WO2013175818A1 - Pen-type input device - Google Patents

Pen-type input device Download PDF

Info

Publication number
WO2013175818A1
WO2013175818A1 PCT/JP2013/054435 JP2013054435W WO2013175818A1 WO 2013175818 A1 WO2013175818 A1 WO 2013175818A1 JP 2013054435 W JP2013054435 W JP 2013054435W WO 2013175818 A1 WO2013175818 A1 WO 2013175818A1
Authority
WO
WIPO (PCT)
Prior art keywords
pen
strain
input device
strain sensor
type input
Prior art date
Application number
PCT/JP2013/054435
Other languages
French (fr)
Japanese (ja)
Inventor
沙希子 田代
森 直樹
孝志 松原
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2013175818A1 publication Critical patent/WO2013175818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • the present invention relates to an electronic pen sensor mounting structure that is optimal for computer input.
  • Patent Document 1 shows an example of an electronic pen.
  • an electronic pen disclosed in Patent Document 1 includes a substantially cylindrical casing that is gripped by a user, a pen tip portion formed on a tip side of the casing, and a three-dimensional configuration of the pen tip section. It is disclosed that the apparatus includes a detecting unit that detects a target displacement and calculates a writing pressure or an inclination of the pen tip portion.
  • the electronic pen includes a substantially cylindrical housing that is gripped by a user, a pen tip portion formed on a tip side of the housing, and the pen tip portion.
  • An object of the present invention is to enable more accurate detection of pen pressure detection and inclination detection state, and to detect pen state other than the conventional pen pressure and inclination, for improved usability and a new usage method.
  • the object is to provide an applicable electronic pen.
  • the electronic pen of the present invention has a strain sensor for detecting the amount of strain in one direction installed in any one of a pen tip part, a pen base part, a grip part, and a pen peripheral part, Based on the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state, the contact state of the electronic pen on the writing surface, the pressing state on the writing surface, and the tilt direction of the electronic pen are detected. I made it.
  • the strain sensor is installed in the direction in which the deformation due to the twist of the pen shaft is maximum, and the twist state of the pen shaft is determined by the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. To detect.
  • the electronic pen of the present invention can improve writing pressure detection and inclination detection accuracy, and can notify computer operation information with the electronic pen alone, and can be applied to a new usage method.
  • FIG. 6 is a diagram illustrating an example of sensor arrangement in Embodiment 1.
  • FIG. 10 is a diagram illustrating an example of processing in Embodiment 1.
  • FIG. 10 is a diagram illustrating an example of processing in Embodiment 2.
  • FIG. 10 is a diagram illustrating an example of processing in Embodiment 2.
  • FIG. 10 is a diagram illustrating an example of processing in Embodiment 2.
  • FIG. FIG. 10 is a diagram illustrating an example of how a pen-type input device is distorted in a third embodiment.
  • 10 is a diagram illustrating an example of sensor arrangement in Example 3.
  • FIG. 10 is a diagram illustrating an example of processing in the third embodiment.
  • FIG. 10 is a diagram illustrating an example of processing in the third embodiment.
  • Example 4 it is a figure which shows an example of a mode that a pen type input device is distorted. It is a figure which shows an example of arrangement
  • FIG. FIG. 10 is a diagram illustrating an example of processing in the fourth embodiment. It is a figure which shows an example of arrangement
  • FIG. 10 is a diagram illustrating an example of processing in the fifth embodiment. It is a figure which shows an example of arrangement
  • FIG. 10 is a diagram illustrating an example of processing in the sixth embodiment.
  • FIG. 1 is a diagram for explaining an embodiment of an electronic pen that can detect the pen tip contact state, the pressure applied to the pen tip, and the tilt direction of the pen-type input device.
  • FIG. 1 is a diagram illustrating an internal configuration of the pen-type input device 100.
  • the pen-type input device 100 includes a distortion detection unit 101, a calculation unit 102 that determines a pen state based on the detection result of the distortion detection unit 101, a communication unit 103 that notifies the computer of the pen state, and an operation unit 104. And a power supply unit 105 and a control unit 106. Details of each block will be described later.
  • each part of 101-106 is independent in FIG. 1, you may comprise by one or several structural requirements as needed.
  • 102 and 106 may be configured to perform processing by one or more central processing units (CPUs).
  • CPUs central processing units
  • each of the components 101 to 106 is configured inside the pen-type input device.
  • one or more components are configured outside the pen-type input device, and network connection or universal serial bus (USB ) It may be connected to a pen-type input device by connection.
  • USB universal serial bus
  • the strain detection unit 101 is composed of a semiconductor strain sensor, and detects strain (shape change due to stress) generated in the case, tip, end, and gripping part of the pen-type input device that is generated by pen operation.
  • the type of sensor is not limited to the semiconductor strain sensor, and other sensors may be used as long as they can detect strain.
  • the calculation unit 102 is configured by a circuit board or the like on which a microcomputer is mounted.
  • the calculation unit 102 performs calculation processing on information on the presence / absence of a distortion signal and the level of the distortion signal obtained by the distortion detection unit 101, and the pen input device 100 is On the other hand, various states such as a contact state with another object are determined.
  • the communication unit 103 includes an ultrasonic unit, an infrared communication device, a wireless communication device, and the like, and is an interface that can communicate with devices external to the pen-type input device 100 such as a touch panel device, a projector, and a personal computer.
  • Information on the distortion of the pen-type input device obtained by the distortion detection unit 101 or the calculation result of the calculation unit 102 is transmitted to the external device, and various signals are received from the external device.
  • the operation unit 104 includes buttons, switches, an operation panel, and the like, and is an interface that can accept a pen operation instruction input from a user.
  • the power supply unit 105 is configured with a battery or the like, and supplies power to the components of the pen-type input device 100.
  • the control unit 106 controls the calculation unit 102, the communication unit 103, and the power supply unit 105 based on information related to the distortion of the pen-type input device from the distortion detection unit 101 and a user input from the operation unit 104.
  • information regarding the distortion of the pen-type input device obtained by the distortion detection unit 101 is calculated by the calculation unit 102 and then transmitted from the communication unit 103 to the external device. It is good also as a structure which transmits to an external apparatus from the communication part 103 without going through.
  • the information regarding the distortion of the pen-type input device obtained by the distortion detection unit 101 is transmitted to the external device without being subjected to the arithmetic processing, but the same arithmetic processing as the arithmetic unit 102 is performed by the external device.
  • the state of the pen-type input device 100 can be similarly determined.
  • the arithmetic unit 102 is not necessary, and the arithmetic unit 102 may be excluded from the configuration in the pen-type input device 100.
  • FIG. 2 shows an example of use of the pen-type input device 100 of the first embodiment.
  • 2A shows a state where writing is performed on a horizontal surface using a pen-type input device
  • FIG. 2B shows a state where writing is performed on a vertical surface.
  • the pen-type input device is often used in an inclined state, not perpendicular to the writing surface.
  • FIG. 2 (c) and 2 (d) are diagrams for explaining the state of distortion of the pen tip.
  • the pen tip is distorted as shown in FIG. 2 (c). Does not occur.
  • FIG. 2 (d) when the contact is made in an inclined state with respect to the writing surface, distortion occurs on the surface and inside of the pen tip. Specifically, as shown in FIG. 2 (d), distortion in the extending direction occurs on the side surface near the pen tip closest to the writing surface, and distortion in the shrinking direction occurs on the side surface near the pen tip farthest from the writing surface. .
  • FIG. 3 shows an example of the external force applied to the electronic pen and the sensor output in the strain detection unit 101.
  • the strain detection unit 101 includes the semiconductor strain sensor 200 (hereinafter referred to as a strain sensor) using the piezoresistance effect.
  • the strain sensor 200 is fixed to the electronic pen with an adhesive or the like, and has a characteristic that the electric resistance value changes according to the internal stress of the strain sensor.
  • the sensitivity axis 201 exists in the strain sensor, and the strain in the direction along the sensitivity axis can be detected with the highest sensitivity.
  • the strain sensor 200 is represented as a rectangular parallelepiped composed of three layers shown in FIG. 3, and the sensor sensitivity axis 201 exists in a direction perpendicularly passing through the three layers.
  • FIG. 3 shows the relationship between the stress applied to the strain sensor 200 and the output of the strain sensor.
  • FIG. 3C shows a state where no external force is applied to the pen and no distortion occurs in the sensor, and the output value of the strain sensor in this equilibrium state is ⁇ 0 .
  • 3 (a) and 3 (b) show a state where an external force is applied in the direction in which the strain sensor contracts from the equilibrium state
  • FIGS. 3 (d) and 3 (e) show a state in which the external force is applied in the direction in which the strain sensor extends from the equilibrium state. Show. It shows a state where a larger external force is applied as the distance from (c) in the equilibrium state increases.
  • the output value when a small stress is applied in the shrinking direction as shown in FIG. 3B is smaller than ⁇ 0 , and the output value when a large stress is applied in the shrinking direction as shown in FIG. , Even smaller.
  • the output value is larger than ⁇ 0 , and when a large stress is applied in the extending direction as shown in FIG. The output value is further increased.
  • FIG. 4 shows an arrangement position of the strain sensor 200 in the first embodiment.
  • the tip portion of the pen-type input device is referred to as a pen tip
  • the portion gripped by the user is referred to as a grip portion
  • the vicinity of the center is referred to as a center portion
  • the root portion is referred to as a pen base.
  • This example shows the arrangement of the strain sensor suitable for detecting the contact state of the pen tip during writing, the pressure applied to the pen tip, and the tilt direction of the pen shown in FIG. 2 (d).
  • the strain sensor is arranged at the outer surface 2001 or 2002 of the case structure of the pen-type input device, the inner surface 2003 or the like. 2004, internal 2005, and the like. In order to detect the distortion of the pen tip portion, it is sufficient to arrange one strain sensor at any one of the positions 2001 to 2005, but in order to increase the reliability of detection, a plurality of strain sensors are provided at a plurality of positions. You may arrange.
  • the strain sensor detects a stress during writing of the pen between the pen tip and the gripping portion with the gripping portion as a fulcrum.
  • the strain sensor may be disposed on the outer surface of the pen as shown in FIG. 4 (a), or may be disposed on the inner surface of the pen as shown in FIG. 4 (b).
  • FIG. 4 (c) shows an example in which the present invention is applied to a pen having a configuration in which the pen shaft is not brought into contact with the outer case.
  • Fig. 4 shows an example of installing strain sensors separately on the outer and inner surfaces of the pen and inside the pen shaft, but the strain sensors are installed in combination at multiple locations, such as both the outer and inner surfaces of the pen. You may make it do.
  • FIG. 5 (a) shows a one-round flow in which the processing of S501 to S503 is executed once each. In practice, this flow is repeated continuously, and after S503, the processing returns to S501.
  • S501 the current strain sensor output value ⁇ tip of the pen tip is acquired by the strain sensor arranged in any of 2001 to 2005 shown in FIG.
  • the process proceeds to S502.
  • ⁇ tip expressed by ⁇ tip ( ⁇ tip ⁇ 0 ) is compared with the value of Etip which is a threshold value of a certain strain sensor.
  • Etip is a threshold value of a certain strain sensor.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state
  • both ⁇ 0 and Etip are positive numbers.
  • FIG. 5B shows details of the processing in S503.
  • the above-described tilt direction of the pen is based on the mounting position of the strain sensor 200. For this reason, in order to more accurately determine the tilt direction of the pen, it is desirable to fix the rotation direction of the pen by marking the grip direction on the grip portion.
  • FIG. 6 shows an example of how the pen-type input device 100 is distorted in the second embodiment.
  • the pen-type input device is not in contact with the writing surface as shown in FIG. 6 (a)
  • the pen base is not distorted
  • the pen-type input device is in contact with the writing surface inclined. Then, distortion occurs on the surface and the inside of the pen base.
  • the distortion in the extending direction is generated on the side surface near the pen base closest to the writing surface
  • the contracting direction is generated on the side surface near the pen base farthest from the writing surface.
  • FIG. 7 shows an arrangement example of the strain sensor arranged in the pen base portion in order to detect the distortion of the pen base portion shown in FIG.
  • FIGS. 7A to 7C are all cross-sectional views of the pen-type input device, and examples of the location of the strain sensor include the outer surface 2011, the inner surface 2012, and the inner 2013 of the pen-type input device. It is done. In order to detect the distortion of the pen base part, it is sufficient to arrange one strain sensor at any one of 2011 to 2013. However, in order to increase the detection reliability, a plurality of strain sensors are installed at a plurality of places. You may arrange.
  • FIG. 8 shows an example of processing in the second embodiment.
  • FIG. 8A shows a processing flow.
  • FIG. 8A shows a one-round flow in which the processes of S801 to S803 are executed once each, this flow is actually repeated continuously, and after S803, the process returns to S801.
  • the strain sensor output value ⁇ root of the strain sensor arranged in any of the pen sources 2011 to 2013 shown in FIG. 7 is acquired, and the process proceeds to S802.
  • ⁇ root obtained by ⁇ root ( ⁇ root ⁇ 0 ) is compared with the value of Eroot which is a threshold value of a constant strain sensor, and the process proceeds to S803.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state, and both ⁇ 0 and Eroot are positive numbers.
  • FIG. 8B shows details of the processing of S803.
  • reference numeral 851 in FIG. 8B when the comparison result between ⁇ root and ⁇ root satisfies ⁇ root ⁇ root, this indicates that the pen base is in contact with the writing surface, and the inclination of the pen-type input device The direction is opposite to the sensor mounting side.
  • the comparison result between ⁇ root and ⁇ root satisfies
  • FIG. 9 is an embodiment in which strain sensors are provided at both the pen tip and the pen base, and shows the relationship between the detection values of the respective strain sensors and the state of the pen-type input device. Specifically, by combining ⁇ root obtained in S802 of FIG. 8 with ⁇ tip obtained in S502 of FIG. 5, it is possible to detect a more detailed state of the pen-type input device. Specifically, it can be distinguished whether the pen tip or the pen base is in contact with the writing surface, and the pen-type input device is pulled from both ends, pushed from both ends, held in the air or placed flat The detected state can be detected.
  • a strain sensor is arranged at the pen base, and the strain sensor output value of the pen base is acquired. Thereby, the effect of detecting the contact state of the pen base, the pressure applied to the pen base, and the tilt direction of the pen-type input device can be obtained.
  • the effect of discriminating whether the pen tip or the pen base is in contact with the writing surface, and the pen-type input device is pulled from both ends and pushed from both ends It is possible to obtain an effect of detecting a held state, a state of being held or laid flat in the air.
  • FIG. 10 is a diagram illustrating a grip state of the pen-type input device according to the present embodiment.
  • FIG. 11 shows an arrangement example of the strain sensors for detecting the grip state.
  • FIG. 12 shows an overview of the state determination processing flow.
  • FIG. 13 shows a determination condition in the case where the pen grip state is determined in more detail in combination with the pen tip distortion sensor.
  • FIG. 10A when the pen-type input device is gripped with a weak force, no distortion occurs in the gripping portion.
  • FIG. 10B when gripping with a strong force, distortion occurs on the surface and inside of the gripping portion. In particular, in FIG. 10B, distortion in the direction of narrowing the gripping portion occurs.
  • strain sensors 2021 and 2022 are provided on the cross section of the gripping portion of the pen as shown in FIG.
  • the strain sensor 2021 is suitable for detecting the compression of the pen shaft
  • the strain sensor 2022 is suitable for detecting the bending of the pen shaft.
  • the strain sensor output value ⁇ grip of the current gripper is acquired by the strain sensor arranged in 2021 in FIG. 11, and the process proceeds to S1202.
  • Egrip is a threshold value of a constant strain sensor.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state
  • both ⁇ 0 and Egrip are positive numbers.
  • the grip state of the pen-type input device is determined based on the comparison result in S1202. Details of the determination in S1203 will be described later with reference to FIG. When the processing of S1203 ends, the series of processing shown in FIG.
  • FIG. 12B shows details of the processing of S1203.
  • ⁇ Egrip it is determined that the pen-type input device is gripped with a weak force or placed flat.
  • > Egrip it is determined that the pen-type input device is gripped with a strong force.
  • the degree of force for gripping the pen-type input device can be detected from the value of
  • a strain sensor is arranged in the gripping portion, and the strain sensor output value of the gripping portion is acquired. Thereby, the effect of detecting the grip state of the pen-type input device can be obtained.
  • FIG. 14 shows an example of how the pen-type input device 100 is distorted
  • FIG. 15 shows an example of the arrangement of strain sensors in order to detect a twisted state
  • FIG. 16 shows a twisted state detection process flow.
  • FIGS. 15A to 15D are partial cutaway views of the pen-type input device.
  • the strain sensor is arranged at locations such as 2031 and 2033 on the outer surface of the pen-type input device and 2032 and 2034 on the inner surface. Can be mentioned.
  • a plurality of strain sensors are arranged at a plurality of locations. May be. Needless to say, it is desirable to dispose the strain sensor in a direction in which the deformation due to the twist of the pen-type input device is maximum (for example, a direction having an angle in the cross section).
  • FIG. 16 shows a processing flow of this embodiment.
  • FIG. 16A shows a one-round flow in which each of the processes of S1601 to S1603 is executed once. In practice, this flow is repeated continuously, and after S1603, the process returns to S1601.
  • the strain sensor output value ⁇ mid at the current center is acquired by the strain sensor arranged in any of 2031 to 2034 shown in FIG. 15, and the process proceeds to S1602.
  • ⁇ mid ( ⁇ mid ⁇ 0 ) is compared with the value of Emid, which is a constant strain sensor threshold value.
  • Emid is a constant strain sensor threshold value.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state
  • both ⁇ 0 and Emid are positive numbers.
  • the twist state of the pen-type input device is determined based on the comparison result in S1602. Details of S1603 will be described later with reference to FIGS. 16B and 16C. When the process of S1603 ends, the series of processes shown in FIG.
  • FIG. 16B shows details of the processing in S1603 when the sensor placement location is 2031 or 2032 in FIG.
  • FIG. 16C shows details of the processing in S1603 when the sensor placement location is 2032 or 2034 in FIG.
  • the distortion at the center becomes smaller and the value of
  • the greater the force with which the pen-type input device is twisted the greater the distortion at the center and the larger the value of
  • a strain sensor is arranged at the center, and the strain sensor output value at the center is acquired. Thereby, the twist state of the pen-type input device can be detected.
  • FIG. 17 shows an example of the arrangement of the strain sensors 200 in the present embodiment
  • FIG. 18 shows the determination processing flow.
  • the tilt direction of the pen-type input device is detected in two ways, the same as or opposite to the sensor mounting side, but in this embodiment, the tilt direction can be detected in more detail.
  • two strain sensors are arranged on the cross-section of the pen tip, and the position of one sensor is the two strain sensors and the other sensor is the central axis of the pen-type input device. It arrange
  • the two strain sensors are arranged at an angle of 90 degrees in the cross section on any of the outer surface, the inner surface, and the inner portion of the pen-type input device.
  • the two strain sensors arranged at the pen tip are respectively on the X axis and the Y axis that pass through the central axis of the pen type input device and are orthogonal to each other.
  • the four areas divided by the X axis and the Y axis are called the first quadrant to the fourth quadrant.
  • the current output value of the strain sensor deployed on the X axis is ⁇ x
  • the current output value of the strain sensor deployed on the Y axis is ⁇ y.
  • the processing of S1801 to S1803 is a one-time flow that is executed once, but this flow is actually repeated continuously, and after S1803, the process returns to S1801. Shall.
  • the current strain sensor output value ⁇ x on the X-axis is acquired by a strain sensor arranged in any of 2001 to 2005 shown in FIG. Further, among 2041 to 2045 shown in FIG. 17, the strain sensor in which ⁇ x is obtained is arranged so as to be rotated by 90 degrees about the central axis of the pen-type input device. The strain sensor output value ⁇ y is obtained.
  • the processing of S1801 ends, the process proceeds to S1802.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state
  • ⁇ 0 , Ex, and Ey are all positive numbers.
  • FIG. 18C shows details of the processing of S1803.
  • ⁇ x ⁇ Ex and ⁇ y ⁇ Ey are satisfied as indicated by 1851, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the first quadrant.
  • ⁇ x> Ex and ⁇ y ⁇ Ey are satisfied as indicated by 1852, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the second quadrant.
  • ⁇ x> Ex and ⁇ y> Ey are satisfied as indicated by 1853, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the third quadrant.
  • a plurality of strain sensors are arranged at the pen tip, and the strain sensor output value of the pen tip is acquired. Thereby, the inclination direction of the pen-type input device can be detected with high accuracy.
  • FIG. 19 shows an example of sensor arrangement in the sixth embodiment
  • FIG. 20 explains the determination process.
  • the cross-sectional shape of the pen-type input device is a circle
  • the cross-sectional shape of the pen-type input device is changed so that how to hold the pen-type input device is determined by a unique or limited number of patterns. Examples of such a cross-sectional shape include a general triangular shape shown in FIG. 19A and a shape in which a protrusion is loaded on a circle shown in FIG.
  • FIG. 19 (a) it is common to hold a pen-type input device with a thumb, index finger, and middle finger attached to each side of the triangle.
  • the thumb and index finger are attached so as to sandwich the protruding portion, and the middle finger is attached to the opposite side of the protruding portion, and the pen-type input device is attached. It is common to hold.
  • the strain sensor is arranged as indicated by 2051 and 2052 on the pen tip of the surface where it can be predicted that the thumb is attached.
  • the shape of the pen tip is a thin plate (cuboid) as shown in FIG. 19 (c), or a rectangular parallelepiped as shown in FIG. 19 (d).
  • the strain sensor is arranged as indicated by 2053 and 2054 on the pen tip of the surface where it can be predicted that the thumb is attached.
  • the thumb is not always attached to the surface on which the strain sensor is arranged depending on the gripping method of the user holding the pen-type input device or the difference between right-handed / left-handed.
  • a method for detecting in which direction the pen-type input device is inclined with respect to the surface to which the thumb is attached will be described assuming that the surfaces to be attached match.
  • the index finger and the middle finger are attached to the surface on which the strain sensor is arranged, it is possible to similarly detect in which direction the pen-type input device is inclined with respect to the surface to which the index finger and the middle finger are attached.
  • strain sensors may be provided according to the user's right-handed / left-handed so that the user's right-handed / left-handed can be specified separately, and the determination process may be performed according to this specification.
  • FIG. 20 shows an example of processing in the sixth embodiment.
  • the processing of S2001 to S2003 is a one-time flow that is executed once each. However, this flow is actually repeated continuously, and after S2003, the processing returns to S2001.
  • the strain sensor output value ⁇ thumb of the current pen tip on the thumb contact surface is acquired by the strain sensor arranged in either 2051 or 2052 shown in FIG.
  • the process proceeds to S2002.
  • ⁇ thumb represented by ⁇ thumb ( ⁇ thumbx ⁇ 0 ) is compared with the value of Ethumb that is a threshold value of a certain strain sensor.
  • ⁇ 0 is an output value of the strain sensor in an equilibrium state, and both ⁇ 0 and Ethumb are positive numbers.
  • FIG. 20B shows details of the processing in S2003.
  • the comparison result between ⁇ thumb and Ethum satisfies ⁇ thumb ⁇ Ethumb
  • the pen tip is in contact with the writing surface, and the tilt direction of the pen-type input device is opposite to the side with the thumb attached.
  • the comparison result between ⁇ thumb and Ethum satisfies
  • the way of gripping the pen-type input device is determined to be a unique or limited number of patterns.
  • a mark such as a specific color, mark, or pattern is added to the side where the sensor is placed, or the opposite side, so that a thumb can be attached to the side where the mark is added.
  • the cross-sectional shape of the pen-type input device is changed to a shape different from a circle. Therefore, it is possible to detect in which direction the pen type input device is inclined with respect to the user's hand or finger holding the pen type input device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a pen-type input device that uses a simple sensor to determine each type of state related to the pen-type input device, namely pen pressure, slope, grip, twisting, and the like. The pen-type input device is provided with a strain sensor that detects the strain amount in at least one direction, and a pen shaft having at least one of the strain sensors provided in the pen tip section thereof such that the detected direction of the strain amount and the pen shaft direction are made to correspond. The contact state of the pen tip with the writing surface, the pushing state of the tip of the pen, and the tilt direction of the pen are detected using the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor while in a state of equilibrium. In addition, the strain sensor is arranged in the direction in which deformation caused by twisting of the pen shaft is at a maximum so that the twisting state of the pen shaft is detected.

Description

ペン型入力装置Pen-type input device
  本発明は、コンピュータ入力に最適な電子ペンのセンサの取付け構造に関する。 The present invention relates to an electronic pen sensor mounting structure that is optimal for computer input.
 近年、モニタの大画面化やプロジェクター装置の普及により、筆記用具で白板に文字や図形を記入するのと同じ形態で、データ表示した表示面にコンピュータによる加筆をおこなえる電子ペンが提供されている。この電子ペンには、軌跡情報をコンピューターに通知するとともに、電子ペンの筆圧や傾き等の操作情報をコンピュータに通知することが必要となる。 In recent years, with the increase in the screen size of monitors and the widespread use of projector devices, electronic pens have been provided that allow a computer to be used to write data on the display surface in the same form as writing letters and figures on a white board with a writing instrument. The electronic pen is required to notify the computer of trajectory information and to notify the computer of operation information such as writing pressure and tilt of the electronic pen.
 例えば、特許文献1に電子ペンの一例が示されている。詳しくは、特許文献1に開示される電子ペンは、使用者に把持される略筒状の筐体と、前記筐体の先端側に形成されたペン先部と、前記ペン先部の三次元的変位を検出して、前記ペン先部の筆圧または傾きを算出する検出手段と、を備えた構成であることが開示されている。 For example, Patent Document 1 shows an example of an electronic pen. Specifically, an electronic pen disclosed in Patent Document 1 includes a substantially cylindrical casing that is gripped by a user, a pen tip portion formed on a tip side of the casing, and a three-dimensional configuration of the pen tip section. It is disclosed that the apparatus includes a detecting unit that detects a target displacement and calculates a writing pressure or an inclination of the pen tip portion.
 そして、電子ペンと、表示装置のタッチパネル面に前記電子ペンによりタッチされた座標位置を検出する座標位置検出装置と、前記座標位置検出装置の座標位置の検出結果に応じた情報を前記表示装置に表示させる表示制御装置とからなるタッチパネル装置において、前記電子ペンは、使用者に把持される略筒状の筐体と、前記筐体の先端側に形成されたペン先部と、前記ペン先部の三次元的変位を検出して、前記電子ペンの筆圧を算出する検出手段と、を含み、前記表示制御装置は、前記検出手段で算出された前記電子ペンの筆圧に応じて、前記表示装置に表示する情報の表示態様を変更することが開示されている。 And an electronic pen, a coordinate position detection device that detects a coordinate position touched on the touch panel surface of the display device by the electronic pen, and information corresponding to a detection result of the coordinate position of the coordinate position detection device. In the touch panel device including a display control device to be displayed, the electronic pen includes a substantially cylindrical housing that is gripped by a user, a pen tip portion formed on a tip side of the housing, and the pen tip portion. Detecting means for detecting the three-dimensional displacement of the electronic pen, and calculating the writing pressure of the electronic pen, the display control device according to the writing pressure of the electronic pen calculated by the detecting means, It is disclosed that the display mode of information displayed on a display device is changed.
特開2006-92410号公報JP 2006-92410 A
 前記特許文献1に記載の電子ペンによれば、電子ペンの筆圧やペン軸の傾きを検出できるようになったが、従来の筆記用具の筆記機能を電子化に必要な機能が実現されたにすぎず、新たな入力装置を提供するまでには到っていない。 According to the electronic pen described in Patent Document 1, the writing pressure of the electronic pen and the inclination of the pen axis can be detected, but the function necessary for digitization of the writing function of the conventional writing tool has been realized. However, it has not yet reached the point of providing a new input device.
 本発明の目的は、筆圧検出や傾き検出の状態検出をより高精度検出可能とするとともに、従来の筆圧や傾き以外のペンの状態検出を可能として、使い勝手の向上や新たな使用方法に適用可能な電子ペンを提供することにある。 An object of the present invention is to enable more accurate detection of pen pressure detection and inclination detection state, and to detect pen state other than the conventional pen pressure and inclination, for improved usability and a new usage method. The object is to provide an applicable electronic pen.
 上記課題を解決するために、本願発明の電子ペンは、一方向の歪量を検出する歪センサを、ペン先部・ペン元部・把持部・ペンの周部のいずれかに設置し、前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、電子ペンの筆記面への接触状態、筆記面への押付状態、電子ペンの傾き方向を検出するようにした。 In order to solve the above-mentioned problem, the electronic pen of the present invention has a strain sensor for detecting the amount of strain in one direction installed in any one of a pen tip part, a pen base part, a grip part, and a pen peripheral part, Based on the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state, the contact state of the electronic pen on the writing surface, the pressing state on the writing surface, and the tilt direction of the electronic pen are detected. I made it.
 また、歪センサをペン軸のひねりによる変形が最大の方向に設置し、前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン軸のひねり状態を検出する。 In addition, the strain sensor is installed in the direction in which the deformation due to the twist of the pen shaft is maximum, and the twist state of the pen shaft is determined by the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. To detect.
 本発明の電子ペンは、筆圧検出や傾きの検出精度を向上することができるとともに、電子ペン単独でコンピューターの操作情報通知することができ、新たな使用方法に適用可能となる。 The electronic pen of the present invention can improve writing pressure detection and inclination detection accuracy, and can notify computer operation information with the electronic pen alone, and can be applied to a new usage method.
ペン型入力装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a pen-type input device. 実施例1においてペン型入力装置が歪む様子の一例を示す図である。It is a figure which shows an example of a mode that a pen type input device is distorted in Example 1. FIG. 歪検出部における出力の一例を示す図である。It is a figure which shows an example of the output in a distortion detection part. 実施例1におけるセンサの配置の一例を示す図である。6 is a diagram illustrating an example of sensor arrangement in Embodiment 1. FIG. 実施例1における処理の一例を示す図である。10 is a diagram illustrating an example of processing in Embodiment 1. FIG. 実施例2においてペン型入力装置が歪む様子の一例を示す図である。It is a figure which shows an example of a mode that a pen type input device is distorted in Example 2. FIG. 実施例2におけるセンサの配置の一例を示す図である。6 is a diagram illustrating an example of sensor arrangement in Embodiment 2. FIG. 実施例2における処理の一例を示す図である。10 is a diagram illustrating an example of processing in Embodiment 2. FIG. 実施例2における処理の一例を示す図である。10 is a diagram illustrating an example of processing in Embodiment 2. FIG. 実施例3においてペン型入力装置が歪む様子の一例を示す図である。FIG. 10 is a diagram illustrating an example of how a pen-type input device is distorted in a third embodiment. 実施例3におけるセンサの配置の一例を示す図である。10 is a diagram illustrating an example of sensor arrangement in Example 3. FIG. 実施例3における処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing in the third embodiment. 実施例3における処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing in the third embodiment. 実施例4においてペン型入力装置が歪む様子の一例を示す図である。In Example 4, it is a figure which shows an example of a mode that a pen type input device is distorted. 実施例4におけるセンサの配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the sensor in Example 4. FIG. 実施例4における処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing in the fourth embodiment. 実施例5におけるセンサの配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the sensor in Example 5. FIG. 実施例5における処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing in the fifth embodiment. 実施例6におけるセンサの配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the sensor in Example 6. FIG. 実施例6における処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing in the sixth embodiment.
 以下に、図面に基づき本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、ペン先の接触状態、ペン先にかかる圧力、およびペン型入力装置の傾き方向の検出をおこなえる電子ペンの実施例を説明する図である。
  図1は、ペン型入力装置100の内部構成を示す図である。ペン型入力装置100は、歪検出部101と、前記歪検出部101の検出結果に基づいてペンの状態を判定する演算部102と、コンピューターにペン状態を通知する通信部103と、操作部104と、電力供給部105と、制御部106とから構成される。それぞれのブロックの詳細は後述する。
FIG. 1 is a diagram for explaining an embodiment of an electronic pen that can detect the pen tip contact state, the pressure applied to the pen tip, and the tilt direction of the pen-type input device.
FIG. 1 is a diagram illustrating an internal configuration of the pen-type input device 100. The pen-type input device 100 includes a distortion detection unit 101, a calculation unit 102 that determines a pen state based on the detection result of the distortion detection unit 101, a communication unit 103 that notifies the computer of the pen state, and an operation unit 104. And a power supply unit 105 and a control unit 106. Details of each block will be described later.
 なお、図1では101~106の各部は独立しているが、必要に応じて1または複数の構成要件で構成してもよい。例えば、102と106は1または複数の中央処理装置(CPU)でその処理を行うように構成してもよい。また、図1では101~106の各部を全てペン型入力装置の内部に構成しているが、1または複数の構成要件をペン型入力装置の外部に構成し、ネットワーク接続やユニバーサルシリアルバス(USB)接続によってペン型入力装置に結合しても良い。 In addition, although each part of 101-106 is independent in FIG. 1, you may comprise by one or several structural requirements as needed. For example, 102 and 106 may be configured to perform processing by one or more central processing units (CPUs). In FIG. 1, each of the components 101 to 106 is configured inside the pen-type input device. However, one or more components are configured outside the pen-type input device, and network connection or universal serial bus (USB ) It may be connected to a pen-type input device by connection.
 歪検出部101は、半導体歪センサで構成され、ペンの操作により生じるペン型入力装置の筐体や先端部、末端部、さらには把持部などに生じる歪(応力による形状変化)を検知する。なお、センサの種類は半導体歪みセンサに限定されず、歪を検知できるものであれば他のセンサでもよい。 The strain detection unit 101 is composed of a semiconductor strain sensor, and detects strain (shape change due to stress) generated in the case, tip, end, and gripping part of the pen-type input device that is generated by pen operation. The type of sensor is not limited to the semiconductor strain sensor, and other sensors may be used as long as they can detect strain.
 演算部102は、マイコンを搭載した回路基板などで構成され、歪検出部101で得られた歪信号の有無やその歪み信号レベルに関する情報を演算処理し、ペン型入力装置100の傾き、握られ方、他の物体との接触状態などの各種状態を決定する。 The calculation unit 102 is configured by a circuit board or the like on which a microcomputer is mounted. The calculation unit 102 performs calculation processing on information on the presence / absence of a distortion signal and the level of the distortion signal obtained by the distortion detection unit 101, and the pen input device 100 is On the other hand, various states such as a contact state with another object are determined.
 通信部103は、超音波ユニットや赤外線通信装置や無線通信装置などで構成され、タッチパネル装置やプロジェクタ、パーソナルコンピュータなど、ペン型入力装置100の外部の機器と通信できるインタフェースである。歪検出部101で得られたペン型入力装置の歪に関する情報、あるいは演算部102の演算結果を前記の外部機器に対して送信したり、外部機器からの各種信号を受信したりする。 The communication unit 103 includes an ultrasonic unit, an infrared communication device, a wireless communication device, and the like, and is an interface that can communicate with devices external to the pen-type input device 100 such as a touch panel device, a projector, and a personal computer. Information on the distortion of the pen-type input device obtained by the distortion detection unit 101 or the calculation result of the calculation unit 102 is transmitted to the external device, and various signals are received from the external device.
 操作部104は、ボタンやスイッチ、操作パネルなどで構成され、ユーザからペンの操作指示入力を受け付けることができるインタフェースである。 The operation unit 104 includes buttons, switches, an operation panel, and the like, and is an interface that can accept a pen operation instruction input from a user.
 電力供給部105は、バッテリなどで構成され、ペン型入力装置100の構成部材に対して電力を供給する。 The power supply unit 105 is configured with a battery or the like, and supplies power to the components of the pen-type input device 100.
 制御部106は、歪検出部101からのペン型入力装置の歪に関する情報や操作部104からのユーザの入力に基づいて、演算部102、通信部103、電力供給部105を制御する。 The control unit 106 controls the calculation unit 102, the communication unit 103, and the power supply unit 105 based on information related to the distortion of the pen-type input device from the distortion detection unit 101 and a user input from the operation unit 104.
 実施例1では、歪検出部101で得られたペン型入力装置の歪に関する情報を、演算部102で演算処理した後に、通信部103から外部機器に対して送信しているが、演算部102を介さずに通信部103から外部機器に対して送信する構成としてもよい。この場合、歪検出部101で得られたペン型入力装置の歪に関する情報が演算処理されることなく外部機器に対して送信されるが、外部機器にて演算部102と同様の演算処理を行えば、同様にペン型入力装置100の状態を決定することができる。すべての演算処理を外部機器にて行う場合は、演算部102は不要となり、演算部102をペン型入力装置100内の構成から除外してもよい。 In the first embodiment, information regarding the distortion of the pen-type input device obtained by the distortion detection unit 101 is calculated by the calculation unit 102 and then transmitted from the communication unit 103 to the external device. It is good also as a structure which transmits to an external apparatus from the communication part 103 without going through. In this case, the information regarding the distortion of the pen-type input device obtained by the distortion detection unit 101 is transmitted to the external device without being subjected to the arithmetic processing, but the same arithmetic processing as the arithmetic unit 102 is performed by the external device. For example, the state of the pen-type input device 100 can be similarly determined. When all the arithmetic processes are performed by an external device, the arithmetic unit 102 is not necessary, and the arithmetic unit 102 may be excluded from the configuration in the pen-type input device 100.
 図2は、実施例1のペン型入力装置100の使用例を示すものである。図2(a)は、ペン型入力装置を用いて水平面に筆記をしている様子であり、図2(b)は垂直面に筆記をしている様子である。いずれの場合もペン型入力装置は筆記面に対して垂直ではなく、傾いた状態で使用されることが多い。 FIG. 2 shows an example of use of the pen-type input device 100 of the first embodiment. 2A shows a state where writing is performed on a horizontal surface using a pen-type input device, and FIG. 2B shows a state where writing is performed on a vertical surface. In any case, the pen-type input device is often used in an inclined state, not perpendicular to the writing surface.
 図2(c)(d)は、ペン先の歪み状態を説明する図であり、ペン型入力装置が筆記面の非接触の場合は、図2(c)に示すように、ペン先に歪は発生しない。しかし、図2(d)に示すように、筆記面に対して傾いた状態で接触すると、ペン先の表面および内部に歪が発生する。詳しくは、図2(d)に示すように、筆記面に最も近いペン先付近の側面では伸びる方向の歪が、筆記面から最も遠いペン先付近の側面では縮む方向の歪が発生している。 2 (c) and 2 (d) are diagrams for explaining the state of distortion of the pen tip. When the pen-type input device is not in contact with the writing surface, the pen tip is distorted as shown in FIG. 2 (c). Does not occur. However, as shown in FIG. 2 (d), when the contact is made in an inclined state with respect to the writing surface, distortion occurs on the surface and inside of the pen tip. Specifically, as shown in FIG. 2 (d), distortion in the extending direction occurs on the side surface near the pen tip closest to the writing surface, and distortion in the shrinking direction occurs on the side surface near the pen tip farthest from the writing surface. .
 図3は、歪検出部101における電子ペンに加わる外力とセンサ出力の一例を示すものである。歪検出部101は、前述のとおり、ピエゾ抵抗効果を利用した半導体歪センサ200(以下、歪センサと記す)で構成される。歪センサ200は接着剤などで電子ペンに固定され、歪センサの内部応力に応じて電気抵抗値が変化する特性を有する。また、歪センサには感度軸201が存在し、感度軸に沿った方向の歪を最も高い感度で検知することができる。以降、歪センサ200を図3に示す3層から成る直方体として標記し、センサ感度軸201は3層を垂直に貫く方向に存在するものとする。 FIG. 3 shows an example of the external force applied to the electronic pen and the sensor output in the strain detection unit 101. As described above, the strain detection unit 101 includes the semiconductor strain sensor 200 (hereinafter referred to as a strain sensor) using the piezoresistance effect. The strain sensor 200 is fixed to the electronic pen with an adhesive or the like, and has a characteristic that the electric resistance value changes according to the internal stress of the strain sensor. Moreover, the sensitivity axis 201 exists in the strain sensor, and the strain in the direction along the sensitivity axis can be detected with the highest sensitivity. Hereinafter, it is assumed that the strain sensor 200 is represented as a rectangular parallelepiped composed of three layers shown in FIG. 3, and the sensor sensitivity axis 201 exists in a direction perpendicularly passing through the three layers.
 歪センサ200にかかる応力と歪センサの出力の関係を図3に示す。図3(c)はペンに外力が加わらずセンサに歪が発生していない状態を示し、この平衡状態での歪みセンサの出力値をε0とする。図3(a)(b)は平衡状態から歪センサが縮む方向に外力が加わった状態を示し、図3(d)(e)は平衡状態から歪センサが伸びる方向に外力が加わった状態を示している。平衡状態の(c)より離れるほど大きな外力が加わった状態を示している。 FIG. 3 shows the relationship between the stress applied to the strain sensor 200 and the output of the strain sensor. FIG. 3C shows a state where no external force is applied to the pen and no distortion occurs in the sensor, and the output value of the strain sensor in this equilibrium state is ε 0 . 3 (a) and 3 (b) show a state where an external force is applied in the direction in which the strain sensor contracts from the equilibrium state, and FIGS. 3 (d) and 3 (e) show a state in which the external force is applied in the direction in which the strain sensor extends from the equilibrium state. Show. It shows a state where a larger external force is applied as the distance from (c) in the equilibrium state increases.
 図3(b)に示すように縮む方向に小さな応力がかかった場合の出力値はε0より小さくなり、図3(a)に示すように縮む方向に大きな応力がかかった場合の出力値は、さらに小さくなる。逆に、図3(d)に示すように伸びる方向に小さな応力がかかった場合の出力値はε0より大きくなり、図3(e)に示すように伸びる方向に大きな応力がかかった場合の出力値は、さらに大きくなる。 The output value when a small stress is applied in the shrinking direction as shown in FIG. 3B is smaller than ε 0 , and the output value when a large stress is applied in the shrinking direction as shown in FIG. , Even smaller. Conversely, when a small stress is applied in the extending direction as shown in FIG. 3D, the output value is larger than ε 0 , and when a large stress is applied in the extending direction as shown in FIG. The output value is further increased.
 上記のとおり、歪センサに加わる外力と歪センサの出力特性には相関関係があり、歪センサの特性値を検出することで、歪センサに加わる外力を知ることができる。 As described above, there is a correlation between the external force applied to the strain sensor and the output characteristics of the strain sensor, and the external force applied to the strain sensor can be known by detecting the characteristic value of the strain sensor.
 図4は、実施例1における歪センサ200の配置位置を示すものである。図4以降では、ペン型入力装置の先端部分をペン先、ユーザによって把持される部分を把持部、中心付近を中心部、根元部分をペン元と呼ぶことにする。 FIG. 4 shows an arrangement position of the strain sensor 200 in the first embodiment. In FIG. 4 and subsequent figures, the tip portion of the pen-type input device is referred to as a pen tip, the portion gripped by the user is referred to as a grip portion, the vicinity of the center is referred to as a center portion, and the root portion is referred to as a pen base.
 本実施例は、図2(d)に示した筆記時のペン先の接触状態、ペン先にかかる圧力、およびペンの傾き方向を検出するのに適した歪センサの配置を示している。 This example shows the arrangement of the strain sensor suitable for detecting the contact state of the pen tip during writing, the pressure applied to the pen tip, and the tilt direction of the pen shown in FIG. 2 (d).
 図4(a)~(c)はいずれもペン型入力装置の断面図であり、歪センサの配置箇所としてはペン型入力装置のケース構造体の外表面の2001や2002、内表面の2003や2004、内部の2005などが挙げられる。ペン先部分の歪を検知するには、2001~2005のいずれか1箇所に歪センサを1つ配置すれば十分であるが、検知の信頼性を上げるために、複数箇所に複数の歪センサを配置してもよい。 4 (a) to 4 (c) are cross-sectional views of the pen-type input device. The strain sensor is arranged at the outer surface 2001 or 2002 of the case structure of the pen-type input device, the inner surface 2003 or the like. 2004, internal 2005, and the like. In order to detect the distortion of the pen tip portion, it is sufficient to arrange one strain sensor at any one of the positions 2001 to 2005, but in order to increase the reliability of detection, a plurality of strain sensors are provided at a plurality of positions. You may arrange.
 詳しくは、ペン先と把持部との間に歪センサを配置することで、歪センサは、把持部を支点としたペン先と把持部との間のペンの筆記時の応力を検出する。歪センサは、図4(a)に示すように、ペンの外表面に配置してよいし、図4(b)に示すように、ペンの内表面に配置してもよい。図4(c)は、ペン軸を外ケースに接触させない構成のペンに適用した場合の例を示している。図4では、ペンの外表面と内表面とペン軸内部の別に歪みセンサを設置する例を示したが、ペンの外表面と内表面の両方など、複数の場所に歪みセンサを組合わせて設置するようにしてもよい。 More specifically, by arranging a strain sensor between the pen tip and the gripping portion, the strain sensor detects a stress during writing of the pen between the pen tip and the gripping portion with the gripping portion as a fulcrum. The strain sensor may be disposed on the outer surface of the pen as shown in FIG. 4 (a), or may be disposed on the inner surface of the pen as shown in FIG. 4 (b). FIG. 4 (c) shows an example in which the present invention is applied to a pen having a configuration in which the pen shaft is not brought into contact with the outer case. Fig. 4 shows an example of installing strain sensors separately on the outer and inner surfaces of the pen and inside the pen shaft, but the strain sensors are installed in combination at multiple locations, such as both the outer and inner surfaces of the pen. You may make it do.
 つぎに、図5により、実施例1の検出処理フローを説明する。図5(a)に示すのはS501~S503の処理をそれぞれ一度ずつ実行する一巡のフローであるが、実際にはこのフローは連続して繰り返され、S503の後はS501に戻るものとする。まず、S501では、図4に示す2001~2005のいずれかに配置した歪センサにより、現在のペン先の歪センサ出力値εtipを取得する。S501の処理が終わると、S502に進む。 Next, the detection processing flow of the first embodiment will be described with reference to FIG. FIG. 5 (a) shows a one-round flow in which the processing of S501 to S503 is executed once each. In practice, this flow is repeated continuously, and after S503, the processing returns to S501. First, in S501, the current strain sensor output value εtip of the pen tip is acquired by the strain sensor arranged in any of 2001 to 2005 shown in FIG. When the processing of S501 ends, the process proceeds to S502.
 S502では、Δεtip =(εtip-ε0)で表わされるΔεtipと、一定の歪センサの閾値であるEtipの値を比較する。ここでε0は平衡状態の歪センサの出力値であり、ε0、Etipのいずれも正の数であるとする。S502の処理が終わると、S503に進む。 In S502, Δεtip expressed by Δεtip = (εtip−ε 0 ) is compared with the value of Etip which is a threshold value of a certain strain sensor. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and both ε 0 and Etip are positive numbers. When the process of S502 ends, the process proceeds to S503.
 S503では、S502における比較結果に基づいて、ペン先の接触状態やペン先にかかる圧力、ペン型入力装置の傾き方向を検出する。S503の詳細は後述の図5(b)で説明する。S503の処理が終わると、図5(a)に示す一連の処理を終了する。 In S503, the contact state of the pen tip, the pressure applied to the pen tip, and the tilt direction of the pen type input device are detected based on the comparison result in S502. Details of S503 will be described later with reference to FIG. When the processing of S503 ends, the series of processing shown in FIG.
 図5(b)はS503の処理の詳細を示す。551に示すようにΔεtipとEtipの比較結果がΔεtip<-Etipを満たす場合、ペン先が筆記面と接触しており、ペン型入力装置の傾き方向は、センサ取り付け側と反対であることを検出する。552に示すようにΔεtipとEtipの比較結果が|Δεtip|≦Etipを満たす場合、ペン先が筆記面と接触していないことを検出する。553に示すようにΔεtipとEtipの比較結果がΔεtip>Etipを満たす場合、ペン先が筆記面と接触しており、ペン型入力装置の傾き方向は、センサ取り付け側と同じであることを検出する。 FIG. 5B shows details of the processing in S503. When the comparison result of Δεtip and Etip satisfies Δεtip <−Etip as shown in 551, it is detected that the pen tip is in contact with the writing surface and the tilt direction of the pen-type input device is opposite to the sensor mounting side. To do. If the comparison result between Δεtip and Etip satisfies | Δεtip | ≦ Etip as indicated by 552, it is detected that the pen tip is not in contact with the writing surface. When the comparison result between Δεtip and Etip satisfies Δεtip> Etip as shown at 553, it is detected that the pen tip is in contact with the writing surface and the tilt direction of the pen-type input device is the same as that on the sensor mounting side. .
 ペン先が筆記面と接触している551および553では、ペン先を筆記面に押し付ける力が小さいときほどペン先の歪は小さくなり、|Δεtip|の値が小さくなる。逆に、ペン先を筆記面に押し付ける力が大きいときほどペン先の歪は大きくなり、|Δεtip|の値が大きくなる。この特性を利用すると、|Δεtip|の値により、ペン先にかかる圧力の度合いも検出できる。 In 551 and 553 where the pen tip is in contact with the writing surface, the smaller the force pressing the pen tip against the writing surface, the smaller the distortion of the pen tip and the smaller the value of | Δεtip |. Conversely, the greater the force with which the pen tip is pressed against the writing surface, the greater the distortion of the pen tip and the larger the value of | Δεtip |. By utilizing this characteristic, the degree of pressure applied to the pen tip can be detected from the value of | Δεtip |.
 上述したペンの傾き方向は、歪センサ200の取付け位置が基準となっている。このため、ペンの傾け方向をより正確に求めるためには、把持部に把持方向をマークすることにより、ペンの回転方向を固定にすることが望ましい。 The above-described tilt direction of the pen is based on the mounting position of the strain sensor 200. For this reason, in order to more accurately determine the tilt direction of the pen, it is desirable to fix the rotation direction of the pen by marking the grip direction on the grip portion.
 次に、ペンの根元(ペン元)の接触状態、ペン元にかかる圧力、およびペン型入力装置の傾き方向の検出する実施例を説明する。本実施例によれば、ペンを筆跡の入力手段としてだけでなく、操作指示手段として使用する場合に、操作指示の種別を増やすことができる。 Next, an embodiment for detecting the contact state of the pen base (pen base), the pressure applied to the pen base, and the tilt direction of the pen type input device will be described. According to the present embodiment, when the pen is used not only as a handwriting input means but also as an operation instruction means, the types of operation instructions can be increased.
 図6は実施例2においてペン型入力装置100が歪む様子の一例を示すものである。
  図6(a)に示すようにペン型入力装置が筆記面の非接触の場合はペン元に歪は発生しないが、図6(b)に示すように筆記面に対して傾いた状態で接触すると、ペン元の表面および内部に歪が発生する。図6(b)において、筆記面に最も近いペン元付近の側面では伸びる方向の歪が、筆記面から最も遠いペン元付近の側面では縮む方向の歪が発生している。
FIG. 6 shows an example of how the pen-type input device 100 is distorted in the second embodiment.
When the pen-type input device is not in contact with the writing surface as shown in FIG. 6 (a), the pen base is not distorted, but as shown in FIG. 6 (b), the pen-type input device is in contact with the writing surface inclined. Then, distortion occurs on the surface and the inside of the pen base. In FIG. 6B, the distortion in the extending direction is generated on the side surface near the pen base closest to the writing surface, and the contracting direction is generated on the side surface near the pen base farthest from the writing surface.
 図7は、図6(b)に示したペン元部分の歪みを検出するために、ペン元部分に配置する歪センサの配置例を示している。図7(a)~(c)はいずれもペン型入力装置の断面図であり、歪センサの配置箇所としてはペン型入力装置の外表面の2011、内表面の2012、内部の2013などが挙げられる。ペン元部分の歪を検知するには、2011~2013のいずれか1箇所に歪センサを1つ配置すれば十分であるが、検知の信頼性を上げるために、複数箇所に複数の歪センサを配置してもよい。 FIG. 7 shows an arrangement example of the strain sensor arranged in the pen base portion in order to detect the distortion of the pen base portion shown in FIG. FIGS. 7A to 7C are all cross-sectional views of the pen-type input device, and examples of the location of the strain sensor include the outer surface 2011, the inner surface 2012, and the inner 2013 of the pen-type input device. It is done. In order to detect the distortion of the pen base part, it is sufficient to arrange one strain sensor at any one of 2011 to 2013. However, in order to increase the detection reliability, a plurality of strain sensors are installed at a plurality of places. You may arrange.
 図8は実施例2における処理の一例を示すものである。
  図8(a)は処理フローを示す。図8(a)に示すのはS801~S803の処理をそれぞれ一度ずつ実行する一巡のフローであるが、実際にはこのフローは連続して繰り返され、S803の後はS801に戻るものとする。
FIG. 8 shows an example of processing in the second embodiment.
FIG. 8A shows a processing flow. Although FIG. 8A shows a one-round flow in which the processes of S801 to S803 are executed once each, this flow is actually repeated continuously, and after S803, the process returns to S801.
 まず、S801では、図7に示すペン元の2011~2013のいずれかに配置した歪センサの歪センサ出力値εrootを取得し、S802に進む。S802では、Δεroot=(εroot-ε0)で求められるΔεrootと、一定の歪センサの閾値であるEroot の値を比較し、S803に進む。ここでε0は平衡状態の歪センサの出力値であり、ε0、Erootのいずれも正の数であるとする。 First, in S801, the strain sensor output value εroot of the strain sensor arranged in any of the pen sources 2011 to 2013 shown in FIG. 7 is acquired, and the process proceeds to S802. In S802, Δεroot obtained by Δεroot = (εroot−ε 0 ) is compared with the value of Eroot which is a threshold value of a constant strain sensor, and the process proceeds to S803. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and both ε 0 and Eroot are positive numbers.
 S803では、S802の比較結果に基づいて、ペン元の接触状態やペン元にかかる圧力やペン型入力装置の傾き方向を求める。S803の詳細は後述の図8(b)で説明する。S803の処理が終わると、図8(a)に示す一連の処理を終了する。 In S803, based on the comparison result in S802, the contact state of the pen base, the pressure applied to the pen base, and the tilt direction of the pen-type input device are obtained. Details of S803 will be described later with reference to FIG. When the processing of S803 is finished, the series of processing shown in FIG.
 図8(b)に、S803の処理の詳細を示す。図8(b)の851に示すように、Δεrootとεrootの比較結果がΔεroot<-εrootを満たす場合は、ペン元が筆記面と接触していることを示しており、ペン型入力装置の傾き方向はセンサ取り付け側と反対である。852に示すように、Δεrootとεrootの比較結果が|Δεroot |≦εrootを満たす場合は、ペン元が筆記面と接触していないことを示している。853に示すようにΔεrootとεrootの比較結果がΔεroot>εrootを満たす場合は、ペン元が筆記面と接触していることを示しており、ペン型入力装置の傾き方向はセンサ取り付け側と同じである。 FIG. 8B shows details of the processing of S803. As indicated by reference numeral 851 in FIG. 8B, when the comparison result between Δεroot and εroot satisfies Δεroot <−εroot, this indicates that the pen base is in contact with the writing surface, and the inclination of the pen-type input device The direction is opposite to the sensor mounting side. As shown in 852, when the comparison result between Δεroot and εroot satisfies | Δεroot | ≦ εroot, it indicates that the pen base is not in contact with the writing surface. If the comparison result of Δεroot and εroot satisfies Δεroot> εroot as shown in 853, it indicates that the pen base is in contact with the writing surface, and the tilt direction of the pen-type input device is the same as the sensor mounting side. is there.
 ペン元が筆記面と接触している851および853では、ペン元を筆記面に押し付ける力が小さいときほどペン元の歪は小さくなるため、|Δεroot|の値が小さくなる。逆に、ペン元を筆記面に押し付ける力が大きいときほどペン元の歪は大きくなり、|Δεroot|の値が大きくなる。この特性を利用すると、|Δεroot|の値からペン元にかかる圧力の度合いも検出することができる。 In 851 and 853 where the pen base is in contact with the writing surface, the smaller the force pressing the pen base against the writing surface, the smaller the distortion of the pen base, so the value of | Δεroot | becomes smaller. Conversely, the greater the force that presses the pen point against the writing surface, the greater the distortion of the pen point and the larger the value of | Δεroot |. Using this characteristic, the degree of pressure applied to the pen base can be detected from the value of | Δεroot |.
 図9は、ペン先とペン元の両方に歪センサを設けた実施例で、それぞれの歪センサの検出値とペン型入力装置の状態の関係を示したものである。
  詳しくは、図8のS802で得られたΔεrootと図5のS502で得られたΔεtipと組み合わせることにより、さらに詳細なペン型入力装置の状態を検出することができる。具体的には、筆記面と接しているのがペン先かペン元かを区別でき、また、ペン型入力装置が両端から引っ張られた状態、両端から押し込まれた状態、空中で把持あるいは平置きされている状態を検出することができる。
FIG. 9 is an embodiment in which strain sensors are provided at both the pen tip and the pen base, and shows the relationship between the detection values of the respective strain sensors and the state of the pen-type input device.
Specifically, by combining Δεroot obtained in S802 of FIG. 8 with Δεtip obtained in S502 of FIG. 5, it is possible to detect a more detailed state of the pen-type input device. Specifically, it can be distinguished whether the pen tip or the pen base is in contact with the writing surface, and the pen-type input device is pulled from both ends, pushed from both ends, held in the air or placed flat The detected state can be detected.
 901に示すように|Δεtip|>Etipかつ|Δεroot|≦εrootを満たす場合、ペン先が筆記面と接触しており、ペン元は接触していないことを検出する。902に示すように|Δεtip|≦Etipかつ|Δεroot|>εrootを満たす場合、ペン元が筆記面と接触しており、ペン先は接触していないことを検出する。あるいは、ユーザがペン元のみを押し込む操作、例えばノックするような操作を検出することもできる。903に示すようにΔεtip>EtipかつΔεroot>εrootを満たす場合、ペン型入力装置が両端から引っ張られた状態であることを検出する。904に示すようにΔεroot<-EtipかつΔεroot<-Erootを満たす場合、ペン型入力装置が両端から押し込まれた状態であることを検出する。905に示すように|Δεtip|≦Etipかつ|Δεroot|≦Erootを満たす場合、ペン型入力装置が空中で把持、あるいは平置きされていることを検出する。 As shown in 901, when | Δεtip |> Etip and | Δεroot | ≦ εroot are satisfied, it is detected that the pen tip is in contact with the writing surface and the pen base is not in contact. As shown in 902, when | Δεtip | ≦ Etip and | Δεroot |> εroot are satisfied, it is detected that the pen point is in contact with the writing surface and the pen point is not in contact. Alternatively, an operation in which the user pushes only the pen base, for example, a knocking operation can be detected. If Δεtip> Etip and Δεroot> εroot are satisfied as shown at 903, it is detected that the pen-type input device is pulled from both ends. If Δεroot <−Etip and Δεroot <−Eroot are satisfied as shown at 904, it is detected that the pen-type input device is pushed in from both ends. When | Δεtip | ≦ Etip and | Δεroot | ≦ Eroot are satisfied as indicated by reference numeral 905, it is detected that the pen-type input device is grasped or placed flat in the air.
 上述したように、本実施例ではペン元に歪センサを配置し、ペン元の歪センサ出力値を取得する。これにより、ペン元の接触状態、ペン元にかかる圧力、およびペン型入力装置の傾き方向を検出する効果が得られる。 As described above, in this embodiment, a strain sensor is arranged at the pen base, and the strain sensor output value of the pen base is acquired. Thereby, the effect of detecting the contact state of the pen base, the pressure applied to the pen base, and the tilt direction of the pen-type input device can be obtained.
 さらに、ペン先の歪センサ出力値と組み合わせることで、筆記面と接しているのがペン先かペン元かを区別する効果、および、ペン型入力装置が両端から引っ張られた状態、両端から押し込まれた状態、空中で把持あるいは平置きされている状態を検出する効果が得られる。 Furthermore, combining with the strain sensor output value of the pen tip, the effect of discriminating whether the pen tip or the pen base is in contact with the writing surface, and the pen-type input device is pulled from both ends and pushed from both ends It is possible to obtain an effect of detecting a held state, a state of being held or laid flat in the air.
 つぎに、図10から図13により、ペン型入力装置の握り状態の検出する実施例を説明する。
  図10は、本実施例のペン型入力装置の握り状態を示す図である。図11は、握り状態を検出するための歪みセンサの配置例を示すものである。図12は、状態の判定処理フローの概要を示すものである。図13は、ペン先の歪センサと組み合わせて、より詳細にペンの握り状態を判定する場合の判定条件を示している。
Next, an embodiment for detecting the grip state of the pen-type input device will be described with reference to FIGS.
FIG. 10 is a diagram illustrating a grip state of the pen-type input device according to the present embodiment. FIG. 11 shows an arrangement example of the strain sensors for detecting the grip state. FIG. 12 shows an overview of the state determination processing flow. FIG. 13 shows a determination condition in the case where the pen grip state is determined in more detail in combination with the pen tip distortion sensor.
 図10(a)に示すように、ペン型入力装置を弱い力で把持している場合には把持部に歪は発生しない。しかし、図10(b)に示すように強い力で把持している場合は把持部の表面および内部に歪が発生する。特に、図10(b)では、把持部を細くする方向の歪が発生している。 As shown in FIG. 10A, when the pen-type input device is gripped with a weak force, no distortion occurs in the gripping portion. However, as shown in FIG. 10B, when gripping with a strong force, distortion occurs on the surface and inside of the gripping portion. In particular, in FIG. 10B, distortion in the direction of narrowing the gripping portion occurs.
 図10のペンの把持を検出するために、図11に示すように、ペンの把持部断面に歪センサ2021と2022を設ける。ここで、歪センサ2021は、ペン軸の圧縮を検出するのに適しており、歪センサ2022はペン軸の曲がりを検出するのに適している。把持部の歪を検知するには、2021、2022のいずれか1箇所に歪センサを1つ配置すれば十分であるが、検知の信頼性を上げるために、複数箇所に複数の歪センサを配置してもよい。 In order to detect gripping of the pen shown in FIG. 10, strain sensors 2021 and 2022 are provided on the cross section of the gripping portion of the pen as shown in FIG. Here, the strain sensor 2021 is suitable for detecting the compression of the pen shaft, and the strain sensor 2022 is suitable for detecting the bending of the pen shaft. In order to detect the strain of the gripping part, it is sufficient to arrange one strain sensor at any one of 2021 and 2022, but in order to increase the detection reliability, a plurality of strain sensors are arranged at a plurality of locations. May be.
 握り状態の判定は、図12のフローにしたがっておこなう。ここで、図12(a)のS1201~S1203の処理をそれぞれ一度ずつ実行する一巡のフローであるが、実際にはこのフローは連続して繰り返され、S1203の後はS1201に戻るものとする。 Judgment of grip state is performed according to the flow of FIG. Here, the flow of steps S1201 to S1203 in FIG. 12A is executed once each, but in practice, this flow is repeated continuously, and after S1203, the process returns to S1201.
 S1201では、図11の2021に配置した歪センサにより、現在の把持部の歪センサ出力値εgripを取得し、S1202に進む。S1202では、Δεgrip=(εgrip-ε0)で表わされるΔεgripと、一定の歪センサの閾値であるEgripの値を比較する。ここでε0は平衡状態の歪センサの出力値であり、ε0とEgripのいずれも正の数であるとする。S1202の処理が終わると、S1203に進む。 In S1201, the strain sensor output value εgrip of the current gripper is acquired by the strain sensor arranged in 2021 in FIG. 11, and the process proceeds to S1202. In S1202, Δεgrip represented by Δεgrip = (εgrip−ε 0 ) is compared with the value of Egrip, which is a threshold value of a constant strain sensor. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and both ε 0 and Egrip are positive numbers. When the process of S1202 ends, the process proceeds to S1203.
 S1203では、S1202における比較結果に基づいて、ペン型入力装置の握り状態を判定する。S1203の判定の詳細は後述の図12(b)で説明する。S1203の処理が終わると、図12(a)に示す一連の処理を終了する。 In S1203, the grip state of the pen-type input device is determined based on the comparison result in S1202. Details of the determination in S1203 will be described later with reference to FIG. When the processing of S1203 ends, the series of processing shown in FIG.
 図12(b)はS1203の処理の詳細を示す。1251に示すように、|Δεgrip|≦Egripを満たす場合には、ペン型入力装置は弱い力で把持されているか、あるいは平置きされていると判定する。1252に示すように|Δεgrip|>Egripを満たす場合、ペン型入力装置は強い力で把持されている判定する。 FIG. 12B shows details of the processing of S1203. As indicated by 1251, when | Δεgrip | ≦ Egrip is satisfied, it is determined that the pen-type input device is gripped with a weak force or placed flat. When | Δεgrip |> Egrip is satisfied as indicated by 1252, it is determined that the pen-type input device is gripped with a strong force.
 ペン型入力装置が把持されている場合は、ペン型入力装置を把持する力が小さいときほど把持部の歪は小さくなり、|Δεgrip|の値が小さくなる。逆に、ペン型入力装置を把持する力が大きいときほど把持部の歪は大きくなり、|Δεgrip|の値が大きくなる。この特性を利用すると、|Δεgrip|の値より、ペン型入力装置を把持する力の度合いも検出できる。 When the pen-type input device is gripped, the smaller the force for gripping the pen-type input device, the smaller the distortion of the grip portion and the smaller the value of | Δεgrip |. Conversely, the greater the force with which the pen-type input device is gripped, the greater the distortion of the grip portion and the larger the value of | Δεgrip |. If this characteristic is used, the degree of force for gripping the pen-type input device can be detected from the value of | Δεgrip |.
 つぎに、図13により、図12のS1202で得られたΔεgripと図5のS502で得られたΔεtipと組み合わせて、ペンの握り状態を判定する場合の判定条件を説明する。
この処理により、筆記面と接した状態でペンが把持されているのか、空中でペンが把持されているのかを区別できる。
Next, with reference to FIG. 13, the determination conditions for determining the grip state of the pen will be described in combination with Δεgrip obtained in S1202 of FIG. 12 and Δεtip obtained in S502 of FIG.
By this process, it is possible to distinguish whether the pen is gripped in contact with the writing surface or whether the pen is gripped in the air.
 1301に示すように|Δεtip|≦Etipかつ|Δεgrip|≦Egripを満たす場合には、ペン先は筆記面と接触しておらず、ペン型入力装置は空中で弱い力で把持、あるいは平置きされていると判定する。また、1302に示すように|Δεtip|>Etipかつ|Δεgrip|≦Egripを満たす場合には、ペン先は筆記面と接触しており、ペン型入力装置は筆記中に弱い力で把持されていると判定する。さらに、1303に示すように|Δεtip|≦Etipかつ|Δεgrip|>Egripを満たす場合には、ペン先は筆記面に接触しておらず、ペン型入力装置は空中で強い力で把持されている判定する。1304に示すように|Δεtip|>Etipかつ|Δεgrip|>Egripを満たす場合には、ペン先は筆記面と接触しており、ペン型入力装置は筆記中に強い力で把持されていると判定する。 As shown in 1301, when | Δεtip | ≦ Etip and | Δεgrip | ≦ Egrip are satisfied, the pen tip is not in contact with the writing surface, and the pen-type input device is gripped or placed flat in the air with a weak force. It is determined that Further, as shown in 1302, when | Δεtip |> Etip and | Δεgrip | ≦ Egrip are satisfied, the pen tip is in contact with the writing surface, and the pen-type input device is held with a weak force during writing. Is determined. Furthermore, as shown in 1303, when | Δεtip | ≦ Etip and | Δεgrip |> Egrip are satisfied, the pen tip is not in contact with the writing surface, and the pen-type input device is gripped with a strong force in the air. judge. If | Δεtip |> Etip and | Δεgrip |> Egrip are satisfied as indicated by 1304, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is held with a strong force during writing. To do.
 上述したように、本実施例では把持部に歪センサを配置し、把持部の歪センサ出力値を取得する。これにより、ペン型入力装置の握り状態を検出する効果が得られる。 As described above, in this embodiment, a strain sensor is arranged in the gripping portion, and the strain sensor output value of the gripping portion is acquired. Thereby, the effect of detecting the grip state of the pen-type input device can be obtained.
 つぎに、ペン型入力装置のひねり状態の検出する実施例について、図14から図16を用いて説明する。図14は、ペン型入力装置100が歪む様子の一例を示すものであり、図15は、ひねり状態を検出するために歪センサの配置例を示している。図16は、ひねり状態の検出処理フローを示している。 Next, an embodiment for detecting the twist state of the pen-type input device will be described with reference to FIGS. FIG. 14 shows an example of how the pen-type input device 100 is distorted, and FIG. 15 shows an example of the arrangement of strain sensors in order to detect a twisted state. FIG. 16 shows a twisted state detection process flow.
 図14(a)に示すようにペン型入力装置にひねりを加えていない場合は中心部に歪は発生しないが、図14(b)、図14(c)に示すようにペン先に対してペン元を時計まわりにひねった場合や、図14(d)、図14(e)に示すようにペン先に対してペン元を反時計まわりにひねった場合には、中心部の表面で歪が発生している。 When the pen-type input device is not twisted as shown in FIG. 14 (a), no distortion occurs in the central portion, but as shown in FIGS. 14 (b) and 14 (c), the pen-type input device is not distorted. When the pen base is twisted clockwise or when the pen base is twisted counterclockwise with respect to the pen tip as shown in FIGS. 14 (d) and 14 (e), distortion occurs on the surface of the center portion. Has occurred.
 この歪を検出するために、図15に示すように、ペン型入力装置の中心部に歪センサを配置する。図15(a)~(d)はいずれもペン型入力装置の部分切取図であり、歪センサの配置箇所としてはペン型入力装置の外表面の2031や2033、内表面の2032や2034などが挙げられる。中心部の歪を検知するには、2031~2034のいずれか1箇所に歪センサを1つ配置すれば十分であるが、検知の信頼性を上げるために、複数箇所に複数の歪センサを配置してもよい。また、歪サンサの設置方向は、ペン型入力装置のひねりによる変形が最大の方向(例えば、断面に角度をもつ方向)に歪センサを配置することが望ましいことはいうまでもない。 In order to detect this distortion, a distortion sensor is arranged at the center of the pen-type input device as shown in FIG. FIGS. 15A to 15D are partial cutaway views of the pen-type input device. The strain sensor is arranged at locations such as 2031 and 2033 on the outer surface of the pen-type input device and 2032 and 2034 on the inner surface. Can be mentioned. In order to detect the strain at the center, it is sufficient to place one strain sensor at any one of 2031 to 2034. However, in order to increase the reliability of detection, a plurality of strain sensors are arranged at a plurality of locations. May be. Needless to say, it is desirable to dispose the strain sensor in a direction in which the deformation due to the twist of the pen-type input device is maximum (for example, a direction having an angle in the cross section).
 図16に本実施例の処理フローを示す。図16(a)に示すのはS1601~S1603の処理をそれぞれ一度ずつ実行する一巡のフローであるが、実際にはこのフローは連続して繰り返され、S1603の後はS1601に戻るものとする。 FIG. 16 shows a processing flow of this embodiment. FIG. 16A shows a one-round flow in which each of the processes of S1601 to S1603 is executed once. In practice, this flow is repeated continuously, and after S1603, the process returns to S1601.
 まず、S1601では、図15に示す2031~2034のいずれかに配置した歪センサにより、現在の中心部の歪センサ出力値εmidを取得し、S1602に進む。 First, in S1601, the strain sensor output value εmid at the current center is acquired by the strain sensor arranged in any of 2031 to 2034 shown in FIG. 15, and the process proceeds to S1602.
 S1602では、Δεmid=(εmid-ε0)で表わされるΔεmidと、一定の歪センサの閾値であるEmidの値を比較する。ここでε0は平衡状態の歪センサの出力値であり、ε0、Emidのいずれも正の数であるとする。S1602の処理が終わると、S1603に進む。 In S1602, Δεmid represented by Δεmid = (εmid−ε 0 ) is compared with the value of Emid, which is a constant strain sensor threshold value. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and both ε 0 and Emid are positive numbers. When the process of S1602 ends, the process proceeds to S1603.
 S1603では、S1602における比較結果に基づいて、ペン型入力装置のひねり状態を判定する。S1603の詳細は後述の図16(b)、図16(c)で説明する。S1603の処理が終わると、図16(a)に示す一連の処理を終了する。 In S1603, the twist state of the pen-type input device is determined based on the comparison result in S1602. Details of S1603 will be described later with reference to FIGS. 16B and 16C. When the process of S1603 ends, the series of processes shown in FIG.
 図16(b)はセンサ配置箇所が図15の2031、または2032の場合のS1603の処理の詳細を示している。1651に示すようにΔεmidとEmidの比較結果がΔεmid<-Emidを満たす場合には、ペン先に対してペン元を反時計まわりにひねった状態であると判定する。また、1652に示すようにΔεmidとEmidの比較結果が|Δεmid|≦Emidを満たす場合には、ペン型入力装置に対してひねりが加えられていないと判定する。さらに、1653に示すようにΔεmidとEmidの比較結果がΔεmid>Emidを満たす場合には、ペン先に対してペン元を時計まわりにひねった状態であると判定する。 FIG. 16B shows details of the processing in S1603 when the sensor placement location is 2031 or 2032 in FIG. If the comparison result between Δεmid and Emid satisfies Δεmid <−Emid as indicated by 1651, it is determined that the pen base is twisted counterclockwise with respect to the pen tip. If the comparison result of Δεmid and Emid satisfies | Δεmid | ≦ Emid as indicated by 1652, it is determined that no twist is applied to the pen-type input device. Further, if the comparison result between Δεmid and Emid satisfies Δεmid> Emid as indicated by 1653, it is determined that the pen base is twisted clockwise with respect to the pen tip.
 図16(c)はセンサ配置箇所が図15の2032、または2034の場合のS1603の処理の詳細を示す。1654に示すようにΔεmidとEmidの比較結果がΔεmid<-Emidを満たす場合には、ペン先に対してペン元を時計まわりにひねった状態であると判定する。1655に示すようにΔεmidとEmidの比較結果が|Δεmid|≦Emidを満たす場合には、ペン型入力装置に対してひねりが加えられていない状態と判定する。また、1656に示すようにΔεmidとEmidの比較結果がΔεmid>Emidを満たす場合には、ペン先に対してペン元を反時計まわりにひねった状態であると判定する。 FIG. 16C shows details of the processing in S1603 when the sensor placement location is 2032 or 2034 in FIG. When the comparison result between Δεmid and Emid satisfies Δεmid <−Emid as indicated by 1654, it is determined that the pen base is twisted clockwise with respect to the pen tip. If the comparison result between Δεmid and Emid satisfies | Δεmid | ≦ Emid as indicated by 1655, it is determined that no twist is applied to the pen-type input device. If the comparison result of Δεmid and Emid satisfies Δεmid> Emid as indicated by 1656, it is determined that the pen base is twisted counterclockwise with respect to the pen tip.
 ペン型入力装置に対してひねりが加えられている1651、1653、1654、および1655では、ペン型入力装置をひねる力が小さいときほど中心部の歪は小さくなり、|Δεmid|の値が小さくなる。逆に、ペン型入力装置をひねる力が大きいときほど中心部の歪は大きくなり、|Δεmid|の値が大きくなる。この特性を利用すると、|Δεmid|の値より、ペン型入力装置をひねる力の度合いも検出できる。 In 1651, 1653, 1654, and 1655 in which a twist is applied to the pen-type input device, the distortion at the center becomes smaller and the value of | Δεmid | becomes smaller as the force for twisting the pen-type input device becomes smaller. . Conversely, the greater the force with which the pen-type input device is twisted, the greater the distortion at the center and the larger the value of | Δεmid |. By utilizing this characteristic, the degree of force for twisting the pen-type input device can be detected from the value of | Δεmid |.
 上述したように、本実施例では中心部に歪センサを配置し、中心部の歪センサ出力値を取得する。これにより、ペン型入力装置のひねり状態を検出することができる。 As described above, in this embodiment, a strain sensor is arranged at the center, and the strain sensor output value at the center is acquired. Thereby, the twist state of the pen-type input device can be detected.
 つぎに、ペン型入力装置の握り方向からの傾きを検出に好適な実施例を、図17と図18により説明する。図17は、本実施例における歪センサ200の配置の一例を示すものであり、図18は、その判定処理フローをしめすものである。実施例1,2では、ペン型入力装置の傾き方向がセンサ取り付け側と同じか、反対かの2通りで検出していたが、本実施例では、より詳しく傾き方向を検出できる。 Next, an embodiment suitable for detecting the tilt of the pen-type input device from the grip direction will be described with reference to FIGS. FIG. 17 shows an example of the arrangement of the strain sensors 200 in the present embodiment, and FIG. 18 shows the determination processing flow. In the first and second embodiments, the tilt direction of the pen-type input device is detected in two ways, the same as or opposite to the sensor mounting side, but in this embodiment, the tilt direction can be detected in more detail.
 本実施例では、図17にしめすように、歪センサをペン先の断面に2つ配置し、この2つの歪センサは、一方のセンサの位置が、他方のセンサをペン型入力装置の中心軸を中心に90度回転させた位置となるように配置する。 In this embodiment, as shown in FIG. 17, two strain sensors are arranged on the cross-section of the pen tip, and the position of one sensor is the two strain sensors and the other sensor is the central axis of the pen-type input device. It arrange | positions so that it may become a position rotated 90 degree | times centering around.
 そして、2つの歪センサは、図17(a)から(e)に示すように、ペン型入力装置の外表面、内表面、内部のいずれかに、断面に90度の角度をもって配置される。 Then, as shown in FIGS. 17A to 17E, the two strain sensors are arranged at an angle of 90 degrees in the cross section on any of the outer surface, the inner surface, and the inner portion of the pen-type input device.
 つぎに、図18により、検出処理の概要を説明する。本実施例では、図18(a)にしめすように、ペン先に配備された2つの歪センサはそれぞれ、ペン型入力装置の中心軸を通り互いに直交するX軸、Y軸上にあるものとし、X軸、Y軸によって区切られた4つのエリアは、第1象限~第4象限と呼ぶこととする。また、X軸上に配備された歪センサの現在の出力値をεx、Y軸上に配備された歪センサ現在の出力値をεyとする。 Next, the outline of the detection process will be described with reference to FIG. In this embodiment, as shown in FIG. 18A, it is assumed that the two strain sensors arranged at the pen tip are respectively on the X axis and the Y axis that pass through the central axis of the pen type input device and are orthogonal to each other. The four areas divided by the X axis and the Y axis are called the first quadrant to the fourth quadrant. Also, the current output value of the strain sensor deployed on the X axis is εx, and the current output value of the strain sensor deployed on the Y axis is εy.
 図18(b)にしめす処理フローでは、S1801~S1803の処理をそれぞれ一度ずつ実行する一巡のフローとなっているが、実際にはこのフローは連続して繰り返され、S1803の後はS1801に戻るものとする。 In the processing flow shown in FIG. 18B, the processing of S1801 to S1803 is a one-time flow that is executed once, but this flow is actually repeated continuously, and after S1803, the process returns to S1801. Shall.
 まず、S1801では、図17に示す2001~2005のいずれかに配置した歪センサにより、現在のX軸上の歪センサ出力値εxを取得する。また、図17に示す2041~2045のうち、εxを取得した歪センサをペン型入力装置の中心軸を中心に90度回転させた位置となるように配置した歪センサにより、現在のY軸上の歪センサ出力値εyを取得する。S1801の処理が終わると、S1802に進む。 First, in S1801, the current strain sensor output value εx on the X-axis is acquired by a strain sensor arranged in any of 2001 to 2005 shown in FIG. Further, among 2041 to 2045 shown in FIG. 17, the strain sensor in which εx is obtained is arranged so as to be rotated by 90 degrees about the central axis of the pen-type input device. The strain sensor output value εy is obtained. When the processing of S1801 ends, the process proceeds to S1802.
 S1802では、Δεx=(εx-ε0)で表わされるΔεxと、一定の歪センサの閾値であるExの値を比較する。また、Δεy=(εy-ε0)で表わされるΔεyと、一定の歪センサの閾値であるEyの値を比較する。ここでε0は平衡状態の歪センサの出力値であり、ε0、Ex、Eyのいずれも正の数であるとする。S1802の処理が終わると、S1803に進む。 In S1802, Δεx expressed by Δεx = (εx−ε 0 ) is compared with the value Ex of the threshold value of a certain strain sensor. Further, Δεy expressed by Δεy = (εy−ε 0 ) is compared with the value of Ey that is a threshold value of a certain strain sensor. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and ε 0 , Ex, and Ey are all positive numbers. When the processing of S1802 ends, the process proceeds to S1803.
 S1803では、S1802における比較結果に基づいて、ペン先の接触状態やペン先にかかる圧力、ペン型入力装置の傾き方向を判定する。S1803の詳細は後述の図18(c)で説明する。S1803の処理が終わると、図18(b)に示す一連の処理を終了する。 In S1803, the contact state of the pen tip, the pressure applied to the pen tip, and the tilt direction of the pen-type input device are determined based on the comparison result in S1802. Details of S1803 will be described later with reference to FIG. When the processing of S1803 ends, the series of processing shown in FIG.
 図18(c)はS1803の処理の詳細を示す。1851に示すようにΔεx<-ExかつΔεy<-Eyを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置は第1象限の方向に傾いていると判定する。1852に示すようにΔεx>ExかつΔεy<-Eyを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置は第2象限の方向に傾いている判定する。1853に示すようにΔεx>ExかつΔεy>Eyを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置は第3象限の方向に傾いていると判定する。1854に示すようにΔεx<-ExかつΔεy>Eyを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置は第4象限の方向に傾いていると判定する。1855に示すように|Δεx|≦Exかつに|Δεy|≦Eyを満たす場合には、ペン先が筆記面と接触しておらず、ペン型入力装置は空中で把持、あるいは平置きされていると判定する。 FIG. 18C shows details of the processing of S1803. When Δεx <−Ex and Δεy <−Ey are satisfied as indicated by 1851, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the first quadrant. When Δεx> Ex and Δεy <−Ey are satisfied as indicated by 1852, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the second quadrant. When Δεx> Ex and Δεy> Ey are satisfied as indicated by 1853, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the third quadrant. When Δεx <−Ex and Δεy> Ey are satisfied as indicated by 1854, it is determined that the pen tip is in contact with the writing surface and the pen-type input device is inclined in the direction of the fourth quadrant. As shown in 1855, when | Δεx | ≦ Ex and | Δεy | ≦ Ey is satisfied, the pen tip is not in contact with the writing surface, and the pen-type input device is held in the air or placed flat. Is determined.
 上述したように、本実施例ではペン先に複数の歪センサを配置し、ペン先の歪センサ出力値を取得する。これにより、ペン型入力装置の傾き方向を高精度に検出することができる。 As described above, in this embodiment, a plurality of strain sensors are arranged at the pen tip, and the strain sensor output value of the pen tip is acquired. Thereby, the inclination direction of the pen-type input device can be detected with high accuracy.
 つぎにユーザが把持する断面形状を円以外の形状として把持方向を一定にしたペン型入力装置において、ペン型入力装置がいずれの方向に傾いているかを判定するのに好適な実施例を、図19と20により説明する。図19は実施例6におけるセンサの配置の一例を示すものであり、図20はその判定処理を説明するものである。 Next, in a pen-type input device in which the cross-sectional shape gripped by the user is a shape other than a circle and the gripping direction is constant, a preferred embodiment for determining in which direction the pen-type input device is inclined is shown in FIG. 19 and 20 will explain this. FIG. 19 shows an example of sensor arrangement in the sixth embodiment, and FIG. 20 explains the determination process.
 ペン型入力装置の断面形状が円である場合には、その握り方は無数にあり、ペン型入力装置のどの部分にユーザの指が接触しているかを推定するのは困難である。本実施例では、ペン型入力装置の握り方が一意あるいは限られた数のパターンに決まるように、ペン型入力装置の断面形状を変化させる。そのような断面の形状として、図19(a)に示す概三角形状や、図19(b)に示す円に突起を負荷した形状などが挙げられる。 When the cross-sectional shape of the pen-type input device is a circle, there are innumerable ways to grip it, and it is difficult to estimate which part of the pen-type input device is in contact with the user's finger. In the present embodiment, the cross-sectional shape of the pen-type input device is changed so that how to hold the pen-type input device is determined by a unique or limited number of patterns. Examples of such a cross-sectional shape include a general triangular shape shown in FIG. 19A and a shape in which a protrusion is loaded on a circle shown in FIG.
 図19(a)のような断面形状の場合、三角形のそれぞれの辺に親指、人差し指、中指を添えてペン型入力装置を把持するのが一般的である。図19(b)のような断面形状の場合、突起部分が指にあたるのを防ぐために、突起部分を挟むように親指と人差し指を添え、突起部分と反対側に中指を添えてペン型入力装置を把持するのが一般的である。 In the case of a cross-sectional shape as shown in FIG. 19 (a), it is common to hold a pen-type input device with a thumb, index finger, and middle finger attached to each side of the triangle. In the case of the cross-sectional shape as shown in FIG. 19B, in order to prevent the protruding portion from hitting the finger, the thumb and index finger are attached so as to sandwich the protruding portion, and the middle finger is attached to the opposite side of the protruding portion, and the pen-type input device is attached. It is common to hold.
 ここで、歪センサは、親指が添えられると予測できる面のペン先に、2051や2052に示すように配置する。あるいはペン型入力装置の断面形状が円である場合でも、図19(c)に示すようにペン先の形状が薄い板状(直方体)であったり、図19(d)に示すように直方体の一部を切り取った形状であったりすると、直方体の最も面積が大きい面を平行移動させた面に親指を添えてペン型入力装置を把持するのが一般的である。ここでも同様に、歪センサは、親指が添えられると予測できる面のペン先に、2053や2054に示すように配置する。 Here, the strain sensor is arranged as indicated by 2051 and 2052 on the pen tip of the surface where it can be predicted that the thumb is attached. Alternatively, even when the cross-sectional shape of the pen-type input device is a circle, the shape of the pen tip is a thin plate (cuboid) as shown in FIG. 19 (c), or a rectangular parallelepiped as shown in FIG. 19 (d). When the shape is a part of the rectangular parallelepiped, it is common to hold the pen-type input device with a thumb attached to a surface obtained by translating the surface having the largest area of the rectangular parallelepiped. Similarly, the strain sensor is arranged as indicated by 2053 and 2054 on the pen tip of the surface where it can be predicted that the thumb is attached.
 ペン型入力装置を把持するユーザの把持方法や右利き/左利きの違いなどにより、必ずしも歪センサを配置した面に親指が添えられるとは限らないが、以下では歪センサを配置した面と親指が添えられる面が一致していると想定し、親指が添えられた面に対していずれの方向にペン型入力装置が傾いているかを検出する方法について説明する。歪センサを配置した面に添えられるのが人差し指、中指であった場合は、それぞれ人差し指、中指が添えられた面に対していずれの方向にペン型入力装置が傾いているかを同様に検出できる。 The thumb is not always attached to the surface on which the strain sensor is arranged depending on the gripping method of the user holding the pen-type input device or the difference between right-handed / left-handed. A method for detecting in which direction the pen-type input device is inclined with respect to the surface to which the thumb is attached will be described assuming that the surfaces to be attached match. In the case where the index finger and the middle finger are attached to the surface on which the strain sensor is arranged, it is possible to similarly detect in which direction the pen-type input device is inclined with respect to the surface to which the index finger and the middle finger are attached.
 なお、ユーザの右利き/左利きに応じて2つの歪センサを設け、別途、ユーザの右利き/左利きを指定できるようにし、この指定に応じて判定処理をおこなうようにしてもよい。 It should be noted that two strain sensors may be provided according to the user's right-handed / left-handed so that the user's right-handed / left-handed can be specified separately, and the determination process may be performed according to this specification.
 図20は実施例6における処理の一例を示すものである。図20(a)の処理フローでは、S2001~S2003の処理をそれぞれ一度ずつ実行する一巡のフローとなっているが、実際にはこのフローは連続して繰り返され、S2003の後はS2001に戻るものとする。まず、S2001では、図19に示す2051、2052のいずれかに配置した歪センサにより、親指接触面の現在のペン先の歪センサ出力値εthumbを取得する。S2001の処理が終わると、S2002に進む。 FIG. 20 shows an example of processing in the sixth embodiment. In the processing flow of FIG. 20 (a), the processing of S2001 to S2003 is a one-time flow that is executed once each. However, this flow is actually repeated continuously, and after S2003, the processing returns to S2001. And First, in S2001, the strain sensor output value εthumb of the current pen tip on the thumb contact surface is acquired by the strain sensor arranged in either 2051 or 2052 shown in FIG. When the processing of S2001 ends, the process proceeds to S2002.
 S2002では、Δεthumb=(εthumbx-ε0)で表わされるΔεthumbと、一定の歪センサの閾値であるEthumbの値を比較する。ここでε0は平衡状態の歪センサの出力値であり、ε0、Ethumbのいずれも正の数であるとする。S2002の処理が終わると、S2003に進む。 In S2002, Δεthumb represented by Δεthumb = (εthumbx−ε 0 ) is compared with the value of Ethumb that is a threshold value of a certain strain sensor. Here, ε 0 is an output value of the strain sensor in an equilibrium state, and both ε 0 and Ethumb are positive numbers. When the process of S2002 ends, the process proceeds to S2003.
 S2003では、S2002における比較結果に基づいて、ペン先の接触状態やペン先にかかる圧力、ペン型入力装置の傾き方向を検出する。S2003の詳細は後述の図20(b)で説明する。S2003の処理が終わると、図20(a)に示す一連の処理を終了する。 In S2003, based on the comparison result in S2002, the contact state of the pen tip, the pressure applied to the pen tip, and the tilt direction of the pen type input device are detected. Details of S2003 will be described later with reference to FIG. When the process of S2003 ends, the series of processes shown in FIG.
 図20(b)はS2003の処理の詳細を示す。2061に示すようにΔεthumbとEthumbの比較結果がΔεthumb<-Ethumbを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置の傾き方向は、親指を添えた側と反対であると判定する。2062に示すようにΔεthumbとEthumbの比較結果が|Δεthumb|≦Ethumbを満たす場合には、ペン先が筆記面と接触していないと判定する。2063に示すようにΔεthumbとEthumbの比較結果がΔεthumb>Ethumbを満たす場合には、ペン先が筆記面と接触しており、ペン型入力装置の傾き方向は、親指を添えた側と同じであると判定する。 FIG. 20B shows details of the processing in S2003. As shown in 2061, when the comparison result between Δεthumb and Ethum satisfies Δεthumb <−Ethumb, the pen tip is in contact with the writing surface, and the tilt direction of the pen-type input device is opposite to the side with the thumb attached. Judge that there is. If the comparison result between Δεthumb and Ethum satisfies | Δεthumb | ≦ Ethumb as indicated by 2062, it is determined that the pen tip is not in contact with the writing surface. As shown in 2063, when the comparison result between Δεthumb and Ethum satisfies Δεthumb> Ethumb, the pen tip is in contact with the writing surface, and the tilt direction of the pen-type input device is the same as the side with the thumb attached. It is determined.
 図19~20では、ペン型入力装置の断面形状を変化させることで、ペン型入力装置の握り方が一意あるいは限られた数のパターンに決まるようにした。断面形状を変化させる以外の方法では、センサを配置した側面、あるいはその反対の側面に特定の色、マーク、模様などの目印を付加し、例えばその目印を付加した面に親指が添えられるようにユーザを誘導しても、同様にユーザの手や指に対して、ペン型入力装置がいずれの方向に傾いているかを検出することができる。また、目印を付加した特定の面が、筆記面に対して最も遠く、あるいは近くなる状態を保ちながらペン型入力装置を傾けて把持するようにユーザを誘導しても、同様にユーザの手や指に対して、ペン型入力装置がいずれの方向に傾いているかを検出することができる。 19 to 20, by changing the cross-sectional shape of the pen-type input device, the way of gripping the pen-type input device is determined to be a unique or limited number of patterns. Other than changing the cross-sectional shape, a mark such as a specific color, mark, or pattern is added to the side where the sensor is placed, or the opposite side, so that a thumb can be attached to the side where the mark is added. Even when the user is guided, it is possible to detect in which direction the pen-type input device is inclined with respect to the user's hand or finger. In addition, even if the user is guided to tilt and hold the pen-type input device while maintaining the state where the specific surface with the mark is the farthest or close to the writing surface, In which direction the pen-type input device is inclined with respect to the finger can be detected.
 上述したように、本実施例ではペン型入力装置の断面形状を円とは異なる形状に変化させる。これにより、ペン型入力装置を把持するユーザの手や指に対して、ペン型入力装置がいずれの方向に傾いているかを検出することができる。 As described above, in this embodiment, the cross-sectional shape of the pen-type input device is changed to a shape different from a circle. Thereby, it is possible to detect in which direction the pen type input device is inclined with respect to the user's hand or finger holding the pen type input device.
 上述した本実施形態は本発明の説明のための例示であり、本発明の範囲を実施形態にのみ限定する趣旨ではない。 The embodiment described above is an example for explaining the present invention, and is not intended to limit the scope of the present invention only to the embodiment.
200 半導体歪センサ
201 センサ感度軸
200 Semiconductor strain sensor 201 Sensor sensitivity axis

Claims (9)

  1. 少なくともひとつの一方向の歪量を検出する歪センサと、
    ペン先部に少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン先の筆記面への接触状態とペン先の押付状態とペンの傾き方向を検出することを特徴とするペン型入力装置。
    A strain sensor that detects the amount of strain in at least one direction;
    At least one of the strain sensors at the pen tip has a pen shaft provided with the strain amount detection direction and the pen shaft direction aligned with each other,
    Detecting the contact state of the pen tip with the writing surface, the pressing state of the pen tip, and the tilt direction of the pen from the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. A pen-type input device.
  2. 少なくともひとつの一方向の歪量を検出する歪センサと、
    ペン元部に少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン元の筆記面への接触状態とペン元の押付状態とペンの傾き方向を検出することを特徴とするペン型入力装置。
    A strain sensor that detects the amount of strain in at least one direction;
    At least one of the strain sensors on the pen base has a pen shaft provided so that the detection direction of the strain amount matches the pen shaft direction,
    Detecting a contact state of the pen base on the writing surface, a pressing state of the pen base, and a tilt direction of the pen based on the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. A pen-type input device.
  3. 少なくとも2つの一方向の歪量を検出する歪センサと、
    ペン先部とペン元部のそれぞれに少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペンの軸方向の押付状態あるいは引っ張り状態と、空中でペンを把持している状態あるいはペンの平置き状態を検出することを特徴とするペン型入力装置。
    A strain sensor for detecting at least two strains in one direction;
    At least one of the strain sensors at each of the pen tip portion and the pen base portion has a pen shaft provided with the detection direction of the strain amount and the pen shaft direction aligned with each other,
    Depending on the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state, the pen is pressed or pulled in the axial direction, the pen is held in the air, or the pen is flat. A pen-type input device that detects a placement state.
  4. 請求項1から3のいずれかに記載のペン型入力装置において、
    前記歪センサは、前記ペン軸の外表面あるいは内表面あるいはペン軸内部に設置され、ペン軸の歪量を検出することを特徴とするペン型入力装置。
    The pen-type input device according to any one of claims 1 to 3,
    The pen-type input device, wherein the strain sensor is installed on an outer surface or an inner surface of the pen shaft or inside the pen shaft, and detects a strain amount of the pen shaft.
  5. 少なくともひとつの一方向の歪量を検出する歪センサと、
    ペン先部とペン元部の間にあってユーザによって把持される把持部に、少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けるか、または、少なくともひとつの前記歪センサを歪量の検出方向をペン軸に垂直な方向に一致させて設けたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペンの把持状態とペンの平置き状態を検出することを特徴とするペン型入力装置。
    A strain sensor that detects the amount of strain in at least one direction;
    At least one strain sensor is provided between the pen tip portion and the pen base portion and gripped by the user so that the strain amount detection direction and the pen axis direction coincide with each other, or at least one strain sensor. A pen axis provided with the direction of detection of the amount of distortion coincident with the direction perpendicular to the pen axis,
    A pen-type input device that detects a pen holding state and a pen flat state based on a strain value detected by the strain sensor, a predetermined strain amount threshold value, and an output value of the strain sensor in an equilibrium state.
  6. 少なくとも2つの一方向の歪量を検出する歪センサと、
    ペン先部に少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けられているとともに、ペン先部とペン元部の間にあってユーザによって把持される把持部に、少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けるか、または、少なくともひとつの前記歪センサを歪量の検出方向をペン軸に垂直な方向に一致させて設けたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、筆記中のペンの把持状態と空中のペンの把持状態とペンの平置き状態を検出することを特徴とするペン型入力装置。
    A strain sensor for detecting at least two strains in one direction;
    At least one of the strain sensors is provided at the pen tip portion so that the strain amount detection direction and the pen axis direction coincide with each other, and at least a grip portion between the pen tip portion and the pen base portion and gripped by the user is provided. One strain sensor is provided with the strain amount detection direction and the pen axis direction aligned, or at least one strain sensor is provided with the strain amount detection direction aligned with the direction perpendicular to the pen axis. Has an axis,
    Detecting the pen gripping state, the pen gripping state in the air, and the pen flat state based on the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. A pen-type input device.
  7. 少なくともひとつの一方向の歪量を検出する歪センサと、
    少なくともひとつの前記歪センサが歪量の検出方向をペン軸の周方向に傾けて設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン軸のひねり状態を検出することを特徴とするペン型入力装置。
    A strain sensor that detects the amount of strain in at least one direction;
    At least one of the strain sensors has a pen shaft provided by tilting a strain amount detection direction in a circumferential direction of the pen shaft,
    A pen-type input device that detects a twist state of a pen shaft based on a strain value detected by the strain sensor, a predetermined strain amount threshold value, and an output value of an equilibrium strain sensor.
  8. 少なくとも2つの一方向の歪量を検出する歪センサと、
    少なくとも2つの前記歪センサが検出方向をペン軸方向に一致させて、ペン軸の周方向に90度の角度をもって設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン先の筆記面への接触状態とペン先の押付状態とペンの傾き方向を検出することを特徴とするペン型入力装置。
    A strain sensor for detecting at least two strains in one direction;
    At least two of the strain sensors have a pen shaft provided with an angle of 90 degrees in the circumferential direction of the pen shaft, with the detection direction coinciding with the pen shaft direction,
    Detecting the contact state of the pen tip with the writing surface, the pressing state of the pen tip, and the tilt direction of the pen from the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. A pen-type input device.
  9. 少なくともひとつの一方向の歪量を検出する歪センサと、
    ペン先部とペン元部の間にあってユーザによって一意の方向に把持される把持部の所定の指位置に、少なくともひとつの前記歪センサが歪量の検出方向とペン軸方向を一致させて設けられたペン軸を有し、
    前記歪センサが検出した歪値と所定の歪量閾値と平衡状態の歪センサの出力値により、ペン先の筆記面への接触状態とペン先の押付状態とペンの傾き方向を検出することを特徴とするペン型入力装置。
    A strain sensor that detects the amount of strain in at least one direction;
    At least one of the strain sensors is provided at a predetermined finger position of the gripping portion between the pen tip portion and the pen base portion and gripped in a unique direction by the user so that the strain amount detection direction and the pen axis direction coincide with each other. With a pen axis
    Detecting the contact state of the pen tip with the writing surface, the pressing state of the pen tip, and the tilt direction of the pen from the strain value detected by the strain sensor, a predetermined strain amount threshold value, and the output value of the strain sensor in an equilibrium state. A pen-type input device.
PCT/JP2013/054435 2012-05-23 2013-02-22 Pen-type input device WO2013175818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-117102 2012-05-23
JP2012117102A JP2013242819A (en) 2012-05-23 2012-05-23 Pen type input device

Publications (1)

Publication Number Publication Date
WO2013175818A1 true WO2013175818A1 (en) 2013-11-28

Family

ID=49623523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054435 WO2013175818A1 (en) 2012-05-23 2013-02-22 Pen-type input device

Country Status (2)

Country Link
JP (1) JP2013242819A (en)
WO (1) WO2013175818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661383A (en) * 2019-04-03 2021-11-16 株式会社和冠 Pressure sensing equipment and touch control pen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757114B2 (en) * 2014-06-03 2020-09-16 シャープ株式会社 Input display device
WO2016038951A1 (en) * 2014-09-12 2016-03-17 株式会社村田製作所 Holding state detection device
WO2019220803A1 (en) * 2018-05-18 2019-11-21 株式会社ワコム Position indication device and information processing device
JP7363040B2 (en) * 2019-02-04 2023-10-18 株式会社リコー Electronic blackboard system and electronic pen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129449A (en) * 1994-11-01 1996-05-21 Fujitsu Ltd Signal input device
JPH09114587A (en) * 1995-10-18 1997-05-02 Ricoh Co Ltd Pen type coordinate input device
JP2000029614A (en) * 1998-07-13 2000-01-28 Shima Seiki Mfg Ltd Method and device for image processing
JP2006092410A (en) * 2004-09-27 2006-04-06 Pioneer Electronic Corp Electronic pen and touch panel apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129449A (en) * 1994-11-01 1996-05-21 Fujitsu Ltd Signal input device
JPH09114587A (en) * 1995-10-18 1997-05-02 Ricoh Co Ltd Pen type coordinate input device
JP2000029614A (en) * 1998-07-13 2000-01-28 Shima Seiki Mfg Ltd Method and device for image processing
JP2006092410A (en) * 2004-09-27 2006-04-06 Pioneer Electronic Corp Electronic pen and touch panel apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661383A (en) * 2019-04-03 2021-11-16 株式会社和冠 Pressure sensing equipment and touch control pen
CN113661383B (en) * 2019-04-03 2024-04-09 株式会社和冠 Pressure sensing device and touch pen

Also Published As

Publication number Publication date
JP2013242819A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
WO2013175818A1 (en) Pen-type input device
JP5375863B2 (en) Input device, rotation angle calculation method, and writing pressure calculation method
JP7021889B2 (en) Stylus and tilt detection method for stylus
US20110161888A1 (en) Operation direction determination apparatus, remote operating system, operation direction determination method and program
JP5810923B2 (en) Input device and touch position calculation method
TWI405110B (en) Sensor array device,portable device,method and device of determining a position of an object and method of making a sensor array
US20150301684A1 (en) Apparatus and method for inputting information
US9909852B2 (en) Operation position detection apparatus and vehicular apparatus
US20100019780A1 (en) Multi-axis capacitive sensor
CN111630480B (en) Touch panel device
JP5423593B2 (en) Information processing device
TW201510831A (en) Method for detecting touch spot of capacitive touch panel
EP3751389A1 (en) Electronic device including force sensor
TWI424350B (en) Active electromagnetic pen
EP4216043A2 (en) Open close detection of foldable phone lid angle calculation
US20170115753A1 (en) Method for detecting orientation of stylus
US20150276515A1 (en) Operation input device
WO2010007731A1 (en) Indicator and position detection device
TWI610212B (en) Multi-dimensional electrodes for capacitive sensing
KR101093615B1 (en) 3D sensing panel
TWI394068B (en) Sensing structure and displayer comprising the same
JP2003131797A (en) Electronic pen
JP2018190278A (en) Operation input device
TWI402719B (en) Direction indicating device
US20170235402A1 (en) Pressure sensor, display apparatus and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793830

Country of ref document: EP

Kind code of ref document: A1