いに異なっていてもよい。qは0~3の整数を示す。)
 ナフタレン型エポキシ樹脂としては、例えば、次式(VIII)で表わされるエポキシ樹脂などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Wherein R 11 to R 18 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms. All may be the same or different from each other, q represents an integer of 0 to 3.)
Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following formula (VIII).
Figure JPOXMLDOC01-appb-C000008
(式中、R21~R23は、水素原子、または置換もしくは非置換の炭素数1~12の一価の炭化水素基を示し、全てが同一でも互いに異なっていてもよい。rは1または0で、l、mはそれぞれ0~11の整数を示し、(l+m)が1~11の整数でかつ(l+r)が1~12の整数となるように選ばれる。iは0~3の整数、jは0~2の整数、kは0~4の整数を示す。)
 前記式(VIII)で表わされるナフタレン型エポキシ樹脂としては、l個の構成単位およびm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体などが挙げられる。
Figure JPOXMLDOC01-appb-C000008
(Wherein R 21 to R 23 represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, which may be all the same or different from each other. 0, l and m each represent an integer of 0 to 11, and (l + m) is selected to be an integer of 1 to 11 and (l + r) is selected to be an integer of 1 to 12. i is an integer of 0 to 3 , J is an integer from 0 to 2, and k is an integer from 0 to 4.)
As the naphthalene type epoxy resin represented by the formula (VIII), there are random copolymers containing 1 constituent unit and m constituent units at random, alternating copolymers containing alternating units, and copolymers containing regular units. And a block copolymer contained in a block form.
 本発明の半導体封止用アクリル樹脂組成物におけるエポキシ樹脂の配合量は、半導体封止用アクリル樹脂組成物の全量に対して0.1~50質量%が好ましい。この範囲内にすると、はんだの濡れ性を向上させることができる。また密着性を高めることができ、ブリードも抑制することができる。 The blending amount of the epoxy resin in the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 0.1 to 50% by mass with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Within this range, the solder wettability can be improved. Moreover, adhesiveness can be improved and bleeding can also be suppressed.
 例えば、熱硬化性アクリル樹脂の単独使用では硬化反応の立ち上がり(粘度の立ち上がり)が150℃程度であるが、エポキシ樹脂を配合することで、硬化反応の立ち上がりを160℃程度に調整すると、ボイドを抑制しつつ、濡れ性を向上させることができる。 For example, when the thermosetting acrylic resin is used alone, the rise of the curing reaction (rise of viscosity) is about 150 ° C., but by adding an epoxy resin, the rise of the curing reaction is adjusted to about 160 ° C. While suppressing, wettability can be improved.
 本発明の半導体封止用アクリル樹脂組成物には、本発明の効果を損なわない範囲内において、さらに他の添加剤を配合することができる。このような他の添加剤としては、例えば、シランカップリング剤、消泡剤、レベリング剤、低応力剤、顔料などが挙げられる。ただし、溶剤は使用しないことが好ましい。 In the acrylic resin composition for semiconductor encapsulation of the present invention, other additives can be further blended within a range not impairing the effects of the present invention. Examples of such other additives include silane coupling agents, antifoaming agents, leveling agents, low stress agents, and pigments. However, it is preferable not to use a solvent.
 本発明の半導体封止用アクリル樹脂組成物は、例えば、次の手順で製造することができる。前記の各成分を同時にまたは別々に配合し、必要に応じて加熱処理や冷却処理を行いながら、撹拌、溶解、混合、分散を行う。次に、この混合物に無機充填剤を加え、必要に応じて加熱処理や冷却処理を行いながら、再度、撹拌、混合、分散を行うことにより、本発明の半導体封止用アクリル樹脂組成物を得ることができる。この撹拌、溶解、混合、分散には、ディスパー、プラネタリーミキサー、ボールミル、3本ロールなどを組み合わせて用いることができる。 The acrylic resin composition for semiconductor encapsulation of the present invention can be produced, for example, by the following procedure. The above components are blended simultaneously or separately, and stirring, dissolution, mixing, and dispersion are performed while performing heat treatment or cooling treatment as necessary. Next, an inorganic filler is added to the mixture, and stirring, mixing, and dispersion are performed again while performing heat treatment and cooling treatment as necessary, thereby obtaining the acrylic resin composition for semiconductor encapsulation of the present invention. be able to. For this stirring, dissolution, mixing, and dispersion, a disper, a planetary mixer, a ball mill, a three roll, etc. can be used in combination.
 本発明の半導体封止用アクリル樹脂組成物は、作業性や加工性の観点から、25℃で液状であることが好ましい。また、本発明の半導体封止用アクリル樹脂組成物の粘度は、25℃において1~1000Pa・sであることが好ましく、1~500Pa・sであることがより好ましく、1~200Pa・sであることがさらに好ましい。粘度をこの範囲にすると、回路基板上に半導体封止用アクリル樹脂組成物を供給する際の作業性の低下を抑制できる。ここで、粘度はE型回転粘度計を用いて、25℃で、回転数0.5rpmで測定したときの値である。 The acrylic resin composition for semiconductor encapsulation of the present invention is preferably liquid at 25 ° C. from the viewpoints of workability and workability. The viscosity of the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 1 to 1000 Pa · s at 25 ° C., more preferably 1 to 500 Pa · s, and more preferably 1 to 200 Pa · s. More preferably. When the viscosity is in this range, it is possible to suppress a decrease in workability when supplying the semiconductor sealing acrylic resin composition onto the circuit board. Here, the viscosity is a value when measured using an E-type rotational viscometer at 25 ° C. and a rotational speed of 0.5 rpm.
 本発明の半導体封止用アクリル樹脂組成物の硬化温度は、好ましくは140~200℃、より好ましくは150~180℃である。 The curing temperature of the acrylic resin composition for semiconductor encapsulation of the present invention is preferably 140 to 200 ° C., more preferably 150 to 180 ° C.
 本発明の半導体封止用アクリル樹脂組成物は、回路基板上に封止樹脂を供給した後に半導体チップを回路基板に圧接する実装工程に使用される。この実装工程では、バンプ電極のはんだの融点以上に加熱することにより、電気的接続と半導体封止用アクリル樹脂組成物の硬化とを同時に行う。 The acrylic resin composition for semiconductor encapsulation of the present invention is used in a mounting process in which a semiconductor chip is pressed against a circuit board after supplying the sealing resin onto the circuit board. In this mounting step, the electrical connection and the curing of the acrylic resin composition for semiconductor sealing are simultaneously performed by heating to a temperature equal to or higher than the melting point of the solder of the bump electrode.
 この実装工程を経て製造される本発明の半導体装置として、具体的には、半導体チップを回路基板にフェースダウンで実装するBGA、LGA、CSPなどのフリップチップ型の半導体装置などが挙げられる。また、複数のフリップチップ型の表面実装部品を積み重ねて接合するPoP型の半導体装置などが挙げられる。 Specific examples of the semiconductor device of the present invention manufactured through this mounting process include flip chip type semiconductor devices such as BGA, LGA, and CSP that mount a semiconductor chip face down on a circuit board. In addition, a PoP type semiconductor device that stacks and joins a plurality of flip chip type surface mount components can be used.
 図1は、本発明の半導体装置の製造方法の一例を模式的に説明する断面図である。 FIG. 1 is a cross-sectional view schematically illustrating an example of a method for manufacturing a semiconductor device of the present invention.
 図1(a)に示すように、半導体チップ10を実装するための回路基板13の電極パッド14が形成された面に、前記の半導体封止用アクリル樹脂組成物30aを供給する。 As shown in FIG. 1A, the above-mentioned acrylic resin composition 30a for semiconductor encapsulation is supplied to the surface of the circuit board 13 on which the semiconductor chip 10 is mounted, on which the electrode pads 14 are formed.
 回路基板13としては、例えば、ガラスエポキシ、ポリイミド、ポリエステル、セラミックなどの絶縁基板表面に形成された銅などの金属層の不要な個所をエッチング除去して配線パターンが形成されたものを用いることができる。また、絶縁基板表面に銅めっきなどによって配線パターンを形成したもの、絶縁基板表面に導電性物質を印刷して配線パターンを形成したものなどを用いることができる。 As the circuit board 13, for example, a circuit board 13 in which an unnecessary portion of a metal layer such as copper formed on the surface of an insulating substrate such as glass epoxy, polyimide, polyester, or ceramic is removed by etching is used. it can. Further, it is possible to use a wiring pattern formed on the surface of the insulating substrate by copper plating or the like, or a wiring pattern formed by printing a conductive material on the surface of the insulating substrate.
 配線パターンの表面には、金層、はんだ層、スズ層、および防錆皮膜層から選ばれるいずれかの表面処理層が形成されていることが好ましい。 It is preferable that any surface treatment layer selected from a gold layer, a solder layer, a tin layer, and a rust preventive film layer is formed on the surface of the wiring pattern.
 金層およびスズ層は無電解または電解めっきによって形成することができる。はんだ層はめっきによって形成してもよいし、はんだペーストを印刷によって塗布した後、加熱溶融する方法や、微細なはんだ粒子を配線パターン上に配置して加熱溶融する方法で形成することができる。 The gold layer and the tin layer can be formed by electroless or electrolytic plating. The solder layer may be formed by plating, or may be formed by a method in which a solder paste is applied by printing and then heated and melted, or a method in which fine solder particles are placed on a wiring pattern and heated and melted.
 防錆皮膜層(例えばCu-OSP)は、プリフラックスとも呼ばれ、専用の薬液中に基板を浸漬することによって、銅などで形成された配線パターン表面の酸化膜を除去し、表面に有機成分からなる防錆皮膜層を形成することができる。防錆皮膜層は、はんだ12に対する良好な濡れ性を確保可能でき、微細接続化への対応の点から好適である。 The anticorrosive film layer (for example, Cu-OSP) is also called preflux. By immersing the substrate in a special chemical solution, the oxide film on the surface of the wiring pattern formed of copper or the like is removed, and an organic component is formed on the surface. It is possible to form a rust-proof coating layer made of The rust preventive coating layer can secure good wettability with respect to the solder 12, and is suitable from the viewpoint of adapting to fine connection.
 電極パッド14は、はんだペーストや比較的融点の低いはんだの層を形成しておいてもよく、銅めっき、Ni/Cuめっき、またはSnめっきを形成しておいてもよい。 The electrode pad 14 may be formed with a solder paste or a solder layer having a relatively low melting point, or with copper plating, Ni / Cu plating, or Sn plating.
 半導体封止用アクリル樹脂組成物30aの供給方法は、塗布などによって行われ、例えば、ディスペンサー、スクリーン印刷、インクジェットなどにより行うことができる。供給量は、封止するのに必要な量であって、かつ、多過ぎない必要最小量とすることが望ましい。 The supply method of the acrylic resin composition 30a for semiconductor encapsulation is performed by coating or the like, and can be performed by, for example, a dispenser, screen printing, inkjet, or the like. It is desirable that the supply amount be an amount necessary for sealing and a minimum amount that is not excessive.
 半導体チップ10と回路基板13とを接続する装置としては、例えば、通常のフリップチップボンダーを用いることができる。 As an apparatus for connecting the semiconductor chip 10 and the circuit board 13, for example, a normal flip chip bonder can be used.
 次に、図1(a)に示すように、チップマウンターの加熱ヘッド20により半導体チップ10がフェースダウンで所定位置に配置され、半導体チップ10と回路基板13とが位置合わせされた状態で、加熱ヘッド20を下降させ、図1(b)に示すように、半導体チップ10のバンプ電極11を回路基板13の電極パッド14に接地する。 Next, as shown in FIG. 1A, the semiconductor chip 10 is placed face-down at a predetermined position by the heating head 20 of the chip mounter, and the semiconductor chip 10 and the circuit board 13 are aligned and heated. The head 20 is lowered and the bump electrodes 11 of the semiconductor chip 10 are grounded to the electrode pads 14 of the circuit board 13 as shown in FIG.
 そして、半導体チップ10の背面から加熱および加圧をしながらリフロー処理を行う。図1(b)のように接地した後、フリップチップボンダーのステージ上の回路基板13は加熱ヘッド20の温度まで加熱される。さらにその後、加熱ヘッド20の温度を上昇させることによって、バンプ電極11のはんだ12の融点以上の領域まで昇温させる。これによって、半導体封止用アクリル樹脂組成物30aの硬化反応が進行しながら、図1(c)に示すように、バンプ電極11のはんだ12を溶融させる。 Then, a reflow process is performed while heating and pressurizing from the back surface of the semiconductor chip 10. After grounding as shown in FIG. 1B, the circuit board 13 on the stage of the flip chip bonder is heated to the temperature of the heating head 20. Thereafter, the temperature of the heating head 20 is raised to raise the temperature to a region above the melting point of the solder 12 of the bump electrode 11. Thereby, the solder 12 of the bump electrode 11 is melted as shown in FIG. 1C while the curing reaction of the acrylic resin composition 30a for semiconductor encapsulation proceeds.
 そして図1(d)に示すように、はんだ12の融点以上の温度に保持しながら、半導体封止用アクリル樹脂組成物30aを硬化して硬化物30bを形成した後、図1(e)に示すように加熱ヘッド20を半導体チップ10から上昇させる。 And as shown in FIG.1 (d), after hold | maintaining the acrylic resin composition 30a for semiconductor sealing and forming the hardened | cured material 30b, keeping at the temperature more than melting | fusing point of the solder 12, FIG.1 (e) As shown, the heating head 20 is raised from the semiconductor chip 10.
 半導体チップ10としては、特に限定されないが、例えば、シリコン、ゲルマニウムなどの元素半導体、ガリウムヒ素、インジウムリンなどの化合物半導体などを用いることができる。 The semiconductor chip 10 is not particularly limited. For example, an elemental semiconductor such as silicon or germanium, or a compound semiconductor such as gallium arsenide or indium phosphide can be used.
 半導体チップ10に形成されているバンプ電極11としては、例えば、銅ピラーの先端にはんだ12またはスズ層が形成された構造のものや、はんだバンプ、銅バンプ、金バンプなどを用いることができる。微細接続化への対応を考慮すると、図1に示すような、銅ピラーの先端にはんだ12が形成された構造のバンプ電極11が好適である。 As the bump electrode 11 formed on the semiconductor chip 10, for example, a structure in which a solder 12 or a tin layer is formed at the tip of a copper pillar, a solder bump, a copper bump, a gold bump, or the like can be used. Considering the correspondence to fine connection, a bump electrode 11 having a structure in which solder 12 is formed at the tip of a copper pillar as shown in FIG. 1 is suitable.
 はんだ12としてはSn-37Pb(融点183℃)を用いてもよいが、環境への影響を考慮して、Sn-3.5Ag(融点221℃)、Sn-2.5Ag-0.5Cu-1Bi(融点214℃)、Sn-0.7Cu(融点227℃)、Sn-3Ag-0.5Cu(融点217℃)、Sn-92Zn(融点198℃)などの鉛フリーはんだを用いることが望ましい。 As the solder 12, Sn-37Pb (melting point 183 ° C.) may be used, but considering the influence on the environment, Sn-3.5Ag (melting point 221 ° C.), Sn-2.5Ag-0.5Cu-1Bi It is desirable to use lead-free solder such as (melting point 214 ° C.), Sn-0.7Cu (melting point 227 ° C.), Sn-3Ag-0.5Cu (melting point 217 ° C.), Sn-92Zn (melting point 198 ° C.).
 図1(b)から図1(d)までの加熱プロファイルにおける加圧条件としては、特に限定されず、半導体チップ10の面積やバンプ電極11の数によって適宜に設定することができるが、バンプ電極11と電極パッド14との間から樹脂を排除することや、半導体チップ10にクラックなどのダメージが発生しないようにすることなど考慮すると、半導体チップ10の面積に対して10~50Nの範囲内が好ましく、15~40Nの範囲内がより好ましい。 The pressurizing conditions in the heating profiles from FIG. 1B to FIG. 1D are not particularly limited and can be appropriately set depending on the area of the semiconductor chip 10 and the number of bump electrodes 11. In consideration of eliminating the resin from between the electrode 11 and the electrode pad 14 and preventing the semiconductor chip 10 from being damaged such as cracks, the area of the semiconductor chip 10 is within a range of 10 to 50 N. The range of 15 to 40N is more preferable.
 図1(b)の接地から図1(d)の樹脂硬化までの加熱プロファイルは、全体で例えば3.0~10s、好ましくは3.0~5.0sの範囲内で行われる。 The heating profile from the grounding in FIG. 1 (b) to the resin curing in FIG. 1 (d) is performed in the range of, for example, 3.0 to 10 s, preferably 3.0 to 5.0 s as a whole.
 詳細には、図(b)に示すように接地した後、ステージ上の回路基板13の温度は加熱ヘッド20の温度まで急峻に上昇する。その後、加熱ヘッド20の温度を上昇させ、半導体封止用アクリル樹脂組成物30aに含まれる活性剤の活性温度以上でかつはんだ12の融点よりも低い温度から、さらに図(c)に示すようにはんだ12の融点以上の温度となるように加熱を行い、半導体チップ10と回路基板13とをはんだ12による金属接合によって接続する。 Specifically, after grounding as shown in FIG. 2B, the temperature of the circuit board 13 on the stage rises rapidly to the temperature of the heating head 20. Thereafter, the temperature of the heating head 20 is increased, and from a temperature not lower than the activation temperature of the activator contained in the semiconductor sealing acrylic resin composition 30a and lower than the melting point of the solder 12, as shown in FIG. Heating is performed so that the temperature is equal to or higher than the melting point of the solder 12, and the semiconductor chip 10 and the circuit board 13 are connected by metal bonding using the solder 12.
 この図1(b)から図1(c)までの加熱プロファイルの領域での半導体封止用アクリル樹脂組成物30aのレオロジー、硬化性、活性剤による活性力の発現をいかに制御するかが重要である。 It is important how to control the expression of the rheology, curability, and activity of the activator of the acrylic resin composition 30a for semiconductor encapsulation in the region of the heating profile from FIG. 1 (b) to FIG. 1 (c). is there.
 この領域では、まず加熱によって低粘度化した半導体封止用アクリル樹脂組成物30aをバンプ電極11と電極パッド14との間から排除するとともに、はんだ12表面の酸化膜を活性剤によって還元して除去する。 In this region, first, the acrylic resin composition 30a for semiconductor encapsulation whose viscosity has been reduced by heating is excluded from between the bump electrode 11 and the electrode pad 14, and the oxide film on the surface of the solder 12 is reduced by an activator and removed. To do.
 室温で固形の活性剤を用いた場合、その融点や軟化点以上の温度に加熱されて液状または低粘度状態になり、フラックス活性を示すために必要な、はんだ12の表面に均一に濡れる状態になる。 When a solid activator is used at room temperature, it is heated to a temperature equal to or higher than its melting point or softening point to become a liquid or low-viscosity state so that it is uniformly wetted on the surface of the solder 12 necessary for exhibiting flux activity. Become.
 しかし、はんだ12の融点以上の温度には達していないので金属接合による接続部の形成には至っていない。 However, since the temperature does not reach the melting point of the solder 12, the connection portion is not formed by metal bonding.
 ここで、はんだ12が流れる前に半導体封止用アクリル樹脂組成物30aがゲル化し始める場合、ゲル化した半導体封止用アクリル樹脂組成物30aが、はんだ12が流れて電気的接続を形成することを妨げる。図1(b)の接地した時点では、図1には詳細は示していないが、実際には、はんだ12の形状は加圧力によって潰された形状になっている。ここで半導体封止用アクリル樹脂組成物30aの硬化が早いと、はんだ12の濡れが抑制されて接地した形状が保持されてしまう。一方、はんだ12が融けたときに半導体封止用アクリル樹脂組成物30aに流動性があるとはんだ12は電極パッド14やバンプ電極11に対して良く濡れる。 Here, when the semiconductor sealing acrylic resin composition 30a starts to gel before the solder 12 flows, the gelled semiconductor sealing acrylic resin composition 30a flows to form an electrical connection. Disturb. Although details are not shown in FIG. 1 at the time of grounding in FIG. 1B, the shape of the solder 12 is actually crushed by the applied pressure. Here, when the curing of the acrylic resin composition 30a for semiconductor encapsulation is quick, the wetting of the solder 12 is suppressed and the grounded shape is maintained. On the other hand, when the solder 12 is melted, if the semiconductor sealing acrylic resin composition 30 a has fluidity, the solder 12 wets well with respect to the electrode pads 14 and the bump electrodes 11.
 すなわち、良く濡れるためには活性剤の添加と半導体封止用アクリル樹脂組成物30aの反応性の調整が必要になる。 That is, in order to wet well, it is necessary to add an activator and adjust the reactivity of the acrylic resin composition 30a for semiconductor encapsulation.
 本発明では、半導体封止用アクリル樹脂組成物30aに熱硬化性アクリル樹脂を配合することで、ラジカル重合での硬化によりボイドを抑制できる。そして活性剤を用いることで濡れ性が向上し、さらにエポキシ樹脂を熱硬化性アクリル樹脂と併用すると、ボイドを抑制しつつ反応性を制御し濡れ性がさらに向上する。例えば、熱硬化性アクリル樹脂の単独使用では硬化反応の立ち上がり(粘度の立ち上がり)が150℃程度であるが、エポキシ樹脂を配合することで、硬化反応の立ち上がりを160℃程度に調整すると、ボイドの抑制と濡れ性のバランスに優れている。 In the present invention, by adding a thermosetting acrylic resin to the acrylic resin composition 30a for semiconductor encapsulation, voids can be suppressed by curing by radical polymerization. Then, wettability is improved by using an activator, and when an epoxy resin is used in combination with a thermosetting acrylic resin, the reactivity is controlled and the wettability is further improved while suppressing voids. For example, when the thermosetting acrylic resin is used alone, the rising of the curing reaction (rising of the viscosity) is about 150 ° C., but when the rising of the curing reaction is adjusted to about 160 ° C. by adding an epoxy resin, Excellent balance between suppression and wettability.
 図1(b)の接地後の温度から、はんだ12の融点以上のピーク温度への上昇までの時間は、生産性、レオロジー特性の制御、はんだ12の濡れ性などを考慮すると、1.0~10sが好ましく、1.0~3.0sがより好ましい。 The time from the temperature after grounding in FIG. 1B to the rise to the peak temperature above the melting point of the solder 12 is 1.0 to 1.0 in consideration of productivity, control of rheological characteristics, wettability of the solder 12, and the like. 10 s is preferable, and 1.0 to 3.0 s is more preferable.
 その後、図1(c)に示すようにはんだ12を溶融させ、はんだ12の融点以上となるピーク温度に保持しながら、半導体チップ10と回路基板13とをはんだ12による金属接合によって接続し、かつ、図1(d)に示すように半導体封止用アクリル樹脂組成物30aを硬化させて硬化物30bとする。 Thereafter, as shown in FIG. 1C, the solder 12 is melted and the semiconductor chip 10 and the circuit board 13 are connected by metal bonding with the solder 12 while maintaining the peak temperature equal to or higher than the melting point of the solder 12, and As shown in FIG. 1D, the semiconductor sealing acrylic resin composition 30a is cured to obtain a cured product 30b.
 このピーク温度に保持する工程は、半導体封止用アクリル樹脂組成物30aのゲル化時間以上となるように加熱時間を設定し、ゲル化した硬化物30bが金属接合による接続部を補強する。これによって、接続終了後の冷却過程において、半導体チップ10と回路基板13の熱膨張係数差に起因する熱応力が金属接合による接続部に集中して発生するクラックなどの接続不良も抑制することができる。 In the step of maintaining the peak temperature, the heating time is set so as to be equal to or longer than the gelation time of the acrylic resin composition 30a for semiconductor encapsulation, and the gelated cured product 30b reinforces the connection portion by metal bonding. As a result, in the cooling process after the connection is completed, it is possible to suppress a connection failure such as a crack caused by thermal stress caused by a difference in thermal expansion coefficient between the semiconductor chip 10 and the circuit board 13 concentrating on a connection portion by metal bonding. it can.
 このはんだ12の融点以上となるピーク温度に保持する加熱時間は、生産性、レオロジー特性の制御、はんだ12の濡れ性などを考慮すると、1.0~10sが好ましく、1.0~3.0sがより好ましい。ピーク温度は、一般的な鉛フリーはんだを用いた場合、通常は150~300℃の範囲内であり、好ましくは200~280℃の範囲内、より好ましくは220~260℃の範囲内である。 In consideration of productivity, control of rheological characteristics, wettability of the solder 12, etc., the heating time for maintaining the peak temperature that is equal to or higher than the melting point of the solder 12 is preferably 1.0 to 10 s, and preferably 1.0 to 3.0 s. Is more preferable. When a general lead-free solder is used, the peak temperature is usually in the range of 150 to 300 ° C., preferably in the range of 200 to 280 ° C., more preferably in the range of 220 to 260 ° C.
 このようにして得られる本発明の半導体装置は、複数のバンプ電極が形成された半導体チップと、バンプ電極と電気的に接続された複数の電極パッドを有する回路基板と、回路基板と半導体チップとの間に配置された封止樹脂とを備えている。 The semiconductor device of the present invention thus obtained includes a semiconductor chip on which a plurality of bump electrodes are formed, a circuit board having a plurality of electrode pads electrically connected to the bump electrodes, a circuit board, and a semiconductor chip. And a sealing resin disposed between the two.
 電気接続された半導体装置は半導体チップと回路基板の平行な隙間にバンプ電極が柱状に存在するような形態となる。 The electrically connected semiconductor device has a form in which bump electrodes exist in a columnar shape in a parallel gap between the semiconductor chip and the circuit board.
 封止樹脂は、本発明の半導体封止用アクリル樹脂組成物の硬化物から形成され、回路基板と半導体チップとの間の空隙を封止している。 The sealing resin is formed from a cured product of the acrylic resin composition for semiconductor sealing of the present invention, and seals the gap between the circuit board and the semiconductor chip.
 回路基板は、インターポーザーなどの絶縁基板と、この回路基板の一方の面上に設けられた配線パターンとを備えている。回路基板の配線パターンと半導体チップとは、複数のバンプ電極と電極パッドによって電気的に接続されている。 The circuit board includes an insulating substrate such as an interposer and a wiring pattern provided on one surface of the circuit board. The wiring pattern of the circuit board and the semiconductor chip are electrically connected by a plurality of bump electrodes and electrode pads.
 また、回路基板は、配線パターンが設けられた面と反対側の面にも電極パッドが設けられ、この電極パッドは回路基板内部を通じて配線パターンと導通している。この電極パッド上にははんだボールが設けられる場合もある。この場合は、スクリーン印刷法またははんだボールによる方法などによってはんだバンプを形成することができる。スクリーン印刷法では、はんだ合金を微細なはんだ粉とした後、フラックスと混合してペーストとする。次いで、電極パッド上にメタルマスクを用いてスキージングし、ペーストを一定量電極パッド上に載せた後に、リフローすることではんだバンプを形成することができる。また、はんだボールによる方法では、はんだボールをフラックスまたはペーストを塗布した電極パッド上に並べて、リフローすることではんだバンプを形成することができる。 The circuit board is also provided with an electrode pad on the surface opposite to the surface on which the wiring pattern is provided, and the electrode pad is electrically connected to the wiring pattern through the circuit board. Solder balls may be provided on the electrode pads. In this case, the solder bumps can be formed by a screen printing method or a solder ball method. In the screen printing method, a solder alloy is made into fine solder powder, and then mixed with flux to form a paste. Next, squeezing is performed on the electrode pad using a metal mask, and after a certain amount of paste is placed on the electrode pad, solder bumps can be formed by reflowing. In the method using solder balls, solder bumps can be formed by arranging and reflowing solder balls on electrode pads coated with flux or paste.
 半導体パッケージを垂直方向に積層したPoP構造の半導体装置では、例えば、下段にロジックパッケージを使用し、上段にメモリパッケージが搭載される。この下段のロジックパッケージのアンダーフィルに本発明の半導体封止用アクリル樹脂組成物を用いることができる。 In a semiconductor device having a PoP structure in which semiconductor packages are stacked in the vertical direction, for example, a logic package is used in the lower stage and a memory package is mounted in the upper stage. The acrylic resin composition for semiconductor encapsulation of the present invention can be used for the underfill of the lower logic package.
 本発明の半導体装置は、例えば、携帯電話、多機能携帯電話、携帯情報端末、デジタルカメラ、ノートパソコンなどのモバイル機器などに用いることができる。 The semiconductor device of the present invention can be used for mobile devices such as mobile phones, multi-function mobile phones, personal digital assistants, digital cameras, and notebook computers.
 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
 表1および表2に示す配合成分として、以下のものを用いた。
(熱硬化性アクリル樹脂)
・EO変性ビスフェノールA型ジアクリレート、オキシエチレン基数30
・トリシクロデカンジメタノールジアクリレート
・ビスフェノールA型エポキシアクリレート
(ラジカル開始剤)
・有機化酸化物、ジクミルパーオキサイド
・有機化酸化物、ジターシャリーブチルパーオキサイド
・有機化酸化物、ジ(ターシャリーブチルパーオキシ)イソプロピルベンゼン
 なお、有機化酸化物は純度98%以上のものを使用した。
(無機充填剤)
・合成シリカ、平均粒径2.5μm
(活性剤)
・アビエチン酸
・グルタル酸
・コハク酸
・シュウ酸
(エポキシ樹脂)
・ビスフェノールA型エポキシ樹脂、エポキシ当量175
・ビスフェノールF型エポキシ樹脂、エポキシ当量160
・ナフタレン型エポキシ樹脂、エポキシ当量136~148
 表1および表2に示す配合量で各成分を配合し、常法に従って撹拌、溶解、混合、分散することにより半導体封止用アクリル樹脂組成物を調製した。
As the blending components shown in Table 1 and Table 2, the following were used.
(Thermosetting acrylic resin)
・ EO modified bisphenol A type diacrylate, 30 oxyethylene groups
・ Tricyclodecane dimethanol diacrylate ・ Bisphenol A type epoxy acrylate (radical initiator)
・ Organized oxide, dicumyl peroxide ・ Organized oxide, ditertiary butyl peroxide ・ Organized oxide, di (tertiary butyl peroxy) isopropylbenzene It was used.
(Inorganic filler)
・ Synthetic silica, average particle size 2.5μm
(Active agent)
・ Abietic acid, glutaric acid, succinic acid, oxalic acid (epoxy resin)
・ Bisphenol A type epoxy resin, epoxy equivalent 175
・ Bisphenol F type epoxy resin, epoxy equivalent 160
・ Naphthalene type epoxy resin, epoxy equivalent 136-148
Each component was mix | blended with the compounding quantity shown in Table 1 and Table 2, and the acrylic resin composition for semiconductor sealing was prepared by stirring, melt | dissolving, mixing, and disperse | distributing according to a conventional method.
 このようにして調製した実施例および比較例の半導体封止用アクリル樹脂組成物について次の評価を行った。 The following evaluation was performed on the acrylic resin compositions for semiconductor encapsulation of Examples and Comparative Examples thus prepared.
 銅ピラー先端に鉛フリーはんだ層(Sn-3.5Ag:融点221℃)を有する構造のバンプ電極が形成された半導体チップ(サイズ7.3mm×7.3mm、バンプピッチ50μm、バンプ数544、厚み0.15mm)、回路基板としてプリフラックス処理によって防錆皮膜を形成した銅配線パターンを表面に有するガラスエポキシ基板を準備した。 Semiconductor chip (size 7.3 mm × 7.3 mm, bump pitch 50 μm, number of bumps 544, thickness) having a bump electrode having a lead-free solder layer (Sn-3.5Ag: melting point 221 ° C.) at the tip of the copper pillar 0.15 mm), and a glass epoxy substrate having a copper wiring pattern on the surface of which a rust preventive film was formed by preflux treatment was prepared as a circuit board.
 続いて、フリップチップボンダーの70~100℃に設定したステージ上に回路基板を吸着固定し、半導体封止用アクリル樹脂組成物を3.0~4.0mgディスペンスした。 Subsequently, the circuit board was adsorbed and fixed on a stage set to 70 to 100 ° C. of a flip chip bonder, and 3.0 to 4.0 mg of an acrylic resin composition for semiconductor encapsulation was dispensed.
 半導体チップを回路基板と位置合わせした後、荷重1~10N、ヘッド温度120~180℃で0.1~5.0秒間圧着を行い、次いで、フリップチップボンダーのヘッド温度を適宜に設定し、荷重10~50Nで2.0~6.0秒間圧着を行った(到達230~270℃)。
[ボイド]
 前記の条件で作製したサンプルについて、超音波探傷装置(SAT:日立エンジニアリング社製)の画像で観察し、次の基準により評価した。
○:ボイドがゼロ
△:チップ下にボイドがゼロ、ペリフェラル外にボイド1~5個
×:チップ下にボイドが1個以上
[濡れ広がり]
 表1および表2に準じた組成物を用いて前記の条件で作製したサンプルについて、樹脂の上に半田ボールを搭載し、加熱したホットプレート上で半田を溶融させた、このときの濡れ広がり率によって、はんだが十分に濡れているか否かを次の基準により評価した。
◎:濡れ広がり率60%以上
○:濡れ広がり率55%以上
△:濡れ広がり率50%以上
×:濡れ広がり率50%未満
[密着性]
 セラミック基板上にNPC(半導体封止用アクリル樹脂組成物)を塗布し、接着面をポリイミド処理した2mm□に切り出したシリコンウエハを搭載し150℃2h硬化炉で樹脂を硬化させた。その後、密着性を次の基準により評価した。
○:50MPa以上 凝集破壊
△:40MPa以上 凝集破壊
×:50MPa未満 Chip/NCP界面剥離
[信頼性]
 温度サイクル試験(-55℃⇔125℃)を行い、次の基準により評価した。
○:1000cycle以上で抵抗値上昇が1割未満
△:500cycle以上で抵抗値上昇が1割未満
×:100cycle以上で抵抗値上昇が1割以上
 評価結果を表1および表2に示す。
After aligning the semiconductor chip with the circuit board, pressure bonding is performed at a load of 1 to 10 N and a head temperature of 120 to 180 ° C. for 0.1 to 5.0 seconds, and then the head temperature of the flip chip bonder is set appropriately and the load Pressure bonding was performed at 10 to 50 N for 2.0 to 6.0 seconds (arrival 230 to 270 ° C.).
[void]
About the sample produced on the said conditions, it observed with the image of the ultrasonic flaw detector (SAT: Hitachi Engineering Co., Ltd.), and evaluated by the following reference | standard.
○: Zero voids △: Zero voids under the chip, 1 to 5 voids outside the peripheral ×: One or more voids under the chip
[Wet spread]
About the sample produced on the said conditions using the composition according to Table 1 and Table 2, the solder ball was mounted on the resin, and the solder was melted on a heated hot plate. Thus, whether or not the solder is sufficiently wet was evaluated according to the following criteria.
◎: Wetting spread rate 60% or more ○: Wetting spread rate 55% or more △: Wetting spread rate 50% or more ×: Wetting spread rate 50% or less
[Adhesion]
NPC (acrylic resin composition for semiconductor encapsulation) was applied on a ceramic substrate, a silicon wafer cut into 2 mm square with a polyimide treatment applied to the adhesive surface was mounted, and the resin was cured in a curing furnace at 150 ° C. for 2 hours. Thereafter, the adhesion was evaluated according to the following criteria.
○: 50 MPa or more Cohesive failure Δ: 40 MPa or more Cohesive failure ×: Less than 50 MPa Chip / NCP interface peeling
[reliability]
A temperature cycle test (−55 ° C. to 125 ° C.) was conducted and evaluated according to the following criteria.
○: Resistance increase is less than 10% at 1000 cycles or more. Δ: Resistance increase is less than 10% at 500 cycles or more. X: Resistance increase is 10% or more at 100 cycles or more The evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 なお、ボイドについては全ての実施例と比較例において○と×のいずれかで△の評価はなく、濡れ広がりについては全ての実施例と比較例において◎、○、×のいずれかで△はなく、密着性については○と△のいずれかで×の評価はなかった。
Figure JPOXMLDOC01-appb-T000010
Regarding voids, all examples and comparative examples have no evaluation of Δ in either of ○ and ×, and wetting spreads in all examples and comparative examples have no in either of ◎, ○, or ×. As for the adhesion, there was no evaluation of x in either of ◯ and Δ.
 表1および表2より、常温で液状の熱硬化性アクリル樹脂、ラジカル開始剤、活性剤、および無機充填剤を含有する実施例1~10の半導体封止用アクリル樹脂組成物は、ボイドが抑制され、濡れ性も良好であった。また、密着性にも優れ、信頼性も有していた。特にエポキシ樹脂を配合することで、濡れ性が向上し、密着性も向上した。 From Tables 1 and 2, the acrylic resin composition for semiconductor encapsulation of Examples 1 to 10 containing a thermosetting acrylic resin that is liquid at normal temperature, a radical initiator, an activator, and an inorganic filler suppresses voids. The wettability was also good. Moreover, it was excellent in adhesiveness and had reliability. In particular, by incorporating an epoxy resin, wettability was improved and adhesion was also improved.
 一方、活性剤を配合しなかった比較例1は濡れ性が悪化した。常温で液状の熱硬化性アクリル樹脂を配合せず、エポキシ樹脂とその硬化剤を配合した比較例2、3は活性剤を配合しない比較例2と活性剤を配合した比較例3のいずれもボイドが発生した。 On the other hand, the wettability deteriorated in Comparative Example 1 in which no activator was added. In Comparative Examples 2 and 3 in which an epoxy resin and its curing agent were blended without mixing a liquid thermosetting acrylic resin at room temperature, both of Comparative Example 2 in which an activator was not blended and Comparative Example 3 in which an activator was blended were voids. There has occurred.
10   半導体チップ
11   バンプ電極
13   回路基板
14   電極パッド
30a  半導体封止用アクリル樹脂組成物
30b  硬化物
DESCRIPTION OF SYMBOLS 10 Semiconductor chip 11 Bump electrode 13 Circuit board 14 Electrode pad 30a Acrylic resin composition 30b for semiconductor sealing Hardened | cured material

Claims (9)

  1.  回路基板の電極パッドを有する面に封止樹脂を供給した後、半導体チップのバンプ電極と前記回路基板の電極パッドとの位置を合わせて前記半導体チップを配置し加熱することにより、前記半導体チップと前記回路基板との電気的接続および前記封止樹脂の硬化を同時に行う際に、前記封止樹脂として使用される半導体封止用アクリル樹脂組成物であって、常温で液状の熱硬化性アクリル樹脂、前記熱硬化性アクリル樹脂のラジカル開始剤、活性剤、および無機充填剤を含有することを特徴とする半導体封止用アクリル樹脂組成物。 After supplying the sealing resin to the surface of the circuit board having the electrode pads, the semiconductor chip is arranged and heated by aligning the bump electrodes of the semiconductor chip and the electrode pads of the circuit board, and heating the semiconductor chip. An acrylic resin composition for semiconductor encapsulation used as the sealing resin when performing electrical connection with the circuit board and curing the sealing resin simultaneously, and is a thermosetting acrylic resin that is liquid at room temperature An acrylic resin composition for semiconductor encapsulation, comprising a radical initiator, an activator, and an inorganic filler for the thermosetting acrylic resin.
  2.  前記ラジカル開始剤として有機過酸化物を含有することを特徴とする請求項1に記載の半導体封止用アクリル樹脂組成物。 2. The acrylic resin composition for semiconductor encapsulation according to claim 1, wherein the radical initiator contains an organic peroxide.
  3.  前記活性剤として有機酸を含有することを特徴とする請求項1または2に記載の半導体封止用アクリル樹脂組成物。 3. The acrylic resin composition for semiconductor encapsulation according to claim 1, wherein the activator contains an organic acid.
  4.  前記活性剤の含有量が、前記半導体封止用アクリル樹脂組成物の全量に対して0.1~20.0質量%の範囲内であることを特徴とする請求項1から3のいずれか一項に記載の半導体封止用アクリル樹脂組成物。 The content of the activator is in the range of 0.1 to 20.0 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation, according to any one of claims 1 to 3. The acrylic resin composition for semiconductor encapsulation according to item.
  5.  前記無機充填剤の最大粒径が10μm以下であることを特徴とする請求項1から4のいずれか一項に記載の半導体封止用アクリル樹脂組成物。 5. The acrylic resin composition for semiconductor encapsulation according to claim 1, wherein the inorganic filler has a maximum particle size of 10 μm or less.
  6.  さらにエポキシ樹脂を含有することを特徴とする請求項1から5のいずれか一項に記載の半導体封止用アクリル樹脂組成物。 Furthermore, the epoxy resin is contained, The acrylic resin composition for semiconductor sealing as described in any one of Claim 1 to 5 characterized by the above-mentioned.
  7.  前記エポキシ樹脂の含有量が、前記半導体封止用アクリル樹脂組成物の全量に対して0.1~50質量%の範囲内であることを特徴とする請求項6に記載の半導体封止用アクリル樹脂組成物。 The acrylic resin for semiconductor encapsulation according to claim 6, wherein the content of the epoxy resin is in the range of 0.1 to 50 mass% with respect to the total amount of the acrylic resin composition for semiconductor encapsulation. Resin composition.
  8.  請求項1から7のいずれか一項に記載の半導体封止用アクリル樹脂組成物の硬化物により半導体チップと回路基板との間が封止されていることを特徴とする半導体装置。 A semiconductor device, wherein a space between a semiconductor chip and a circuit board is sealed with a cured product of the acrylic resin composition for sealing a semiconductor according to any one of claims 1 to 7.
  9.  回路基板の電極パッドを有する面に請求項1から7のいずれか一項に記載の半導体封止用アクリル樹脂組成物を供給する工程と、半導体チップのバンプ電極と前記回路基板の電極パッドとの位置を合わせて前記半導体チップを配置し加熱することにより、前記半導体チップと前記回路基板との電気的接続および前記半導体封止用アクリル樹脂組成物の硬化を行う工程とを含むことを特徴とする半導体装置の製造方法。 A step of supplying the semiconductor sealing acrylic resin composition according to any one of claims 1 to 7 to a surface having an electrode pad of a circuit board, a bump electrode of a semiconductor chip, and an electrode pad of the circuit board Arranging and heating the semiconductor chip in alignment with each other, and the step of electrically connecting the semiconductor chip and the circuit board and curing the acrylic resin composition for semiconductor encapsulation. A method for manufacturing a semiconductor device.
PCT/JP2013/050231 2012-07-13 2013-01-09 Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof WO2014010258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-158025 2012-07-13
JP2012158025 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010258A1 true WO2014010258A1 (en) 2014-01-16

Family

ID=49915737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050231 WO2014010258A1 (en) 2012-07-13 2013-01-09 Acrylic resin composition for semiconductor sealing, semiconductor device using same, and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6094885B2 (en)
WO (1) WO2014010258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172145A (en) * 2014-03-12 2015-10-01 ナミックス株式会社 Resin composition, prior supply type semiconductor sealant, semiconductor sealing film, and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340212B2 (en) * 2014-03-04 2018-06-06 ナミックス株式会社 Resin composition, pre-feed type semiconductor sealing agent, film for semiconductor sealing, and semiconductor device
TWI756181B (en) * 2015-08-28 2022-03-01 日商昭和電工材料股份有限公司 Composition for cushioning sheet and cushioning sheet
JP6799934B2 (en) * 2016-03-31 2020-12-16 ナミックス株式会社 Resin compositions and semiconductor devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046096A (en) * 2001-04-18 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor module and method of manufacturing the same, circuit board, and semiconductor device
JP2005116628A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Solid-state imaging device and manufacturing method thereof
JP2011140617A (en) * 2009-12-07 2011-07-21 Hitachi Chem Co Ltd Adhesive composition for forming underfill, adhesive sheet for forming underfill, and method for manufacturing semiconductor device
JP2011243786A (en) * 2010-05-19 2011-12-01 Sony Chemical & Information Device Corp Method of manufacturing connection structure
JP2012038975A (en) * 2010-08-09 2012-02-23 Hitachi Chem Co Ltd Adhesive for connecting circuit member, adhesive sheet for connecting circuit member, semiconductor device, and method of manufacturing semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181482A (en) * 1999-12-27 2001-07-03 Hitachi Chem Co Ltd Resin paste composition and semi-conductor device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046096A (en) * 2001-04-18 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor module and method of manufacturing the same, circuit board, and semiconductor device
JP2005116628A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Solid-state imaging device and manufacturing method thereof
JP2011140617A (en) * 2009-12-07 2011-07-21 Hitachi Chem Co Ltd Adhesive composition for forming underfill, adhesive sheet for forming underfill, and method for manufacturing semiconductor device
JP2011243786A (en) * 2010-05-19 2011-12-01 Sony Chemical & Information Device Corp Method of manufacturing connection structure
JP2012038975A (en) * 2010-08-09 2012-02-23 Hitachi Chem Co Ltd Adhesive for connecting circuit member, adhesive sheet for connecting circuit member, semiconductor device, and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172145A (en) * 2014-03-12 2015-10-01 ナミックス株式会社 Resin composition, prior supply type semiconductor sealant, semiconductor sealing film, and semiconductor device

Also Published As

Publication number Publication date
JP6094885B2 (en) 2017-03-15
JP2014033197A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP6094884B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP4213767B2 (en) Adhesive for electronic parts
CN109075088B (en) Method for manufacturing semiconductor device
JP6094886B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP7380926B2 (en) Film adhesive for semiconductors, method for manufacturing semiconductor devices, and semiconductor devices
JP6094885B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
WO2016088859A1 (en) Semiconductor adhesive, and semiconductor device and method for manufacturing same
WO2014073220A1 (en) Liquid epoxy resin composition for semiconductor sealing and semiconductor device using same
JP6857837B2 (en) Thermosetting resin composition for encapsulation, manufacturing method of semiconductor device and semiconductor device
JP2017122193A (en) Semiconductor adhesive and method for producing semiconductor device
JP5950006B2 (en) Manufacturing method of semiconductor device and manufacturing method of electronic component
JP2021024963A (en) Semiconductor bonding agent, semiconductor bonding agent film producing method, and semiconductor device producing method
JP2014220446A (en) Acrylic resin composition for sealing semiconductor, semiconductor device using the same and manufacturing method thereof
JP2022043572A (en) Semiconductor device manufacturing method
TW202410369A (en) Film adhesive for semiconductors, manufacturing method of semiconductor device, and semiconductor device
JP2017114961A (en) Prior-supply type underfill material, method for producing electronic component device, and electronic component device
JP2016181612A (en) Adhesive for mounting electronic component and adhesive film for flip-chip mounting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817232

Country of ref document: EP

Kind code of ref document: A1