WO2014002741A1 - Optical path monitoring method and optical path monitoring system - Google Patents

Optical path monitoring method and optical path monitoring system Download PDF

Info

Publication number
WO2014002741A1
WO2014002741A1 PCT/JP2013/065937 JP2013065937W WO2014002741A1 WO 2014002741 A1 WO2014002741 A1 WO 2014002741A1 JP 2013065937 W JP2013065937 W JP 2013065937W WO 2014002741 A1 WO2014002741 A1 WO 2014002741A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
line
loss
light
otdr
Prior art date
Application number
PCT/JP2013/065937
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 斧田
塚本 信夫
井上 恵一
Original Assignee
Onoda Seiichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Seiichi filed Critical Onoda Seiichi
Publication of WO2014002741A1 publication Critical patent/WO2014002741A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to a technology for detecting a change in transmission loss generated on an optical path in an optical line system including an optical path group configured by branching an optical path by an optical fiber into a plurality of branched optical paths.
  • Non-Patent Document 1 a Brillouin pump light pulse and a probe light pulse with a time delay are emitted from the station side, and the pump light folded back from the high reflection end of the branch line is reverse to the probe light.
  • Brillouin amplified light generated upon collision is selectively received and analyzed, the configuration of the system is very complicated.
  • the object of the present invention is to realize a method of automatically performing fault location of an optical access system including an optical splitter and the like in real time by a simple hardware configuration without modifying the optical access system. It is. That is, for a line system, a change in local insertion loss due to breakage or sharp bend of a fiber line is regarded as a “line fault”, the time of occurrence of the fault, its fault location (which branch of which branch), and fault It is to detect in real time the content (fracture or insertion loss, or, if insertion loss, quantitatively, in decibels).
  • the present invention has the following configuration in order to achieve the above object.
  • the invention of the optical path monitoring method according to claim 1 is: The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used.
  • the current reflected impulse response waveform and the reflected impulse response waveform from a certain time ago are constantly compared and monitored, and when a decremental response is detected, the path where the loss occurred is identified according to the falling position of the waveform of the decremental response.
  • the present invention is characterized in that a position where a loss occurs is identified by the rising position of the waveform of the decrement response.
  • a digital system As an OTDR that monitors loss characteristic change in the middle of each route, A digital system according to a pseudo random code correlation system, which emits light modulated by a pseudo random code to the optical line system and obtains a reflected impulse response waveform by correlation processing between reflected light from the optical line system and the pseudo random code. It is characterized by using OTDR.
  • the optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used.
  • An optical line monitoring method for time division multiplexing for a plurality of optical line systems in an optical transmission system including a plurality of optical line systems comprising an optical path by the optical fiber and the plurality of branch lines, One of the plurality of optical line systems is sequentially selected; The light modulated by the pseudo random code is emitted to the selected optical path system, The reflected light from the optical line system is received and added,
  • a feature of the present invention is to use a digital OTDR according to a pseudo random code correlation system for obtaining a reflected impulse response waveform by correlating the addition output with the pseudo random code.
  • the communication light output from the optical communication means and the supervisory light obtained by modulating the light of the wavelength different from the communication light with the pseudo random code are wavelength division multiplexed and emitted
  • a reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler, It is characterized in that a digital OTDR according to a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlation processing between the received reflected light and the pseudo random code.
  • the monitoring light modulated by the pseudo random code is emitted to the optical path by the one optical fiber, A reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler, It is characterized in that a digital OTDR according to a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlation processing between the received reflected light and the pseudo random code.
  • the monitoring system according to claim 8 is The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used.
  • An optical line monitoring system is used in an optical line system in which a plurality of paths consisting of an optical path by the optical fiber and the plurality of branch lines are configured, and used in OTDR to monitor a change in loss characteristics in the middle of each path.
  • the current reflection impulse response waveform and the reflection impulse response waveform from a predetermined time ago are constantly compared and monitored, and when the decrement response is detected, the fall position of the waveform of the decrement response and the waveform of the decrement response And a decremental response monitoring means for outputting information on the rising position of the.
  • PNCR / OTDR Pulseudorandom noise-code Correlation Reflectometry / OTDR
  • DPA Decremental Reflection Analysis: reflection reduction analysis
  • DRA which constitutes the essence of the present invention, constantly monitors Decremental Reflection, that is, "reflection reduction” or "DR response” from a certain time before the reflection impulse response from the network by OTDR, and is caused by the occurrence of a failure. By analyzing the decrement response, it is a scheme to obtain all the fault information for the purpose mentioned above.
  • Digital polling is a system that multiplexes a plurality of outgoing lines in a time division manner by providing transmission / reception modules for the line monitoring wavelength for each outgoing line in the station and cyclically enabling the light transmission system cyclically. is there.
  • PNCR / OTDR OTDR is a general name of a tester for obtaining an optical loss distribution on a light path, that is, a reflected impulse response, and conventionally, an analog pulse system is used. The output is as it is with the time response waveform of the reflected light when the sharp light pulse is emitted toward the object. While this scheme is simple in principle, it has several disadvantages for the purpose of the present invention. For one thing, in order to be a waveform response to a single pulse shot, it is necessary to wait for the next shot until the reflection from the far end of the line system returns. This is because reflections from different sections on the track overlap. This is a waste of time.
  • FIG. 1A shows an example in which the outgoing line from the OTDR on the station side is branched into three branch lines L1, L2 and L3 by an optical branching device, and a loss occurs in the middle of the branch line 2.
  • NR / BF Network Reflection / Before the Fault
  • a branch line L2 in which the falling position P2 of the generated DR response waveform coincides with the end position on the branch line end map is a failure line.
  • the point corresponding to the rising time point P1 of the DR response waveform is the position of the loss point where the loss occurred, that is, the failure position (9)
  • the rising width D2 is compared with the Rayleigh level R2 corresponding to the branch line L2 If it is equal, it is an insertion loss due to "fracture” or bending if it is lower than the Rayleigh level.
  • the size of the insertion loss can be determined as the ratio D2 / R2 to the Rayleigh level.
  • Each of the outgoing lines 21 to 24... From the optical path monitoring apparatus 12 is provided with bidirectional transmission / reception means (BIDI: abbreviated as Bi-directional tranceiver) 161 to 164.
  • BIDI bidirectional transmission / reception means
  • FIG. 5 an optical path system including four outgoing lines 21 to 24 of the plurality of optical path systems is illustrated, and the other optical path systems are omitted.
  • the light source of each of the BIDIs 161 to 164 is digitally modulated by the common pseudo random code (PN code) generated by the PN code generator 1212.
  • the light transmitting circuits of each of the BIDIs 161 to 164 are cyclically controlled by an integral multiple of the PN code frame according to the out-of-phase enable signals (see the enable signals ⁇ 1 to ⁇ 8 in FIG.
  • optical pulse tester General name of the optical pulse tester.
  • OTDR only spreads in the analog pulse system, it usually refers to this system.
  • it is used as a measuring instrument for determining the reflection response (reflection impulse response) of the line system.
  • optical path> A single optical fiber trunk from an interrogator in the case of a central office in the case of an optical access system and in the case of an optical measurement system.
  • ⁇ A branch line> A branch optical fiber branched by an optical branch in the vicinity of an observation area in the middle of an outgoing line, in a subscriber area in the case of an optical access system, and in the case of an optical measurement system to be described later.
  • Optical measurement system A system that senses by the occurrence or change of insertion loss in the optical sensor or in the fiber itself. As in the case of an optical extensometer, those that convert displacement into fiber bending are widespread.
  • ⁇ Optical branching device, optical branching means, splitter> A device for passively branching one fiber into a plurality of fibers. There are a type in which fibers are twisted and drawn and a type in which a planar light circuit (PLC: Planar Light Circuit) is used.
  • PLC Planar Light Circuit
  • ⁇ Loss point> A fiber breakage or a sharp bend increases the transmission loss. In the case of bending loss, several dB to several tens of dB, and in the case of breakage, the loss is infinite.
  • the local loss increase is a "fault" from the viewpoint of line monitoring, and in the case of an optical measurement system, it is "measurement information".
  • Reflection (impulse) response due to OTDR from fiber line system after loss ⁇ DR response> Decremental Reflection response. "Decremented response" from a certain time before NR response (NR / BF-NR / AF). Response difference.
  • the return loss due to the branch can be 10 log N (dB) (the branch loss itself is not Not directly related to the invention).
  • a branch whose timing matches this in the branch end map is a "loss" occurrence branch.
  • the PNCR method uses continuous light digitally modulated with a PN code instead of an isolated pulse as probe light, but there is no need to wait for reflection return from the far end of the line, and emission and light reception are It can be done at the same time. It does not require any time space, and the measurement is very time efficient.
  • the measurement time can be shortened because the averaging process of the number of times as in the conventional method is unnecessary. Fourth, because it is digital, it is very easy to set conditions for OTDR operation such as chip speed and code length. In the conventional method, it is necessary to control hardware elements such as circuit constants, but in the PNCR method, it can be controlled by software.
  • the PNCR method has the above-mentioned features and is therefore optimal as an OTDR method for the optical path monitoring system of the present invention.
  • FIG. 2 illustrates the outline of the system targeted by the present invention in two cases.
  • FIG. 2A shows the case of an optical subscriber line called PON.
  • Communication light of 1.55 ⁇ m downstream and 1.31 ⁇ m upstream travels back and forth in one common line by wavelength division multiplexing.
  • the monitoring light for line monitoring uses 1.65 ⁇ m, and similarly, it is in a different layer from the communication light by wavelength division multiplexing.
  • the monitoring light modulated by the PN code output from the light path monitoring apparatus 12 and output from the light source 13 is sent to the outgoing line 2 via the wavelength selective coupler 16.
  • the reflected impulse response light from the outgoing line 2, the splitter 3, and each of the branch lines L 1 to L 8 is selectively extracted by the wavelength selective coupler 16 and further received by the light receiver 14 via the coupler 15. Ru.
  • an outgoing line 2 branched into four by the branching unit for each optical line terminal (OLT: Optical Line Terminal) 11 in the telephone station 1 is further divided by the branching unit 3 in the subscriber area. It is branched into eight branches and distributed to subscriber homes by branch lines L1 to L8, and is terminated at an ONU (Optical Network Unit) (ONU: Optical Network Unit) at ONU1 to ONU8.
  • the branching within the station will be abbreviated and the outgoing line from the optical terminal apparatus will be regarded as one as shown in the above figure.
  • the “path” described in the claims includes the outgoing line 2, the branch 3 and the branch line L1 from the path 1 to the optical line termination unit ONU1, the outgoing line 2 and the branch 3 , And the branch line L8 to the eight paths to the path 8 to the optical line termination unit ONU8.
  • FIG. 2 (b) is a case of an optical sensing system which is regarded as a change in insertion loss at an arbitrary position on a laid optical fiber, not in the communication field.
  • one kind of light source wavelength may be used.
  • the OTDR waveform seen from the outgoing wire source that is, the reflected impulse response waveform is the basis, but since the insertion loss of the external branch is large, the OTDR has high sensitivity to accurately determine the reflection response further. It is essential.
  • the conventional OTDR is mostly based on a pulse system, but because it is an analog system, there are many limitations as described below. 1) Since the next pulse can not be emitted until the light reflected from the farthest end returns after the light pulse is emitted to the target line system, the measurement response is delayed.
  • the light pulse energy per shot is given by the product of the pulse width and the peak power value of the light source, but increasing the pulse width reduces the distance resolution. There is a limit to the light source device for increasing the peak power. Even if the size can be increased excessively, if the energy density in the core of the optical fiber becomes high, the core of the optical fiber may be damaged, or more jerky reflection may occur due to nonlinear phenomena such as stimulated Raman scattering. Therefore, the sensitivity of OTDR is restricted. 3) In order to increase the sensitivity, the light reception S / N ratio must be increased. For this purpose, in the past, averaging is performed by increasing the number of shots (often reaching several hundreds of thousands of times), but for the reason of the above 1), the measurement time must be longer. 4) Condition control of OTDR operation is not easy because of analog type. For example, even if it is intended to change the pulse width and the peak power, control is troublesome because an electrical circuit measure is required.
  • a digital PN code correlation method (PNCR method) as shown in FIG. 3 is adopted.
  • the digital engine 121 digitally modulates the LD 13 of the light source with the PN code generated by the PN code generation unit 1212, and the reflected light when emitted to the target line system is received by the PD 14 and the A / D conversion unit
  • the A / D conversion is performed in 1213 and the correlation processing is performed with the PN code in the correlation processing unit 1211, and the reflection impulse response of the line system is obtained at the output (reference document 1).
  • the features of the OTDR based on the PNCR method are all contrary to the above. That is, 1) Since it is a correlation system, it is not necessary to wait for reflection return from the farthest end, and the probe light emission and the reflection light reception may overlap in time. Therefore, it is possible to emit light as well as to receive light, and no waste time is required. Therefore, measurement response is quickened. 2) By increasing the PN code length (PN frame length), the correlation gain can be increased in proportion to that, so it is not necessary to increase the peak power of the probe light. Because it is low power, it can be applied to applications that dislike large probe power of peak power. In addition, since the light source of normal power that is widespread in the optical communication field can be used as it is, the device cost can be suppressed. 3) Because the measurement response is fast, it is possible to cope with fast optical changes of the movement of the measurement object. 4) Because it is digital, it is not necessary to change the OTDR operating conditions in the electric circuit hard area, and it is easily possible in the soft area.
  • FIGS. 4, 5 and 6 the topology of the optical line system, the branch termination map and the digital polling in the present invention will be described.
  • the topology of the optical access system As the topology of the optical access system, as shown in FIG. 4 (a), one optical fiber from the inside of the station is output to the outside of the station, and eight branches are made from the vicinity of the subscriber area by the optical splitter (SPL: splitter).
  • SPL optical splitter
  • a subscriber line beyond SPL has a distance difference of a predetermined value or more, that is, a distance resolution L of PNCR / OTDR (OTDR based on PN code correlation method) described later.
  • c the speed of vacuum light
  • n the mode refractive index of the optical fiber
  • f the chip speed of the PN code.
  • c 3 ⁇ 10 8 m / s
  • the object of the present invention is, for a line system as described above, the change in the local insertion loss due to breakage or sharp bend of the fiber line as "line failure" and the position of the failure (which position of which branch line) And failure content (breaking or insertion loss, if insertion loss quantitatively what decibel) is to detect in real time.
  • line monitoring based on this is not practical.
  • FIG. 4 (b) shows an OTDR waveform as viewed from a source line output at the time of normal operation. In order to avoid complication, the line loss is made zero and the branch end is non-reflective.
  • FIG. 4 (c) is a branch end map created based on FIG. 4 (b), and the end position of each branch (corresponding to the "end position information" described in the claims) and the Rayleigh backscattering. Level differences (represented by R1 to R8 in the figure) are displayed on the line in order of distance. Prepare this first.
  • FIG. 5 the optical line system including four outgoing lines is shown, and the other optical line systems are omitted.
  • FIG. 6 the optical line system including eight outgoing lines is omitted. The selection operation by digital polling is described.
  • the “digital polling” in the present invention is a system in which a plurality of outgoing lines are multiplexed in a time division manner in one line monitoring system, and in the system of the conventional example, the function performed in the optical switch bank is As shown in the figure, this is performed by the BIDI module (Bi-directional (bidirectional) light transmission circuit and light reception circuit) and the timing generation unit 122 for each output line. 1) Drive the light transmission circuit of each BIDI module with the same PN code. 2) The above-mentioned light transmission circuit of each BIDI module is sequentially enabled every fixed integer multiple frame of PN code (see FIG. 6). 3) Obtain the reflection response for each outgoing line sequentially by performing analog addition and A / D conversion of reflected and received light output for each outgoing line and correlating with the original PN code 4) Failure due to DRA for each outgoing line Make a distinction.
  • FIG. 6 is a diagram showing enable timing for the light transmission circuit of each of the BIDI modules 1 to 8 by digital polling.
  • enable signals .phi.1 to .phi.8 enable cyclically to enable each of the BIDI modules at a constant enable time (T).
  • the enable time (T) is preferably selected to be an integral multiple of a code frame (code length).
  • FIG. 7 is an explanatory diagram for explaining a basic algorithm of fault point isolation by DRA.
  • FIG. 7A shows a state where bending loss has occurred in the middle of the branch line 2 among the three branch lines 1, 2, 3.
  • FIG. 7B shows Rayleigh reflection level steps R1, R2, and R3 at the ends of the branch lines 1, 2, and 3.
  • FIG. 7C shows the Rayleigh reflection level up to the end of the branch line 3.
  • FIG. 7D shows a reflection reduction (DR response) waveform.
  • ⁇ Drinciple of DRA> 1) Failure time The occurrence time of the DR response is the failure time. 2) Failure Line A line whose end map position matches the falling position P2 of the reflection decrement response waveform is a failure line. In this example, since the falling position P2 of the reflection decrement response waveform matches the termination map of the branch line 2, the fault line can be identified as the branch line 2. 3) Failure position The rising position P1 of the reflection decrement response waveform gives the failure position. In this example, a position coincident with the termination map of the branch line 2 coincident with the rising position P1 of the reflection decrement response waveform can be identified as a fault position on the branch line 2.
  • D ⁇ R it can be determined that "insertion loss”
  • D ⁇ ⁇ ⁇ R it can be determined that "break” has occurred.
  • a plurality of one optical line system composed of one outgoing line, a branching device, and eight branched branches L1 to L8 is provided.
  • This is called PDS (passive double star), and as shown in the figure, it goes out of the station with a plurality of (for example, four) optical fibers 21 to 24 and the optical splitters (SPL Splitter) It is usual to be branched into eight by 31-34.
  • the subscriber line beyond SPL has a distance difference of a predetermined value or more, that is, the distance resolution L of PNCR / OTDR (OTDR based on PNCR method) or more. If there is no difference in distance, a dummy fiber is inserted to give a difference in distance.
  • a failure occurs in one optical path system selected and switched while sequentially selecting and switching the plurality of optical path systems as in the description with reference to FIGS.
  • the branch lines of the above are identified, and further, the fault occurrence position and the loss value are identified.
  • the selective switching of the plurality of optical line systems is a method of multiplexing a plurality of outgoing lines in time division in one line monitoring system, and as shown in the figure, a BIDI module for each outgoing line (Bi-directional This is performed by a (bi-directional light transmission circuit and light reception circuit) and digital circuits such as a timing generation unit.
  • the light transmitting circuit of each of the BIDI modules 161 to 164 is driven by the same PN code output from the PN code generator 1212, and the switching timing of each of the BIDI modules 161 to 164 is output from the timing generator 122 This is performed by sequentially enabling the light transmission circuit of each BIDI module for each fixed integer multiple frame of the PN code by the timing signals ⁇ 1 to ⁇ 4 (see FIG. 6).
  • the reflected light reception output for each outgoing line 21 to 24 is analog-added by the analog addition unit 124, A / D converted by the A / D conversion unit 1213, and then correlated with the PN code by the correlation processing unit 1211.
  • the reflection response for each outgoing line is obtained sequentially.
  • the reflected light from the multiple optical line systems is received and added by the light receiving circuit of the BIDI module for each system, it is time-division multiplexed, so it is shifted temporally for each system, In terms of time, since only one system of reflected light is received, no problem occurs in analog addition.
  • the fault occurrence time is identified by performing fault isolation by the above-mentioned DRA for each outgoing line, the fault occurrence branch is identified, and the fault occurrence position is identified, Further, the loss value can be identified.
  • the DR signal processing unit 123 corresponds to the decrement response monitoring means described in the claims.
  • the transmission loss of the fiber was all due to Rayleigh scattering, and was 0.2 dB / km.
  • the outgoing line from the optical terminal is branched into eight 100- to 3000-m long subscriber lines at 4,000 m by a branching unit.
  • the subscriber line length was set randomly.
  • the position of the optical failure is located at the center of the subscriber line for simplicity, and an event is assumed to be an insertion loss increase due to a fiber breakage or a sharp bend.
  • the chip rate of the M-sequence code is 100 MHz. Therefore, the distance resolution is 1 m.
  • the output power of the probe light was 5 mW (pp), and the measurement time was 10 seconds.

Abstract

The present invention dynamically performs a fault location that is partway along a pathway in real time without modifying an optical access system. In an optical path system configured from a plurality of pathways comprising a plurality of branch lines and an optical path resulting from a single optical fiber, the optical path resulting from a single optical fiber being branched into the plurality of branch lines by means of a passive optical branching means, and the plurality of branch lines being configured from optical fibers having a distance difference of at least the distance resolution of the OTDR that is used, this optical path monitoring method monitors loss characteristic changes partway along each pathway by means of an OTDR. The current reflection impulse response waveform and the reflection impulse response waveform from a set period of time prior are continuously compared and monitored, and when a decreased response is detected, the pathway in which loss has arisen is identified by means of the fall position of the waveform of the decreased response, and the location at which loss has arisen is identified by means of the rise position of the waveform of the decreased response. A digital OTDR that uses a pseudorandom code correlation method is used.

Description

光線路監視方法、および光線路監視システムOptical path monitoring method and optical path monitoring system
 本発明は、光ファイバによる光路を複数の分岐光路に分岐させて構成された光路群を含んだ光線路系において、光路上で発生した伝送損失の変化検出する技術に関するものである。 The present invention relates to a technology for detecting a change in transmission loss generated on an optical path in an optical line system including an optical path group configured by branching an optical path by an optical fiber into a plurality of branched optical paths.
光ファイバを伝送媒体とするFTTH(Fiber To The Home )サービスの普及は目覚しく( Passive Optical Network:PONと総称される) 、我が国の光加入者数は、2012年4月現在2190万加入にのぼる。こうしたFTTHの普及とともに、光ネットワークに対する保守サービスの技術向上とコスト削減が急務になっている。
 PONでは、局からの出線が加入者宅近傍の光分岐器(スプリッタ)で複数本に分岐されるが(通常8分岐) 、局からOTDR(Optical Time Domain Reflectometer、時間領域光反射計測器(通称光パルス試験器))の反射インパルス応答波形を見ると、スプリッタ下部の支線全部の反射が重畳されてしまうため、支線個別の反射応答を求めることが困難である。これを克服する試みがいくつかなされているが、現在までのところ現実的な解は得られていないようである。
The spread of Fiber To The Home (FTTH) services that use optical fiber as a transmission medium is remarkable (passive optical network: collectively referred to as PON), and the number of optical subscribers in Japan is 21.9 million as of April 2012. With the spread of FTTH, there is an urgent need to improve the technology and reduce the cost of maintenance services for optical networks.
In PON, an outgoing line from a station is split into multiple lines by an optical splitter (splitter) near the subscriber's house (usually eight branches), but from the station an OTDR (Optical Time Domain Reflectometer, time domain light reflection measuring instrument ( Looking at the reflection impulse response waveform of a so-called optical pulse tester), it is difficult to obtain the reflection response of each branch line because the reflections of all the branch lines under the splitter are superimposed. Several attempts have been made to overcome this, but so far no realistic solution has been obtained.
 ネットワーク上では種々故障が起こり得る。強風などの影響によって、ファイバケーブルが急曲されて局所的に大きな曲げ損失が発生したり、破断に至る場合も少なくない。
 このようなトラブルが発生した場合には、加入者からのクレームによって通信事業者の要員が加入者宅に赴き、OTDRによってトラブルが発生した光路上の位置(光故障点)を検知した上で、対策を施すのが通常であり、監視の自動化はできていない。
 このような従来の保守サービスでは、通信サービス運用上の問題も多く、保守のために膨大な手間とコストを要しているのが現状である。
 そのため、加入者側からではなく、局側から通信サービスを継続した状態で前記光故障点を切り分けられる線路監視方式が渇望されている。
Various failures can occur on the network. Due to the influence of strong wind, the fiber cable is bent sharply to cause locally large bending loss or breakage.
When such a trouble occurs, a member of the telecommunications carrier visits the subscriber's house due to a complaint from the subscriber, and the OTDR detects the position (optical failure point) on the optical path where the trouble occurred, It is normal to take measures, and monitoring has not been automated.
In such conventional maintenance services, there are many problems in the operation of communication services, and at present, it takes a great deal of effort and cost for maintenance.
Therefore, there is a demand for a line monitoring system in which the optical failure point can be separated in a state where the communication service is continued from the station side, not from the subscriber side.
 光故障を切り分けるもっとも基本的な手段は上記のOTDRであるが、これを局から加入側に対して用いると、スプリッタ以遠の複数加入者線からのレーリ後方散乱光が重畳されてしまうため、加入者線ごとの故障切り分けは不可能とされている。
 また、非特許文献1に記載の技術は、局側からブリルアンポンプ光パルスと時間遅れをもたせたプローブ光パルスを発出し、支線の高反射終端から折り返されたポンプ光がプローブ光と逆向きに衝突するときに発生するブリルアン増幅光を選択的に受光して解析するものであるが、系の構成が非常に複雑である。
The most basic means to isolate an optical failure is the OTDR described above, but using it from the station to the joining side results in superposition of Rayleigh backscattered light from multiple subscriber lines beyond the splitter. It is considered impossible to separate faults by line.
Further, in the technique described in Non-Patent Document 1, a Brillouin pump light pulse and a probe light pulse with a time delay are emitted from the station side, and the pump light folded back from the high reflection end of the branch line is reverse to the probe light. Although Brillouin amplified light generated upon collision is selectively received and analyzed, the configuration of the system is very complicated.
 従って、本発明の目的とするところは、光アクセス系を改変することなく、シンプルなハード構成によって光分岐器以遠を含めた光アクセス系のfault locationを実時間で自動的に行う方式を実現することにある。すなわち、線路系を対象に、ファイバ線路の破断もしくは急曲などによる局部的な挿入損失の変化を「線路故障」として、その故障発生時刻、その故障位置(どの支線のどの位置か)、および故障内容(破断か挿入損か、挿入損なら定量的に何デシベルか)を実時間で検出することである。 Therefore, the object of the present invention is to realize a method of automatically performing fault location of an optical access system including an optical splitter and the like in real time by a simple hardware configuration without modifying the optical access system. It is. That is, for a line system, a change in local insertion loss due to breakage or sharp bend of a fiber line is regarded as a “line fault”, the time of occurrence of the fault, its fault location (which branch of which branch), and fault It is to detect in real time the content (fracture or insertion loss, or, if insertion loss, quantitatively, in decibels).
 本発明は、上記目的を達成するために以下の構成を備えている。
 請求項1に係る光線路監視方法の発明は、
1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とからなる複数の経路が構成されてなる光線路系において、各経路の途中における損失特性変化をOTDRで監視する光線路監視方法であって、
現在の反射インパルス応答波形と一定時間前からの反射インパルス応答波形を常時比較監視し、減分応答が検出されたとき、前記減分応答の波形の立ち下がり位置によって損失が発生した経路を特定し、前記減分応答の波形の立ち上がり位置によって損失が発生した箇所を特定することを特徴としている。
 請求項2では、
前記減分応答が検出された時点に基づいて前記損失が発生した時刻を特定する処理か、もしくは、
前記減分応答波形のレベルに基づいて挿入損を求めて前記損失発生の内容を特定する処理か、
の少なくとも何れか一つの処理を行うことを特徴としている。
 請求項3では、
前記光線路系が正常な時にあらかじめ取得した正常時の反射インパルス応答波形に基づいて、各支線のレーリ後方散乱光レベルの分布と、各支線の終端位置に対応した終端位置情報とを含んだ支線終端マップを得ておき、
前記損失が発生した支線として特定する際には、
前記減分応答波形の立下り位置を前記支線終端マップと対比させ、前記立ち下がり位置と一致する終端位置情報を含んだ支線を、前記損失が発生した支線として特定し、
前記損失が発生した支線上の位置として特定する際には、
前記減分応答波形の立ち上がり位置を、前記特定した支線の支線終端マップと対比させ、前記立ち上がり位置に対応した位置を、前記損失が発生した支線上の位置として特定し、
前記損失発生の内容を特定する際には、
前記減分応答の減分レベルと前記支線終端マップにおけるレーリ後方散乱光レベル分布との比較によって挿入損失値を特定することを特徴としている。
 請求項4では、
前記各経路の途中における損失特性変化を監視するOTDRとしては、
擬似ランダム符号で変調された光を前記光線路系へ出射し、前記光線路系からの反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴としている。
 請求項5では、
1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とから構成されてなる光線路系を複数含んだ光伝送システムにおける複数の光線路系を対象にした時分割多重の光線路監視方法であって、
前記複数の光線路系の内の何れか1つの光線路系を順次選択し、
擬似ランダム符号で変調された光は、前記選択した光線路系に対して出射し、
前記光線路系からの反射光は受光して加算し、
該加算出力と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴としている。
 請求項6では、
前記前記1本の光ファイバによる光路には、光通信手段から出力された通信光と、前記通信光とは異なる波長の光を擬似ランダム符号で変調した監視光とを、波長分割多重させて出射し、
前記光線路系から、波長選択性カプラによって前記監視光に基づいた反射光を分離して受光し、
受光した反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴としている。
 請求項7では、
前記1本の光ファイバによる光路には擬似ランダム符号で変調した監視光を出射し、
前記光線路系から、波長選択性カプラによって前記監視光に基づいた反射光を分離して受光し、
受光した反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴としている。
 請求項8に係る監視システムは、
1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とからなる複数の経路が構成されてなる光線路系において、各経路の途中における損失特性変化をOTDRで監視するために用いる光線路監視システムであって、
現在の反射インパルス応答波形と一定時間前からの反射インパルス応答波形を常時比較監視して、減分応答が検出されたとき、前記減分応答の波形の立ち下がり位置と、前記減分応答の波形の立ち上がり位置に関する情報を出力する減分応答監視手段を備えていることを特徴としている。
The present invention has the following configuration in order to achieve the above object.
The invention of the optical path monitoring method according to claim 1 is:
The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring method of monitoring a change in loss characteristics in the middle of each path by an OTDR in an optical line system including a plurality of paths consisting of an optical path by the optical fiber and the plurality of branch lines,
The current reflected impulse response waveform and the reflected impulse response waveform from a certain time ago are constantly compared and monitored, and when a decremental response is detected, the path where the loss occurred is identified according to the falling position of the waveform of the decremental response. The present invention is characterized in that a position where a loss occurs is identified by the rising position of the waveform of the decrement response.
In claim 2,
Processing for identifying the time when the loss occurred based on the time when the decremental response is detected, or
A process of determining an insertion loss based on the level of the decrement response waveform and specifying the content of the occurrence of the loss,
And at least one processing of
In claim 3,
A branch line including a distribution of Rayleigh backscattered light levels of each branch line and termination position information corresponding to the termination position of each branch line based on a normal reflection impulse response waveform acquired in advance when the optical line system is normal Get the termination map,
In identifying the branch line where the loss occurred,
The fall position of the decrement response waveform is compared with the branch line end map, and a branch line including end position information coincident with the fall position is identified as the branch line where the loss has occurred;
When specifying the position on the branch line where the loss occurred,
The rising position of the decrement response waveform is compared with the branch line end map of the specified branch line, and the position corresponding to the rising position is specified as the position on the branch line where the loss has occurred;
When identifying the content of the loss occurrence,
The insertion loss value is specified by comparing the reduction level of the reduction response with the Rayleigh backscattered light level distribution in the branch line end map.
In claim 4,
As an OTDR that monitors loss characteristic change in the middle of each route,
A digital system according to a pseudo random code correlation system, which emits light modulated by a pseudo random code to the optical line system and obtains a reflected impulse response waveform by correlation processing between reflected light from the optical line system and the pseudo random code. It is characterized by using OTDR.
In claim 5,
The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring method for time division multiplexing for a plurality of optical line systems in an optical transmission system including a plurality of optical line systems comprising an optical path by the optical fiber and the plurality of branch lines,
One of the plurality of optical line systems is sequentially selected;
The light modulated by the pseudo random code is emitted to the selected optical path system,
The reflected light from the optical line system is received and added,
A feature of the present invention is to use a digital OTDR according to a pseudo random code correlation system for obtaining a reflected impulse response waveform by correlating the addition output with the pseudo random code.
In claim 6,
In the optical path by the one optical fiber, the communication light output from the optical communication means and the supervisory light obtained by modulating the light of the wavelength different from the communication light with the pseudo random code are wavelength division multiplexed and emitted And
A reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler,
It is characterized in that a digital OTDR according to a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlation processing between the received reflected light and the pseudo random code.
In claim 7,
The monitoring light modulated by the pseudo random code is emitted to the optical path by the one optical fiber,
A reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler,
It is characterized in that a digital OTDR according to a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlation processing between the received reflected light and the pseudo random code.
The monitoring system according to claim 8 is
The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring system is used in an optical line system in which a plurality of paths consisting of an optical path by the optical fiber and the plurality of branch lines are configured, and used in OTDR to monitor a change in loss characteristics in the middle of each path.
The current reflection impulse response waveform and the reflection impulse response waveform from a predetermined time ago are constantly compared and monitored, and when the decrement response is detected, the fall position of the waveform of the decrement response and the waveform of the decrement response And a decremental response monitoring means for outputting information on the rising position of the.
 上述した解決手段を備えた本発明の基本要素を一言ずつで言うなら、「PNCR/OTDR(Pseudorandom noise-code Correlation Reflectometry/OTDR)」、「DRA(Decremental Reflection Analysis:反射減分解析)」、「デジタルポーリング」の3点である。
 なお、
PNCR/OTDRとは、擬似ランダム符号相関方式によるデジタル式のOTDRであり、従来のアナログ式のパルス方式に代わるOTDRのことであり、例えば、以下の参考文献1に開示されている。
 参考文献1:<論文> 斧田他「擬似ランダム符号相関方式によるファイバレーリ散乱の検出」2006.3 ¥電子情報通信学会総合大会予稿C-5-12
"PNCR / OTDR (Pseudorandom noise-code Correlation Reflectometry / OTDR)", "DRA (Decremental Reflection Analysis: reflection reduction analysis)", to put it one by one, the basic elements of the present invention provided with the solution described above. There are three points in "digital polling".
Note that
The PNCR / OTDR is a digital OTDR based on a pseudo random code correlation system, and is an OTDR that replaces the conventional analog pulse system, and is disclosed, for example, in Reference 1 below.
Reference 1: <Paper> Shibata et al. "Detection of Fiberleigh Scattering by Pseudo-random Code Correlation Method" 2006.3 ¥ Proceedings of the IEICE General Conference C-5-12
 また、
DRAは、本発明の骨子をなすもので、OTDRによるネットワークからの反射インパルス応答の一定時間前からのDecremental Reflection、すなわち「反射減分」もしくは「DR応答」を常時監視し、故障発生で生じた減分応答を解析することによって、上述の目的であるすべての故障情報を得る方式のことである。
 また、
デジタルポーリングは、局内の出線ごとに線路監視用波長の送受光モジュールを設け、サイクリックに順次送光系をイネーブルにすることによって、複数の出線を時分割で多重化する方式のことである。
Also,
DRA, which constitutes the essence of the present invention, constantly monitors Decremental Reflection, that is, "reflection reduction" or "DR response" from a certain time before the reflection impulse response from the network by OTDR, and is caused by the occurrence of a failure. By analyzing the decrement response, it is a scheme to obtain all the fault information for the purpose mentioned above.
Also,
Digital polling is a system that multiplexes a plurality of outgoing lines in a time division manner by providing transmission / reception modules for the line monitoring wavelength for each outgoing line in the station and cyclically enabling the light transmission system cyclically. is there.
以下に、それぞれを詳細に説明する。
1)PNCR/OTDR
OTDRは光線路上の光損失分布、すなわち反射インパルス応答を得るための試験器の一般名称で、従来、アナログ式のパルス方式のものが用いられている。シャープな光パルスを対象に向かって発出したときの反射光の時間応答波形を以ってそのまま出力とするものである。
この方式は原理は簡単ながら、本発明の目的からするといくつかの短所を持つ。
 1つには、単独パルスショットに対する波形応答であるために、線路系の最遠端からの反射が戻るまで、次のショットを待たなくてはならない。線路上の異なる区間からの反射戻りが重なってしまうからである。これは時間的な無駄である。
 2つには、パルス方式であるために、光源のピークパワを高くしなくてはならないことである。ハイパワ光源は一般的でないため、コスト高につくだけでなく、ショット時に通信伝送系に対して影響をあたえるおそれがある。
 3つには、光源をハイパワにしてもショットあたりの光エネルギが小さいため、単独パルスでは受光S/N比が十分でない。そのため多数回ショットによる平均化処理でS/N比を稼ぐことが必要となる。ショット間隔は線路長に制限されるから、結果、計測時間が長くならざるを得ない。
 そこで本発明では、アナログ式のパルス方式に代わって、発明者によって開発されたデジタル式の擬似ランダム符号相関方式(PNCR方式と略称)を採用する。
 図3に、デジタル式の擬似ランダム符号相関方式の原理構成を示した。
PNCR方式では前述した従来方式の欠点をほぼクリアすることができるので、本発明の回線監視システムのためのOTDR方式としては最適なのである。
Each will be described in detail below.
1) PNCR / OTDR
OTDR is a general name of a tester for obtaining an optical loss distribution on a light path, that is, a reflected impulse response, and conventionally, an analog pulse system is used. The output is as it is with the time response waveform of the reflected light when the sharp light pulse is emitted toward the object.
While this scheme is simple in principle, it has several disadvantages for the purpose of the present invention.
For one thing, in order to be a waveform response to a single pulse shot, it is necessary to wait for the next shot until the reflection from the far end of the line system returns. This is because reflections from different sections on the track overlap. This is a waste of time.
Two is that the peak power of the light source has to be high because it is a pulse system. High power light sources are not common, and are not only expensive, but may also affect the communication transmission system at the time of a shot.
For three, even when the light source is high power, the light energy per shot is small, so that the light reception S / N ratio is not sufficient with a single pulse. Therefore, it is necessary to gain an S / N ratio by averaging processing with a large number of shots. Since the shot interval is limited to the line length, as a result, the measurement time has to be long.
Therefore, in the present invention, in place of the analog pulse system, a digital pseudo random code correlation system (abbreviated as PNCR system) developed by the inventor is adopted.
FIG. 3 shows the principle configuration of the digital pseudo random code correlation system.
The PNCR system can almost eliminate the above-mentioned drawbacks of the conventional system, and is therefore optimum as the OTDR system for the line monitoring system of the present invention.
2)DRAを図1を参照して説明する。
 図1(a)には、局側のOTDRからの出線が光分岐器で3つの支線L1、L2、L3に分岐され、前記支線2の途中で損失が発生した例を示している。
(1)光分岐器以遠の支線長にはOTDRの距離分解能以上の距離差があるものとする(ない場合は終端にダミーファイバを追加して差を付与する)。
(2)正常時における局側からのOTDR反射応答(NR/BF(Network  Reflection/Before the Fault),図1(b)参照。)により、加入者線の終端位置マップ(図1(c)参照。)を作成する。
(3)各支線に対応するレーリ後方散乱レベル(レーリレベルと仮称)R1,R2,R3を求めておく。
(4)観測点から見た光線路系の反射インパルス応答(OTDR反射波形)の一定時間前からの減分応答(DR応答)を常時監視する。
(5)線路上に曲げによる挿入損や破断などの光学的故障がない場合、DR応答はつねにゼロである。
(6)故障発生と同時にOTDR反射応答が図1(d)に示したNR/AF(Network Reflection/After the Fault)のように変化し、前記NR/BFとの減分としてDR応答(図1(e)参照。)が出現する。これにより故障発生時刻がわかる。
(7)発生したDR応答波形の立下り位置P2と、支線終端マップ上での終端位置が一致する支線L2が故障線路である。
(8)DR応答波形の立ち上がり時点P1に相当する地点が損失が発生した損失点の位置、すなわち故障位置である
(9)上記立上がり幅D2を支線L2に対応するレーリレベルR2と比較し、ほぼ等しければ「破断」、レーリレベルよりも低ければ曲げなどによる挿入損である。挿入損の大きさは、前記レーリレベルとの比D2/R2として求めることができる。
2) DRA will be described with reference to FIG.
FIG. 1A shows an example in which the outgoing line from the OTDR on the station side is branched into three branch lines L1, L2 and L3 by an optical branching device, and a loss occurs in the middle of the branch line 2.
(1) It is assumed that there is a distance difference greater than the distance resolution of the OTDR in the branch line length beyond the optical branching device (if not, a dummy fiber is added to the end to give a difference).
(2) OTDR reflection response from the station side at normal times (NR / BF (Network Reflection / Before the Fault), refer to FIG. 1 (b)), subscriber line end position map (refer to FIG. 1 (c)) Create.)
(3) The Rayleigh backscattering level (Lary level and tentative name) R1, R2, R3 corresponding to each branch line is obtained.
(4) Always monitor the decrement response (DR response) from a fixed time before the reflection impulse response (OTDR reflection waveform) of the optical line system viewed from the observation point.
(5) If there is no optical failure such as insertion loss or breakage due to bending on the track, the DR response is always zero.
(6) Simultaneously with the failure occurrence, the OTDR reflection response changes as NR / AF (Network Reflection / After the Fault) shown in FIG. 1 (d), and the DR response as a subtraction from the NR / BF (FIG. 1) (E) see). Thus, the failure occurrence time can be known.
(7) A branch line L2 in which the falling position P2 of the generated DR response waveform coincides with the end position on the branch line end map is a failure line.
(8) The point corresponding to the rising time point P1 of the DR response waveform is the position of the loss point where the loss occurred, that is, the failure position (9) The rising width D2 is compared with the Rayleigh level R2 corresponding to the branch line L2 If it is equal, it is an insertion loss due to "fracture" or bending if it is lower than the Rayleigh level. The size of the insertion loss can be determined as the ratio D2 / R2 to the Rayleigh level.
3)デジタルポーリング
(1)従来技術
出線ごとにOTDRを設けるのはコスト高につくため、従来は、OTDRの出口に光スイッチを設け、複数の出線を順次選択接続する方式が採られている。
 しかし光スイッチは機械的な可動部をもつものが多く、応答性と信頼性の点で課題がある上、コストも高い。
 また通常1×2のものが基本となるため、選択段数が増えると多数個の光スイッチを要するなど極めて面倒かつ高価につく。
 従って光スイッチによらない電気回路的手法によって実現したデジタルポーリングでは、シンプル、高速かつ安価な出線選択手段を提供することができる。
(2)系の構成と動作手順
本発明が採用するデジタルポーリングを、図5に示した構成を参照して説明する。
 光線路監視装置12からの出線21~24・・・ごとに、双方向の送受光手段(BIDIと略称;Bi-directional tranceiver)161~164・・・を設ける。なお、図5においては、複数の光線路系の内4本の出線21~24を含んだ光線路系を図示して、他の光線路系は省略している。
 各BIDI161~164の光源を、PN符号発生部1212にて発生させた共通の擬似ランダム符号(PN符号)でデジタル変調する。
 タイミング発生部122から出力される位相のずれたイネーブル信号(図6のイネーブル信号φ1~φ8参照)によりにて上記各BIDI161~164の送光回路をPN符号フレームの整数倍の時間長ずつサイクリックに順次イネーブルにするのが望ましい。
各BIDIの受光器のアナログ加算出力をAD変換後、上記PN符号との相関処理を施し、出線ごとの反射インパルス応答を順次求める。
上記反射インパルス応答にもとづいた反射減分応答解析により、出線ごとの光故障の切り分けを行なう。
3) Digital polling (1) Prior art Since providing an OTDR for each outgoing line is expensive, conventionally, an optical switch is provided at the exit of the OTDR to sequentially select and connect a plurality of outgoing lines. There is.
However, many optical switches have mechanical movable parts, which have problems in response and reliability and are expensive.
Also, since 1 × 2 is usually used as the basis, if the number of selected stages is increased, it becomes extremely troublesome and expensive, for example, requiring a large number of optical switches.
Therefore, digital polling realized by an electric circuit method not based on an optical switch can provide simple, high-speed and inexpensive outgoing line selection means.
(2) System Configuration and Operation Procedure The digital polling employed by the present invention will be described with reference to the configuration shown in FIG.
Each of the outgoing lines 21 to 24... From the optical path monitoring apparatus 12 is provided with bidirectional transmission / reception means (BIDI: abbreviated as Bi-directional tranceiver) 161 to 164. In FIG. 5, an optical path system including four outgoing lines 21 to 24 of the plurality of optical path systems is illustrated, and the other optical path systems are omitted.
The light source of each of the BIDIs 161 to 164 is digitally modulated by the common pseudo random code (PN code) generated by the PN code generator 1212.
The light transmitting circuits of each of the BIDIs 161 to 164 are cyclically controlled by an integral multiple of the PN code frame according to the out-of-phase enable signals (see the enable signals φ1 to φ8 in FIG. 6) output from the timing generator 122. It is desirable to enable them sequentially.
After analog-to-digital conversion of the analog addition output of the light receiver of each BIDI, correlation processing with the above-mentioned PN code is performed, and the reflection impulse response for each output line is sequentially obtained.
By means of the reflection reduction response analysis based on the reflection impulse response, the optical failure is separated for each outgoing line.
 以下においては、本明細書において使用する用語と記号を、図1と対応させて説明する。
<OTDR>光パルス試験器の一般名称。従来、OTDRはアナログ式のパルス方式のものしか普及していないので、普通はこの方式のものを指す。本発明では、方式にかかわらず、線路系の反射応答(反射インパルス応答)を求める計測器として用いる。
<出線、光路>光アクセス系の場合は電話局、光計測系の場合はインタロゲータから出る一本の光ファイバ幹線のこと。
<支線>出線の途中、光アクセス系の場合は加入者域、後述する光計測系の場合は観測域近傍において、光分岐器によって分岐された支線光ファイバ。
(光計測系:光センサにおける、あるいはファイバそのものにおける挿入損失の発生もしくは変化によってセンシングするシステム。光伸長計のように、変位をファイバ曲げに変換するものが普及している)
<光分岐器、光分岐手段、スプリッタ>一本のファイバを複数本のファイバに受動的に分岐する機器。ファイバを撚り合わせて延伸するタイプと光の平面回路(PLC:Planar Light Circuit)で構成するタイプがある。本発明の場合はどちらでも可。
<損失点>ファイバの破断や急曲によって、伝送損失が増加する。曲げ損の場合は数dBから10数dB、破断の場合は損失無限大。局所的な損失増は、線路監視の観点からすると「故障」であり、光計測系の場合は「計測情報」である。ここでは両方の場合を想定して、「損失点」とした。
<NR/BF応答>Network Reflection/Before the Fault。ファイバ線路系からのOTDRによる反射(インパルス)応答で、損失発生前のもの。
<NR/AF応答>Network Reflection/After the Fault。ファイバ線路系からのOTDRによる反射(インパルス)応答で、損失発生後のもの。
<DR応答>Decremental Reflection(反射減分)応答。NR応答の一定時間前からの「減分応答」(NR/BF-NR/AF)。応答差分。
<L1~L3>支線番号。簡単のため光分岐後の支線数を3としたが、PONのような光アクセス系では、8あるいは32が通常である。光計測系の場合は、状況によってまちまちである。
<R0>光分岐器直後のOTDR反射レベル段差。分岐損失に応じて大きくなる。すべての支線からのレーリ反射が重畳されるため、分岐数をNとし、分岐器の過剰損失がないものとすれば、分岐による反射減衰量は10logN (dB)であたえられる(分岐損そのものは本発明では直接関係しない)。
<Ri,R1~R3>損失発生前のNR/BF応答における各支線終端点のレーリ反射レベル段差。
<Di,D1~D3>支線に対応したDRレベル。Riとの比較で損失αiがわかる。すなわち、αi=10log(1-Di/Ri) (dB)。
<DR立下り>DR応答波形における立下りタイミング。支線終端マップでタイミングがこれと合致する支線が「損失」発生支線である。
<DR立ち上がり>同じく立ち上がりタイミング。支線終端マップでタイミングがこれと合致する位置から、損失発生支線内の発生箇所が同定される。
In the following, terms and symbols used in the present specification will be described in correspondence with FIG.
<OTDR> General name of the optical pulse tester. Conventionally, since OTDR only spreads in the analog pulse system, it usually refers to this system. In the present invention, regardless of the system, it is used as a measuring instrument for determining the reflection response (reflection impulse response) of the line system.
<Outgoing line, optical path> A single optical fiber trunk from an interrogator in the case of a central office in the case of an optical access system and in the case of an optical measurement system.
<A branch line> A branch optical fiber branched by an optical branch in the vicinity of an observation area in the middle of an outgoing line, in a subscriber area in the case of an optical access system, and in the case of an optical measurement system to be described later.
(Optical measurement system: A system that senses by the occurrence or change of insertion loss in the optical sensor or in the fiber itself. As in the case of an optical extensometer, those that convert displacement into fiber bending are widespread.
<Optical branching device, optical branching means, splitter> A device for passively branching one fiber into a plurality of fibers. There are a type in which fibers are twisted and drawn and a type in which a planar light circuit (PLC: Planar Light Circuit) is used. Either is acceptable in the case of the present invention.
<Loss point> A fiber breakage or a sharp bend increases the transmission loss. In the case of bending loss, several dB to several tens of dB, and in the case of breakage, the loss is infinite. The local loss increase is a "fault" from the viewpoint of line monitoring, and in the case of an optical measurement system, it is "measurement information". Here, assuming both cases, it is referred to as a “loss point”.
<NR / BF response> Network Reflection / Before the Fault. Reflection (impulse) response due to OTDR from fiber line system before loss.
<NR / AF response> Network Reflection / After the Fault. Reflection (impulse) response due to OTDR from fiber line system after loss.
<DR response> Decremental Reflection response. "Decremented response" from a certain time before NR response (NR / BF-NR / AF). Response difference.
<L1 to L3> Branch line numbers. Although the number of branch lines after optical branching is three for simplicity, in an optical access system such as PON, 8 or 32 is normal. In the case of light measurement system, it varies depending on the situation.
<R0> OTDR reflection level step immediately after the light branching device. It becomes large according to the branching loss. Since Rayleigh reflections from all the branch lines are superimposed, if the number of branches is N and there is no excess loss in the branch, the return loss due to the branch can be 10 log N (dB) (the branch loss itself is not Not directly related to the invention).
<Ri, R1 to R3> Rayleigh reflection level step of each branch end point in NR / BF response before occurrence of loss.
<Di, D1 to D3> DR levels corresponding to branch lines. The loss αi can be found by comparison with Ri. That is, αi = 10 log (1−Di / Ri) (dB).
<DR falling edge> Falling timing in the DR response waveform. A branch whose timing matches this in the branch end map is a "loss" occurrence branch.
<DR rise> Same rise timing. From the position at which the timing matches this in the branch line termination map, the occurrence point in the loss occurrence branch line is identified.
 本発明によれば、上記3つの基本要素によって以下の効果が得られる。
1)PNCR方式による効果
1つ目には、PNCR方式は、プローブ光として、孤立パルスの代わりにPN符号でデジタル変調された連続光を用いるが、線路最遠端からの反射戻りを待つ必要がなく、発出と受光を同時に行なうことができる。時間的な空白を要せず、計測上の時間効率が非常に高い。
 2つ目には、同じ理由から、ショットあたりの(PNCR方式の場合は符号長あたりの)発出光エネルギを、符号長に比例して大きくできることから、プローブ光のピークパワを大きくする必要がない。
 3つ目には、相関方式の利得が大きいため、高S/N比を得ることが容易である。従来方式のような夥しい回数の平均化処理が不要なため、計測時間が短縮される。
 4つ目には、デジタル式であるために、チップ速度や、符号長などのOTDR動作の条件設定が非常に簡単である。従来方式では回路定数のようなハード要素を制御しなくてはならないが、PNCR方式ではソフト的に制御できる。
 PNCR方式は、以上のような特長を備えているため、本発明の光線路監視システムのためのOTDR方式としては最適なのである。
According to the present invention, the following effects can be obtained by the above three basic elements.
1) Effect by PNCR method
First, the PNCR method uses continuous light digitally modulated with a PN code instead of an isolated pulse as probe light, but there is no need to wait for reflection return from the far end of the line, and emission and light reception are It can be done at the same time. It does not require any time space, and the measurement is very time efficient.
Second, for the same reason, it is not necessary to increase the peak power of the probe light because the emitted light energy per shot (per code length in the case of the PNCR method) can be increased in proportion to the code length.
Third, because the gain of the correlation scheme is large, it is easy to obtain a high S / N ratio. The measurement time can be shortened because the averaging process of the number of times as in the conventional method is unnecessary.
Fourth, because it is digital, it is very easy to set conditions for OTDR operation such as chip speed and code length. In the conventional method, it is necessary to control hardware elements such as circuit constants, but in the PNCR method, it can be controlled by software.
The PNCR method has the above-mentioned features and is therefore optimal as an OTDR method for the optical path monitoring system of the present invention.
2)DRAによる効果
 反射インパルス応答(OTDR反射波形)の一定時間前からの減分応答(DR応答)を常時監視することにより、故障発生時刻の同定、故障線の同定、故障位置の同定が可能である。
 また、DR応答の立上がり幅に基づいて、「破断」の発生か、もしくは破断ではないが損失の発生かを識別でき、損失の発生の場合にはどの程度の損失発生かを判断することができる。
3)デジタルポーリングによる効果
 本発明ではBIDIと電気的なデジタル回路でデジタルポーリングを行うため、従来の光スイッチを用いた方式に比較して、安価、省スペース、高速応答(PN符号のフレーム単位でのポーリングであるため)といった特長のほかに、可動部をもつ光スイッチによらないため、長期信頼性の面でも非常に有利である。
2) Effect by DRA By constantly monitoring the decrement response (DR response) from a fixed time before the reflection impulse response (OTDR reflection waveform), identification of failure occurrence time, identification of failure line, identification of failure position is possible. It is.
Also, based on the rise width of the DR response, it is possible to identify whether "break" occurs or whether a loss is generated although it is not a break, and in the case of the occurrence of a loss, it is possible to determine how much loss occurs. .
3) Effect by digital polling In the present invention, since digital polling is performed by BIDI and an electrical digital circuit, it is inexpensive, space saving, and high-speed response (in frame unit of PN code) compared to the conventional optical switch method. In addition to the feature of “Polling”, the optical switch having a movable part is not required, and thus it is very advantageous in terms of long-term reliability.
本発明の特徴である反射減分応答と支線終端マップの説明図である。It is explanatory drawing of the reflective decrement response and branch line end map which are the characteristics of this invention. 本発明が対象とするシステムの概要Outline of system targeted by the present invention PNCRによるOTDRの基本構成の説明図である。It is explanatory drawing of the basic composition of OTDR by PNCR. 光線路系のトポロジーと支線終端マップの説明図である。It is explanatory drawing of the topology of an optical line system, and a branch end map. デジタルポーリングの説明図である。It is explanatory drawing of digital polling. デジタルポーリングの説明図である。It is explanatory drawing of digital polling. DRAによる故障点切り分けの基本アルゴリズムの説明図である。It is explanatory drawing of the basic algorithm of fault point isolation by DRA. シミュレーション条件を示す図である。It is a figure which shows simulation conditions. シミュレーション結果を示す図である。It is a figure which shows a simulation result. シミュレーション結果を示す図である。It is a figure which shows a simulation result. シミュレーション結果を示す図である。It is a figure which shows a simulation result.
 図2には、本発明が対象とするシステムの概要を2通りの場合について図示した。
図2(a)は、PONと呼ばれる光加入者線路の場合である。下り1.55μm、上り1.31μmの通信光は、波長分割多重によって一本の共通線路を双方向に行き来する。線路監視のための監視光は1.65μmが用いられており、同様に波長分割多重によって通信光とは別階層となっている。
 光線路監視装置12から出力されるPN符号で変調されて光源13から出力される前記監視光は、波長選択性カプラ16を介して出線2に送出される。そして、出線2、分岐器3、および各支線L1~L8からの反射インパル応答光は、前記波長選択性カプラ16によって選択的に取り出され、さらにカプラ15を介して受光器14にて受光される。
 光加入者系のネットワーク構成としては、電話局1内の光端局装置(OLT:Optical Line Terminal)11ごとに分岐器で4分岐された出線2が、加入者域で分岐器3によってさらに8分岐されて、支線L1~L8で加入者宅に分配され、光回線終端装置(ONU:Optical Network Unit)にONU1~ONU8において終端される形となっている。よって光終端装置ごとに32加入分収容されることになるが、光端局装置11から加入者宅までパッシブな分岐が2段階入ることから、こうしたネットワーク形式をPDS(Passive Double Star)と呼んでいる。
 本発明では出線ごとの故障監視を基本とするので、簡単のため局内での分岐は略記し、上図のように光端局装置からの出線を1本とみなすことにする。なお、特許請求の範囲に記載した「経路」は、図2においては、出線2、分岐器3、および支線L1を含み光回線終端装置ONU1までの経路1から、出線2、分岐器3、および支線L8を含み光回線終端装置ONU8までの経路8までの8本の経路に対応している。
FIG. 2 illustrates the outline of the system targeted by the present invention in two cases.
FIG. 2A shows the case of an optical subscriber line called PON. Communication light of 1.55 μm downstream and 1.31 μm upstream travels back and forth in one common line by wavelength division multiplexing. The monitoring light for line monitoring uses 1.65 μm, and similarly, it is in a different layer from the communication light by wavelength division multiplexing.
The monitoring light modulated by the PN code output from the light path monitoring apparatus 12 and output from the light source 13 is sent to the outgoing line 2 via the wavelength selective coupler 16. The reflected impulse response light from the outgoing line 2, the splitter 3, and each of the branch lines L 1 to L 8 is selectively extracted by the wavelength selective coupler 16 and further received by the light receiver 14 via the coupler 15. Ru.
In the optical subscriber system network configuration, an outgoing line 2 branched into four by the branching unit for each optical line terminal (OLT: Optical Line Terminal) 11 in the telephone station 1 is further divided by the branching unit 3 in the subscriber area. It is branched into eight branches and distributed to subscriber homes by branch lines L1 to L8, and is terminated at an ONU (Optical Network Unit) (ONU: Optical Network Unit) at ONU1 to ONU8. Therefore, although 32 optical links are accommodated for each optical termination unit, two types of passive branching from the optical terminal 11 to the subscriber's home are included, so such a network type is called PDS (Passive Double Star). There is.
Since the present invention is based on failure monitoring for each outgoing line, for the sake of simplicity, the branching within the station will be abbreviated and the outgoing line from the optical terminal apparatus will be regarded as one as shown in the above figure. In FIG. 2, the “path” described in the claims includes the outgoing line 2, the branch 3 and the branch line L1 from the path 1 to the optical line termination unit ONU1, the outgoing line 2 and the branch 3 , And the branch line L8 to the eight paths to the path 8 to the optical line termination unit ONU8.
 図2(b)は、通信分野でなく、敷設された光ファイバ上の任意箇所における挿入損の変化としてとらえる光センシング系の場合である。この場合はセンシングが目的であるから、用いる光源波長は1種類でよい。 FIG. 2 (b) is a case of an optical sensing system which is regarded as a change in insertion loss at an arbitrary position on a laid optical fiber, not in the communication field. In this case, since the purpose is sensing, one kind of light source wavelength may be used.
 次に、図1、2、3を参照して、本発明の特徴的な技術要素を構成するPNCR方式によるOTDRの基本構成を説明する。
 本発明では出線元から見たOTDR波形、すなわち反射インパルス応答波形が基本となるが、局外分岐器の挿入損が大きいため、以遠の反射応答を正確に求めるにはOTDRの高感度化が必須となる。従来のOTDRはパルス方式によるものがほとんどであるが、アナログ式であるために、下記のような制約が多いものになっている。
1)対象とする線路系に光パルスを発出してから、最遠端からの反射光が戻るまで、次のパルスを発出できないため、計測応答が遅くなる。
2)1ショットあたりの光パルスエネルギはパルス幅と光源のピークパワ値の積であたえられるが、パルス幅を長くすると距離分解能が落ちる。ピークパワを大きくするにも光源デバイスに限界がある。また無理に大きくできたとしても、光ファイバのコア内のエネルギ密度が高くなると光ファイバのコアがダメージを受けたり、誘導ラマン散乱などの非線形現象によるよけいな反射が起こり得る。従ってOTDRの感度に制約が生ずる。
3)感度を上げようとすると、受光S/N比を大きくしなければならない。そのために従来はショット数を多くして(しばしば数10万回にも達する)平均化処理を施すことが行なわれるが、上記1)の理由により、ますます計測時間が長くならざるを得ない。
4)アナログ式であるために、OTDR動作の条件制御が簡単でない。たとえばパルス幅やピークパワを変えようとしても、電気回路的な措置が必要となるため、制御が面倒である。
Next, with reference to FIGS. 1, 2 and 3, the basic configuration of the OTDR according to the PNCR method, which constitutes the characteristic technical element of the present invention, will be described.
In the present invention, the OTDR waveform seen from the outgoing wire source, that is, the reflected impulse response waveform is the basis, but since the insertion loss of the external branch is large, the OTDR has high sensitivity to accurately determine the reflection response further. It is essential. The conventional OTDR is mostly based on a pulse system, but because it is an analog system, there are many limitations as described below.
1) Since the next pulse can not be emitted until the light reflected from the farthest end returns after the light pulse is emitted to the target line system, the measurement response is delayed.
2) The light pulse energy per shot is given by the product of the pulse width and the peak power value of the light source, but increasing the pulse width reduces the distance resolution. There is a limit to the light source device for increasing the peak power. Even if the size can be increased excessively, if the energy density in the core of the optical fiber becomes high, the core of the optical fiber may be damaged, or more jerky reflection may occur due to nonlinear phenomena such as stimulated Raman scattering. Therefore, the sensitivity of OTDR is restricted.
3) In order to increase the sensitivity, the light reception S / N ratio must be increased. For this purpose, in the past, averaging is performed by increasing the number of shots (often reaching several hundreds of thousands of times), but for the reason of the above 1), the measurement time must be longer.
4) Condition control of OTDR operation is not easy because of analog type. For example, even if it is intended to change the pulse width and the peak power, control is troublesome because an electrical circuit measure is required.
 そこで本発明では図3のようなデジタル式のPN符号相関方式(PNCR方式)を採用する。これは、デジタルエンジン121において、光源のLD13をPN符号発生部1212で発生したPN符号でデジタル変調して、対象線路系に発出したときの反射光をPD14で受光して、A/D変換部1213でA/D変換を施し、相関処理部1211にて前記PN符号で相関処理するもので、出力には線路系の反射インパルス応答が得られる(参考文献1)。 Therefore, in the present invention, a digital PN code correlation method (PNCR method) as shown in FIG. 3 is adopted. This is because the digital engine 121 digitally modulates the LD 13 of the light source with the PN code generated by the PN code generation unit 1212, and the reflected light when emitted to the target line system is received by the PD 14 and the A / D conversion unit The A / D conversion is performed in 1213 and the correlation processing is performed with the PN code in the correlation processing unit 1211, and the reflection impulse response of the line system is obtained at the output (reference document 1).
 PNCR方式によるOTDRの特長は上記と対比してすべてその逆である。すなわち
1)相関方式であるため、最遠端からの反射戻りを待つ必要はなく、プローブ光発出と反射光受光が時間的に重なっても差し支えない。従って発出するとともに受光もできるわけで、無駄時間を要しない。そのため、計測応答が速くなる。
2)PN符号長(PNフレーム長)を長くすることで、それに比例して相関利得を大きくできるため、あえてプローブ光のピークパワを大きくする必要がない。ローパワで済むことから、ピークパワの大きなプローブ光を嫌う用途にも適用できる。また光通信分野で普及している通常パワの光源がそのまま利用可能であることから、デバイスコストが抑えられる。
3)計測応答が速くなるため、計測対象の動きの速い光学的変化にも対応できる。
4)デジタル式であるために、OTDR動作条件の変更は、電気回路的なハード領域で行なう必要がなく、ソフト領域で容易に可能である。
The features of the OTDR based on the PNCR method are all contrary to the above. That is, 1) Since it is a correlation system, it is not necessary to wait for reflection return from the farthest end, and the probe light emission and the reflection light reception may overlap in time. Therefore, it is possible to emit light as well as to receive light, and no waste time is required. Therefore, measurement response is quickened.
2) By increasing the PN code length (PN frame length), the correlation gain can be increased in proportion to that, so it is not necessary to increase the peak power of the probe light. Because it is low power, it can be applied to applications that dislike large probe power of peak power. In addition, since the light source of normal power that is widespread in the optical communication field can be used as it is, the device cost can be suppressed.
3) Because the measurement response is fast, it is possible to cope with fast optical changes of the movement of the measurement object.
4) Because it is digital, it is not necessary to change the OTDR operating conditions in the electric circuit hard area, and it is easily possible in the soft area.
 次に、図4、5、6を参照して、本発明における光線路系のトポロジーと支線終端マップとデジタルポーリングを説明する。
 光アクセス系のトポロジーとしては図4(a)に示すように、局内から1本の光ファイバで局外に出線し、それぞれ加入者地域付近から光分岐器(SPL:スプリッタ)により8分岐される形態があるが、我が国では、図5に示すように、PDS(パッシブダブルスター)が普及しており、図のように局内から4本の出線で局外に出線し、それぞれ加入者地域付近から光分岐器(SPL:スプリッタ)により8分岐されるのが通常である。
 ここで本発明の前提として、SPL以遠の加入者線は一定以上の、すなわち後述するPNCR/OTDR(PN符号相関方式によるOTDR)の距離分解能L以上の距離差をもつものとする。
 距離分解能Lは、L=c/2nf であたえられる。ここにcは真空光速、nは光ファイバのモード屈折率、fはPN符号のチップ速度である。
 数値例でいうと、c=3×108m/s、n =1.5(石英系のファイバ)であるから、f=100MHzとすると、L=1mとなる。f=25MHzならL=4m、f=10MHzならL=10m となる。
Next, with reference to FIGS. 4, 5 and 6, the topology of the optical line system, the branch termination map and the digital polling in the present invention will be described.
As the topology of the optical access system, as shown in FIG. 4 (a), one optical fiber from the inside of the station is output to the outside of the station, and eight branches are made from the vicinity of the subscriber area by the optical splitter (SPL: splitter). In Japan, as shown in Fig. 5, PDS (passive double star) is widely used, and as shown in the figure, four out lines from inside the station are used to go outside the station, and each subscriber is Usually, it is branched into eight by an optical splitter (SPL: splitter) from near the area.
Here, as a premise of the present invention, it is assumed that a subscriber line beyond SPL has a distance difference of a predetermined value or more, that is, a distance resolution L of PNCR / OTDR (OTDR based on PN code correlation method) described later.
The distance resolution L is given by L = c / 2 nf. Here, c is the speed of vacuum light, n is the mode refractive index of the optical fiber, and f is the chip speed of the PN code.
In the numerical example, c = 3 × 10 8 m / s, n = 1.5 (silica-based fiber), so f = 100 MHz, L = 1 m. If f = 25 MHz, then L = 4 m, and if f = 10 MHz, then L = 10 m.
 本発明の目的は、上記のような線路系を対象に、ファイバ線路の破断もしくは急曲などによる局部的な挿入損失の変化を「線路故障」として、その故障位置(どの支線のどの位置か)と故障内容(破断か挿入損か、挿入損なら定量的に何デシベルか)を実時間で検出することである。
 なお、各支線の光学的終端条件はとくにはない。つまり、高反射終端であってもよいし、無反射終端であってもかまわない。
 また破断故障時における破断面の反射減衰量は、いくら以下でなくてはならないという条件もない。実際、ファイバ破断の反射減衰量は、約40dBを平均値として±20数dBの広い範囲で分布するから、これを当てにした線路監視は実際的でないからである。
The object of the present invention is, for a line system as described above, the change in the local insertion loss due to breakage or sharp bend of the fiber line as "line failure" and the position of the failure (which position of which branch line) And failure content (breaking or insertion loss, if insertion loss quantitatively what decibel) is to detect in real time.
There is no particular optical termination condition for each branch line. That is, it may be a high reflection termination or a non-reflection termination.
In addition, there is no condition that the reflection attenuation of the fractured surface at the time of fracture failure must be less than that. In fact, since the return loss of fiber breakage is distributed over a wide range of ± 20 several dB with an average value of about 40 dB, line monitoring based on this is not practical.
 次に、本発明に用いる支線終端マップについて述べる。
 図4(b)は、正常時の局内出線元から見たOTDR波形である。煩雑を避けるため、線路損失はゼロとし、支線終端は無反射であるとした。
 図4(c)は、図4(b)をもとに作成する支線終端マップで、各支線の終端位置(特許請求の範囲に記載された「終端位置情報」に対応。)とレーリ後方散乱レベル段差(図ではR1~R8で表示している)を距離順に線上表示したものである。これをまず準備する。
Next, a branch end map used in the present invention will be described.
FIG. 4 (b) shows an OTDR waveform as viewed from a source line output at the time of normal operation. In order to avoid complication, the line loss is made zero and the branch end is non-reflective.
FIG. 4 (c) is a branch end map created based on FIG. 4 (b), and the end position of each branch (corresponding to the "end position information" described in the claims) and the Rayleigh backscattering. Level differences (represented by R1 to R8 in the figure) are displayed on the line in order of distance. Prepare this first.
 次に、本発明の特徴的な技術要素を構成する「デジタルポーリング」について図5、6を参照して説明する。なお、図5においては前述したように4本の出線を含んだ光線路系を図示して他の光線路系は省略し、図6においては8本の出線を含んだ光線路系に対するデジタルポーリングによる選択動作を説明している。
 本発明における「デジタルポーリング」とは、複数の出線をひとつの線路監視システム内で時分割に多重化する方式で、従来例のシステムにあっては光スイッチバンクで行っている機能を、上図のように出線ごとのBIDIモジュール(Bi-directional (双方向性の)送光回路および受光回路)とタイミング発生部122で行なうものである。
1)各BIDIモジュールの送光回路を同一のPN符号で駆動する。
2)PN符号の一定整数倍フレーム毎に、順次各BIDIモジュールの上記送光回路をイネーブルにする(図6参照)。
3)出線ごとの反射受光出力をアナログ加算してA/D変換後、もとのPN符号と相関処理することによって、順次出線ごとの反射応答を得る
4)出線ごとにDRAによって故障切分けを行なう。
Next, “digital polling”, which constitutes a characteristic technical element of the present invention, will be described with reference to FIGS. In FIG. 5, as described above, the optical line system including four outgoing lines is shown, and the other optical line systems are omitted. In FIG. 6, the optical line system including eight outgoing lines is omitted. The selection operation by digital polling is described.
The “digital polling” in the present invention is a system in which a plurality of outgoing lines are multiplexed in a time division manner in one line monitoring system, and in the system of the conventional example, the function performed in the optical switch bank is As shown in the figure, this is performed by the BIDI module (Bi-directional (bidirectional) light transmission circuit and light reception circuit) and the timing generation unit 122 for each output line.
1) Drive the light transmission circuit of each BIDI module with the same PN code.
2) The above-mentioned light transmission circuit of each BIDI module is sequentially enabled every fixed integer multiple frame of PN code (see FIG. 6).
3) Obtain the reflection response for each outgoing line sequentially by performing analog addition and A / D conversion of reflected and received light output for each outgoing line and correlating with the original PN code 4) Failure due to DRA for each outgoing line Make a distinction.
 図6は、デジタルポーリングによる各BIDIモジュール1~8の送光回路に対するイネーブルタイミングを示す図である。図6に示されているように、イネーブル信号φ1~φ8によって、各BIDIモジュールごとに一定のイネーブル時間(T)ごとにサイクリックにイネーブル化する。前記イネーブル時間(T)は、符号フレーム(符号長)の整数倍に選ぶのが望ましい。 FIG. 6 is a diagram showing enable timing for the light transmission circuit of each of the BIDI modules 1 to 8 by digital polling. As shown in FIG. 6, enable signals .phi.1 to .phi.8 enable cyclically to enable each of the BIDI modules at a constant enable time (T). The enable time (T) is preferably selected to be an integral multiple of a code frame (code length).
 次に、本発明の特徴的な技術要素であるDRAについて、図7を参照して説明する。
 図7は、DRAによる故障点切り分けの基本アルゴリズムを説明する説明図である。
 図7(a)においては、3つの支線1、2、3の内の支線2の途中において曲げ損が発生した状況を示している。
 図7(b)においては、支線1、2、3の終端のレーリ反射レベル段差R1、R2、R3を示している。
 図7(c)においては、支線3の終端までのレーリ反射レベルを示している。
 図7(d)においては、反射減分(DR応答)波形を示している。
Next, DRA which is a characteristic technical element of the present invention will be described with reference to FIG.
FIG. 7 is an explanatory diagram for explaining a basic algorithm of fault point isolation by DRA.
FIG. 7A shows a state where bending loss has occurred in the middle of the branch line 2 among the three branch lines 1, 2, 3.
FIG. 7B shows Rayleigh reflection level steps R1, R2, and R3 at the ends of the branch lines 1, 2, and 3.
FIG. 7C shows the Rayleigh reflection level up to the end of the branch line 3.
FIG. 7D shows a reflection reduction (DR response) waveform.
<DRAの考え方>
1)故障時刻
 DR応答の発生時刻が故障時刻である。
2)故障線路
 反射減分応答波形の立ち下り位置P2と終端マップ位置が一致する線路が故障線路である。この図例では、反射減分応答波形の立ち下り位置P2は、支線2の終端マップと一致するので、故障線路は支線2であると同定できる。
3)故障位置
 反射減分応答波形の立ち上がり位置P1が故障位置をあたえる。この図例では、反射減分応答波形の立ち上がり位置P1に一致する前記支線2の終端マップと一致する位置が、支線2上の故障位置として同定できる。
4)挿入損の大きさ
 故障線路に対応するレーリレベルをR2、反射減分応答波形の反射減分レベルをD2とすると、
挿入損α2は、
   α2=10log(1-R2/D2) (dB)
として求めることができる。
 一般化すると、支線iに対応するレーリレベルをRi、反射減分応答波形の反射減分レベルをDiとしたとき、挿入損αiは、
   αi=10log(1-Ri/Di) (dB)
として求めることができる。
5)故障内容の判断
 故障が「破断」であるか急曲などによる「挿入損」であるかは、反射減分レベルとレーリレベルの比較により容易に判別できる。すなわち、
  D<R の場合には「挿入損」であると判別でき、
  D≒R の場合には「破断」の発生と判断できる。
 以上のように、反射減分レベルを終端マップと比較することによって、図2(a)に示したような複数の支線を備えた光加入者系の場合にも、故障線路(支線)の同定と、同定された故障線路上の故障位置の同定が可能である。
 さらに、上述したように、故障内容も判断することができる。
<Drinciple of DRA>
1) Failure time The occurrence time of the DR response is the failure time.
2) Failure Line A line whose end map position matches the falling position P2 of the reflection decrement response waveform is a failure line. In this example, since the falling position P2 of the reflection decrement response waveform matches the termination map of the branch line 2, the fault line can be identified as the branch line 2.
3) Failure position The rising position P1 of the reflection decrement response waveform gives the failure position. In this example, a position coincident with the termination map of the branch line 2 coincident with the rising position P1 of the reflection decrement response waveform can be identified as a fault position on the branch line 2.
4) Size of insertion loss Assuming that the Rayleigh level corresponding to the failure line is R2, and the reflection decrement level of the reflection decrement response waveform is D2,
The insertion loss α2 is
α2 = 10 log (1-R2 / D2) (dB)
It can be determined as
In general, when the Rayleigh level corresponding to the branch line i is Ri and the reflection decrement level of the reflection decrement response waveform is Di, the insertion loss αi is
αi = 10 log (1-Ri / Di) (dB)
It can be determined as
5) Judgment of the fault contents Whether the fault is a "break" or an "insertion loss" due to a sharp bend or the like can be easily determined by comparing the reflection reduction level and the Rayleigh level. That is,
If D <R, it can be determined that "insertion loss",
In the case of D で き る R, it can be determined that "break" has occurred.
As described above, by comparing the reflection reduction level with the termination map, even in the case of an optical subscriber system having a plurality of branch lines as shown in FIG. 2A, identification of a failure line (branch line) is possible. And identification of the fault location on the identified fault line.
Furthermore, as described above, the content of failure can also be determined.
 次に、図5に示したように、1本の出線と分岐器と8本の分岐された支線L1~L8とで構成された1つの光線路系(図2、図4参照)を複数含んだ光加入者系の線路構成の場合について説明する。
 これは、PDS(パッシブダブルスター)と呼ばれ、図のように局内から複数(例えば4本)の光ファイバ21~24で局外に出線し、それぞれ加入者地域付近から光分岐器(SPL:スプリッタ)31~34により8分岐されるのが通常である。この場合も、SPL以遠の加入者線は一定以上の、すなわち前述したPNCR/OTDR(PNCR方式によるOTDR)の距離分解能L以上の距離差をもつものとする。前記距離差が無い場合にはダミーファイバを挿入して距離差を与える。
 この場合には、光線路監視装置12では、複数の光線路系を順次選択切り替えながら、選択切り替えした1つの光線路系においては、図2、4、7を参照した説明と同様に、故障発生の支線を特定し、さらに、故障発生位置と、損失値を特定していく。
 複数の光線路系の選択切り替えは、前述したように、複数の出線をひとつの線路監視システム内で時分割に多重化する方式で、図示したように出線ごとのBIDIモジュール(Bi-directional(双方向性の)送光回路および受光回路)と、タイミング発生部等のデジタル回路で行なうものである。
 この際に、各BIDIモジュール161~164の送光回路は、PN符号発生部1212から出力される同一のPN符号で駆動し、各BIDIモジュール161~164の切り替えタイミングは、タイミング発生部122から出力されるタイミング信号φ1~φ4(図6参照)によって、PN符号の一定整数倍フレーム毎に、順次各BIDIモジュールの送光回路をイネーブル化することによって行う。
 受光に際しては、各出線21~24ごとの反射受光出力をアナログ加算部124でアナログ加算して、A/D変換部1213でA/D変換した後、相関処理部1211で前記PN符号と相関処理することによって、順次、各出線ごとの反射応答を得る。
 なお、複数の光線路系からの反射光は系毎のBIDIモジュールの受光回路でそれぞれ受光して加算するが、時分割多重化されているため、時間的には系毎にずれており、ある時間で見ると、ただ1系統の反射光しか受光されないので、アナログ加算することで不都合は発生しない。
 そして、DR信号処理部123においては、各出線ごとに前述したDRAによって、故障切分けを行なうことにより、故障発生時刻を特定し、故障発生の支線を特定し、故障発生位置を特定し、さらに損失値を特定することができる。なお、前記DR信号処理部123は、特許請求の範囲に記載された減分応答監視手段に対応している。
Next, as shown in FIG. 5, a plurality of one optical line system (see FIGS. 2 and 4) composed of one outgoing line, a branching device, and eight branched branches L1 to L8 is provided. The case of the included optical subscriber line configuration will be described.
This is called PDS (passive double star), and as shown in the figure, it goes out of the station with a plurality of (for example, four) optical fibers 21 to 24 and the optical splitters (SPL Splitter) It is usual to be branched into eight by 31-34. Also in this case, it is assumed that the subscriber line beyond SPL has a distance difference of a predetermined value or more, that is, the distance resolution L of PNCR / OTDR (OTDR based on PNCR method) or more. If there is no difference in distance, a dummy fiber is inserted to give a difference in distance.
In this case, in the optical path monitoring apparatus 12, a failure occurs in one optical path system selected and switched while sequentially selecting and switching the plurality of optical path systems as in the description with reference to FIGS. The branch lines of the above are identified, and further, the fault occurrence position and the loss value are identified.
As described above, the selective switching of the plurality of optical line systems is a method of multiplexing a plurality of outgoing lines in time division in one line monitoring system, and as shown in the figure, a BIDI module for each outgoing line (Bi-directional This is performed by a (bi-directional light transmission circuit and light reception circuit) and digital circuits such as a timing generation unit.
At this time, the light transmitting circuit of each of the BIDI modules 161 to 164 is driven by the same PN code output from the PN code generator 1212, and the switching timing of each of the BIDI modules 161 to 164 is output from the timing generator 122 This is performed by sequentially enabling the light transmission circuit of each BIDI module for each fixed integer multiple frame of the PN code by the timing signals φ1 to φ4 (see FIG. 6).
At the time of light reception, the reflected light reception output for each outgoing line 21 to 24 is analog-added by the analog addition unit 124, A / D converted by the A / D conversion unit 1213, and then correlated with the PN code by the correlation processing unit 1211. By processing, the reflection response for each outgoing line is obtained sequentially.
Although the reflected light from the multiple optical line systems is received and added by the light receiving circuit of the BIDI module for each system, it is time-division multiplexed, so it is shifted temporally for each system, In terms of time, since only one system of reflected light is received, no problem occurs in analog addition.
Then, in the DR signal processing unit 123, the fault occurrence time is identified by performing fault isolation by the above-mentioned DRA for each outgoing line, the fault occurrence branch is identified, and the fault occurrence position is identified, Further, the loss value can be identified. The DR signal processing unit 123 corresponds to the decrement response monitoring means described in the claims.
 次に、図2(b)に示したようなトポロジーを持つ挿入損失型の光センシング系の場合にも、
敷設された各支線を含む光路上の任意箇所において挿入損が発生した場合に、その発生時刻の特定と、その支線の特定と、特定された支線上の発生位置の特定と、発生した損失値を特定することができる。この場合はセンシングが目的であるから、用いる光源波長は1種類でよい。
Next, also in the case of the insertion loss type optical sensing system having the topology as shown in FIG.
When insertion loss occurs at any location on the optical path including each laid branch, identification of the occurrence time, identification of the branch, identification of the occurrence position on the identified branch, and loss value generated Can be identified. In this case, since the purpose is sensing, one kind of light source wavelength may be used.
 次に、本発明による作用効果を、以下のシミュレーション実験によって確認した。
シミュレーションの条件は図8に示した表の通りである。
ファイバの伝送損失はすべてレーリ散乱によるものとし、0.2dB/kmとした。
PONのトポロジーとしては、光端局からの出線を、4,000m地点で分岐器によって100~3,000m長の8本の加入者線に分岐した。加入者線長はランダム設定した。
光故障位置は、簡単のため加入者線の中央とし、イベントとしてはファイバ破断あるいは急曲による挿入損増を想定した。
PNCR/OTDRとしては、M系列符号のチップ速度を100MHzとした。よって距離分解能は1mである。
プローブ光の出力パワは5mW (p-p)とし、計測時間を10秒とした。
Next, the effects of the present invention were confirmed by the following simulation experiments.
The conditions of the simulation are as shown in the table shown in FIG.
The transmission loss of the fiber was all due to Rayleigh scattering, and was 0.2 dB / km.
In the PON topology, the outgoing line from the optical terminal is branched into eight 100- to 3000-m long subscriber lines at 4,000 m by a branching unit. The subscriber line length was set randomly.
The position of the optical failure is located at the center of the subscriber line for simplicity, and an event is assumed to be an insertion loss increase due to a fiber breakage or a sharp bend.
As PNCR / OTDR, the chip rate of the M-sequence code is 100 MHz. Therefore, the distance resolution is 1 m.
The output power of the probe light was 5 mW (pp), and the measurement time was 10 seconds.
 図9、10、11は、故障点の挿入損をそれぞれ20dB、3dB、1dBとしたときのシミュレーション結果である。
各図において(a)は線路系の故障前後の反射応答(破線は故障前、実は故障後、下部の線はノイズ)、(b)は両者の差より求まるDR応答である。
 このシミュレーション結果において、DRレベルの大きさは、与えた挿入損の大きさに対応して変化していることが示されている。
 以上のシミュレーションによって、反射応答波形の立ち下がりから故障発生の支線を特定でき、支反射応答波形の立ち上がり位置から支線上の故障発生位置を特定し、DRレベルの大きさから挿入損を求めることが可能であることが検証された。
9, 10 and 11 show simulation results when the insertion loss at the failure point is 20 dB, 3 dB and 1 dB, respectively.
In each figure, (a) is a reflection response before and after failure of the line system (broken line is before failure, actually after failure, lower line is noise), and (b) is DR response obtained from the difference between the two.
In this simulation result, it is shown that the magnitude of the DR level changes corresponding to the magnitude of the insertion loss given.
By the above simulation, it is possible to identify the branch line of failure occurrence from the fall of the reflection response waveform, identify the failure occurrence position on the branch line from the rise position of the support reflection response waveform, and obtain the insertion loss from the magnitude of the DR level It has been verified that it is possible.
1 電話局
11  光端局装置
12  光線路監視装置、OTDR
121  デジタルエンジン
1211 相関処理部
1212 PN符号発生部
1213  A/D変換部
122  タイミング発生部
123  DR信号処理部
124  アナログ加算部
13 LD、光源
14 PD、受光器
16 波長選択性カプラ
161~164  BIDIモジュール
2、21~24 出線
3、31~34 分岐器
L1~L8 支線
ONU1~ONU8 光回線終端装置
1 Central office
11 Optical Terminal Equipment
12 Optical Line Monitoring Device, OTDR
121 digital engine
1211 Correlation processing unit
1212 PN code generator
1213 A / D converter
122 Timing generator
123 DR signal processing unit
124 Analog Adder
13 LD, light source
14 PD, light receiver
16 wavelength selective coupler
161-164 BIDI module 2, 21-24 Outgoing line 3, 31-34 Branching device L1-L8 Branch line
ONU1 to ONU8 Optical line termination equipment

Claims (8)

  1. 1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とからなる複数の経路が構成されてなる光線路系において、各経路の途中における損失特性変化をOTDRで監視する光線路監視方法であって、
    現在の反射インパルス応答波形と一定時間前からの反射インパルス応答波形を常時比較監視し、減分応答が検出されたとき、前記減分応答の波形の立下がり位置によって損失が発生した経路を特定し、前記減分応答の波形の立ち上がり位置によって損失が発生した箇所を特定することを特徴とする光線路監視方法。
    The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring method of monitoring a change in loss characteristics in the middle of each path by an OTDR in an optical line system including a plurality of paths consisting of an optical path by the optical fiber and the plurality of branch lines,
    The current reflected impulse response waveform and the reflected impulse response waveform from a certain time ago are constantly compared and monitored, and when a decremental response is detected, the path where the loss occurred is identified according to the falling position of the waveform of the decremental response. An optical path monitoring method characterized in that a point where a loss occurs is identified by a rising position of a waveform of the decremental response.
  2. 前記減分応答が検出された時点に基づいて前記損失が発生した時刻を特定する処理か、もしくは、
    前記減分応答波形のレベルに基づいて挿入損を求めて前記損失発生の内容を特定する処理か、
    の少なくとも何れか一つの処理を行うことを特徴とする請求項1に記載の光線路監視方法。
    Processing for identifying the time when the loss occurred based on the time when the decremental response is detected, or
    A process of determining an insertion loss based on the level of the decrement response waveform and specifying the content of the occurrence of the loss,
    The optical path monitoring method according to claim 1, wherein at least one process is performed.
  3. 前記光線路系が正常な時にあらかじめ取得した正常時の反射インパルス応答波形に基づいて、各支線のレーリ後方散乱光レベルの分布と、各支線の終端位置に対応した終端位置情報とを含んだ支線終端マップを得ておき、
    前記損失が発生した支線として特定する際には、
    前記減分応答波形の立下り位置を前記支線終端マップと対比させ、前記立ち下がり位置と一致する終端位置情報を含んだ支線を、前記損失が発生した支線として特定し、
    前記損失が発生した支線上の位置として特定する際には、
    前記減分応答波形の立ち上がり位置を、前記特定した支線の支線終端マップと対比させ、前記立ち上がり位置に対応した位置を、前記損失が発生した支線上の位置として特定し、
    前記損失発生の内容を特定する際には、
    前記減分応答の減分レベルと前記支線終端マップにおけるレーリ後方散乱光レベル分布との比較によって挿入損失値を特定することを特徴とする請求項2に記載の光線路監視方法。
    A branch line including a distribution of Rayleigh backscattered light levels of each branch line and termination position information corresponding to the termination position of each branch line based on a normal reflection impulse response waveform acquired in advance when the optical line system is normal Get the termination map,
    In identifying the branch line where the loss occurred,
    The fall position of the decrement response waveform is compared with the branch line end map, and a branch line including end position information coincident with the fall position is identified as the branch line where the loss has occurred;
    When specifying the position on the branch line where the loss occurred,
    The rising position of the decrement response waveform is compared with the branch line end map of the specified branch line, and the position corresponding to the rising position is specified as the position on the branch line where the loss has occurred;
    When identifying the content of the loss occurrence,
    3. The method according to claim 2, wherein the insertion loss value is specified by comparing the decrement level of the decrement response with the Rayleigh backscattered light level distribution in the branch line end map.
  4. 前記各経路の途中における損失特性変化を監視するOTDRとしては、
    擬似ランダム符号で変調された光を前記光線路系へ出射し、前記光線路系からの反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴とする請求項1に記載の光線路監視方法。
    As an OTDR that monitors loss characteristic change in the middle of each route,
    A digital system according to a pseudo random code correlation system, which emits light modulated by a pseudo random code to the optical line system and obtains a reflected impulse response waveform by correlation processing between reflected light from the optical line system and the pseudo random code. The optical path monitoring method according to claim 1, wherein OTDR is used.
  5. 1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とから構成されてなる光線路系を複数含んだ光伝送システムにおける複数の光線路系を対象にした時分割多重の光線路監視方法であって、
    前記複数の光線路系の内の何れか1つの光線路系を順次選択し、
    擬似ランダム符号で変調された光は、前記選択した光線路系に対して出射し、
    前記光線路系からの反射光は受光して加算し、
    該加算出力と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴とする請求項4に記載の光線路監視方法。
    The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring method for time division multiplexing for a plurality of optical line systems in an optical transmission system including a plurality of optical line systems comprising an optical path by the optical fiber and the plurality of branch lines,
    One of the plurality of optical line systems is sequentially selected;
    The light modulated by the pseudo random code is emitted to the selected optical path system,
    The reflected light from the optical line system is received and added,
    5. The optical path monitoring method according to claim 4, wherein a digital OTDR based on a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlating the addition output with the pseudo random code.
  6. 前記前記1本の光ファイバによる光路には、光通信手段から出力された通信光と、前記通信光とは異なる波長の光を擬似ランダム符号で変調した監視光とを、波長分割多重させて出射し、
    前記光線路系から、波長選択性カプラによって前記監視光に基づいた反射光を分離して受光し、
    受光した反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴とする請求項4に記載の光線路監視方法。
    In the optical path by the one optical fiber, the communication light output from the optical communication means and the supervisory light obtained by modulating the light of the wavelength different from the communication light with the pseudo random code are wavelength division multiplexed and emitted And
    A reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler,
    5. The optical path monitoring method according to claim 4, wherein a digital OTDR based on a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlating the received reflected light with the pseudo random code.
  7. 前記1本の光ファイバによる光路には擬似ランダム符号で変調した監視光を出射し、
    前記光線路系から、波長選択性カプラによって前記監視光に基づいた反射光を分離して受光し、
    受光した反射光と前記擬似ランダム符号との相関処理によって反射インパルス応答波形を得る擬似ランダム符号相関方式によるデジタル式のOTDRを用いることを特徴とする請求項4に記載の光線路監視方法。
    The monitoring light modulated by the pseudo random code is emitted to the optical path by the one optical fiber,
    A reflected light based on the monitoring light is separated and received from the optical line system by a wavelength selective coupler,
    5. The optical path monitoring method according to claim 4, wherein a digital OTDR based on a pseudo random code correlation system is used to obtain a reflected impulse response waveform by correlating the received reflected light with the pseudo random code.
  8. 1本の光ファイバによる光路を、受動的な光分岐手段により複数の支線に分岐させ、前記複数の支線は、用いるOTDRの距離分解能以上の距離差をもつ光ファイバで構成して、前記1本の光ファイバによる光路と前記複数の支線とからなる複数の経路が構成されてなる光線路系において、各経路の途中における損失特性変化をOTDRで監視するために用いる光線路監視システムであって、
    現在の反射インパルス応答波形と一定時間前からの反射インパルス応答波形を常時比較監視して、減分応答が検出されたとき、前記減分応答の波形の立下がり位置と、前記減分応答の波形の立ち上がり位置に関する情報を出力する減分応答監視手段を備えていることを特徴とする光線路監視システム。
    The optical path by one optical fiber is branched into a plurality of branch lines by passive optical branching means, and the plurality of branch lines are constituted by an optical fiber having a distance difference equal to or greater than the distance resolution of the OTDR used. An optical line monitoring system is used in an optical line system in which a plurality of paths consisting of an optical path by the optical fiber and the plurality of branch lines are configured, and used in OTDR to monitor a change in loss characteristics in the middle of each path.
    The current reflection impulse response waveform and the reflection impulse response waveform from a certain time ago are constantly compared and monitored, and when the decrement response is detected, the falling position of the waveform of the decrement response and the waveform of the decrement response An optical line monitoring system comprising: decremental response monitoring means for outputting information on a rising position of the light path.
PCT/JP2013/065937 2012-06-28 2013-06-10 Optical path monitoring method and optical path monitoring system WO2014002741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012145553A JP2014011554A (en) 2012-06-28 2012-06-28 Optical line monitoring method and optical line monitoring system
JP2012-145553 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002741A1 true WO2014002741A1 (en) 2014-01-03

Family

ID=49782906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065937 WO2014002741A1 (en) 2012-06-28 2013-06-10 Optical path monitoring method and optical path monitoring system

Country Status (2)

Country Link
JP (1) JP2014011554A (en)
WO (1) WO2014002741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187349A (en) * 2020-10-15 2021-01-05 上海欣诺通信技术股份有限公司 Optical time domain reflection-based optical fiber data identification method and storage medium
CN112601945A (en) * 2018-08-30 2021-04-02 日本电气株式会社 Optical time domain reflectometer, method for testing optical transmission line, and system for testing optical transmission line
CN112601946A (en) * 2018-08-30 2021-04-02 日本电气株式会社 Optical time domain reflectometer, method of testing optical transmission line, and test system of optical transmission line

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213907B1 (en) * 2012-11-20 2021-02-09 메더리스 다이어비티즈, 엘엘씨 Improved peptide pharmaceuticals for insulin resistance
KR101598386B1 (en) * 2014-07-10 2016-03-02 경북대학교 산학협력단 Apparatus for Monitoring Multi-Channel Fiber Line
US10509439B2 (en) 2014-09-02 2019-12-17 Samsung Electronics Co., Ltd. Curved display, display case, and electronic device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062172A (en) * 2003-07-28 2005-03-10 Anritsu Corp Method for searching trouble in optical path
JP2006042063A (en) * 2004-07-28 2006-02-09 Sumitomo Electric Ind Ltd Branched optical line monitoring system and method
WO2011007298A1 (en) * 2009-07-15 2011-01-20 Pmc Sierra Israel Ltd. Passive optical network (pon) in-band optical time domain reflectometer (otdr)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062172A (en) * 2003-07-28 2005-03-10 Anritsu Corp Method for searching trouble in optical path
JP2006042063A (en) * 2004-07-28 2006-02-09 Sumitomo Electric Ind Ltd Branched optical line monitoring system and method
WO2011007298A1 (en) * 2009-07-15 2011-01-20 Pmc Sierra Israel Ltd. Passive optical network (pon) in-band optical time domain reflectometer (otdr)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEIICHI ONODA ET AL.: "Detection of Rayleigh Back Scattering by Pseudorandom Noise code Correlation Reflectometry", 2006 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI, C-5-12, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, March 2006 (2006-03-01), pages 12 *
SEIICHI ONODA ET AL.: "Proposal of Delayed Transmission/Reflection Ratiometric Reflectometry", IEICE TECHNICAL REPORT, OFT2008 -24, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, August 2008 (2008-08-01), pages 39 - 44 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601945A (en) * 2018-08-30 2021-04-02 日本电气株式会社 Optical time domain reflectometer, method for testing optical transmission line, and system for testing optical transmission line
CN112601946A (en) * 2018-08-30 2021-04-02 日本电气株式会社 Optical time domain reflectometer, method of testing optical transmission line, and test system of optical transmission line
JPWO2020044661A1 (en) * 2018-08-30 2021-08-26 日本電気株式会社 Optical pulse tester, optical transmission line test method and optical transmission line test system
CN112601945B (en) * 2018-08-30 2022-10-28 日本电气株式会社 Optical time domain reflectometer, method for testing optical transmission line, and system for testing optical transmission line
CN112187349A (en) * 2020-10-15 2021-01-05 上海欣诺通信技术股份有限公司 Optical time domain reflection-based optical fiber data identification method and storage medium

Also Published As

Publication number Publication date
JP2014011554A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
KR100687710B1 (en) Method and apparatus for monitering optical fiber of passive optical network system
Rad et al. Passive optical network monitoring: challenges and requirements
CN104202084B (en) A kind of device and method monitoring TDM optical network link failure
Esmail et al. Physical layer monitoring techniques for TDM-passive optical networks: A survey
EP1098458B1 (en) An apparatus and a method for locating a fault of a transmission line
WO2014002741A1 (en) Optical path monitoring method and optical path monitoring system
EP2337240B1 (en) Multichannel WDM-PON module with integrated OTDR function
EP2726837B1 (en) Device, remote node and methods for pon supervision
WO2008116309A1 (en) Method and system for testing for defects in a multipath optical network
EP2847896A1 (en) Monitoring of a pon
JP2016524396A (en) Optical path processing method and apparatus
CN102104421B (en) Branched optical fiber failure detection method and device for optical network, and optical network
KR20110061254A (en) Detecting apparatus and method for optical line in passive optical network system
Ehrhardt et al. PON measurements and monitoring solutions for FTTH networks during deployment and operation
CN115967445B (en) Method, equipment and system for generating optical network topology
JP2011069721A (en) Splitter module, detection method for remaining optical connector using the same, detection method of number of output ports, and optical transmission loss measuring system
Cen et al. Advanced fault-monitoring scheme for ring-based long-reach optical access networks
JP5907907B2 (en) Optical line characteristic analyzer and analysis method thereof
Ab-Rahman et al. The overview of fiber fault localization technology in TDM-PON network
KR101053057B1 (en) In-service monitoring method and apparatus for optical transmission system
Liu et al. Fault localization in passive optical networks using OTDR trace correlation analysis
CN105743568B (en) Optical fiber link detection method and device in PON system
CN103297127A (en) Optical network unit (ONU) optical module
Gaede et al. Overview of Optical Monitoring in Next Generation Optical Access Networks
Temporão et al. Feasibility of centralized PON monitoring using PON-tuned OTDR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810865

Country of ref document: EP

Kind code of ref document: A1