WO2014002591A1 - Ultraviolet detection device and electronic apparatus - Google Patents

Ultraviolet detection device and electronic apparatus Download PDF

Info

Publication number
WO2014002591A1
WO2014002591A1 PCT/JP2013/061801 JP2013061801W WO2014002591A1 WO 2014002591 A1 WO2014002591 A1 WO 2014002591A1 JP 2013061801 W JP2013061801 W JP 2013061801W WO 2014002591 A1 WO2014002591 A1 WO 2014002591A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
ultraviolet
detection sensor
amount
light
Prior art date
Application number
PCT/JP2013/061801
Other languages
French (fr)
Japanese (ja)
Inventor
大西 雅也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014002591A1 publication Critical patent/WO2014002591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs

Definitions

  • the present invention relates to an ultraviolet detection device and an electronic device equipped with the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-278904
  • This ultraviolet ray detection device includes a color change display body containing an organic photochromic substance, and a detector visually determines a color change corresponding to the ultraviolet ray amount of the color change display body to obtain an ultraviolet ray amount.
  • the above-described ultraviolet detection device has a problem in that the amount of ultraviolet rays cannot be accurately obtained as an electrical signal because the color change corresponding to the amount of ultraviolet rays of the color change display body is visually determined.
  • UV (ultraviolet) sensors using GaAsP photodiodes or GaN Schottky diodes are commercially available as ultraviolet detectors that obtain the amount of ultraviolet rays as an electrical signal.
  • This UV sensor can obtain an electrical signal according to the amount of ultraviolet rays, and can obtain ultraviolet information with higher accuracy than visual color determination.
  • the UV sensor has a problem that it is expensive because it requires a GaAsP photodiode or a GaN Schottky diode.
  • this UV sensor when this UV sensor is used for detecting the amount of ultraviolet rays, it is necessary to mount expensive non-silicon-based electronic components such as GaAsP photodiodes, which can be adopted cost-effectively. There is a problem that you can not.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-243252
  • This ultraviolet ray detection device is provided with a light control lens whose discoloration density changes according to the amount of received ultraviolet light in the housing, and a light source that irradiates a side surface of the light control lens with a certain amount of light in the housing; A light receiving element that receives light from a light source that has passed through the light control lens is disposed. Then, the color change density of the light control lens according to the amount of ultraviolet light is detected by the change in the amount of light received by the light receiving element, and an electric signal representing the amount of ultraviolet light is obtained.
  • an object of the present invention is to obtain an electrical signal that accurately represents the amount of ultraviolet rays, and does not require a light emitting element for a light source with a constant light amount, and has a small mounting area and is inexpensive.
  • An object of the present invention is to provide a detection device and an electronic apparatus including the same.
  • the ultraviolet detection device of the present invention is: A color changing layer that changes color according to the amount of ultraviolet rays received from the outside; A first color detection sensor for detecting the color of the discoloration layer, The presence or absence of ultraviolet rays or the amount of ultraviolet rays is detected based on the hue of the color changing layer detected by the first color detection sensor.
  • the discoloration layer changes color according to the amount of external ultraviolet rays, and the color of the discoloration change layer is detected by the first color detection sensor. It is accurately detected by an electrical signal from one color detection sensor.
  • this ultraviolet ray detection device does not directly detect ultraviolet rays, but detects the amount of ultraviolet rays by detecting the hue of the discoloration layer changed in accordance with the amount of ultraviolet rays with the first color detection sensor. Therefore, the first color detection sensor can be constituted by an inexpensive silicon-based general-purpose semiconductor element without requiring an expensive non-silicon-based diode such as a GaAsP photodiode or a GaN Schottky diode. The detection device itself can be manufactured at a low cost.
  • the first color detection sensor detects the hue of the discolored layer that has changed color in accordance with the amount of ultraviolet ray from the outside, detects the ultraviolet ray amount based on that hue, Since the amount is not detected, a light source such as a light emitting diode having a constant light amount is not required separately, and the number of parts is reduced accordingly. Therefore, this ultraviolet ray detection device is inexpensive because it has a small number of parts, and has the advantage of a small mounting area when mounted on an electronic device.
  • the function of detecting and displaying the amount of ultraviolet rays is not an absolutely necessary function in many cases, so it is compact without increasing the number of electronic components of the portable electronic device.
  • the present invention meets that need.
  • the first color detection sensor may detect the hue of the color changing layer by the transmitted light from the color changing layer, or may detect the color of the color changing layer by the reflected light from the color changing layer.
  • the discoloration layer transmits external visible light
  • the first color detection sensor detects the color of the transmitted light of the discoloration layer
  • the presence or absence of ultraviolet rays depending on the color of the transmitted light according to the color of the discoloration layer Detects the amount of ultraviolet light.
  • the color of the external visible light that has passed through the discoloration layer is detected by the first color detection sensor, and the presence or absence of ultraviolet rays or the amount of ultraviolet rays is detected.
  • the hue of the color changing layer is detected based on the color of the external visible light transmitted through the color changing layer, it is possible to accurately detect the color of the color changing layer and accurately detect the presence or the amount of ultraviolet light. .
  • the first color detection sensor is disposed at a position for receiving the external visible light transmitted through the color change layer, so that the first color detection sensor is changed in color by ultraviolet rays. Therefore, the discoloration layer having a function of shielding ultraviolet rays protects from ultraviolet rays from the outside and prevents the damage.
  • a second color detection sensor for detecting the color of external visible light received from the outside;
  • the output value of the first color detection sensor corresponding to the hue of the discoloration layer is corrected by the output value of the second color detection sensor corresponding to the hue of external visible light.
  • the output value from the first color detection sensor corresponding to the color of the discoloration layer is corrected by the output value from the second color detection sensor corresponding to the color of the external visible light. Therefore, the influence of the change in the hue of the external visible light on the hue of the color changing layer can be removed, and the change in the hue specific to the color changing layer can be accurately detected, and the presence or absence of ultraviolet rays or the amount of ultraviolet rays can be obtained as electronic information with high accuracy it can.
  • the output value of the second color detection sensor may be subtracted from the output value of the first color detection sensor, or the second color detection sensor. This is performed by subtracting the output value by a certain coefficient.
  • the first and second color detection sensors are RGB color sensors that detect the amount of red light, green light, and blue light
  • the output values of red (R), green (G), and blue (B) output from the first color detection sensor are used as red (R), green (G), and blue output from the second color detection sensor. Correction is performed based on the output value of (B).
  • the first and second color detection sensors are RGB color sensors
  • general-purpose products can be used, and they are simple and inexpensive, and red (R), green (G), blue ( The output value of B) can be corrected, and the hue can be accurately detected.
  • illuminance detection means for detecting the illuminance of external visible light
  • the amount of ultraviolet rays based on the variation of the output value of the first color detection sensor from the initial value of the first color detection sensor when the illuminance detected by the illuminance detection means is lower than a predetermined value. Correct the calculation of.
  • the initial value when the first color detection sensor has no ultraviolet light (for example, a value at the time of factory shipment) and the illuminance of the external visible light detected by the illuminance detection means are predetermined values.
  • the calculation of the amount of ultraviolet rays is corrected based on the amount of fluctuation from the output value of the first color detection sensor when the value is lower than the first value.
  • the environment is low in ultraviolet rays.
  • the calculation of the amount of ultraviolet rays is corrected based on the variation from the initial value of the output value of the first color detection sensor when the illuminance of external visible light is lower than a predetermined value. Therefore, even if the discoloration layer deteriorates due to secular change or the like, the influence can be compensated.
  • the absolute amount of ultraviolet light can be detected with high accuracy.
  • the illuminance detection means may be provided integrally with the first color detection sensor or may be provided separately. Or you may share the illumination intensity sensor which the existing portable electronic device has as this illumination intensity detection means.
  • one embodiment is With a housing, A first color detection sensor is provided in the enclosure, The discoloration layer partitions the inside and outside of the housing to protect the first color detection sensor from ultraviolet rays.
  • the first color detection sensor is provided in the casing because the color changing layer partitions the inside and outside of the casing and detects the color of the color changing layer.
  • the housing and the discolored layer are protected from ultraviolet rays and are prevented from being damaged.
  • the first and second color detection sensors have red, green, and blue filters, respectively.
  • the red, green and blue filters are formed on the same silicon substrate and arranged adjacent to each other.
  • the red, green and blue filters of the first and second color detection sensors are formed on the same silicon substrate and arranged adjacent to each other.
  • the color detection sensors of the first color detection sensor are in the same state and receive the same ultraviolet rays, visible rays, infrared rays, etc., so the output value of the first color detection sensor for detecting the hue of the discoloration layer is used as the output value of the second color detection sensor.
  • the output value can be corrected with high accuracy.
  • the electronic device of the present invention is The above-described ultraviolet detection device is provided.
  • this electronic device is equipped with the above-described ultraviolet detection device, it can detect the amount of ultraviolet rays accurately, and is small and inexpensive.
  • the ultraviolet detection device of the present invention does not directly detect the amount of ultraviolet rays, but detects the amount of ultraviolet rays by detecting the hue of the color changing layer that changes color according to the amount of ultraviolet rays with the first color detection sensor.
  • the amount of ultraviolet rays can be accurately obtained as an electric signal, and an expensive non-silicon diode such as a GaAsP photodiode or a GaN Schottky diode is not required, and the first color detection sensor is a silicon-based inexpensive. It can be manufactured with a semiconductor element and has the advantage of being inexpensive.
  • the ultraviolet ray detection device of the present invention detects the hue of the discoloration layer changed in color according to the amount of ultraviolet ray from the outside by the first color detection sensor, detects the amount of ultraviolet ray by the hue, and transmits the transmitted light amount.
  • the amount of ultraviolet rays is not detected by the light source, so there is no need for a separate light source such as a light-emitting diode, a small number of parts, low cost, and a small mounting area on the electronic device. Have.
  • the electronic apparatus of the present invention includes the above-described ultraviolet detection device, it has the advantages of being able to accurately detect the amount of ultraviolet rays and being small and inexpensive.
  • FIGS. 3A and 3B are diagrams showing a state in which there is no external ultraviolet light and a state in which external ultraviolet light is present in the ultraviolet detection device.
  • 4A and 4B are diagrams illustrating output characteristics of the first color detection sensor corresponding to the states of FIGS. 3A and 3B. It is a schematic diagram which shows the state which has no external ultraviolet-ray of the ultraviolet-ray detection apparatus of 2nd Embodiment of this invention.
  • FIGS. 6A and 6B are diagrams showing output characteristics of the first and second color detection sensors of the ultraviolet ray detection apparatus in a state where there is no external ultraviolet ray. It is a schematic diagram which shows the state which has the external ultraviolet-ray of the ultraviolet-ray detection apparatus of 2nd Embodiment of this invention.
  • FIGS. 8A and 8B are diagrams showing output characteristics of the first and second color detection sensors of the ultraviolet detection device in the presence of the external ultraviolet rays.
  • It is a perspective view of the portable information terminal of 4th Embodiment of this invention.
  • the ultraviolet detection device includes a color change layer 101 that changes color according to the amount of ultraviolet light, and a first color detection sensor 102 that detects the hue of the color change layer 101.
  • the first color detection sensor 102 detects the hue of the transmitted light 105 transmitted through the color changing layer 101.
  • the discoloration layer 101 is applied to a transparent resin, glass, transparent film, or the like, or mixed with a transparent resin, glass, transparent film, or the like, by applying a photochromic material that changes color according to the amount of ultraviolet light when irradiated with ultraviolet light. Or formed.
  • the first color detection sensor 102 is an RGB color sensor that detects the amount of red (R) light, green (G) light, and blue (B) light, and is composed of a general-purpose silicon IC (integrated circuit). Although not shown, the first color detection sensor 102 has red, green, and blue filters and photodiodes, and receives light reception signals from the respective photodiodes according to the amounts of received light of red, green, and blue. (Photocurrent) is output.
  • FIG. 2 shows an output (light quantity) with respect to the wavelength of the light received by the first color detection sensor 102.
  • the wavelength distribution of R (red), G (green), and B (blue) of the amount of input light to the first color detection sensor 102 is uniform.
  • the first color Outputs of R, G, and B of the detection sensor 102 are equalized to have waveforms indicated by R, G, and B in FIG.
  • the areas of the waveforms indicated by R, G, and B in FIG. 2 are obtained as output values that represent the received light amounts of R, G, and B, that is, electrical signals that represent the color of the discoloration layer 101.
  • the ultraviolet detection device of the first embodiment is mounted on a portable electronic device such as a mobile phone, a portable information terminal, or a game machine.
  • external light such as sunlight includes ultraviolet light, visible light, and infrared light, but in FIG. 1, the infrared light is omitted and only the external ultraviolet light 103 and the external visible light 104 are shown.
  • the color change layer 101 changes color according to the amount of the external ultraviolet light 103, while the first color detection sensor 102 receives the transmitted light 105 from the color change layer 101 and the color of the color change layer 101 before the color change. And the color after the color change is detected. Then, the amount of external ultraviolet rays can be detected and confirmed by comparing the hue before and after the color change of the color change layer 101.
  • the output value of the first color detection sensor 102 representing the hue of the color changing layer 101 in the absence of the external ultraviolet light 103 is stored in advance in a memory (not shown) as an initial value, and then this memory Is compared with the output value of the first color detection sensor 102 representing the hue of the color-changing layer 101 in a state after the hue is changed by the irradiation with the external ultraviolet light 103 by a comparison unit (not shown).
  • a comparison unit not shown
  • FIG. 3A shows a state in which there is no external ultraviolet light and the color changing layer 101 is red
  • FIG. 3B shows that there is an external ultraviolet light 103 and the color changing layer 101 is green.
  • 4A and 4B are diagrams showing output waveforms of the first color detection sensor 102 corresponding to the states of FIGS. 3A and 3B.
  • the color changing layer 101 becomes green, and the transmitted light 105 from the color changing layer 101 is shown in FIG. 4B.
  • the output values of the first color detection sensor 102 are as shown in FIGS. 4A and 4B, and the red component (R) and the green component (B) are respectively shown in FIG.
  • the presence or absence of ultraviolet rays can be confirmed and the amount of ultraviolet rays can be calculated.
  • the first color detection sensor 102 detects the hue of the discoloration layer 101 that changes color by ultraviolet rays to obtain the presence or absence of ultraviolet rays or the amount of ultraviolet rays.
  • an electronic component such as a light emitting element as a light source, and there is an advantage that it is small, compact and inexpensive.
  • the ultraviolet detection device of the first embodiment is mounted on an electronic device such as a mobile phone or a portable information terminal, there is an advantage that the mounting area is small.
  • the ultraviolet detection device of the first embodiment does not directly measure the amount of ultraviolet rays, but detects the hue of the discoloration layer 101 that changes color according to the amount of ultraviolet rays by the first color detection sensor 102.
  • An inexpensive general-purpose silicon photodiode can be used for the first color detection sensor 102, which has the advantage of being inexpensive.
  • the ultraviolet detection device of the first embodiment has a problem that the amount of ultraviolet rays can be stably measured only in the daytime when the daytime ultraviolet rays are strong, and the environment during measurement is limited. is there.
  • the ultraviolet detector according to the second embodiment is capable of accurately detecting the amount of ultraviolet rays without any restriction in the environment during measurement.
  • FIG. 5 is a diagram showing a state in which there is no external ultraviolet rays in the ultraviolet detection device of the second embodiment
  • FIG. 7 is a diagram showing a state in which there is external ultraviolet rays in the ultraviolet detection device of the second embodiment.
  • the ultraviolet detection device of the second embodiment includes a color changing layer 401 that changes color from red to green according to an increase in the amount of external ultraviolet rays 603, and external visible light 404 that is incident from the outside.
  • a visible light transmitting layer 501 that transmits 604; a first color detection sensor 102 that detects the color of the color changing layer 401 through transmitted light 405 and 605; and a transmitted light 505 that transmits the visible light transmitting layer 501. , 705, and a second color detection sensor 502 for detecting the hue.
  • the visible light transmission layer 501 does not change color depending on ultraviolet rays, and transmits the external visible light 404 and 604 almost as it is with a slight attenuation.
  • the discoloration layer 401 and the visible light transmission layer 501 are made of, for example, a photochromic material that changes color from red to green in accordance with an increase in the amount of ultraviolet rays in a portion corresponding to the discoloration layer 401 in the same glass layer or transparent resin layer. By coating and forming, they are located on substantially the same plane and are integrally formed.
  • the discoloration layer 401 and the visible light transmission layer 501 may be formed separately and adjacent to each other. Further, the discoloration layer 401 and the visible light transmission layer 501 are not limited to the structure and formation method described above, and may be anything.
  • the first and second color detection sensors 102 and 502 are manufactured from general-purpose silicon ICs (integrated circuits).
  • the first color detection sensor 102 is for detecting the hue of the color changing layer 101 that changes from red to green according to the amount of ultraviolet rays
  • the second color detection sensor 502 is an external device. Is used for detecting the hue of the external light emitted from the first and second colors and correcting the output value of the first color detection sensor 102 based on the hue of the external light, as will be described later.
  • this ultraviolet ray detection apparatus has a microcomputer 700 that receives output values from the first and second color detection sensors 102 and 502.
  • the microcomputer 700 includes a memory 701, a comparison unit 702, a change amount calculation unit 703, and an ultraviolet ray amount calculation unit 704.
  • the comparison unit 702, the change amount calculation unit 703, and the ultraviolet ray amount calculation unit 704 are configured by software by performing comparison and calculation as described later.
  • the second color detection sensor 502 receives the transmitted light 505 having a large amount of red component derived from the external visible light 404 having a relatively large amount of red component from the visible light transmitting layer 501 and outputs the output shown in FIG. As shown in the waveform, the output values of the red component R502, the green component G502, and the blue component B502 are output. As can be seen from FIG. 6B, the output of the second color detection sensor 502 has a large amount of red component R502 and a small amount of green component G502 and blue component B502 because the external visible light 404 has a large amount of red component.
  • the first color detection sensor 102 receives the transmitted light 405 from the red color changing layer 401 and, as shown in the output waveform of FIG. 6A, the red component R102, the green component G102, and the blue component B102. Output the output value of. Since the color changing layer 401 is not receiving ultraviolet rays and is red, the red color changing layer 401 attenuates the light of the green component and the blue component, and the output waveforms shown in FIGS.
  • the green component G102 and the blue component B102 of the output of the first color detection sensor 102 are lower than the non-attenuated green component G502 and the blue component B502 of the output of the second color detection sensor 502.
  • the red component light of the external visible light 404 can pass through the red color changing layer 401, the red component in the transmitted light 405 from the red color changing layer 401 is less attenuated and the first color detection sensor 102.
  • the output value of the red color component R102 is substantially equal to the output value of the red color component R502 of the second color detection sensor 502. That is, as shown in FIGS.
  • the red component R102R ⁇ the red component R502. Therefore, by comparing the red components R102 and R502 of the first color detection sensor 102 and the second color detection sensor 502, it is possible to detect the presence or amount of ultraviolet rays.
  • the microcomputer 700 determines the presence or absence of ultraviolet rays or calculates the amount as follows. Here, for convenience of explanation and simplicity, it is assumed that the external visible light 404, 604 has a large amount of red component.
  • the comparison means 702 of the microcomputer 700 determines whether or not the output value of the red component R502 of the second color detection sensor 502 is larger than a predetermined value, and the external visible light 404, 604 is determined. Confirm that there are many red components.
  • the comparison unit 702 compares the output value of the red component of the first color detection sensor 102 with the output value of the red component of the second color detection sensor 502, and FIG. ), If it is equal, that is, if it is determined that the difference between the two output values is smaller than a predetermined value, an electrical signal indicating that there is no ultraviolet light is output.
  • R (red) of the first and second color detection sensors 102 and 502 depending on the color of the many components, The same determination can be made by selecting or appropriately combining the output components of G (green) and B (blue).
  • the comparison unit 702 compares the output value of the red component of the first color detection sensor 102 with the output value of the red component of the second color detection sensor 502, and FIG. If it is determined that there is a difference equal to or greater than a predetermined value that is not equal, an electrical signal indicating that there is ultraviolet light is output.
  • the output values of the red component of the first and second color detection sensors 102 and 502 are compared.
  • the red color component R102 of the first color detection sensor 102 decreases and the green color component G102 increases, while the color components of the second color detection sensor 502 become visible. Since the light transmission layer 501 is not discolored by ultraviolet rays, it does not matter whether ultraviolet rays are present.
  • the output values of the red component R102 and the green component G102 of the first color detection sensor 102 and the output values of the red component R502 and the green component G502 of the second color detection sensor 502 are compared twice, and the accuracy You may make it raise.
  • the change amount calculation means 703 causes the red color component change amount, which is the difference between the red color component R502 of the second color detection sensor 502 and the red color component R102 of the first color detection sensor 102, and the second color detection.
  • the red component R102 of the first color detection sensor 102 decreases. While the green component G102 increases, the component of each color of the output of the second color detection sensor 502 is not affected by the amount of the external ultraviolet ray 603 because the visible light transmission layer 501 is not changed by the ultraviolet ray, and the red component changes.
  • An equation or table (determined from experimental data) that associates the red component variation amount and the green component variation amount with the ultraviolet ray amount on a one-to-one basis is stored in the memory 701 in advance.
  • the ultraviolet ray amount calculating means 704 calculates the ultraviolet ray amount by the above formula or referring to a table based on the calculated red component change amount and green component change amount, and electronic information representing the ultraviolet ray amount. Is output.
  • the second color detection sensor 502 detects the hue of the external visible light 404 and 604 that passes through the visible light transmission layer 501, and the hue of the external visible light 404 and 604 and the hue of the color changing layer 401
  • the amount of ultraviolet rays can be accurately calculated without being affected by the hue of the external visible light 404 and 604 irradiated from the outside.
  • the discoloration layer 401 becomes green, the green component G102 of the output of the first color detection sensor 102 is large, and the red component R102. Decrease. If (green component G102 of the first color detection sensor 102) ⁇ (green component G502 of the second color detection sensor 502), it represents the maximum light receiving state of the ultraviolet rays in the discoloration layer 401.
  • the color changing layer 401 changes from red to green according to the increase in the amount of the external ultraviolet rays 603 has been described.
  • the color changing from one color to another color is performed using another color changing layer.
  • the same is possible.
  • the ultraviolet detection device includes the first color detection sensor 102 that detects the hue of the discoloration layer 401, and the second color detection sensor 502 that detects the hue of the external visible light 404 and 604. Therefore, the output value of the first color detection sensor 102 is corrected by the output value of the second color detection sensor 502, so that the color change is not affected by the change in the hue of the external incident light.
  • the amount of change in hue due to the ultraviolet rays unique to the layer 401 is calculated, and the amount of ultraviolet rays can be accurately obtained as electronic information.
  • the first color detection sensor 102 detects the hue of the discoloration layer 401 that changes color due to ultraviolet rays, there is no need to add an electronic component such as a light emitting element as a light source. Therefore, it has the advantage of being small, compact and inexpensive.
  • the ultraviolet detection device according to the second embodiment is mounted on an electronic device such as a mobile phone or a portable information terminal having a function for a health environment, there is an advantage that the mounting area is small.
  • the ultraviolet detection device does not directly measure the amount of ultraviolet rays, but detects the hue of the discoloration layer 401 that changes color according to the amount of ultraviolet rays by the first color detection sensor 102.
  • An inexpensive general-purpose silicon photodiode can be used for the first color detection sensor 102, which has the advantage of being inexpensive.
  • the visible light transmission layer 501 is provided to protect the second color detection sensor 502 from ultraviolet rays, but the visible light transmission layer 501 is not always necessary.
  • the ultraviolet detection device of the third embodiment includes a microcomputer 710 shown in FIG. 9, and the other configuration is the same as that of the second embodiment shown in FIGS. Therefore, about these other structures, FIGS. 5-8 is used and detailed description is abbreviate
  • the microcomputer 710 includes a memory 701, a comparison unit 702, a change amount calculation unit 703, an ultraviolet ray amount calculation unit 704, an illuminance detection unit 705, and a coefficient correction.
  • the configurations and functions of the memory 701, the comparison unit 702, the change amount calculation unit 703, and the ultraviolet ray amount calculation unit 704 are the same as those in the second embodiment, and the configurations and functions of the illuminance detection unit 705 and the coefficient correction unit 706 are the same. Only differs from the second embodiment.
  • the illuminance of the external visible light 404, 604 is calculated by the illuminance detection means 705, it is possible to determine whether the external illuminance is weak or strong.
  • offices, department stores, etc. are about 400 to 1000 lux, and the illuminance is about 100,000 lux in sunny daylight. From this, the range of the illuminance when it is necessary to check the amount of ultraviolet rays is limited (1000 lux or more 1 hour before the sunset), and if it is 300 lux or less, it can be determined that there is almost no ultraviolet rays.
  • the color of the color changing layer 401 when the illuminance calculated by the illuminance detecting means 705 is 300 lux or less is the color of the color changing layer 401 in the absence of ultraviolet rays.
  • the color of the discoloration layer 401 may be deteriorated due to secular change or the like, and the discoloration layer in which this color has deteriorated needs to be corrected in order to accurately detect the amount of ultraviolet rays.
  • the first color detection sensor 102 is caused to detect the hue of the discoloration layer 401 in a state where the illuminance is lower than a predetermined value and there is no ultraviolet ray.
  • the coefficient correction unit 706 outputs the output value of the first color detection sensor 102 representing the hue of the color changing layer 401 in the absence of ultraviolet light from the initial value representing the hue when the color changing layer 401 is not deteriorated.
  • the fluctuation amount is calculated, and the coefficient of the formula for calculating the ultraviolet ray amount of the change amount calculating means 703 is corrected so as to compensate for the fluctuation amount according to the magnitude of the fluctuation amount.
  • the ultraviolet ray amount detection device accurately detects the ultraviolet ray amount as electronic information without being affected by a state change such as deterioration of the discoloration layer even if the discoloration layer 401 deteriorates due to secular change or the like. Obtainable.
  • the absolute amount of ultraviolet rays can be detected with high accuracy.
  • correction may be made by adding or subtracting a constant term or using a different formula according to the magnitude of the above fluctuation.
  • FIG. 10 is a perspective view of a portable information terminal as an example of an electronic apparatus according to the fourth embodiment of the present invention.
  • the same components as those of the second embodiment shown in FIGS. 5 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This portable information terminal includes a casing 801 and a top panel 802, and first and second color detection sensors 102 and 502 are provided in the casing 801.
  • a portion that functions as a window of the top panel 802 that faces the first and second color detection sensors 102 and 502 is provided with a color changing layer 401 and a visible light transmitting layer 501.
  • the discoloration layer 401 faces the first color detection sensor 102 and partitions the inside and outside of the housing 801.
  • the color changing layer 401 changes color according to the amount of ultraviolet light of the external light 600, and the first color detection sensor 102 detects the color of the color changing layer 401 via the transmitted light 601.
  • the second color detection sensor 502 detects the hue of the external light 600 via the transmitted light 602 that has passed through the visible light transmission layer 501.
  • the casing 801 is made of a material that does not transmit ultraviolet rays, and the top panel 802 also does not transmit ultraviolet rays. Further, the discoloration layer 401 and the visible light transmission layer 501 also have a property of hardly transmitting ultraviolet rays.
  • the first and second color detection sensors 102 and 502 and other electronic components are shielded from ultraviolet rays and protected by the casing 801, the top panel 802, the color changing layer 401 and the visible light transmitting layer 501. Therefore, damage and failure are prevented.
  • FIG. 11 is a block diagram of an ultraviolet detection device according to a fifth embodiment of the present invention.
  • this ultraviolet ray detection device is provided with first and second color detection sensors 911 and 912 in proximity to each other on a silicon substrate 900.
  • the first color detection sensor 911 has a red, green, and blue filter R, G, and B, and is a first RGB sensor photodiode array that includes a photo diode that detects red light, green light, and blue light.
  • the second color detection sensor 912 has a red, green and blue filters R, G and B, and is a second RGB sensor comprising a photo dye auto for detecting red light, green light and blue light. This is a photodiode array.
  • a color changing layer 901 that changes color according to the amount of ultraviolet rays is provided.
  • the first and second color detection sensors (first and second RGB sensor photodiode arrays) 911 and 912 are arranged close to each other on one silicon substrate 900. Since both are placed in the same state, the accuracy of correction by the output value of the second color detection sensor 912 with respect to the output value of the first color detection sensor 911 is increased, and the accuracy of detection of the amount of ultraviolet light is increased. Yes.
  • photodiodes IR, IR for detecting infrared light are arranged in the vicinity of the first RGB sensor photodiode array 912, and infrared rays are arranged. A photocurrent generated by light is detected. Then, by removing the output value of the photodiode IR that detects infrared light from the output values of R, G, and B from the photo diode auto of the first and second RGB sensor photodiode arrays 911 and 912, ultraviolet rays are obtained. The amount can be detected with higher accuracy.
  • sunlight or the like contains many infrared components in addition to ultraviolet rays, and when a photodiode receives infrared rays, as shown in FIG. 11, carriers 950 generated by infrared rays also become photocurrents, and R, G , B output.
  • an infrared cut layer can be placed on the top panel of a portable information terminal, the influence of infrared rays is reduced because infrared rays rarely enter the first and second color detection sensors, but an infrared cut layer is placed. If it is not possible, or if the infrared cut layer does not have sufficient characteristics, infrared light enters the first and second color detection sensors, and an error occurs. If the first color detection sensor and the second color detection sensor described above are separated at a large distance from each other, the irradiation amount of infrared rays is different, so that the correction accuracy is lowered. .
  • the first color detection sensor 911 and the second color detection sensor 912 are adjacent to each other, and photodiodes IR and IR for infrared detection are provided, and the first and first color detection sensors 911 and 912 are provided.
  • the amount of ultraviolet rays is detected with higher accuracy without being affected by the infrared light. be able to.
  • the hue of the color changing layer 101 is detected by the transmitted lights 105 and 205 from the color changing layer.
  • the color of the color changing layer is detected by the reflected light from the color changing layer. You may make it do.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

An ultraviolet detection device comprises: a color change layer (401) which changes color according to the amount of ultraviolet light; a first color detection sensor (102) which detects the color of the color change layer (401); and a second color detection sensor (502) which detects the color of external visible light. By correcting an output value from the first color detection sensor (102) by an output value from the second color detection sensor (502), the amount of ultraviolet light can be accurately obtained as electronic information without being influenced by changes in the color of external incident light.

Description

紫外線検出装置および電子機器Ultraviolet detector and electronic device
 この発明は、紫外線検出装置およびそれを備えた電子機器に関する。 The present invention relates to an ultraviolet detection device and an electronic device equipped with the same.
 近年、健康環境に関する家電、電子機器の市場分野が広がりを見せており、中でも地球環境の変化も相まって、外出時などに太陽より受ける紫外線量についての関心が高まっている。紫外線量の強さを簡易に得る方法として、紫外線量に応じて変色する材料、その材料を備えた紫外線検出装置が提案されている。 In recent years, the market fields of home appliances and electronic devices related to the health environment have expanded, and in particular, due to changes in the global environment, there has been an increasing interest in the amount of ultraviolet rays received from the sun when going out. As a method for easily obtaining the intensity of the amount of ultraviolet light, a material that changes color according to the amount of ultraviolet light, and an ultraviolet detection device including the material have been proposed.
 従来、この種の紫外線検出装置としては、特許文献1(特開2007-278904号公報)に記載のものがある。この紫外線検出装置は、有機フォトクロミック物質を含む色変化表示体を備え、この色変化表示体の紫外線量に応じた色変化を、検出者が目視にて判断して、紫外線量を得るものである。 Conventionally, as this type of ultraviolet detection device, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 2007-278904). This ultraviolet ray detection device includes a color change display body containing an organic photochromic substance, and a detector visually determines a color change corresponding to the ultraviolet ray amount of the color change display body to obtain an ultraviolet ray amount. .
 しかしながら、上記紫外線検出装置では、色変化表示体の紫外線量に応じた色変化を目視で判断するため、紫外線量を正確に電気信号として得ることができないという問題がある。 However, the above-described ultraviolet detection device has a problem in that the amount of ultraviolet rays cannot be accurately obtained as an electrical signal because the color change corresponding to the amount of ultraviolet rays of the color change display body is visually determined.
 一方、紫外線量を電気的な信号として得る紫外線検出装置としては、GaAsPフォトダイオードまたはGaNショットキーダイオードを利用したUV(紫外線)センサーが市販されている。このUVセンサーは紫外線量に応じた電気信号を得ることが可能であり、目視による色判定よりも高い精度の紫外線情報が得られる。 On the other hand, UV (ultraviolet) sensors using GaAsP photodiodes or GaN Schottky diodes are commercially available as ultraviolet detectors that obtain the amount of ultraviolet rays as an electrical signal. This UV sensor can obtain an electrical signal according to the amount of ultraviolet rays, and can obtain ultraviolet information with higher accuracy than visual color determination.
 しかしながら、上記UVセンサーは、GaAsPフォトダイオードやGaNショットキーダイオードを必要とするため、高価であるという問題がある。特に、携帯電子機器において、紫外線量の検知のために、このUVセンサーを用いると、GaAsPフォトダイオード等の非シリコン系の高価な電子部品の搭載が必要になって、コスト的に採用することができないという問題がある。 However, the UV sensor has a problem that it is expensive because it requires a GaAsP photodiode or a GaN Schottky diode. In particular, in a portable electronic device, when this UV sensor is used for detecting the amount of ultraviolet rays, it is necessary to mount expensive non-silicon-based electronic components such as GaAsP photodiodes, which can be adopted cost-effectively. There is a problem that you can not.
 なお、汎用シリコンIC(集積回路)は、安価ではあるが、紫外線に対する感度が殆ど得られないため、高価であっても、上記GaAsPフォトダイオードやGaNショットキーダイオード等が必要とされる。 Note that although general-purpose silicon ICs (integrated circuits) are inexpensive, they can hardly obtain sensitivity to ultraviolet rays, so the GaAsP photodiodes, GaN Schottky diodes, and the like are required even if they are expensive.
 そこで、比較的安価な紫外線検出装置として、特許文献2(特開2010-243252号公報)に記載のものがある。この紫外線検出装置は、筐体に、受けた紫外線量に応じて変色濃度が変化する調光レンズを設け、上記筐体内に、この調光レンズの側面に一定光量の光を照射する光源と、この調光レンズを透過した光源からの光を受光する受光素子とを配置している。そして、紫外線量に応じた調光レンズの変色濃度を受光素子の受光量の変化によって検知して、紫外線量を表す電気信号を得るようにしている。 Therefore, as a relatively inexpensive ultraviolet detection device, there is one described in Patent Document 2 (Japanese Patent Laid-Open No. 2010-243252). This ultraviolet ray detection device is provided with a light control lens whose discoloration density changes according to the amount of received ultraviolet light in the housing, and a light source that irradiates a side surface of the light control lens with a certain amount of light in the housing; A light receiving element that receives light from a light source that has passed through the light control lens is disposed. Then, the color change density of the light control lens according to the amount of ultraviolet light is detected by the change in the amount of light received by the light receiving element, and an electric signal representing the amount of ultraviolet light is obtained.
 しかしながら、上記紫外線検出装置は、それを携帯電子機器等に搭載する場合、検出用の一定光量の発光ダイオード等の光源が必要であるため、携帯電子機器に大きな実装面積を必要とし、かつ、一定光量の光源が必要であるため、未だ高価であるという問題がある。 However, when the ultraviolet detection device is mounted on a portable electronic device or the like, a light source such as a light-emitting diode with a constant light amount for detection is required, so that the portable electronic device requires a large mounting area and is constant. Since a light source having a light amount is necessary, there is a problem that it is still expensive.
特開2007-278904号公報JP 2007-278904 A 特開2010-243252号公報JP 2010-243252 A
 そこで、この発明の課題は、紫外線量を正確に表す電気信号を得ることができる上に、一定光量の光源のための発光素子等を必要としなくて、実装面積が小さく、かつ、安価な紫外線検出装置およびそれを備えた電子機器を提供することにある。 Accordingly, an object of the present invention is to obtain an electrical signal that accurately represents the amount of ultraviolet rays, and does not require a light emitting element for a light source with a constant light amount, and has a small mounting area and is inexpensive. An object of the present invention is to provide a detection device and an electronic apparatus including the same.
 上記課題を解決するため、この発明の紫外線検出装置は、
 外部から受光した紫外線の量に応じて変色する変色層と、
 上記変色層の色を検知する第1の色検知センサーと
を備えて、
 上記第1の色検知センサーで検出した上記変色層の色合いにより紫外線の有無または紫外線量を検出することを特徴としている。
In order to solve the above problems, the ultraviolet detection device of the present invention is:
A color changing layer that changes color according to the amount of ultraviolet rays received from the outside;
A first color detection sensor for detecting the color of the discoloration layer,
The presence or absence of ultraviolet rays or the amount of ultraviolet rays is detected based on the hue of the color changing layer detected by the first color detection sensor.
 上記構成の紫外線検出装置において、外部紫外線の量に応じて、変色層が変色し、この変色した変色層の色合いが第1の色検知センサーによって検知されて、紫外線の有無または紫外線量が、第1の色検知センサーからの電気信号により正確に検出される。 In the ultraviolet detection device having the above configuration, the discoloration layer changes color according to the amount of external ultraviolet rays, and the color of the discoloration change layer is detected by the first color detection sensor. It is accurately detected by an electrical signal from one color detection sensor.
 このように、この紫外線検出装置では、紫外線を直接検出するのではなくて、紫外線の量に応じて変色した変色層の色合いを、第1の色検知センサーで検出して、紫外線量を検出するので、高価なGaAsPフォトダイオードやGaNショットキーダイオード等の非シリコン系のダイオードを必要としなくて、安価なシリコン系の汎用半導体素子によって、第1の色検知センサーを構成することができ、この紫外線検出装置自体を安価に製造できる。 As described above, this ultraviolet ray detection device does not directly detect ultraviolet rays, but detects the amount of ultraviolet rays by detecting the hue of the discoloration layer changed in accordance with the amount of ultraviolet rays with the first color detection sensor. Therefore, the first color detection sensor can be constituted by an inexpensive silicon-based general-purpose semiconductor element without requiring an expensive non-silicon-based diode such as a GaAsP photodiode or a GaN Schottky diode. The detection device itself can be manufactured at a low cost.
 さらに、この紫外線検出装置では、外部からの紫外線量に応じて変色した変色層の色合いを第1の色検知センサーで検出して、その色合いで紫外線量を検出していて、透過した光量で紫外線量を検出しているのではないので、別途、一定光量の発光ダイオード等の光源を必要としなく、その分、部品点数が少なくなる。したがって、この紫外線検出装置は、部品点数が少ないから、安価であり、かつ、電子機器に実装する場合、実装面積が小さいという利点を有する。 Furthermore, in this ultraviolet ray detection apparatus, the first color detection sensor detects the hue of the discolored layer that has changed color in accordance with the amount of ultraviolet ray from the outside, detects the ultraviolet ray amount based on that hue, Since the amount is not detected, a light source such as a light emitting diode having a constant light amount is not required separately, and the number of parts is reduced accordingly. Therefore, this ultraviolet ray detection device is inexpensive because it has a small number of parts, and has the advantage of a small mounting area when mounted on an electronic device.
 携帯電話等の携帯電子機器においては、紫外線の量を検出して表示する機能は、多くの場合、絶対的に必要となる機能ではないため、携帯電子機器の電子部品点数を増やすことなく、小型、簡易かつ安価な構成で、紫外線の量を電気的信号として検出することが切に要望されている。この発明は、その要望に応えたものである。 In portable electronic devices such as mobile phones, the function of detecting and displaying the amount of ultraviolet rays is not an absolutely necessary function in many cases, so it is compact without increasing the number of electronic components of the portable electronic device. There is a strong demand for detecting the amount of ultraviolet rays as an electrical signal with a simple and inexpensive configuration. The present invention meets that need.
 なお、上記第1の色検知センサーは、変色層からの透過光によって変色層の色合いを検知してもよく、あるいは、変色層からの反射光によって変色層の色合いを検知してもよい。 Note that the first color detection sensor may detect the hue of the color changing layer by the transmitted light from the color changing layer, or may detect the color of the color changing layer by the reflected light from the color changing layer.
 1実施形態では、
 上記変色層は外部可視光を透過し、上記第1の色検知センサーは、上記変色層の透過光の色を検出し、上記変色層の色合いに応じた上記透過光の色合いにより紫外線の有無または紫外線量を検出する。
In one embodiment,
The discoloration layer transmits external visible light, the first color detection sensor detects the color of the transmitted light of the discoloration layer, and the presence or absence of ultraviolet rays depending on the color of the transmitted light according to the color of the discoloration layer Detects the amount of ultraviolet light.
 上記実施形態によれば、上記変色層を透過した外部可視光の色合いが第1の色検知センサーに検出されて、紫外線の有無または紫外線量が検出される。このように、上記変色層を透過した外部可視光の色合いによって、変色層の色合いを検出しているので、変色層の色合いを正確に検出して、紫外線の有無または紫外線量を正確に検出できる。 According to the above-described embodiment, the color of the external visible light that has passed through the discoloration layer is detected by the first color detection sensor, and the presence or absence of ultraviolet rays or the amount of ultraviolet rays is detected. As described above, since the hue of the color changing layer is detected based on the color of the external visible light transmitted through the color changing layer, it is possible to accurately detect the color of the color changing layer and accurately detect the presence or the amount of ultraviolet light. .
 また、この実施形態によれば、上記第1の色検知センサーは、変色層を透過した外部可視光を受ける位置に配置されることになるので、第1の色検知センサーは、紫外線によって変色して紫外線を遮蔽する機能を有する変色層によって、外部からの紫外線から保護されることになって、その損傷が防止される。 Further, according to this embodiment, the first color detection sensor is disposed at a position for receiving the external visible light transmitted through the color change layer, so that the first color detection sensor is changed in color by ultraviolet rays. Therefore, the discoloration layer having a function of shielding ultraviolet rays protects from ultraviolet rays from the outside and prevents the damage.
 また、1実施形態では、
 外部から受光した外部可視光の色を検出する第2の色検知センサーを
備え、
 外部可視光の色合いに応じた上記第2の色検知センサーの出力値により、上記変色層の色合いに応じた上記第1の色検知センサーの出力値を補正する。
In one embodiment,
A second color detection sensor for detecting the color of external visible light received from the outside;
The output value of the first color detection sensor corresponding to the hue of the discoloration layer is corrected by the output value of the second color detection sensor corresponding to the hue of external visible light.
 この実施形態では、外部可視光の色合いに応じた第2の色検知センサーからの出力値によって、変色層の色合いに応じた第1の色検知センサーからの出力値が補正される。したがって、変色層の色合に対する外部可視光の色合の変化の影響を除去して、変色層固有の色合の変化を正確に検出して、紫外線の有無または紫外線量を精度高く電子情報として得ることができる。 In this embodiment, the output value from the first color detection sensor corresponding to the color of the discoloration layer is corrected by the output value from the second color detection sensor corresponding to the color of the external visible light. Therefore, the influence of the change in the hue of the external visible light on the hue of the color changing layer can be removed, and the change in the hue specific to the color changing layer can be accurately detected, and the presence or absence of ultraviolet rays or the amount of ultraviolet rays can be obtained as electronic information with high accuracy it can.
 上記第1の色検知センサーの出力値の補正は、例えば、第1の色検知センサーの出力値から第2の色検知センサーの出力値を減算してもよく、あるいは、第2の色検知センサーの出力値にある係数をかけて減算するなどして行われる。 For the correction of the output value of the first color detection sensor, for example, the output value of the second color detection sensor may be subtracted from the output value of the first color detection sensor, or the second color detection sensor. This is performed by subtracting the output value by a certain coefficient.
 また、1実施形態では、
 上記第1および第2の色検知センサーは、赤色光、緑色光、青色光の量を検出するRGBカラーセンサーであり、
 上記第1の色検知センサーが出力する赤(R)、緑(G)、青(B)の出力値を、上記第2の色検知センサーが出力する赤(R)、緑(G)、青(B)の出力値により補正する。
In one embodiment,
The first and second color detection sensors are RGB color sensors that detect the amount of red light, green light, and blue light,
The output values of red (R), green (G), and blue (B) output from the first color detection sensor are used as red (R), green (G), and blue output from the second color detection sensor. Correction is performed based on the output value of (B).
 上記実施形態では、上記第1および第2の色検知センサーはRGBカラーセンサーであるから、汎用品が使用できて、簡易かつ安価であり、かつ、赤(R)、緑(G)、青(B)の出力値の補正ができて、色合いを正確に検出することができる。 In the above embodiment, since the first and second color detection sensors are RGB color sensors, general-purpose products can be used, and they are simple and inexpensive, and red (R), green (G), blue ( The output value of B) can be corrected, and the hue can be accurately detected.
 また、1実施形態では、
 外部可視光の照度を検出する照度検出手段を備え、
 上記照度検出手段が検出した照度が予め定めたられた値よりも低いときの上記第1の色検知センサーの出力値の第1の色検知センサーの初期値からの変動分に基づいて、紫外線量の算出を補正する。
In one embodiment,
With illuminance detection means for detecting the illuminance of external visible light,
The amount of ultraviolet rays based on the variation of the output value of the first color detection sensor from the initial value of the first color detection sensor when the illuminance detected by the illuminance detection means is lower than a predetermined value. Correct the calculation of.
 上記実施形態では、上記第1の色検知センサーの紫外線がないときの初期値(例えば、工場出荷時の値)と、上記照度検出手段が検出した外部可視光の照度が予め定めたられた値よりも低いときの上記第1の色検知センサーの出力値との変動分に基づいて、紫外線量の算出が補正される。 In the above embodiment, the initial value when the first color detection sensor has no ultraviolet light (for example, a value at the time of factory shipment) and the illuminance of the external visible light detected by the illuminance detection means are predetermined values. The calculation of the amount of ultraviolet rays is corrected based on the amount of fluctuation from the output value of the first color detection sensor when the value is lower than the first value.
 外部可視光の照度が低いとき、つまり、外部可視光の照度が予め定めたられた値よりも低いときは、紫外線が少ない環境である。 When the illuminance of external visible light is low, that is, when the illuminance of external visible light is lower than a predetermined value, the environment is low in ultraviolet rays.
 この実施形態では、外部可視光の照度が予め定めたられた値よりも低いときの上記第1の色検知センサーの出力値の初期値からの変動分に基づいて、紫外線量の算出を補正するから、変色層が経年変化等によって、劣化しても、その影響を補償することができる。 In this embodiment, the calculation of the amount of ultraviolet rays is corrected based on the variation from the initial value of the output value of the first color detection sensor when the illuminance of external visible light is lower than a predetermined value. Therefore, even if the discoloration layer deteriorates due to secular change or the like, the influence can be compensated.
 このように、この実施形態は、紫外線が少ない環境である低照度で、変色層の色状態を確認し、補正を行っているので、紫外線の絶対量を精度高く検出することができる。 Thus, in this embodiment, since the color state of the discoloration layer is confirmed and corrected at low illuminance, which is an environment with little ultraviolet light, the absolute amount of ultraviolet light can be detected with high accuracy.
 上記照度検出手段は、第1の色検知センサーと一体に設けてもよく、あるいは、別体に設けてもよい。あるいは、既存の携帯電子機器が有する照度センサーをこの照度検出手段として共用してもよい。 The illuminance detection means may be provided integrally with the first color detection sensor or may be provided separately. Or you may share the illumination intensity sensor which the existing portable electronic device has as this illumination intensity detection means.
 また、1実施形態は、
 筺体を備え、
 この筺体内に第1の色検知センサーが設けられ、
 上記変色層は上記筺体の内外を仕切って、上記第1の色検知センサーを紫外線から保護する。
Also, one embodiment is
With a housing,
A first color detection sensor is provided in the enclosure,
The discoloration layer partitions the inside and outside of the housing to protect the first color detection sensor from ultraviolet rays.
 上記実施形態では、上記変色層が筐体の内外を仕切り、上記変色層の色を検知する第1の色検知センサーは、上記筐体内に設けられているから、第1の色検知センサーは、筐体および変色層によって、紫外線から保護され、その損傷が防止される。 In the above embodiment, the first color detection sensor is provided in the casing because the color changing layer partitions the inside and outside of the casing and detects the color of the color changing layer. The housing and the discolored layer are protected from ultraviolet rays and are prevented from being damaged.
 また、1実施形態では、
 上記第1および第2の色検出センサーは、夫々、赤、緑、青のフィルターを有し、
 上記赤、緑、青のフィルターは、同一シリコン基板上に形成され、かつ、隣接して配置されている。
In one embodiment,
The first and second color detection sensors have red, green, and blue filters, respectively.
The red, green and blue filters are formed on the same silicon substrate and arranged adjacent to each other.
 上記実施形態では、上記第1および第2の色検出センサーの赤、緑、青のフィルターは、同一シリコン基板上に形成され、かつ、隣接して配置されているから、上記第1および第2の色検出センサーは、同じ状態におかれ、同様な紫外線、可視光線、赤外線等を受けるから、変色層の色合いを検出する第1の色検出センサーの出力値を、第2の色検出センサーの出力値で精度高く補正をすることができる。 In the above embodiment, the red, green and blue filters of the first and second color detection sensors are formed on the same silicon substrate and arranged adjacent to each other. The color detection sensors of the first color detection sensor are in the same state and receive the same ultraviolet rays, visible rays, infrared rays, etc., so the output value of the first color detection sensor for detecting the hue of the discoloration layer is used as the output value of the second color detection sensor. The output value can be corrected with high accuracy.
 この発明の電子機器は、
 上述の紫外線検出装置を備える。
The electronic device of the present invention is
The above-described ultraviolet detection device is provided.
 この電子機器は、上記紫外線検出装置を備えるから、紫外線量を正確に検出できる上に、小型、安価である。 Since this electronic device is equipped with the above-described ultraviolet detection device, it can detect the amount of ultraviolet rays accurately, and is small and inexpensive.
 この発明の紫外線検出装置は、紫外線量を直接検出するのではなくて、紫外線の量に応じて変色する変色層の色合いを、第1の色検知センサーで検出して、紫外線量を検出するので、紫外線量を正確に電気信号として得ることができる上に、高価なGaAsPフォトダイオードやGaNショットキーダイオード等の非シリコン系のダイオードを必要としなく、第1の色検知センサーをシリコン系の安価な半導体素子で製作できて、安価であるという利点を有する。 The ultraviolet detection device of the present invention does not directly detect the amount of ultraviolet rays, but detects the amount of ultraviolet rays by detecting the hue of the color changing layer that changes color according to the amount of ultraviolet rays with the first color detection sensor. In addition, the amount of ultraviolet rays can be accurately obtained as an electric signal, and an expensive non-silicon diode such as a GaAsP photodiode or a GaN Schottky diode is not required, and the first color detection sensor is a silicon-based inexpensive. It can be manufactured with a semiconductor element and has the advantage of being inexpensive.
 また、この発明の紫外線検出装置は、外部からの紫外線量に応じて変色した変色層の色合いを第1の色検知センサーで検出して、その色合いで紫外線量を検出していて、透過した光量で紫外線量を検出しているのではないので、別途、一定光量の発光ダイオード等の光源を必要としなくて、部品点数が少なく、安価で、かつ、電子機器への実装面積が小さいという利点を有する。 Further, the ultraviolet ray detection device of the present invention detects the hue of the discoloration layer changed in color according to the amount of ultraviolet ray from the outside by the first color detection sensor, detects the amount of ultraviolet ray by the hue, and transmits the transmitted light amount. The amount of ultraviolet rays is not detected by the light source, so there is no need for a separate light source such as a light-emitting diode, a small number of parts, low cost, and a small mounting area on the electronic device. Have.
 この発明の電子機器は、上記紫外線検出装置を備えるから、紫外線量を正確に検出できる上に、小型、安価であるという利点を有する。 Since the electronic apparatus of the present invention includes the above-described ultraviolet detection device, it has the advantages of being able to accurately detect the amount of ultraviolet rays and being small and inexpensive.
この発明の第1実施形態の紫外線検出装置の模式図である。1 is a schematic diagram of an ultraviolet detection device according to a first embodiment of the present invention. 上記紫外線検出装置の第1の色検知センサーの出力特性を示す図である。It is a figure which shows the output characteristic of the 1st color detection sensor of the said ultraviolet-ray detection apparatus. 図3(A),(B)は、上記紫外線検出装置の外部紫外線が無い状態と、外部紫外線が有る状態を示す図である。FIGS. 3A and 3B are diagrams showing a state in which there is no external ultraviolet light and a state in which external ultraviolet light is present in the ultraviolet detection device. 図4(A),(B)は、図3(A),(B)の状態に対応する第1の色検知センサーの出力特性を示す図である。4A and 4B are diagrams illustrating output characteristics of the first color detection sensor corresponding to the states of FIGS. 3A and 3B. この発明の第2実施形態の紫外線検出装置の外部紫外線が無い状態を示す模式図である。It is a schematic diagram which shows the state which has no external ultraviolet-ray of the ultraviolet-ray detection apparatus of 2nd Embodiment of this invention. 図6(A),(B)は、上記外部紫外線が無い状態の紫外線検出装置の第1および第2の色検知センサーの出力特性を示す図である。FIGS. 6A and 6B are diagrams showing output characteristics of the first and second color detection sensors of the ultraviolet ray detection apparatus in a state where there is no external ultraviolet ray. この発明の第2実施形態の紫外線検出装置の外部紫外線が有る状態を示す模式図である。It is a schematic diagram which shows the state which has the external ultraviolet-ray of the ultraviolet-ray detection apparatus of 2nd Embodiment of this invention. 図8(A),(B)は、上記外部紫外線が有る状態の紫外線検出装置の第1および第2の色検知センサーの出力特性を示す図である。FIGS. 8A and 8B are diagrams showing output characteristics of the first and second color detection sensors of the ultraviolet detection device in the presence of the external ultraviolet rays. この発明の第3実施形態の紫外線検出装置の要部のブロック図である。It is a block diagram of the principal part of the ultraviolet-ray detection apparatus of 3rd Embodiment of this invention. この発明の第4実施形態の携帯情報端末の斜視図である。It is a perspective view of the portable information terminal of 4th Embodiment of this invention. この発明の第5実施形態の紫外線検出装置の斜視図である。It is a perspective view of the ultraviolet-ray detection apparatus of 5th Embodiment of this invention.
 以下、この発明を図示の実施形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(第1実施形態)
 図1に示すように、この第1実施形態の紫外線検出装置は、紫外線量に応じて変色する変色層101と、この変色層101の色合いを検知する第1の色検知センサー102とからなる。上記第1の色検知センサー102は変色層101を透過した透過光105の色合いを検知する。
(First embodiment)
As shown in FIG. 1, the ultraviolet detection device according to the first embodiment includes a color change layer 101 that changes color according to the amount of ultraviolet light, and a first color detection sensor 102 that detects the hue of the color change layer 101. The first color detection sensor 102 detects the hue of the transmitted light 105 transmitted through the color changing layer 101.
 上記変色層101は、例えば、紫外線が照射されると紫外線量に応じて変色するフォトクロミック材料を、透明樹脂、ガラス、透明フイルム等に塗布したり、あるいは、透明樹脂、ガラス、透明フイルム等に混入したりして形成される。 For example, the discoloration layer 101 is applied to a transparent resin, glass, transparent film, or the like, or mixed with a transparent resin, glass, transparent film, or the like, by applying a photochromic material that changes color according to the amount of ultraviolet light when irradiated with ultraviolet light. Or formed.
 上記第1の色検知センサー102は、赤(R)色光、緑(G)色光、青(B)色光の量を検出するRGBカラーセンサーであり、汎用のシリコンIC(集積回路)からなる。上記第1の色検知センサー102は、図示しないが、赤、緑、青のフィルターとフォトダイオードを有して、赤、緑、青の光の受光量に応じて、それぞれのフォトダイオードから受光信号(光電流)が出力される。 The first color detection sensor 102 is an RGB color sensor that detects the amount of red (R) light, green (G) light, and blue (B) light, and is composed of a general-purpose silicon IC (integrated circuit). Although not shown, the first color detection sensor 102 has red, green, and blue filters and photodiodes, and receives light reception signals from the respective photodiodes according to the amounts of received light of red, green, and blue. (Photocurrent) is output.
 図2に、上記第1の色検知センサー102の受光した光の波長に対する出力(光量)を示す。図2では、第1の色検知センサー102への入力光の光量のR(赤)、G(緑)、B(青)の波長分布が均一と仮定しており、この場合、第1の色検知センサー102のR,G,Bの出力は均等になって、図2でR,G,Bで示す波形となる。図2でR,G,Bで示す波形の面積が、R,G,Bの受光量を表す出力値、つまり、変色層101の色合いを表す電気信号として求められる。 FIG. 2 shows an output (light quantity) with respect to the wavelength of the light received by the first color detection sensor 102. In FIG. 2, it is assumed that the wavelength distribution of R (red), G (green), and B (blue) of the amount of input light to the first color detection sensor 102 is uniform. In this case, the first color Outputs of R, G, and B of the detection sensor 102 are equalized to have waveforms indicated by R, G, and B in FIG. The areas of the waveforms indicated by R, G, and B in FIG. 2 are obtained as output values that represent the received light amounts of R, G, and B, that is, electrical signals that represent the color of the discoloration layer 101.
 この第1実施形態の紫外線検出装置は、図示しないが、例えば、携帯電話、携帯情報端末、ゲーム機等の携帯電子機器に搭載されている。 Although not shown, the ultraviolet detection device of the first embodiment is mounted on a portable electronic device such as a mobile phone, a portable information terminal, or a game machine.
 上記構成の紫外線検出装置において、今、図1に示すように、変色層101に携帯電子機器の外部から太陽光等の外部光が入射したとする。 In the ultraviolet detection device having the above configuration, it is assumed that external light such as sunlight is incident on the color changing layer 101 from the outside of the portable electronic device as shown in FIG.
 なお、太陽光等の外部光には、紫外線、可視光、赤外線が含まれるが、図1では赤外線は省略して、外部紫外線103と外部可視光104のみを示している。 Note that external light such as sunlight includes ultraviolet light, visible light, and infrared light, but in FIG. 1, the infrared light is omitted and only the external ultraviolet light 103 and the external visible light 104 are shown.
 そうすると、上記変色層101は、外部紫外線103の光量に応じて変色し、一方、第1の色検知センサー102は、変色層101からの透過光105を受けて、変色層101の変色前の色合いと、変色後の色合いを検知する。そして、変色層101の変色前後の色合いを比較して、外部紫外線量を検出し、確認することができる。 Then, the color change layer 101 changes color according to the amount of the external ultraviolet light 103, while the first color detection sensor 102 receives the transmitted light 105 from the color change layer 101 and the color of the color change layer 101 before the color change. And the color after the color change is detected. Then, the amount of external ultraviolet rays can be detected and confirmed by comparing the hue before and after the color change of the color change layer 101.
 より詳しくは、上記外部紫外線103がない状態での変色層101の色合いを表す第1の色検知センサー102の出力値を、図示しないメモリに予め初期値として記憶しておき、次に、このメモリに記憶されている初期値と、外部紫外線103が照射されて色合いが変化した後の状態の変色層101の色合いを表す第1の色検知センサー102の出力値とを図示しない比較手段によって比較することによって、外部紫外線103の有無の確認ができ、あるいは、外部紫外線103の量を算出することができる。 More specifically, the output value of the first color detection sensor 102 representing the hue of the color changing layer 101 in the absence of the external ultraviolet light 103 is stored in advance in a memory (not shown) as an initial value, and then this memory Is compared with the output value of the first color detection sensor 102 representing the hue of the color-changing layer 101 in a state after the hue is changed by the irradiation with the external ultraviolet light 103 by a comparison unit (not shown). Thus, the presence or absence of the external ultraviolet light 103 can be confirmed, or the amount of the external ultraviolet light 103 can be calculated.
 図3(A),(B)および図4(A),(B)を用いて、第1実施形態の紫外線検出装置の動作をより具体的に説明する。 The operation of the ultraviolet detection device of the first embodiment will be described more specifically with reference to FIGS.
 フォトクロミック材料として、様々な色変化を起こす材質が開発されているが、ここでは、変色層101は、外部紫外線103の量の増加に応じて、赤色から緑色に変色するとして説明する。 Although materials that cause various color changes have been developed as photochromic materials, here, it is assumed that the color changing layer 101 changes from red to green as the amount of external ultraviolet light 103 increases.
 図3(A)は、外部紫外線が無くて、変色層101が赤色になっている状態を示し、図3(B)は、外部紫外線103が有って、変色層101が緑色になっている状態を示す。また、図4(A),(B)は、図3(A),(B)の状態に対応する第1の色検知センサー102の出力波形を示す図である。 FIG. 3A shows a state in which there is no external ultraviolet light and the color changing layer 101 is red, and FIG. 3B shows that there is an external ultraviolet light 103 and the color changing layer 101 is green. Indicates the state. 4A and 4B are diagrams showing output waveforms of the first color detection sensor 102 corresponding to the states of FIGS. 3A and 3B.
 図3(A)に示すように、外部紫外線が無い場合、変色層101は赤色となり、変色層101からの透過光205は、図4(A)に示すように、赤色成分(λ=620nm領域の光量)が増加する。 As shown in FIG. 3A, when there is no external ultraviolet ray, the color changing layer 101 is red, and the transmitted light 205 from the color changing layer 101 is a red component (λ = 620 nm region) as shown in FIG. The amount of light) increases.
 次に、図3(B)に示すように、外部紫外線103の光量が増加した場合、変色層101は、緑色となって、変色層101からの透過光105は、図4(B)に示すように、緑色成分(λ=540nm領域の光量)が増加する。 Next, as shown in FIG. 3B, when the amount of the external ultraviolet light 103 is increased, the color changing layer 101 becomes green, and the transmitted light 105 from the color changing layer 101 is shown in FIG. 4B. As described above, the green component (the amount of light in the λ = 540 nm region) increases.
 したがって、上記第1の色検知センサー102の出力値は、図4(A),(B)のようになって、赤色成分(R)および緑色成分(B)のそれぞれの図4(A)に示す初期値と、図4(B)に示す測定時の値とを比較して、紫外線の有無の確認、紫外線量の算出をすることができる。 Accordingly, the output values of the first color detection sensor 102 are as shown in FIGS. 4A and 4B, and the red component (R) and the green component (B) are respectively shown in FIG. By comparing the initial value shown and the value at the time of measurement shown in FIG. 4B, the presence or absence of ultraviolet rays can be confirmed and the amount of ultraviolet rays can be calculated.
 また、この第1実施形態の紫外線検出装置は、紫外線によって変色する変色層101の色合いを第1の色検知センサー102で検知して、紫外線の有無または紫外線量を求めているので、紫外線量を電子情報として正確に得ることができる上に、光源としての発光素子等の電子部品を追加する必要がなくて、小型、コンパクトで安価であるという利点を有する。 In the ultraviolet detection device according to the first embodiment, the first color detection sensor 102 detects the hue of the discoloration layer 101 that changes color by ultraviolet rays to obtain the presence or absence of ultraviolet rays or the amount of ultraviolet rays. In addition to being able to be obtained accurately as electronic information, there is no need to add an electronic component such as a light emitting element as a light source, and there is an advantage that it is small, compact and inexpensive.
 特に、この第1実施形態の紫外線検出装置を携帯電話、携帯情報端末等の電子機器に搭載する場合、実装面積が小さいという利点を有する。 In particular, when the ultraviolet detection device of the first embodiment is mounted on an electronic device such as a mobile phone or a portable information terminal, there is an advantage that the mounting area is small.
 また、この第1実施形態の紫外線検出装置は、紫外線量を直接測定するのではなくて、紫外線の量に応じて変色する変色層101の色合いを第1の色検知センサー102で検出するので、第1の色検知センサー102に安価な汎用品であるシリコン系のフォトダイオードを使用でき、安価であるという利点を有する。 In addition, the ultraviolet detection device of the first embodiment does not directly measure the amount of ultraviolet rays, but detects the hue of the discoloration layer 101 that changes color according to the amount of ultraviolet rays by the first color detection sensor 102. An inexpensive general-purpose silicon photodiode can be used for the first color detection sensor 102, which has the advantage of being inexpensive.
(第2実施形態)
 ところで、実際の入射可視光の色合いは、入射光を太陽光とした場合、時間により、または、天候、屋根などの遮蔽物の色合いなどの影響をうけて、変動する。そのため、第1実施形態の紫外線検出装置では、日中紫外線が強い昼間のみの限られた環境に限って、紫外線量の安定的な測定が可能で、測定時の環境に制限があるという問題がある。
(Second Embodiment)
By the way, when the incident light is sunlight, the actual color of the incident visible light varies depending on time or the influence of the weather, the color of a shield such as a roof, or the like. Therefore, the ultraviolet detection device of the first embodiment has a problem that the amount of ultraviolet rays can be stably measured only in the daytime when the daytime ultraviolet rays are strong, and the environment during measurement is limited. is there.
 この第2実施形態の紫外線検出装置は、測定時の環境に制限がなくて、正確に紫外線量を検出できるものである。図5は、この第2実施形態の紫外線検出装置の外部紫外線が無い状態を示す図であり、図7は、この第2実施形態の紫外線検出装置の外部紫外線が有る状態を示す図である。 The ultraviolet detector according to the second embodiment is capable of accurately detecting the amount of ultraviolet rays without any restriction in the environment during measurement. FIG. 5 is a diagram showing a state in which there is no external ultraviolet rays in the ultraviolet detection device of the second embodiment, and FIG. 7 is a diagram showing a state in which there is external ultraviolet rays in the ultraviolet detection device of the second embodiment.
 図5,7に示すように、この第2実施形態の紫外線検出装置は、外部紫外線603の量の増大に応じて赤色から緑色に変色する変色層401と、外部から入射する外部可視光404,604を透過する可視光透過層501と、上記変色層401の色合いを、透過光405,605を介して検知する第1の色検知センサー102と、上記可視光透過層501を透過した透過光505,705の色合いを検知する第2の色検知センサー502とを備えている。上記可視光透過層501は、紫外線によっては変色しなく、外部可視光404,604を極僅かな減衰でほぼそのまま透過する。 As shown in FIGS. 5 and 7, the ultraviolet detection device of the second embodiment includes a color changing layer 401 that changes color from red to green according to an increase in the amount of external ultraviolet rays 603, and external visible light 404 that is incident from the outside. A visible light transmitting layer 501 that transmits 604; a first color detection sensor 102 that detects the color of the color changing layer 401 through transmitted light 405 and 605; and a transmitted light 505 that transmits the visible light transmitting layer 501. , 705, and a second color detection sensor 502 for detecting the hue. The visible light transmission layer 501 does not change color depending on ultraviolet rays, and transmits the external visible light 404 and 604 almost as it is with a slight attenuation.
 上記変色層401と可視光透過層501とは、例えば、同一ガラス層や透明樹脂層のうちの変色層401に対応する部分に、紫外線量の増大に応じて赤色から緑色に変色するフォトクロミック材料を塗布して形成することによって、略同一平面上に位置し、かつ、一体に形成している。 The discoloration layer 401 and the visible light transmission layer 501 are made of, for example, a photochromic material that changes color from red to green in accordance with an increase in the amount of ultraviolet rays in a portion corresponding to the discoloration layer 401 in the same glass layer or transparent resin layer. By coating and forming, they are located on substantially the same plane and are integrally formed.
 尤も、上記変色層401と可視光透過層501は、別体にして、隣接させて形成してもよい。また、上記変色層401と可視光透過層501は、上述の構造、形成方法に限らず、どのようなものであってもよい。 However, the discoloration layer 401 and the visible light transmission layer 501 may be formed separately and adjacent to each other. Further, the discoloration layer 401 and the visible light transmission layer 501 are not limited to the structure and formation method described above, and may be anything.
 上記第1および第2の色検知センサー102、502は、汎用のシリコンIC(集積回路)から製作されている。上記第1の色検知センサー102は、紫外線量に応じて赤色から緑色に変色する変色層101の色合いを検知するためのものであるのに対して、上記第2の色検知センサー502は、外部から照射される外部光の色合いを検知して、この外部光の色合いに基づいて、後述のように、第1の色検知センサー102の出力値を補正するためのものである。 The first and second color detection sensors 102 and 502 are manufactured from general-purpose silicon ICs (integrated circuits). The first color detection sensor 102 is for detecting the hue of the color changing layer 101 that changes from red to green according to the amount of ultraviolet rays, whereas the second color detection sensor 502 is an external device. Is used for detecting the hue of the external light emitted from the first and second colors and correcting the output value of the first color detection sensor 102 based on the hue of the external light, as will be described later.
 また、この紫外線検出装置は、第1および第2の色検知センサー102、502からの出力値を受けるマイクロコンピュータ700を有する。このマイクロコンピュータ700は、メモリ701と、比較手段702と、変化量算出手段703と、紫外線量算出手段704とを備えている。上記比較手段702、変化量算出手段703および紫外線量算出手段704は、後述のような比較、演算を行い、ソフトウェアにより構成されている。 Further, this ultraviolet ray detection apparatus has a microcomputer 700 that receives output values from the first and second color detection sensors 102 and 502. The microcomputer 700 includes a memory 701, a comparison unit 702, a change amount calculation unit 703, and an ultraviolet ray amount calculation unit 704. The comparison unit 702, the change amount calculation unit 703, and the ultraviolet ray amount calculation unit 704 are configured by software by performing comparison and calculation as described later.
 上記構成の紫外線検出装置において、今、図5および図6(A),(B)に示すように、外部紫外線が無くて、赤色成分が多い外部可視光404が変色層401および可視光透過層501に照射されているとする。 In the ultraviolet detection device having the above-described configuration, as shown in FIGS. 5 and 6A and 6B, external visible light 404 having no external ultraviolet light and a large amount of red component is converted into the color changing layer 401 and the visible light transmitting layer. Suppose that 501 is irradiated.
 そうすると、上記第2の色検知センサー502は、可視光透過層501から、比較的赤色成分が多い外部可視光404に由来する赤色成分が多い透過光505を受けて、図6(B)の出力波形に示すように、赤色成分R502,緑色成分G502,青色成分B502の出力値を出力する。図6(B)から分かるように、上記第2の色検知センサー502の出力は、外部可視光404に赤色成分が多いため、赤色成分R502が多く、緑色成分G502および青色成分B502が少ない。 Then, the second color detection sensor 502 receives the transmitted light 505 having a large amount of red component derived from the external visible light 404 having a relatively large amount of red component from the visible light transmitting layer 501 and outputs the output shown in FIG. As shown in the waveform, the output values of the red component R502, the green component G502, and the blue component B502 are output. As can be seen from FIG. 6B, the output of the second color detection sensor 502 has a large amount of red component R502 and a small amount of green component G502 and blue component B502 because the external visible light 404 has a large amount of red component.
 一方、上記変色層401は、紫外線を受けていないため、赤色を呈したままの状態である。そして、上記第1の色検知センサー102は、赤色の変色層401からの透過光405を受けて、図6(A)の出力波形に示すように、赤色成分R102,緑色成分G102,青色成分B102の出力値を出力する。上記変色層401が、紫外線を受けていなくて赤色であるため、この赤色の変色層401によって、緑色成分および青色成分の光が減衰して、図6(A),(B)の出力波形から分かるように、第1の色検知センサー102の出力の緑色成分G102および青色成分B102は、第2の色検知センサー502の出力の減衰していない緑色成分G502および青色成分B502よりも低下する。一方、外部可視光404の赤色成分の光は、赤色の変色層401を透過できるため、赤色の変色層401からの透過光405中の赤色成分は減衰が少なくて、第1の色検知センサー102の赤色成分R102の出力値は、第2の色検知センサー502の赤色成分R502の出力値と略等しくなる。つまり、図6(A),(B)に示すように、第1および第2の色検知センサー102,502の出力波形において、赤色成分R102R≒赤色成分R502となる。したがって、第1の色検知センサー102と第2の色検知センサー502の赤色成分R102,R502を比較することによって、紫外線の有無または量を検知可能である。 On the other hand, since the discoloration layer 401 is not receiving ultraviolet rays, it remains red. The first color detection sensor 102 receives the transmitted light 405 from the red color changing layer 401 and, as shown in the output waveform of FIG. 6A, the red component R102, the green component G102, and the blue component B102. Output the output value of. Since the color changing layer 401 is not receiving ultraviolet rays and is red, the red color changing layer 401 attenuates the light of the green component and the blue component, and the output waveforms shown in FIGS. As can be seen, the green component G102 and the blue component B102 of the output of the first color detection sensor 102 are lower than the non-attenuated green component G502 and the blue component B502 of the output of the second color detection sensor 502. On the other hand, since the red component light of the external visible light 404 can pass through the red color changing layer 401, the red component in the transmitted light 405 from the red color changing layer 401 is less attenuated and the first color detection sensor 102. The output value of the red color component R102 is substantially equal to the output value of the red color component R502 of the second color detection sensor 502. That is, as shown in FIGS. 6A and 6B, in the output waveforms of the first and second color detection sensors 102 and 502, the red component R102R≈the red component R502. Therefore, by comparing the red components R102 and R502 of the first color detection sensor 102 and the second color detection sensor 502, it is possible to detect the presence or amount of ultraviolet rays.
 上記マイクロコンピュータ700は、次のようにして、紫外線の有無の判定または量の算出を行う。ここでは、説明の便宜と簡明さため、外部可視光404,604に赤色成分が多いとする。 The microcomputer 700 determines the presence or absence of ultraviolet rays or calculates the amount as follows. Here, for convenience of explanation and simplicity, it is assumed that the external visible light 404, 604 has a large amount of red component.
 まず、上記マイクロコンピュータ700の比較手段702によって、第2の色検知センサー502の赤色成分R502の出力値が、予め定めた一定値よりも大きいか否かを判定して、外部可視光404,604に赤色成分が多いことを確認する。 First, the comparison means 702 of the microcomputer 700 determines whether or not the output value of the red component R502 of the second color detection sensor 502 is larger than a predetermined value, and the external visible light 404, 604 is determined. Confirm that there are many red components.
 次に、上記比較手段702によって、第1の色検知センサー102の赤色成分の出力値と第2の色検知センサー502の赤色成分の出力値とを比較して、図6(A),(B)に示すように、同等であれば、つまり、両出力値の差が予め定めた一定値よりも小さいと判定すれば、紫外線が無いという電気信号を出力する。ここでは、外部可視光404,604の赤色成分が多いとしたが、そうでない場合は、その多い成分の色に応じて、第1および第2の色検知センサー102,502のR(赤)、G(緑)、B(青)の出力成分を選択あるいは適宜組み合わせることによって、同様の判断が可能である。 Next, the comparison unit 702 compares the output value of the red component of the first color detection sensor 102 with the output value of the red component of the second color detection sensor 502, and FIG. ), If it is equal, that is, if it is determined that the difference between the two output values is smaller than a predetermined value, an electrical signal indicating that there is no ultraviolet light is output. Here, it is assumed that there are many red components of the external visible light 404 and 604, but if not, R (red) of the first and second color detection sensors 102 and 502, depending on the color of the many components, The same determination can be made by selecting or appropriately combining the output components of G (green) and B (blue).
 一方、上記比較手段702によって、上記第1の色検知センサー102の赤色成分の出力値と第2の色検知センサー502の赤色成分の出力値とを比較して、図8(A),(B)に示すように、同等で無くて、予め定めた一定値以上の差があると判定すると、紫外線があるという電気信号を出力する。 On the other hand, the comparison unit 702 compares the output value of the red component of the first color detection sensor 102 with the output value of the red component of the second color detection sensor 502, and FIG. If it is determined that there is a difference equal to or greater than a predetermined value that is not equal, an electrical signal indicating that there is ultraviolet light is output.
 上述では、上記第1および第2の色検知センサー102,502の赤色成分の出力値について比較したが、図6(A),(B)および図8(A),(B)から分かるように、外部紫外線603の量が多くなる程、第1の色検知センサー102の赤色成分R102は、少なくなると共に、緑色成分G102は多くなる一方、第2の色検知センサー502の各色の成分は、可視光透過層501が紫外線で変色しないため、紫外線の有無に関係ない。したがって、第1の色検知センサー102の赤色成分R102および緑色成分G102の出力値と、第2の色検知センサー502の赤色成分R502および緑色成分G502の出力値とを二重に比較して、精度を上げるようにしてもよい。 In the above description, the output values of the red component of the first and second color detection sensors 102 and 502 are compared. As can be seen from FIGS. 6 (A) and 6 (B) and FIGS. 8 (A) and 8 (B). As the amount of the external ultraviolet rays 603 increases, the red color component R102 of the first color detection sensor 102 decreases and the green color component G102 increases, while the color components of the second color detection sensor 502 become visible. Since the light transmission layer 501 is not discolored by ultraviolet rays, it does not matter whether ultraviolet rays are present. Therefore, the output values of the red component R102 and the green component G102 of the first color detection sensor 102 and the output values of the red component R502 and the green component G502 of the second color detection sensor 502 are compared twice, and the accuracy You may make it raise.
 次に、上記変化量算出手段703によって、第2の色検知センサー502の赤色成分R502と第1の色検知センサー102の赤色成分R102との差である赤色成分変化量と、第2の色検知センサー502の緑色成分G502と第1の色検知センサー102の緑色成分G102との差である緑色成分変化量を算出する。つまり、上記変化量算出手段703は、
赤色成分変化量=R502-R102,
緑色成分変化量=G502-G102
を算出する。
Next, the change amount calculation means 703 causes the red color component change amount, which is the difference between the red color component R502 of the second color detection sensor 502 and the red color component R102 of the first color detection sensor 102, and the second color detection. A green component change amount that is a difference between the green component G502 of the sensor 502 and the green component G102 of the first color detection sensor 102 is calculated. That is, the change amount calculating means 703
Red component change amount = R502-R102,
Green component change amount = G502-G102
Is calculated.
 図6(A),(B)および図8(A),(B)から分かるように、外部紫外線603の量が多くなる程、第1の色検知センサー102の赤色成分R102は、少なくなると共に、緑色成分G102は多くなる一方、第2の色検知センサー502の出力の各色の成分は、可視光透過層501が紫外線で変色しなくて、外部紫外線603の量に影響されないため、赤色成分変化量(=R502-R102)と、緑色成分変化量(=G502-G102)との組合せは、紫外線量と一対一の関係にある。この赤色成分変化量および緑色成分変化量と、紫外線量とを一対一に対応付ける算式あるいはテーブル(実験データにより求められる。)が予め、メモリ701に格納されている。 As can be seen from FIGS. 6A and 6B and FIGS. 8A and 8B, as the amount of the external ultraviolet ray 603 increases, the red component R102 of the first color detection sensor 102 decreases. While the green component G102 increases, the component of each color of the output of the second color detection sensor 502 is not affected by the amount of the external ultraviolet ray 603 because the visible light transmission layer 501 is not changed by the ultraviolet ray, and the red component changes. The combination of the amount (= R502-R102) and the green component change amount (= G502-G102) has a one-to-one relationship with the ultraviolet ray amount. An equation or table (determined from experimental data) that associates the red component variation amount and the green component variation amount with the ultraviolet ray amount on a one-to-one basis is stored in the memory 701 in advance.
 上記紫外線量算出手段704は、上記算出された赤色成分変化量および緑色成分変化量に基づいて、上記算式により、あるいは、テーブルを参照して紫外線量を算出して、この紫外線量を表す電子情報を出力する。 The ultraviolet ray amount calculating means 704 calculates the ultraviolet ray amount by the above formula or referring to a table based on the calculated red component change amount and green component change amount, and electronic information representing the ultraviolet ray amount. Is output.
 このように、上記可視光透過層501を透過する外部可視光404,604の色合いを第2の色検知センサー502で検知して、この外部可視光404,604の色合と変色層401の色合とによって、紫外線量を算出することによって、外部より照射される外部可視光404,604の色合いに影響されずに、紫外線量を正確に算出することができる。 Thus, the second color detection sensor 502 detects the hue of the external visible light 404 and 604 that passes through the visible light transmission layer 501, and the hue of the external visible light 404 and 604 and the hue of the color changing layer 401 Thus, by calculating the amount of ultraviolet rays, the amount of ultraviolet rays can be accurately calculated without being affected by the hue of the external visible light 404 and 604 irradiated from the outside.
 より具体的に説明すると、図7に示すように、外部紫外線603が照射されると、変色層401は緑色になり、第1の色検知センサー102の出力の緑色成分G102が多く、赤色成分R102が減少する。(第1の色検知センサー102の緑色成分G102)≒(第2の色検知センサー502の緑色成分G502)であれば、変色層401での紫外線の最大受光状態を表す。 More specifically, as shown in FIG. 7, when the external ultraviolet ray 603 is irradiated, the discoloration layer 401 becomes green, the green component G102 of the output of the first color detection sensor 102 is large, and the red component R102. Decrease. If (green component G102 of the first color detection sensor 102) ≈ (green component G502 of the second color detection sensor 502), it represents the maximum light receiving state of the ultraviolet rays in the discoloration layer 401.
 ここでは、外部紫外線603の量の増大に応じて、変色層401が赤色から緑色に変化する場合について、説明したが、その他の変色層を用いて、ある色から他の色に変色するようにしても、同様のことが可能である。 Here, the case where the color changing layer 401 changes from red to green according to the increase in the amount of the external ultraviolet rays 603 has been described. However, the color changing from one color to another color is performed using another color changing layer. However, the same is possible.
 このように、第2実施形態の紫外線検出装置は、変色層401の色合いを検知する第1の色検知センサー102と、外部可視光404,604の色合いを検出する第2の色検知センサー502とを有して、第1の色検知センサー102の出力値を第2の色検知センサー502の出力値により補正していることになるので、外部入射光の色合いの変動に影響受けることなく、変色層401固有の紫外線による色合の変化分を算出して、精確に紫外線量を電子情報として得ることができる。 As described above, the ultraviolet detection device according to the second embodiment includes the first color detection sensor 102 that detects the hue of the discoloration layer 401, and the second color detection sensor 502 that detects the hue of the external visible light 404 and 604. Therefore, the output value of the first color detection sensor 102 is corrected by the output value of the second color detection sensor 502, so that the color change is not affected by the change in the hue of the external incident light. The amount of change in hue due to the ultraviolet rays unique to the layer 401 is calculated, and the amount of ultraviolet rays can be accurately obtained as electronic information.
 この第2実施形態の紫外線検出装置では、紫外線によって変色する変色層401の色合いを第1の色検知センサー102で検知しているので、光源としての発光素子等の電子部品を追加する必要がなく、したがって、小型、コンパクトで安価であるという利点を有する。 In the ultraviolet detection device according to the second embodiment, since the first color detection sensor 102 detects the hue of the discoloration layer 401 that changes color due to ultraviolet rays, there is no need to add an electronic component such as a light emitting element as a light source. Therefore, it has the advantage of being small, compact and inexpensive.
 特に、この第2実施形態の紫外線検出装置を、健康環境向け機能を有する携帯電話、携帯情報端末等の電子機器に搭載する場合、実装面積が小さいという利点を有する。 In particular, when the ultraviolet detection device according to the second embodiment is mounted on an electronic device such as a mobile phone or a portable information terminal having a function for a health environment, there is an advantage that the mounting area is small.
 また、この第2実施形態の紫外線検出装置は、紫外線量を直接測定するのではなくて、紫外線の量に応じて変色する変色層401の色合いを第1の色検知センサー102で検出するので、第1の色検知センサー102に安価な汎用品であるシリコン系のフォトダイオードを使用できて、安価であるという利点を有する。 In addition, the ultraviolet detection device according to the second embodiment does not directly measure the amount of ultraviolet rays, but detects the hue of the discoloration layer 401 that changes color according to the amount of ultraviolet rays by the first color detection sensor 102. An inexpensive general-purpose silicon photodiode can be used for the first color detection sensor 102, which has the advantage of being inexpensive.
 この第2実施形態では、第2の色検知センサー502を紫外線から保護するため、可視光透過層501を設けているが、可視光透過層501は必ずしも必要ではない。 In the second embodiment, the visible light transmission layer 501 is provided to protect the second color detection sensor 502 from ultraviolet rays, but the visible light transmission layer 501 is not always necessary.
(第3実施形態)
 この第3実施形態の紫外線検出装置は、図9に示すマイクロコンピュータ710を備え、他の構成は、図5から8に示す第2実施形態と同じである。したがって、これらの他の構成については、図5から8を援用して、詳しい説明は省略する。
(Third embodiment)
The ultraviolet detection device of the third embodiment includes a microcomputer 710 shown in FIG. 9, and the other configuration is the same as that of the second embodiment shown in FIGS. Therefore, about these other structures, FIGS. 5-8 is used and detailed description is abbreviate | omitted.
 この第3実施形態では、図9に示すように、マイクロコンピュータ710は、メモリ701と、比較手段702と、変化量算出手段703と、紫外線量算出手段704と、照度検出手段705と、係数補正手段706とを備える。これらのメモリ701、比較手段702、変化量算出手段703および紫外線量算出手段704の構成、機能は、第2実施形態のそれらと同じであり、照度検出手段705および係数補正手段706の構成、機能のみが第2実施形態と異なる。 In the third embodiment, as shown in FIG. 9, the microcomputer 710 includes a memory 701, a comparison unit 702, a change amount calculation unit 703, an ultraviolet ray amount calculation unit 704, an illuminance detection unit 705, and a coefficient correction. Means 706. The configurations and functions of the memory 701, the comparison unit 702, the change amount calculation unit 703, and the ultraviolet ray amount calculation unit 704 are the same as those in the second embodiment, and the configurations and functions of the illuminance detection unit 705 and the coefficient correction unit 706 are the same. Only differs from the second embodiment.
 上記照度検出手段705は、外部可視光404,604の照度を次のようにして算出する。すなわち、上記照度検出手段705は、第2の色検知センサー502から、外部可視光404,604の赤色成分R502、緑色成分G502および青色成分B502の各々の光量を表す出力値(R,G,Bで表す。)を受けると、
 照度=α×R+β×G+γ×B (α、β、γは係数)
として、照度を算出して、メモリ701に格納する。
The illuminance detection means 705 calculates the illuminance of the external visible light 404 and 604 as follows. That is, the illuminance detection means 705 outputs the output values (R, G, B) representing the respective light amounts of the red component R502, green component G502, and blue component B502 of the external visible light 404, 604 from the second color detection sensor 502. If you receive)
Illuminance = α × R + β × G + γ × B (α, β, γ are coefficients)
The illuminance is calculated and stored in the memory 701.
 このように、上記照度検出手段705によって、外部可視光404,604の照度を算出するから、外部照度が弱い環境であるか強い環境であるか判断することが可能になる。 Thus, since the illuminance of the external visible light 404, 604 is calculated by the illuminance detection means 705, it is possible to determine whether the external illuminance is weak or strong.
 一般的に、オフィース、百貨店などは400~1000lux程度であり、晴天昼太陽光では100,000lux程度の照度となる。このことから、紫外線量を確認する必要があるときの照度は範囲が限られており(晴天日の入り1時間前で1000lux以上)、300lux以下であれば、ほぼ紫外線が無い状態と判断できる。 Generally, offices, department stores, etc. are about 400 to 1000 lux, and the illuminance is about 100,000 lux in sunny daylight. From this, the range of the illuminance when it is necessary to check the amount of ultraviolet rays is limited (1000 lux or more 1 hour before the sunset), and if it is 300 lux or less, it can be determined that there is almost no ultraviolet rays.
 したがって、上記照度検出手段705で算出した照度が300lux以下のときの変色層401の色が、紫外線がない状態での変色層401の色である。 Therefore, the color of the color changing layer 401 when the illuminance calculated by the illuminance detecting means 705 is 300 lux or less is the color of the color changing layer 401 in the absence of ultraviolet rays.
 一方、上記変色層401の色は、経年変化等によって劣化する可能性があり、この色が劣化した変色層については、紫外線量を正確に検出るためには、補正をする必要がある。 On the other hand, the color of the discoloration layer 401 may be deteriorated due to secular change or the like, and the discoloration layer in which this color has deteriorated needs to be corrected in order to accurately detect the amount of ultraviolet rays.
 この第3実施形態では、照度が予め定めた値よりも低くて、紫外線が無い状態で、第1の色検知センサー102に、変色層401の色合いを検知させる。そして、上記係数補正手段706は、上記変色層401が劣化していないときの色合い表す初期値から、上記紫外線が無い状態での変色層401の色合いを表す第1の色検知センサー102の出力値の変動分を算出し、この変動分の大小に応じて、この変動分を補償するように、変化量算出手段703の紫外線量を算出するための算式の係数を補正する。 In the third embodiment, the first color detection sensor 102 is caused to detect the hue of the discoloration layer 401 in a state where the illuminance is lower than a predetermined value and there is no ultraviolet ray. The coefficient correction unit 706 outputs the output value of the first color detection sensor 102 representing the hue of the color changing layer 401 in the absence of ultraviolet light from the initial value representing the hue when the color changing layer 401 is not deteriorated. The fluctuation amount is calculated, and the coefficient of the formula for calculating the ultraviolet ray amount of the change amount calculating means 703 is corrected so as to compensate for the fluctuation amount according to the magnitude of the fluctuation amount.
 したがって、この第3実施形態の紫外線量検出装置は、変色層401が経年変化等によって劣化しても、変色層の劣化等の状態変化の影響を受けることなく、紫外線量を精確に電子情報として得ることができる。 Therefore, the ultraviolet ray amount detection device according to the third embodiment accurately detects the ultraviolet ray amount as electronic information without being affected by a state change such as deterioration of the discoloration layer even if the discoloration layer 401 deteriorates due to secular change or the like. Obtainable.
 また、この第3実施形態は、紫外線が少ない環境である低照度で、変色層401の色状態を確認し、補正を行っているので、紫外線の絶対量を精度高く検出することができる。 In the third embodiment, since the color state of the discoloration layer 401 is confirmed and corrected at low illuminance, which is an environment with less ultraviolet rays, the absolute amount of ultraviolet rays can be detected with high accuracy.
 なお、上述の算式の係数の補正に代えて、上記変動の大小に応じて、定数項を加減したり、異なる算式を用いたりして、補正するようにしてもよい。 It should be noted that instead of correcting the coefficient of the above formula, correction may be made by adding or subtracting a constant term or using a different formula according to the magnitude of the above fluctuation.
(第4実施形態)
 図10は、この発明の第4実施形態の電子機器の一例としての携帯情報端末の斜視図である。この第4実施形態において、図5から8に示す第2実施形態の構成要素と同一構成要素については、同一参照番号を付して、詳しい説明は省略する。
(Fourth embodiment)
FIG. 10 is a perspective view of a portable information terminal as an example of an electronic apparatus according to the fourth embodiment of the present invention. In the fourth embodiment, the same components as those of the second embodiment shown in FIGS. 5 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この携帯情報端末は、筐体801とトップパネル802とを備え、この筐体801内に第1および第2の色検知センサー102,502を設けている。 This portable information terminal includes a casing 801 and a top panel 802, and first and second color detection sensors 102 and 502 are provided in the casing 801.
 上記第1および第2の色検知センサー102,502に対向するトップパネル802の窓として機能する部分には、変色層401と可視光線透過層501とを設けている。上記変色層401は、第1の色検知センサー102に対向すると共に、筺体801の内外を仕切っている。 A portion that functions as a window of the top panel 802 that faces the first and second color detection sensors 102 and 502 is provided with a color changing layer 401 and a visible light transmitting layer 501. The discoloration layer 401 faces the first color detection sensor 102 and partitions the inside and outside of the housing 801.
 上記変色層401は、外部光600の紫外線量に応じて変色し、第1の色検知センサー102は、変色層401の色合いを、透過光601を介して検出する。また、上記第2の色検知センサー502は、可視光透過層501を通った透過光602を介して、外部光600の色合いを検知する。 The color changing layer 401 changes color according to the amount of ultraviolet light of the external light 600, and the first color detection sensor 102 detects the color of the color changing layer 401 via the transmitted light 601. The second color detection sensor 502 detects the hue of the external light 600 via the transmitted light 602 that has passed through the visible light transmission layer 501.
 上記筐体801は紫外線を透過しない材質から作られており、トップパネル802も紫外線を透過しないようになっている。また、上記変色層401および可視光透過層501も、殆ど紫外線を透過しない性質を有する。 The casing 801 is made of a material that does not transmit ultraviolet rays, and the top panel 802 also does not transmit ultraviolet rays. Further, the discoloration layer 401 and the visible light transmission layer 501 also have a property of hardly transmitting ultraviolet rays.
 したがって、上記第1および第2の色検知センサー102,502、その他の電子部品は、筐体801、トップパネル802、変色層401および可視光透過層501によって、紫外線から遮蔽されて、保護されるから、損傷、故障が防止される。 Therefore, the first and second color detection sensors 102 and 502 and other electronic components are shielded from ultraviolet rays and protected by the casing 801, the top panel 802, the color changing layer 401 and the visible light transmitting layer 501. Therefore, damage and failure are prevented.
(第5実施形態)
 図11はこの発明の第5実施形態の紫外線検出装置の構成図である。
(Fifth embodiment)
FIG. 11 is a block diagram of an ultraviolet detection device according to a fifth embodiment of the present invention.
 この紫外線検出装置は、図11に示すように、シリコン基板900上に第1および第2の色検知センサー911,912を互いに近接して設けている。上記1の色検知センサー911は、赤、緑、青のフィルターR,G,Bを有して、赤色光,緑色光,青色光を検出するフォトダイオートからなる第1のRGBセンサーフォトダイオードアレイであり、第2の色検知センサー912は、赤、緑、青のフィルターR,G,Bを有して、赤色光,緑色光,青色光を検出するフォトダイオートからなる第2のRGBセンサーフォトダイオードアレイである。 As shown in FIG. 11, this ultraviolet ray detection device is provided with first and second color detection sensors 911 and 912 in proximity to each other on a silicon substrate 900. The first color detection sensor 911 has a red, green, and blue filter R, G, and B, and is a first RGB sensor photodiode array that includes a photo diode that detects red light, green light, and blue light. The second color detection sensor 912 has a red, green and blue filters R, G and B, and is a second RGB sensor comprising a photo dye auto for detecting red light, green light and blue light. This is a photodiode array.
 上記第1のRGBセンサーフォトダイオードアレイ911の上には、紫外線の量に応じて変色する変色層901を設けている。 On the first RGB sensor photodiode array 911, a color changing layer 901 that changes color according to the amount of ultraviolet rays is provided.
 このように、一つのシリコン基板900上に第1および第2の色検知センサー(第1および第2のRGBセンサーフォトダイオードアレイ)911および912を互いに近接して配置して。両者を同じ状態に置いているから、第1の色検知センサー911の出力値に対する第2の色検知センサー912の出力値による補正の精度が高くなって、紫外線量の検出の精度が高くなっている。 As described above, the first and second color detection sensors (first and second RGB sensor photodiode arrays) 911 and 912 are arranged close to each other on one silicon substrate 900. Since both are placed in the same state, the accuracy of correction by the output value of the second color detection sensor 912 with respect to the output value of the first color detection sensor 911 is increased, and the accuracy of detection of the amount of ultraviolet light is increased. Yes.
 また、上記第1のRGBセンサーフォトダイオードアレイ911と第2のRGBセンサーフォトダイオードアレイ912とは別に、それらに近接して、赤外光を検知するフォトダイオードIR,IRを配置して、赤外光により発生する光電流を検出するようにしている。そして、上記第1および第2のRGBセンサーフォトダイオードアレイ911,912のフォトダイオートからのR,G,Bの出力値から、赤外光を検知するフォトダイオードIRの出力値を除いて、紫外線量を、より精度高く検出することができるようにしている。 Further, separately from the first RGB sensor photodiode array 911 and the second RGB sensor photodiode array 912, photodiodes IR, IR for detecting infrared light are arranged in the vicinity of the first RGB sensor photodiode array 912, and infrared rays are arranged. A photocurrent generated by light is detected. Then, by removing the output value of the photodiode IR that detects infrared light from the output values of R, G, and B from the photo diode auto of the first and second RGB sensor photodiode arrays 911 and 912, ultraviolet rays are obtained. The amount can be detected with higher accuracy.
 一般的に、太陽光などは紫外線以外にも赤外線成分を多く含んでおり、赤外線をフォトダイオードが受光した場合、図11に示すように、赤外線により発生したキャリアー950も光電流となり、R,G,Bの出力として算出される。携帯情報端末のトップパネル等に赤外線カット層を配置可能な場合、赤外線が第1および第2の色検知センサーまで進入することは少ないから、赤外線の影響は軽減されるが、赤外線カット層を配置できない場合、または、赤外線カット層が十分な特性を持っていない場合、第1および第2の色検知センサーに赤外線が進入し、誤差が発生する。前述した第1の色検知センサーと第2の色検知センサーとが、仮に、相互間に大きな距離を持って分離されている場合、赤外線の照射量が異なるため、補正の精度が低下するのである。 In general, sunlight or the like contains many infrared components in addition to ultraviolet rays, and when a photodiode receives infrared rays, as shown in FIG. 11, carriers 950 generated by infrared rays also become photocurrents, and R, G , B output. When an infrared cut layer can be placed on the top panel of a portable information terminal, the influence of infrared rays is reduced because infrared rays rarely enter the first and second color detection sensors, but an infrared cut layer is placed. If it is not possible, or if the infrared cut layer does not have sufficient characteristics, infrared light enters the first and second color detection sensors, and an error occurs. If the first color detection sensor and the second color detection sensor described above are separated at a large distance from each other, the irradiation amount of infrared rays is different, so that the correction accuracy is lowered. .
 図11に示す第5実施形態では、第1の色検知センサー911と第2の色検知センサー912とを互いに隣接させ、かつ、赤外線検知用のフォトダイオードIR,IRを設けて、第1および第2の色検知センサー911,912のR,G,Bの出力値から、赤外光による発生する出力値を除くことによって、赤外光の影響を受けることなく、紫外線量をより精度高く検出することができる。 In the fifth embodiment shown in FIG. 11, the first color detection sensor 911 and the second color detection sensor 912 are adjacent to each other, and photodiodes IR and IR for infrared detection are provided, and the first and first color detection sensors 911 and 912 are provided. By removing output values generated by infrared light from the output values of R, G, and B of the second color detection sensors 911, 912, the amount of ultraviolet rays is detected with higher accuracy without being affected by the infrared light. be able to.
 上記第1から第5の実施形態では、変色層からの透過光105,205によって、変色層101の色合いを検知するようにしていたが、変色層からの反射光によって、変色層の色合いを検出するようにしてもよい。 In the first to fifth embodiments, the hue of the color changing layer 101 is detected by the transmitted lights 105 and 205 from the color changing layer. However, the color of the color changing layer is detected by the reflected light from the color changing layer. You may make it do.
 101,401,901 変色層
 102,911 第1の色検知センサー
 501 可視光透過層
 502,912 第2の色検知センサー
 801 筺体
 802 トップパネル
101, 401, 901 Discoloration layer 102, 911 First color detection sensor 501 Visible light transmission layer 502, 912 Second color detection sensor 801 Housing 802 Top panel

Claims (8)

  1.  外部から受光した紫外線の量に応じて変色する変色層(101,401,901)と、
     上記変色層(101,401,901)の色を検知する第1の色検知センサー(102,911)と
    を備えて、
     上記第1の色検知センサー(102,911)で検出した上記変色層(101,401,901)の色合いにより紫外線の有無または紫外線量を検出することを特徴する紫外線検出装置。
    A color changing layer (101, 401, 901) that changes color according to the amount of ultraviolet rays received from the outside;
    A first color detection sensor (102, 911) for detecting the color of the discoloration layer (101, 401, 901),
    An ultraviolet ray detection apparatus, wherein the presence or absence of ultraviolet rays or the amount of ultraviolet rays is detected based on the hue of the discoloration layer (101, 401, 901) detected by the first color detection sensor (102, 911).
  2.  請求項1に記載の紫外線検出装置において、
     上記変色層(101,401,901)は外部可視光を透過し、上記第1の色検知センサー(102,911)は、上記変色層(101,401,901)の透過光の色を検出し、上記変色層(101,401,901)の色合いに応じた上記透過光の色合いにより紫外線の有無または紫外線量を検出することを特徴とする紫外線検出装置。
    The ultraviolet detection device according to claim 1,
    The discoloration layer (101, 401, 901) transmits external visible light, and the first color detection sensor (102, 911) detects the color of the transmitted light of the discoloration layer (101, 401, 901). An ultraviolet detecting device for detecting the presence or absence of ultraviolet rays or the amount of ultraviolet rays based on the color of the transmitted light corresponding to the color of the discoloration layer (101, 401, 901).
  3.  請求項1または2に記載の紫外線検出装置において、
     外部から受光した外部可視光の色を検出する第2の色検知センサー(502,912)を
    備え、
     外部可視光の色合いに応じた上記第2の色検知センサー(502,912)の出力値により、上記変色層(101,401,901)の色合いに応じた上記第1の色検知センサー(102,911)の出力値を補正することを特徴とする紫外線検出装置。
    In the ultraviolet detection device according to claim 1 or 2,
    A second color detection sensor (502, 912) for detecting the color of external visible light received from the outside;
    Based on the output value of the second color detection sensor (502, 912) corresponding to the hue of external visible light, the first color detection sensor (102, 102) corresponding to the hue of the discoloration layer (101, 401, 901) is obtained. 911) is corrected.
  4.  請求項3に記載の紫外線検出装置において、
     上記第1および第2の色検知センサー(102,911,502,912)は、赤色光、緑色光、青色光の量を検出するRGBカラーセンサーであり、
     上記第1の色検知センサー(102,911)が出力する赤(R)、緑(G)、青(B)の出力値を、上記第2の色検知センサー(502,912)が出力する赤(R)、緑(G)、青(B)の出力値により補正することを特徴とする紫外線検出装置。
    In the ultraviolet detection device according to claim 3,
    The first and second color detection sensors (102, 911, 502, 912) are RGB color sensors that detect the amount of red light, green light, and blue light,
    The red (R), green (G), and blue (B) output values output by the first color detection sensor (102, 911) are output by the second color detection sensor (502, 912). An ultraviolet ray detection apparatus, wherein correction is performed based on output values of (R), green (G), and blue (B).
  5.  請求項3または4に記載の紫外線検出装置において、
     外部可視光の照度を検出する照度検出手段(705)を備え、
     上記照度検出手段(705)が検出した照度が予め定めたられた値よりも低いときの上記第1の色検知センサー(102,911)の出力値の第1の色検知センサー(102,911)の初期値からの変動分に基づいて、紫外線量の算出を補正することを特徴とする紫外線検出装置。
    In the ultraviolet detection device according to claim 3 or 4,
    Illuminance detection means (705) for detecting the illuminance of external visible light is provided,
    The first color detection sensor (102, 911) of the output value of the first color detection sensor (102, 911) when the illuminance detected by the illuminance detection means (705) is lower than a predetermined value. An ultraviolet ray detecting device that corrects the calculation of the amount of ultraviolet rays based on a variation from the initial value of the.
  6.  請求項1から5のいずれか1つに記載の紫外線検出装置において、
     筺体(801)を備え、
     この筺体(801)内に第1の色検知センサー(102)が設けられ、
     上記変色層(401)は上記筺体(801)の内外を仕切って、上記第1の色検知センサー(102)を紫外線から保護することを特徴とする紫外線検出装置。
    In the ultraviolet detection device according to any one of claims 1 to 5,
    A housing (801) is provided,
    A first color detection sensor (102) is provided in the housing (801),
    The ultraviolet detection device, wherein the discoloration layer (401) partitions the inside (outside) of the housing (801) to protect the first color detection sensor (102) from ultraviolet rays.
  7.  請求項3から5のいずれか1つに記載の紫外線検出装置において、
     上記第1および第2の色検出センサー(102,911,502,912)は、夫々、赤、緑、青のフィルターを有し、
     上記赤、緑、青のフィルターは、同一シリコン基板(900)上に形成され、かつ、隣接して配置されていることを特徴とする紫外線検出装置。
    In the ultraviolet detection device according to any one of claims 3 to 5,
    The first and second color detection sensors (102, 911, 502, 912) have red, green, and blue filters, respectively.
    The ultraviolet detection device, wherein the red, green and blue filters are formed on the same silicon substrate (900) and arranged adjacent to each other.
  8.  請求項1から7のいずれか1つに記載の紫外線センサーを備えることを特徴とする電子機器。 An electronic apparatus comprising the ultraviolet sensor according to any one of claims 1 to 7.
PCT/JP2013/061801 2012-06-27 2013-04-22 Ultraviolet detection device and electronic apparatus WO2014002591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-144533 2012-06-27
JP2012144533A JP2015165184A (en) 2012-06-27 2012-06-27 Ultraviolet ray detection device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2014002591A1 true WO2014002591A1 (en) 2014-01-03

Family

ID=49782767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061801 WO2014002591A1 (en) 2012-06-27 2013-04-22 Ultraviolet detection device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2015165184A (en)
WO (1) WO2014002591A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241547A (en) * 2015-10-10 2016-01-13 京东方科技集团股份有限公司 Display panel, display device and method for detection intensity of ultraviolet ray
CN113932918A (en) * 2021-10-12 2022-01-14 张舒羽 Wearable ultraviolet radiation monitoring device and monitoring method
US11313726B1 (en) * 2021-03-23 2022-04-26 Lumenlabs Llc Safe UV-C dosimeter
US11338050B2 (en) 2020-08-24 2022-05-24 Lumenlabs Llc Safe UV C bulb assembly
US11357879B2 (en) 2020-08-24 2022-06-14 Lumenlabs Llc Far UV C power supply

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400062A4 (en) * 2016-01-04 2020-03-25 L'Oréal Device and system for personal uv exposure measurements
KR102073142B1 (en) * 2018-09-13 2020-02-04 인하대학교 산학협력단 UV intensity sensor using Photorheological Fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286726A (en) * 1985-06-14 1986-12-17 Omron Tateisi Electronics Co Color discriminating element
JPH0161626U (en) * 1987-10-15 1989-04-19
JPH01312427A (en) * 1988-06-10 1989-12-18 Osamu Okumura Light sensor apparatus with photochromic glass
JP2005321371A (en) * 2004-04-09 2005-11-17 Sadao Yamamoto Sheet for measuring ultraviolet ray transmission amount, device for measuring ultraviolet ray transmission amount, and method for measuring ultraviolet ray transmission using the sheet
JP2010243252A (en) * 2009-04-02 2010-10-28 Nec Saitama Ltd Ultraviolet dose detection method, ultraviolet sensor, and mobile electronic apparatus with ultraviolet sensor
JP2011013515A (en) * 2009-07-03 2011-01-20 J&K Car Electronics Corp Display device, program and display method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286726A (en) * 1985-06-14 1986-12-17 Omron Tateisi Electronics Co Color discriminating element
JPH0161626U (en) * 1987-10-15 1989-04-19
JPH01312427A (en) * 1988-06-10 1989-12-18 Osamu Okumura Light sensor apparatus with photochromic glass
JP2005321371A (en) * 2004-04-09 2005-11-17 Sadao Yamamoto Sheet for measuring ultraviolet ray transmission amount, device for measuring ultraviolet ray transmission amount, and method for measuring ultraviolet ray transmission using the sheet
JP2010243252A (en) * 2009-04-02 2010-10-28 Nec Saitama Ltd Ultraviolet dose detection method, ultraviolet sensor, and mobile electronic apparatus with ultraviolet sensor
JP2011013515A (en) * 2009-07-03 2011-01-20 J&K Car Electronics Corp Display device, program and display method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241547A (en) * 2015-10-10 2016-01-13 京东方科技集团股份有限公司 Display panel, display device and method for detection intensity of ultraviolet ray
CN105241547B (en) * 2015-10-10 2018-05-18 京东方科技集团股份有限公司 A kind of display panel, display device and the method for detecting uitraviolet intensity
US11338050B2 (en) 2020-08-24 2022-05-24 Lumenlabs Llc Safe UV C bulb assembly
US11357879B2 (en) 2020-08-24 2022-06-14 Lumenlabs Llc Far UV C power supply
US11478563B2 (en) 2020-08-24 2022-10-25 Lumenlabs Llc Highly efficient UV C source
US11576991B2 (en) 2020-08-24 2023-02-14 Lumenlabs Llc Low voltage far UV C bulb assembly
US11730845B2 (en) 2020-08-24 2023-08-22 Lumenlabs Llc Wide angle far UV C fixture
US11752228B2 (en) 2020-08-24 2023-09-12 Lumenlabs Llc Highly efficient UV C bulb with multifaceted filter
US11890391B2 (en) 2020-08-24 2024-02-06 Lumenlabs Llc Multi-head far UV C fixture
US11313726B1 (en) * 2021-03-23 2022-04-26 Lumenlabs Llc Safe UV-C dosimeter
WO2022203882A1 (en) * 2021-03-23 2022-09-29 Lumenlabs Llc Safe uv-c dosimeter
CN113932918A (en) * 2021-10-12 2022-01-14 张舒羽 Wearable ultraviolet radiation monitoring device and monitoring method

Also Published As

Publication number Publication date
JP2015165184A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
WO2014002591A1 (en) Ultraviolet detection device and electronic apparatus
US8274051B1 (en) Method and device for optoelectronic sensors with IR blocking filter
US7435943B1 (en) Color sensor with infrared correction having a filter layer blocking a portion of light of visible spectrum
US8530819B2 (en) Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end
KR102071325B1 (en) Optical sensor sensing illuminance and proximity
US9188482B2 (en) Optical sensor with special discrimination
US20120132809A1 (en) Radiation sensor
US9627424B2 (en) Photodiodes for ambient light sensing and proximity sensing
CN109642950A (en) Method for the optical sensor module of flight time measurement and for manufacturing optical sensor module
US10488264B2 (en) Determining spectral emission characteristics of incident radiation
WO2009093746A1 (en) Spectrally compensating a light sensor
JP2009010331A (en) Photodetector with function of dark current correction
WO2015151651A1 (en) Photodetector and mobile electronic device
KR20150046261A (en) Light sensor system and method for processing light sensor signals
JP5947526B2 (en) Photodetector
KR20100126379A (en) Color detector having area scaled photodetectors
EP3404379B1 (en) Optical device for angle measurements
CN116324347A (en) Ambient radiation sensing
EP3043159B1 (en) Method for processing light sensor signals and light sensor system
JP4432837B2 (en) Semiconductor optical sensor device
CN113325485A (en) Infrared measuring device
WO2021130155A1 (en) Integrated uv radiation sensor
KR20190038861A (en) A sensor device for measuring the intensity of light from the direction as well as measuring the direction in which the light source, particularly sunlight,
US20090026564A1 (en) Semiconductor component, lighting unit for matrix screens, and method for manufacturing a semiconductor component
JP6757183B2 (en) Receiver and portable electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP