WO2014002315A1 - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
WO2014002315A1
WO2014002315A1 PCT/JP2012/083494 JP2012083494W WO2014002315A1 WO 2014002315 A1 WO2014002315 A1 WO 2014002315A1 JP 2012083494 W JP2012083494 W JP 2012083494W WO 2014002315 A1 WO2014002315 A1 WO 2014002315A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
area
finger
distance
coordinate
Prior art date
Application number
PCT/JP2012/083494
Other languages
French (fr)
Japanese (ja)
Inventor
貴夫 今井
広晃 福岡
吉川 治
Original Assignee
株式会社東海理化電機製作所
Smk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所, Smk株式会社 filed Critical 株式会社東海理化電機製作所
Publication of WO2014002315A1 publication Critical patent/WO2014002315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the embodiment of the present invention relates to an operating device.
  • This information processing apparatus includes a plurality of horizontal electrodes and vertical electrodes, and detection resolution adjusting means for switching detection resolution in accordance with the facing distance between the object and the display panel surface.
  • This detection resolution adjusting means switches the detection resolution by thinning out the number of horizontal electrodes and vertical electrodes to be detected according to the facing distance between the object and the display panel surface.
  • a finger touches the frame, an area that cannot be operated is generated between the finger and the frame, and the operation is performed near the area due to the difference in the thickness of the finger.
  • the feeling may be different. Even if the resolution is switched so that the fingertip detection resolution is increased according to the distance from the display panel as in the conventional information processing apparatus, the problem is not solved.
  • an object of the present invention is to perform an operation capable of suppressing a difference in operation feeling (detection sensitivity) due to a difference in size of a detection target such as a finger or a touch pen near a frame surrounding the operation surface.
  • One embodiment of the present invention includes a detection unit that includes a frame provided around the operation surface, detects a contact of a detection target with the operation surface, and outputs a detection signal, and a detection signal output from the detection unit.
  • a determination unit that calculates a contact area of the detection target based on the contact area and determines a distance from the frame to the reference point of the detection target when the detection target contacts the operation surface and the frame;
  • the operation surface is divided into a detection region that detects the contact of the detection object and a non-detection region that does not detect the contact based on the determined distance, and the first coordinate system set on the operation surface is defined as the second detection region.
  • a coordinate conversion unit that converts the coordinate system into the coordinate system.
  • an operating device it is possible to suppress a difference in operation feeling (detection sensitivity) due to a difference in size of a detection target such as a finger or a touch pen near a frame surrounding an operation surface.
  • An operating device can be provided.
  • FIG. 1A is a perspective view of an operating device according to an embodiment.
  • FIG. 1B is a block diagram of the operating device.
  • FIG. 1C is a table relating to a table stored in the determination unit.
  • FIG. 2A is a schematic diagram for explaining a detection region and a non-detection region of the controller device according to the embodiment.
  • FIG. 2B is a schematic diagram of a cross section taken along line II (b) -II (b) shown in FIG. 2A when the finger thickness is standard, as viewed from the direction of the arrow.
  • FIG. 2C is a schematic view of a cross section taken along line II (c) -II (c) shown in FIG.
  • FIG. 3A is a schematic diagram for explaining coordinate values in the x-axis direction according to the embodiment.
  • FIG. 3B is a schematic diagram when the interval between coordinate values is changed.
  • FIG. 3C is a schematic diagram when the coordinate values are equally spaced.
  • FIG. 4 is a flowchart according to the embodiment.
  • the operating device has a frame provided around the operation surface, detects a contact of the detection target with the operation surface and outputs a detection signal, and detection output from the detection unit
  • a determination unit that calculates a contact area of the detection object based on the signal, and determines a distance from a frame to a reference point of the detection object when the detection object contacts the operation surface and the frame from the contact area; Based on the distance determined by the determination unit, the operation surface is divided into a detection region that detects the contact of the detection object and a non-detection region that does not detect the contact, and the first coordinate system set on the operation surface is used as the detection region.
  • a coordinate conversion unit for converting to a second coordinate system.
  • FIG. 1A is a perspective view of an operating device according to an embodiment
  • FIG. 1B is a block diagram of the operating device
  • FIG. 1C is a table relating to a table stored in a determination unit.
  • the ratio between parts may differ from the actual ratio.
  • the operating device 1 is provided with a frame 12 on the surface 100 of the main body 10 so as to surround the operating surface 20.
  • the operating device 1 can operate a connected electronic device, for example.
  • the operation device 1 detects an operation by, for example, touching the operation surface 20 with a detection object such as a part of the operator's body (for example, a finger) or a dedicated pen, or approaching the detection surface.
  • a detection object such as a part of the operator's body (for example, a finger) or a dedicated pen, or approaching the detection surface.
  • an instruction such as movement or selection of the cursor displayed on the electronic device, dragging or dropping of the displayed icon can be given.
  • the operator can operate the connected electronic device by operating the operation surface 20.
  • an operation with a finger as a detection target will be described.
  • This operation device 1 mainly has a frame 12 provided around the operation surface 20, and serves as a detection unit that detects contact of a finger with the operation surface 20 and outputs capacitance information as a detection signal.
  • the touch area of the finger is calculated based on the touch panel 2 and the detection signal output from the touch panel 2, and the distance from the frame 12 to the reference point of the detection target when the finger contacts the operation surface 20 and the frame 12 is calculated.
  • the operation surface 20 is divided into a determination unit 3 that determines from the contact area, a detection region 201 that detects finger contact based on the distance determined by the determination unit 3, and a non-detection region 202 that does not detect contact.
  • a coordinate conversion unit 4 that converts the first coordinate system set to 20 into the second coordinate system of the detection region 201.
  • the touch panel 2 has a capacitance type that outputs, as a detection signal, a change in current inversely proportional to the distance between the sensor wire 21 and the sensor wire 22 due to the finger approaching the operation surface 20. It is a touch sensor.
  • a known resistive film type, infrared type, SAW (Surface Acoustic Wave) type touch panel, or the like can be used.
  • the touch panel 2 includes a plurality of sensor wires 21 and sensor wires 22, and a touch panel control unit 23.
  • the sensor wire 21 and the sensor wire 22 are formed using, for example, ITO (Indium Tin Oxide).
  • the sensor wire 21 and the sensor wire 22 are arranged along the vertical direction and the horizontal direction of the paper surface as shown in FIG. 1B.
  • the horizontal direction of the paper surface of FIG. 1B is the x axis
  • the vertical direction is the y axis
  • the upper left of the operation surface 20 of the touch panel 2 is the origin.
  • This xy coordinate system is the first coordinate system.
  • m sensor wires 21 are arranged at equal intervals. This m is, for example, a positive integer.
  • n sensor wires 22 are arranged at equal intervals. This n is, for example, a positive integer.
  • the sensor wires 21 arranged along the x axis are electrically insulated from the sensor wires 22 arranged along the y axis, for example.
  • the touch panel control unit 23 is configured to read the capacitance in the order of the sensor wire 21 in the x-axis direction from the left to the right in FIG. 1B and the sensor wire 22 in the y-axis direction from the top to the bottom of the paper.
  • the touch panel control unit 23 is configured to read out the capacitance based on a control signal output from the control unit 5.
  • the touch panel control unit 23 is configured to output, for example, the read capacitance value (capacitance value) of each sensor wire 21 to the determination unit 3 and the control unit 5 as capacitance information.
  • this touch panel 2 constitutes an absolute operation system in which the display screen of the display device and the operation surface 20 are 1: 1. Accordingly, the resolution in the x-axis direction and the resolution in the y-axis direction of the touch panel 2 are set to have the same ratio as the aspect ratio of the display screen as an example.
  • the resolution is set so that the resolution in the x-axis direction is 256 and the resolution in the y-axis direction is 144.
  • a coordinate value in the x-axis direction and a coordinate value in the y-axis direction of the xy coordinate system are set. That is, as an example, the coordinate value of the x axis is 0 to 255, and the coordinate value of the y axis is 0 to 144.
  • the touch panel 2 may be configured to include a display device on the side opposite to the operation surface 20, for example.
  • FIG. 2A is a schematic diagram for explaining a detection region and a non-detection region of the controller device according to the embodiment
  • FIG. 2B is a diagram illustrating II (b) shown in FIG. ) -II (b) is a schematic view of a cross section viewed from the direction of the arrow
  • FIG. 2C is a cross-sectional view taken along line II (c) -II ( c) It is the schematic diagram of the cross section which looked at the cross section cut
  • the discriminating unit 3 is configured to determine finger contact when the capacitance based on the acquired capacitance information is equal to or greater than a predetermined threshold value. This contact includes the case where the finger is close to the operation surface 20 to the extent that the capacitance is equal to or greater than the threshold value, as described above. That is, the determination of contact may be made even if the finger is not in contact with the operation surface 20.
  • the determination unit 3 is configured to calculate the contact area of the finger after determining the contact of the finger.
  • the discriminating unit 3 has a table 30 to be described later in which the contact area and the distance are associated with each other, and discriminates the distance based on the calculated contact area and the table 30. That is, as shown in FIGS. 2B and 2C, the determination unit 3 detects the detection object from the frame 12 when the detection object contacts the operation surface 20 and the frame 12 based on the capacitance information acquired from the touch panel 2. The distance to the reference point is determined. Since the detection target in the present embodiment is the finger F, the distance from the frame 12 to the reference point of the finger F is, for example, the thickness of the finger F estimated from the contact area in contact with the operation surface 20. Is proportional to
  • the reference point of the finger F is, for example, the center of gravity obtained from the contact area when the model finger F ideally contacts the frame 12 and the operation surface 20, and the frame 12 having the largest contact area. And a midpoint of the width of the modeled finger F can be considered. In the present embodiment, as an example, the midpoint of the width of the finger F when the modeled finger F comes into contact with the frame 12 is set as a reference point.
  • the contact area S is calculated by a known method such as a method of calculating using a plurality of coordinates obtained from a plurality of capacitances that are equal to or greater than a threshold value.
  • the table 30 may be calculated
  • the determination unit 3 is not limited to the configuration using the table 30, for example, and may be configured to obtain a non-detection region 202 and the like to be described later by calculation.
  • the determination unit 3 may be configured to determine the distance using the average value of the contact area S during the period in which the touch panel 2 detects a finger contact. In this case, the determination unit 3 determines that the finger has touched the operation surface 20 and calculates an average of a plurality of contact areas S calculated during a period until it is determined that the finger has moved away from the operation surface 20.
  • the table 30 is, for example, associating the detected finger contact area S with the finger thickness as shown in FIG. 1C.
  • the thickness of the finger is determined as “thin”.
  • the thickness of the finger is determined as “standard”.
  • the thickness of the finger is determined to be “thick”. It is assumed that 0 ⁇ a, b, c.
  • the determination unit 3 outputs the determined result to the coordinate conversion unit 4 as determination information.
  • the determination unit 3 divides the operation surface 20 into a detection area 201 that detects a finger and a non-detection area 202 that does not detect the finger according to the thickness of the finger.
  • identification portion 3 if it is determined the thickness of the finger and the "narrow", a non-detection region width is W A.
  • This non-detection area width is the width of the non-detection area 202 indicated by the oblique lines in FIG. 2A. This width is W A ⁇ W B ⁇ W C.
  • the non-detection region 202 is set so as to include the region, and is estimated from the contact area S of the finger F.
  • the width of the non-detection area 202 is set as the width from the frame 12.
  • the thickness of the finger is determined based on, for example, capacitance information in which a finger contact is first detected. In other words, when the operation is continued, the thickness of the finger is determined based on the capacitance information in which the operation is first detected. Therefore, as an example, the non-detection area 202 is not changed as long as the operation continues.
  • the determination unit 3 sets the first coordinate system to the second distance corresponding to the first distance.
  • the discrimination information to be converted into the coordinate system is output to the coordinate conversion unit 4, and the non-detection area based on the second distance.
  • the capacitance information detected and output at 202 is compared with a predetermined second threshold value and the capacitance information is large, the first coordinate system is set according to the second distance.
  • the discrimination information to be converted into the second coordinate system may be output to the coordinate conversion unit 4.
  • the capacitance information is the second threshold. If it is less than or equal to the value, it is converted to a second coordinate corresponding to the first distance.
  • the capacitance detected at one electrode is affected not only by the size of the finger, but also by differences in body conductivity and dielectric properties depending on the individual. Therefore, as an example, even when an operation is performed with a thin finger, there is a possibility that a large capacitance exceeding the threshold value used to determine the thickness of the finger is detected and it is determined that the finger is thick. is there. Therefore, as an example, the determination unit 3 determines that the finger is thick, and the capacitance information output from the electrode located in the non-detection region 202 where the finger is difficult to touch is based on a predetermined second threshold value.
  • the controller device 1 When the condition that the finger is large is satisfied, the controller device 1 is configured to output discrimination information indicating that the finger is thick, so that the controller device 1 converts the finger into a thick finger coordinate system regardless of whether the finger is standard or thin. It becomes possible to prevent erroneous conversion. This process may be performed according to the number of finger sizes to be determined.
  • the determination unit 2 may be configured to perform the above determination when the finger position when determining the finger size is near the frame 12.
  • FIG. 3A is a schematic diagram for explaining coordinate values in the x-axis direction according to the embodiment
  • FIG. 3B is a schematic diagram when the interval between coordinate values is changed
  • FIG. 3C is a coordinate value It is a schematic diagram when the intervals of are equal.
  • FIG. 3C is a modification of the embodiment.
  • the coordinate conversion unit 4 is configured to set a coordinate system based on the detection area 201 set by the determination unit 3.
  • the coordinate conversion unit 4 is configured to output the set coordinate system information to the control unit 5 as coordinate conversion information.
  • the coordinate conversion unit 4 When the contact of the finger F is not detected, that is, in the initial state, the coordinate conversion unit 4 has the entire operation surface 20, that is, the detectable area 200 as the detection area 201, as shown in FIG. 3A. Therefore, the coordinate values of the x axis and the y axis between the frames 12 are set according to the resolution. Accordingly, the coordinate conversion unit 4 has an xy coordinate system (first coordinate) in which the x-axis has a coordinate value of 0 to 255 between the frames 12, and the y-axis has a coordinate value of 0 to 143 between the frames 12. 1 coordinate system).
  • the coordinate conversion unit 4 uses the xy coordinate system set on the operation surface 20 as the x 1 y 1 coordinate system (see FIG. 3B). (Second coordinate system). By this conversion, the coordinate conversion unit 4 performs coordinate conversion so that the resolution (x axis is 256 and y axis is 144) set in the detectable region 200 does not change even in the detection region 201. That is, the resolution in the x 1 axis direction in the x 1 y 1 coordinate system is 256, and the resolution in the y 1 axis direction is 144.
  • the coordinate transformation unit 4, x 1 axis has a coordinate value of from 0 to 255, y 1 axis, sets the x 1 y 1 coordinate system having a coordinate value of 0-143.
  • the coordinate conversion unit 4 detects the detection area into a predetermined first area (change area 201 a) inside the detection area 201 and the other second area (standard area 201 b). 201, and the interval between the coordinates of the first region is changed to be different from the interval between the coordinates of the second region.
  • the distance between the coordinates of the standard area 201b is made equal to the distance between the coordinates before the change by narrowing the distance between the coordinates around the detection area 201. That is, since the size of the detection region 201 changes according to the thickness of the finger, when the coordinates of the detection region 201 are evenly allocated, the coordinate interval when the finger is small is wider than the coordinate interval when the finger is thick. Become. Therefore, when the operator changes the finger and operates, it is conceivable that the operation feeling varies depending on the finger used.
  • the coordinate conversion unit 4 can set the coordinate interval of the standard region 201b so as not to change depending on the size of the finger by adjusting the interval of the change region 201a. Accordingly, the coordinate conversion unit 4 performs coordinate conversion so that the coordinate interval of the standard area 201b of the converted second coordinate system is set as a reference interval with the coordinate interval of the xy coordinate system shown in FIG. 3A as a reference.
  • the width of the change area 201a is set to be about half the width of the determined finger.
  • the width of the change area 201a is not limited to about half of the width of the finger.
  • the width of the change area 201a may be set from an allowable coordinate interval, and by setting the standard area 201b that does not depend on the thickness of the finger. The remaining area may be set as the change area 201a.
  • the coordinate conversion unit 4 sets a change area 201c, which is a coordinate system (x 2 y 2 coordinate system) in which the coordinate intervals of the detection area 201 are equal intervals, as shown in FIG. 3C. It may be configured. When set in this way, the operation feeling is unified in the entire detection area 201.
  • the control unit 5 includes, for example, a CPU (Central Processing Unit) that performs operations and processes on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. Microcomputer.
  • ROM Read Only Memory
  • a program for operating the control unit 5 is stored.
  • the RAM is used as a storage area for temporarily storing calculation results and the like.
  • the control unit 5 has means for generating a clock signal therein, and operates based on this clock signal.
  • the control unit 5 determines an operation based on the capacitance information acquired from the touch panel 2, the threshold value, and the coordinate conversion information acquired from the coordinate conversion unit 4, and the operation surface on which the operation is performed after the operation is determined. Twenty coordinates are calculated and output to the connected electronic device as operation information. The calculation of the coordinates is performed based on a predetermined period corresponding to the clock signal, as in the case of reading out the capacitance.
  • the control unit 5 is configured to generate a control signal based on the predetermined cycle and output the control signal to the touch panel control unit 23.
  • control unit 5 calculates a finger detection point in the first coordinate system based on the capacitance information. This calculation is performed, for example, by a method using a known weighted average.
  • the control unit 5 converts the calculated coordinate values into the coordinates of the second coordinate system.
  • the control unit 5 is configured to generate and output operation information including the coordinate value of this coordinate.
  • the control unit 5 generates a control signal based on a predetermined cycle and outputs the control signal to the touch panel control unit 23.
  • the touch panel control unit 23 reads the capacitance based on the acquired control signal, generates capacitance information (S1), and outputs the capacitance information to the determination unit 3.
  • the determination unit 3 determines the presence or absence of contact based on the acquired capacitance information.
  • the determination unit 3 determines the thickness of the finger when it is determined that there is a finger contact, that is, when Yes is established in step 2 (S3).
  • the determination unit 3 compares the calculated contact area S with the table 30 to determine the thickness of the finger, the determination unit 3 sets the width of the non-detection region 202 based on the determined thickness of the finger (S4).
  • the determination unit 3 generates determination information including information on the width of the non-detection region 202 and outputs the determination information to the coordinate conversion unit 4.
  • the coordinate conversion unit 4 divides the operation surface 20 into a detection area 201 that detects finger contact and a non-detection area 202 that does not detect contact based on the discrimination information, and uses the first coordinate system set on the operation surface 20.
  • the detection area 201 is converted to the second coordinate system (S5).
  • the coordinate conversion unit 4 generates coordinate conversion information including information on the second coordinate system and outputs the coordinate conversion information to the control unit 5.
  • the control unit 5 calculates a finger detection point based on the capacitance information acquired from the touch panel 2. Subsequently, the control unit 5 converts the calculated detection point into coordinates in the coordinate system of the detection area 201 based on the coordinate conversion information, generates operation information including the calculated coordinate information, and outputs the operation information to the electronic device. (S6).
  • the controller device 1 according to the present embodiment can suppress the difference in operation feeling caused by the difference in the size of the detection target. Specifically, since the controller device 1 sets the detection area 201 according to the thickness of the finger that has touched the operation surface 20, it is not necessary to touch an area that is difficult to operate near the frame 12 for operation. Operation feeling is improved.
  • the controller device 1 since the controller device 1 includes the table 30 that associates the contact area with the distance from the frame 12 to the reference point of the finger, the time required for the processing is shortened compared to a table 30 that does not have a table. Since a control unit capable of performing a simple process is not required, it is manufactured at a low cost.
  • the controller device 1 divides the detection area 201 into the change area 201a and the standard area 201b, and changes the coordinate interval of the change area 201a and the coordinate interval of the standard area 201b so that the coordinate intervals are equalized. Compared with the case where the operation is performed, since the operation in the standard area 201b does not depend on the thickness of the finger, it is possible to suppress a difference in operation feeling when the operation is performed by changing the finger.
  • the present invention can be applied to an operation device in which a difference in operation feeling (detection sensitivity) may occur due to a difference in size of a detection target such as a finger or a touch pen in the vicinity of a frame surrounding the operation surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention suppresses the occurrence of differences in operational feeling (detection sensitivity) caused by differences in the size of a detection subject such as a finger or a stylus pen at the vicinity of a frame encircling an operation surface. The operation device (1) is primarily configured in gross outline from: a touch panel (2) that has a frame (12) provided to the periphery of an operation surface (20) and that outputs a detection signal by detecting the touch of a finger to the operation surface (20); a discrimination unit (3) that calculates the contact area of the finger on the basis of the detection signal output from the touch panel (2) and, from the contact area, discriminates the distance from the frame (12) to the reference point of the detection subject when the finger is contacting the operation surface (20) and the frame (12); and a coordinate conversion unit (4) that, on the basis of the distance discriminated by the discrimination unit (3), divides the operation surface (20) into a detection region (201) at which finger contact is detected and a non-detection region (202) at which contact is not detected, and converts a first coordinate system set at the operation surface (20) to a second coordinate system of the detection region (201).

Description

操作装置Operating device
 本発明の実施の形態は、操作装置に関する。 The embodiment of the present invention relates to an operating device.
 従来の技術として指先が表示パネル面に近づくにつれて指先の検知分解能が高くなるように分解能を切り替える情報処理装置が知られている(例えば、特許文献1参照。)。 As a conventional technique, an information processing apparatus is known that switches resolution so that the detection resolution of the fingertip increases as the fingertip approaches the display panel surface (see, for example, Patent Document 1).
 この情報処理装置は、複数の横電極及び縦電極と、対象物と表示パネル面との対峙距離に応じて検知分解能を切り替える検知分解能調整手段と、を備えている。この検知分解能調整手段は、対象物と表示パネル面との対峙距離に応じて、検知させる横電極及び縦電極の数を間引くことで、検知分解能の切り替えを行う。 This information processing apparatus includes a plurality of horizontal electrodes and vertical electrodes, and detection resolution adjusting means for switching detection resolution in accordance with the facing distance between the object and the display panel surface. This detection resolution adjusting means switches the detection resolution by thinning out the number of horizontal electrodes and vertical electrodes to be detected according to the facing distance between the object and the display panel surface.
特開2011―138540号公報JP 2011-138540 A
 操作面を囲むように枠が設けられた表示パネルの場合、指が枠に触れて、指と枠の間に操作できない領域が生じ、当該領域付近において指の太さの差に起因して操作感(検出感度)が異なる可能性がある。従来の情報処理装置のように、表示パネルとの距離に応じて指先の検知分解能が高くなるように分解能を切り替えたとしても、当該問題は解決されない。 In the case of a display panel with a frame that surrounds the operation surface, a finger touches the frame, an area that cannot be operated is generated between the finger and the frame, and the operation is performed near the area due to the difference in the thickness of the finger. The feeling (detection sensitivity) may be different. Even if the resolution is switched so that the fingertip detection resolution is increased according to the distance from the display panel as in the conventional information processing apparatus, the problem is not solved.
 従って、本発明の目的は、操作面を囲む枠付近において指、タッチペン等の検出対象物の大きさの差に起因して操作感(検出感度)の違いが生じることを抑制することができる操作装置を提供することにある。 Therefore, an object of the present invention is to perform an operation capable of suppressing a difference in operation feeling (detection sensitivity) due to a difference in size of a detection target such as a finger or a touch pen near a frame surrounding the operation surface. To provide an apparatus.
 本発明の一態様は、操作面の周囲に設けられた枠を有し、操作面に対する検出対象物の接触を検出して検出信号を出力する検出部と、検出部から出力された検出信号に基づいて検出対象物の接触面積を算出し、検出対象物が操作面と枠とに接触する際の枠から検出対象物の基準点までの距離を、接触面積から判別する判別部と、判別部より判別された距離に基づいて検出対象物の接触を検出する検出領域と接触を検出しない非検出領域とに操作面を分け、操作面に設定された第1の座標系を検出領域の第2の座標系に変換する座標変換部と、を備えた操作装置を提供する。 One embodiment of the present invention includes a detection unit that includes a frame provided around the operation surface, detects a contact of a detection target with the operation surface, and outputs a detection signal, and a detection signal output from the detection unit. A determination unit that calculates a contact area of the detection target based on the contact area and determines a distance from the frame to the reference point of the detection target when the detection target contacts the operation surface and the frame; The operation surface is divided into a detection region that detects the contact of the detection object and a non-detection region that does not detect the contact based on the determined distance, and the first coordinate system set on the operation surface is defined as the second detection region. And a coordinate conversion unit that converts the coordinate system into the coordinate system.
 本発明の一態様によれば、操作面を囲む枠付近において指、タッチペン等の検出対象物の大きさの差に起因して操作感(検出感度)の違いが生じることを抑制することができる操作装置を提供することができる。 According to one embodiment of the present invention, it is possible to suppress a difference in operation feeling (detection sensitivity) due to a difference in size of a detection target such as a finger or a touch pen near a frame surrounding an operation surface. An operating device can be provided.
図1Aは、実施の形態に係る操作装置の斜視図である。FIG. 1A is a perspective view of an operating device according to an embodiment. 図1Bは、操作装置のブロック図である。FIG. 1B is a block diagram of the operating device. 図1Cは、判別部が格納するテーブルに関する表である。FIG. 1C is a table relating to a table stored in the determination unit. 図2Aは、実施の形態に係る操作装置の検出領域と非検出領域とを説明するための概略図である。FIG. 2A is a schematic diagram for explaining a detection region and a non-detection region of the controller device according to the embodiment. 図2Bは、指の太さが標準の場合における図2Aに示すII(b)-II(b)線で切断した断面を矢印方向から見た断面の模式図である。FIG. 2B is a schematic diagram of a cross section taken along line II (b) -II (b) shown in FIG. 2A when the finger thickness is standard, as viewed from the direction of the arrow. 図2Cは、指の太さが標準より太い場合における図2Aに示すII(c)-II(c)線で切断した断面を矢印方向から見た断面の模式図である。FIG. 2C is a schematic view of a cross section taken along line II (c) -II (c) shown in FIG. 2A when the thickness of the finger is thicker than the standard, as viewed from the arrow direction. 図3Aは、実施の形態に係るx軸方向の座標値について説明するための模式図である。FIG. 3A is a schematic diagram for explaining coordinate values in the x-axis direction according to the embodiment. 図3Bは、座標値の間隔が変更された場合の模式図である。FIG. 3B is a schematic diagram when the interval between coordinate values is changed. 図3Cは、座標値の間隔が等間隔である場合の模式図である。FIG. 3C is a schematic diagram when the coordinate values are equally spaced. 図4は、実施の形態に係るフローチャートである。FIG. 4 is a flowchart according to the embodiment.
(実施の形態の要約)
 実施の形態に係る操作装置は、操作面の周囲に設けられた枠を有し、操作面に対する検出対象物の接触を検出して検出信号を出力する検出部と、検出部から出力された検出信号に基づいて検出対象物の接触面積を算出し、検出対象物が操作面と枠とに接触する際の枠から検出対象物の基準点までの距離を、接触面積から判別する判別部と、判別部より判別された距離に基づいて検出対象物の接触を検出する検出領域と接触を検出しない非検出領域とに操作面を分け、操作面に設定された第1の座標系を検出領域の第2の座標系に変換する座標変換部と、を備える。
(Summary of embodiment)
The operating device according to the embodiment has a frame provided around the operation surface, detects a contact of the detection target with the operation surface and outputs a detection signal, and detection output from the detection unit A determination unit that calculates a contact area of the detection object based on the signal, and determines a distance from a frame to a reference point of the detection object when the detection object contacts the operation surface and the frame from the contact area; Based on the distance determined by the determination unit, the operation surface is divided into a detection region that detects the contact of the detection object and a non-detection region that does not detect the contact, and the first coordinate system set on the operation surface is used as the detection region. A coordinate conversion unit for converting to a second coordinate system.
[実施の形態]
(操作装置の構成)
 図1Aは、実施の形態に係る操作装置の斜視図であり、図1Bは、操作装置のブロック図であり、図1Cは、判別部が格納するテーブルに関する表である。なお、実施の形態に係る各図において、部品と部品との比率は、実際の比率とは異なる場合がある。
[Embodiment]
(Configuration of operation device)
1A is a perspective view of an operating device according to an embodiment, FIG. 1B is a block diagram of the operating device, and FIG. 1C is a table relating to a table stored in a determination unit. In each drawing according to the embodiment, the ratio between parts may differ from the actual ratio.
 操作装置1は、図1Aに示すように、本体10の表面100に、操作面20を囲むように枠12が設けられている。 As shown in FIG. 1A, the operating device 1 is provided with a frame 12 on the surface 100 of the main body 10 so as to surround the operating surface 20.
 操作装置1は、例えば、接続された電子機器の操作を行うことができるものである。操作装置1は、例えば、操作者の体の一部(例えば、指)や専用のペン等の検出対象物で操作面20に接触する、又は検出される程度に近接することにより操作を検出し、この操作に応じて電子機器に表示されたカーソルの移動や選択、表示されたアイコンのドラッグ、ドロップ等の指示を行うことができるように構成されている。操作者は、例えば、操作面20に操作を行うことにより、接続された電子機器の操作を行うことが可能となる。本実施の形態では、検出対象物としての指による操作について説明する。 The operating device 1 can operate a connected electronic device, for example. The operation device 1 detects an operation by, for example, touching the operation surface 20 with a detection object such as a part of the operator's body (for example, a finger) or a dedicated pen, or approaching the detection surface. In response to this operation, an instruction such as movement or selection of the cursor displayed on the electronic device, dragging or dropping of the displayed icon can be given. For example, the operator can operate the connected electronic device by operating the operation surface 20. In the present embodiment, an operation with a finger as a detection target will be described.
 この操作装置1は、主に、操作面20の周囲に設けられた枠12を有し、操作面20に対する指の接触を検出して検出信号としての静電容量情報を出力する検出部としてのタッチパネル2と、タッチパネル2から出力された検出信号に基づいて指の接触面積を算出し、指が操作面20と枠12とに接触する際の枠12から検出対象物の基準点までの距離を、接触面積から判別する判別部3と、判別部3より判別された距離に基づいて指の接触を検出する検出領域201と接触を検出しない非検出領域202とに操作面20を分け、操作面20に設定された第1の座標系を検出領域201の第2の座標系に変換する座標変換部4と、を備えて概略構成されている。 This operation device 1 mainly has a frame 12 provided around the operation surface 20, and serves as a detection unit that detects contact of a finger with the operation surface 20 and outputs capacitance information as a detection signal. The touch area of the finger is calculated based on the touch panel 2 and the detection signal output from the touch panel 2, and the distance from the frame 12 to the reference point of the detection target when the finger contacts the operation surface 20 and the frame 12 is calculated. The operation surface 20 is divided into a determination unit 3 that determines from the contact area, a detection region 201 that detects finger contact based on the distance determined by the determination unit 3, and a non-detection region 202 that does not detect contact. And a coordinate conversion unit 4 that converts the first coordinate system set to 20 into the second coordinate system of the detection region 201.
(タッチパネル2の構成)
 本実施の形態に係るタッチパネル2は、例えば、操作面20に指が近づくことによる、センサワイヤ21及びセンサワイヤ22と指との距離に反比例した電流の変化を検出信号として出力する静電容量方式のタッチセンサである。なおタッチパネル2は、例えば、周知の抵抗膜方式、赤外線方式、SAW(Surface Acoustic Wave)方式等のタッチパネルを用いることが可能である。
 
(Configuration of touch panel 2)
The touch panel 2 according to the present embodiment, for example, has a capacitance type that outputs, as a detection signal, a change in current inversely proportional to the distance between the sensor wire 21 and the sensor wire 22 due to the finger approaching the operation surface 20. It is a touch sensor. As the touch panel 2, for example, a known resistive film type, infrared type, SAW (Surface Acoustic Wave) type touch panel, or the like can be used.
 このタッチパネル2は、図1Bに示すように、複数のセンサワイヤ21及びセンサワイヤ22と、タッチパネル制御部23と、を備えて概略構成されている。 As shown in FIG. 1B, the touch panel 2 includes a plurality of sensor wires 21 and sensor wires 22, and a touch panel control unit 23.
 センサワイヤ21及びセンサワイヤ22は、例えば、ITO(スズドープ酸化インジウム:Indium Tin Oxide)を用いて形成される。
 
The sensor wire 21 and the sensor wire 22 are formed using, for example, ITO (Indium Tin Oxide).
 センサワイヤ21及びセンサワイヤ22は、図1Bに示すように、紙面の縦方向及び横方向に沿って並んでいる。本実施の形態では、図1Bの紙面の横方向をx軸、縦方向をy軸とし、タッチパネル2の操作面20の左上を原点としている。このxy座標系は、第1の座標系である。 The sensor wire 21 and the sensor wire 22 are arranged along the vertical direction and the horizontal direction of the paper surface as shown in FIG. 1B. In the present embodiment, the horizontal direction of the paper surface of FIG. 1B is the x axis, the vertical direction is the y axis, and the upper left of the operation surface 20 of the touch panel 2 is the origin. This xy coordinate system is the first coordinate system.
 x軸方向には、例えば、m個のセンサワイヤ21が等間隔で並んでいる。このmは、例えば、正の整数である。 In the x-axis direction, for example, m sensor wires 21 are arranged at equal intervals. This m is, for example, a positive integer.
 y軸方向には、例えば、n個のセンサワイヤ22が等間隔で並んでいる。このnは、例えば、正の整数である。 In the y-axis direction, for example, n sensor wires 22 are arranged at equal intervals. This n is, for example, a positive integer.
 x軸に沿って並べられたセンサワイヤ21は、例えば、y軸に沿って並べられたセンサワイヤ22と電気的に絶縁されている。 The sensor wires 21 arranged along the x axis are electrically insulated from the sensor wires 22 arranged along the y axis, for example.
 タッチパネル制御部23は、図1Bの紙面左から右のx軸方向のセンサワイヤ21、紙面上から下のy軸方向のセンサワイヤ22の順番に静電容量を読み出すように構成されている。タッチパネル制御部23は、制御部5から出力される制御信号に基づいて静電容量を読み出すように構成されている。 The touch panel control unit 23 is configured to read the capacitance in the order of the sensor wire 21 in the x-axis direction from the left to the right in FIG. 1B and the sensor wire 22 in the y-axis direction from the top to the bottom of the paper. The touch panel control unit 23 is configured to read out the capacitance based on a control signal output from the control unit 5.
 またタッチパネル制御部23は、例えば、読み出した各センサワイヤ21の静電容量の値(静電容量値)を静電容量情報として判別部3及び制御部5に出力するように構成されている。 The touch panel control unit 23 is configured to output, for example, the read capacitance value (capacitance value) of each sensor wire 21 to the determination unit 3 and the control unit 5 as capacitance information.
 このタッチパネル2は、一例として、表示装置の表示画面と、操作面20と、が1:1となる絶対操作系を構成する。従ってタッチパネル2のx軸方向の分解能、及びy軸方向の分解能は、一例として、表示画面のアスペクト比と同じ比となるように設定されている。 As an example, this touch panel 2 constitutes an absolute operation system in which the display screen of the display device and the operation surface 20 are 1: 1. Accordingly, the resolution in the x-axis direction and the resolution in the y-axis direction of the touch panel 2 are set to have the same ratio as the aspect ratio of the display screen as an example.
 従って分解能は、一例として、表示画面のアスペクト比が16:9である場合、x軸方向の分解能が256、y軸方向の分解能が144となるように設定されている。この分解能に合わせて、xy座標系のx軸方向の座標値、及びy軸方向の座標値が、設定される。つまり、一例として、x軸の座標値は0~255となり、y軸の座標値は0~144となる。 Therefore, for example, when the aspect ratio of the display screen is 16: 9, the resolution is set so that the resolution in the x-axis direction is 256 and the resolution in the y-axis direction is 144. In accordance with this resolution, a coordinate value in the x-axis direction and a coordinate value in the y-axis direction of the xy coordinate system are set. That is, as an example, the coordinate value of the x axis is 0 to 255, and the coordinate value of the y axis is 0 to 144.
 なおタッチパネル2は、例えば、操作面20とは反対側に表示装置を備える構成であっても良い。 Note that the touch panel 2 may be configured to include a display device on the side opposite to the operation surface 20, for example.
(判別部3の構成)
 図2Aは、実施の形態に係る操作装置の検出領域と非検出領域とを説明するための概略図であり、図2Bは、指Fの太さが標準の場合における図2Aに示すII(b)-II(b)線で切断した断面を矢印方向から見た断面の模式図であり、図2Cは、指Fの太さが標準より太い場合における図2Aに示すII(c)-II(c)線で切断した断面を矢印方向から見た断面の模式図である。
(Configuration of the discriminator 3)
FIG. 2A is a schematic diagram for explaining a detection region and a non-detection region of the controller device according to the embodiment, and FIG. 2B is a diagram illustrating II (b) shown in FIG. ) -II (b) is a schematic view of a cross section viewed from the direction of the arrow, and FIG. 2C is a cross-sectional view taken along line II (c) -II ( c) It is the schematic diagram of the cross section which looked at the cross section cut | disconnected by the line from the arrow direction.
 判別部3は、取得した静電容量情報に基づく静電容量が、予め定められたしきい値以上である場合、指の接触を判定するように構成されている。この接触とは、上述したように、しきい値以上の静電容量となる程度に、指が操作面20に近接した場合を含んでいる。つまり接触の判定は、指が操作面20に接していなくてもなされる可能性がある。判別部3は、指の接触を判定した後、指の接触面積を算出するように構成されている。 The discriminating unit 3 is configured to determine finger contact when the capacitance based on the acquired capacitance information is equal to or greater than a predetermined threshold value. This contact includes the case where the finger is close to the operation surface 20 to the extent that the capacitance is equal to or greater than the threshold value, as described above. That is, the determination of contact may be made even if the finger is not in contact with the operation surface 20. The determination unit 3 is configured to calculate the contact area of the finger after determining the contact of the finger.
 判別部3は、接触面積と距離とを関連付けた後述するテーブル30を有し、算出した接触面積とテーブル30とに基づいて距離を判別する。つまり判別部3は、図2B及び図2Cに示すように、タッチパネル2から取得した静電容量情報に基づいて検出対象物が操作面20と枠12とに接触する際の枠12から検出対象物の基準点までの距離を判別するように構成されている。本実施の形態における検出対象物は、指Fであるから、この枠12から指Fの基準点までの距離は、一例として、操作面20に接触した接触面積から推定される指Fの太さに比例する。 The discriminating unit 3 has a table 30 to be described later in which the contact area and the distance are associated with each other, and discriminates the distance based on the calculated contact area and the table 30. That is, as shown in FIGS. 2B and 2C, the determination unit 3 detects the detection object from the frame 12 when the detection object contacts the operation surface 20 and the frame 12 based on the capacitance information acquired from the touch panel 2. The distance to the reference point is determined. Since the detection target in the present embodiment is the finger F, the distance from the frame 12 to the reference point of the finger F is, for example, the thickness of the finger F estimated from the contact area in contact with the operation surface 20. Is proportional to
 なお、この指Fの基準点とは、一例として、モデルとした指Fが理想的に枠12と操作面20とに接触した際の接触面積から得られた重心、当該接触面積の最も枠12に近い点、及びモデルとした指Fの幅の中点等が考えられる。本実施の形態では、一例として、モデルとした指Fが枠12に接触した際の指Fの幅の中点を基準点とするものとする。 The reference point of the finger F is, for example, the center of gravity obtained from the contact area when the model finger F ideally contacts the frame 12 and the operation surface 20, and the frame 12 having the largest contact area. And a midpoint of the width of the modeled finger F can be considered. In the present embodiment, as an example, the midpoint of the width of the finger F when the modeled finger F comes into contact with the frame 12 is set as a reference point.
 この接触面積Sの算出は、一例として、しきい値以上となる複数の静電容量から求めた複数の座標を用いて算出する方法等の周知の方法が用いられる。またテーブル30は、例えば、実験及びシミュレーション等によって求められても良い。さらに判別部3は、例えば、テーブル30を用いた構成に限定されず、計算により後述する非検出領域202等を求めるように構成されても良い。 For example, the contact area S is calculated by a known method such as a method of calculating using a plurality of coordinates obtained from a plurality of capacitances that are equal to or greater than a threshold value. Moreover, the table 30 may be calculated | required by experiment, simulation, etc., for example. Furthermore, the determination unit 3 is not limited to the configuration using the table 30, for example, and may be configured to obtain a non-detection region 202 and the like to be described later by calculation.
 また判別部3は、タッチパネル2が指の接触を検出している期間中の接触面積Sの平均値を用いて距離を判別するように構成されても良い。この場合、判別部3は、指が操作面20に接触したと判定し、指が操作面20から離れたと判定するまでの期間に算出された複数の接触面積Sの平均を算出する。 Further, the determination unit 3 may be configured to determine the distance using the average value of the contact area S during the period in which the touch panel 2 detects a finger contact. In this case, the determination unit 3 determines that the finger has touched the operation surface 20 and calculates an average of a plurality of contact areas S calculated during a period until it is determined that the finger has moved away from the operation surface 20.
 テーブル30は、例えば、図1Cに示すように、検出された指の接触面積Sと指の太さとを関連付けたものである。一例として、接触面積SがS≦aの場合、指の太さは「細い」と判別される。一例として、接触面積Sがa<S<bの場合、指の太さは「標準」と判別される。一例として、接触面積Sがb≦Sの場合、指の太さは「太い」と判別される。なお、0<a,b,cであるものとする。判別部3は、判別した結果を判別情報として座標変換部4に出力する。 The table 30 is, for example, associating the detected finger contact area S with the finger thickness as shown in FIG. 1C. As an example, when the contact area S is S ≦ a, the thickness of the finger is determined as “thin”. As an example, when the contact area S is a <S <b, the thickness of the finger is determined as “standard”. As an example, when the contact area S is b ≦ S, the thickness of the finger is determined to be “thick”. It is assumed that 0 <a, b, c. The determination unit 3 outputs the determined result to the coordinate conversion unit 4 as determination information.
 判別部3は、図2Aに示すように、指の太さに応じて操作面20を、指を検出する検出領域201と、検出しない非検出領域202と、に分ける。 As shown in FIG. 2A, the determination unit 3 divides the operation surface 20 into a detection area 201 that detects a finger and a non-detection area 202 that does not detect the finger according to the thickness of the finger.
 具体的には、判別部3は、指の太さを「細い」と判別した場合、非検出領域幅をWAとする。また判別部3は、指の太さを「標準」と判別した場合、非検出領域幅をWBとする。判別部3は、指の太さを「太い」と判別した場合、非検出領域幅をWCとする。この非検出領域幅とは、図2Aに斜線で示す非検出領域202の幅である。この幅は、WA<WB<WCである。 Specifically, identification portion 3, if it is determined the thickness of the finger and the "narrow", a non-detection region width is W A. The identification portion 3, if it is determined the thickness of the finger and the "standard", a non-detection region width is W B. If the determination unit 3 determines that the finger thickness is “thick”, the non-detection region width is set to W C. This non-detection area width is the width of the non-detection area 202 indicated by the oblique lines in FIG. 2A. This width is W A <W B <W C.
 ここで操作者の指Fが枠12に接触する場合、図2Bに示すように、指Fと枠12の間に、指Fで操作し難い領域が出現する。当該領域は、指Fで容易に触れることができないので、当該領域内に選択可能なアイコンやカーソルが位置する場合、操作がし難くなる。非検出領域202とは、当該領域を含むように設定されるものであり、指Fの接触面積Sから推定されるものである。非検出領域202の幅は、枠12からの幅として設定される。 Here, when the operator's finger F comes into contact with the frame 12, an area that is difficult to operate with the finger F appears between the finger F and the frame 12, as shown in FIG. 2B. Since the area cannot be easily touched with the finger F, when a selectable icon or cursor is located in the area, the operation becomes difficult. The non-detection region 202 is set so as to include the region, and is estimated from the contact area S of the finger F. The width of the non-detection area 202 is set as the width from the frame 12.
 なお、指の太さの判別は、例えば、指の接触が最初に検出された静電容量情報に基づいて行われる。つまり指の太さは、操作が継続している場合、その操作が最初に検出された静電容量情報に基づいて判別される。従って非検出領域202は、一例として、操作が継続する限り変更されないものとする。 Note that the thickness of the finger is determined based on, for example, capacitance information in which a finger contact is first detected. In other words, when the operation is continued, the thickness of the finger is determined based on the capacitance information in which the operation is first detected. Therefore, as an example, the non-detection area 202 is not changed as long as the operation continues.
 また判別部3は、第1の距離の判別に用いた接触面積Sが予め定められた第1のしきい値以下である場合、第1の座標系を第1の距離に応じた第2の座標系に変換させる判別情報を座標変換部4に出力し、第2の距離の判別に用いた接触面積Sが第1のしきい値より大きい場合、さらに第2の距離に基づいた非検出領域202で検出されて出力された静電容量情報と予め定められた第2のしきい値とを比較して当該静電容量情報が大きい場合に、第1の座標系を第2の距離に応じた第2の座標系に変換させる判別情報を座標変換部4に出力するように構成されても良い。なお、一例として、第1の距離とは、指が標準の際の距離であり、第2の距離とは、指が太い際の距離である場合、当該静電容量情報が第2のしきい値以下である場合は、第1の距離に応じた第2の座標に変換される。 In addition, when the contact area S used for determining the first distance is equal to or less than a predetermined first threshold value, the determination unit 3 sets the first coordinate system to the second distance corresponding to the first distance. When the contact area S used to determine the second distance is larger than the first threshold value, the discrimination information to be converted into the coordinate system is output to the coordinate conversion unit 4, and the non-detection area based on the second distance When the capacitance information detected and output at 202 is compared with a predetermined second threshold value and the capacitance information is large, the first coordinate system is set according to the second distance. The discrimination information to be converted into the second coordinate system may be output to the coordinate conversion unit 4. As an example, when the first distance is a distance when the finger is standard, and the second distance is a distance when the finger is thick, the capacitance information is the second threshold. If it is less than or equal to the value, it is converted to a second coordinate corresponding to the first distance.
 具体的には、一の電極において検出される静電容量は、指の大きさの影響以外に、個人に依存する身体の導電性、誘電性の違い等によっても影響を受ける。従って、一例として、細い指で操作がなされた場合であっても、指の太さの判別に用いられるしきい値を超える大きい静電容量が検出され、指が太いと判別される可能性がある。そこで判別部3は、一例として、指が太いと判別され、さらに指が接触し難い非検出領域202に位置する電極から出力される静電容量情報が予め定められた第2のしきい値よりも大きいという条件を満たす場合に、指が太いとする判別情報を出力する構成とすることで、操作装置1は、指が標準、又は細いにも関わらず、太い指用の座標系に変換する誤変換を防止することが可能となる。なおこの処理は、判別される指の大きさの数に応じて行われても良い。また判別部2は、指の大きさの判別を行う際の指の位置が、枠12の近くである場合に、上記の判別を行うように構成されても良い。 Specifically, the capacitance detected at one electrode is affected not only by the size of the finger, but also by differences in body conductivity and dielectric properties depending on the individual. Therefore, as an example, even when an operation is performed with a thin finger, there is a possibility that a large capacitance exceeding the threshold value used to determine the thickness of the finger is detected and it is determined that the finger is thick. is there. Therefore, as an example, the determination unit 3 determines that the finger is thick, and the capacitance information output from the electrode located in the non-detection region 202 where the finger is difficult to touch is based on a predetermined second threshold value. When the condition that the finger is large is satisfied, the controller device 1 is configured to output discrimination information indicating that the finger is thick, so that the controller device 1 converts the finger into a thick finger coordinate system regardless of whether the finger is standard or thin. It becomes possible to prevent erroneous conversion. This process may be performed according to the number of finger sizes to be determined. The determination unit 2 may be configured to perform the above determination when the finger position when determining the finger size is near the frame 12.
(座標変換部4の構成)
 図3Aは、実施の形態に係るx軸方向の座標値について説明するための模式図であり、図3Bは、座標値の間隔が変更された場合の模式図であり、図3Cは、座標値の間隔が等間隔である場合の模式図である。なお図3Cは、実施の形態の変形例である。
(Configuration of coordinate conversion unit 4)
FIG. 3A is a schematic diagram for explaining coordinate values in the x-axis direction according to the embodiment, FIG. 3B is a schematic diagram when the interval between coordinate values is changed, and FIG. 3C is a coordinate value It is a schematic diagram when the intervals of are equal. FIG. 3C is a modification of the embodiment.
 座標変換部4は、判別部3によって設定された検出領域201に基づいて座標系を設定するように構成されている。また座標変換部4は、設定した座標系の情報を座標変換情報として制御部5に出力するように構成されている。 The coordinate conversion unit 4 is configured to set a coordinate system based on the detection area 201 set by the determination unit 3. The coordinate conversion unit 4 is configured to output the set coordinate system information to the control unit 5 as coordinate conversion information.
 指Fの接触が検出されていない場合、つまり初期状態では、座標変換部4は、図3Aに示すように、操作面20の全体、つまり検出可能領域200が検出領域201となる。よって枠12間のx軸及びy軸の座標値は、分解能に応じて設定される。従って座標変換部4は、x軸が、枠12の間で、0~255の座標値を有し、y軸が、枠12の間で、0~143の座標値を有するxy座標系(第1の座標系)を設定する。 When the contact of the finger F is not detected, that is, in the initial state, the coordinate conversion unit 4 has the entire operation surface 20, that is, the detectable area 200 as the detection area 201, as shown in FIG. 3A. Therefore, the coordinate values of the x axis and the y axis between the frames 12 are set according to the resolution. Accordingly, the coordinate conversion unit 4 has an xy coordinate system (first coordinate) in which the x-axis has a coordinate value of 0 to 255 between the frames 12, and the y-axis has a coordinate value of 0 to 143 between the frames 12. 1 coordinate system).
 また標準的な太さの指Fが検出された場合、座標変換部4は、図3Bに示すように、操作面20に設定されたxy座標系を検出領域201のx11座標系(第2の座標系)に変換する。座標変換部4は、この変換により、検出可能領域200に設定された分解能(x軸が256、y軸が144。)が検出領域201でも変わらないように座標変換を行う。つまりx11座標系におけるx1軸方向の分解能は、256であり、y1軸方向の分解能は、144である。従って座標変換部4は、x1軸が、0~255の座標値を有し、y1軸が、0~143の座標値を有するx11座標系を設定する。 When a finger F having a standard thickness is detected, the coordinate conversion unit 4 uses the xy coordinate system set on the operation surface 20 as the x 1 y 1 coordinate system (see FIG. 3B). (Second coordinate system). By this conversion, the coordinate conversion unit 4 performs coordinate conversion so that the resolution (x axis is 256 and y axis is 144) set in the detectable region 200 does not change even in the detection region 201. That is, the resolution in the x 1 axis direction in the x 1 y 1 coordinate system is 256, and the resolution in the y 1 axis direction is 144. Thus the coordinate transformation unit 4, x 1 axis, has a coordinate value of from 0 to 255, y 1 axis, sets the x 1 y 1 coordinate system having a coordinate value of 0-143.
 さらに座標変換部4は、図3Bに示すように、検出領域201の内側の予め定められた第1の領域(変更領域201a)とそれ以外の第2の領域(標準領域201b)とに検出領域201を分け、第1の領域の座標の間隔と第2の領域の座標の間隔とを異なるように変更する。 Further, as shown in FIG. 3B, the coordinate conversion unit 4 detects the detection area into a predetermined first area (change area 201 a) inside the detection area 201 and the other second area (standard area 201 b). 201, and the interval between the coordinates of the first region is changed to be different from the interval between the coordinates of the second region.
 これは、検出領域201の周囲の座標の間隔を狭めることにより、標準領域201bの座標の間隔を変更前の座標の間隔と等しくするためである。つまり、指の太さに応じて検出領域201の大きさが変わるので、検出領域201の座標を均等に割り付けると、指が小さい場合の座標の間隔が、指が太い場合の座標の間隔より広くなる。そのため、操作者が指を変えて操作した場合、使う指によって操作感が異なることが考えられる。 This is because the distance between the coordinates of the standard area 201b is made equal to the distance between the coordinates before the change by narrowing the distance between the coordinates around the detection area 201. That is, since the size of the detection region 201 changes according to the thickness of the finger, when the coordinates of the detection region 201 are evenly allocated, the coordinate interval when the finger is small is wider than the coordinate interval when the finger is thick. Become. Therefore, when the operator changes the finger and operates, it is conceivable that the operation feeling varies depending on the finger used.
 しかし座標変換部4は、変更領域201aの間隔を調整することにより、標準領域201bの座標の間隔を指の大小で変わらないように設定することが可能となる。従って座標変換部4は、図3Aに示すxy座標系の座標の間隔を基準とし、変換した第2の座標系の標準領域201bの座標の間隔を基準の間隔とするように座標変換を行う。 However, the coordinate conversion unit 4 can set the coordinate interval of the standard region 201b so as not to change depending on the size of the finger by adjusting the interval of the change region 201a. Accordingly, the coordinate conversion unit 4 performs coordinate conversion so that the coordinate interval of the standard area 201b of the converted second coordinate system is set as a reference interval with the coordinate interval of the xy coordinate system shown in FIG. 3A as a reference.
 ここで、変更領域201aの幅は、一例として、判別された指の幅の半分程度となるように設定される。なお変更領域201aの幅は、指の幅の半分程度に限定されず、一例として、許容される座標の間隔から設定されても良く、指の太さに依存しない標準領域201bを設定することで残りの領域を変更領域201aとして設定されても良い。 Here, as an example, the width of the change area 201a is set to be about half the width of the determined finger. Note that the width of the change area 201a is not limited to about half of the width of the finger. For example, the width of the change area 201a may be set from an allowable coordinate interval, and by setting the standard area 201b that does not depend on the thickness of the finger. The remaining area may be set as the change area 201a.
(変形例)
 なお変形例として、座標変換部4は、図3Cに示すように、検出領域201の座標の間隔を等間隔とする座標系(x22座標系)である変更領域201cを設定するように構成されても良い。このように設定された場合、検出領域201の全体で操作感が統一されることとなる。
(Modification)
As a modification, the coordinate conversion unit 4 sets a change area 201c, which is a coordinate system (x 2 y 2 coordinate system) in which the coordinate intervals of the detection area 201 are equal intervals, as shown in FIG. 3C. It may be configured. When set in this way, the operation feeling is unified in the entire detection area 201.
(制御部5の構成)
 制御部5は、例えば、記憶されたプログラムに従って、取得したデータに演算、加工等を行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)等から構成されるマイクロコンピュータである。このROMには、例えば、制御部5が動作するためのプログラムが格納されている。RAMは、例えば、一時的に演算結果等を格納する記憶領域として用いられる。また制御部5は、その内部にクロック信号を生成する手段を有し、このクロック信号に基づいて動作を行う。
 
(Configuration of control unit 5)
The control unit 5 includes, for example, a CPU (Central Processing Unit) that performs operations and processes on acquired data according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. Microcomputer. In this ROM, for example, a program for operating the control unit 5 is stored. For example, the RAM is used as a storage area for temporarily storing calculation results and the like. Further, the control unit 5 has means for generating a clock signal therein, and operates based on this clock signal.
 制御部5は、タッチパネル2から取得した静電容量情報、しきい値及び座標変換部4から取得した座標変換情報に基づいて操作を判定し、操作が判定された後、操作がなされた操作面20の座標を算出し、操作情報として接続された電子機器に出力するように構成されている。この座標の算出は、静電容量の読み出しと同様に、クロック信号に応じた予め定められた周期に基づいて行われる。また制御部5は、この予め定められた周期に基づいて制御信号を生成してタッチパネル制御部23に出力するように構成されている。 The control unit 5 determines an operation based on the capacitance information acquired from the touch panel 2, the threshold value, and the coordinate conversion information acquired from the coordinate conversion unit 4, and the operation surface on which the operation is performed after the operation is determined. Twenty coordinates are calculated and output to the connected electronic device as operation information. The calculation of the coordinates is performed based on a predetermined period corresponding to the clock signal, as in the case of reading out the capacitance. The control unit 5 is configured to generate a control signal based on the predetermined cycle and output the control signal to the touch panel control unit 23.
 また制御部5は、静電容量情報に基づいて第1の座標系における指の検出点を算出する。この算出は、一例として、周知の加重平均を用いた方法等により行われる。制御部5は、算出した座標値を第2の座標系の座標に変換する。制御部5は、この座標の座標値を含む操作情報を生成して出力するように構成されている。 Also, the control unit 5 calculates a finger detection point in the first coordinate system based on the capacitance information. This calculation is performed, for example, by a method using a known weighted average. The control unit 5 converts the calculated coordinate values into the coordinates of the second coordinate system. The control unit 5 is configured to generate and output operation information including the coordinate value of this coordinate.
 以下に、本実施の形態に係る操作装置1の動作を、各図を参照しながら図4のフローチャートに従って説明する。 Hereinafter, the operation of the controller device 1 according to the present embodiment will be described according to the flowchart of FIG. 4 with reference to the drawings.
(動作)
 制御部5は、予め定められた周期に基づいて制御信号を生成してタッチパネル制御部23に出力する。タッチパネル制御部23は、取得した制御信号に基づいて静電容量を読み出して静電容量情報を生成し(S1)、判別部3に出力する。
(Operation)
The control unit 5 generates a control signal based on a predetermined cycle and outputs the control signal to the touch panel control unit 23. The touch panel control unit 23 reads the capacitance based on the acquired control signal, generates capacitance information (S1), and outputs the capacitance information to the determination unit 3.
 判別部3は、取得した静電容量情報に基づいて接触の有無を判定する。判別部3は、指の接触が有ったと判定する、つまりステップ2においてYesが成立すると、指の太さを判別する(S3)。 The determination unit 3 determines the presence or absence of contact based on the acquired capacitance information. The determination unit 3 determines the thickness of the finger when it is determined that there is a finger contact, that is, when Yes is established in step 2 (S3).
 判別部3は、算出した接触面積Sとテーブル30とを比較して指の太さを判別すると、判別した指の太さに基づいて非検出領域202の幅を設定する(S4)。判別部3は、非検出領域202の幅の情報を含む判別情報を生成し、座標変換部4に出力する。 When the determination unit 3 compares the calculated contact area S with the table 30 to determine the thickness of the finger, the determination unit 3 sets the width of the non-detection region 202 based on the determined thickness of the finger (S4). The determination unit 3 generates determination information including information on the width of the non-detection region 202 and outputs the determination information to the coordinate conversion unit 4.
 座標変換部4は、判別情報に基づいて指の接触を検出する検出領域201と接触を検出しない非検出領域202とに操作面20を分け、操作面20に設定された第1の座標系を検出領域201の第2の座標系に変換する(S5)。座標変換部4は、第2の座標系の情報を含む座標変換情報を生成し、制御部5に出力する。 The coordinate conversion unit 4 divides the operation surface 20 into a detection area 201 that detects finger contact and a non-detection area 202 that does not detect contact based on the discrimination information, and uses the first coordinate system set on the operation surface 20. The detection area 201 is converted to the second coordinate system (S5). The coordinate conversion unit 4 generates coordinate conversion information including information on the second coordinate system and outputs the coordinate conversion information to the control unit 5.
 制御部5は、タッチパネル2から取得した静電容量情報に基づいて指の検出点を算出する。続いて制御部5は、算出した検出点を、座標変換情報に基づいて検出領域201の座標系の座標に変換し、算出された座標の情報を含む操作情報を生成して電子機器に出力する(S6)。 The control unit 5 calculates a finger detection point based on the capacitance information acquired from the touch panel 2. Subsequently, the control unit 5 converts the calculated detection point into coordinates in the coordinate system of the detection area 201 based on the coordinate conversion information, generates operation information including the calculated coordinate information, and outputs the operation information to the electronic device. (S6).
(実施の形態の効果)
 本実施の形態に係る操作装置1は、検出対象物の大きさの差に起因して操作感の違いが生じることを抑制することができる。具体的には、操作装置1は、操作面20に接触した指の太さに応じて検出領域201を設定するので、枠12の近傍の操作し難い領域を操作のために触れる必要がなくなり、操作感が向上する。
(Effect of embodiment)
The controller device 1 according to the present embodiment can suppress the difference in operation feeling caused by the difference in the size of the detection target. Specifically, since the controller device 1 sets the detection area 201 according to the thickness of the finger that has touched the operation surface 20, it is not necessary to touch an area that is difficult to operate near the frame 12 for operation. Operation feeling is improved.
 また操作装置1は、接触面積と、枠12から指の基準点までの距離と、を関連付けたテーブル30を有するので、テーブルを持たないものと比べて、処理にかかる時間が短縮され、また高度な処理を行うことが可能な制御部を必要としないので、低コストで製造される。 In addition, since the controller device 1 includes the table 30 that associates the contact area with the distance from the frame 12 to the reference point of the finger, the time required for the processing is shortened compared to a table 30 that does not have a table. Since a control unit capable of performing a simple process is not required, it is manufactured at a low cost.
 また操作装置1は、変更領域201aと標準領域201bとに検出領域201を分け、変更領域201aの座標の間隔と標準領域201bの座標の間隔とを異なるように変更するので、座標の間隔を均等にするものと比べて、標準領域201bにおける操作が、指の太さによらないため、指を変えて操作した際の操作感の違いが生じることを抑制することができる。 The controller device 1 divides the detection area 201 into the change area 201a and the standard area 201b, and changes the coordinate interval of the change area 201a and the coordinate interval of the standard area 201b so that the coordinate intervals are equalized. Compared with the case where the operation is performed, since the operation in the standard area 201b does not depend on the thickness of the finger, it is possible to suppress a difference in operation feeling when the operation is performed by changing the finger.
 以上、本発明のいくつかの実施の形態及び変形例を説明したが、これらの実施の形態及び変形例は、一例に過ぎず、請求の範囲に係る発明を限定するものではない。これら新規な実施の形態及び変形例は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施の形態及び変形例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施の形態及び変形例は、発明の範囲及び要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments and modifications of the present invention have been described above, these embodiments and modifications are merely examples, and do not limit the claimed invention. These novel embodiments and modifications can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. In addition, not all combinations of features described in these embodiments and modifications are necessarily essential to the means for solving the problems of the invention. Furthermore, these embodiments and modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 本発明は、操作面を囲む枠付近において指、タッチペン等の検出対象物の大きさの差に起因して操作感(検出感度)の違いが生じる可能性がある操作装置に適用できる。 The present invention can be applied to an operation device in which a difference in operation feeling (detection sensitivity) may occur due to a difference in size of a detection target such as a finger or a touch pen in the vicinity of a frame surrounding the operation surface.
1…操作装置、2…タッチパネル、3…判別部、4…座標変換部、5…制御部、10…本体、12…枠、20…操作面、21…センサワイヤ、22…センサワイヤ、23…タッチパネル制御部、30…テーブル、100…表面、200…検出可能領域、201…検出領域、201a…変更領域、201b…標準領域、201c…変更領域、202…非検出領域 DESCRIPTION OF SYMBOLS 1 ... Operation apparatus, 2 ... Touch panel, 3 ... Discriminating part, 4 ... Coordinate conversion part, 5 ... Control part, 10 ... Main body, 12 ... Frame, 20 ... Operation surface, 21 ... Sensor wire, 22 ... Sensor wire, 23 ... Touch panel control unit, 30 ... table, 100 ... surface, 200 ... detectable area, 201 ... detection area, 201a ... change area, 201b ... standard area, 201c ... change area, 202 ... non-detection area

Claims (5)

  1.  操作面の周囲に設けられた枠を有し、前記操作面に対する検出対象物の接触を検出して検出信号を出力する検出部と、
     前記検出部から出力された前記検出信号に基づいて前記検出対象物の接触面積を算出し、前記検出対象物が前記操作面と前記枠とに接触する際の前記枠から前記検出対象物の基準点までの距離を、前記接触面積から判別する判別部と、
     前記判別部より判別された前記距離に基づいて前記検出対象物の接触を検出する検出領域と接触を検出しない非検出領域とに前記操作面を分け、前記操作面に設定された第1の座標系を前記検出領域の第2の座標系に変換する座標変換部と、
     を備えた操作装置。
    A detection unit that includes a frame provided around the operation surface, detects a contact of the detection target with respect to the operation surface, and outputs a detection signal;
    A contact area of the detection target is calculated based on the detection signal output from the detection unit, and a reference of the detection target from the frame when the detection target contacts the operation surface and the frame. A discriminator for discriminating the distance to the point from the contact area;
    The operation surface is divided into a detection region that detects contact of the detection target object and a non-detection region that does not detect contact based on the distance determined by the determination unit, and first coordinates set on the operation surface A coordinate transformation unit for transforming a system to a second coordinate system of the detection area;
    The operating device with.
  2.  前記判別部が、前記接触面積と前記距離とを関連付けたテーブルを有し、算出された前記接触面積と前記テーブルとに基づいて前記距離を判別する請求項1に記載の操作装置。 The operation device according to claim 1, wherein the determination unit includes a table in which the contact area and the distance are associated with each other, and determines the distance based on the calculated contact area and the table.
  3.  前記座標変換部が、前記検出領域の内側の予め定められた第1の領域とそれ以外の第2の領域とに前記検出領域を分け、前記第1の領域の座標の間隔と前記第2の領域の座標の間隔とを異なるように変更する請求項1又は2に記載の操作装置。 The coordinate conversion unit divides the detection area into a predetermined first area inside the detection area and a second area other than the first area, the coordinate interval of the first area and the second area The operating device according to claim 1, wherein the coordinate interval of the region is changed to be different.
  4.  前記判別部は、前記検出部が前記検出対象物の接触を検出している期間中の接触面積の平均値を用いて前記距離を判別する請求項1又は2に記載の操作装置。 3. The operating device according to claim 1, wherein the determination unit determines the distance using an average value of a contact area during a period in which the detection unit detects contact of the detection target.
  5.  前記判別部は、
     第1の距離の判別に用いた接触面積が予め定められた第1のしきい値以下である場合、前記第1の座標系を前記第1の距離に応じた前記第2の座標系に変換させる判別情報を前記座標変換部に出力し、
     第2の距離の判別に用いた接触面積が前記第1のしきい値より大きい場合、さらに前記第2の距離に基づいた前記非検出領域で検出されて出力された検出信号と予め定められた第2のしきい値とを比較して当該検出信号が大きい場合に、前記第1の座標系を前記第2の距離に応じた前記第2の座標系に変換させる判別情報を前記座標変換部に出力する請求項1又は2に記載の操作装置。
    The discrimination unit
    When the contact area used for determining the first distance is equal to or smaller than a predetermined first threshold value, the first coordinate system is converted to the second coordinate system corresponding to the first distance. Output discrimination information to the coordinate conversion unit,
    When the contact area used for determining the second distance is larger than the first threshold, a detection signal detected and output in the non-detection region based on the second distance is predetermined. When the detection signal is large compared with the second threshold value, the coordinate conversion unit displays discrimination information for converting the first coordinate system to the second coordinate system according to the second distance. The operating device according to claim 1, wherein the operating device is output to the control device.
PCT/JP2012/083494 2012-06-26 2012-12-25 Operation device WO2014002315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142851A JP2014006765A (en) 2012-06-26 2012-06-26 Operation device
JP2012-142851 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014002315A1 true WO2014002315A1 (en) 2014-01-03

Family

ID=49782527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083494 WO2014002315A1 (en) 2012-06-26 2012-12-25 Operation device

Country Status (3)

Country Link
JP (1) JP2014006765A (en)
TW (1) TW201401155A (en)
WO (1) WO2014002315A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138429A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Image display device with touch input function
JP6834644B2 (en) * 2017-03-21 2021-02-24 富士ゼロックス株式会社 Input device, image forming device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018372A (en) * 2005-07-08 2007-01-25 Nintendo Co Ltd Input adjustment program and input adjustment apparatus for pointing device
JP2011507123A (en) * 2007-12-19 2011-03-03 スタンタム Scanning characteristic changing analysis electronic circuit for passive matrix multi-point touch sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018372A (en) * 2005-07-08 2007-01-25 Nintendo Co Ltd Input adjustment program and input adjustment apparatus for pointing device
JP2011507123A (en) * 2007-12-19 2011-03-03 スタンタム Scanning characteristic changing analysis electronic circuit for passive matrix multi-point touch sensor

Also Published As

Publication number Publication date
JP2014006765A (en) 2014-01-16
TW201401155A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
EP2638458B1 (en) Touch device for determining real coordinates of multiple touch points and method thereof
JP5563698B1 (en) Touch input device
US20090066659A1 (en) Computer system with touch screen and separate display screen
KR101378237B1 (en) Touch panel
JP6005417B2 (en) Operating device
AU2017203910B2 (en) Glove touch detection
JP5958974B2 (en) Touchpad input device and touchpad control program
JP5712339B1 (en) Input device, input method, and program
JP2014095968A (en) Touch panel device
JP5679595B2 (en) Electronic device and coordinate determination method
JP2008165575A (en) Touch panel device
US20120127120A1 (en) Touch device and touch position locating method thereof
WO2014002315A1 (en) Operation device
JP5814704B2 (en) Touch panel controller, touch panel control method, input device using the same, and electronic device
CN103576945B (en) Contactor control device and its touch control detecting method
JP2012238210A (en) Input device
US9317167B2 (en) Touch control system and signal processing method thereof
TWI571777B (en) Touch sensing method, touch sensing microprocessor and touch sensing lcd
JP2018120458A (en) Operation device
JP2016218543A (en) Detector
JP5993511B1 (en) Operating device
JP6399553B2 (en) Detection device
TW201530380A (en) Determining method for adaptive DPI curve and touch apparatus using the same
JP2014032495A (en) Operation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880004

Country of ref document: EP

Kind code of ref document: A1