WO2013190859A1 - Layered multi-core cable - Google Patents

Layered multi-core cable Download PDF

Info

Publication number
WO2013190859A1
WO2013190859A1 PCT/JP2013/052695 JP2013052695W WO2013190859A1 WO 2013190859 A1 WO2013190859 A1 WO 2013190859A1 JP 2013052695 W JP2013052695 W JP 2013052695W WO 2013190859 A1 WO2013190859 A1 WO 2013190859A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
axis direction
ground conductor
laminated
conductor
Prior art date
Application number
PCT/JP2013/052695
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 登
真大 小澤
聡 石野
佐々木 純
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012137616A external-priority patent/JP5477422B2/en
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201380012033.1A priority Critical patent/CN104205249B/en
Publication of WO2013190859A1 publication Critical patent/WO2013190859A1/en
Priority to US14/480,767 priority patent/US9781832B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/026Coplanar striplines [CPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0225Single or multiple openings in a shielding, ground or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Definitions

  • the present invention relates to a laminated multicore cable, and more particularly to a laminated multicore cable provided with a plurality of signal lines used for transmission of a high-frequency signal.
  • FIG. 19 is a cross-sectional structure diagram of the flexible flat cable 500 described in Patent Document 1.
  • the flexible flat cable 500 includes a flat conductor 502, insulating adhesive sheets 504a and 504b, and metal thin films 506a and 506b.
  • a plurality of the rectangular conductors 502 are provided on the same layer at equal intervals.
  • the flat rectangular conductor 502 is sandwiched between the insulating adhesive sheets 504a and 504b from above and below.
  • a metal thin film 506a is provided on the upper layer of the insulating adhesive sheet 504a.
  • a metal thin film 506b is provided below the insulating adhesive sheet 504b.
  • the flexible flat cable 500 as described above has a structure in which a plurality of strip lines are arranged.
  • the flexible flat cable 500 described in Patent Document 1 has a problem that it is difficult to ensure isolation between the flat conductors 502 because the flat conductors 502 are close to each other.
  • an object of the present invention is to provide a laminated multi-core cable that can ensure isolation between a plurality of signal lines.
  • a multilayer multicore cable includes a multilayer body configured by laminating a plurality of base material layers, a first ground conductor provided in the multilayer body, and the multilayer body.
  • a second ground conductor provided in a different layer from the first ground conductor, and a first signal provided between the first ground conductor and the second ground conductor in the stacking direction.
  • a second line provided between the first ground conductor and the second ground conductor in the stacking direction and closer to the second ground conductor than the first signal line.
  • a second signal line extending along the first signal line when viewed in plan from the stacking direction in a predetermined region. There is a ground conductor in the predetermined area. , When viewed in plan from the lamination direction, the first opening overlapping the first signal line is provided, characterized by.
  • isolation between a plurality of signal lines can be ensured.
  • FIG. 1 is an external perspective view of a multilayer multicore cable according to an embodiment. It is a disassembled perspective view of the multilayer type multi-core cable which concerns on one Embodiment.
  • FIG. 2 is a cross-sectional structure view taken along the line XX of the multilayer multicore cable of FIG.
  • FIG. 2 is a plan view of a signal line and a ground conductor of the multilayer multicore cable of FIG. 1.
  • FIG. 1 is an external perspective view of a multilayer multicore cable 10 according to an embodiment.
  • FIG. 2 is an exploded perspective view of the multilayer multicore cable 10 according to the embodiment.
  • FIG. 3 is a cross-sectional view taken along the line XX of the multilayer multicore cable 10 of FIG. 4 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10 of FIG. 1 to 4, the stacking direction of the multilayer multicore cable 10 is defined as the z-axis direction.
  • the longitudinal direction of the laminated multi-core cable 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
  • the laminated multi-core cable 10 includes a laminated body 12, external terminals 16a to 16d, signal lines 20, 21, ground conductors 22, 24, connectors 100a, 100b, and via-hole conductors b1-b18. It has.
  • the laminate 12 extends in the x-axis direction when viewed in plan from the z-axis direction, and includes a line portion 12a and connection portions 12b to 12e. As shown in FIG. 2, the laminate 12 includes a protective layer 14, dielectric sheets (base material layers) 18a to 18c, and a protective layer 15 laminated in this order from the positive side to the negative side in the z-axis direction. It is the flexible laminated body comprised.
  • the main surface on the positive direction side in the z-axis direction of the stacked body 12 is referred to as a front surface
  • the main surface on the negative direction side in the z-axis direction of the stacked body 12 is referred to as a back surface.
  • the line portion 12a extends in the x-axis direction.
  • the connecting portion 12b has a rectangular shape extending from the end portion on the negative direction side in the x-axis direction of the line portion 12a to the negative direction side in the x-axis direction.
  • the connecting portion 12c has a rectangular shape extending from the end portion on the positive direction side in the x-axis direction of the line portion 12a to the positive direction side in the x-axis direction.
  • the connecting portion 12d has a rectangular shape extending from the end portion on the negative direction side in the x-axis direction of the line portion 12a to the negative direction side in the y-axis direction.
  • connection part 12b and the connection part 12d have comprised the structure branched into two from the edge part of the negative direction side of the x-axis direction of the line part 12a.
  • the connecting portion 12e has an L shape extending from the end portion of the line portion 12a on the positive direction side in the x-axis direction to the negative direction side in the y-axis direction and then extending to the positive direction side in the x-axis direction. Yes.
  • connection part 12c and the connection part 12e have comprised the structure branched into two from the edge part of the positive direction side of the x-axis direction of the track
  • the width in the y-axis direction of the connecting portions 12b to 12e is equal to the width in the y-axis direction of the line portion 12a.
  • the dielectric sheets 18a to 18c have the same shape as the stacked body 12 when viewed in plan from the z-axis direction.
  • the dielectric sheets 18a to 18c are made of a flexible thermoplastic resin such as polyimide.
  • the thickness of the dielectric sheets 18a to 18c after lamination is, for example, 25 ⁇ m to 200 ⁇ m.
  • the main surface on the positive side in the z-axis direction of the dielectric sheets 18a to 18c is referred to as the front surface
  • the main surface on the negative direction side in the z-axis direction of the dielectric sheets 18a to 18c is referred to as the back surface.
  • the dielectric sheet 18a includes a line portion 18a-a and connection portions 18a-b to 18a-e.
  • the dielectric sheet 18b includes a line portion 18b-a and connection portions 18b-b to 18b-e.
  • the dielectric sheet 18c includes a line portion 18c-a and connection portions 18c-b to 18c-e.
  • the line portions 18a-a to 18c-a constitute the line portion 12a.
  • the connecting portions 18a-b and 18c-b constitute the connecting portion 12b.
  • the connecting portions 18a-c and 18c-c constitute a connecting portion 12c.
  • the connecting portions 18a-d, 18b-d, and 18c-d constitute a connecting portion 12d.
  • the connecting portions 18a-e, 18b-e, and 18c-e constitute a connecting portion 12e.
  • the ground conductor 22 (first ground conductor) is provided in the multilayer body 12 as shown in FIG. 2, and more specifically, is provided on the surface of the dielectric sheet 18a.
  • the ground conductor 22 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the ground conductor 22 includes a line portion 22a and terminal portions 22b to 22e.
  • the line portion 22a is provided on the surface of the line portion 18a-a and has a rectangular shape extending in the x-axis direction.
  • the terminal portion 22b is provided on the surface of the connecting portion 18a-b, and is connected to the end of the line portion 22a on the negative side in the x-axis direction.
  • the end portion on the negative direction side in the x-axis direction of the terminal portion 22b has a quadrangular frame shape.
  • the terminal portion 22c is provided on the surface of the connection portion 18a-c, and is connected to the end portion on the positive side in the x-axis direction of the line portion 22a.
  • the end of the terminal portion 22c on the positive side in the x-axis direction has a square shape. As shown in FIG.
  • the terminal portion 22d is provided on the surface of the connection portion 18a-d, and is connected to the end portion on the negative direction side in the x-axis direction of the line portion 22a.
  • the end of the terminal portion 22d on the negative direction side in the y-axis direction has a square shape.
  • the terminal portion 22e is provided on the surface of the connecting portion 18a-e, and is connected to the end portion on the positive side in the x-axis direction of the line portion 22a.
  • the end of the terminal portion 22e on the positive side in the x-axis direction has a square shape.
  • the ground conductor 24 (second ground conductor) is provided in a layer different from the ground conductor 22 in the multilayer body 12, and more specifically, provided on the back surface of the dielectric sheet 18c. Yes.
  • the ground conductor 24 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the ground conductor 24 includes a line portion 24a and terminal portions 24b to 24e.
  • the line portion 24a is provided on the back surface of the line portion 18c-a and has a rectangular shape extending in the x-axis direction.
  • the terminal portion 24b is provided on the back surface of the connecting portion 18c-b, and is connected to the end portion of the line portion 24a on the negative side in the x-axis direction.
  • the terminal portion 24c is provided on the back surface of the connection portion 18c-c, and is connected to the end portion on the positive direction side in the x-axis direction of the line portion 22a.
  • the terminal portion 24d is provided on the back surface of the connection portion 18c-d, and is connected to the end portion on the negative direction side in the x-axis direction of the line portion 24a.
  • the terminal portion 24e is provided on the back surface of the connection portion 18c-e, and is connected to the end portion of the line portion 24a on the positive side in the x-axis direction.
  • the signal line 20 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction, and more specifically, the line portion 18b ⁇ of the dielectric sheet 18b. a and connecting portions 18b-b and 18b-c are provided on the surface.
  • the signal line 20 is a linear conductor extending in the x-axis direction on the positive side in the y-axis direction from the center in the y-axis direction on the surface of the line portion 18b-a. When this occurs, the ground conductors 22 and 24 overlap. As a result, the signal line 20 and the ground conductors 22 and 24 have a stripline structure.
  • the signal line 20 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the distance D1 between the signal line 20 and the ground conductor 22 in the z-axis direction is smaller than the distance D2 between the signal line 20 and the ground conductor 24 in the z-axis direction, as shown in FIG.
  • the distance D1 is approximately equal to the thickness of the dielectric sheet 18a
  • the distance D2 is approximately equal to the total thickness of the dielectric sheets 18b and 18c.
  • the signal line 21 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction and closer to the ground conductor 24 than the signal line 20. More specifically, it is provided on the surface of the line portion 18c-a and the connecting portions 18c-d and 18c-e of the dielectric sheet 18c.
  • the signal line 21 is a linear conductor extending in the x-axis direction on the negative direction side in the y-axis direction from the center in the y-axis direction on the surface of the line portion 18c-a. When viewed from above, the signal line 20 does not overlap. As shown in FIG.
  • the signal line 21 extends along the signal line 20 when viewed in plan from the z-axis direction in the parallel region A ⁇ b> 1.
  • the parallel running region A1 corresponds to the line portion 12a.
  • extending along means the state of being parallel and the state of being slightly inclined from the parallel.
  • the signal line 21 overlaps the ground conductors 22 and 24 when viewed in plan from the z-axis direction.
  • the signal line 21 and the ground conductors 22 and 24 have a stripline structure.
  • the signal line 21 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the distance D3 between the signal line 21 and the ground conductor 22 in the z-axis direction is larger than the distance D4 between the signal line 21 and the ground conductor 24 in the z-axis direction, as shown in FIG.
  • the distance D3 is substantially equal to the total thickness of the dielectric sheets 18a and 18b, and the distance D4 is substantially equal to the thickness of the dielectric sheet 18c.
  • the ground conductor 22 is provided with a plurality of rectangular openings 30 as shown in FIG.
  • the plurality of openings 30 are provided so as to overlap with the signal line 20 and to be arranged along the signal line 20 when viewed in plan from the z-axis direction.
  • a portion provided between adjacent openings 30 is referred to as a bridge portion 32.
  • the openings 30 and the bridge portions 32 are alternately arranged in the x-axis direction. Openings 30 and bridge portions 32 alternately overlap with the signal line 20.
  • the bridge portions 32 are provided along the signal line 20 at intervals shorter than half the half wavelength of the high-frequency signal transmitted through the signal line 20.
  • the ground conductor 24 is provided with a plurality of rectangular openings 31 as shown in FIG.
  • the plurality of openings 31 are provided so as to overlap the signal line 21 and to be arranged along the signal line 21 when viewed in plan from the z-axis direction.
  • a portion provided between adjacent openings 31 is referred to as a bridge portion 33.
  • the openings 31 and the bridge portions 33 are alternately arranged in the x-axis direction. Openings 31 and bridge portions 33 alternately overlap with the signal line 21.
  • the bridge portions 32 are provided along the signal line 21 at intervals shorter than half the half wavelength of the high-frequency signal transmitted through the signal line 21.
  • the external terminal 16a is a rectangular conductor provided on the surface of the connecting portion 18a-b, and is surrounded by the terminal portion 22b.
  • the external terminal 16a overlaps the end of the signal line 20 on the negative direction side in the x-axis direction when viewed in plan from the z-axis direction.
  • the external terminal 16a is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the surface of the external terminal 16a is gold plated.
  • the external terminal 16b is a rectangular conductor provided on the surface of the connecting portion 18a-c, and is surrounded by the terminal portion 22c.
  • the external terminal 16b overlaps the end of the signal line 20 on the positive direction side in the x-axis direction when viewed in plan from the z-axis direction.
  • the external terminal 16b is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the surface of the external terminal 16b is gold plated.
  • the external terminal 16c is a rectangular conductor provided on the surface of the connecting portion 18a-d, and is surrounded by the terminal portion 22d.
  • the external terminal 16c overlaps the end of the signal line 21 on the negative direction side in the x-axis direction when viewed in plan from the z-axis direction.
  • the external terminal 16c is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the surface of the external terminal 16c is gold plated.
  • the external terminal 16d is a rectangular conductor provided on the surface of the connecting portion 18a-e, and is surrounded by the terminal portion 22e.
  • the external terminal 16d overlaps the end of the signal line 21 on the positive direction side in the x-axis direction when viewed in plan from the z-axis direction.
  • the external terminal 16d is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the surface of the external terminal 16d is plated with gold.
  • the via-hole conductor b1 passes through the connecting portions 18a-b of the dielectric sheet 18a in the z-axis direction.
  • the end portion on the positive side in the z-axis direction of the via-hole conductor b1 is connected to the external terminal 16a, and the end portion on the negative direction side in the z-axis direction of the via-hole conductor b1 is negative in the x-axis direction of the signal line 20. It is connected to the end on the direction side.
  • the via-hole conductor b2 passes through the connecting portions 18a-c of the dielectric sheet 18a in the z-axis direction.
  • the end of the via-hole conductor b2 on the positive side in the z-axis direction is connected to the external terminal 16b, and the end of the via-hole conductor b2 on the negative side in the z-axis direction is the positive end of the signal line 20 in the x-axis direction. It is connected to the end on the direction side.
  • the signal line 20 is connected between the external terminals 16a and 16b.
  • the via-hole conductor b3 passes through the connecting portions 18a-d of the dielectric sheet 18a in the z-axis direction.
  • the via-hole conductor b4 passes through the connection portion 18b-d of the dielectric sheet 18b in the z-axis direction.
  • the via-hole conductors b3 and b4 constitute one via-hole conductor by being connected to each other.
  • the end portion on the positive side in the z-axis direction of the via-hole conductor b3 is connected to the external terminal 16c, and the end portion on the negative direction side in the z-axis direction of the via-hole conductor b4 is negative in the x-axis direction of the signal line 21. It is connected to the end on the direction side.
  • the via-hole conductor b5 passes through the connecting portion 18a-e of the dielectric sheet 18a in the z-axis direction.
  • the via-hole conductor b6 passes through the connection portion 18b-e of the dielectric sheet 18b in the z-axis direction.
  • the via-hole conductors b5 and b6 constitute one via-hole conductor by being connected to each other.
  • the positive end of the via-hole conductor b5 in the z-axis direction is connected to the external terminal 16d, and the negative end of the via-hole conductor b6 in the z-axis direction is the positive end of the signal line 21 in the x-axis direction. It is connected to the end on the direction side.
  • the via-hole conductor b7 passes through the line portion 18a-a and the connecting portions 18a-b and 18a-c of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • the via-hole conductor b8 passes through the line portion 18b-a and the connecting portions 18b-b and 18b-c of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • the via-hole conductor b9 passes through the line portion 18c-a and the connecting portions 18c-b and 18c-c of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • a plurality are provided so as to be aligned in a row in the x-axis direction.
  • the via hole conductors b7 to b9 are connected to each other to constitute one via hole conductor.
  • the end of the via-hole conductor b7 on the positive side in the z-axis direction is connected to the ground conductor 22.
  • the end of the via-hole conductor b9 on the negative direction side in the z-axis direction is connected to the ground conductor 24.
  • the via-hole conductor b10 passes through the line portion 18a-a and the connection portions 18a-b and 18a-c of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • the via-hole conductor b11 passes through the line portion 18b-a and the connecting portions 18b-b and 18b-c of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • the via-hole conductor b12 penetrates the line portion 18c-a and the connecting portions 18c-b and 18c-c of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction.
  • a plurality are provided so as to be aligned in a row in the x-axis direction.
  • the via-hole conductors b10 to b12 are connected to each other to constitute one via-hole conductor.
  • the end of the via-hole conductor b10 on the positive side in the z-axis direction is connected to the ground conductor 22.
  • the end of the via-hole conductor b12 on the negative side in the z-axis direction is connected to the ground conductor 24.
  • the via-hole conductor b13 penetrates the line portion 18a-a and the connecting portions 18a-d and 18a-e of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • the via-hole conductor b14 passes through the line portion 18b-a and the connecting portions 18b-d and 18b-e of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • the via-hole conductor b15 passes through the line portion 18c-a and the connection portions 18c-d and 18c-e of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • a plurality are provided so as to be aligned in a row in the x-axis direction.
  • the via hole conductors b13 to b15 are connected to each other to constitute one via hole conductor.
  • the end of the via-hole conductor b ⁇ b> 13 on the positive side in the z-axis direction is connected to the ground conductor 22.
  • the end of the via-hole conductor b15 on the negative direction side in the z-axis direction is connected to the ground conductor 24.
  • the via-hole conductor b16 passes through the line portion 18a-a and the connecting portions 18a-d and 18a-e of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • the via-hole conductor b17 passes through the line portion 18b-a and the connecting portions 18b-d and 18b-e of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • the via-hole conductor b18 passes through the line portion 18c-a and the connecting portions 18c-d and 18c-e of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction.
  • a plurality are provided so as to be aligned in a row in the x-axis direction.
  • the via hole conductors b16 to b18 are connected to each other to constitute one via hole conductor.
  • the end of the via-hole conductor b16 on the positive side in the z-axis direction is connected to the ground conductor 22.
  • the end of the via-hole conductor b18 on the negative direction side in the z-axis direction is connected to the ground conductor 24.
  • the ground conductor 22 and the ground conductor 24 are connected by the via-hole conductors b7 to b18.
  • the via-hole conductors b1 to b18 are made of a metal material having a specific resistance mainly composed of silver or copper. Instead of the via hole conductors b1 to b18, a through hole in which a conductor layer such as plating is formed on the inner peripheral surface of the through hole may be used.
  • the protective layer 14 covers substantially the entire surface of the dielectric sheet 18a. Thereby, the protective layer 14 covers the ground conductor 22.
  • the protective layer 14 is made of a flexible resin such as a resist material, for example.
  • the protective layer 14 includes a line portion 14a and connection portions 14b to 14e.
  • the line portion 14a covers the line portion 22a by covering the entire surface of the line portion 18a-a.
  • the connecting portion 14b is connected to the end portion on the negative side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-b.
  • the connection portion 14b is provided with a rectangular opening Ha.
  • the external terminal 16a and the terminal portion 22b are exposed to the outside through the opening Ha.
  • the terminal portion 22b functions as an external terminal by being exposed to the outside through the opening Ha.
  • the connecting portion 14c is connected to the end portion on the positive side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-c.
  • the connection portion 14c is provided with a rectangular opening Hb.
  • the external terminal 16b and the terminal portion 22c are exposed to the outside through the opening Hb.
  • the terminal portion 22c functions as an external terminal by being exposed to the outside through the opening Hb.
  • the connecting portion 14d is connected to the end portion on the negative side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-d.
  • the connection portion 14d is provided with a rectangular opening Hc.
  • the external terminal 16c and the terminal portion 22d are exposed to the outside through the opening Hc.
  • the terminal portion 22d functions as an external terminal by being exposed to the outside through the opening Hc.
  • the connecting portion 14e is connected to the end portion on the positive side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-e.
  • the connection portion 14e is provided with a rectangular opening Hd.
  • the external terminal 16d and the terminal portion 22e are exposed to the outside through the opening Hd.
  • the terminal portion 22e functions as an external terminal by being exposed to the outside through the opening Hd.
  • the protective layer 15 covers substantially the entire back surface of the dielectric sheet 18c. Thereby, the protective layer 15 covers the ground conductor 24.
  • the protective layer 15 is made of a flexible resin such as a resist material, for example.
  • FIGS. 5A and 5B are an external perspective view and a cross-sectional structure diagram of the connector 100b of the multilayer multicore cable 10.
  • the connector 100b includes a connector body 102, external terminals 104 and 106, a central conductor 108, and an external conductor 110 as shown in FIG.
  • the connector body 102 has a shape in which a cylinder is connected to a rectangular plate, and is made of an insulating material such as a resin.
  • the external terminal 104 is provided at a position facing the external terminal 16b on the negative side surface in the z-axis direction of the connector main body 102.
  • the external terminal 106 is provided at a position corresponding to the terminal portion 22c exposed through the opening Hb on the surface of the connector main body 102 on the negative side in the z-axis direction.
  • the center conductor 108 is provided at the center of the cylinder of the connector main body 102 and is connected to the external terminal 104.
  • the center conductor 108 is a signal terminal that inputs or outputs a high-frequency signal transmitted through the signal line 20.
  • the external conductor 110 is provided on the cylinder of the connector body 102 and is connected to the external terminal 106.
  • the outer conductor 110 is a ground terminal that is maintained at a ground potential.
  • the connector 100b configured as described above is mounted on the surface of the connection portion 12c such that the external terminal 104 is connected to the external terminal 16b and the external terminal 106 is connected to the terminal portion 22c. Thereby, the signal line 20 is electrically connected to the central conductor 108.
  • the ground conductors 22 and 24 are electrically connected to the external conductor 110.
  • FIG. 6 is a plan view of the electronic device 200 in which the laminated multicore cable 10 is used from the y-axis direction and the z-axis direction.
  • the electronic device 200 includes a multilayer multi-core cable 10, circuit boards 202a to 202d, receptacles 204a to 204d (receptacles 204c and 204d are not shown), a battery pack (metal body) 206, and a casing 210.
  • the battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover.
  • the circuit board 202a, the battery pack 206, and the circuit board 202b are arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the circuit board 202c is provided on the negative direction side of the circuit board 202a in the y-axis direction.
  • the circuit board 202d is provided on the negative direction side of the circuit board 202d in the y-axis direction.
  • the surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206.
  • the surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
  • the receptacles 204a to 204d are provided on the main surfaces on the negative direction side in the z-axis direction of the circuit boards 202a to 202d, respectively.
  • Connectors 100a to 100d are connected to receptacles 204a to 204d, respectively. Accordingly, a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit boards 202a and 202b is applied to the central conductor 108 of the connectors 100a and 100b via the receptacles 204a and 204b.
  • a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit boards 202c and 202d is applied to the central conductor 108 of the connectors 100c and 100d via the receptacles 204c and 204d. Further, the outer conductors 110 of the connectors 100a to 100d are kept at the ground potential via the circuit boards 202a to 202d, respectively. Thereby, the multilayer multicore cable 10 connects between the circuit board 202a and the circuit board 202b and between the circuit board 202c and the circuit board 202d.
  • dielectric sheets 18a and 18b made of a thermoplastic resin having a copper foil formed on the entire surface are prepared.
  • a dielectric sheet 18c made of a thermoplastic resin having a copper foil formed on the entire front and back surfaces is prepared.
  • the surfaces of the copper foils of the dielectric sheets 18a to 18c are smoothed by applying, for example, zinc plating for rust prevention.
  • the thickness of the copper foil is 10 ⁇ m to 20 ⁇ m.
  • the external terminals 16a to 16d and the ground conductor 22 shown in FIG. 2 are formed on the surface of the dielectric sheet 18a by a photolithography process. Specifically, a resist having the same shape as the external terminals 16a to 16d and the ground conductor 22 shown in FIG. 2 is printed on the copper foil on the surface side of the dielectric sheet 18a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thus, the external terminals 16a to 16d and the ground conductor 22 are formed on the surface of the dielectric sheet 18a as shown in FIG.
  • the signal line 20 shown in FIG. 2 is formed on the surface of the dielectric sheet 18b by a photolithography process. Further, the signal line 21 shown in FIG. 2 is formed on the surface of the dielectric sheet 18c by a photolithography process. Further, the ground conductor 24 shown in FIG. 2 is formed on the back surface of the dielectric sheet 18c by a photolithography process.
  • the method of forming the signal lines 20 and 21 and the ground conductor 24 is the same as the method of forming the external terminals 16a to 16d and the ground conductor 22, and thus the description thereof is omitted.
  • a laser beam is irradiated from the back side to the positions where the via hole conductors b1 to b18 of the dielectric sheets 18a to 18c are formed, thereby forming through holes. Thereafter, the through-holes formed in the dielectric sheets 18a to 18c are filled with a conductive paste.
  • the dielectric sheets 18a to 18c are stacked in this order from the positive direction side in the z-axis direction to the negative direction side. Then, by applying heat and pressure to the dielectric sheets 18a to 18c from the positive direction side and the negative direction side in the z-axis direction, the dielectric sheets 18a to 18c are softened to be crimped and integrated, and through holes
  • the conductive paste filled in is solidified to form via-hole conductors b1 to b18 shown in FIG.
  • the via-hole conductors b1 to b18 do not necessarily have to completely fill the through hole with the conductor, and may be formed, for example, by forming the conductor along only the inner peripheral surface of the through hole.
  • the protective layers 14 and 15 are formed on the front surface of the dielectric sheet 18a and the back surface of the dielectric sheet 18c by applying a resin (resist) paste, respectively.
  • the signal line 20 and the signal line 21 are provided in different layers.
  • the distance between the signal line 20 and the signal line 21 in the multilayer multicore cable 10 becomes larger than the distance between the flat conductors 502 in the flexible flat cable 500.
  • the capacitance formed between the signal lines 20 and 21 is smaller than the capacitance formed between the flat conductors 502.
  • the isolation in the laminated multi-core cable 10 is ensured compared to the isolation in the flexible flat cable 500.
  • the two signal lines 20 and 21 are digital signal lines for differential transmission, crosstalk between the signal lines 20 and 21 is reduced.
  • the isolation between the signal lines 20 and 21 can be secured also for the following reason. More specifically, in the laminated multicore cable 10, in the ground conductor 22, the opening 30 overlaps the signal line 20 when viewed in plan from the z-axis direction. Therefore, it is difficult to form a capacitance between the signal line 20 and the ground conductor 22, and noise radiated from the signal line 20 is not easily propagated to the ground conductor 22. Thereby, the noise radiated from the signal line 20 is suppressed from being transmitted to the signal line 21 via the ground conductor 22. As a result, the laminated multicore cable 10 further secures isolation.
  • the opening 31 of the ground conductor 24 overlaps the signal line 21 when viewed in plan from the z-axis direction. Therefore, it is difficult to form a capacitance between the signal line 21 and the ground conductor 24, and noise radiated from the signal line 21 is difficult to propagate to the ground conductor 24. Thereby, the noise radiated from the signal line 21 is suppressed from being transmitted to the signal line 20 through the ground conductor 24. As a result, the laminated multicore cable 10 further secures isolation.
  • the laminated body 12 can be thinned. More specifically, in the laminated multicore cable 10, the opening 30 is provided in the ground conductor 22 and overlaps the signal line 20 when viewed in plan from the z-axis direction. Thereby, it is difficult to form a capacitance between the signal line 20 and the ground conductor 22. Therefore, the distance D1 between the signal line 20 and the ground conductor 22 can be reduced without increasing the capacitance formed between the signal line 20 and the ground conductor 22. That is, the signal line 20 and the ground conductor 22 can be brought close to each other without reducing the characteristic impedance of the signal line 20, so that the multilayer body 12 can be thinned.
  • the laminated body 12 can be thinned. More specifically, in the laminated multicore cable 10, the opening 31 is provided in the ground conductor 24 and overlaps the signal line 21 when viewed in plan from the z-axis direction. This makes it difficult for a capacitance to be formed between the signal line 21 and the ground conductor 24. Therefore, the distance D4 between the signal line 21 and the ground conductor 24 can be reduced without increasing the capacitance formed between the signal line 21 and the ground conductor 24. That is, the signal line 21 and the ground conductor 24 can be brought close to each other without reducing the characteristic impedance of the signal line 21, so that the multilayer body 12 can be thinned. Further, when the laminated body 12 is thinned, the laminated multi-core cable 10 can be easily bent.
  • the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is provided in the ground conductor 24. It is possible to achieve both a reduction in the thickness of the laminate 12.
  • the signal line 20 alternately overlaps the openings 30 and the bridge portions 32 when viewed in plan from the z-axis direction.
  • the characteristic impedance Z1 of the signal line 20 that overlaps the opening 30 is smaller than the characteristic impedance Z2 of the signal line 20 that overlaps the bridge portion 32.
  • the characteristic impedance of the signal line 20 periodically varies between the characteristic impedance Z1 and the characteristic impedance Z2.
  • a standing wave having a short wavelength that is, a high frequency
  • a standing wave having a long wavelength (that is, a low frequency) is hardly generated between the external terminals 16a and 16b.
  • a standing wave having a long wavelength that is, a low frequency
  • the noise frequency can be set outside the band of the high-frequency signal transmitted through the signal line 20.
  • the bridge part 32 should just be provided along the signal track
  • the bridge section 32 only needs to be provided along the signal line 21 at an interval shorter than 1 ⁇ 2 wavelength of the high-frequency signal transmitted through the signal line 21.
  • the characteristic impedance Z ⁇ b> 3 at both ends of the signal line 20 is the characteristic impedance Z ⁇ b> 1 of the signal line 20 that overlaps the opening 30 and the signal line 20 that overlaps the bridge portion 32.
  • the size is preferably between the characteristic impedance Z2.
  • the characteristic impedance Z6 at both ends of the signal line 21 is equal to the characteristic impedance Z4 of the signal line 21 that overlaps the opening 31 and the characteristic impedance Z5 of the signal line 21 that overlaps the bridge portion 33. It is preferable that the size is between.
  • the eye pattern can be prevented from deviating from the ideal value.
  • the signal lines 20 and 21 are used as lines of different types of high-frequency signals (for example, GSM (registered trademark) 900 and GSM (registered trademark) 1800), it is possible to ensure mutual isolation.
  • GSM registered trademark
  • GSM registered trademark
  • FIG. 7 is an external perspective view of the multilayer multicore cable 10a according to the first modification.
  • FIG. 8 is an exploded perspective view of the multilayer multicore cable 10a according to the first modification.
  • the laminated multicore cable 10a is different from the laminated multicore cable 10 in that it has a rectangular shape extending in the x-axis direction. That is, the laminated multicore cable 10a is not branched.
  • FIG. 9 is an external perspective view and a cross-sectional structure diagram of the connector 300b of the laminated multicore cable 10a.
  • the connector 300b includes a connector main body 302, external terminals 304a, 304b, and 306, center conductors 308 and 310, and an external conductor 312 as shown in FIGS.
  • the connector main body 302 has a shape in which a cylinder is connected to a rectangular plate, and is made of an insulating material such as a resin.
  • the external terminal 304a is provided at a position facing the external terminal 16b on the surface of the connector main body 302 on the negative side in the z-axis direction.
  • the external terminal 304b is provided at a position facing the external terminal 16d on the surface of the connector main body 302 on the negative direction side in the z-axis direction.
  • the external terminal 306 is provided at a position corresponding to the terminal portion 22c exposed through the opening Hb on the surface of the connector main body 302 on the negative side in the z-axis direction.
  • the center conductor 308 is provided at the center of the cylinder of the connector main body 302 and is connected to the external terminal 304a.
  • the center conductor 308 is a signal terminal for inputting or outputting a high-frequency signal transmitted through the signal line 20.
  • the center conductor 310 is provided on the inner cylinder of the connector main body 302 and is connected to the external terminal 304b.
  • the center conductor 310 is a signal terminal for inputting or outputting a high-frequency signal transmitted through the signal line 21.
  • the external conductor 312 is provided on the inner peripheral surface of the outer cylinder of the connector main body 302 and is connected to the external terminal 306.
  • the external conductor 312 is a ground terminal that is maintained at a ground potential.
  • the connector 300b configured as described above has the connection portion 12c such that the external terminal 304a is connected to the external terminal 16b, the external terminal 304b is connected to the external terminal 16d, and the external terminal 306 is connected to the terminal portion 22c.
  • the signal line 20 is electrically connected to the central conductor 308.
  • the signal line 21 is connected to the center conductor 310.
  • the ground conductors 22 and 24 are electrically connected to the external conductor 312.
  • FIG. 10 is a plan view of the electronic device 200 using the multilayer multicore cable 10a from the y-axis direction and the z-axis direction.
  • the electronic device 200 includes a laminated multi-core cable 10a, a circuit board 202a, a liquid crystal panel 203, receptacles 404a and 404b, a battery pack (metal body) 206, and a casing 210.
  • the circuit board 202a is provided with a drive circuit for driving the liquid crystal panel 203, for example.
  • the battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover.
  • the circuit board 202a, the battery pack 206, and the liquid crystal panel 203 are arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206.
  • the surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
  • the receptacles 404a and 404b are provided on the main surface on the negative side of the z-axis direction of the circuit board 202a and the liquid crystal panel 203, respectively.
  • Connectors 300a and 300b are connected to receptacles 404a and 404b, respectively. Accordingly, a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit board 202a and the liquid crystal panel 203 is applied to the central conductor 308 of the connectors 300a and 300b via the receptacles 404a and 404b.
  • a high-frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit board 202a and the liquid crystal panel 203 is applied to the center conductor 310 of the connectors 300a and 300b via the receptacles 404a and 404b.
  • These two high-frequency signals are differential transmission signals having a phase difference of 180 °.
  • the external conductor 312 of the connectors 300a and 300b is kept at the ground potential via the circuit board 202a, the liquid crystal panel 203, and the receptacles 404a and 404b. Thereby, the multilayer multi-core cable 10a connects between the circuit board 202a and the liquid crystal panel 203.
  • the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22 and the opening 31 that overlaps the signal line 21 is grounded, similarly to the laminated multicore cable 10.
  • the conductor 24 it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
  • the laminated multicore cable 10 a it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21, similarly to the laminated multicore cable 10.
  • FIG. 11 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10b according to the second modification.
  • FIG.1 and FIG.2 is used about the external appearance perspective view and exploded perspective view of the laminated
  • the laminated multicore cable 10 b is different from the laminated multicore cable 10 in the shapes of the openings 30 and 31 and the shapes of the signal lines 20 and 21.
  • a region at the center in the x-axis direction is defined as a region a1.
  • a region at the end on the negative direction side in the x-axis direction is defined as a region a2.
  • a region at the end on the positive direction side in the x-axis direction is defined as a region a3.
  • a region between the region a1 and the region a2 is defined as a region a4.
  • a region between the region a1 and the region a3 is defined as a region a5.
  • the width of the opening 30 in the region a1 in the y-axis direction is the width W1.
  • the width in the y-axis direction of the opening 30 in the regions a2 and a3 is a width W2 smaller than the width W1.
  • the opening 30 has a taper shape that becomes wider toward the positive side in the x-axis direction, so that the width of the opening 30 continuously increases.
  • the opening 30 has a tapered shape that becomes narrower toward the positive side in the x-axis direction, whereby the width of the opening 30 continuously decreases.
  • the width in the y-axis direction of the opening 31 in the region a1 is a width W1. Further, the width in the y-axis direction of the opening 31 in the regions a2 and a3 is a width W2 smaller than the width W1.
  • the opening 31 makes the taper shape which becomes wide as it goes to the positive direction side of an x-axis direction, and the width
  • the opening 31 has a tapered shape that becomes narrower toward the positive side in the x-axis direction, whereby the width of the opening 31 continuously decreases.
  • the line width of the signal line 20 varies periodically as shown in FIG.
  • the line width W3 of the signal line 20 that overlaps the opening 30 is larger than the line width W4 of the signal line 20 that overlaps the bridge portion 32.
  • the end of the portion of the signal line 20 that overlaps the opening 30 on the negative side in the x-axis direction has a tapered shape that becomes wider toward the positive side in the x-axis direction.
  • the line width of the signal line 20 continuously increases.
  • the end of the portion of the signal line 20 that overlaps the opening 30 on the positive direction side in the x-axis direction has a tapered shape that becomes narrower toward the positive direction side in the x-axis direction.
  • the line width of the signal line 20 continuously decreases.
  • the line width of the signal line 21 fluctuates periodically as shown in FIG.
  • the line width W ⁇ b> 3 of the signal line 21 that overlaps the opening 31 is larger than the line width W ⁇ b> 4 of the signal line 21 that overlaps the bridge part 33.
  • the end of the portion of the signal line 21 that overlaps the opening 31 on the negative direction side in the x-axis direction has a tapered shape that becomes wider toward the positive direction side in the x-axis direction.
  • the line width of the signal line 21 is continuously increased.
  • the end of the portion of the signal line 21 that overlaps the opening 31 on the positive direction side in the x-axis direction has a tapered shape that becomes narrower toward the positive direction side in the x-axis direction. As a result, the line width of the signal line 21 is continuously reduced.
  • the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is grounded.
  • the conductor 24 it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
  • the laminated multicore cable 10 b it is possible to suppress the generation of low-frequency noise from the signal lines 20 and 21 as in the laminated multicore cable 10.
  • the width W1 of the openings 30 and 31 in the region a1 is larger than the width W2 of the openings 30 and 31 in the regions a2 and a3.
  • the capacitance formed between the signal lines 20 and 21 in the region a1 is smaller than the capacitance formed between the signal lines 20 and 21 in the regions a2 and a3. Therefore, the characteristic impedance of the signal lines 20 and 21 in the region a1 is larger than the characteristic impedance of the signal lines 20 and 21 in the regions a2 and a3.
  • the characteristic impedance of the signal lines 20 and 21 increases and decreases in the openings 30 and 31 from the negative direction side to the positive direction side in the x-axis direction. Therefore, it is possible to suppress the characteristic impedance of the signal lines 20 and 21 from fluctuating greatly. As a result, the occurrence of high-frequency signal reflection in the signal lines 20 and 21 is suppressed.
  • the width of the opening 30 in the regions a4 and a5 continuously changes.
  • the width of the gap between the signal line 20 and the ground conductor 22 is gradually increased or decreased.
  • the width of the gap between the signal line 21 and the ground conductor 24 gradually increases or decreases. Therefore, the magnetic flux generated around the signal line 20 and passing through the gap between the signal line 20 and the ground conductor 22 gradually increases or decreases in the regions a4 and a5.
  • the magnetic flux generated around the signal line 21 and passing through the gap between the signal line 21 and the ground conductor 24 gradually increases or decreases in the regions a4 and a5. That is, the magnetic field energy is prevented from greatly fluctuating in the regions a4 and a5. As a result, the occurrence of high-frequency signal reflection is suppressed in the vicinity of the boundary between the region a1 and the regions a2 and a3.
  • the signal line 20 and the ground conductor 22 do not face each other, so that the capacitance formed between the signal line 20 and the ground conductor 22 is very small. For this reason, even if the line width of the signal line 20 is increased, the capacitance formed between the signal line 20 and the ground conductor 22 is hardly increased, and the characteristic impedance of the signal line 20 is not lowered. Therefore, in the laminated multicore cable 10b, the line width W3 of the portion of the signal line 20 that overlaps the opening 30 when viewed in plan from the z-axis direction is equal to that of the portion of the signal line 20 that overlaps the bridge portion 32. It is larger than the line width W4. As a result, the resistance value of the signal line 20 is reduced, and the high-frequency resistance in the multilayer multicore cable 10b is reduced. For the same reason, the resistance value of the signal line 21 is also reduced.
  • FIG. 12 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10c according to the third modification.
  • FIG.1 and FIG.2 is used about the external appearance perspective view and exploded perspective view of the laminated
  • the laminated multicore cable 10c differs from the laminated multicore cable 10 in that the openings 30, 31 do not match in the y-axis direction. More specifically, the bridge portion 32 is located at the center of the opening 31 in the x-axis direction (the direction in which the signal line 20 extends). The bridge portion 33 is located at the center of the opening 30 in the x-axis direction (the direction in which the signal line 21 extends).
  • the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22 and the opening 31 that overlaps the signal line 21 is grounded, similarly to the laminated multicore cable 10.
  • the conductor 24 it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
  • the laminated multicore cable 10 c it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21, similarly to the laminated multicore cable 10.
  • the characteristic impedance Z1 of the signal line 20 in the portion overlapping the opening 30 is higher than the characteristic impedance Z2 of the signal line 20 in the portion overlapping the bridge portion 32. Therefore, when a high-frequency signal is transmitted through the signal line 20, the portion of the signal line 20 that overlaps the opening 30 becomes an antinode that maximizes the voltage amplitude. A portion of the signal line 20 that overlaps the bridge portion 32 becomes a node where the amplitude of the voltage is minimized. For the same reason, the portion of the signal line 21 that overlaps the opening 31 becomes an antinode that maximizes the voltage amplitude. A portion of the signal line 21 that overlaps the bridge portion 33 becomes a node where the amplitude of the voltage is minimized.
  • the bridge portion 32 is located at the center of the opening 31 in the x-axis direction. Thereby, the node in the signal line 20 and the antinode in the signal line 21 are adjacent to each other in the y-axis direction. Further, in the laminated multicore cable 10c, the bridge portion 33 is located at the center of the opening 30 in the x-axis direction. Thereby, the antinodes in the signal line 20 and the nodes in the signal line 21 are adjacent to each other in the y-axis direction. At the nodes in the signal lines 20 and 21, the potential hardly fluctuates.
  • FIG. 13 is an external perspective view of a laminated multicore cable 10d according to a fourth modification.
  • FIG. 14 is an exploded perspective view of the multi-core cable 10d according to the fourth modification in the parallel running region A1.
  • the laminate 12 extends in the x-axis direction and has a structure branched into two at each of an end on the positive direction side and an end on the negative direction side in the x-axis direction. is doing.
  • the laminate 12 is configured by laminating a protective layer 14 and dielectric sheets (base material layers) 18a to 18e in this order from the positive direction side to the negative direction side in the z-axis direction. It is a flexible laminate.
  • the main surface on the positive direction side in the z-axis direction of the stacked body 12 is referred to as a front surface
  • the main surface on the negative direction side in the z-axis direction of the stacked body 12 is referred to as a back surface.
  • the dielectric sheets 18a to 18e have the same shape as the stacked body 12 when viewed in plan from the z-axis direction.
  • the dielectric sheets 18a to 18e are made of a flexible thermoplastic resin such as polyimide.
  • the thickness of the dielectric sheets 18a to 18e after lamination is, for example, 25 ⁇ m to 200 ⁇ m.
  • the main surface on the positive side in the z-axis direction of the dielectric sheets 18a to 18e is referred to as the front surface
  • the main surface on the negative direction side in the z-axis direction of the dielectric sheets 18a to 18e is referred to as the back surface.
  • the ground conductor 22 (first ground conductor) is provided in the multilayer body 12 as shown in FIG. 14, and more specifically, is provided on the surface of the dielectric sheet 18a.
  • the ground conductor 22 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the ground conductor 24 (second ground conductor) is provided in a layer different from the ground conductor 22 in the multilayer body 12, and more specifically, provided on the surface of the dielectric sheet 18e. Yes.
  • the ground conductor 24 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the signal line 20 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction, and more specifically, is provided on the surface of the dielectric sheet 18b.
  • the signal line 20 overlaps with the ground conductors 22 and 24 when viewed in plan from the z-axis direction.
  • the signal line 20 and the ground conductors 22 and 24 have a stripline structure.
  • the signal line 20 is made of a metal material having a small specific resistance mainly composed of silver or copper.
  • the signal line 21 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction and closer to the ground conductor 24 than the signal line 20. Is provided on the surface of the dielectric sheet 18d.
  • the signal line 21 extends along the signal line 20 in the parallel region A1 when viewed in plan from the z-axis direction. However, the signal line 20 and the signal line 21 intersect at the center in the x-axis direction of the parallel region A1 when viewed in plan from the z-axis direction.
  • the ground conductor 22 is provided with a plurality of rectangular openings 30 as shown in FIG.
  • the plurality of openings 30 are provided so as to overlap with the signal line 20 and to be arranged along the signal line 20 when viewed in plan from the z-axis direction.
  • a mesh portion 22 f is provided at a position overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction.
  • a mesh portion 24f is provided at a position overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction.
  • the mesh portions 22f and 24f are configured by arranging a plurality of linear conductors extending in the x-axis direction and a plurality of linear conductors extending in the y-axis direction in a net shape.
  • the multi-core cable 10d is further provided with a ground conductor 50.
  • the ground conductor 50 overlaps with a portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction, and between the signal line 20 and the signal line 21 in the z-axis direction. Is provided.
  • the ground conductor 50 is provided on the surface of the dielectric sheet 18c.
  • the ground conductor 50 is connected to the ground conductors 22 and 24 by via-hole conductors.
  • the protective layer 14 covers substantially the entire surface of the dielectric sheet 18a. Thereby, the protective layer 14 covers the ground conductor 22.
  • the protective layer 14 is made of a flexible resin such as a resist material, for example.
  • the other configuration of the laminated multi-core cable 10d is the same as that of the laminated multi-core cable 10, and a description thereof will be omitted.
  • FIG. 15 is a plan view of the electronic device 200 in which the laminated multicore cable 10d is used from the z-axis direction.
  • the electronic device 200 includes a laminated multicore cable 10d, circuit boards 202a and 202b, a battery pack (metal body) 206, a casing 210, and an antenna 212.
  • the battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover.
  • the circuit board 202a, the battery pack 206, and the circuit board 202b are arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the antenna 212 is connected to the circuit board 202a.
  • the laminated multicore cable 10d connects between the circuit board 202a and the circuit board 202b. Further, the surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206. The surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
  • the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is grounded.
  • the conductor 24 it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
  • the laminated multicore cable 10 d it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21 as in the laminated multicore cable 10.
  • the signal line 20 and the signal line 21 overlap with a crossing portion, and the signal line 20 and the signal line in the z-axis direction are overlapped.
  • 21 is provided with a ground conductor 50. Thereby, the isolation between the signal line 20 and the signal line 21 can be ensured.
  • mesh portions 22f and 24f are provided at positions overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction. .
  • the line widths of the signal lines 20 and 21 can be increased in such portions.
  • the resistance values of the signal lines 20 and 21 are reduced, and the high-frequency resistance in the laminated multicore cable 10d is reduced.
  • FIG. 16 is an exploded perspective view of the connecting portion 12c of the multilayer multicore cable 10e according to the fifth modification.
  • FIG. 14 is used as an external perspective view of the multilayer multicore cable 10e.
  • the laminated multicore cable 10e is different from the laminated multicore cable 10d in that a floating conductor 60 is provided in the opening 30. More specifically, the floating conductor 60 is provided on the surface of the dielectric sheet 18 a and is located in the opening 30.
  • the floating conductor 60 is not connected to the signal lines 20 and 21 (the signal line 20 is not shown) and the ground conductors 22 and 24 and is kept at a floating potential.
  • the floating potential is a potential between the potential of the signal lines 20 and 21 (the signal line 20 is not shown) and the ground potential.
  • an opening 30 that overlaps the signal line 20 (the signal line 20 is not shown) is provided in the ground conductor 22.
  • the opening 31 that overlaps the signal line 21 in the ground conductor 24 it is possible to achieve both the securing of isolation and the reduction in thickness of the multilayer body 12.
  • the laminated multicore cable 10e it is possible to suppress the generation of low-frequency noise from the signal line 20 (the signal line 20 is not shown) as in the laminated multicore cable 10.
  • the laminated multi-core cable 10 e is bonded to the battery pack 206 so that the protective layer 14 contacts the battery pack 206. Therefore, the ground conductor 22 faces the battery pack 206. Therefore, the floating conductor 60 is provided in the opening 30 of the ground conductor 22, thereby preventing the signal line 20 (the signal line 20 is not shown) and the battery pack 206 from facing each other through the opening 30. Thereby, it is reduced that noise is radiated from the opening 30. As a result, even if the material and interval of the laminate 12 vary, the high-frequency characteristics of the signal line 20 (the signal line 20 is not shown) are less likely to vary.
  • the laminated multi-core cable according to the present invention is not limited to the laminated multi-core cables 10, 10a to 10e, and can be changed within the scope of the gist thereof.
  • FIG. 17 is a cross-sectional structure diagram of a laminated multicore cable 10f according to another embodiment. As shown in FIG. 17, signal lines 20a to 20c and signal lines 21a to 21c may be provided.
  • FIG. 18 is a cross-sectional view of a laminated multicore cable 10g according to another embodiment.
  • the laminated multicore cable 10g may have a structure in which the laminated multicore cable 10f is stacked in two stages in the z-axis direction.
  • an area where the signal line 20 and the ground conductor 24 do not overlap may be provided in a part of the parallel running area A1 of the multilayer multicore cables 10, 10a to 10e. That is, in a part of the parallel region A1, the signal line 20 and the ground conductor 22 may have a microstrip line structure. Similarly, a region where the signal line 21 and the ground conductor 22 do not overlap may be provided in a part of the parallel running region A1 of the multilayer multicore cables 10 and 10a to 10e. Thereby, it becomes possible to bend the laminated body 12 easily in this area
  • the present invention is useful for laminated multi-core cables, and is particularly excellent in that isolation can be secured.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Insulated Conductors (AREA)

Abstract

Provided is a layered multi-core cable with which it is possible to ensure isolation between signal lines. A layered body (12) is configured by a plurality of dielectric sheets (18) being layered. A ground conductor (22) is disposed in the layered body (12). A ground conductor (24) is disposed in the layered body (12) in a different layer from the ground conductor (24). A signal circuit (20) is disposed between the ground conductor (22) and the ground conductor (24) in the layering direction. A signal circuit (21) is disposed between the ground conductor (22) and the ground conductor (24) in the layering direction, closer to the ground conductor (24) than the signal circuit (20), and extends along the signal circuit (20) in a parallel region (A1), when viewed in the layering direction. Apertures (30) are disposed in the ground conductor (22) which overlap the signal circuit (20) in the parallel region (A1), when viewed in the layering direction.

Description

積層型多芯ケーブルMultilayer multi-core cable
 本発明は、積層型多芯ケーブルに関し、より特定的には、高周波信号の伝送に用いられる複数の信号線を備えた積層型多芯ケーブルに関する。 The present invention relates to a laminated multicore cable, and more particularly to a laminated multicore cable provided with a plurality of signal lines used for transmission of a high-frequency signal.
 従来の積層型多芯ケーブルとしては、例えば、特許文献1に記載のフレキシブルフラットケーブルが知られている。図19は、特許文献1に記載のフレキシブルフラットケーブル500の断面構造図である。 As a conventional laminated multi-core cable, for example, a flexible flat cable described in Patent Document 1 is known. FIG. 19 is a cross-sectional structure diagram of the flexible flat cable 500 described in Patent Document 1.
 フレキシブルフラットケーブル500は、図19に示すように、平角導体502、絶縁性接着シート504a,504b及び金属薄膜506a,506bを備えている。 As shown in FIG. 19, the flexible flat cable 500 includes a flat conductor 502, insulating adhesive sheets 504a and 504b, and metal thin films 506a and 506b.
 平角導体502は、同じ層に等間隔に複数並べて設けられている。平角導体502は、上下方向から絶縁性接着シート504a,504bにより挟まれている。また、絶縁性接着シート504aの上層には金属薄膜506aが設けられている。絶縁性接着シート504bの下層には金属薄膜506bが設けられている。以上のようなフレキシブルフラットケーブル500は、複数のストリップラインが並んだ構造を有している。 A plurality of the rectangular conductors 502 are provided on the same layer at equal intervals. The flat rectangular conductor 502 is sandwiched between the insulating adhesive sheets 504a and 504b from above and below. In addition, a metal thin film 506a is provided on the upper layer of the insulating adhesive sheet 504a. A metal thin film 506b is provided below the insulating adhesive sheet 504b. The flexible flat cable 500 as described above has a structure in which a plurality of strip lines are arranged.
 しかしながら、特許文献1に記載のフレキシブルフラットケーブル500は、平角導体502同士が近接しているので、平角導体502間のアイソレーションを確保しにくいという問題を有している。 However, the flexible flat cable 500 described in Patent Document 1 has a problem that it is difficult to ensure isolation between the flat conductors 502 because the flat conductors 502 are close to each other.
特開2009-277623号公報JP 2009-277623 A
 そこで、本発明の目的は、複数の信号線路間のアイソレーションを確保できる積層型多芯ケーブルを提供することである。 Therefore, an object of the present invention is to provide a laminated multi-core cable that can ensure isolation between a plurality of signal lines.
 本発明の一形態に係る積層型多芯ケーブルは、複数の基材層が積層されて構成されている積層体と、前記積層体に設けられている第1のグランド導体と、前記積層体において前記第1のグランド導体と異なる層に設けられている第2のグランド導体と、積層方向において、前記第1のグランド導体と前記第2のグランド導体との間に設けられている第1の信号線路と、積層方向において、前記第1のグランド導体と前記第2のグランド導体との間であって、前記第1の信号線路よりも該第2のグランド導体の近くに設けられている第2の信号線路であって、所定領域において、積層方向から平面視したときに、前記第1の信号線路に沿って延在している第2の信号線路と、を備えており、前記第1のグランド導体には、前記所定領域において、積層方向から平面視したときに、前記第1の信号線路と重なる第1の開口が設けられていること、を特徴とする。 A multilayer multicore cable according to an aspect of the present invention includes a multilayer body configured by laminating a plurality of base material layers, a first ground conductor provided in the multilayer body, and the multilayer body. A second ground conductor provided in a different layer from the first ground conductor, and a first signal provided between the first ground conductor and the second ground conductor in the stacking direction. And a second line provided between the first ground conductor and the second ground conductor in the stacking direction and closer to the second ground conductor than the first signal line. And a second signal line extending along the first signal line when viewed in plan from the stacking direction in a predetermined region. There is a ground conductor in the predetermined area. , When viewed in plan from the lamination direction, the first opening overlapping the first signal line is provided, characterized by.
 本発明によれば、複数の信号線路間のアイソレーションを確保できる。 According to the present invention, isolation between a plurality of signal lines can be ensured.
一実施形態に係る積層型多芯ケーブルの外観斜視図である。1 is an external perspective view of a multilayer multicore cable according to an embodiment. 一実施形態に係る積層型多芯ケーブルの分解斜視図である。It is a disassembled perspective view of the multilayer type multi-core cable which concerns on one Embodiment. 図1の積層型多芯ケーブルのX-Xにおける断面構造図である。FIG. 2 is a cross-sectional structure view taken along the line XX of the multilayer multicore cable of FIG. 図1の積層型多芯ケーブルの信号線路及びグランド導体を平面視した図である。FIG. 2 is a plan view of a signal line and a ground conductor of the multilayer multicore cable of FIG. 1. 積層型多芯ケーブルのコネクタの外観斜視図及び断面構造図である。It is the external appearance perspective view and cross-sectional structure figure of the connector of a lamination type multi-core cable. 積層型多芯ケーブルが用いられた電子機器をy軸方向及びz軸方向から平面視した図である。It is the figure which planarly viewed the electronic device using the multilayer type multi-core cable from the y-axis direction and the z-axis direction. 第1の変形例に係る積層型多芯ケーブルの外観斜視図である。It is an external appearance perspective view of the multilayer type multi-core cable which concerns on a 1st modification. 第1の変形例に係る積層型多芯ケーブルの分解斜視図である。It is a disassembled perspective view of the multilayer type multi-core cable which concerns on a 1st modification. 積層型多芯ケーブルのコネクタの外観斜視図及び断面構造図である。It is the external appearance perspective view and cross-sectional structure figure of the connector of a lamination type multi-core cable. 積層型多芯ケーブルが用いられた電子機器をy軸方向及びz軸方向から平面視した図である。It is the figure which planarly viewed the electronic device using the multilayer type multi-core cable from the y-axis direction and the z-axis direction. 第2の変形例に係る積層型多芯ケーブルの信号線路及びグランド導体を平面視した図である。It is the figure which planarly viewed the signal track | line and ground conductor of the multilayer type multi-core cable which concern on a 2nd modification. 第3の変形例に係る積層型多芯ケーブルの信号線路及びグランド導体を平面視した図である。It is the figure which planarly viewed the signal track | line and ground conductor of the multilayer type multi-core cable which concern on a 3rd modification. 第4の変形例に係る積層型多芯ケーブルの外観斜視図である。It is an external appearance perspective view of the multilayer type multi-core cable which concerns on a 4th modification. 第4の変形例に係る積層型多芯ケーブルの並走領域における分解斜視図である。It is a disassembled perspective view in the parallel running area | region of the lamination type multi-core cable which concerns on a 4th modification. 積層型多芯ケーブルが用いられた電子機器をz軸方向から平面視した図である。It is the figure which planarly viewed the electronic device using the lamination type multi-core cable from the z-axis direction. 第5の変形例に係る積層型多芯ケーブルの接続部における分解斜視図である。It is a disassembled perspective view in the connection part of the lamination type multi-core cable which concerns on a 5th modification. その他の実施形態に係る積層型多芯ケーブルの断面構造図である。It is a cross-section figure of the lamination type multi-core cable concerning other embodiments. その他の実施形態に係る積層型多芯ケーブルの断面構造図である。It is a cross-section figure of the lamination type multi-core cable concerning other embodiments. 特許文献1に記載のフレキシブルフラットケーブルの断面構造図である。2 is a cross-sectional structure diagram of a flexible flat cable described in Patent Literature 1. FIG.
 以下に、本発明の実施形態に係る積層型多芯ケーブルについて図面を参照しながら説明する。 Hereinafter, a laminated multicore cable according to an embodiment of the present invention will be described with reference to the drawings.
(積層型多芯ケーブルの構成)
 以下に、本発明の一実施形態に係る積層型多芯ケーブルの構成について図面を参照しながら説明する。図1は、一実施形態に係る積層型多芯ケーブル10の外観斜視図である。図2は、一実施形態に係る積層型多芯ケーブル10の分解斜視図である。図3は、図1の積層型多芯ケーブル10のX-Xにおける断面構造図である。図4は、図1の積層型多芯ケーブル10の信号線路20,21及びグランド導体22,24を平面視した図である。図1ないし図4において、積層型多芯ケーブル10の積層方向をz軸方向と定義する。また、積層型多芯ケーブル10の長手方向をx軸方向と定義し、x軸方向及びz軸方向に直交する方向をy軸方向と定義する。
(Configuration of laminated multi-core cable)
Hereinafter, a configuration of a multilayer multicore cable according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a multilayer multicore cable 10 according to an embodiment. FIG. 2 is an exploded perspective view of the multilayer multicore cable 10 according to the embodiment. FIG. 3 is a cross-sectional view taken along the line XX of the multilayer multicore cable 10 of FIG. 4 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10 of FIG. 1 to 4, the stacking direction of the multilayer multicore cable 10 is defined as the z-axis direction. Moreover, the longitudinal direction of the laminated multi-core cable 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
 積層型多芯ケーブル10は、図1及び図2に示すように、積層体12、外部端子16a~16d,信号線路20,21、グランド導体22,24、コネクタ100a,100b及びビアホール導体b1~b18を備えている。 As shown in FIGS. 1 and 2, the laminated multi-core cable 10 includes a laminated body 12, external terminals 16a to 16d, signal lines 20, 21, ground conductors 22, 24, connectors 100a, 100b, and via-hole conductors b1-b18. It has.
 積層体12は、z軸方向から平面視したときに、x軸方向に延在しており、線路部12a及び接続部12b~12eを含んでいる。積層体12は、図2に示すように、保護層14、誘電体シート(基材層)18a~18c及び保護層15がz軸方向の正方向側から負方向側へとこの順に積層されて構成されている可撓性の積層体である。以下では、積層体12のz軸方向の正方向側の主面を表面と称し、積層体12のz軸方向の負方向側の主面を裏面と称す。 The laminate 12 extends in the x-axis direction when viewed in plan from the z-axis direction, and includes a line portion 12a and connection portions 12b to 12e. As shown in FIG. 2, the laminate 12 includes a protective layer 14, dielectric sheets (base material layers) 18a to 18c, and a protective layer 15 laminated in this order from the positive side to the negative side in the z-axis direction. It is the flexible laminated body comprised. Hereinafter, the main surface on the positive direction side in the z-axis direction of the stacked body 12 is referred to as a front surface, and the main surface on the negative direction side in the z-axis direction of the stacked body 12 is referred to as a back surface.
 線路部12aは、x軸方向に延在している。接続部12bは、線路部12aのx軸方向の負方向側の端部からx軸方向の負方向側に延在する矩形状をなしている。接続部12cは、線路部12aのx軸方向の正方向側の端部からx軸方向の正方向側に延在する矩形状をなしている。接続部12dは、線路部12aのx軸方向の負方向側の端部からy軸方向の負方向側に延在する矩形状をなしている。これにより、接続部12bと接続部12dとは、線路部12aのx軸方向の負方向側の端部から2つに枝分かれした構造をなしている。接続部12eは、線路部12aのx軸方向の正方向側の端部からy軸方向の負方向側に延在した後、x軸方向の正方向側に延在するL字型をなしている。これにより、接続部12cと接続部12eとは、線路部12aのx軸方向の正方向側の端部から2つに枝分かれした構造をなしている。接続部12b~12eのy軸方向の幅は、線路部12aのy軸方向の幅と等しい。 The line portion 12a extends in the x-axis direction. The connecting portion 12b has a rectangular shape extending from the end portion on the negative direction side in the x-axis direction of the line portion 12a to the negative direction side in the x-axis direction. The connecting portion 12c has a rectangular shape extending from the end portion on the positive direction side in the x-axis direction of the line portion 12a to the positive direction side in the x-axis direction. The connecting portion 12d has a rectangular shape extending from the end portion on the negative direction side in the x-axis direction of the line portion 12a to the negative direction side in the y-axis direction. Thereby, the connection part 12b and the connection part 12d have comprised the structure branched into two from the edge part of the negative direction side of the x-axis direction of the line part 12a. The connecting portion 12e has an L shape extending from the end portion of the line portion 12a on the positive direction side in the x-axis direction to the negative direction side in the y-axis direction and then extending to the positive direction side in the x-axis direction. Yes. Thereby, the connection part 12c and the connection part 12e have comprised the structure branched into two from the edge part of the positive direction side of the x-axis direction of the track | line part 12a. The width in the y-axis direction of the connecting portions 12b to 12e is equal to the width in the y-axis direction of the line portion 12a.
 誘電体シート18a~18cは、z軸方向から平面視したときに、積層体12と同じ形状をなしている。誘電体シート18a~18cは、ポリイミド等の可撓性を有する熱可塑性樹脂により構成されている。誘電体シート18a~18cの積層後の厚さは、例えば、25μm~200μmである。以下では、誘電体シート18a~18cのz軸方向の正方向側の主面を表面と称し、誘電体シート18a~18cのz軸方向の負方向側の主面を裏面と称す。 The dielectric sheets 18a to 18c have the same shape as the stacked body 12 when viewed in plan from the z-axis direction. The dielectric sheets 18a to 18c are made of a flexible thermoplastic resin such as polyimide. The thickness of the dielectric sheets 18a to 18c after lamination is, for example, 25 μm to 200 μm. Hereinafter, the main surface on the positive side in the z-axis direction of the dielectric sheets 18a to 18c is referred to as the front surface, and the main surface on the negative direction side in the z-axis direction of the dielectric sheets 18a to 18c is referred to as the back surface.
 また、誘電体シート18aは、線路部18a-a及び接続部18a-b~18a-eにより構成されている。誘電体シート18bは、線路部18b-a及び接続部18b-b~18b-eにより構成されている。誘電体シート18cは、線路部18c-a及び接続部18c-b~18c-eにより構成されている。線路部18a-a~18c-aは、線路部12aを構成している。接続部18a-b,18c-bは、接続部12bを構成している。接続部18a-c,18c-cは、接続部12cを構成している。接続部18a-d,18b-d,18c-dは、接続部12dを構成している。接続部18a-e,18b-e,18c-eは、接続部12eを構成している。 The dielectric sheet 18a includes a line portion 18a-a and connection portions 18a-b to 18a-e. The dielectric sheet 18b includes a line portion 18b-a and connection portions 18b-b to 18b-e. The dielectric sheet 18c includes a line portion 18c-a and connection portions 18c-b to 18c-e. The line portions 18a-a to 18c-a constitute the line portion 12a. The connecting portions 18a-b and 18c-b constitute the connecting portion 12b. The connecting portions 18a-c and 18c-c constitute a connecting portion 12c. The connecting portions 18a-d, 18b-d, and 18c-d constitute a connecting portion 12d. The connecting portions 18a-e, 18b-e, and 18c-e constitute a connecting portion 12e.
 グランド導体22(第1のグランド導体)は、図2に示すように、積層体12に設けられており、より詳細には、誘電体シート18aの表面に設けられている。グランド導体22は、z軸方向から平面視したときに、積層体12と略同じ形状をなしており、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 The ground conductor 22 (first ground conductor) is provided in the multilayer body 12 as shown in FIG. 2, and more specifically, is provided on the surface of the dielectric sheet 18a. The ground conductor 22 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
 また、グランド導体22は、図2に示すように、線路部22a及び端子部22b~22eにより構成されている。線路部22aは、線路部18a-aの表面に設けられ、x軸方向に延在する長方形状をなしている。 Further, as shown in FIG. 2, the ground conductor 22 includes a line portion 22a and terminal portions 22b to 22e. The line portion 22a is provided on the surface of the line portion 18a-a and has a rectangular shape extending in the x-axis direction.
 端子部22bは、図2に示すように、接続部18a-bの表面に設けられており、線路部22aのx軸方向の負方向側の端部に接続されている。端子部22bのx軸方向の負方向側の端部は、四角形の枠状をなしている。端子部22cは、図2に示すように、接続部18a-cの表面に設けられており、線路部22aのx軸方向の正方向側の端部に接続されている。端子部22cのx軸方向の正方向側の端部は、ロ字型をなしている。端子部22dは、図2に示すように、接続部18a-dの表面に設けられており、線路部22aのx軸方向の負方向側の端部に接続されている。端子部22dのy軸方向の負方向側の端部は、ロ字型をなしている。端子部22eは、図2に示すように、接続部18a-eの表面に設けられており、線路部22aのx軸方向の正方向側の端部に接続されている。端子部22eのx軸方向の正方向側の端部は、ロ字型をなしている。 As shown in FIG. 2, the terminal portion 22b is provided on the surface of the connecting portion 18a-b, and is connected to the end of the line portion 22a on the negative side in the x-axis direction. The end portion on the negative direction side in the x-axis direction of the terminal portion 22b has a quadrangular frame shape. As shown in FIG. 2, the terminal portion 22c is provided on the surface of the connection portion 18a-c, and is connected to the end portion on the positive side in the x-axis direction of the line portion 22a. The end of the terminal portion 22c on the positive side in the x-axis direction has a square shape. As shown in FIG. 2, the terminal portion 22d is provided on the surface of the connection portion 18a-d, and is connected to the end portion on the negative direction side in the x-axis direction of the line portion 22a. The end of the terminal portion 22d on the negative direction side in the y-axis direction has a square shape. As shown in FIG. 2, the terminal portion 22e is provided on the surface of the connecting portion 18a-e, and is connected to the end portion on the positive side in the x-axis direction of the line portion 22a. The end of the terminal portion 22e on the positive side in the x-axis direction has a square shape.
 グランド導体24(第2のグランド導体)は、図2に示すように、積層体12においてグランド導体22と異なる層に設けられており、より詳細には、誘電体シート18cの裏面に設けられている。グランド導体24は、z軸方向から平面視したときに、積層体12と略同じ形状をなしており、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 As shown in FIG. 2, the ground conductor 24 (second ground conductor) is provided in a layer different from the ground conductor 22 in the multilayer body 12, and more specifically, provided on the back surface of the dielectric sheet 18c. Yes. The ground conductor 24 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
 また、グランド導体24は、図2に示すように、線路部24a及び端子部24b~24eにより構成されている。線路部24aは、線路部18c-aの裏面に設けられ、x軸方向に延在する長方形状をなしている。 Further, as shown in FIG. 2, the ground conductor 24 includes a line portion 24a and terminal portions 24b to 24e. The line portion 24a is provided on the back surface of the line portion 18c-a and has a rectangular shape extending in the x-axis direction.
 端子部24bは、図2に示すように、接続部18c-bの裏面に設けられており、線路部24aのx軸方向の負方向側の端部に接続されている。端子部24cは、図2に示すように、接続部18c-cの裏面に設けられており、線路部22aのx軸方向の正方向側の端部に接続されている。端子部24dは、図2に示すように、接続部18c-dの裏面に設けられており、線路部24aのx軸方向の負方向側の端部に接続されている。端子部24eは、図2に示すように、接続部18c-eの裏面に設けられており、線路部24aのx軸方向の正方向側の端部に接続されている。 As shown in FIG. 2, the terminal portion 24b is provided on the back surface of the connecting portion 18c-b, and is connected to the end portion of the line portion 24a on the negative side in the x-axis direction. As shown in FIG. 2, the terminal portion 24c is provided on the back surface of the connection portion 18c-c, and is connected to the end portion on the positive direction side in the x-axis direction of the line portion 22a. As shown in FIG. 2, the terminal portion 24d is provided on the back surface of the connection portion 18c-d, and is connected to the end portion on the negative direction side in the x-axis direction of the line portion 24a. As shown in FIG. 2, the terminal portion 24e is provided on the back surface of the connection portion 18c-e, and is connected to the end portion of the line portion 24a on the positive side in the x-axis direction.
 信号線路20は、図2及び図3に示すように、z軸方向において、グランド導体22とグランド導体24との間に設けられており、より詳細には、誘電体シート18bの線路部18b-a及び接続部18b-b,18b-cの表面に設けられている。信号線路20は、線路部18b-aの表面のy軸方向の中央よりもy軸方向の正方向側において、x軸方向に延在している線状導体であり、z軸方向から平面視したときに、グランド導体22,24と重なっている。これにより、信号線路20及びグランド導体22,24は、ストリップライン構造をなしている。信号線路20は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 As shown in FIGS. 2 and 3, the signal line 20 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction, and more specifically, the line portion 18b− of the dielectric sheet 18b. a and connecting portions 18b-b and 18b-c are provided on the surface. The signal line 20 is a linear conductor extending in the x-axis direction on the positive side in the y-axis direction from the center in the y-axis direction on the surface of the line portion 18b-a. When this occurs, the ground conductors 22 and 24 overlap. As a result, the signal line 20 and the ground conductors 22 and 24 have a stripline structure. The signal line 20 is made of a metal material having a small specific resistance mainly composed of silver or copper.
 また、信号線路20とグランド導体22とのz軸方向における距離D1は、図3に示すように、信号線路20とグランド導体24とのz軸方向における距離D2よりも小さい。距離D1は、誘電体シート18aの厚さと略等しく、距離D2は、誘電体シート18b,18cの厚さの合計と略等しい。 Further, the distance D1 between the signal line 20 and the ground conductor 22 in the z-axis direction is smaller than the distance D2 between the signal line 20 and the ground conductor 24 in the z-axis direction, as shown in FIG. The distance D1 is approximately equal to the thickness of the dielectric sheet 18a, and the distance D2 is approximately equal to the total thickness of the dielectric sheets 18b and 18c.
 信号線路21は、図2及び図3に示すように、z軸方向において、グランド導体22とグランド導体24との間であって、信号線路20よりもグランド導体24の近くに設けられており、より詳細には、誘電体シート18cの線路部18c-a及び接続部18c-d,18c-eの表面に設けられている。また、信号線路21は、線路部18c-aの表面のy軸方向の中央よりもy軸方向の負方向側において、x軸方向に延在している線状導体であり、z軸方向から平面視したときに、信号線路20と重なっていない。信号線路21は、図4に示すように、並走領域A1において、z軸方向から平面視したときに、信号線路20に沿って延在している。並走領域A1とは、線路部12aに相当する。また、沿って延在するとは、平行である状態及び平行から僅かに傾いた状態を意味する。ただし、信号線路21は、z軸方向から平面視したときに、グランド導体22,24と重なっている。これにより、信号線路21及びグランド導体22,24は、ストリップライン構造をなしている。信号線路21は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 As shown in FIGS. 2 and 3, the signal line 21 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction and closer to the ground conductor 24 than the signal line 20. More specifically, it is provided on the surface of the line portion 18c-a and the connecting portions 18c-d and 18c-e of the dielectric sheet 18c. The signal line 21 is a linear conductor extending in the x-axis direction on the negative direction side in the y-axis direction from the center in the y-axis direction on the surface of the line portion 18c-a. When viewed from above, the signal line 20 does not overlap. As shown in FIG. 4, the signal line 21 extends along the signal line 20 when viewed in plan from the z-axis direction in the parallel region A <b> 1. The parallel running region A1 corresponds to the line portion 12a. Moreover, extending along means the state of being parallel and the state of being slightly inclined from the parallel. However, the signal line 21 overlaps the ground conductors 22 and 24 when viewed in plan from the z-axis direction. Thus, the signal line 21 and the ground conductors 22 and 24 have a stripline structure. The signal line 21 is made of a metal material having a small specific resistance mainly composed of silver or copper.
 また、信号線路21とグランド導体22とのz軸方向における距離D3は、図3に示すように、信号線路21とグランド導体24とのz軸方向における距離D4よりも大きい。距離D3は、誘電体シート18a,18bの厚さの合計と略等しく、距離D4は、誘電体シート18cの厚さと略等しい。 Further, the distance D3 between the signal line 21 and the ground conductor 22 in the z-axis direction is larger than the distance D4 between the signal line 21 and the ground conductor 24 in the z-axis direction, as shown in FIG. The distance D3 is substantially equal to the total thickness of the dielectric sheets 18a and 18b, and the distance D4 is substantially equal to the thickness of the dielectric sheet 18c.
 ここで、グランド導体22には、図4に示すように、長方形状をなす複数の開口30が設けられている。複数の開口30は、z軸方向から平面視したときに、信号線路20と重なっていると共に、該信号線路20に沿って並ぶように設けられている。そして、グランド導体22において、隣り合う開口30間に設けられている部分をブリッジ部32と呼ぶ。これにより、開口30とブリッジ部32とがx軸方向に交互に並んでいる。信号線路20には、開口30とブリッジ部32とが交互に重なっている。ブリッジ部32は、信号線路20を伝送される高周波信号の1/2波長の半分より短い間隔で、信号線路20に沿って設けられている。 Here, the ground conductor 22 is provided with a plurality of rectangular openings 30 as shown in FIG. The plurality of openings 30 are provided so as to overlap with the signal line 20 and to be arranged along the signal line 20 when viewed in plan from the z-axis direction. In the ground conductor 22, a portion provided between adjacent openings 30 is referred to as a bridge portion 32. Thereby, the openings 30 and the bridge portions 32 are alternately arranged in the x-axis direction. Openings 30 and bridge portions 32 alternately overlap with the signal line 20. The bridge portions 32 are provided along the signal line 20 at intervals shorter than half the half wavelength of the high-frequency signal transmitted through the signal line 20.
 また、グランド導体24には、図4に示すように、長方形状をなす複数の開口31が設けられている。複数の開口31は、z軸方向から平面視したときに、信号線路21と重なっていると共に、該信号線路21に沿って並ぶように設けられている。そして、グランド導体24において、隣り合う開口31間に設けられている部分をブリッジ部33と呼ぶ。これにより、開口31とブリッジ部33とがx軸方向に交互に並んでいる。信号線路21には、開口31とブリッジ部33とが交互に重なっている。ブリッジ部32は、信号線路21を伝送される高周波信号の1/2波長の半分より短い間隔で、信号線路21に沿って設けられている。 Further, the ground conductor 24 is provided with a plurality of rectangular openings 31 as shown in FIG. The plurality of openings 31 are provided so as to overlap the signal line 21 and to be arranged along the signal line 21 when viewed in plan from the z-axis direction. In the ground conductor 24, a portion provided between adjacent openings 31 is referred to as a bridge portion 33. Thereby, the openings 31 and the bridge portions 33 are alternately arranged in the x-axis direction. Openings 31 and bridge portions 33 alternately overlap with the signal line 21. The bridge portions 32 are provided along the signal line 21 at intervals shorter than half the half wavelength of the high-frequency signal transmitted through the signal line 21.
 外部端子16aは、接続部18a-bの表面に設けられている長方形状の導体であり、端子部22bに囲まれている。外部端子16aは、z軸方向から平面視したときに、信号線路20のx軸方向の負方向側の端部と重なっている。外部端子16aは、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。また、外部端子16aの表面には、金めっきが施されている。 The external terminal 16a is a rectangular conductor provided on the surface of the connecting portion 18a-b, and is surrounded by the terminal portion 22b. The external terminal 16a overlaps the end of the signal line 20 on the negative direction side in the x-axis direction when viewed in plan from the z-axis direction. The external terminal 16a is made of a metal material having a small specific resistance mainly composed of silver or copper. The surface of the external terminal 16a is gold plated.
 外部端子16bは、接続部18a-cの表面に設けられている長方形状の導体であり、端子部22cに囲まれている。外部端子16bは、z軸方向から平面視したときに、信号線路20のx軸方向の正方向側の端部と重なっている。外部端子16bは、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。また、外部端子16bの表面には、金めっきが施されている。 The external terminal 16b is a rectangular conductor provided on the surface of the connecting portion 18a-c, and is surrounded by the terminal portion 22c. The external terminal 16b overlaps the end of the signal line 20 on the positive direction side in the x-axis direction when viewed in plan from the z-axis direction. The external terminal 16b is made of a metal material having a small specific resistance mainly composed of silver or copper. The surface of the external terminal 16b is gold plated.
 外部端子16cは、接続部18a-dの表面に設けられている長方形状の導体であり、端子部22dに囲まれている。外部端子16cは、z軸方向から平面視したときに、信号線路21のx軸方向の負方向側の端部と重なっている。外部端子16cは、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。また、外部端子16cの表面には、金めっきが施されている。 The external terminal 16c is a rectangular conductor provided on the surface of the connecting portion 18a-d, and is surrounded by the terminal portion 22d. The external terminal 16c overlaps the end of the signal line 21 on the negative direction side in the x-axis direction when viewed in plan from the z-axis direction. The external terminal 16c is made of a metal material having a small specific resistance mainly composed of silver or copper. The surface of the external terminal 16c is gold plated.
 外部端子16dは、接続部18a-eの表面に設けられている長方形状の導体であり、端子部22eに囲まれている。外部端子16dは、z軸方向から平面視したときに、信号線路21のx軸方向の正方向側の端部と重なっている。外部端子16dは、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。また、外部端子16dの表面には、金めっきが施されている。 The external terminal 16d is a rectangular conductor provided on the surface of the connecting portion 18a-e, and is surrounded by the terminal portion 22e. The external terminal 16d overlaps the end of the signal line 21 on the positive direction side in the x-axis direction when viewed in plan from the z-axis direction. The external terminal 16d is made of a metal material having a small specific resistance mainly composed of silver or copper. The surface of the external terminal 16d is plated with gold.
 ビアホール導体b1は、誘電体シート18aの接続部18a-bをz軸方向に貫通している。ビアホール導体b1のz軸方向の正方向側の端部は、外部端子16aに接続されており、ビアホール導体b1のz軸方向の負方向側の端部は、信号線路20のx軸方向の負方向側の端部と接続されている。 The via-hole conductor b1 passes through the connecting portions 18a-b of the dielectric sheet 18a in the z-axis direction. The end portion on the positive side in the z-axis direction of the via-hole conductor b1 is connected to the external terminal 16a, and the end portion on the negative direction side in the z-axis direction of the via-hole conductor b1 is negative in the x-axis direction of the signal line 20. It is connected to the end on the direction side.
 ビアホール導体b2は、誘電体シート18aの接続部18a-cをz軸方向に貫通している。ビアホール導体b2のz軸方向の正方向側の端部は、外部端子16bに接続されており、ビアホール導体b2のz軸方向の負方向側の端部は、信号線路20のx軸方向の正方向側の端部と接続されている。これにより、信号線路20は、外部端子16a,16b間に接続されている。 The via-hole conductor b2 passes through the connecting portions 18a-c of the dielectric sheet 18a in the z-axis direction. The end of the via-hole conductor b2 on the positive side in the z-axis direction is connected to the external terminal 16b, and the end of the via-hole conductor b2 on the negative side in the z-axis direction is the positive end of the signal line 20 in the x-axis direction. It is connected to the end on the direction side. Thereby, the signal line 20 is connected between the external terminals 16a and 16b.
 ビアホール導体b3は、誘電体シート18aの接続部18a-dをz軸方向に貫通している。ビアホール導体b4は、誘電体シート18bの接続部18b-dをz軸方向に貫通している。ビアホール導体b3,b4は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b3のz軸方向の正方向側の端部は、外部端子16cに接続されており、ビアホール導体b4のz軸方向の負方向側の端部は、信号線路21のx軸方向の負方向側の端部と接続されている。 The via-hole conductor b3 passes through the connecting portions 18a-d of the dielectric sheet 18a in the z-axis direction. The via-hole conductor b4 passes through the connection portion 18b-d of the dielectric sheet 18b in the z-axis direction. The via-hole conductors b3 and b4 constitute one via-hole conductor by being connected to each other. The end portion on the positive side in the z-axis direction of the via-hole conductor b3 is connected to the external terminal 16c, and the end portion on the negative direction side in the z-axis direction of the via-hole conductor b4 is negative in the x-axis direction of the signal line 21. It is connected to the end on the direction side.
 ビアホール導体b5は、誘電体シート18aの接続部18a-eをz軸方向に貫通している。ビアホール導体b6は、誘電体シート18bの接続部18b-eをz軸方向に貫通している。ビアホール導体b5,b6は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b5のz軸方向の正方向側の端部は、外部端子16dに接続されており、ビアホール導体b6のz軸方向の負方向側の端部は、信号線路21のx軸方向の正方向側の端部と接続されている。 The via-hole conductor b5 passes through the connecting portion 18a-e of the dielectric sheet 18a in the z-axis direction. The via-hole conductor b6 passes through the connection portion 18b-e of the dielectric sheet 18b in the z-axis direction. The via-hole conductors b5 and b6 constitute one via-hole conductor by being connected to each other. The positive end of the via-hole conductor b5 in the z-axis direction is connected to the external terminal 16d, and the negative end of the via-hole conductor b6 in the z-axis direction is the positive end of the signal line 21 in the x-axis direction. It is connected to the end on the direction side.
 ビアホール導体b7は、誘電体シート18aの線路部18a-a及び接続部18a-b,18a-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b8は、誘電体シート18bの線路部18b-a及び接続部18b-b,18b-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b9は、誘電体シート18cの線路部18c-a及び接続部18c-b,18c-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b7~b9は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b7のz軸方向の正方向側の端部は、グランド導体22と接続されている。ビアホール導体b9のz軸方向の負方向側の端部は、グランド導体24と接続されている。 The via-hole conductor b7 passes through the line portion 18a-a and the connecting portions 18a-b and 18a-c of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b8 passes through the line portion 18b-a and the connecting portions 18b-b and 18b-c of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b9 passes through the line portion 18c-a and the connecting portions 18c-b and 18c-c of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via hole conductors b7 to b9 are connected to each other to constitute one via hole conductor. The end of the via-hole conductor b7 on the positive side in the z-axis direction is connected to the ground conductor 22. The end of the via-hole conductor b9 on the negative direction side in the z-axis direction is connected to the ground conductor 24.
 ビアホール導体b10は、誘電体シート18aの線路部18a-a及び接続部18a-b,18a-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b11は、誘電体シート18bの線路部18b-a及び接続部18b-b,18b-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b12は、誘電体シート18cの線路部18c-a及び接続部18c-b,18c-cをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路20よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b10~b12は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b10のz軸方向の正方向側の端部は、グランド導体22と接続されている。ビアホール導体b12のz軸方向の負方向側の端部は、グランド導体24と接続されている。 The via-hole conductor b10 passes through the line portion 18a-a and the connection portions 18a-b and 18a-c of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b11 passes through the line portion 18b-a and the connecting portions 18b-b and 18b-c of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b12 penetrates the line portion 18c-a and the connecting portions 18c-b and 18c-c of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 20 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductors b10 to b12 are connected to each other to constitute one via-hole conductor. The end of the via-hole conductor b10 on the positive side in the z-axis direction is connected to the ground conductor 22. The end of the via-hole conductor b12 on the negative side in the z-axis direction is connected to the ground conductor 24.
 ビアホール導体b13は、誘電体シート18aの線路部18a-a及び接続部18a-d,18a-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b14は、誘電体シート18bの線路部18b-a及び接続部18b-d,18b-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b15は、誘電体シート18cの線路部18c-a及び接続部18c-d,18c-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の正方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b13~b15は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b13のz軸方向の正方向側の端部は、グランド導体22と接続されている。ビアホール導体b15のz軸方向の負方向側の端部は、グランド導体24と接続されている。 The via-hole conductor b13 penetrates the line portion 18a-a and the connecting portions 18a-d and 18a-e of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b14 passes through the line portion 18b-a and the connecting portions 18b-d and 18b-e of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b15 passes through the line portion 18c-a and the connection portions 18c-d and 18c-e of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the positive direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via hole conductors b13 to b15 are connected to each other to constitute one via hole conductor. The end of the via-hole conductor b <b> 13 on the positive side in the z-axis direction is connected to the ground conductor 22. The end of the via-hole conductor b15 on the negative direction side in the z-axis direction is connected to the ground conductor 24.
 ビアホール導体b16は、誘電体シート18aの線路部18a-a及び接続部18a-d,18a-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b17は、誘電体シート18bの線路部18b-a及び接続部18b-d,18b-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b18は、誘電体シート18cの線路部18c-a及び接続部18c-d,18c-eをz軸方向に貫通しており、z軸方向から平面視したときに、信号線路21よりもy軸方向の負方向側において、x軸方向に一列に並ぶように複数設けられている。ビアホール導体b16~b18は、互いに接続されることにより、1本のビアホール導体を構成している。ビアホール導体b16のz軸方向の正方向側の端部は、グランド導体22と接続されている。ビアホール導体b18のz軸方向の負方向側の端部は、グランド導体24と接続されている。これにより、グランド導体22とグランド導体24とは、ビアホール導体b7~b18により接続されている。 The via-hole conductor b16 passes through the line portion 18a-a and the connecting portions 18a-d and 18a-e of the dielectric sheet 18a in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b17 passes through the line portion 18b-a and the connecting portions 18b-d and 18b-e of the dielectric sheet 18b in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via-hole conductor b18 passes through the line portion 18c-a and the connecting portions 18c-d and 18c-e of the dielectric sheet 18c in the z-axis direction, and is more than the signal line 21 when viewed in plan from the z-axis direction. On the negative direction side in the y-axis direction, a plurality are provided so as to be aligned in a row in the x-axis direction. The via hole conductors b16 to b18 are connected to each other to constitute one via hole conductor. The end of the via-hole conductor b16 on the positive side in the z-axis direction is connected to the ground conductor 22. The end of the via-hole conductor b18 on the negative direction side in the z-axis direction is connected to the ground conductor 24. Thereby, the ground conductor 22 and the ground conductor 24 are connected by the via-hole conductors b7 to b18.
 ビアホール導体b1~b18は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。なお、ビアホール導体b1~b18の代わりに、貫通孔の内周面にめっき等の導体層が形成されたスルーホールが用いられてもよい。 The via-hole conductors b1 to b18 are made of a metal material having a specific resistance mainly composed of silver or copper. Instead of the via hole conductors b1 to b18, a through hole in which a conductor layer such as plating is formed on the inner peripheral surface of the through hole may be used.
 保護層14は、誘電体シート18aの表面の略全面を覆っている。これにより、保護層14は、グランド導体22を覆っている。保護層14は、例えば、レジスト材等の可撓性樹脂からなる。 The protective layer 14 covers substantially the entire surface of the dielectric sheet 18a. Thereby, the protective layer 14 covers the ground conductor 22. The protective layer 14 is made of a flexible resin such as a resist material, for example.
 また、保護層14は、図2に示すように、線路部14a及び接続部14b~14eにより構成されている。線路部14aは、線路部18a-aの表面の全面を覆うことにより、線路部22aを覆っている。 Further, as shown in FIG. 2, the protective layer 14 includes a line portion 14a and connection portions 14b to 14e. The line portion 14a covers the line portion 22a by covering the entire surface of the line portion 18a-a.
 接続部14bは、線路部14aのx軸方向の負方向側の端部に接続されており、接続部18a-bの表面を覆っている。ただし、接続部14bには、矩形状の開口Haが設けられている。外部端子16a及び端子部22bは、開口Haを介して外部に露出している。端子部22bは、開口Haを介して外部に露出することにより、外部端子として機能する。 The connecting portion 14b is connected to the end portion on the negative side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-b. However, the connection portion 14b is provided with a rectangular opening Ha. The external terminal 16a and the terminal portion 22b are exposed to the outside through the opening Ha. The terminal portion 22b functions as an external terminal by being exposed to the outside through the opening Ha.
 接続部14cは、線路部14aのx軸方向の正方向側の端部に接続されており、接続部18a-cの表面を覆っている。ただし、接続部14cには、矩形状の開口Hbが設けられている。外部端子16b及び端子部22cは、開口Hbを介して外部に露出している。端子部22cは、開口Hbを介して外部に露出することにより、外部端子として機能する。 The connecting portion 14c is connected to the end portion on the positive side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-c. However, the connection portion 14c is provided with a rectangular opening Hb. The external terminal 16b and the terminal portion 22c are exposed to the outside through the opening Hb. The terminal portion 22c functions as an external terminal by being exposed to the outside through the opening Hb.
 接続部14dは、線路部14aのx軸方向の負方向側の端部に接続されており、接続部18a-dの表面を覆っている。ただし、接続部14dには、矩形状の開口Hcが設けられている。外部端子16c及び端子部22dは、開口Hcを介して外部に露出している。端子部22dは、開口Hcを介して外部に露出することにより、外部端子として機能する。 The connecting portion 14d is connected to the end portion on the negative side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-d. However, the connection portion 14d is provided with a rectangular opening Hc. The external terminal 16c and the terminal portion 22d are exposed to the outside through the opening Hc. The terminal portion 22d functions as an external terminal by being exposed to the outside through the opening Hc.
 接続部14eは、線路部14aのx軸方向の正方向側の端部に接続されており、接続部18a-eの表面を覆っている。ただし、接続部14eには、矩形状の開口Hdが設けられている。外部端子16d及び端子部22eは、開口Hdを介して外部に露出している。端子部22eは、開口Hdを介して外部に露出することにより、外部端子として機能する。 The connecting portion 14e is connected to the end portion on the positive side in the x-axis direction of the line portion 14a and covers the surface of the connecting portion 18a-e. However, the connection portion 14e is provided with a rectangular opening Hd. The external terminal 16d and the terminal portion 22e are exposed to the outside through the opening Hd. The terminal portion 22e functions as an external terminal by being exposed to the outside through the opening Hd.
 保護層15は、誘電体シート18cの裏面の略全面を覆っている。これにより、保護層15は、グランド導体24を覆っている。保護層15は、例えば、レジスト材等の可撓性樹脂からなる。 The protective layer 15 covers substantially the entire back surface of the dielectric sheet 18c. Thereby, the protective layer 15 covers the ground conductor 24. The protective layer 15 is made of a flexible resin such as a resist material, for example.
 コネクタ100a,100bはそれぞれ、接続部12b,12cの表面上に実装され、信号線路20及びグランド導体22,24と電気的に接続される。また、コネクタ100c,100dはそれぞれ、接続部12d,12eの表面上に実装され、信号線路21及びグランド導体22,24と電気的に接続される。コネクタ100a~100dの構成は同じであるので、以下にコネクタ100bの構成を例に挙げて説明する。図5は、積層型多芯ケーブル10のコネクタ100bの外観斜視図及び断面構造図である。 The connectors 100a and 100b are mounted on the surfaces of the connecting portions 12b and 12c, and are electrically connected to the signal line 20 and the ground conductors 22 and 24, respectively. The connectors 100c and 100d are mounted on the surfaces of the connection portions 12d and 12e, respectively, and are electrically connected to the signal line 21 and the ground conductors 22 and 24. Since the connectors 100a to 100d have the same configuration, the configuration of the connector 100b will be described below as an example. FIGS. 5A and 5B are an external perspective view and a cross-sectional structure diagram of the connector 100b of the multilayer multicore cable 10. FIG.
 コネクタ100bは、図5に示すように、コネクタ本体102、外部端子104,106、中心導体108及び外部導体110により構成されている。コネクタ本体102は、矩形状の板に円筒が連結された形状をなしており、樹脂等の絶縁材料により作製されている。 The connector 100b includes a connector body 102, external terminals 104 and 106, a central conductor 108, and an external conductor 110 as shown in FIG. The connector body 102 has a shape in which a cylinder is connected to a rectangular plate, and is made of an insulating material such as a resin.
 外部端子104は、コネクタ本体102のz軸方向の負方向側の面において、外部端子16bと対向する位置に設けられている。外部端子106は、コネクタ本体102のz軸方向の負方向側の面において、開口Hbを介して露出している端子部22cに対応する位置に設けられている。 The external terminal 104 is provided at a position facing the external terminal 16b on the negative side surface in the z-axis direction of the connector main body 102. The external terminal 106 is provided at a position corresponding to the terminal portion 22c exposed through the opening Hb on the surface of the connector main body 102 on the negative side in the z-axis direction.
 中心導体108は、コネクタ本体102の円筒の中心に設けられており、外部端子104と接続されている。中心導体108は、信号線路20を伝送される高周波信号が入力又は出力する信号端子である。 The center conductor 108 is provided at the center of the cylinder of the connector main body 102 and is connected to the external terminal 104. The center conductor 108 is a signal terminal that inputs or outputs a high-frequency signal transmitted through the signal line 20.
 外部導体110は、コネクタ本体102の円筒に設けられており、外部端子106と接続されている。外部導体110は、接地電位に保たれるグランド端子である。 The external conductor 110 is provided on the cylinder of the connector body 102 and is connected to the external terminal 106. The outer conductor 110 is a ground terminal that is maintained at a ground potential.
 以上のように構成されたコネクタ100bは、外部端子104が外部端子16bと接続され、外部端子106が端子部22cと接続されるように、接続部12cの表面上に実装される。これにより、信号線路20は、中心導体108に電気的に接続されている。また、グランド導体22,24は、外部導体110に電気的に接続されている。 The connector 100b configured as described above is mounted on the surface of the connection portion 12c such that the external terminal 104 is connected to the external terminal 16b and the external terminal 106 is connected to the terminal portion 22c. Thereby, the signal line 20 is electrically connected to the central conductor 108. The ground conductors 22 and 24 are electrically connected to the external conductor 110.
 積層型多芯ケーブル10は、以下に説明するように用いられる。図6は、積層型多芯ケーブル10が用いられた電子機器200をy軸方向及びz軸方向から平面視した図である。 The laminated multi-core cable 10 is used as described below. FIG. 6 is a plan view of the electronic device 200 in which the laminated multicore cable 10 is used from the y-axis direction and the z-axis direction.
 電子機器200は、積層型多芯ケーブル10、回路基板202a~202d、レセプタクル204a~204d(レセプタクル204c,204dは図示せず)、バッテリーパック(金属体)206及び筐体210を備えている。 The electronic device 200 includes a multilayer multi-core cable 10, circuit boards 202a to 202d, receptacles 204a to 204d (receptacles 204c and 204d are not shown), a battery pack (metal body) 206, and a casing 210.
 バッテリーパック206は、例えば、リチウムイオン2次電池であり、その表面が金属カバーにより覆われた構造を有している。回路基板202a、バッテリーパック206及び回路基板202bは、x軸方向の負方向側から正方向側へとこの順に並んでいる。また、回路基板202cは、回路基板202aのy軸方向の負方向側に設けられている。回路基板202dは、回路基板202dのy軸方向の負方向側に設けられている。 The battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover. The circuit board 202a, the battery pack 206, and the circuit board 202b are arranged in this order from the negative direction side to the positive direction side in the x-axis direction. The circuit board 202c is provided on the negative direction side of the circuit board 202a in the y-axis direction. The circuit board 202d is provided on the negative direction side of the circuit board 202d in the y-axis direction.
 積層体12の表面(より正確には、保護層14)は、バッテリーパック206に対して接触している。そして、積層体12の表面とバッテリーパック206とは、接着剤等により固定されている。 The surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206. The surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
 レセプタクル204a~204dはそれぞれ、回路基板202a~202dのz軸方向の負方向側の主面上に設けられている。レセプタクル204a~204dにはそれぞれ、コネクタ100a~100dが接続される。これにより、コネクタ100a,100bの中心導体108には、回路基板202a,202bとの間を伝送される例えば0.8GHz~5GHzの周波数を有する高周波信号がレセプタクル204a,204bを介して印加される。また、コネクタ100c,100dの中心導体108には、回路基板202c,202dとの間を伝送される例えば0.8GHz~5GHzの周波数を有する高周波信号がレセプタクル204c,204dを介して印加される。また、コネクタ100a~100dの外部導体110はそれぞれ、回路基板202a~202dを介して、グランド電位に保たれる。これにより、積層型多芯ケーブル10は、回路基板202aと回路基板202bとの間、及び、回路基板202cと回路基板202dとの間を接続している。 The receptacles 204a to 204d are provided on the main surfaces on the negative direction side in the z-axis direction of the circuit boards 202a to 202d, respectively. Connectors 100a to 100d are connected to receptacles 204a to 204d, respectively. Accordingly, a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit boards 202a and 202b is applied to the central conductor 108 of the connectors 100a and 100b via the receptacles 204a and 204b. Further, a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit boards 202c and 202d is applied to the central conductor 108 of the connectors 100c and 100d via the receptacles 204c and 204d. Further, the outer conductors 110 of the connectors 100a to 100d are kept at the ground potential via the circuit boards 202a to 202d, respectively. Thereby, the multilayer multicore cable 10 connects between the circuit board 202a and the circuit board 202b and between the circuit board 202c and the circuit board 202d.
 ここで、バッテリーパック206のz軸方向の負方向側の主面とレセプタクル204a~204dとの間には段差が存在する。よって、積層体12の線路部12aの両端が湾曲させられることによって、コネクタ100a~100dはそれぞれ、レセプタクル204a~204dに接続されている。 Here, there is a step between the main surface of the battery pack 206 on the negative side in the z-axis direction and the receptacles 204a to 204d. Therefore, by bending both ends of the line portion 12a of the laminate 12, the connectors 100a to 100d are connected to the receptacles 204a to 204d, respectively.
(高周波信号線路の製造方法)
 以下に、積層型多芯ケーブル10の製造方法について図2を参照しながら説明する。以下では、一つの積層型多芯ケーブル10が作製される場合を例にとって説明するが、実際には、大判の誘電体シートが積層及びカットされることにより、同時に複数の積層型多芯ケーブル10が作製される。
(Manufacturing method of high frequency signal line)
Below, the manufacturing method of the laminated | multilayer type | mold multicore cable 10 is demonstrated, referring FIG. In the following, a case where one laminated multi-core cable 10 is manufactured will be described as an example. In practice, a large-sized dielectric sheet is laminated and cut, so that a plurality of laminated multi-core cables 10 are simultaneously formed. Is produced.
 まず、表面の全面に銅箔が形成された熱可塑性樹脂からなる誘電体シート18a,18bを準備する。また、表面及び裏面の全面に銅箔が形成された熱可塑性樹脂からなる誘電体シート18cを準備する。誘電体シート18a~18cの銅箔の表面は、例えば、防錆のための亜鉛鍍金が施されることにより、平滑化されている。銅箔の厚さは、10μm~20μmである。 First, dielectric sheets 18a and 18b made of a thermoplastic resin having a copper foil formed on the entire surface are prepared. In addition, a dielectric sheet 18c made of a thermoplastic resin having a copper foil formed on the entire front and back surfaces is prepared. The surfaces of the copper foils of the dielectric sheets 18a to 18c are smoothed by applying, for example, zinc plating for rust prevention. The thickness of the copper foil is 10 μm to 20 μm.
 次に、フォトリソグラフィ工程により、図2に示す外部端子16a~16d及びグランド導体22を誘電体シート18aの表面に形成する。具体的には、誘電体シート18aの表面側の銅箔上に、図2に示す外部端子16a~16d及びグランド導体22と同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、レジストを除去する。これにより、図2に示すような、外部端子16a~16d及びグランド導体22が誘電体シート18aの表面に形成される。 Next, the external terminals 16a to 16d and the ground conductor 22 shown in FIG. 2 are formed on the surface of the dielectric sheet 18a by a photolithography process. Specifically, a resist having the same shape as the external terminals 16a to 16d and the ground conductor 22 shown in FIG. 2 is printed on the copper foil on the surface side of the dielectric sheet 18a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thus, the external terminals 16a to 16d and the ground conductor 22 are formed on the surface of the dielectric sheet 18a as shown in FIG.
 次に、フォトリソグラフィ工程により、図2に示す信号線路20を誘電体シート18bの表面に形成する。また、フォトリソグラフィ工程により、図2に示す信号線路21を誘電体シート18cの表面に形成する。また、フォトリソグラフィ工程により、図2に示すグランド導体24を誘電体シート18cの裏面に形成する。信号線路20,21及びグランド導体24の形成方法は、外部端子16a~16d及びグランド導体22の形成方法と同じであるので説明を省略する。 Next, the signal line 20 shown in FIG. 2 is formed on the surface of the dielectric sheet 18b by a photolithography process. Further, the signal line 21 shown in FIG. 2 is formed on the surface of the dielectric sheet 18c by a photolithography process. Further, the ground conductor 24 shown in FIG. 2 is formed on the back surface of the dielectric sheet 18c by a photolithography process. The method of forming the signal lines 20 and 21 and the ground conductor 24 is the same as the method of forming the external terminals 16a to 16d and the ground conductor 22, and thus the description thereof is omitted.
 次に、誘電体シート18a~18cのビアホール導体b1~b18が形成される位置に対して、裏面側からレーザービームを照射して、貫通孔を形成する。その後、誘電体シート18a~18cに形成した貫通孔に対して、導電性ペーストを充填する。 Next, a laser beam is irradiated from the back side to the positions where the via hole conductors b1 to b18 of the dielectric sheets 18a to 18c are formed, thereby forming through holes. Thereafter, the through-holes formed in the dielectric sheets 18a to 18c are filled with a conductive paste.
 次に、誘電体シート18a~18cをz軸方向の正方向側から負方向側へとこの順に積み重ねる。そして、誘電体シート18a~18cに対してz軸方向の正方向側及び負方向側から熱及び圧力を加えることにより、誘電体シート18a~18cを軟化させて圧着・一体化するとともに、貫通孔に充填された導電性ペーストを固化して、図2に示すビアホール導体b1~b18を形成する。なお、ビアホール導体b1~b18は必ずしも貫通孔が導体で完全に埋められている必要はなく、例えば貫通孔の内周面のみに沿って導体を形成することによって形成されてもよい。 Next, the dielectric sheets 18a to 18c are stacked in this order from the positive direction side in the z-axis direction to the negative direction side. Then, by applying heat and pressure to the dielectric sheets 18a to 18c from the positive direction side and the negative direction side in the z-axis direction, the dielectric sheets 18a to 18c are softened to be crimped and integrated, and through holes The conductive paste filled in is solidified to form via-hole conductors b1 to b18 shown in FIG. The via-hole conductors b1 to b18 do not necessarily have to completely fill the through hole with the conductor, and may be formed, for example, by forming the conductor along only the inner peripheral surface of the through hole.
 最後に、樹脂(レジスト)ペーストを塗布することにより、誘電体シート18aの表面及び誘電体シート18cの裏面のそれぞれに保護層14,15を形成する。 Finally, the protective layers 14 and 15 are formed on the front surface of the dielectric sheet 18a and the back surface of the dielectric sheet 18c by applying a resin (resist) paste, respectively.
(効果)
 以上のように構成された積層型多芯ケーブル10によれば、2本の信号線路20,21間のアイソレーションを確保できる。より詳細には、特許文献1に記載のフレキシブルフラットケーブル500では、平角導体502が同じ層に設けられているので、平角導体502間のアイソレーションを確保しにくいという問題を有している。
(effect)
According to the laminated multi-core cable 10 configured as described above, it is possible to ensure isolation between the two signal lines 20 and 21. More specifically, the flexible flat cable 500 described in Patent Document 1 has a problem that it is difficult to ensure isolation between the flat conductors 502 because the flat conductors 502 are provided in the same layer.
 そこで、積層型多芯ケーブル10では、信号線路20と信号線路21とが異なる層に設けられている。これにより、積層型多芯ケーブル10における信号線路20と信号線路21との間の距離は、フレキシブルフラットケーブル500における平角導体502間の距離よりも大きくなる。これにより、信号線路20,21間に形成される容量は、平角導体502間に形成される容量よりも小さくなる。これにより、信号線路20,21間においてノイズが伝搬されることが抑制される。その結果、積層型多芯ケーブル10におけるアイソレーションは、フレキシブルフラットケーブル500におけるアイソレーションに比べて確保されるようになる。特に、2本の信号線路20,21が差動伝送用のデジタル信号線路である場合には、信号線路20,21間のクロストークが低減される。 Therefore, in the laminated multicore cable 10, the signal line 20 and the signal line 21 are provided in different layers. Thereby, the distance between the signal line 20 and the signal line 21 in the multilayer multicore cable 10 becomes larger than the distance between the flat conductors 502 in the flexible flat cable 500. Thereby, the capacitance formed between the signal lines 20 and 21 is smaller than the capacitance formed between the flat conductors 502. Thereby, it is suppressed that noise propagates between the signal lines 20 and 21. As a result, the isolation in the laminated multi-core cable 10 is ensured compared to the isolation in the flexible flat cable 500. In particular, when the two signal lines 20 and 21 are digital signal lines for differential transmission, crosstalk between the signal lines 20 and 21 is reduced.
 また、積層型多芯ケーブル10によれば、以下の理由によっても、信号線路20,21間のアイソレーションを確保できる。より詳細には、積層型多芯ケーブル10では、グランド導体22では、開口30は、z軸方向から平面視したときに、信号線路20と重なっている。そのため、信号線路20とグランド導体22との間には容量が形成されにくくなり、信号線路20が放射したノイズがグランド導体22へと伝搬されにくくなる。これにより、信号線路20が放射したノイズが、グランド導体22を介して信号線路21に伝送されることが抑制される。その結果、積層型多芯ケーブル10では、アイソレーションが更に確保されるようになる。 Further, according to the laminated multicore cable 10, the isolation between the signal lines 20 and 21 can be secured also for the following reason. More specifically, in the laminated multicore cable 10, in the ground conductor 22, the opening 30 overlaps the signal line 20 when viewed in plan from the z-axis direction. Therefore, it is difficult to form a capacitance between the signal line 20 and the ground conductor 22, and noise radiated from the signal line 20 is not easily propagated to the ground conductor 22. Thereby, the noise radiated from the signal line 20 is suppressed from being transmitted to the signal line 21 via the ground conductor 22. As a result, the laminated multicore cable 10 further secures isolation.
 また、積層型多芯ケーブル10では、グランド導体24では、開口31は、z軸方向から平面視したときに、信号線路21と重なっている。そのため、信号線路21とグランド導体24との間には容量が形成されにくくなり、信号線路21が放射したノイズがグランド導体24へと伝搬されにくくなる。これにより、信号線路21が放射したノイズが、グランド導体24を介して信号線路20に伝送されることが抑制される。その結果、積層型多芯ケーブル10では、アイソレーションが更に確保されるようになる。 Further, in the laminated multicore cable 10, the opening 31 of the ground conductor 24 overlaps the signal line 21 when viewed in plan from the z-axis direction. Therefore, it is difficult to form a capacitance between the signal line 21 and the ground conductor 24, and noise radiated from the signal line 21 is difficult to propagate to the ground conductor 24. Thereby, the noise radiated from the signal line 21 is suppressed from being transmitted to the signal line 20 through the ground conductor 24. As a result, the laminated multicore cable 10 further secures isolation.
 また、積層型多芯ケーブル10によれば、積層体12の薄型化を図ることができる。より詳細には、積層型多芯ケーブル10では、開口30は、グランド導体22に設けられており、z軸方向から平面視したときに、信号線路20と重なっている。これにより、信号線路20とグランド導体22との間に容量が形成されにくくなる。よって、信号線路20とグランド導体22との間に形成される容量を大きくすることなく、信号線路20とグランド導体22との距離D1を小さくすることができる。すなわち、信号線路20の特性インピーダンスを小さくすることなく、信号線路20とグランド導体22とを近づけて、積層体12の薄型化を図ることができる。 Moreover, according to the laminated multicore cable 10, the laminated body 12 can be thinned. More specifically, in the laminated multicore cable 10, the opening 30 is provided in the ground conductor 22 and overlaps the signal line 20 when viewed in plan from the z-axis direction. Thereby, it is difficult to form a capacitance between the signal line 20 and the ground conductor 22. Therefore, the distance D1 between the signal line 20 and the ground conductor 22 can be reduced without increasing the capacitance formed between the signal line 20 and the ground conductor 22. That is, the signal line 20 and the ground conductor 22 can be brought close to each other without reducing the characteristic impedance of the signal line 20, so that the multilayer body 12 can be thinned.
 また、積層型多芯ケーブル10によれば、積層体12の薄型化を図ることができる。より詳細には、積層型多芯ケーブル10では、開口31は、グランド導体24に設けられており、z軸方向から平面視したときに、信号線路21と重なっている。これにより、信号線路21とグランド導体24との間に容量が形成されにくくなる。よって、信号線路21とグランド導体24との間に形成される容量を大きくすることなく、信号線路21とグランド導体24との距離D4を小さくすることができる。すなわち、信号線路21の特性インピーダンスを小さくすることなく、信号線路21とグランド導体24とを近づけて、積層体12の薄型化を図ることができる。また、積層体12の薄型化が図られると、積層型多芯ケーブル10を容易に湾曲させることが可能となる。 Moreover, according to the laminated multicore cable 10, the laminated body 12 can be thinned. More specifically, in the laminated multicore cable 10, the opening 31 is provided in the ground conductor 24 and overlaps the signal line 21 when viewed in plan from the z-axis direction. This makes it difficult for a capacitance to be formed between the signal line 21 and the ground conductor 24. Therefore, the distance D4 between the signal line 21 and the ground conductor 24 can be reduced without increasing the capacitance formed between the signal line 21 and the ground conductor 24. That is, the signal line 21 and the ground conductor 24 can be brought close to each other without reducing the characteristic impedance of the signal line 21, so that the multilayer body 12 can be thinned. Further, when the laminated body 12 is thinned, the laminated multi-core cable 10 can be easily bent.
 以上のように、積層型多芯ケーブル10によれば、信号線路20と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 As described above, according to the laminated multicore cable 10, the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is provided in the ground conductor 24. It is possible to achieve both a reduction in the thickness of the laminate 12.
 また、積層型多芯ケーブル10によれば、低い周波数のノイズが信号線路20から発生することを抑制できる。より詳細には、積層型多芯ケーブル10では、信号線路20は、z軸方向から平面視したときに、開口30とブリッジ部32と交互に重なっている。これにより、開口30と重なっている部分の信号線路20の特性インピーダンスZ1は、ブリッジ部32と重なっている部分の信号線路20の特性インピーダンスZ2よりも小さくなる。これにより、信号線路20の特性インピーダンスは、特性インピーダンスZ1と特性インピーダンスZ2との間を周期的に変動するようになる。その結果、信号線路20では、ブリッジ部32間において短い波長(すなわち、高い周波数)の定在波が発生するようになる。一方、外部端子16a,16b間に長い波長(すなわち、低い周波数)の定在波が発生しにくくなる。以上より、積層型多芯ケーブル10では、低い周波数のノイズが信号線路20から発生することを抑制できる。なお、同様の理由により、積層型多芯ケーブル10では、低い周波数のノイズが信号線路21から発生することを抑制できる。 In addition, according to the laminated multicore cable 10, it is possible to suppress generation of low frequency noise from the signal line 20. More specifically, in the laminated multicore cable 10, the signal line 20 alternately overlaps the openings 30 and the bridge portions 32 when viewed in plan from the z-axis direction. As a result, the characteristic impedance Z1 of the signal line 20 that overlaps the opening 30 is smaller than the characteristic impedance Z2 of the signal line 20 that overlaps the bridge portion 32. As a result, the characteristic impedance of the signal line 20 periodically varies between the characteristic impedance Z1 and the characteristic impedance Z2. As a result, in the signal line 20, a standing wave having a short wavelength (that is, a high frequency) is generated between the bridge portions 32. On the other hand, a standing wave having a long wavelength (that is, a low frequency) is hardly generated between the external terminals 16a and 16b. As described above, in the multilayer multicore cable 10, it is possible to suppress the generation of low frequency noise from the signal line 20. For the same reason, it is possible to suppress the generation of low-frequency noise from the signal line 21 in the multilayer multicore cable 10.
 なお、積層型多芯ケーブル10では、ブリッジ部32間において発生した定在波により高い周波数のノイズが発生する。そこで、ブリッジ部32間の距離を十分に短く設計することによって、信号線路20を伝送される高周波信号の帯域外にノイズの周波数を設定することが可能である。そのためには、ブリッジ部32は、信号線路20を伝送される高周波信号の1/2波長より短い間隔で、信号線路20に沿って設けられていればよい。同様の理由により、ブリッジ部32は、信号線路21を伝送される高周波信号の1/2波長より短い間隔で、信号線路21に沿って設けられていればよい。 In the multi-core cable 10, high frequency noise is generated due to standing waves generated between the bridge portions 32. Therefore, by designing the distance between the bridge portions 32 to be sufficiently short, the noise frequency can be set outside the band of the high-frequency signal transmitted through the signal line 20. For that purpose, the bridge part 32 should just be provided along the signal track | line 20 with the space | interval shorter than 1/2 wavelength of the high frequency signal transmitted through the signal track | line 20. For the same reason, the bridge section 32 only needs to be provided along the signal line 21 at an interval shorter than ½ wavelength of the high-frequency signal transmitted through the signal line 21.
 また、積層型多芯ケーブル10では、信号線路20の両端の特性インピーダンスZ3は、開口30と重なっている部分の信号線路20の特性インピーダンスZ1とブリッジ部32と重なっている部分の信号線路20の特性インピーダンスZ2との間の大きさであることが好ましい。これにより、信号線路20では、ブリッジ部32間において短い波長の定在波が発生しやすくなり、信号線路20の両端間において長い波長の定在波が発生しにくくなる。その結果、積層型多芯ケーブル10では、低い周波数のノイズの発生がより効果的に抑制される。なお、同様の理由により、信号線路21の両端の特性インピーダンスZ6は、開口31と重なっている部分の信号線路21の特性インピーダンスZ4とブリッジ部33と重なっている部分の信号線路21の特性インピーダンスZ5との間の大きさであることが好ましい。 Further, in the laminated multi-core cable 10, the characteristic impedance Z <b> 3 at both ends of the signal line 20 is the characteristic impedance Z <b> 1 of the signal line 20 that overlaps the opening 30 and the signal line 20 that overlaps the bridge portion 32. The size is preferably between the characteristic impedance Z2. Thereby, in the signal line 20, a standing wave having a short wavelength is easily generated between the bridge portions 32, and a standing wave having a long wavelength is hardly generated between both ends of the signal line 20. As a result, in the laminated multicore cable 10, generation of low frequency noise is more effectively suppressed. For the same reason, the characteristic impedance Z6 at both ends of the signal line 21 is equal to the characteristic impedance Z4 of the signal line 21 that overlaps the opening 31 and the characteristic impedance Z5 of the signal line 21 that overlaps the bridge portion 33. It is preferable that the size is between.
 また、信号線路20,21をペア線として用いられる差動伝送線路として用いた場合には、アイパターンが理想値から外れることを防止できる。 Further, when the signal lines 20 and 21 are used as differential transmission lines used as pair lines, the eye pattern can be prevented from deviating from the ideal value.
 また、信号線路20,21を異なる種類の高周波信号(例えば、GSM(登録商標)900とGSM(登録商標)1800)の線路として用いた場合には、互いのアイソレーションを確保できる。 Further, when the signal lines 20 and 21 are used as lines of different types of high-frequency signals (for example, GSM (registered trademark) 900 and GSM (registered trademark) 1800), it is possible to ensure mutual isolation.
(第1の変形例)
 次に、第1の変形例に係る積層型多芯ケーブル10aについて図面を参照しながら説明する。図7は、第1の変形例に係る積層型多芯ケーブル10aの外観斜視図である。図8は、第1の変形例に係る積層型多芯ケーブル10aの分解斜視図である。
(First modification)
Next, a laminated multicore cable 10a according to a first modification will be described with reference to the drawings. FIG. 7 is an external perspective view of the multilayer multicore cable 10a according to the first modification. FIG. 8 is an exploded perspective view of the multilayer multicore cable 10a according to the first modification.
 積層型多芯ケーブル10aは、図7及び図8に示すように、x軸方向に延在する長方形状をなしている点において積層型多芯ケーブル10と相違する。すなわち、積層型多芯ケーブル10aでは、枝分かれしていない。 As shown in FIGS. 7 and 8, the laminated multicore cable 10a is different from the laminated multicore cable 10 in that it has a rectangular shape extending in the x-axis direction. That is, the laminated multicore cable 10a is not branched.
 また、積層型多芯ケーブル10aでは、コネクタ100a~100dの代わりにコネクタ300a,300bが用いられている。コネクタ300a,300bはそれぞれ、接続部12b,12cの表面上に実装され、信号線路20,21及びグランド導体22,24と電気的に接続される。コネクタ300a,300bの構成は同じであるので、以下にコネクタ300bの構成を例に挙げて説明する。図9は、積層型多芯ケーブル10aのコネクタ300bの外観斜視図及び断面構造図である。 Further, in the laminated multicore cable 10a, connectors 300a and 300b are used instead of the connectors 100a to 100d. The connectors 300a and 300b are mounted on the surfaces of the connecting portions 12b and 12c, and are electrically connected to the signal lines 20 and 21 and the ground conductors 22 and 24, respectively. Since the configurations of the connectors 300a and 300b are the same, the configuration of the connector 300b will be described below as an example. FIG. 9 is an external perspective view and a cross-sectional structure diagram of the connector 300b of the laminated multicore cable 10a.
 コネクタ300bは、図7及び図9に示すように、コネクタ本体302、外部端子304a,304b,306、中心導体308,310及び外部導体312により構成されている。コネクタ本体302は、矩形状の板に円筒が連結された形状をなしており、樹脂等の絶縁材料により作製されている。 The connector 300b includes a connector main body 302, external terminals 304a, 304b, and 306, center conductors 308 and 310, and an external conductor 312 as shown in FIGS. The connector main body 302 has a shape in which a cylinder is connected to a rectangular plate, and is made of an insulating material such as a resin.
 外部端子304aは、コネクタ本体302のz軸方向の負方向側の面において、外部端子16bと対向する位置に設けられている。外部端子304bは、コネクタ本体302のz軸方向の負方向側の面において、外部端子16dと対向する位置に設けられている。外部端子306は、コネクタ本体302のz軸方向の負方向側の面において、開口Hbを介して露出している端子部22cに対応する位置に設けられている。 The external terminal 304a is provided at a position facing the external terminal 16b on the surface of the connector main body 302 on the negative side in the z-axis direction. The external terminal 304b is provided at a position facing the external terminal 16d on the surface of the connector main body 302 on the negative direction side in the z-axis direction. The external terminal 306 is provided at a position corresponding to the terminal portion 22c exposed through the opening Hb on the surface of the connector main body 302 on the negative side in the z-axis direction.
 中心導体308は、コネクタ本体302の円筒の中心に設けられており、外部端子304aと接続されている。中心導体308は、信号線路20を伝送される高周波信号が入力又は出力する信号端子である。 The center conductor 308 is provided at the center of the cylinder of the connector main body 302 and is connected to the external terminal 304a. The center conductor 308 is a signal terminal for inputting or outputting a high-frequency signal transmitted through the signal line 20.
 中心導体310は、コネクタ本体302の内側の円筒に設けられており、外部端子304bと接続されている。中心導体310は、信号線路21を伝送される高周波信号が入力又は出力する信号端子である。 The center conductor 310 is provided on the inner cylinder of the connector main body 302 and is connected to the external terminal 304b. The center conductor 310 is a signal terminal for inputting or outputting a high-frequency signal transmitted through the signal line 21.
 外部導体312は、コネクタ本体302の外側の円筒の内周面に設けられており、外部端子306と接続されている。外部導体312は、接地電位に保たれるグランド端子である。 The external conductor 312 is provided on the inner peripheral surface of the outer cylinder of the connector main body 302 and is connected to the external terminal 306. The external conductor 312 is a ground terminal that is maintained at a ground potential.
 以上のように構成されたコネクタ300bは、外部端子304aが外部端子16bと接続され、外部端子304bが外部端子16dと接続され、外部端子306が端子部22cと接続されるように、接続部12cの表面上に実装される。これにより、信号線路20は、中心導体308に電気的に接続されている。また、信号線路21は、中心導体310に接続されている。また、グランド導体22,24は、外部導体312に電気的に接続されている。 The connector 300b configured as described above has the connection portion 12c such that the external terminal 304a is connected to the external terminal 16b, the external terminal 304b is connected to the external terminal 16d, and the external terminal 306 is connected to the terminal portion 22c. Mounted on the surface of the. Thereby, the signal line 20 is electrically connected to the central conductor 308. The signal line 21 is connected to the center conductor 310. The ground conductors 22 and 24 are electrically connected to the external conductor 312.
 積層型多芯ケーブル10aは、以下に説明するように用いられる。図10は、積層型多芯ケーブル10aが用いられた電子機器200をy軸方向及びz軸方向から平面視した図である。 The laminated multicore cable 10a is used as described below. FIG. 10 is a plan view of the electronic device 200 using the multilayer multicore cable 10a from the y-axis direction and the z-axis direction.
 電子機器200は、積層型多芯ケーブル10a、回路基板202a、液晶パネル203、レセプタクル404a,404b、バッテリーパック(金属体)206及び筐体210を備えている。 The electronic device 200 includes a laminated multi-core cable 10a, a circuit board 202a, a liquid crystal panel 203, receptacles 404a and 404b, a battery pack (metal body) 206, and a casing 210.
 回路基板202aには、例えば、液晶パネル203を駆動させるための駆動回路が設けられている。バッテリーパック206は、例えば、リチウムイオン2次電池であり、その表面が金属カバーにより覆われた構造を有している。回路基板202a、バッテリーパック206及び液晶パネル203は、x軸方向の負方向側から正方向側へとこの順に並んでいる。 The circuit board 202a is provided with a drive circuit for driving the liquid crystal panel 203, for example. The battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover. The circuit board 202a, the battery pack 206, and the liquid crystal panel 203 are arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
 積層体12の表面(より正確には、保護層14)は、バッテリーパック206に対して接触している。そして、積層体12の表面とバッテリーパック206とは、接着剤等により固定されている。 The surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206. The surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
 レセプタクル404a,404bはそれぞれ、回路基板202a及び液晶パネル203のz軸方向の負方向側の主面上に設けられている。レセプタクル404a,404bにはそれぞれ、コネクタ300a,300bが接続される。これにより、コネクタ300a,300bの中心導体308には、回路基板202aと液晶パネル203との間を伝送される例えば0.8GHz~5GHzの周波数を有する高周波信号がレセプタクル404a,404bを介して印加される。また、コネクタ300a,300bの中心導体310には、回路基板202aと液晶パネル203との間を伝送される例えば0.8GHz~5GHzの周波数を有する高周波信号がレセプタクル404a,404bを介して印加される。これら2つの高周波信号は、位相が180°異なる差動伝送信号である。また、コネクタ300a,300bの外部導体312には、回路基板202a、液晶パネル203及びレセプタクル404a,404bを介して、グランド電位に保たれる。これにより、積層型多芯ケーブル10aは、回路基板202a、液晶パネル203間を接続している。 The receptacles 404a and 404b are provided on the main surface on the negative side of the z-axis direction of the circuit board 202a and the liquid crystal panel 203, respectively. Connectors 300a and 300b are connected to receptacles 404a and 404b, respectively. Accordingly, a high frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit board 202a and the liquid crystal panel 203 is applied to the central conductor 308 of the connectors 300a and 300b via the receptacles 404a and 404b. The Further, a high-frequency signal having a frequency of, for example, 0.8 GHz to 5 GHz transmitted between the circuit board 202a and the liquid crystal panel 203 is applied to the center conductor 310 of the connectors 300a and 300b via the receptacles 404a and 404b. . These two high-frequency signals are differential transmission signals having a phase difference of 180 °. Further, the external conductor 312 of the connectors 300a and 300b is kept at the ground potential via the circuit board 202a, the liquid crystal panel 203, and the receptacles 404a and 404b. Thereby, the multilayer multi-core cable 10a connects between the circuit board 202a and the liquid crystal panel 203.
 ここで、バッテリーパック206のz軸方向の負方向側の主面とレセプタクル404a,404bとの間には段差が存在する。よって、積層体12の線路部12aの両端が湾曲させられることによって、コネクタ300a,300bはそれぞれ、レセプタクル404a,404bに接続されている。 Here, there is a step between the main surface of the negative side of the z-axis direction of the battery pack 206 and the receptacles 404a and 404b. Therefore, by bending both ends of the line portion 12a of the multilayer body 12, the connectors 300a and 300b are connected to the receptacles 404a and 404b, respectively.
 以上のように構成された積層型多芯ケーブル10aによれば、積層型多芯ケーブル10と同様に、信号線路20と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 According to the laminated multicore cable 10a configured as described above, the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22 and the opening 31 that overlaps the signal line 21 is grounded, similarly to the laminated multicore cable 10. By providing the conductor 24, it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
 更に、積層型多芯ケーブル10aによれば、積層型多芯ケーブル10と同様に、低い周波数のノイズが信号線路20,21から発生することを抑制できる。 Furthermore, according to the laminated multicore cable 10 a, it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21, similarly to the laminated multicore cable 10.
(第2の変形例)
 次に、第2の変形例に係る積層型多芯ケーブル10bについて図面を参照しながら説明する。図11は、第2の変形例に係る積層型多芯ケーブル10bの信号線路20,21及びグランド導体22,24を平面視した図である。なお、積層型多芯ケーブル10bの外観斜視図及び分解斜視図については、図1及び図2を援用する。
(Second modification)
Next, a laminated multicore cable 10b according to a second modification will be described with reference to the drawings. FIG. 11 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10b according to the second modification. In addition, FIG.1 and FIG.2 is used about the external appearance perspective view and exploded perspective view of the laminated | multilayer type multi-core cable 10b.
 積層型多芯ケーブル10bは、図11に示すように、開口30,31の形状及び信号線路20,21の形状において積層型多芯ケーブル10と相違する。 As shown in FIG. 11, the laminated multicore cable 10 b is different from the laminated multicore cable 10 in the shapes of the openings 30 and 31 and the shapes of the signal lines 20 and 21.
 まず、開口30,31において、x軸方向の中央部分の領域を領域a1と定義する。開口30,31において、x軸方向の負方向側の端部の領域を領域a2と定義する。開口30,31において、x軸方向の正方向側の端部の領域を領域a3と定義する。領域a1と領域a2との間の領域を領域a4と定義する。領域a1と領域a3との間の領域を領域a5と定義する。 First, in the openings 30 and 31, a region at the center in the x-axis direction is defined as a region a1. In the openings 30 and 31, a region at the end on the negative direction side in the x-axis direction is defined as a region a2. In the openings 30 and 31, a region at the end on the positive direction side in the x-axis direction is defined as a region a3. A region between the region a1 and the region a2 is defined as a region a4. A region between the region a1 and the region a3 is defined as a region a5.
 図11に示すように、領域a1における開口30のy軸方向の幅は、幅W1である。また、領域a2,a3における開口30のy軸方向の幅は、幅W1より小さい幅W2である。そして、領域a4において、開口30がx軸方向の正方向側に行くにしたがって広くなるテーパー状をなすことにより、開口30の幅が連続的に増加している。領域a5において、開口30がx軸方向の正方向側に行くにしたがって狭くなるテーパー状をなすことにより、開口30の幅が連続的に減少している。 As shown in FIG. 11, the width of the opening 30 in the region a1 in the y-axis direction is the width W1. Further, the width in the y-axis direction of the opening 30 in the regions a2 and a3 is a width W2 smaller than the width W1. In the region a4, the opening 30 has a taper shape that becomes wider toward the positive side in the x-axis direction, so that the width of the opening 30 continuously increases. In the region a5, the opening 30 has a tapered shape that becomes narrower toward the positive side in the x-axis direction, whereby the width of the opening 30 continuously decreases.
 図11に示すように、領域a1における開口31のy軸方向の幅は、幅W1である。また、領域a2,a3における開口31のy軸方向の幅は、幅W1より小さい幅W2である。そして、領域a4において、開口31がx軸方向の正方向側に行くにしたがって広くなるテーパー状をなすことにより、開口31の幅が連続的に増加している。領域a5において、開口31がx軸方向の正方向側に行くにしたがって狭くなるテーパー状をなすことにより、開口31の幅が連続的に減少している。 As shown in FIG. 11, the width in the y-axis direction of the opening 31 in the region a1 is a width W1. Further, the width in the y-axis direction of the opening 31 in the regions a2 and a3 is a width W2 smaller than the width W1. And in the area | region a4, the opening 31 makes the taper shape which becomes wide as it goes to the positive direction side of an x-axis direction, and the width | variety of the opening 31 is increasing continuously. In the region a5, the opening 31 has a tapered shape that becomes narrower toward the positive side in the x-axis direction, whereby the width of the opening 31 continuously decreases.
 また、信号線路20の線幅は、図11に示すように、周期的に変動している。開口30と重なっている部分の信号線路20の線幅W3は、ブリッジ部32と重なっている部分の信号線路20の線幅W4よりも大きい。更に、信号線路20において開口30と重なっている部分のx軸方向の負方向側の端部は、x軸方向の正方向側に行くにしたがって広くなるテーパー状をなしている。これにより、信号線路20の線幅が連続的に増加している。また、信号線路20において開口30と重なっている部分のx軸方向の正方向側の端部は、x軸方向の正方向側に行くにしたがって狭くなるテーパー状をなしている。これにより、信号線路20の線幅が連続的に減少している。 Further, the line width of the signal line 20 varies periodically as shown in FIG. The line width W3 of the signal line 20 that overlaps the opening 30 is larger than the line width W4 of the signal line 20 that overlaps the bridge portion 32. Further, the end of the portion of the signal line 20 that overlaps the opening 30 on the negative side in the x-axis direction has a tapered shape that becomes wider toward the positive side in the x-axis direction. As a result, the line width of the signal line 20 continuously increases. Further, the end of the portion of the signal line 20 that overlaps the opening 30 on the positive direction side in the x-axis direction has a tapered shape that becomes narrower toward the positive direction side in the x-axis direction. As a result, the line width of the signal line 20 continuously decreases.
 また、信号線路21の線幅は、図11に示すように、周期的に変動している。開口31と重なっている部分の信号線路21の線幅W3は、ブリッジ部33と重なっている部分の信号線路21の線幅W4よりも大きい。更に、信号線路21において開口31と重なっている部分のx軸方向の負方向側の端部は、x軸方向の正方向側に行くにしたがって広くなるテーパー状をなしている。これにより、信号線路21の線幅が連続的に増加している。また、信号線路21において開口31と重なっている部分のx軸方向の正方向側の端部は、x軸方向の正方向側に行くにしたがって狭くなるテーパー状をなしている。これにより、信号線路21の線幅が連続的に減少している。 Further, the line width of the signal line 21 fluctuates periodically as shown in FIG. The line width W <b> 3 of the signal line 21 that overlaps the opening 31 is larger than the line width W <b> 4 of the signal line 21 that overlaps the bridge part 33. Further, the end of the portion of the signal line 21 that overlaps the opening 31 on the negative direction side in the x-axis direction has a tapered shape that becomes wider toward the positive direction side in the x-axis direction. As a result, the line width of the signal line 21 is continuously increased. Further, the end of the portion of the signal line 21 that overlaps the opening 31 on the positive direction side in the x-axis direction has a tapered shape that becomes narrower toward the positive direction side in the x-axis direction. As a result, the line width of the signal line 21 is continuously reduced.
 以上のように構成された積層型多芯ケーブル10bによれば、積層型多芯ケーブル10と同様に、信号線路20と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 According to the laminated multicore cable 10b configured as described above, similarly to the laminated multicore cable 10, the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is grounded. By providing the conductor 24, it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
 更に、積層型多芯ケーブル10bによれば、積層型多芯ケーブル10と同様に、低い周波数のノイズが信号線路20,21から発生することを抑制できる。 Furthermore, according to the laminated multicore cable 10 b, it is possible to suppress the generation of low-frequency noise from the signal lines 20 and 21 as in the laminated multicore cable 10.
 また、積層型多芯ケーブル10bによれば、領域a1における開口30,31の幅W1は、領域a2,a3における開口30,31の幅W2よりも大きい。そのため、領域a1において信号線路20,21との間に形成される容量は、領域a2,a3において信号線路20,21との間に形成される容量よりも小さくなる。よって、領域a1における信号線路20,21の特性インピーダンスは、領域a2,a3における信号線路20,21の特性インピーダンスよりも大きくなる。これにより、信号線路20,21の特性インピーダンスは、開口30,31内においてx軸方向の負方向側から正方向側に行くにしたがって増加した後に減少するようになる。よって、信号線路20,21の特性インピーダンスが不連続に大きく変動することが抑制される。その結果、信号線路20,21において高周波信号の反射が発生することが抑制される。 Further, according to the laminated multicore cable 10b, the width W1 of the openings 30 and 31 in the region a1 is larger than the width W2 of the openings 30 and 31 in the regions a2 and a3. For this reason, the capacitance formed between the signal lines 20 and 21 in the region a1 is smaller than the capacitance formed between the signal lines 20 and 21 in the regions a2 and a3. Therefore, the characteristic impedance of the signal lines 20 and 21 in the region a1 is larger than the characteristic impedance of the signal lines 20 and 21 in the regions a2 and a3. As a result, the characteristic impedance of the signal lines 20 and 21 increases and decreases in the openings 30 and 31 from the negative direction side to the positive direction side in the x-axis direction. Therefore, it is possible to suppress the characteristic impedance of the signal lines 20 and 21 from fluctuating greatly. As a result, the occurrence of high-frequency signal reflection in the signal lines 20 and 21 is suppressed.
 また、積層型多芯ケーブル10bでは、領域a4,a5における開口30の幅は連続的に変化している。これにより、領域a4,a5において、信号線路20とグランド導体22との間の隙間の幅が漸増又は漸減するようになる。同様に、信号線路21とグランド導体24との間の隙間の幅が漸増又は漸減するようになる。よって、信号線路20の周囲に発生する磁束であって、信号線路20とグランド導体22との間の隙間を通過する磁束は、領域a4,a5において漸増又は漸減するようになる。信号線路21の周囲に発生する磁束であって、信号線路21とグランド導体24との間の隙間を通過する磁束は、領域a4,a5において漸増又は漸減するようになる。すなわち、領域a4,a5において、磁界エネルギーが大きく変動することが抑制される。その結果、領域a1と領域a2,a3との境界近傍において、高周波信号の反射が発生することが抑制されるようになる。 Further, in the laminated multicore cable 10b, the width of the opening 30 in the regions a4 and a5 continuously changes. Thereby, in the regions a4 and a5, the width of the gap between the signal line 20 and the ground conductor 22 is gradually increased or decreased. Similarly, the width of the gap between the signal line 21 and the ground conductor 24 gradually increases or decreases. Therefore, the magnetic flux generated around the signal line 20 and passing through the gap between the signal line 20 and the ground conductor 22 gradually increases or decreases in the regions a4 and a5. The magnetic flux generated around the signal line 21 and passing through the gap between the signal line 21 and the ground conductor 24 gradually increases or decreases in the regions a4 and a5. That is, the magnetic field energy is prevented from greatly fluctuating in the regions a4 and a5. As a result, the occurrence of high-frequency signal reflection is suppressed in the vicinity of the boundary between the region a1 and the regions a2 and a3.
 また、開口30内では、信号線路20とグランド導体22とが対向していないので、信号線路20とグランド導体22との間に形成される容量は微小である。そのため、信号線路20の線幅を大きくしても、信号線路20とグランド導体22との間に形成される容量が殆ど大きくならず、信号線路20の特性インピーダンスが低下しない。そこで、積層型多芯ケーブル10bでは、z軸方向から平面視したときに、開口30と重なっている部分の信号線路20の線幅W3は、ブリッジ部32と重なっている部分の信号線路20の線幅W4よりも大きい。これにより、信号線路20の抵抗値が小さくなり、積層型多芯ケーブル10bにおける高周波抵抗が低減されるようになる。なお、同様の理由により、信号線路21の抵抗値も小さくなる。 In the opening 30, the signal line 20 and the ground conductor 22 do not face each other, so that the capacitance formed between the signal line 20 and the ground conductor 22 is very small. For this reason, even if the line width of the signal line 20 is increased, the capacitance formed between the signal line 20 and the ground conductor 22 is hardly increased, and the characteristic impedance of the signal line 20 is not lowered. Therefore, in the laminated multicore cable 10b, the line width W3 of the portion of the signal line 20 that overlaps the opening 30 when viewed in plan from the z-axis direction is equal to that of the portion of the signal line 20 that overlaps the bridge portion 32. It is larger than the line width W4. As a result, the resistance value of the signal line 20 is reduced, and the high-frequency resistance in the multilayer multicore cable 10b is reduced. For the same reason, the resistance value of the signal line 21 is also reduced.
(第3の変形例)
 次に、第3の変形例に係る積層型多芯ケーブル10cについて図面を参照しながら説明する。図12は、第3の変形例に係る積層型多芯ケーブル10cの信号線路20,21及びグランド導体22,24を平面視した図である。なお、積層型多芯ケーブル10cの外観斜視図及び分解斜視図については、図1及び図2を援用する。
(Third Modification)
Next, a laminated multicore cable 10c according to a third modification will be described with reference to the drawings. FIG. 12 is a plan view of the signal lines 20 and 21 and the ground conductors 22 and 24 of the multilayer multicore cable 10c according to the third modification. In addition, FIG.1 and FIG.2 is used about the external appearance perspective view and exploded perspective view of the laminated | multilayer type | mold multicore cable 10c.
 積層型多芯ケーブル10cでは、y軸方向において開口30,31が一致していない点において積層型多芯ケーブル10と相違する。より詳細には、ブリッジ部32は、x軸方向(信号線路20が延在している方向)において開口31の中央に位置している。また、ブリッジ部33は、x軸方向(信号線路21が延在している方向)において開口30の中央に位置している。 The laminated multicore cable 10c differs from the laminated multicore cable 10 in that the openings 30, 31 do not match in the y-axis direction. More specifically, the bridge portion 32 is located at the center of the opening 31 in the x-axis direction (the direction in which the signal line 20 extends). The bridge portion 33 is located at the center of the opening 30 in the x-axis direction (the direction in which the signal line 21 extends).
 以上のように構成された積層型多芯ケーブル10cによれば、積層型多芯ケーブル10と同様に、信号線路20と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 According to the laminated multicore cable 10c configured as described above, the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22 and the opening 31 that overlaps the signal line 21 is grounded, similarly to the laminated multicore cable 10. By providing the conductor 24, it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
 更に、積層型多芯ケーブル10cによれば、積層型多芯ケーブル10と同様に、低い周波数のノイズが信号線路20,21から発生することを抑制できる。 Furthermore, according to the laminated multicore cable 10 c, it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21, similarly to the laminated multicore cable 10.
 また、積層型多芯ケーブル10cによれば、以下の理由によっても、アイソレーションの確保が図られる。より詳細には、積層型多芯ケーブル10cでは、開口30と重なっている部分の信号線路20の特性インピーダンスZ1は、ブリッジ部32と重なっている部分の信号線路20の特性インピーダンスZ2よりも高い。そのため、信号線路20を高周波信号が伝送されると、信号線路20において開口30と重なっている部分は、電圧の振幅が最大となる腹になる。信号線路20においてブリッジ部32と重なっている部分は、電圧の振幅が最小となる節になる。同様の理由により、信号線路21において開口31と重なっている部分は、電圧の振幅が最大となる腹になる。信号線路21においてブリッジ部33と重なっている部分は、電圧の振幅が最小となる節になる。 Further, according to the laminated multi-core cable 10c, it is possible to ensure isolation for the following reasons. More specifically, in the laminated multicore cable 10c, the characteristic impedance Z1 of the signal line 20 in the portion overlapping the opening 30 is higher than the characteristic impedance Z2 of the signal line 20 in the portion overlapping the bridge portion 32. Therefore, when a high-frequency signal is transmitted through the signal line 20, the portion of the signal line 20 that overlaps the opening 30 becomes an antinode that maximizes the voltage amplitude. A portion of the signal line 20 that overlaps the bridge portion 32 becomes a node where the amplitude of the voltage is minimized. For the same reason, the portion of the signal line 21 that overlaps the opening 31 becomes an antinode that maximizes the voltage amplitude. A portion of the signal line 21 that overlaps the bridge portion 33 becomes a node where the amplitude of the voltage is minimized.
 ここで、積層型多芯ケーブル10cでは、前記の通り、ブリッジ部32は、x軸方向において開口31の中央に位置している。これにより、信号線路20における節と信号線路21における腹とがy軸方向に隣り合うようになる。また、積層型多芯ケーブル10cでは、ブリッジ部33は、x軸方向において開口30の中央に位置している。これにより、信号線路20における腹と信号線路21における節とがy軸方向に隣り合うようになる。信号線路20,21における節では、電位が殆ど変動しない。そのため、信号線路20,21における節での電位の変動は、信号線路20,21における腹での電位の変動に殆ど影響を及ぼさない。また、信号線路20,21における節での電位の変動は、信号線路20,21における腹での電位の変動に殆ど影響を受けない。よって、信号線路20の電位の変動と信号線路21の電位の変動とはお互いに殆ど影響を受けない。その結果、積層型多芯ケーブル10cでは、アイソレーションの確保が図られる。 Here, in the laminated multicore cable 10c, as described above, the bridge portion 32 is located at the center of the opening 31 in the x-axis direction. Thereby, the node in the signal line 20 and the antinode in the signal line 21 are adjacent to each other in the y-axis direction. Further, in the laminated multicore cable 10c, the bridge portion 33 is located at the center of the opening 30 in the x-axis direction. Thereby, the antinodes in the signal line 20 and the nodes in the signal line 21 are adjacent to each other in the y-axis direction. At the nodes in the signal lines 20 and 21, the potential hardly fluctuates. Therefore, fluctuations in potential at nodes in the signal lines 20 and 21 have little effect on fluctuations in potential at the antinodes in the signal lines 20 and 21. Further, the fluctuation of the potential at the nodes of the signal lines 20 and 21 is hardly affected by the fluctuation of the potential at the antinodes of the signal lines 20 and 21. Therefore, the fluctuation of the potential of the signal line 20 and the fluctuation of the potential of the signal line 21 are hardly affected by each other. As a result, in the multilayer multicore cable 10c, it is possible to ensure isolation.
(第4の変形例)
 以下に、第4の変形例に係る積層型多芯ケーブル10dについて図面を参照しながら説明する。図13は、第4の変形例に係る積層型多芯ケーブル10dの外観斜視図である。図14は、第4の変形例に係る積層型多芯ケーブル10dの並走領域A1における分解斜視図である。
(Fourth modification)
The laminated multicore cable 10d according to the fourth modification will be described below with reference to the drawings. FIG. 13 is an external perspective view of a laminated multicore cable 10d according to a fourth modification. FIG. 14 is an exploded perspective view of the multi-core cable 10d according to the fourth modification in the parallel running region A1.
 積層体12は、図13に示すように、x軸方向に延在しており、x軸方向の正方向側の端部及び負方向側の端部のそれぞれにおいて2つに枝分かれした構造を有している。積層体12は、図14に示すように、保護層14及び誘電体シート(基材層)18a~18eがz軸方向の正方向側から負方向側へとこの順に積層されて構成されている可撓性の積層体である。以下では、積層体12のz軸方向の正方向側の主面を表面と称し、積層体12のz軸方向の負方向側の主面を裏面と称す。 As shown in FIG. 13, the laminate 12 extends in the x-axis direction and has a structure branched into two at each of an end on the positive direction side and an end on the negative direction side in the x-axis direction. is doing. As shown in FIG. 14, the laminate 12 is configured by laminating a protective layer 14 and dielectric sheets (base material layers) 18a to 18e in this order from the positive direction side to the negative direction side in the z-axis direction. It is a flexible laminate. Hereinafter, the main surface on the positive direction side in the z-axis direction of the stacked body 12 is referred to as a front surface, and the main surface on the negative direction side in the z-axis direction of the stacked body 12 is referred to as a back surface.
 誘電体シート18a~18eは、z軸方向から平面視したときに、積層体12と同じ形状をなしている。誘電体シート18a~18eは、ポリイミド等の可撓性を有する熱可塑性樹脂により構成されている。誘電体シート18a~18eの積層後の厚さは、例えば、25μm~200μmである。以下では、誘電体シート18a~18eのz軸方向の正方向側の主面を表面と称し、誘電体シート18a~18eのz軸方向の負方向側の主面を裏面と称す。 The dielectric sheets 18a to 18e have the same shape as the stacked body 12 when viewed in plan from the z-axis direction. The dielectric sheets 18a to 18e are made of a flexible thermoplastic resin such as polyimide. The thickness of the dielectric sheets 18a to 18e after lamination is, for example, 25 μm to 200 μm. Hereinafter, the main surface on the positive side in the z-axis direction of the dielectric sheets 18a to 18e is referred to as the front surface, and the main surface on the negative direction side in the z-axis direction of the dielectric sheets 18a to 18e is referred to as the back surface.
 グランド導体22(第1のグランド導体)は、図14に示すように、積層体12に設けられており、より詳細には、誘電体シート18aの表面に設けられている。グランド導体22は、z軸方向から平面視したときに、積層体12と略同じ形状をなしており、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 The ground conductor 22 (first ground conductor) is provided in the multilayer body 12 as shown in FIG. 14, and more specifically, is provided on the surface of the dielectric sheet 18a. The ground conductor 22 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
 グランド導体24(第2のグランド導体)は、図14に示すように、積層体12においてグランド導体22と異なる層に設けられており、より詳細には、誘電体シート18eの表面に設けられている。グランド導体24は、z軸方向から平面視したときに、積層体12と略同じ形状をなしており、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 As shown in FIG. 14, the ground conductor 24 (second ground conductor) is provided in a layer different from the ground conductor 22 in the multilayer body 12, and more specifically, provided on the surface of the dielectric sheet 18e. Yes. The ground conductor 24 has substantially the same shape as the multilayer body 12 when viewed in plan from the z-axis direction, and is made of a metal material having a small specific resistance mainly composed of silver or copper.
 信号線路20は、図14に示すように、z軸方向において、グランド導体22とグランド導体24との間に設けられており、より詳細には、誘電体シート18bの表面に設けられている。信号線路20は、z軸方向から平面視したときに、グランド導体22,24と重なっている。これにより、信号線路20及びグランド導体22,24は、ストリップライン構造をなしている。信号線路20は、銀や銅を主成分とする比抵抗の小さな金属材料により作製されている。 As shown in FIG. 14, the signal line 20 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction, and more specifically, is provided on the surface of the dielectric sheet 18b. The signal line 20 overlaps with the ground conductors 22 and 24 when viewed in plan from the z-axis direction. As a result, the signal line 20 and the ground conductors 22 and 24 have a stripline structure. The signal line 20 is made of a metal material having a small specific resistance mainly composed of silver or copper.
 信号線路21は、図14に示すように、z軸方向において、グランド導体22とグランド導体24との間であって、信号線路20よりもグランド導体24の近くに設けられており、より詳細には、誘電体シート18dの表面に設けられている。信号線路21は、z軸方向から平面視したときに、並走領域A1において信号線路20に沿って延在している。ただし、信号線路20と信号線路21とは、並走領域A1のx軸方向の中央において、z軸方向から平面視したときに、交差している。 As shown in FIG. 14, the signal line 21 is provided between the ground conductor 22 and the ground conductor 24 in the z-axis direction and closer to the ground conductor 24 than the signal line 20. Is provided on the surface of the dielectric sheet 18d. The signal line 21 extends along the signal line 20 in the parallel region A1 when viewed in plan from the z-axis direction. However, the signal line 20 and the signal line 21 intersect at the center in the x-axis direction of the parallel region A1 when viewed in plan from the z-axis direction.
 ここで、グランド導体22には、図14に示すように、長方形状をなす複数の開口30が設けられている。複数の開口30は、z軸方向から平面視したときに、信号線路20と重なっていると共に、該信号線路20に沿って並ぶように設けられている。 Here, the ground conductor 22 is provided with a plurality of rectangular openings 30 as shown in FIG. The plurality of openings 30 are provided so as to overlap with the signal line 20 and to be arranged along the signal line 20 when viewed in plan from the z-axis direction.
 更に、グランド導体22において、z軸方向から平面視したときに、信号線路20と信号線路21とが交差している部分と重なる位置には、メッシュ部22fが設けられている。同様に、グランド導体24において、z軸方向から平面視したときに、信号線路20と信号線路21とが交差している部分と重なる位置には、メッシュ部24fが設けられている。メッシュ部22f,24fは、x軸方向に延在する複数の線状導体とy軸方向に延在する複数の線状導体とが網状に配置されて構成されている。 Further, in the ground conductor 22, a mesh portion 22 f is provided at a position overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction. Similarly, in the ground conductor 24, a mesh portion 24f is provided at a position overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction. The mesh portions 22f and 24f are configured by arranging a plurality of linear conductors extending in the x-axis direction and a plurality of linear conductors extending in the y-axis direction in a net shape.
 また、積層型多芯ケーブル10dは、グランド導体50を更に備えている。グランド導体50は、z軸方向から平面視したときに、信号線路20と信号線路21とが交差している部分と重なり、かつ、z軸方向において、信号線路20と信号線路21との間に設けられている。具体的には、グランド導体50は、誘電体シート18cの表面上に設けられている。グランド導体50は、グランド導体22,24とビアホール導体により接続されている。 The multi-core cable 10d is further provided with a ground conductor 50. The ground conductor 50 overlaps with a portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction, and between the signal line 20 and the signal line 21 in the z-axis direction. Is provided. Specifically, the ground conductor 50 is provided on the surface of the dielectric sheet 18c. The ground conductor 50 is connected to the ground conductors 22 and 24 by via-hole conductors.
 保護層14は、誘電体シート18aの表面の略全面を覆っている。これにより、保護層14は、グランド導体22を覆っている。保護層14は、例えば、レジスト材等の可撓性樹脂からなる。 The protective layer 14 covers substantially the entire surface of the dielectric sheet 18a. Thereby, the protective layer 14 covers the ground conductor 22. The protective layer 14 is made of a flexible resin such as a resist material, for example.
 積層型多芯ケーブル10dのその他の構成は、積層型多芯ケーブル10の構成と同じであるので説明を省略する。 The other configuration of the laminated multi-core cable 10d is the same as that of the laminated multi-core cable 10, and a description thereof will be omitted.
 積層型多芯ケーブル10dは、以下に説明するように用いられる。図15は、積層型多芯ケーブル10dが用いられた電子機器200をz軸方向から平面視した図である。 The laminated multi-core cable 10d is used as described below. FIG. 15 is a plan view of the electronic device 200 in which the laminated multicore cable 10d is used from the z-axis direction.
 電子機器200は、積層型多芯ケーブル10d、回路基板202a,202b、バッテリーパック(金属体)206、筐体210及びアンテナ212を備えている。 The electronic device 200 includes a laminated multicore cable 10d, circuit boards 202a and 202b, a battery pack (metal body) 206, a casing 210, and an antenna 212.
 バッテリーパック206は、例えば、リチウムイオン2次電池であり、その表面が金属カバーにより覆われた構造を有している。回路基板202a、バッテリーパック206及び回路基板202bは、x軸方向の負方向側から正方向側へとこの順に並んでいる。また、アンテナ212は、回路基板202aに接続されている。 The battery pack 206 is a lithium ion secondary battery, for example, and has a structure in which the surface is covered with a metal cover. The circuit board 202a, the battery pack 206, and the circuit board 202b are arranged in this order from the negative direction side to the positive direction side in the x-axis direction. The antenna 212 is connected to the circuit board 202a.
 積層型多芯ケーブル10dは、回路基板202aと回路基板202bとの間を接続している。また、積層体12の表面(より正確には、保護層14)は、バッテリーパック206に対して接触している。そして、積層体12の表面とバッテリーパック206とは、接着剤等により固定されている。 The laminated multicore cable 10d connects between the circuit board 202a and the circuit board 202b. Further, the surface of the laminate 12 (more precisely, the protective layer 14) is in contact with the battery pack 206. The surface of the laminate 12 and the battery pack 206 are fixed with an adhesive or the like.
 以上のように構成された積層型多芯ケーブル10dによれば、積層型多芯ケーブル10と同様に、信号線路20と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 According to the laminated multicore cable 10d configured as described above, similarly to the laminated multicore cable 10, the opening 30 that overlaps the signal line 20 is provided in the ground conductor 22, and the opening 31 that overlaps the signal line 21 is grounded. By providing the conductor 24, it is possible to achieve both the securing of the isolation and the thinning of the multilayer body 12.
 更に、積層型多芯ケーブル10dによれば、積層型多芯ケーブル10と同様に、低い周波数のノイズが信号線路20,21から発生することを抑制できる。 Further, according to the laminated multicore cable 10 d, it is possible to suppress the generation of low frequency noise from the signal lines 20 and 21 as in the laminated multicore cable 10.
 また、積層型多芯ケーブル10dでは、z軸方向から平面視したときに、信号線路20と信号線路21とが交差している部分と重なり、かつ、z軸方向において、信号線路20と信号線路21との間にグランド導体50が設けられている。これにより、信号線路20と信号線路21との間におけるアイソレーションの確保を図ることができる。 Further, in the laminated multicore cable 10d, when viewed in plan from the z-axis direction, the signal line 20 and the signal line 21 overlap with a crossing portion, and the signal line 20 and the signal line in the z-axis direction are overlapped. 21 is provided with a ground conductor 50. Thereby, the isolation between the signal line 20 and the signal line 21 can be ensured.
 更に、積層型多芯ケーブル10dでは、z軸方向から平面視したときに、信号線路20と信号線路21とが交差している部分と重なる位置には、メッシュ部22f,24fが設けられている。これにより、信号線路20と信号線路21とが交差している部分において、信号線路20,21とメッシュ部22f,24fとの間には容量が形成されにくくなる。よって、かかる部分において信号線路20,21の線幅を大きくすることができる。その結果、信号線路20,21の抵抗値が小さくなり、積層型多芯ケーブル10dにおける高周波抵抗が低減されるようになる。 Furthermore, in the laminated multi-core cable 10d, mesh portions 22f and 24f are provided at positions overlapping the portion where the signal line 20 and the signal line 21 intersect when viewed in plan from the z-axis direction. . Thereby, in the part where the signal line 20 and the signal line 21 intersect, it is difficult to form a capacitance between the signal lines 20 and 21 and the mesh portions 22f and 24f. Therefore, the line widths of the signal lines 20 and 21 can be increased in such portions. As a result, the resistance values of the signal lines 20 and 21 are reduced, and the high-frequency resistance in the laminated multicore cable 10d is reduced.
(第5の変形例)
 以下に、第5の変形例に係る積層型多芯ケーブル10eについて図面を参照しながら説明する。図16は、第5の変形例に係る積層型多芯ケーブル10eの接続部12cにおける分解斜視図である。積層型多芯ケーブル10eの外観斜視図は、図14を援用する。
(Fifth modification)
The laminated multicore cable 10e according to the fifth modification will be described below with reference to the drawings. FIG. 16 is an exploded perspective view of the connecting portion 12c of the multilayer multicore cable 10e according to the fifth modification. FIG. 14 is used as an external perspective view of the multilayer multicore cable 10e.
 積層型多芯ケーブル10eは、開口30内に浮き導体60が設けられている点において積層型多芯ケーブル10dと相違する。より詳細には、浮き導体60は、誘電体シート18aの表面に設けられており、開口30内に位置している。浮き導体60は、信号線路20,21(信号線路20は図示せず)及びグランド導体22,24とは接続されておらず、浮遊電位に保たれている。浮遊電位とは、信号線路20,21(信号線路20は図示せず)の電位と接地電位との間の電位である。 The laminated multicore cable 10e is different from the laminated multicore cable 10d in that a floating conductor 60 is provided in the opening 30. More specifically, the floating conductor 60 is provided on the surface of the dielectric sheet 18 a and is located in the opening 30. The floating conductor 60 is not connected to the signal lines 20 and 21 (the signal line 20 is not shown) and the ground conductors 22 and 24 and is kept at a floating potential. The floating potential is a potential between the potential of the signal lines 20 and 21 (the signal line 20 is not shown) and the ground potential.
 以上のように構成された積層型多芯ケーブル10eによれば、積層型多芯ケーブル10と同様に、信号線路20(信号線路20は図示せず)と重なる開口30をグランド導体22に設け、信号線路21と重なる開口31をグランド導体24に設けることによって、アイソレーションの確保と積層体12の薄型化との両立を図ることができる。 According to the laminated multicore cable 10e configured as described above, similarly to the laminated multicore cable 10, an opening 30 that overlaps the signal line 20 (the signal line 20 is not shown) is provided in the ground conductor 22. By providing the opening 31 that overlaps the signal line 21 in the ground conductor 24, it is possible to achieve both the securing of isolation and the reduction in thickness of the multilayer body 12.
 更に、積層型多芯ケーブル10eによれば、積層型多芯ケーブル10と同様に、低い周波数のノイズが信号線路20(信号線路20は図示せず)から発生することを抑制できる。 Furthermore, according to the laminated multicore cable 10e, it is possible to suppress the generation of low-frequency noise from the signal line 20 (the signal line 20 is not shown) as in the laminated multicore cable 10.
 更に、積層型多芯ケーブル10eは、保護層14がバッテリーパック206に接触するように、バッテリーパック206に接着される。よって、グランド導体22は、バッテリーパック206に対向する。そこで、グランド導体22の開口30に浮き導体60が設けられることにより、信号線路20(信号線路20は図示せず)とバッテリーパック206とが開口30を介して対向することを防止している。これにより、開口30からノイズが輻射されることが低減される。その結果、積層体12の材質や間隔が変動しても、信号線路20(信号線路20は図示せず)の高周波特性に変動が生じにくくなる。 Furthermore, the laminated multi-core cable 10 e is bonded to the battery pack 206 so that the protective layer 14 contacts the battery pack 206. Therefore, the ground conductor 22 faces the battery pack 206. Therefore, the floating conductor 60 is provided in the opening 30 of the ground conductor 22, thereby preventing the signal line 20 (the signal line 20 is not shown) and the battery pack 206 from facing each other through the opening 30. Thereby, it is reduced that noise is radiated from the opening 30. As a result, even if the material and interval of the laminate 12 vary, the high-frequency characteristics of the signal line 20 (the signal line 20 is not shown) are less likely to vary.
(その他の実施形態)
 本発明に係る積層型多芯ケーブルは、前記積層型多芯ケーブル10,10a~10eに限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The laminated multi-core cable according to the present invention is not limited to the laminated multi-core cables 10, 10a to 10e, and can be changed within the scope of the gist thereof.
 図17は、その他の実施形態に係る積層型多芯ケーブル10fの断面構造図である。図17に示すように、信号線路20a~20c及び信号線路21a~21cが設けられていてもよい。 FIG. 17 is a cross-sectional structure diagram of a laminated multicore cable 10f according to another embodiment. As shown in FIG. 17, signal lines 20a to 20c and signal lines 21a to 21c may be provided.
 また、図18は、その他の実施形態に係る積層型多芯ケーブル10gの断面構造図である。図18に示すように、積層型多芯ケーブル10gは、積層型多芯ケーブル10fがz軸方向に2段積み重ねられた構造をなしていてもよい。 FIG. 18 is a cross-sectional view of a laminated multicore cable 10g according to another embodiment. As shown in FIG. 18, the laminated multicore cable 10g may have a structure in which the laminated multicore cable 10f is stacked in two stages in the z-axis direction.
 なお、積層型多芯ケーブル10,10a~10eの構成を組み合わせて用いてもよい。 In addition, you may use combining the structure of the laminated | multilayer type | mold multi-core cable 10, 10a-10e.
 なお、積層型多芯ケーブル10,10a~10eの並走領域A1の一部において、信号線路20とグランド導体24とが重ならない領域が設けられていてもよい。すなわち、並走領域A1の一部において、信号線路20とグランド導体22とは、マイクロストリップライン構造をなしていてもよい。同様に、積層型多芯ケーブル10,10a~10eの並走領域A1の一部において、信号線路21とグランド導体22とが重ならない領域が設けられていてもよい。これにより、かかる領域において、積層体12を容易に曲げることが可能となる。 It should be noted that an area where the signal line 20 and the ground conductor 24 do not overlap may be provided in a part of the parallel running area A1 of the multilayer multicore cables 10, 10a to 10e. That is, in a part of the parallel region A1, the signal line 20 and the ground conductor 22 may have a microstrip line structure. Similarly, a region where the signal line 21 and the ground conductor 22 do not overlap may be provided in a part of the parallel running region A1 of the multilayer multicore cables 10 and 10a to 10e. Thereby, it becomes possible to bend the laminated body 12 easily in this area | region.
 本発明は、積層型多芯ケーブルに有用であり、特に、アイソレーションを確保できる点において優れている。 The present invention is useful for laminated multi-core cables, and is particularly excellent in that isolation can be secured.
 10,10a~10e 積層型多芯ケーブル
 12 積層体
 14,15 保護層
 16a~16d 外部端子
 18a~18e 誘電体シート
 20,21 信号線路
 22,24 グランド導体
 30,31 開口
 32,33 ブリッジ部
10, 10a to 10e Multi-core cable 12 Laminated body 14, 15 Protective layer 16a to 16d External terminal 18a to 18e Dielectric sheet 20, 21 Signal line 22, 24 Ground conductor 30, 31 Opening 32, 33 Bridge part

Claims (6)

  1.  複数の基材層が積層されて構成されている積層体と、
     前記積層体に設けられている第1のグランド導体と、
     前記積層体において前記第1のグランド導体と異なる層に設けられている第2のグランド導体と、
     積層方向において、前記第1のグランド導体と前記第2のグランド導体との間に設けられている第1の信号線路と、
     積層方向において、前記第1のグランド導体と前記第2のグランド導体との間であって、前記第1の信号線路よりも該第2のグランド導体の近くに設けられている第2の信号線路であって、所定領域において、積層方向から平面視したときに、該第1の信号線路に沿って延在している第2の信号線路と、
     を備えており、
     前記第1のグランド導体には、前記所定領域において、積層方向から平面視したときに、前記第1の信号線路と重なる第1の開口が設けられていること、
     を特徴とする積層型多芯ケーブル。
    A laminate in which a plurality of base material layers are laminated;
    A first ground conductor provided in the laminate;
    A second ground conductor provided in a different layer from the first ground conductor in the laminate;
    A first signal line provided between the first ground conductor and the second ground conductor in the stacking direction;
    A second signal line provided between the first ground conductor and the second ground conductor in the stacking direction and closer to the second ground conductor than the first signal line. The second signal line extending along the first signal line when viewed in plan from the stacking direction in the predetermined region;
    With
    The first ground conductor is provided with a first opening that overlaps the first signal line when viewed in plan from the stacking direction in the predetermined region.
    Multi-core cable that features
  2.  前記第2のグランド導体には、前記所定領域において、積層方向から平面視したときに、前記第2の信号線路と重なる第2の開口が設けられていること、
     を特徴とする請求項1に記載の積層型多芯ケーブル。
    The second ground conductor is provided with a second opening that overlaps the second signal line when viewed in plan from the stacking direction in the predetermined region.
    The laminated multi-core cable according to claim 1.
  3.  複数の前記第1の開口が、前記第1の信号線に沿って並んでおり、
     複数の前記第2の開口が、前記第2の信号線に沿って並んでいること、
     を特徴とする請求項2に記載の積層型多芯ケーブル。
    A plurality of the first openings are arranged along the first signal line;
    A plurality of the second openings are arranged along the second signal line;
    The laminated multi-core cable according to claim 2.
  4.  前記第1の信号線路には、積層方向から平面視したときに、隣り合う前記第1の開口間に設けられている前記第1のグランド導体の第1のブリッジ部が重なっており、
     前記第2の信号線路には、積層方向から平面視したときに、隣り合う前記第2の開口間に設けられている前記第2のグランド導体の第2のブリッジ部が重なっており、
     前記第1のブリッジ部は、前記第1の信号線路が延在している方向において、前記第2の開口の中央に位置し、
     前記第2のブリッジ部は、前記第2の信号線路が延在している方向において、前記第1の開口の中央に位置していること、
     を特徴とする請求項3に記載の積層型多芯ケーブル。
    The first signal line is overlapped with a first bridge portion of the first ground conductor provided between the first openings adjacent to each other when viewed in plan from the stacking direction,
    The second signal line is overlapped with the second bridge portion of the second ground conductor provided between the adjacent second openings when viewed in plan from the stacking direction,
    The first bridge portion is located at the center of the second opening in the direction in which the first signal line extends,
    The second bridge portion is located at the center of the first opening in the direction in which the second signal line extends;
    The laminated multi-core cable according to claim 3.
  5.  前記第1の信号線路と前記第2の信号線路とは、前記所定領域において、積層方向から平面視したときに、交差しており、
     前記積層型多芯ケーブルは、
     積層方向から平面視したときに、前記第1の信号線路と前記第2の信号線路とが交差している部分と重なり、かつ、該第1の信号線路と該第2の信号線路との間に設けられている第3のグランド導体を、
     更に備えていること、
     を特徴とする請求項1ないし請求項4のいずれかに記載の積層型多芯ケーブル。
    The first signal line and the second signal line intersect each other in the predetermined region when viewed in plan from the stacking direction,
    The laminated multi-core cable is
    When viewed in plan from the stacking direction, the first signal line and the second signal line overlap each other, and between the first signal line and the second signal line. The third ground conductor provided in the
    More
    The laminated multi-core cable according to any one of claims 1 to 4, wherein:
  6.  前記積層体は、可撓性を有していること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の積層型多芯ケーブル。
    The laminate has flexibility;
    The laminated multi-core cable according to any one of claims 1 to 5, wherein:
PCT/JP2013/052695 2012-01-06 2013-02-06 Layered multi-core cable WO2013190859A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380012033.1A CN104205249B (en) 2012-06-19 2013-02-06 Cascade type multicore cable
US14/480,767 US9781832B2 (en) 2012-01-06 2014-09-09 Laminated multi-conductor cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012137616A JP5477422B2 (en) 2012-01-06 2012-06-19 High frequency signal line
JP2012-137616 2012-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/480,767 Continuation US9781832B2 (en) 2012-01-06 2014-09-09 Laminated multi-conductor cable

Publications (1)

Publication Number Publication Date
WO2013190859A1 true WO2013190859A1 (en) 2013-12-27

Family

ID=49769949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052695 WO2013190859A1 (en) 2012-01-06 2013-02-06 Layered multi-core cable

Country Status (2)

Country Link
CN (2) CN106602193B (en)
WO (1) WO2013190859A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115607A1 (en) * 2013-01-23 2014-07-31 株式会社村田製作所 Transmission line and electronic device
WO2015146448A1 (en) * 2014-03-27 2015-10-01 株式会社村田製作所 Transmission path member and electronic device
WO2015186720A1 (en) * 2014-06-05 2015-12-10 株式会社村田製作所 Transmission line member
US20160006102A1 (en) * 2014-07-02 2016-01-07 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and printed circuit board for camera module
WO2016056496A1 (en) * 2014-10-10 2016-04-14 株式会社村田製作所 Transmission line, and flat cable
WO2016163436A1 (en) * 2015-04-09 2016-10-13 株式会社村田製作所 Combined transmission line, and electronic device
EP4020542A4 (en) * 2019-08-23 2023-09-13 Niterra Co., Ltd. Wiring substrate
EP4120807A4 (en) * 2020-03-18 2023-10-25 Samsung Electronics Co., Ltd. Printed circuit board comprising ground wire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552614B1 (en) * 2016-02-26 2023-07-06 주식회사 기가레인 Flexible printed circuit board
WO2018227324A1 (en) 2017-06-12 2018-12-20 Qualcomm Incorporated Flexible printed circuits for usb 3.0 interconnects in mobile devices
JP6881264B2 (en) * 2017-12-01 2021-06-02 トヨタ自動車株式会社 Laminated flat wire
CN113301710B (en) 2020-02-24 2022-09-09 京东方科技集团股份有限公司 Display device and method for manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290794A (en) * 1985-06-19 1986-12-20 株式会社日立製作所 Wiring board
JPS629697A (en) * 1985-07-08 1987-01-17 株式会社日立製作所 Wiring board
JPH03250535A (en) * 1990-02-26 1991-11-08 Fujitsu Ltd Flat type display device
JPH04306507A (en) * 1991-04-03 1992-10-29 Mitsui Toatsu Chem Inc Flat cable
JPH06203659A (en) * 1992-08-25 1994-07-22 Furukawa Electric Co Ltd:The Manufacture of tape wire for high frequency
JPH10125144A (en) * 1996-10-22 1998-05-15 Nippon Tekuraito:Kk Shield cable
JPH10302882A (en) * 1997-04-22 1998-11-13 Nippon Seiki Co Ltd Connecting structure
JP2001135156A (en) * 1999-11-05 2001-05-18 Yazaki Corp Flat cable
JP2002118339A (en) * 2000-10-05 2002-04-19 Sony Chem Corp Wiring board and manufacturing method therefor
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
WO2011007660A1 (en) * 2009-07-13 2011-01-20 株式会社村田製作所 Signal line and circuit board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058256A (en) * 1996-09-26 2000-05-02 Lucent Technologies Inc. Technique for effectively routing conduction paths in circuit layouts
JP2005223127A (en) * 2004-02-05 2005-08-18 Sharp Corp Parallel conductor plate transmission path
CN1953641A (en) * 2005-10-21 2007-04-25 神基科技股份有限公司 A circuit structure to regulate the character impedance via the different reference plane and its circuit substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290794A (en) * 1985-06-19 1986-12-20 株式会社日立製作所 Wiring board
JPS629697A (en) * 1985-07-08 1987-01-17 株式会社日立製作所 Wiring board
JPH03250535A (en) * 1990-02-26 1991-11-08 Fujitsu Ltd Flat type display device
JPH04306507A (en) * 1991-04-03 1992-10-29 Mitsui Toatsu Chem Inc Flat cable
JPH06203659A (en) * 1992-08-25 1994-07-22 Furukawa Electric Co Ltd:The Manufacture of tape wire for high frequency
JPH10125144A (en) * 1996-10-22 1998-05-15 Nippon Tekuraito:Kk Shield cable
JPH10302882A (en) * 1997-04-22 1998-11-13 Nippon Seiki Co Ltd Connecting structure
JP2001135156A (en) * 1999-11-05 2001-05-18 Yazaki Corp Flat cable
JP2002118339A (en) * 2000-10-05 2002-04-19 Sony Chem Corp Wiring board and manufacturing method therefor
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
WO2011007660A1 (en) * 2009-07-13 2011-01-20 株式会社村田製作所 Signal line and circuit board

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666925B2 (en) 2013-01-23 2017-05-30 Murata Manufacturing Co., Ltd. Transmission line, a transmission line apparatus, and an electronic device
JP5696819B2 (en) * 2013-01-23 2015-04-08 株式会社村田製作所 Transmission line and electronic equipment
WO2014115607A1 (en) * 2013-01-23 2014-07-31 株式会社村田製作所 Transmission line and electronic device
JPWO2014115607A1 (en) * 2013-01-23 2017-01-26 株式会社村田製作所 Transmission line and electronic equipment
WO2015146448A1 (en) * 2014-03-27 2015-10-01 株式会社村田製作所 Transmission path member and electronic device
US9899715B2 (en) 2014-03-27 2018-02-20 Murata Manufacturing Co., Ltd. Transmission line member and electronic apparatus
JP6079929B2 (en) * 2014-03-27 2017-02-15 株式会社村田製作所 Transmission line member and electronic device
JP2017098998A (en) * 2014-03-27 2017-06-01 株式会社村田製作所 Electronic apparatus
WO2015186720A1 (en) * 2014-06-05 2015-12-10 株式会社村田製作所 Transmission line member
JPWO2015186720A1 (en) * 2014-06-05 2017-04-20 株式会社村田製作所 Transmission line member
US20160006102A1 (en) * 2014-07-02 2016-01-07 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and printed circuit board for camera module
US10333193B2 (en) * 2014-07-02 2019-06-25 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and printed circuit board for camera module
WO2016056496A1 (en) * 2014-10-10 2016-04-14 株式会社村田製作所 Transmission line, and flat cable
JP6098768B2 (en) * 2014-10-10 2017-03-22 株式会社村田製作所 Transmission line and flat cable
JP2017099027A (en) * 2014-10-10 2017-06-01 株式会社村田製作所 Transmission line and flat cable
US10269469B2 (en) 2014-10-10 2019-04-23 Murata Manufacturing Co., Ltd. Transmission line and flat cable
JP6048633B1 (en) * 2015-04-09 2016-12-21 株式会社村田製作所 Composite transmission line and electronic equipment
US9935352B2 (en) 2015-04-09 2018-04-03 Murata Manufacturing Co., Ltd. Composite transmission line and electronic device
WO2016163436A1 (en) * 2015-04-09 2016-10-13 株式会社村田製作所 Combined transmission line, and electronic device
EP4020542A4 (en) * 2019-08-23 2023-09-13 Niterra Co., Ltd. Wiring substrate
EP4120807A4 (en) * 2020-03-18 2023-10-25 Samsung Electronics Co., Ltd. Printed circuit board comprising ground wire

Also Published As

Publication number Publication date
CN106602193B (en) 2020-01-17
CN104205249B (en) 2017-03-01
CN106602193A (en) 2017-04-26
CN104205249A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5477422B2 (en) High frequency signal line
WO2013190859A1 (en) Layered multi-core cable
JP5754562B1 (en) High frequency signal lines and electronic equipment
JP5310949B2 (en) High frequency signal line
JP6233473B2 (en) High frequency signal transmission line and electronic equipment
JP5741781B1 (en) High frequency signal transmission line and electronic equipment
JP5472553B2 (en) High frequency signal lines and electronic equipment
JP6083483B2 (en) Multilayer multi-core cable
JP5472555B2 (en) High frequency signal transmission line and electronic equipment
JP5472556B2 (en) High frequency signal lines and electronic equipment
JP5637340B2 (en) Flat cable
JP5780362B2 (en) High frequency signal line
WO2014020999A1 (en) Flat cable
JP6053334B2 (en) Multilayer multi-core cable
JP5720853B2 (en) High frequency signal line
WO2014002785A1 (en) High-frequency signal line
WO2014002766A1 (en) High-frequency signal line
JP2013135173A (en) High frequency signal line
JP2014011046A (en) Production method of substrate layer with signal line passage and production method of high frequency signal line passage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807848

Country of ref document: EP

Kind code of ref document: A1