WO2013163955A1 - Method, system and apparatus for uplink transmission - Google Patents

Method, system and apparatus for uplink transmission Download PDF

Info

Publication number
WO2013163955A1
WO2013163955A1 PCT/CN2013/075086 CN2013075086W WO2013163955A1 WO 2013163955 A1 WO2013163955 A1 WO 2013163955A1 CN 2013075086 W CN2013075086 W CN 2013075086W WO 2013163955 A1 WO2013163955 A1 WO 2013163955A1
Authority
WO
WIPO (PCT)
Prior art keywords
spread spectrum
complex symbol
spectrum data
user equipment
subframe
Prior art date
Application number
PCT/CN2013/075086
Other languages
French (fr)
Chinese (zh)
Inventor
高秋彬
周海军
秦飞
潘学明
鲍炜
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013163955A1 publication Critical patent/WO2013163955A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and device for performing uplink transmission.
  • BACKGROUND In a communication scenario such as satellite communication, the signal strength of the uplink transmission is limited by the transmission power of the user equipment, and in the case where the path loss is large, the transmission performance cannot be guaranteed.
  • VoIP voice over IP
  • a 224-bit data packet is generated every 20 ms, and the 224 bits need to be transmitted within 20 ms.
  • the base station's received signal-to-noise ratio is lower than the demodulation threshold of the data packet because the coding rate is higher, and the base station cannot correctly demodulate.
  • each small packet adds extra overhead, such as MAC (Medium Access Control) header overhead, CRC (Cyclic Redundancy Check).
  • MAC Medium Access Control
  • CRC Cyclic Redundancy Check
  • a method, system, and device for performing uplink transmission according to an embodiment of the present invention are provided to solve the problem that spectrum efficiency and transmission efficiency are relatively low when uplink transmission is performed in the case where the uplink transmission power existing in the prior art is limited. problem.
  • a method for performing uplink transmission according to an embodiment of the present invention includes:
  • the user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer;
  • the user equipment separately modulates the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe;
  • the user equipment transmits a transmission signal on a corresponding subframe.
  • the network side device extracts a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
  • the network side device combines the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data;
  • the network side device despreads the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
  • a user equipment for performing uplink transmission according to an embodiment of the present invention includes:
  • a processing module configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer ;
  • a modulation module configured to separately modulate the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe
  • a sending module configured to send the sending signal on the corresponding subframe.
  • An extracting module configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
  • a combining module configured to combine the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data
  • the despreading module is configured to despread the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
  • a system for performing uplink transmission according to an embodiment of the present invention includes:
  • a user equipment configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer And respectively modulating the spread spectrum data sequence mapped to each subframe to generate a transmission signal corresponding to each subframe, and transmitting the transmission signal in the corresponding subframe;
  • FIG. 1 is a schematic diagram of signal transmission according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a system for performing uplink transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of time domain spreading according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of frequency domain spreading according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of time domain spread spectrum + frequency domain spread spectrum according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of mapping to a part of a time-frequency resource according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of user equipment of a system for performing uplink transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network side device of a system for performing uplink transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for performing uplink transmission by a user equipment according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for performing uplink transmission by a network side device according to an embodiment of the present invention.
  • the user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes.
  • Q is a positive integer; respectively, the spread spectrum data sequence mapped to each subframe is separately modulated to generate a transmit signal corresponding to each subframe; and the transmit signal is transmitted on the corresponding subframe.
  • the total transmission energy of the user equipment is increased by the extension of the signal in the time domain to ensure that the data transmitted by the user equipment can be correctly received, thereby improving the uplink.
  • the transmission power is limited, the time spectrum efficiency and transmission efficiency of the uplink transmission are performed.
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • Address +CDMA mode supports simultaneous transmission of multiple user equipments to further ensure the spectrum efficiency of the system.
  • the uplink transmission is divided into six processes:
  • the system for performing uplink transmission in the embodiment of the present invention includes: a user equipment 10 and a network side device 20.
  • the user equipment 10 is configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is positive Integer, the spread spectrum data sequence mapped to each subframe is separately modulated to generate a transmit signal corresponding to each subframe, and the transmit signal is sent on the corresponding subframe;
  • the network side device 20 is configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, Q is a positive integer; and the spread spectrum data sequence of the Q subframes Combining to obtain a complete spread spectrum data sequence of complex symbol data; despreading the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
  • the value of Q can be set as needed, such as 4, 8, 16, 20, etc.; can also be determined by reference to the following factors:
  • the size of the data packet to be transmitted the larger the data packet, the greater the corresponding Q value
  • the link shield of the user equipment 10 the better the link shield, the smaller the corresponding Q value
  • the length of the spread spectrum data sequence the larger the length of the spread spectrum data sequence, the larger the Q value required.
  • the value of Q is determined by the transmission parameters configured by the received network side device 20 to the user equipment 10. Or a predetermined fixed size, or determined by the agreed value of Q and the mapping rules of other parameters.
  • the user equipment 10 performs spreading on each complex symbol data in various manners. Two types are listed below: Spreading mode 1. For a complex symbol data, the user equipment 10 uses the spread spectrum corresponding to the complex symbol data. a code, spreading the complex symbol data;
  • the spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
  • the spreading code corresponding to each complex symbol data may be specified in the protocol, or the user equipment 10 may be notified by the network side.
  • the corresponding spreading code may be determined according to the position of the complex symbol data in the entire data to be transmitted, that is, the correspondence between the preset position and the spreading code, and then the corresponding spreading code is determined according to the position of the complex symbol data.
  • the user equipment 10 groups all complex symbol data; for a set of complex symbol data, spreads all the complex symbol data in the group by using the corresponding spreading code of the group; wherein, each group corresponds to The spreading codes are all different.
  • the user equipment 10 can group the complex symbol data according to the set order, but it is necessary to ensure that the user equipment 10 and the network side device 20 have the same understanding of the set order.
  • the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule.
  • a preset rule is a few ways to group:
  • Grouping mode 1 The user equipment 10 sequentially selects complex symbol data for grouping.
  • the user equipment 10 sequentially divides the complex symbol data into a plurality of groups according to the set number of complex symbol data included in each group. For example, if there are 100 complex symbol data, the number of complex symbol data included in each group is 10, then 1 ⁇ 10 points to a group, 11 20 points to a group, and so on.
  • the user equipment 10 determines complex symbol data in the set of data according to Equation 1:
  • the number of ⁇ ⁇ 3 ⁇ 4 multiplexed symbol data included in the group of complex symbols indicating the data received by the network side determines, determined by the formula.
  • the number of complex symbol data included in each group can be determined according to the amount of data transmitted and the Q value.
  • Grouping mode 2 The user equipment 10 selects complex symbol data for grouping.
  • the user equipment 10 sequentially divides the complex symbol data into a plurality of groups according to the number of intervals of the complex symbol data included in each group. For example, there are 30 complex symbol data, and the number of intervals of complex symbol data included in each group is 10, then 1, 11, 21 are grouped into one group, 2, 12, 22 are grouped into one group, and so on.
  • user equipment 10 determines complex symbol data in the set of data according to Equation 2:
  • the user equipment 10 maps the spread spectrum data sequence of each complex symbol data to the Q subframes in a plurality of ways. Two types are listed below:
  • the user equipment 10 sequentially selects the spread spectrum data sequence to be mapped to the Q subframes. Specifically, the user equipment 10 sequentially divides the spread spectrum data sequence into multiple groups according to the set number of the spread data sequences mapped to one subframe, and each group is mapped to one subframe. For example, the length of the spread spectrum data sequence is 100, and the length of the spread spectrum data sequence mapped to one subframe is 10, then 1 ⁇ 10 is mapped to one subframe, 11 ⁇ 20 is mapped to another subframe, and so on.
  • the number of spread spectrum data sequences mapped to one subframe may be determined according to the amount of data transmitted and the Q value.
  • user equipment 10 may determine a sequence of spread data that needs to be mapped to the subframe according to Equation 3:
  • the network side device 20 combines the spread spectrum data sequences on the Q subframes in subframe order.
  • the data of the first ⁇ is the spread spectrum data sequence in the first subframe
  • the data of the 11th to the 20th is the second subframe.
  • the sequence of spread spectrum data and so on.
  • the number of spread data sequences mapped to one subframe may be determined according to the length of the spread data sequence and the Q value.
  • the network side device 20 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4:
  • W is the combined Wth spread spectrum data sequence
  • r (g, is the kth spread spectrum data sequence on subframe q
  • W is the length of the sequence of spread spectrum data mapped into each subframe.
  • Mapping mode 2 User equipment 10 The interval selection spread spectrum data sequence is mapped to Q subframes.
  • the user equipment 10 sequentially divides the spread spectrum data sequence into multiple groups according to the set number of intervals, and each group is mapped to one subframe. For example, if the length of the spread spectrum data sequence is 30 and the number of intervals is 10, the first, eleventh, and twenty-first spread spectrum data in the sequence are mapped to one subframe, and the second, second, and twenty-two spread spectrum data maps are mapped. Go to another sub-frame, and so on.
  • the number of intervals may be equal to the number of subframes Q, or obtained by transmission parameters configured on the network side.
  • the network side device 20 selects the spread spectrum data sequences on the Q subframes to be combined.
  • the length of the spread spectrum data sequence of each subframe is 30, and there are 10 subframes. If the number of intervals is 10, the first spread spectrum data of each subframe of 1 to 10 subframes is sequentially combined. The first to the tenth bits of the spread spectrum data sequence, the second spread spectrum data of each subframe of the first subframe to the tenth subframe is ranked from the 11th to the 20th of the combined data, and so on. Finally, the sequence of the spread spectrum data is combined.
  • the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate OFDM (Orthogonal Frequency Division Multiplexing) , Orthogonal Frequency Division Multiplexing) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the spread spectrum data sequence mapped onto each OFDM symbol is OFDM modulated or
  • DFT-S-OFDM Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing
  • the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, which are respectively listed below.
  • the mapping mode is as follows: The user equipment 10 uses the time domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to the same subcarrier of different OFDM symbols. For details, refer to FIG. 3.
  • the user equipment 10 can transmit up to 12 data symbols using one spreading code in one subframe, and one data per subcarrier. symbol.
  • a plurality of spreading codes may be included in the transmission parameters, such that the user equipment 10 uses a plurality of spreading codes to increase the number of data symbols transmitted in each subframe.
  • the network side device 20 extracts the spread spectrum data sequence on the specific time domain resources in the Q subframes in the time domain manner.
  • the mapping mode 2 the user equipment 10 uses the frequency domain method to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol, as shown in FIG. 4 .
  • the user equipment can transmit up to 12 data symbols using one spreading code in one subframe, and one data symbol per OFDM symbol.
  • a plurality of spreading codes may be included in the transmission parameters, such that the user equipment 10 uses a plurality of spreading codes to increase the number of data symbols transmitted in each subframe.
  • the network side device 20 extracts the spread spectrum data sequence on the specific frequency domain resources in the Q subframes by using the frequency domain method.
  • the mapping mode 3 the user equipment 10 uses a combination of the time domain and the frequency domain, and maps the spread data sequence corresponding to one complex symbol data to multiple subcarriers of multiple OFDM symbols, as shown in FIG. 5 .
  • the user equipment can transmit up to one data symbol using one spreading code in one subframe.
  • the base station can configure the user equipment to use multiple spreading codes to increase the number of data symbols transmitted in each subframe.
  • the time domain + frequency domain spread spectrum can be realized by two-stage spread spectrum, that is, the data symbol is firstly spread by the frequency domain (time domain) spread spectrum sequence, and then the time domain of the spread spectrum sequence is used ( The frequency domain) spreading sequence performs second-level spreading, as shown in FIG. 5.
  • the network side device 20 extracts the spread spectrum data sequence in a specific time domain and frequency domain resource in the Q subframes by using a combination of the time domain and the frequency domain.
  • the spread spectrum data sequence may also be mapped to all or part of the time-frequency resources.
  • the user equipment 10 may map the spread data sequence to all time-frequency resources or only to part of the time-frequency resources by selecting the length of the spread spectrum data sequence mapped into one subframe. For the latter, multiple data symbols of the user equipment can be simultaneously transmitted on different time-frequency resources. For example, four data symbols are respectively spread-spread mapped to four time-frequency regions. See Figure 6 for details.
  • the data symbols of different user equipments 10 may also be transmitted separately in different time-frequency regions.
  • the user equipment 10 also needs to perform channel coding, scrambling, and modulation mapping before spreading the complex symbol data to obtain a spread spectrum data sequence for each complex symbol data, as shown in FIG. specific:
  • the source data block contains bit bit data 0),... ⁇ ( ⁇ 3 ⁇ 4 -1). After channel coding, the data block length is Mbit bits, 6(0), ..., 6 (M bit _l) ;
  • Constellation mapping scrambled data blocks (0), ..., ⁇ (;M bit - 1) generate complex symbol data blocks i (0),..., i (M sym — 1 via constellation mapping ) , contains M sym complex symbol data.
  • the specific mapping method can be BPSK
  • the network side device 20 obtains the despread data corresponding to the complex symbol data, it also needs to perform receiving processing on the despread data.
  • the despread data corresponding to the complex symbol data includes:
  • the user equipment 10 and the network side device 20 can perform the foregoing transmission process according to the transmission parameters.
  • Transmission parameters include, but are not limited to, at least one of the following:
  • the number of bound subframes (that is, the Q value), the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resources occupied in each subframe (ie, the frequency domain, the time domain, the frequency domain, and the time domain)
  • the spreading code which subframe(s) are mapped (the mapped subframe is discontinuous), the first subframe of the mapping (the mapped subframe is continuous), and the mapping to the subframe
  • the mode the number of data symbols mapped to one subframe during the sub-frame process, the number of intervals mapped to the subframe, the manner of mapping to the time-frequency resource, the number of complex symbol data, and the number of spread data sequences.
  • the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device 20; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device 20. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment 10 and the network side device 20 for uplink transmission are the same.
  • the network side device 20 configures the transmission parameters for the user equipment 10.
  • the network side device 20 configures the transmission parameter for the user equipment by using the high layer signaling semi-static, or configures the transmission parameter for the user equipment by scheduling the control signaling of the uplink transmission.
  • the network side device 20 since the transmission parameters of the user equipment 10 are known, it is known to which subframes the user equipment 10 maps data to, and correspondingly, the network side device 10 can acquire the user equipment from the corresponding subframe. After the data is grouped, the combined data is despreaded and then received.
  • the network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), or It is an RN (relay) device, and it can also be other network-side devices.
  • a station such as a macro base station, a home base station, etc.
  • RN relay
  • the user equipment of the system for uplink transmission in the embodiment of the present invention includes: a processing module 701, a modulation module 702, and a sending module 703.
  • the processing module 701 is configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is positive Integer
  • the modulating module 702 is configured to separately modulate the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe.
  • the sending module 703 is configured to send the sending signal on the corresponding subframe.
  • the processing module 701 performs spreading on the complex symbol data by using a spreading code corresponding to the complex symbol data for a complex symbol data, where the spreading codes corresponding to each complex symbol data are all the same or none. Same or partially the same.
  • the processing module 701 groups all complex symbol data; for a group of complex symbol data, uses the corresponding spreading code of the group to spread all the complex symbol data in the group; wherein each group corresponds to the expansion
  • the frequency codes are all different.
  • the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule.
  • the processing module 701 sequentially selects complex symbol data for grouping.
  • the processing module 701 selects the complex symbol data for grouping according to the formula.
  • the processing module 701 selects complex symbol data for grouping.
  • the processing module 701 selects the complex symbol data for grouping according to the formula two intervals.
  • the processing module 701 sequentially selects the spread spectrum data sequence to be mapped to the Q subframes.
  • the processing module 701 selects the spread spectrum data sequence to be mapped to the Q subframes according to the third formula.
  • the processing module 701 maps the selected spread spectrum data sequence to the Q subframes.
  • the processing module 701 selects the spread spectrum data sequence to be mapped to the Q subframes according to the formula five intervals.
  • the modulation module 702 maps the spread spectrum data sequence to the time-frequency resource for one spread spectrum data sequence of one subframe, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol.
  • the modulation module 702 maps the spread spectrum data sequence to the time-frequency resource for one spread spectrum data sequence of one subframe, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol;
  • the spread spectrum data sequence of the same set of complex symbol data is mapped to different time-frequency resources.
  • modulation module 702 maps the sequence of spread spectrum data to all or part of the time-frequency resources.
  • the modulation module 702 maps the spread spectrum data sequence corresponding to one complex symbol data to the time domain manner. Or mapping the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol in a frequency domain manner; or using a combination of time domain and frequency domain, A spread spectrum data sequence corresponding to one complex symbol data is mapped to a plurality of subcarriers of a plurality of OFDM symbols.
  • the modulation module 702 determines the time-frequency resources occupied in each subframe according to the transmission parameters.
  • the processing module 701 determines the Q value based on the transmission parameters.
  • the network side device of the system for performing uplink transmission includes: an extraction module 801, a combination module 802, and a despreading module 803.
  • the extracting module 801 is configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
  • a combining module 802 configured to combine the spread spectrum data sequences of the Q subframes to obtain a complete spread spectrum data sequence of the complex symbol data
  • the despreading module 803 is configured to despread the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
  • the extracting module 801 extracts the spread spectrum data sequence on the specific time domain resource in the Q subframes in the time domain manner, or extracts the spread spectrum on the specific frequency domain resource in the Q subframes by using the frequency domain method.
  • the data sequence; or the combination of the time domain and the frequency domain extracts the spread spectrum data sequence on the specific time domain and frequency domain resources in the Q subframes.
  • combining module 802 combines the sequence of spread data on Q subframes in a sub-frame order.
  • the combining module 802 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4.
  • the combining module 802 selects the spread spectrum data sequences on the Q subframes to be combined.
  • the combining module 802 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 6.
  • the device in the embodiment of the present invention may further include: a notification module 804.
  • the notification module 804 is configured to configure a transmission parameter for the user equipment.
  • the transmission parameters include one or more of the following information:
  • the Q value The Q value, the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resource occupied in each subframe.
  • the notification module 804 configures the transmission parameters for the user equipment through the high-level signaling semi-static; or configures the transmission parameters for the user equipment by scheduling the control signaling of the uplink transmission.
  • the embodiment of the present invention further provides a method for uplink transmission by a user equipment and a method for uplink transmission by a network side device, and the principle of solving the problem is similar to the system for performing uplink transmission in the embodiment of the present invention. Therefore, the implementation of these methods can be referred to the implementation of the system, and the repetition will not be repeated.
  • the method for performing uplink transmission by a user equipment includes the following steps:
  • Step 901 The user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer. ;
  • Step 902 The user equipment separately modulates the spread spectrum data sequence mapped to each subframe to generate each subframe. Corresponding transmitted signal;
  • Step 903 The user equipment sends the sending signal on the corresponding subframe.
  • step 901 there are many ways for the user equipment to spread the frequency of each complex symbol data. Two types are listed below:
  • the user equipment uses the spreading code corresponding to the complex symbol data to spread the complex symbol data;
  • the spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
  • the spreading code corresponding to each complex symbol data may be specified in the protocol, or the user equipment may be notified by the network side.
  • the corresponding spreading code may be determined according to the position of the complex symbol data in the entire data to be transmitted, that is, the correspondence between the position and the spreading code is preset, and then the corresponding spreading code is determined according to the position of the complex symbol data.
  • Spreading mode 2 The user equipment groups all complex symbol data; for a set of complex symbol data, spreads all the complex symbol data in the group by using the corresponding spreading code of the group; wherein, each group corresponding to the expansion
  • the frequency codes are all different.
  • the user equipment can group the complex symbol data according to the set order, but it is necessary to ensure that the user equipment and the network side device have the same understanding of the set order.
  • the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule.
  • a preset rule is a few ways to group:
  • Grouping mode 1 The user equipment sequentially selects complex symbol data for grouping.
  • the user equipment sequentially divides the complex symbol data into a plurality of groups according to the set number of complex symbol data included in each group.
  • the user equipment determines complex symbol data in the set of data according to Equation 1.
  • Grouping mode 2 User equipment interval is selected by complex symbol data for grouping.
  • the user equipment sequentially divides the complex symbol data into a plurality of groups according to the number of intervals of the complex symbol data included in each group.
  • the user equipment determines complex symbol data in the set of data according to Equation 2.
  • the user equipment maps the spread spectrum data sequence of each complex symbol data to the Q subframes in a plurality of ways.
  • Mapping mode 1 The user equipment sequentially selects the spread spectrum data sequence to be mapped to Q subframes.
  • the user equipment divides the sequence of the spread spectrum data into multiple groups according to the set number of the spread data sequences mapped to one subframe, and each group is mapped to one subframe.
  • the number of spread spectrum data sequences mapped to one subframe may be determined according to the amount of data transmitted and the Q value.
  • the user equipment may determine a sequence of spread data that needs to be mapped to the subframe according to Equation 3.
  • Mapping mode 2 The user equipment sequentially selects the spread spectrum data sequence to be mapped to the Q subframes. Specifically, the user equipment sequentially divides the spread spectrum data sequence into multiple groups according to the set number of intervals, and each group is mapped to one subframe.
  • the number of intervals may be equal to the number of subframes Q, or obtained by transmission parameters configured on the network side.
  • the user equipment can determine a sequence of spread data that needs to be mapped to the subframe according to Equation 5.
  • the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate the OFDM symbol. .
  • the spread spectrum data sequence mapped onto each OFDM symbol is OFDM modulated or DFT-S-OFDM modulated to generate OFDM symbols.
  • Mapping mode 1 The user equipment uses the time domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to the same subcarrier of different OFDM symbols. For details, see Figure 3.
  • the mapping mode is as follows: The user equipment uses the frequency domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol. For details, refer to FIG. 4 .
  • the mapping mode is as follows:
  • the user equipment uses a combination of the time domain and the frequency domain to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of multiple OFDM symbols. For details, refer to FIG. 5.
  • the spread spectrum data sequence may also be mapped to all or part of the time-frequency resource.
  • the user equipment may map the spread spectrum data sequence to all time-frequency resources or only to part of the time-frequency resources by selecting the length of the spread spectrum data sequence mapped into one subframe. For the latter, multiple data symbols of the user equipment can be simultaneously transmitted on different time-frequency resources. For example, four data symbols are respectively spread-spread mapped to four time-frequency regions. See Figure 6 for details.
  • different time-frequency regions may also separately transmit data symbols of different user equipments.
  • the user equipment needs to perform channel coding, scrambling and modulation mapping before spreading the complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, as shown in Fig. 1. specific:
  • the source data block contains bit bit data 0),... ⁇ ( ⁇ 3 ⁇ 4 -1). After channel coding, the data block length is Mbit bits, 6(0),...,6 (M bit _l) ;
  • the scrambled channel-encoded data block ( Q ), '", ( it -!) is scrambled to generate the scrambled data block b ⁇ 0 ... M hit - ⁇ )
  • Constellation mapping scrambled data blocks (0),..., ⁇ (;M bit -1) generate complex symbol data blocks i (0),...,i (M sym _l) via constellation mapping , contains M sym complex symbol data.
  • the specific mapping method can be BPSK.
  • the user equipment and the network side device may perform the foregoing transmission process according to the transmission parameter.
  • the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment and the network side device for uplink transmission are the same.
  • the network side device since the transmission parameters of the user equipment are known, it is known to which subframes the user equipment maps the data to, and correspondingly, the network side device can obtain the data from the user equipment from the corresponding subframe after grouping. After decomposing the combined data, the receiving process is performed.
  • the method for performing uplink transmission by the network side device includes the following steps: Step 1010: The network side device extracts a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data The sequence corresponds to the same complex symbol data, and Q is a positive integer;
  • Step 1011 The network side device combines the spread spectrum data sequences of the Q subframes to obtain a complete spread spectrum data sequence of the complex symbol data.
  • Step 1012 The network side device de-spreads the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
  • the network side device combines the spread spectrum data sequences on the Q subframes in a subframe order.
  • the 1st to 10th data is the spread spectrum data sequence in the 1st subframe
  • the 11th to 20th data is the 2nd child.
  • the length of the spread data sequence mapped to one subframe may be determined according to the length of the spread data sequence and the Q value.
  • the network side device combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4.
  • the network side device interval selects the spread spectrum data sequences on the Q subframes for combination.
  • the length of the spread spectrum data sequence mapped by each subframe is 30, and there are 10 subframes in total. If the number of the set intervals is 10, the first spread spectrum data of each subframe of 1 to 10 subframes is sequentially arranged. Combining the first to the tenth bits of the spread spectrum data sequence, the second spread spectrum data of each subframe of the first subframe to the tenth subframe is ranked from the 11th to the 20th bits of the combined data, and so on. Finally, the sequence of the spread spectrum data is combined.
  • the network side device selects the spread spectrum data sequence on the Q subframes according to the formula six intervals for combination.
  • the spread spectrum data sequence corresponding to one complex symbol data is mapped to the same subcarrier of different OFDM symbols, and in step 1010, the network side device uses the time domain mode in the Q subframes.
  • the spread spectrum data sequence is extracted on a specific time domain resource within.
  • the spread spectrum data sequence corresponding to one complex symbol data is mapped to multiple subcarriers of the same OFDM symbol.
  • the network side device uses the frequency domain mode. Q subframes The spread spectrum data sequence is extracted on a specific frequency domain resource.
  • the spread spectrum data sequence corresponding to one complex symbol data is mapped to multiple subcarriers of multiple OFDM symbols, and in step 1010, the network side device is used.
  • the spread spectrum data sequence is extracted on a specific time domain and frequency domain resource within Q subframes by combining the time domain and the frequency domain.
  • the despread data needs to be received and processed.
  • the despread data corresponding to the complex symbol data includes:
  • the user equipment and the network side device may perform the foregoing transmission process according to the transmission parameter.
  • the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment and the network side device for uplink transmission are the same.
  • the network side device configures a transmission parameter for the user equipment.
  • the network side device configures the transmission parameter for the user equipment by using the high-level signaling semi-static, or configures the transmission parameter for the user equipment by scheduling the control signaling of the uplink transmission.
  • embodiments of the present invention are not limited to the foregoing two configurations, and other embodiments capable of configuring transmission parameters for the user equipment are applicable to the embodiments of the present disclosure.
  • the network side device since the transmission parameters of the user equipment are known, it is known to which subframes the user equipment maps the data to, and correspondingly, the network side device can obtain the data from the user equipment from the corresponding subframe after grouping. After decomposing the combined data, the receiving process is performed.
  • the network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), an RN device, or another network side device.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

Embodiments of the present invention relate to the technical field of wireless communication, and especially relate to a method, system and apparatus for uplink transmission, to resolve the problem existed in prior art. The problem is that in the case of restricted uplink transmission power, spectrum efficiency and transmission efficiency are comparatively low during uplink transmission. The uplink transmission method in embodiments of the present invention comprises: user equipment separately spreading the spectrum of every complex symbol data to obtain spread spectrum data sequences of every complex symbol data, and mapping spread spectrum data sequences of every complex symbol data to Q subframes, wherein Q is a positive integer; said user equipment separately modulating spread spectrum data sequences mapped to every subframe to generate transmission signals corresponding to every subframe; said user equipment transmitting the transmission signal in the corresponding subframe. By using embodiments of the present invention, the spectrum efficiency and transmission efficiency during uplink transmission are able to be improved in the case of restricted power of the uplink transmission.

Description

一种进行上行传输的方法、 系统和设备 本申请要求在 2012年 5月 4日提交中国专利局、申请号为 201210137904.X、发明名称为"一 种进行上行传输的方法、 系统和设备"的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。  Method, system and device for performing uplink transmission The present application claims to be submitted to the Chinese Patent Office on May 4, 2012, the application number is 201210137904.X, and the invention name is "a method, system and device for uplink transmission" Priority of Chinese Patent Application, the entire contents of which is incorporated herein by reference.
技术领域 本发明涉及无线通信技术领域, 特别涉及一种进行上行传输的方法、 系统和设备。 背景技术 卫星通信等通信场景中, 上行传输的信号强度受用户设备发射功率的限制, 在路径损 耗很大的情况下, 传输性能不能保证。 以 VoIP ( Voice over IP, 基于 IP的语音呼叫)业务 为例, 每隔 20ms会产生一个 224比特的数据包, 这 224比特需要在 20ms内传输完成。 如 果 224比特在 1个 TTI ( Transmission Time Interval, 传输时间间隔 ) 内传输完成, 因编码 速率较高, 基站的接收信噪比低于该数据包的解调门限, 基站无法正确解调。 The present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and device for performing uplink transmission. BACKGROUND In a communication scenario such as satellite communication, the signal strength of the uplink transmission is limited by the transmission power of the user equipment, and in the case where the path loss is large, the transmission performance cannot be guaranteed. Taking the VoIP (voice over IP) service as an example, a 224-bit data packet is generated every 20 ms, and the 224 bits need to be transmitted within 20 ms. If the transmission of 224 bits in one TTI (Transmission Time Interval) is completed, the base station's received signal-to-noise ratio is lower than the demodulation threshold of the data packet because the coding rate is higher, and the base station cannot correctly demodulate.
目前有两种解决方案:  There are currently two solutions:
一、在时域内重复发送该数据包, 例如重复发送 20 次, 用户设备发送同一个数据包 的总能量增加, 基站通过将 20次接收到的数据进行合并便可能正确解调出数据。  1. Repeatedly transmitting the data packet in the time domain, for example, repeating the transmission 20 times, the total energy of the user equipment transmitting the same data packet increases, and the base station may correctly demodulate the data by combining 20 received data.
该方案的问题是频谱效率降低, 一个用户设备持续占用一个 PRB ( physical resource block, 物理资源块), 且不能与其他用户复用。  The problem with this solution is that the spectrum efficiency is reduced. A user equipment occupies a PRB (physical resource block) and cannot be multiplexed with other users.
二、 将 224比特分成 20个小数据包, 在 20个子帧内传输, 因为每个子帧内的编码速 率相应降低了,基站可以在每个子帧内正确解调出每个小数据包,从而还原出原始数据包。  2. Divide 224 bits into 20 small data packets and transmit them in 20 subframes. Since the coding rate in each subframe is correspondingly reduced, the base station can correctly demodulate each small data packet in each subframe, thereby restoring Out of the original data packet.
该方案的问题是分散成小数据包后, 每个小数据包都会增加额外的开销, 如 MAC ( Medium Access Control, 媒体接入控制)头开销, CRC ( Cyclic Redundancy Check, 循环 冗余校验)校验位开销等, 总的开销大大增加, 传输效率低下。  The problem with this solution is that after the small packets are dispersed, each small packet adds extra overhead, such as MAC (Medium Access Control) header overhead, CRC (Cyclic Redundancy Check). The parity overhead, etc., the total overhead is greatly increased, and the transmission efficiency is low.
综上所述, 目前上行传输功率受限的情况下, 进行上行传输时, 频谱效率和传输效率 比较低。 发明内容 本发明实施例提供的一种进行上行传输的方法、 系统和设备, 用以解决现有技术中存 在的上行传输功率受限的情况下, 进行上行传输时频谱效率和传输效率比较低的问题。 本发明实施例提供的一种进行上行传输的方法, 包括: In summary, in the case where the uplink transmission power is limited, the spectrum efficiency and the transmission efficiency are relatively low when uplink transmission is performed. SUMMARY OF THE INVENTION A method, system, and device for performing uplink transmission according to an embodiment of the present invention are provided to solve the problem that spectrum efficiency and transmission efficiency are relatively low when uplink transmission is performed in the case where the uplink transmission power existing in the prior art is limited. problem. A method for performing uplink transmission according to an embodiment of the present invention includes:
用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列, 并将 每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  The user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer;
所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应 的发送信号;  The user equipment separately modulates the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe;
所述用户设备将发送信号在对应的子帧上发送。  The user equipment transmits a transmission signal on a corresponding subframe.
本发明实施例提供的另一种进行上行传输的方法, 包括:  Another method for performing uplink transmission provided by the embodiment of the present invention includes:
网络侧设备在 Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列 对应同一个复符号数据, Q是正整数;  The network side device extracts a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
所述网络侧设备将 Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩 频数据序列;  The network side device combines the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data;
所述网络侧设备对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩数据。 本发明实施例提供的一种进行上行传输的用户设备, 包括:  The network side device despreads the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data. A user equipment for performing uplink transmission according to an embodiment of the present invention includes:
处理模块, 用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序 列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  a processing module, configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer ;
调制模块, 用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应 的发送信号;  a modulation module, configured to separately modulate the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe;
发送模块, 用于将发送信号在对应的子帧上发送。  And a sending module, configured to send the sending signal on the corresponding subframe.
本发明实施例提供的一种进行上行传输的网络侧设备, 包括:  A network side device for performing uplink transmission according to an embodiment of the present invention includes:
提取模块, 用于在 Q个子帧内的特定时频资源上提取扩频数据序列, 其中该扩频数据 序列对应同一个复符号数据 , Q是正整数;  An extracting module, configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
组合模块, 用于将 Q个子帧的扩频数据序列进行组合, 得到一个复符号数据的完整扩 频数据序列;  a combining module, configured to combine the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data;
解扩频模块,用于对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。 本发明实施例提供的一种进行上行传输的系统, 包括:  The despreading module is configured to despread the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data. A system for performing uplink transmission according to an embodiment of the present invention includes:
用户设备, 用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序 列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数, 将映射到 每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号, 将发送信号在对 应的子帧上发送;  a user equipment, configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer And respectively modulating the spread spectrum data sequence mapped to each subframe to generate a transmission signal corresponding to each subframe, and transmitting the transmission signal in the corresponding subframe;
网络侧设备, 用于在 Q个子帧内的特定时频资源上提取扩频数据序列, 其中该扩频数 据序列对应同一个复符号数据, 将 Q个子帧的扩频数据序列进行组合, 得到一个复符号数 据的完整扩频数据序列, 对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩数 据。 由于本发明实施例将一个数据包的数据映射到多个子帧内传输, 通过信号在时域内的 扩展增加用户设备的总发射能量, 以保证用户设备发射的数据能被正确接收, 从而提高了 上行传输功率受限的情况下, 进行上行传输的时频谱效率和传输效率。 附图说明 图 1为本发明实施例信号传输示意图; a network side device, configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and the spread spectrum data sequences of the Q subframes are combined to obtain one The complete spread spectrum data sequence of the complex symbol data, despreading the complete spread spectrum data sequence, and obtaining despread data corresponding to the complex symbol data. Since the data of one data packet is mapped to multiple intra-subframe transmissions, the total transmission energy of the user equipment is increased by the extension of the signal in the time domain to ensure that the data transmitted by the user equipment can be correctly received, thereby improving the uplink. When the transmission power is limited, the time spectrum efficiency and transmission efficiency of the uplink transmission are performed. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram of signal transmission according to an embodiment of the present invention;
图 2为本发明实施例进行上行传输的系统结构示意图;  2 is a schematic structural diagram of a system for performing uplink transmission according to an embodiment of the present invention;
图 3为本发明实施例时域扩频示意图;  3 is a schematic diagram of time domain spreading according to an embodiment of the present invention;
图 4为本发明实施例频域扩频示意图;  4 is a schematic diagram of frequency domain spreading according to an embodiment of the present invention;
图 5为本发明实施例时域扩频 +频域扩频示意图;  FIG. 5 is a schematic diagram of time domain spread spectrum + frequency domain spread spectrum according to an embodiment of the present invention; FIG.
图 6为本发明实施例映射到部分时频资源的示意图;  6 is a schematic diagram of mapping to a part of a time-frequency resource according to an embodiment of the present invention;
图 7为本发明实施例进行上行传输的系统的用户设备结构示意图;  7 is a schematic structural diagram of user equipment of a system for performing uplink transmission according to an embodiment of the present invention;
图 8为本发明实施例进行上行传输的系统的网络侧设备结构示意图;  8 is a schematic structural diagram of a network side device of a system for performing uplink transmission according to an embodiment of the present invention;
图 9为本发明实施例用户设备进行上行传输的方法流程示意图;  FIG. 9 is a schematic flowchart of a method for performing uplink transmission by a user equipment according to an embodiment of the present invention;
图 10为本发明实施例网络侧设备进行上行传输的方法流程示意图。 具体实施方式 本发明实施例用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频 数据序列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数; 将 映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号; 将发送信 号在对应的子帧上发送。 由于本发明实施例将一个数据包的数据映射到多个子帧内传输, 通过信号在时域内的扩展增加用户设备的总发射能量, 以保证用户设备发射的数据能被正 确接收,从而提高了上行传输功率受限的情况下,进行上行传输的时频谱效率和传输效率。  FIG. 10 is a schematic flowchart of a method for performing uplink transmission by a network side device according to an embodiment of the present invention. In the embodiment of the present invention, the user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes. Wherein Q is a positive integer; respectively, the spread spectrum data sequence mapped to each subframe is separately modulated to generate a transmit signal corresponding to each subframe; and the transmit signal is transmitted on the corresponding subframe. Since the data of one data packet is mapped to multiple intra-subframe transmissions, the total transmission energy of the user equipment is increased by the extension of the signal in the time domain to ensure that the data transmitted by the user equipment can be correctly received, thereby improving the uplink. When the transmission power is limited, the time spectrum efficiency and transmission efficiency of the uplink transmission are performed.
其中, 本发明实施例在每个子帧内, 可以通过 FDMA (Frequency Division Multiple Access , 频分多址) + CDMA ( Code Division Multiple Access , 码分多址) 方式或者 TDMA(Time Division Multiple Access, 时分多址) +CDMA方式支持多个用户设备同时传 输, 进一步保证系统的频谱效率。  In the embodiment of the present invention, FDMA (Frequency Division Multiple Access) + CDMA (Code Division Multiple Access) or TDMA (Time Division Multiple Access) may be used in each subframe. Address) +CDMA mode supports simultaneous transmission of multiple user equipments to further ensure the spectrum efficiency of the system.
如图 1所示, 本发明实施例信号传输示意图中, 上行传输分为 6个过程:  As shown in FIG. 1 , in the signal transmission diagram of the embodiment of the present invention, the uplink transmission is divided into six processes:
信道编码、 加扰、 调制映射、 扩频、 子帧映射、 生成子帧信号。  Channel coding, scrambling, modulation mapping, spreading, subframe mapping, generating sub-frame signals.
下面结合说明书附图对本发明实施例作进一步详细描述。  The embodiments of the present invention are further described in detail below with reference to the accompanying drawings.
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后分别从网 络侧与用户设备侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当网络 侧与用户设备侧分开实施时, 也解决了分别在网络侧、 用户设备侧所存在的问题, 只是二 者结合使用时, 会获得更好的技术效果。 In the following description, the implementation of the cooperation between the network side and the user equipment side will be described first. Finally, the implementations from the network side and the user equipment side will be described separately, but this does not mean that the two must be implemented together. In fact, When the network When the side is implemented separately from the user equipment side, the problems existing on the network side and the user equipment side are also solved, but when the two are combined, a better technical effect is obtained.
如图 2所示, 本发明实施例进行上行传输的系统包括: 用户设备 10和网络侧设备 20。 用户设备 10,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序 列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数, 将映射到 每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号, 将发送信号在对 应的子帧上发送;  As shown in FIG. 2, the system for performing uplink transmission in the embodiment of the present invention includes: a user equipment 10 and a network side device 20. The user equipment 10 is configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is positive Integer, the spread spectrum data sequence mapped to each subframe is separately modulated to generate a transmit signal corresponding to each subframe, and the transmit signal is sent on the corresponding subframe;
网络侧设备 20,用于在 Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频 数据序列对应同一个复符号数据, Q是正整数; 将 Q个子帧的扩频数据序列进行组合, 得 到一个复符号数据的完整扩频数据序列; 对完整扩频数据序列进行解扩频, 得到复符号数 据对应的解扩数据。  The network side device 20 is configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, Q is a positive integer; and the spread spectrum data sequence of the Q subframes Combining to obtain a complete spread spectrum data sequence of complex symbol data; despreading the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
在实施中, Q的取值可以根据需要进行设定, 比如是 4、 8、 16、 20等; 也可以参照下 列因素确定:  In the implementation, the value of Q can be set as needed, such as 4, 8, 16, 20, etc.; can also be determined by reference to the following factors:
待传输的数据包大小, 数据包越大, 相应的需要 Q值越大;  The size of the data packet to be transmitted, the larger the data packet, the greater the corresponding Q value;
用户设备 10的链路盾量情况, 链路盾量越好, 相应的 Q值可以越小;  The link shield of the user equipment 10, the better the link shield, the smaller the corresponding Q value;
扩频数据序列的长度, 扩频数据序列的长度越大, 相应需要的 Q值越大。  The length of the spread spectrum data sequence, the larger the length of the spread spectrum data sequence, the larger the Q value required.
Q的取值由接收到的网络侧设备 20配置给用户设备 10的传输参数确定。 或者预先约 定的固定大小, 或者是由约定的 Q的取值与其他参数的映射规则确定。 其他参数可以是扩 频数据序列的长度, 例如扩频数据序列的长度为 144, 每个子帧内可以传输的扩频数据序 列的长度为 12, 则 Q的取值应为 144/12 = 12个。  The value of Q is determined by the transmission parameters configured by the received network side device 20 to the user equipment 10. Or a predetermined fixed size, or determined by the agreed value of Q and the mapping rules of other parameters. The other parameter may be the length of the spread spectrum data sequence. For example, the length of the spread spectrum data sequence is 144, and the length of the spread spectrum data sequence that can be transmitted in each subframe is 12, then the value of Q should be 144/12 = 12 .
较佳地, 用户设备 10对每个复符号数据进行扩频的方式有很多种, 下面列举两种: 扩频方式一、 针对一个复符号数据, 用户设备 10使用该复符号数据对应的扩频码, 对该复符号数据进行扩频;  Preferably, the user equipment 10 performs spreading on each complex symbol data in various manners. Two types are listed below: Spreading mode 1. For a complex symbol data, the user equipment 10 uses the spread spectrum corresponding to the complex symbol data. a code, spreading the complex symbol data;
其中, 每个复符号数据对应的扩频码全部相同或全不相同或部分相同。  The spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
在实施中, 每个复符号数据对应的扩频码可以在协议中规定, 也可以由网络侧通知用 户设备 10。 比如可以按照复符号数据在整个需要发送的数据中的位置确定对应的扩频码, 即预先设定位置和扩频码的对应关系, 然后根据复符号数据的位置确定对应的扩频码。  In the implementation, the spreading code corresponding to each complex symbol data may be specified in the protocol, or the user equipment 10 may be notified by the network side. For example, the corresponding spreading code may be determined according to the position of the complex symbol data in the entire data to be transmitted, that is, the correspondence between the preset position and the spreading code, and then the corresponding spreading code is determined according to the position of the complex symbol data.
扩频方式二、 用户设备 10将所有复符号数据进行分组; 针对一组复符号数据, 使用 该组对应的扩频码对该组中的所有复符号数据进行扩频; 其中, 每组对应的扩频码全不相 同。  Spreading mode 2, the user equipment 10 groups all complex symbol data; for a set of complex symbol data, spreads all the complex symbol data in the group by using the corresponding spreading code of the group; wherein, each group corresponds to The spreading codes are all different.
扩频方式二中, 用户设备 10 可以根据设定的顺序将复符号数据进行分组, 但是需要 保证用户设备 10和网络侧设备 20对于设定的顺序的理解一致。  In the spreading mode 2, the user equipment 10 can group the complex symbol data according to the set order, but it is necessary to ensure that the user equipment 10 and the network side device 20 have the same understanding of the set order.
较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。 下面列举几个分组方式: Preferably, the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule. Here are a few ways to group:
分组方式一、 用户设备 10顺序选取复符号数据进行分组。  Grouping mode 1. The user equipment 10 sequentially selects complex symbol data for grouping.
具体的, 用户设备 10按照设定的每组中包括的复符号数据的数量, 将复符号数据顺 序划分为多组。 比如有 100 个复符号数据, 每组中包括的复符号数据的数量为 10, 则将 1~10分到一组, 11 20分到一组, 以此类推。  Specifically, the user equipment 10 sequentially divides the complex symbol data into a plurality of groups according to the set number of complex symbol data included in each group. For example, if there are 100 complex symbol data, the number of complex symbol data included in each group is 10, then 1~10 points to a group, 11 20 points to a group, and so on.
较佳地, 针对一组复符号数据, 用户设备 10根据公式一确定该组数据中的复符号数 据:  Preferably, for a set of complex symbol data, the user equipment 10 determines complex symbol data in the set of data according to Equation 1:
xp(n) = d(pxM^m+n) 公式一; 其中, 是第 p 组的第 n 个复符号数据; d( xM^m+n)为第 ;?ΧΜ^+"个复符号数据; 是第 ρ组复符号数据中包括的复符号数据的个数; p 是组的编号, =0,1,..., — 1, 是分组的数量; n是第 p 组复符号数据的编号,x p (n) = d(pxM^ m +n) Equation 1; where is the nth complex symbol data of group p; d( xM^ m +n) is the first; ?ΧΜ^+" complex symbols Data; is the number of complex symbol data included in the complex signal data of the ρ group; p is the number of the group, =0, 1, ..., — 1, is the number of packets; n is the complex symbol data of the p-th group Number,
" = 0,1,···,Μ - 1。 " = 0,1,···,Μ - 1.
较佳地, 第 ρ组复符号数据中包括的复符号数据的个数^^ ¾是由接收到的网络侧指 示确定, 公式确定。 Preferably, the number of ρ ^^ ¾ multiplexed symbol data included in the group of complex symbols indicating the data received by the network side determines, determined by the formula.
其中, 每组中包括的复符号数据的数量可以根据传输的数据量大小和 Q值确定。 分组方式二、 用户设备 10间隔选取复符号数据进行分组。  The number of complex symbol data included in each group can be determined according to the amount of data transmitted and the Q value. Grouping mode 2: The user equipment 10 selects complex symbol data for grouping.
具体的, 用户设备 10按照每组中包括的复符号数据的间隔数量, 将复符号数据顺序 划分为多组。 比如有 30个复符号数据, 每组中包括的复符号数据的间隔数量为 10, 则将 1、 11、 21分到一组, 2、 12、 22分到一组, 以此类推。  Specifically, the user equipment 10 sequentially divides the complex symbol data into a plurality of groups according to the number of intervals of the complex symbol data included in each group. For example, there are 30 complex symbol data, and the number of intervals of complex symbol data included in each group is 10, then 1, 11, 21 are grouped into one group, 2, 12, 22 are grouped into one group, and so on.
较佳地, 针对一组复符号数据, 用户设备 10根据公式二确定该组数据中的复符号数 据:  Preferably, for a set of complex symbol data, user equipment 10 determines complex symbol data in the set of data according to Equation 2:
xp(n) = d(p + n P) 公式二; 其中, 是第 p组的第 n个复符号数据; d(p + nxP"}为第 p + nxP个 复符号数据; p是组的编号, =0,1,.." — 1, 是分组的数量; n是第 p组复符号 数据的编号, 《 = 0,1,.." 1^^— 1, 是第 p组复符号数据中包括的复符号数据的 个数, M^m = M Sym / P , ^sym是复符号数据的数量。 x p (n) = d(p + n P) Equation 2; where is the nth complex symbol data of the pth group; d(p + nxP"} is the p + nxP complex symbol data; p is the group The number, =0,1,.." — 1, is the number of groups; n is the number of the p-group complex symbol data, " = 0,1,.." 1^^- 1, is the p-group complex The number of complex symbol data included in the symbol data, M ^m = M Sy m / P , where ^sym is the number of complex symbol data.
较佳地, 用户设备 10将每个复符号数据的扩频数据序列映射到 Q个子帧上的方式有 很多种, 下面列举两种:  Preferably, the user equipment 10 maps the spread spectrum data sequence of each complex symbol data to the Q subframes in a plurality of ways. Two types are listed below:
映射方式一、 用户设备 10顺序选取扩频数据序列映射到 Q个子帧上。 具体的, 用户设备 10按照设定的映射到一个子帧的扩频数据序列数量, 将扩频数据 序列顺序划分为多组, 每组映射到一个子帧上。 比如扩频数据序列长度为 100, 映射到一 个子帧的扩频数据序列长度为 10, 则将 1~10映射到一个子帧上, 11~20映射到另一个子 帧上, 以此类推。 Mapping mode 1. The user equipment 10 sequentially selects the spread spectrum data sequence to be mapped to the Q subframes. Specifically, the user equipment 10 sequentially divides the spread spectrum data sequence into multiple groups according to the set number of the spread data sequences mapped to one subframe, and each group is mapped to one subframe. For example, the length of the spread spectrum data sequence is 100, and the length of the spread spectrum data sequence mapped to one subframe is 10, then 1~10 is mapped to one subframe, 11~20 is mapped to another subframe, and so on.
其中, 映射到一个子帧的扩频数据序列数量可以根据传输的数据量大小和 Q值确定。 在实施中, 针对一个子帧, 用户设备 10可以根据公式三确定需要映射到该子帧的扩 频数据序列:  The number of spread spectrum data sequences mapped to one subframe may be determined according to the amount of data transmitted and the Q value. In an implementation, for one subframe, user equipment 10 may determine a sequence of spread data that needs to be mapped to the subframe according to Equation 3:
z(q, k) = y(q x Msf + k) 公式三; 其中, 是映射到子帧 q上的第 k个扩频数据序列; _y(gxMs 为第 χΜ5/ + :个扩频数据序列; g是子帧编号, = ο,ι,···,ρ_ι; 是映射到一个子 帧上的扩频数据序列的编号, k = 0X...,Msf - 1 , Msf是映射到每个子帧内的扩频数据 序列的长度。 z(q, k) = y(qx M sf + k) Equation 3; where is the k-th spread spectrum data sequence mapped onto subframe q ; _y(gxM s is χΜ 5/ + : spread spectrum Data sequence; g is the subframe number, = ο, ι,···, ρ_ι; is the number of the spread spectrum data sequence mapped to a sub-frame, k = 0X..., M sf - 1 , M sf is The length of the sequence of spread spectrum data mapped into each subframe.
相应的, 网络侧设备 20按子帧顺序将 Q个子帧上的扩频数据序列进行组合。  Correspondingly, the network side device 20 combines the spread spectrum data sequences on the Q subframes in subframe order.
比如每个子帧的扩频数据序列长度为 10, 则组合后的数据序列中, 第 ι~ιο个数据为 第 1个子帧上的扩频数据序列, 第 11~20个数据为第 2个子帧上的扩频数据序列, 以此类 推。  For example, if the length of the spread spectrum data sequence of each subframe is 10, in the combined data sequence, the data of the first ι~ιο is the spread spectrum data sequence in the first subframe, and the data of the 11th to the 20th is the second subframe. The sequence of spread spectrum data, and so on.
其中,映射到一个子帧的扩频数据序列数量可以根据扩频数据序列的长度和 Q值确定。 在实施中, 网络侧设备 20根据公式四按子帧顺序将 Q个子帧上的扩频数据序列进行 组合:  The number of spread data sequences mapped to one subframe may be determined according to the length of the spread data sequence and the Q value. In an implementation, the network side device 20 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4:
x(m) = r(q, k) 公式四; 其中, : W)为组合后的第 W个扩频数据序列; r (g, 是子帧 q上的第 k个扩频 数据序列; q = _m 1 M Sf \ Λ = m - qx M Sf , 是映射到每个子帧内的扩频 数据序列的长度。 x(m) = r(q, k) Equation 4; where: W) is the combined Wth spread spectrum data sequence; r (g, is the kth spread spectrum data sequence on subframe q; q = _ m 1 M S f \ Λ = m - q x M S f , is the length of the sequence of spread spectrum data mapped into each subframe.
映射方式二、 用户设备 10间隔选取扩频数据序列映射到 Q个子帧上。  Mapping mode 2: User equipment 10 The interval selection spread spectrum data sequence is mapped to Q subframes.
具体的, 用户设备 10按照设定的间隔个数, 将扩频数据序列顺序划分为多组, 每组 映射到一个子帧上。比如扩频数据序列长度为 30,设定的间隔个数为 10,则将序列中第 1、 11、 21个扩频数据映射到一个子帧上, 第 2、 12、 22个扩频数据映射到另一个子帧上, 以 此类推。  Specifically, the user equipment 10 sequentially divides the spread spectrum data sequence into multiple groups according to the set number of intervals, and each group is mapped to one subframe. For example, if the length of the spread spectrum data sequence is 30 and the number of intervals is 10, the first, eleventh, and twenty-first spread spectrum data in the sequence are mapped to one subframe, and the second, second, and twenty-two spread spectrum data maps are mapped. Go to another sub-frame, and so on.
其中, 间隔个数可以等于子帧个数 Q, 或者由网络侧配置的传输参数获得。 在实施中, 针对一个子帧, 用户设备 10可以根据公式五确定需要映射到该子帧的扩 频数据序列:
Figure imgf000009_0001
. ....公式五; 其中, 是映射到子帧 q 上的第 k 个扩频数据序列; _ + Α:χρ)为第 + χδ个扩频数据序列; g是子帧编号, = ο,ι,···,ρ— 1; 是映射到一个子 帧内的扩频数据序列的编号, k = 0X...,Msf — 1 , Msf是映射到每个子帧内的扩频数据 序列的长度。
The number of intervals may be equal to the number of subframes Q, or obtained by transmission parameters configured on the network side. In an implementation, for one subframe, user equipment 10 may determine a sequence of spread spectrum data that needs to be mapped to the subframe according to Equation 5:
Figure imgf000009_0001
. . . Equation 5; where is the k-th spread data sequence mapped onto subframe q ; _ + Α: χρ) is the + χ δ spread spectrum data sequence; g is the subframe number, = ο,ι,···,ρ— 1; is the number of the spread spectrum data sequence mapped into one subframe, k = 0X..., M sf — 1 , M sf is the map mapped to each sub-frame The length of the frequency data sequence.
相应的, 网络侧设备 20间隔选取 Q个子帧上的扩频数据序列进行组合。  Correspondingly, the network side device 20 selects the spread spectrum data sequences on the Q subframes to be combined.
例如, 每个子帧的扩频数据序列长度为 30, 共有 10个子帧, 设定的间隔个数为 10, 则将 1~10个子帧的每个子帧第 1个扩频数据按照顺序排在组合扩频数据序列的第 1位〜第 10位, 第 1个子帧〜第 10个子帧的每个子帧的第 2个扩频数据排在组合数据的第 11位〜 第 20位, 以此类推, 最后将排好的扩频数据序列进行组合。  For example, the length of the spread spectrum data sequence of each subframe is 30, and there are 10 subframes. If the number of intervals is 10, the first spread spectrum data of each subframe of 1 to 10 subframes is sequentially combined. The first to the tenth bits of the spread spectrum data sequence, the second spread spectrum data of each subframe of the first subframe to the tenth subframe is ranked from the 11th to the 20th of the combined data, and so on. Finally, the sequence of the spread spectrum data is combined.
在实施中, 网络侧设备 20根据公式六间隔选取 Q个子帧上的扩频数据序列进行组合: xO) = r(q, k) 公式六; 其中, w)为组合后的第 m个扩频数据序列; r(q, k)是子帧 q上的第 k个扩频 数据序列; k = [ n l Q\ , q = m - kxQ , Q是子巾贞个数。 In an implementation, the network side device 20 selects the spread spectrum data sequence on the Q subframes according to the formula six intervals: xO) = r(q, k) Equation 6; where w) is the combined mth spread spectrum The data sequence; r(q, k) is the kth spread spectrum data sequence on subframe q ; k = [ nl Q\ , q = m - kxQ , Q is the number of sub-frames.
较佳地, 针对一个子帧的一个扩频数据序列, 用户设备 10将扩频数据序列映射到时 频资源上, 并将时频资源上的扩频数据序列进行调制生成 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)符号。  Preferably, for one spread spectrum data sequence of one subframe, the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate OFDM (Orthogonal Frequency Division Multiplexing) , Orthogonal Frequency Division Multiplexing) symbols.
在实施中, 映射到每个 OFDM 符号上的扩频数据序列经过 OFDM 调制或者 In an implementation, the spread spectrum data sequence mapped onto each OFDM symbol is OFDM modulated or
DFT-S-OFDM (离散傅立叶变换扩展的正交频分复用)调制, 生成 OFDM符号。 DFT-S-OFDM (Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing) modulation, to generate OFDM symbols.
较佳地, 用户设备 10将扩频数据序列映射到时频资源上的方式有三种, 下面分别列 举介绍。  Preferably, there are three ways for the user equipment 10 to map the spread spectrum data sequence to the time-frequency resource, which are respectively listed below.
映射方式一、 用户设备 10 釆用时域方式, 将一个复符号数据对应的扩频数据序列映 射到不同 OFDM符号的同一个子载波上, 具体可以参见图 3。  The mapping mode is as follows: The user equipment 10 uses the time domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to the same subcarrier of different OFDM symbols. For details, refer to FIG. 3.
例如,用户设备 10的传输带宽范围内有 12个数据子载波,一个子帧内有 12个 OFDM 符号用于数据传输, 一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度 为 12, 长度为 12的扩频数据序列分别映射到 12个 OFDM符号的同一个数据子载波上。 不同数据符号的扩频数据序列映射到不同的数据子载波上, 这种情况下, 用户设备 10在 一个子帧内使用一个扩频码最多可以传输 12个数据符号, 每个子载波传输 1个数据符号。 在实施中, 传输参数中可以包括多个扩频码, 这样用户设备 10使用多个扩频码, 可以增 加在每个子帧内传输的数据符号数目。 For example, there are 12 data subcarriers in the transmission bandwidth of the user equipment 10, 12 OFDM symbols in one subframe for data transmission, and a spread spectrum data sequence of one data symbol mapped to a spread spectrum data sequence in one subframe. A spread spectrum data sequence of length 12 and length 12 is mapped to the same data subcarrier of 12 OFDM symbols, respectively. The spread data sequence of different data symbols is mapped to different data subcarriers. In this case, the user equipment 10 can transmit up to 12 data symbols using one spreading code in one subframe, and one data per subcarrier. symbol. In an implementation, a plurality of spreading codes may be included in the transmission parameters, such that the user equipment 10 uses a plurality of spreading codes to increase the number of data symbols transmitted in each subframe.
相应的, 网络侧设备 20釆用时域方式, 在 Q个子帧内的特定时域资源上提取扩频数 据序列。  Correspondingly, the network side device 20 extracts the spread spectrum data sequence on the specific time domain resources in the Q subframes in the time domain manner.
映射方式二、 用户设备 10 釆用频域方式, 将一个复符号数据对应的扩频数据序列映 射到同一个 OFDM符号的多个子载波上, 具体可以参见图 4。  The mapping mode 2, the user equipment 10 uses the frequency domain method to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol, as shown in FIG. 4 .
例如,用户设备 10的传输带宽范围内有 12个数据子载波,一个子帧内有 12个 OFDM 符号用于数据传输, 一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度 为 12, 长度为 12的扩频数据序列分别映射到同一个 OFDM符号的 12个数据子载波上。 不同数据符号的扩频数据序列映射到不同的 OFDM符号上,这种情况下, 用户设备在一个 子帧内使用一个扩频码最多可以传输 12个数据符号,每个 OFDM符号传输 1个数据符号。 在实施中, 传输参数中可以包括多个扩频码, 这样用户设备 10使用多个扩频码, 可以增 加在每个子帧内传输的数据符号数目。  For example, there are 12 data subcarriers in the transmission bandwidth of the user equipment 10, 12 OFDM symbols in one subframe for data transmission, and a spread spectrum data sequence of one data symbol mapped to a spread spectrum data sequence in one subframe. A sequence of spread spectrum data of length 12 and length 12 is mapped to 12 data subcarriers of the same OFDM symbol, respectively. Spreading data sequences of different data symbols are mapped to different OFDM symbols. In this case, the user equipment can transmit up to 12 data symbols using one spreading code in one subframe, and one data symbol per OFDM symbol. . In an implementation, a plurality of spreading codes may be included in the transmission parameters, such that the user equipment 10 uses a plurality of spreading codes to increase the number of data symbols transmitted in each subframe.
相应的, 网络侧设备 20釆用频域方式, 在 Q个子帧内的特定频域资源上提取扩频数 据序列。  Correspondingly, the network side device 20 extracts the spread spectrum data sequence on the specific frequency domain resources in the Q subframes by using the frequency domain method.
映射方式三、 用户设备 10 釆用时域和频域结合的方式, 将一个复符号数据对应的扩 频数据序列映射到多个 OFDM符号的多个子载波上, 具体可以参见图 5。  The mapping mode 3, the user equipment 10 uses a combination of the time domain and the frequency domain, and maps the spread data sequence corresponding to one complex symbol data to multiple subcarriers of multiple OFDM symbols, as shown in FIG. 5 .
例如, 用户设备的传输带宽范围内有 12个数据子载波, 一个子帧内有 12个 OFDM符 号用于数据传输, 一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度为 144, 一个数据符号的长度为 144的扩频数据序列分别映射到 12个 OFDM符号的 12个数 据子载波上。 这种情况下, 用户设备在一个子帧内使用一个扩频码最多可以传输 1个数据 符号。 基站可以配置用户设备使用多个扩频码, 增加在每个子帧内传输的数据符号数目。 时域 +频域扩频可以釆用两级扩频的方式实现, 即数据符号先釆用频域 (时域)扩频序列进行 第一级扩频,再对扩频后的序列用时域 (频域)扩频序列进行第二级扩频,具体可以参见图 5。  For example, there are 12 data subcarriers in the transmission bandwidth of the user equipment, 12 OFDM symbols in one subframe for data transmission, and a spread spectrum data sequence of one data symbol mapped to the length of the spread data sequence in one subframe. For 144, a spread spectrum data sequence of length 144 of one data symbol is mapped onto 12 data subcarriers of 12 OFDM symbols, respectively. In this case, the user equipment can transmit up to one data symbol using one spreading code in one subframe. The base station can configure the user equipment to use multiple spreading codes to increase the number of data symbols transmitted in each subframe. The time domain + frequency domain spread spectrum can be realized by two-stage spread spectrum, that is, the data symbol is firstly spread by the frequency domain (time domain) spread spectrum sequence, and then the time domain of the spread spectrum sequence is used ( The frequency domain) spreading sequence performs second-level spreading, as shown in FIG. 5.
相应的, 网络侧设备 20釆用釆用时域和频域结合的方式, 在 Q个子帧内的特定时域 和频域资源上提取扩频数据序列。  Correspondingly, the network side device 20 extracts the spread spectrum data sequence in a specific time domain and frequency domain resource in the Q subframes by using a combination of the time domain and the frequency domain.
较佳地, 用户设备 10将扩频数据序列映射到时频资源上后, 还可以将扩频数据序列 映射到全部或部分时频资源上。  Preferably, after the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, the spread spectrum data sequence may also be mapped to all or part of the time-frequency resources.
具体的, 用户设备 10可以通过选择映射到一个子帧内的扩频数据序列的长度, 将扩 频数据序列映射到全部时频资源上或者只映射到部分时频资源上。 对于后者, 可以在不同 的时频资源上同时传输用户设备的多个数据符号。 例如, 四个数据符号分别经过扩频映射 到四块时频区域, 具体可以参见图 6。  Specifically, the user equipment 10 may map the spread data sequence to all time-frequency resources or only to part of the time-frequency resources by selecting the length of the spread spectrum data sequence mapped into one subframe. For the latter, multiple data symbols of the user equipment can be simultaneously transmitted on different time-frequency resources. For example, four data symbols are respectively spread-spread mapped to four time-frequency regions. See Figure 6 for details.
其中, 不同的时频区域, 还可以分别传输不同的用户设备 10的数据符号。 在实施中, 用户设备 10对每个复符号数据进行扩频得到每个复符号数据的扩频数据 序列之前还需要进行信道编码、 加扰和调制映射, 参见图 1。 具体的: The data symbols of different user equipments 10 may also be transmitted separately in different time-frequency regions. In an implementation, the user equipment 10 also needs to perform channel coding, scrambling, and modulation mapping before spreading the complex symbol data to obtain a spread spectrum data sequence for each complex symbol data, as shown in FIG. specific:
信道编码: 源数据块含 bit 比特数据 0),...^(^¾ -1) , 经过信道编码后数据块长 度为 Mbit比特, 6(0), ..., 6 (Mbit _l) ; Channel coding: The source data block contains bit bit data 0),...^(^ 3⁄4 -1). After channel coding, the data block length is Mbit bits, 6(0), ..., 6 (M bit _l) ;
加扰: 信道编码后的数据块 6(0),... (Mbit - 1)通过加扰, 生成加扰后的数据块Scrambling: Channel-coded data blocks 6(0),... (M bit - 1) generate scrambled data blocks by scrambling
6~(0),... ~(Mbit - 1)。 ~ ~ 6~(0),... ~(M bit - 1). ~ ~
星座图映射: 加扰后的数据块 (0), ..., ^(;Mbit - 1)经过星座图映射生成复符号数据 块 i (0),..., i (Msym— 1) , 包含 Msym个复符号数据。 具体的映射方式可以是 BPSKConstellation mapping: scrambled data blocks (0), ..., ^(;M bit - 1) generate complex symbol data blocks i (0),..., i (M sym — 1 via constellation mapping ) , contains M sym complex symbol data. The specific mapping method can be BPSK
( Binary phase shift keying, 二相相移键控 ), QPSK ( Quadrature Phase Shift Keying, 四相 相移键控), 16QAM ( Quadrature Amplitude Modulation, 相正交振幅调制), 64QAM等。 (Binary phase shift keying), QPSK (Quadature Phase Shift Keying), 16QAM (Quadature Amplitude Modulation), 64QAM, etc.
相应的, 网络侧设备 20得到复符号数据对应的解扩数据后, 还需要对解扩数据进行 接收处理。 具体的, 得到复符号数据对应的解扩数据包括:  Correspondingly, after the network side device 20 obtains the despread data corresponding to the complex symbol data, it also needs to perform receiving processing on the despread data. Specifically, the despread data corresponding to the complex symbol data includes:
解调制, 解扰以及解码处理。  Demodulation, descrambling, and decoding processing.
其中, 用户设备 10和网络侧设备 20可以根据传输参数进行上述传输过程。  The user equipment 10 and the network side device 20 can perform the foregoing transmission process according to the transmission parameters.
传输参数包括但不限于下列信息中的至少一种:  Transmission parameters include, but are not limited to, at least one of the following:
绑定的子帧数目 (即 Q值)、 映射到一个子帧上的扩频数据序列长度、 每个子帧内占 用的时频资源 (即告知釆用频域、 时域、 频域和时域结合的方式中的一种)、 扩频码、 映 射到哪个(些)子帧 (映射的子帧不连续)、 映射的第一个子帧 (映射的子帧连续)、 映射 到子帧的方式、 映射到子帧过程中映射到一个子帧的数据符号数量、 映射到子帧过程中间 隔个数、 映射到时频资源的方式、 复符号数据的数量、 扩频数据序列数量。  The number of bound subframes (that is, the Q value), the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resources occupied in each subframe (ie, the frequency domain, the time domain, the frequency domain, and the time domain) One of the combined methods), the spreading code, which subframe(s) are mapped (the mapped subframe is discontinuous), the first subframe of the mapping (the mapped subframe is continuous), and the mapping to the subframe The mode, the number of data symbols mapped to one subframe during the sub-frame process, the number of intervals mapped to the subframe, the manner of mapping to the time-frequency resource, the number of complex symbol data, and the number of spread data sequences.
在实施中, 传输参数可以预先在协议中规定, 也可以由网络侧设备 20进行配置; 还 可以传输参数中的部分信息由协议规定, 部分信息由网络侧设备 20进行配置。 不管釆用 哪种方式, 只要保证用户设备 10和网络侧设备 20进行上行传输确定的参数相同即可。  In the implementation, the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device 20; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device 20. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment 10 and the network side device 20 for uplink transmission are the same.
如果需要网络侧设备 20进行配置 , 较佳地, 网络侧设备 20为用户设备 10配置传输 参数。  If the network side device 20 is required to perform configuration, preferably, the network side device 20 configures the transmission parameters for the user equipment 10.
具体的, 网络侧设备 20通过高层信令半静态, 为用户设备配置传输参数; 或通过调 度上行传输的控制信令, 为用户设备配置传输参数。  Specifically, the network side device 20 configures the transmission parameter for the user equipment by using the high layer signaling semi-static, or configures the transmission parameter for the user equipment by scheduling the control signaling of the uplink transmission.
需要说明的是, 本发明实施例并不局限于上述两种配置方式, 其他能够为用户设备 10 配置传输参数的方式都适用本法明实施例。  It should be noted that the embodiments of the present invention are not limited to the foregoing two configurations, and other embodiments capable of configuring transmission parameters for the user equipment 10 are applicable to the embodiments of the present disclosure.
针对网络侧设备 20, 由于知道用户设备 10的传输参数, 所以知道用户设备 10将数据 分别映射到哪些子帧上, 相应的, 网络侧设备 10 就可以从对应的子帧上获取来自用户设 备的数据进行组后, 并对组合后的数据进行解扩处理后, 再进行接收处理。  For the network side device 20, since the transmission parameters of the user equipment 10 are known, it is known to which subframes the user equipment 10 maps data to, and correspondingly, the network side device 10 can acquire the user equipment from the corresponding subframe. After the data is grouped, the combined data is despreaded and then received.
其中, 本发明实施例的网络侧设备可以^ &站(比如宏基站、 家庭基站等), 也可以 是 RN (中继)设备, 还可以是其它网络侧设备。 The network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), or It is an RN (relay) device, and it can also be other network-side devices.
如图 7所示, 本发明实施例进行上行传输的系统的用户设备包括: 处理模块 701、 调 制模块 702和发送模块 703。  As shown in FIG. 7, the user equipment of the system for uplink transmission in the embodiment of the present invention includes: a processing module 701, a modulation module 702, and a sending module 703.
处理模块 701 , 用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据 序列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  The processing module 701 is configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is positive Integer
调制模块 702, 用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧 对应的发送信号;  The modulating module 702 is configured to separately modulate the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe.
发送模块 703 , 用于将发送信号在对应的子帧上发送。  The sending module 703 is configured to send the sending signal on the corresponding subframe.
较佳地, 处理模块 701针对一个复符号数据, 使用该复符号数据对应的扩频码, 对该 复符号数据进行扩频; 其中, 每个复符号数据对应的扩频码全部相同或全不相同或部分相 同。  Preferably, the processing module 701 performs spreading on the complex symbol data by using a spreading code corresponding to the complex symbol data for a complex symbol data, where the spreading codes corresponding to each complex symbol data are all the same or none. Same or partially the same.
较佳地, 处理模块 701将所有复符号数据进行分组; 针对一组复符号数据, 使用该组 对应的扩频码对该组中的所有复符号数据进行扩频; 其中, 每组对应的扩频码全不相同。  Preferably, the processing module 701 groups all complex symbol data; for a group of complex symbol data, uses the corresponding spreading code of the group to spread all the complex symbol data in the group; wherein each group corresponds to the expansion The frequency codes are all different.
较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。 较佳地, 处理模块 701顺序选取复符号数据进行分组。  Preferably, the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule. Preferably, the processing module 701 sequentially selects complex symbol data for grouping.
较佳地, 针对一组复符号数据, 处理模块 701根据公式一顺序选取复符号数据进行分 组。  Preferably, for a set of complex symbol data, the processing module 701 selects the complex symbol data for grouping according to the formula.
较佳地, 处理模块 701间隔选取复符号数据进行分组。  Preferably, the processing module 701 selects complex symbol data for grouping.
较佳地, 针对一组复符号数据, 处理模块 701根据公式二间隔选取复符号数据进行分 组。  Preferably, for a set of complex symbol data, the processing module 701 selects the complex symbol data for grouping according to the formula two intervals.
较佳地, 处理模块 701顺序选取扩频数据序列映射到 Q个子帧上。  Preferably, the processing module 701 sequentially selects the spread spectrum data sequence to be mapped to the Q subframes.
较佳地, 针对一个子帧, 处理模块 701根据公式三顺序选取扩频数据序列映射到 Q个 子帧上。  Preferably, for one subframe, the processing module 701 selects the spread spectrum data sequence to be mapped to the Q subframes according to the third formula.
较佳地, 处理模块 701间隔选取扩频数据序列映射到 Q个子帧上。  Preferably, the processing module 701 maps the selected spread spectrum data sequence to the Q subframes.
较佳地, 针对一个子帧, 处理模块 701根据公式五间隔选取扩频数据序列映射到 Q个 子帧上。  Preferably, for one subframe, the processing module 701 selects the spread spectrum data sequence to be mapped to the Q subframes according to the formula five intervals.
较佳地, 调制模块 702针对一个子帧的一个扩频数据序列, 将扩频数据序列映射到时 频资源上, 并将时频资源上的扩频数据序列进行调制生成 OFDM符号。  Preferably, the modulation module 702 maps the spread spectrum data sequence to the time-frequency resource for one spread spectrum data sequence of one subframe, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol.
较佳地, 调制模块 702针对一个子帧的一个扩频数据序列, 将扩频数据序列映射到时 频资源上, 并将时频资源上的扩频数据序列进行调制生成 OFDM符号;  Preferably, the modulation module 702 maps the spread spectrum data sequence to the time-frequency resource for one spread spectrum data sequence of one subframe, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol;
其中, 同一组复符号数据的扩频数据序列映射到不同的时频资源上。  The spread spectrum data sequence of the same set of complex symbol data is mapped to different time-frequency resources.
较佳地, 调制模块 702将扩频数据序列映射到全部或部分时频资源上。  Preferably, modulation module 702 maps the sequence of spread spectrum data to all or part of the time-frequency resources.
较佳地, 调制模块 702釆用时域方式, 将一个复符号数据对应的扩频数据序列映射到 不同 OFDM符号的同一个子载波上; 或釆用频域方式,将一个复符号数据对应的扩频数据 序列映射到同一个 OFDM符号的多个子载波上; 或釆用时域和频域结合的方式,将一个复 符号数据对应的扩频数据序列映射到多个 OFDM符号的多个子载波上。 Preferably, the modulation module 702 maps the spread spectrum data sequence corresponding to one complex symbol data to the time domain manner. Or mapping the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol in a frequency domain manner; or using a combination of time domain and frequency domain, A spread spectrum data sequence corresponding to one complex symbol data is mapped to a plurality of subcarriers of a plurality of OFDM symbols.
较佳地, 调制模块 702根据传输参数确定每个子帧内占用的时频资源。  Preferably, the modulation module 702 determines the time-frequency resources occupied in each subframe according to the transmission parameters.
较佳地, 处理模块 701根据传输参数确定 Q值。  Preferably, the processing module 701 determines the Q value based on the transmission parameters.
如图 8所示, 本发明实施例进行上行传输的系统的网络侧设备包括: 提取模块 801、 组合模块 802和解扩频模块 803。  As shown in FIG. 8, the network side device of the system for performing uplink transmission according to the embodiment of the present invention includes: an extraction module 801, a combination module 802, and a despreading module 803.
提取模块 801 , 用于在 Q个子帧内的特定时频资源上提取扩频数据序列, 其中该扩频 数据序列对应同一个复符号数据 , Q是正整数;  The extracting module 801 is configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
组合模块 802, 用于将 Q个子帧的扩频数据序列进行组合, 得到一个复符号数据的完 整扩频数据序列;  a combining module 802, configured to combine the spread spectrum data sequences of the Q subframes to obtain a complete spread spectrum data sequence of the complex symbol data;
解扩频模块 803 , 用于对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩 数据。  The despreading module 803 is configured to despread the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
较佳地, 提取模块 801釆用时域方式, 在 Q个子帧内的特定时域资源上提取扩频数据 序列; 或釆用频域方式, 在 Q个子帧内的特定频域资源上提取扩频数据序列; 或釆用釆用 时域和频域结合的方式, 在 Q个子帧内的特定时域和频域资源上提取扩频数据序列。  Preferably, the extracting module 801 extracts the spread spectrum data sequence on the specific time domain resource in the Q subframes in the time domain manner, or extracts the spread spectrum on the specific frequency domain resource in the Q subframes by using the frequency domain method. The data sequence; or the combination of the time domain and the frequency domain, extracts the spread spectrum data sequence on the specific time domain and frequency domain resources in the Q subframes.
较佳地, 组合模块 802按子帧顺序将 Q个子帧上的扩频数据序列进行组合。  Preferably, combining module 802 combines the sequence of spread data on Q subframes in a sub-frame order.
较佳地,组合模块 802根据公式四按子帧顺序将 Q个子帧上的扩频数据序列进行组合。 较佳地, 组合模块 802间隔选取 Q个子帧上的扩频数据序列进行组合。  Preferably, the combining module 802 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4. Preferably, the combining module 802 selects the spread spectrum data sequences on the Q subframes to be combined.
较佳地,组合模块 802根据公式六按子帧顺序将 Q个子帧上的扩频数据序列进行组合。 较佳地, 本发明实施例的设备还可以进一步包括: 通知模块 804。  Preferably, the combining module 802 combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 6. Preferably, the device in the embodiment of the present invention may further include: a notification module 804.
通知模块 804, 用于为用户设备配置传输参数。  The notification module 804 is configured to configure a transmission parameter for the user equipment.
较佳地, 传输参数包括下列信息中的一种或多种:  Preferably, the transmission parameters include one or more of the following information:
Q值、 映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。  The Q value, the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resource occupied in each subframe.
较佳地, 通知模块 804通过高层信令半静态, 为用户设备配置传输参数; 或通过调度 上行传输的控制信令, 为用户设备配置传输参数。  Preferably, the notification module 804 configures the transmission parameters for the user equipment through the high-level signaling semi-static; or configures the transmission parameters for the user equipment by scheduling the control signaling of the uplink transmission.
基于同一发明构思, 本发明实施例中还提供了一种用户设备进行上行传输的方法以及 网络侧设备进行上行传输的方法, 由于这些方法解决问题的原理与本发明实施例进行上行 传输的系统相似, 因此这些方法的实施可以参见系统的实施, 重复之处不再赘述。  Based on the same inventive concept, the embodiment of the present invention further provides a method for uplink transmission by a user equipment and a method for uplink transmission by a network side device, and the principle of solving the problem is similar to the system for performing uplink transmission in the embodiment of the present invention. Therefore, the implementation of these methods can be referred to the implementation of the system, and the repetition will not be repeated.
如图 9所示, 本发明实施例用户设备进行上行传输的方法包括下列步骤:  As shown in FIG. 9, the method for performing uplink transmission by a user equipment according to an embodiment of the present invention includes the following steps:
步骤 901、 用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据 序列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  Step 901: The user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer. ;
步骤 902、 用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧 对应的发送信号; Step 902: The user equipment separately modulates the spread spectrum data sequence mapped to each subframe to generate each subframe. Corresponding transmitted signal;
步骤 903、 用户设备将发送信号在对应的子帧上发送。  Step 903: The user equipment sends the sending signal on the corresponding subframe.
较佳地, 步骤 901中, 用户设备对每个复符号数据进行扩频的方式有很多种, 下面列 举两种:  Preferably, in step 901, there are many ways for the user equipment to spread the frequency of each complex symbol data. Two types are listed below:
扩频方式一、 针对一个复符号数据, 用户设备使用该复符号数据对应的扩频码, 对该 复符号数据进行扩频;  Spreading mode 1. For a complex symbol data, the user equipment uses the spreading code corresponding to the complex symbol data to spread the complex symbol data;
其中, 每个复符号数据对应的扩频码全部相同或全不相同或部分相同。  The spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
在实施中, 每个复符号数据对应的扩频码可以在协议中规定, 也可以由网络侧通知用 户设备。 比如可以按照复符号数据在整个需要发送的数据中的位置确定对应的扩频码, 即 预先设定位置和扩频码的对应关系, 然后根据复符号数据的位置确定对应的扩频码。  In the implementation, the spreading code corresponding to each complex symbol data may be specified in the protocol, or the user equipment may be notified by the network side. For example, the corresponding spreading code may be determined according to the position of the complex symbol data in the entire data to be transmitted, that is, the correspondence between the position and the spreading code is preset, and then the corresponding spreading code is determined according to the position of the complex symbol data.
扩频方式二、 用户设备将所有复符号数据进行分组; 针对一组复符号数据, 使用该组 对应的扩频码对该组中的所有复符号数据进行扩频; 其中, 每组对应的扩频码全不相同。  Spreading mode 2: The user equipment groups all complex symbol data; for a set of complex symbol data, spreads all the complex symbol data in the group by using the corresponding spreading code of the group; wherein, each group corresponding to the expansion The frequency codes are all different.
扩频方式二中, 用户设备可以根据设定的顺序将复符号数据进行分组, 但是需要保证 用户设备和网络侧设备对于设定的顺序的理解一致。  In the spreading mode 2, the user equipment can group the complex symbol data according to the set order, but it is necessary to ensure that the user equipment and the network side device have the same understanding of the set order.
较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。 下面列举几个分组方式:  Preferably, the spreading code corresponding to the complex symbol data is determined by the received network side indication or determined according to a preset rule. Here are a few ways to group:
分组方式一、 用户设备顺序选取复符号数据进行分组。  Grouping mode 1. The user equipment sequentially selects complex symbol data for grouping.
具体的, 用户设备按照设定的每组中包括的复符号数据的数量, 将复符号数据顺序划 分为多组。  Specifically, the user equipment sequentially divides the complex symbol data into a plurality of groups according to the set number of complex symbol data included in each group.
较佳地, 针对一组复符号数据, 用户设备根据公式一确定该组数据中的复符号数据。 分组方式二、 用户设备间隔选取复符号数据进行分组。  Preferably, for a set of complex symbol data, the user equipment determines complex symbol data in the set of data according to Equation 1. Grouping mode 2: User equipment interval is selected by complex symbol data for grouping.
具体的, 用户设备按照每组中包括的复符号数据的间隔数量, 将复符号数据顺序划分 为多组。  Specifically, the user equipment sequentially divides the complex symbol data into a plurality of groups according to the number of intervals of the complex symbol data included in each group.
较佳地, 针对一组复符号数据 , 用户设备根据公式二确定该组数据中的复符号数据。 较佳地, 步骤 901中, 用户设备将每个复符号数据的扩频数据序列映射到 Q个子帧上 的方式有很多种, 下面列举两种:  Preferably, for a set of complex symbol data, the user equipment determines complex symbol data in the set of data according to Equation 2. Preferably, in step 901, the user equipment maps the spread spectrum data sequence of each complex symbol data to the Q subframes in a plurality of ways.
映射方式一、 用户设备顺序选取扩频数据序列映射到 Q个子帧上。  Mapping mode 1. The user equipment sequentially selects the spread spectrum data sequence to be mapped to Q subframes.
具体的, 用户设备按照设定的映射到一个子帧的扩频数据序列数量, 将扩频数据序列 顺序划分为多组, 每组映射到一个子帧上。  Specifically, the user equipment divides the sequence of the spread spectrum data into multiple groups according to the set number of the spread data sequences mapped to one subframe, and each group is mapped to one subframe.
其中, 映射到一个子帧的扩频数据序列数量可以根据传输的数据量大小和 Q值确定。 在实施中, 针对一个子帧, 用户设备可以根据公式三确定需要映射到该子帧的扩频数 据序列。  The number of spread spectrum data sequences mapped to one subframe may be determined according to the amount of data transmitted and the Q value. In an implementation, for one subframe, the user equipment may determine a sequence of spread data that needs to be mapped to the subframe according to Equation 3.
映射方式二、 用户设备顺序选取扩频数据序列映射到 Q个子帧上。 具体的, 用户设备按照设定的间隔个数, 将扩频数据序列顺序划分为多组, 每组映射 到一个子帧上。 Mapping mode 2: The user equipment sequentially selects the spread spectrum data sequence to be mapped to the Q subframes. Specifically, the user equipment sequentially divides the spread spectrum data sequence into multiple groups according to the set number of intervals, and each group is mapped to one subframe.
其中, 间隔个数可以等于子帧个数 Q, 或者由网络侧配置的传输参数获得。  The number of intervals may be equal to the number of subframes Q, or obtained by transmission parameters configured on the network side.
在实施中, 针对一个子帧, 用户设备可以根据公式五确定需要映射到该子帧的扩频数 据序列。  In an implementation, for one subframe, the user equipment can determine a sequence of spread data that needs to be mapped to the subframe according to Equation 5.
较佳地, 步骤 902中, 针对一个子帧的一个扩频数据序列, 用户设备 10将扩频数据 序列映射到时频资源上, 并将时频资源上的扩频数据序列进行调制生成 OFDM符号。  Preferably, in step 902, for a spread spectrum data sequence of one subframe, the user equipment 10 maps the spread spectrum data sequence to the time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate the OFDM symbol. .
在实施中, 映射到每个 OFDM 符号上的扩频数据序列经过 OFDM 调制或者 DFT-S-OFDM调制, 生成 OFDM符号。  In an implementation, the spread spectrum data sequence mapped onto each OFDM symbol is OFDM modulated or DFT-S-OFDM modulated to generate OFDM symbols.
较佳地, 用户设备将扩频数据序列映射到时频资源上的方式有三种, 下面分别列举介 绍。  Preferably, there are three ways for the user equipment to map the spread spectrum data sequence to the time-frequency resource, which are described separately below.
映射方式一、 用户设备釆用时域方式, 将一个复符号数据对应的扩频数据序列映射到 不同 OFDM符号的同一个子载波上, 具体可以参见图 3。  Mapping mode 1. The user equipment uses the time domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to the same subcarrier of different OFDM symbols. For details, see Figure 3.
映射方式二、 用户设备釆用频域方式, 将一个复符号数据对应的扩频数据序列映射到 同一个 OFDM符号的多个子载波上, 具体可以参见图 4。  The mapping mode is as follows: The user equipment uses the frequency domain mode to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol. For details, refer to FIG. 4 .
映射方式三、 用户设备釆用时域和频域结合的方式, 将一个复符号数据对应的扩频数 据序列映射到多个 OFDM符号的多个子载波上, 具体可以参见图 5。  The mapping mode is as follows: The user equipment uses a combination of the time domain and the frequency domain to map the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of multiple OFDM symbols. For details, refer to FIG. 5.
较佳地, 用户设备将扩频数据序列映射到时频资源上时, 还可以将扩频数据序列映射 到全部或部分时频资源上。  Preferably, when the user equipment maps the spread spectrum data sequence to the time-frequency resource, the spread spectrum data sequence may also be mapped to all or part of the time-frequency resource.
具体的, 用户设备可以通过选择映射到一个子帧内的扩频数据序列的长度, 将扩频数 据序列映射到全部时频资源上或者只映射到部分时频资源上。 对于后者, 可以在不同的时 频资源上同时传输用户设备的多个数据符号。 例如, 四个数据符号分别经过扩频映射到四 块时频区域, 具体可以参见图 6。  Specifically, the user equipment may map the spread spectrum data sequence to all time-frequency resources or only to part of the time-frequency resources by selecting the length of the spread spectrum data sequence mapped into one subframe. For the latter, multiple data symbols of the user equipment can be simultaneously transmitted on different time-frequency resources. For example, four data symbols are respectively spread-spread mapped to four time-frequency regions. See Figure 6 for details.
其中, 不同的时频区域, 还可以分别传输不同的用户设备的数据符号。  Among them, different time-frequency regions may also separately transmit data symbols of different user equipments.
在实施中, 用户设备对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列 之前还需要进行信道编码、 加扰和调制映射, 参见图 1。 具体的:  In an implementation, the user equipment needs to perform channel coding, scrambling and modulation mapping before spreading the complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, as shown in Fig. 1. specific:
信道编码: 源数据块含 bit 比特数据 0),...^(^¾ -1) , 经过信道编码后数据块长 度为 Mbit比特, 6(0),...,6 (Mbit _l) ; Channel coding: The source data block contains bit bit data 0),...^(^ 3⁄4 -1). After channel coding, the data block length is Mbit bits, 6(0),...,6 (M bit _l) ;
加扰 信道编码后的数据块 (Q),'", ( it -!)通过加扰, 生成加扰后的数据块 b{0 ... Mhit - \) The scrambled channel-encoded data block ( Q ), '", ( it -!) is scrambled to generate the scrambled data block b{0 ... M hit - \)
星座图映射: 加扰后的数据块 (0),...,^(;Mbit -1)经过星座图映射生成复符号数据 块 i (0),...,i (Msym _l) , 包含 Msym个复符号数据。 具体的映射方式可以是 BPSK,Constellation mapping: scrambled data blocks (0),...,^(;M bit -1) generate complex symbol data blocks i (0),...,i (M sym _l) via constellation mapping , contains M sym complex symbol data. The specific mapping method can be BPSK.
QPSK, 16QAM, 64QAM等。 其中, 用户设备和网络侧设备可以根据传输参数进行上述传输过程。 QPSK, 16QAM, 64QAM, etc. The user equipment and the network side device may perform the foregoing transmission process according to the transmission parameter.
在实施中, 传输参数可以预先在协议中规定, 也可以由网络侧设备进行配置; 还可以 传输参数中的部分信息由协议规定,部分信息由网络侧设备进行配置。不管釆用哪种方式, 只要保证用户设备和网络侧设备进行上行传输确定的参数相同即可。  In the implementation, the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment and the network side device for uplink transmission are the same.
针对网络侧设备, 由于知道用户设备的传输参数, 所以知道用户设备将数据分别映射 到哪些子帧上, 相应的, 网络侧设备就可以从对应的子帧上获取来自用户设备的数据进行 组后, 并对组合后的数据进行解扩处理后, 再进行接收处理。  For the network side device, since the transmission parameters of the user equipment are known, it is known to which subframes the user equipment maps the data to, and correspondingly, the network side device can obtain the data from the user equipment from the corresponding subframe after grouping. After decomposing the combined data, the receiving process is performed.
如图 10所示, 本发明实施例网络侧设备进行上行传输的方法包括下列步骤: 步骤 1010、 网络侧设备在 Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩 频数据序列对应同一个复符号数据, Q是正整数;  As shown in FIG. 10, the method for performing uplink transmission by the network side device according to the embodiment of the present invention includes the following steps: Step 1010: The network side device extracts a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data The sequence corresponds to the same complex symbol data, and Q is a positive integer;
步骤 1011、 网络侧设备将 Q个子帧的扩频数据序列进行组合,得到一个复符号数据的 完整扩频数据序列;  Step 1011: The network side device combines the spread spectrum data sequences of the Q subframes to obtain a complete spread spectrum data sequence of the complex symbol data.
步骤 1012、 网络侧设备对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩 数据。  Step 1012: The network side device de-spreads the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
较佳地, 若用户设备顺序选取扩频数据序列映射到 Q个子帧上, 步骤 1011 中, 网络 侧设备按子帧顺序将 Q个子帧上的扩频数据序列进行组合。  Preferably, if the user equipment sequentially selects the spread spectrum data sequence to be mapped to the Q subframes, in step 1011, the network side device combines the spread spectrum data sequences on the Q subframes in a subframe order.
比如每个子帧映射的扩频数据序列长度为 10, 则组合后的数据序列中, 第 1~10个数 据为第 1个子帧上的扩频数据序列, 第 11~20个数据为第 2个子帧上的扩频数据序列, 以 此类推。  For example, if the length of the spread spectrum data sequence mapped by each subframe is 10, in the combined data sequence, the 1st to 10th data is the spread spectrum data sequence in the 1st subframe, and the 11th to 20th data is the 2nd child. A sequence of spread spectrum data on a frame, and so on.
其中,映射到一个子帧的扩频数据序列长度可以根据扩频数据序列的长度和 Q值确定。 在实施中,网络侧设备根据公式四按子帧顺序将 Q个子帧上的扩频数据序列进行组合。 较佳地, 若用户设备间隔选取扩频数据序列映射到 Q个子帧上, 步骤 1011 中, 网络 侧设备间隔选取 Q个子帧上的扩频数据序列进行组合。  The length of the spread data sequence mapped to one subframe may be determined according to the length of the spread data sequence and the Q value. In an implementation, the network side device combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to Equation 4. Preferably, if the user equipment interval selects the spread spectrum data sequence to be mapped to the Q subframes, in step 1011, the network side device interval selects the spread spectrum data sequences on the Q subframes for combination.
例如, 每个子帧映射的扩频数据序列长度为 30, 共有 10个子帧, 设定的间隔个数为 10, 则将 1~10个子帧的每个子帧第 1个扩频数据按照顺序排在组合扩频数据序列的第 1 位〜第 10位,第 1个子帧〜第 10个子帧的每个子帧的第 2个扩频数据排在组合数据的第 11 位〜第 20位, 以此类推, 最后将排好的扩频数据序列进行组合。  For example, the length of the spread spectrum data sequence mapped by each subframe is 30, and there are 10 subframes in total. If the number of the set intervals is 10, the first spread spectrum data of each subframe of 1 to 10 subframes is sequentially arranged. Combining the first to the tenth bits of the spread spectrum data sequence, the second spread spectrum data of each subframe of the first subframe to the tenth subframe is ranked from the 11th to the 20th bits of the combined data, and so on. Finally, the sequence of the spread spectrum data is combined.
在实施中, 网络侧设备根据公式六间隔选取 Q个子帧上的扩频数据序列进行组合。 较佳地, 若用户设备釆用时域方式, 将一个复符号数据对应的扩频数据序列映射到不 同 OFDM符号的同一个子载波上, 步骤 1010中, 网络侧设备釆用时域方式, 在 Q个子帧 内的特定时域资源上提取扩频数据序列。  In an implementation, the network side device selects the spread spectrum data sequence on the Q subframes according to the formula six intervals for combination. Preferably, if the user equipment uses the time domain mode, the spread spectrum data sequence corresponding to one complex symbol data is mapped to the same subcarrier of different OFDM symbols, and in step 1010, the network side device uses the time domain mode in the Q subframes. The spread spectrum data sequence is extracted on a specific time domain resource within.
较佳地, 若用户设备釆用频域方式, 将一个复符号数据对应的扩频数据序列映射到同 一个 OFDM符号的多个子载波上, 步骤 1010中, 网络侧设备釆用频域方式, 在 Q个子帧 内的特定频域资源上提取扩频数据序列。 Preferably, if the user equipment uses the frequency domain mode, the spread spectrum data sequence corresponding to one complex symbol data is mapped to multiple subcarriers of the same OFDM symbol. In step 1010, the network side device uses the frequency domain mode. Q subframes The spread spectrum data sequence is extracted on a specific frequency domain resource.
较佳地, 若用户设备釆用时域和频域结合的方式, 将一个复符号数据对应的扩频数据 序列映射到多个 OFDM符号的多个子载波上, 步骤 1010中, 网络侧设备釆用釆用时域和 频域结合的方式, 在 Q个子帧内的特定时域和频域资源上提取扩频数据序列。  Preferably, if the user equipment uses a combination of time domain and frequency domain, the spread spectrum data sequence corresponding to one complex symbol data is mapped to multiple subcarriers of multiple OFDM symbols, and in step 1010, the network side device is used. The spread spectrum data sequence is extracted on a specific time domain and frequency domain resource within Q subframes by combining the time domain and the frequency domain.
较佳地, 网络侧设备得到复符号数据对应的解扩数据后, 还需要对解扩数据进行接收 处理。 具体的, 得到复符号数据对应的解扩数据包括:  Preferably, after the network side device obtains the despread data corresponding to the complex symbol data, the despread data needs to be received and processed. Specifically, the despread data corresponding to the complex symbol data includes:
解调制, 解扰以及解码处理。  Demodulation, descrambling, and decoding processing.
其中, 用户设备和网络侧设备可以根据传输参数进行上述传输过程。  The user equipment and the network side device may perform the foregoing transmission process according to the transmission parameter.
在实施中, 传输参数可以预先在协议中规定, 也可以由网络侧设备进行配置; 还可以 传输参数中的部分信息由协议规定,部分信息由网络侧设备进行配置。不管釆用哪种方式, 只要保证用户设备和网络侧设备进行上行传输确定的参数相同即可。  In the implementation, the transmission parameter may be specified in the protocol in advance, or may be configured by the network side device; part of the information in the transmission parameter may be specified by the protocol, and part of the information is configured by the network side device. Regardless of which method is used, it is only necessary to ensure that the parameters determined by the user equipment and the network side device for uplink transmission are the same.
如果需要网络侧设备进行配置, 较佳地, 网络侧设备为用户设备配置传输参数。  If the network side device is required for configuration, preferably, the network side device configures a transmission parameter for the user equipment.
具体的, 网络侧设备通过高层信令半静态, 为用户设备配置传输参数; 或通过调度上 行传输的控制信令, 为用户设备配置传输参数。  Specifically, the network side device configures the transmission parameter for the user equipment by using the high-level signaling semi-static, or configures the transmission parameter for the user equipment by scheduling the control signaling of the uplink transmission.
需要说明的是, 本发明实施例并不局限于上述两种配置方式, 其他能够为用户设备配 置传输参数的方式都适用本法明实施例。  It should be noted that the embodiments of the present invention are not limited to the foregoing two configurations, and other embodiments capable of configuring transmission parameters for the user equipment are applicable to the embodiments of the present disclosure.
针对网络侧设备, 由于知道用户设备的传输参数, 所以知道用户设备将数据分别映射 到哪些子帧上, 相应的, 网络侧设备就可以从对应的子帧上获取来自用户设备的数据进行 组后, 并对组合后的数据进行解扩处理后, 再进行接收处理。  For the network side device, since the transmission parameters of the user equipment are known, it is known to which subframes the user equipment maps the data to, and correspondingly, the network side device can obtain the data from the user equipment from the corresponding subframe after grouping. After decomposing the combined data, the receiving process is performed.
其中, 本发明实施例的网络侧设备可以 ^&站(比如宏基站、 家庭基站等), 也可以 是 RN设备, 还可以是其它网络侧设备。  The network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), an RN device, or another network side device.
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程 序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件 方面的实施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序 代码的计算机可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等) 上实施的计算机程序产品的形式。  Those skilled in the art will appreciate that embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
本发明是参照根据本发明实施例的方法、 设备 (系统)、 和计算机程序产品的流程 图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的 每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供 这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处 理设备的处理器以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理 器执行的指令产生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多 个方框中指定的功能的装置。 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定 方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括 指令装置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能。 The present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device. Means for implementing the functions specified in one or more of the flow or in a block or blocks of the flow chart. The computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device. The apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计 算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算 机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或 方框图一个方框或多个方框中指定的功能的步骤。  These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. The instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造 性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为 包括优选实施例以及落入本发明范围的所有变更和修改。  Although the preferred embodiment of the invention has been described, it will be apparent to those skilled in the < Therefore, it is intended that the appended claims be interpreted as including
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发 明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利 要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。  It is apparent that those skilled in the art can make various modifications and variations to the embodiments of the present invention without departing from the spirit and scope of the embodiments. Therefore, it is intended that the present invention cover the modifications and variations of the invention, and the modifications and variations of the present invention.

Claims

权 利 要 求 Rights request
1、 一种进行上行传输的方法, 其特征在于, 该方法包括: A method for performing uplink transmission, characterized in that the method comprises:
用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列, 并将 每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  The user equipment separately spreads each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and maps the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer;
所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应 的发送信号;  The user equipment separately modulates the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe;
所述用户设备将发送信号在对应的子帧上发送。  The user equipment transmits a transmission signal on a corresponding subframe.
2、 如权利要求 1 所述的方法, 其特征在于, 所述用户设备对每个复符号数据进行扩 频, 包括:  2. The method according to claim 1, wherein the user equipment performs spreading on each complex symbol data, including:
针对一个复符号数据, 所述用户设备使用该复符号数据对应的扩频码, 对该复符号数 据进行扩频;  For a complex symbol data, the user equipment uses the spreading code corresponding to the complex symbol data to spread the complex symbol data;
其中, 每个复符号数据对应的扩频码全部相同或全不相同或部分相同。  The spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
3、 如权利要求 1 所述的方法, 其特征在于, 所述用户设备对每个复符号数据进行扩 频, 包括:  3. The method according to claim 1, wherein the user equipment performs spreading on each complex symbol data, including:
所述用户设备将所有复符号数据进行分组;  The user equipment groups all complex symbol data;
针对一组复符号数据 , 所述用户设备使用该组对应的扩频码对该组中的所有复符号数 据进行扩频;  For a set of complex symbol data, the user equipment uses the corresponding spreading code of the group to spread all the complex symbol data in the group;
其中, 每组对应的扩频码全不相同。  The corresponding spreading codes of each group are all different.
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述复符号数据对应的扩频码由接 收到的网络侧指示确定, 或按照预设规则确定。  The method according to claim 2 or 3, wherein the spreading code corresponding to the complex symbol data is determined by the received network side indication, or determined according to a preset rule.
5、 如权利要求 4 所述的方法, 其特征在于, 所述用户设备将所有复符号数据进行分 组, 包括:  5. The method according to claim 4, wherein the user equipment groups all complex symbol data, including:
所述用户设备顺序选取复符号数据进行分组。  The user equipment sequentially selects complex symbol data for grouping.
6、 如权利要求 5 所述的方法, 其特征在于, 针对一组复符号数据, 所述用户设备根 据下列公式确定该组数据中的复符号数据:  6. The method according to claim 5, wherein, for a set of complex symbol data, the user equipment determines complex symbol data in the set of data according to the following formula:
xp {n) = d{p M^m + n) , 其中, 是第 ρ 组的第 η 个复符号数据; d( xM^m + n) 为第 ;?χΜ^ + "个复符号数据; 是第 ρ组复符号数据中包括的复符号数据的个数; p 是组的编号, = 0, 1, ..., — 1 , 是分组的数量; n是第 p 组复符号数据的编号, x p {n) = d { p M ^ m + n), wherein the first η complex symbols of data of ρ group; d (xM ^ m + n ) is the first;? χΜ ^ + "complex-symbol data ; is the number of complex symbol data included in the complex symbol data of the ρ group; p is the number of the group, = 0, 1, ..., - 1 , which is the number of packets; n is the complex symbol data of the p-th group Numbering,
7、 如权利要求 6所述的方法, 其特征在于, 所述第 p组复符号数据中包括的复符号 数据的个数^^ ¾是由接收到的网络侧指示确定, 或者由
Figure imgf000020_0001
= sym I P公式确定; 其中, M Sym是复符号数据的数量。
7. The method as claimed in claim 6, characterized in that the number p ^^ ¾ of the first set of data symbols comprises multiplexing complex symbols indicative of the determined data received by the network side, or by the
Figure imgf000020_0001
= sym IP formula is determined; where M S ym is the number of complex symbol data.
8、 如权利要求 3 所述的方法, 其特征在于, 所述用户设备将所有复符号数据进行分 组, 包括:  8. The method according to claim 3, wherein the user equipment groups all complex symbol data, including:
所述用户设备间隔选取复符号数据进行分组。  The user equipment selects complex symbol data for grouping.
9、 如权利要求 8 所述的方法, 其特征在于, 针对一组复符号数据, 所述用户设备根 据下列公式确定该组数据中的复符号数据:  9. The method according to claim 8, wherein, for a set of complex symbol data, the user equipment determines complex symbol data in the set of data according to the following formula:
xp(n) = d(p + n P)- 其中, 是第 p组的第 n个复符号数据; d( f + rv< )为^ p + nxP个 复符号数据; p是组的编号, =0,1,.." — 1 , ^是分组的数量; n是第 p组复符号 数据的编号, 《 = 0,1,.." 1^^— 1 , 是第 p组复符号数据中包括的复符号数据的 个数, M^m =M Sym/ P , ^sym是复符号数据的数量。 x p (n) = d(p + n P) - where is the nth complex symbol data of the pth group; d(f + rv< ) is ^ p + nxP complex symbol data; p is the number of the group , =0,1,.." — 1 , ^ is the number of groups; n is the number of the p-th complex symbol data, " = 0,1,.." 1^^— 1 , is the p-th group complex symbol The number of complex symbol data included in the data, M ^m = M Sy m / P , ^sym is the number of complex symbol data.
10、 如权利要求 1所述的方法, 其特征在于, 所述用户设备将每个复符号数据的扩频 数据序列映射到 Q个子帧上, 包括:  The method according to claim 1, wherein the user equipment maps the spread spectrum data sequence of each complex symbol data to the Q subframes, including:
所述用户设备顺序选取扩频数据序列映射到 Q个子帧上。  The user equipment sequentially selects a sequence of spread spectrum data to be mapped to Q subframes.
11、 如权利要求 10所述的方法, 其特征在于, 针对一个子帧, 所述用户设备根据下列 公式确定需要映射到该子帧的扩频数据序列:  The method according to claim 10, wherein, for one subframe, the user equipment determines, according to the following formula, a sequence of spread spectrum data that needs to be mapped to the subframe:
z{q, k) = y(q X Msf + k) . 其中, 是映射到子帧 q上的第 k个扩频数据序列; _y(gxMs 为第 x Ms/ + 个扩频数据序列; 是子帧编号, = ο,ι,···,ρ_ι; 是映射到一个子 帧上的扩频数据序列的编号, k = 0X...,Msf - 1 , Msf是映射到每个子帧内的扩频数据 序列的长度。 z{q, k) = y(q XM sf + k) where is the kth spread spectrum data sequence mapped onto subframe q ; _y (gxM s is the xth s/ + spread spectrum data sequence ; is the subframe number, = ο, ι,···, ρ_ι; is the number of the spread spectrum data sequence mapped to a sub-frame, k = 0X..., M sf - 1 , M sf is mapped to each The length of the spread spectrum data sequence within a sub-frame.
12、 如权利要求 1所述的方法, 其特征在于, 所述用户设备将每个复符号数据的扩频 数据序列映射到 Q个子帧上, 包括: The method according to claim 1, wherein the user equipment maps the spread data sequence of each complex symbol data to the Q subframes, including:
所述用户设备间隔选取扩频数据序列映射到 Q个子帧上。  The user equipment interval selects a spread spectrum data sequence to be mapped to Q subframes.
13、 如权利要求 12 所述的方法, 其特征在于, 针对一个子帧, 所述用户设备根据下 列公式确定需要映射到该子帧的扩频数据序列: z(q, k) = y(q -^ kxQ) 其中, 是映射到子帧 q 上的第 k 个扩频数据序列; _ + Α:χρ)为第 + χ δ个扩频数据序列; g是子帧编号, = 0,1,···, 是映射到一个子 帧内的扩频数据序列的编号, k = ox...,Msf — i , Msf是映射到每个子帧内的扩频数据 序列的长度。 13. The method according to claim 12, wherein, for one subframe, the user equipment determines a sequence of spread spectrum data that needs to be mapped to the subframe according to the following formula: z(q, k) = y(q -^ kxQ) where is the kth spread spectrum data sequence mapped onto subframe q ; _ + Α: χρ) is the + χ δ spread spectrum data sequence; g Is the subframe number, = 0,1,···, is the number of the spread spectrum data sequence mapped into one subframe, k = ox..., M sf — i , M sf is mapped into each subframe The length of the spread spectrum data sequence.
14、 如权利要求 1所述的方法, 其特征在于, 所述用户设备将映射到每个子帧上的扩 频数据序列分别进行调制生成每个子帧对应的发送信号, 包括:  The method according to claim 1, wherein the user equipment separately modulates the spread data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe, including:
针对一个子帧的一个扩频数据序列, 所述用户设备将所述扩频数据序列映射到时频资 源上, 并将时频资源上的所述扩频数据序列进行调制生成 OFDM符号。  For a spread spectrum data sequence of one subframe, the user equipment maps the spread spectrum data sequence to a time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol.
15、 如权利要求 3所述的方法, 其特征在于, 所述用户设备将映射到每个子帧上的扩 频数据序列分别进行调制生成每个子帧对应的发送信号, 包括:  The method according to claim 3, wherein the user equipment separately modulates the spread data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe, including:
针对一个子帧的一个扩频数据序列, 所述用户设备将所述扩频数据序列映射到时频资 源上, 并将时频资源上的所述扩频数据序列进行调制生成 OFDM符号;  For a spread spectrum data sequence of one subframe, the user equipment maps the spread spectrum data sequence to a time-frequency resource, and modulates the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol;
其中, 同一组复符号数据的扩频数据序列映射到不同的时频资源上。  The spread spectrum data sequence of the same set of complex symbol data is mapped to different time-frequency resources.
16、 如权利要求 14或 15所述的方法, 其特征在于, 所述用户设备将所述扩频数据序 列映射到时频资源上, 包括:  The method according to claim 14 or 15, wherein the mapping, by the user equipment, the sequence of the spread spectrum data to the time-frequency resource comprises:
所述用户设备将所述扩频数据序列映射到全部或部分时频资源上。  The user equipment maps the sequence of spread spectrum data to all or part of a time-frequency resource.
17、 如权利要求 14或 15所述的方法, 其特征在于, 所述用户设备将所述扩频数据序 列映射到时频资源上, 包括:  The method according to claim 14 or 15, wherein the mapping, by the user equipment, the sequence of the spread spectrum data to the time-frequency resource comprises:
所述用户设备釆用时域方式, 将一个复符号数据对应的扩频数据序列映射到不同 The user equipment maps the spread spectrum data sequence corresponding to one complex symbol data to different time domain manners.
OFDM符号的同一个子载波上; 或 On the same subcarrier of the OFDM symbol; or
所述用户设备釆用频域方式, 将一个复符号数据对应的扩频数据序列映射到同一个 OFDM符号的多个子载波上; 或  The user equipment uses a frequency domain method to map a spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol; or
所述用户设备釆用时域和频域结合的方式, 将一个复符号数据对应的扩频数据序列映 射到多个 OFDM符号的多个子载波上。  The user equipment maps the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of multiple OFDM symbols by using a combination of time domain and frequency domain.
18、 如权利要求 14或 15所述的方法, 其特征在于, 所述用户设备将所述扩频数据序 列映射到时频资源上之前, 还包括:  The method according to claim 14 or 15, wherein before the user equipment maps the sequence of the spread spectrum data to the time-frequency resource, the method further includes:
所述用户设备根据传输参数确定每个子帧内占用的时频资源。  The user equipment determines a time-frequency resource occupied in each subframe according to the transmission parameter.
19、 如权利要求 1~3、 8~15任一所述的方法, 其特征在于, 所述用户设备将每个复符 号数据的扩频数据序列映射到 Q个子帧上之前, 还包括:  The method according to any one of claims 1 to 3, wherein the user equipment maps the spread spectrum data sequence of each complex symbol data to the Q subframes, and further includes:
所述用户设备根据传输参数确定 Q值。 The user equipment determines a Q value according to the transmission parameter.
20、 一种进行上行传输的方法, 其特征在于, 该方法包括: 20. A method for performing uplink transmission, the method comprising:
网络侧设备在 Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列 对应同一个复符号数据, Q是正整数;  The network side device extracts a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
所述网络侧设备将 Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩 频数据序列;  The network side device combines the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data;
所述网络侧设备对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩数据。 The network side device despreads the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
21、 如权利要求 20所述的方法, 其特征在于, 所述网络侧设备在 Q个子帧内的特定 时频资源上提取扩频数据序列, 包括: The method according to claim 20, wherein the network side device extracts the spread spectrum data sequence on a specific time-frequency resource in the Q subframes, including:
所述网络侧设备釆用时域方式, 在 Q个子帧内的特定时域资源上提取扩频数据序列; 或  The network side device extracts a spread spectrum data sequence on a specific time domain resource in the Q subframes in a time domain manner; or
所述网络侧设备釆用频域方式, 在 Q个子帧内的特定频域资源上提取扩频数据序列; 或  The network side device extracts a spread spectrum data sequence on a specific frequency domain resource in the Q subframes by using a frequency domain method; or
所述网络侧设备釆用釆用时域和频域结合的方式,在 Q个子帧内的特定时域和频域资 源上提取扩频数据序列。  The network side device extracts the spread spectrum data sequence in a specific time domain and frequency domain resource in the Q subframes by using a combination of the time domain and the frequency domain.
22、 如权利要求 20所述的方法, 其特征在于, 所述网络侧设备将 Q个子帧的扩频数 据序列进行组合, 包括:  The method according to claim 20, wherein the network side device combines the spread data sequences of the Q subframes, including:
所述网络侧设备按子帧顺序将 Q个子帧上的扩频数据序列进行组合。  The network side device combines the spread spectrum data sequences on the Q subframes in a subframe order.
23、 如权利要求 22 所述的方法, 其特征在于, 所述网络侧设备根据下列公式按子帧 顺序将 Q个子帧上的扩频数据序列进行组合:  The method according to claim 22, wherein the network side device combines the spread spectrum data sequences on the Q subframes in a subframe order according to the following formula:
= r{q, k) . 其中, : W)为组合后的第 W个扩频数据序列; r (g, 是子帧 q上的第 k个扩频 数据序列; q = _m 1 M Sf \ Λ = m - qx M Sf , 是映射到每个子帧内的扩频 数据序列的长度。 = r{q, k) . where : W) is the combined Wth spread spectrum data sequence; r (g, is the kth spread spectrum data sequence on subframe q; q = _ m 1 M S f \ Λ = m - q x M S f , is the length of the sequence of spread spectrum data mapped into each sub-frame.
24、 如权利要求 20所述的方法, 其特征在于, 所述网络侧设备将 Q个子帧的扩频数 据序列进行组合, 包括:  The method according to claim 20, wherein the network side device combines the spread data sequences of the Q subframes, including:
所述网络侧设备间隔选取 Q个子帧上的扩频数据序列进行组合。  The network side device interval selects the spread spectrum data sequence on the Q subframes for combination.
25、 如权利要求 24 所述的方法, 其特征在于, 所述网络侧设备根据下列公式按子帧 顺序将 Q个子帧上的扩频数据序列进行组合:  The method according to claim 24, wherein the network side device combines the spread spectrum data sequences on the Q subframes in a subframe order according to the following formula:
x(m) = r q, k) . 其中, 为组合后的第 W个扩频数据序列; (g, 是子帧 q上的第 k个扩频 数据序列; k = [ n l Q\ , q = m - kxQ , Q是子巾贞个数。 x(m) = rq, k) . where is the combined Wth spread spectrum data sequence; (g, is the kth spread spectrum on subframe q The data sequence; k = [ nl Q\ , q = m - kxQ , Q is the number of sub-frames.
26、 如权利要求 20 25任一所述的方法, 其特征在于, 所述网络侧设备对 Q个子帧上 的扩频数据序列进行解扩频之前, 还包括:  The method according to any one of claims 20 to 25, wherein before the network side device despreads the spread spectrum data sequence on the Q subframes, the method further includes:
所述网络侧设备为所述用户设备配置传输参数。  The network side device configures a transmission parameter for the user equipment.
27、 如权利要求 26 所述的方法, 其特征在于, 所述传输参数包括下列信息中的一种 或多种:  27. The method of claim 26, wherein the transmission parameter comprises one or more of the following information:
Q值、 映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。 The Q value, the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resource occupied in each subframe.
28、 如权利要求 26 所述的方法, 其特征在于, 所述网络侧设备为所述用户设备配置 传输参数, 包括: The method according to claim 26, wherein the network side device configures transmission parameters for the user equipment, including:
所述网络侧设备通过高层信令半静态, 为所述用户设备配置传输参数; 或  The network side device is semi-statically configured by high layer signaling to configure transmission parameters for the user equipment; or
所述网络侧设备通过调度上行传输的控制信令, 为所述用户设备配置传输参数。 The network side device configures transmission parameters for the user equipment by scheduling control signaling of the uplink transmission.
29、 一种进行上行传输的用户设备, 其特征在于, 该用户设备包括: A user equipment for performing uplink transmission, where the user equipment includes:
处理模块, 用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序 列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数;  a processing module, configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer ;
调制模块, 用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应 的发送信号;  a modulation module, configured to separately modulate the spread spectrum data sequence mapped to each subframe to generate a transmit signal corresponding to each subframe;
发送模块, 用于将发送信号在对应的子帧上发送。  And a sending module, configured to send the sending signal on the corresponding subframe.
30、 如权利要求 29所述的用户设备, 其特征在于, 所述处理模块具体用于: 针对一个复符号数据, 使用该复符号数据对应的扩频码, 对该复符号数据进行扩频; 其中, 每个复符号数据对应的扩频码全部相同或全不相同或部分相同。  The user equipment according to claim 29, wherein the processing module is configured to: perform spreading on the complex symbol data by using a spreading code corresponding to the complex symbol data for one complex symbol data; The spreading codes corresponding to each complex symbol data are all the same or all different or partially identical.
31、 如权利要求 29所述的用户设备, 其特征在于, 所述处理模块具体用于: 将所有复符号数据进行分组; 针对一组复符号数据, 使用该组对应的扩频码对该组中 的所有复符号数据进行扩频; 其中, 每组对应的扩频码全不相同。  The user equipment according to claim 29, wherein the processing module is specifically configured to: group all complex symbol data; and use a set of corresponding spreading codes for the group of complex symbol data All complex symbol data in the spectrum is spread; wherein each group of corresponding spreading codes is different.
32、 如权利要求 30或 31所述的用户设备, 其特征在于, 所述复符号数据对应的扩频 码由接收到的网络侧指示确定, 或按照预设规则确定。  The user equipment according to claim 30 or 31, wherein the spreading code corresponding to the complex symbol data is determined by the received network side indication, or determined according to a preset rule.
33、 如权利要求 32 所述的用户设备, 其特征在于, 所述处理模块具体用于: 顺序选 取复符号数据进行分组。  The user equipment according to claim 32, wherein the processing module is specifically configured to: sequentially select complex symbol data for grouping.
34、 如权利要求 33 所述的用户设备, 其特征在于, 针对一组复符号数据, 所述处理 模块根据下列公式确定该组数据中的复符号数据:  34. The user equipment according to claim 33, wherein, for a set of complex symbol data, the processing module determines complex symbol data in the set of data according to the following formula:
xp {n) = d{p M^m + n) , 其中, 是第 ρ 组的第 η 个复符号数据; d( M^m + n) ;?xM^+"个复符号数据; 是第 p组复符号数据中包括的复符号数据的个数; p 是组的编号, =0,1,..., — 1, ^是分组的数量; n是第 p 组复符号数据的编号, x p {n) = d { p M ^ m + n), where η is the complex symbols of the first data set ρ; d (M ^ m + n ) ;?xM^+" complex symbol data; is the number of complex symbol data included in the p-th complex symbol data; p is the group number, =0,1,..., — 1, ^ is grouped Quantity; n is the number of the complex symbol data of the p-th group,
" = 0,1,···,Μ - 1。 " = 0,1,···,Μ - 1.
35、 如权利要求 34所述的用户设备, 其特征在于, 所述第 ρ组复符号数据中包括的 复符号数据的个数^^ ¾是由接收到的网络侧指示确定,或者由 =Μ Ι Ρ Ά 确定; 35, user apparatus as claimed in claim 34, wherein the number ^^ ¾ of the first set of complex symbol ρ complex symbols included in the data indicative of the determined data received by the network side, or by a = Μ Ι Ρ Ά OK;
Μ  Μ
其中, sym是复符号数据的数量。 Where sym is the number of complex symbol data.
36、 如权利要求 31 所述的用户设备, 其特征在于, 所述处理模块具体用于: 间隔选 取复符号数据进行分组。  The user equipment according to claim 31, wherein the processing module is specifically configured to: select and select complex symbol data for grouping.
37、 如权利要求 36 所述的用户设备, 其特征在于, 针对一组复符号数据, 所述处理 模块根据下列公式确定该组数据中的复符号数据:  37. The user equipment according to claim 36, wherein, for a set of complex symbol data, the processing module determines complex symbol data in the set of data according to the following formula:
xp(n) = d(p + n P)- 其中, 是第 p组的第 n个复符号数据; d(p + nxP"}为第 p + nxP个 复符号数据; p是组的编号, =0,1,.." — 1, ^是分组的数量; n是第 p组复符号 数据的编号, 《 = 是第 p组复符号数据中包括的复符号数据的
Figure imgf000024_0001
x p (n) = d(p + n P) - where is the nth complex symbol data of the pth group; d(p + nxP"} is the p + nxP complex symbol data; p is the number of the group , =0,1,.." — 1, ^ is the number of groups; n is the number of the p- th complex symbol data, and " = is the complex symbol data included in the p- th complex symbol data.
Figure imgf000024_0001
个数, M^m=M Sym/ P , ^sym是复符号数据的数量。 The number, M ^m = M Sy m / P , ^sym is the number of complex symbol data.
38、 如权利要求 29 所述的用户设备, 其特征在于, 所述处理模块具体用于: 顺序选 取扩频数据序列映射到 Q个子帧上。  The user equipment according to claim 29, wherein the processing module is specifically configured to: sequentially select the spread spectrum data sequence to be mapped to the Q subframes.
39、 如权利要求 38 所述的用户设备, 其特征在于, 针对一个子帧, 所述处理模块根 据下列公式确定需要映射到该子帧的扩频数据序列:  39. The user equipment according to claim 38, wherein, for one subframe, the processing module determines a spread spectrum data sequence that needs to be mapped to the subframe according to the following formula:
z{q, k) = y(q x Msf + k) . 其中, 是映射到子帧 q上的第 k个扩频数据序列; _y(gxMs 为第 x Ms/ + 个扩频数据序列; 是子帧编号, = ο,ι,···,ρ_ι; 是映射到一个子 帧上的扩频数据序列的编号, k = 0X...,Msf - 1 , Msf是映射到每个子帧内的扩频数据 序列的长度。 z{q, k) = y(qx M sf + k) where is the kth spread spectrum data sequence mapped onto subframe q ; _y (gxM s is the xth s/ + spread spectrum data sequence ; is the subframe number, = ο, ι,···, ρ_ι; is the number of the spread spectrum data sequence mapped to a sub-frame, k = 0X..., M sf - 1 , M sf is mapped to each The length of the spread spectrum data sequence within a sub-frame.
40、 如权利要求 29 所述的用户设备, 其特征在于, 所述处理模块具体用于: 间隔选 取扩频数据序列映射到 Q个子帧上。  The user equipment according to claim 29, wherein the processing module is specifically configured to: map the spread spectrum data sequence to the Q subframes.
41、 如权利要求 40 所述的用户设备, 其特征在于, 针对一个子帧, 所述处理模块根 据下列公式确定需要映射到该子帧的扩频数据序列: The user equipment according to claim 40, wherein, for one subframe, the processing module root The sequence of spread spectrum data that needs to be mapped to the subframe is determined according to the following formula:
z(q, k) = y(q -^ kxQ) 其中, 是映射到子帧 q 上的第 k 个扩频数据序列; _ + Α: χ ρ)为第 + χδ个扩频数据序列; g是子帧编号, = 0,1,···, 是映射到一个子 帧内的扩频数据序列的编号, = 0,l,...,MS/— 1 , M 是映射到每个子帧内的扩频数据 序列的长度。 z(q, k) = y(q -^ kxQ) where is the kth spread spectrum data sequence mapped onto the subframe q ; _ + Α: χ ρ) is the + χ δ spread spectrum data sequence; g is the subframe number, = 0,1,···, is the number of the spread spectrum data sequence mapped into one subframe, = 0,l,...,M S/ — 1 , M is mapped to each The length of the spread spectrum data sequence within a sub-frame.
42、 如权利要求 29所述的用户设备, 其特征在于, 所述调制模块具体用于: 针对一个子帧的一个扩频数据序列, 将所述扩频数据序列映射到时频资源上, 并将时 频资源上的所述扩频数据序列进行调制生成 OFDM符号。  The user equipment according to claim 29, wherein the modulation module is specifically configured to: map the spread spectrum data sequence to a time-frequency resource for a spread spectrum data sequence of one subframe, and The spread spectrum data sequence on the time-frequency resource is modulated to generate an OFDM symbol.
43、 如权利要求 31所述的用户设备, 其特征在于, 所述调制模块具体用于: 针对一个子帧的一个扩频数据序列, 将所述扩频数据序列映射到时频资源上, 并将时 频资源上的所述扩频数据序列进行调制生成 OFDM符号;  The user equipment according to claim 31, wherein the modulation module is specifically configured to: map the spread spectrum data sequence to a time-frequency resource for a spread spectrum data sequence of one subframe, and And modulating the spread spectrum data sequence on the time-frequency resource to generate an OFDM symbol;
其中, 同一组复符号数据的扩频数据序列映射到不同的时频资源上。  The spread spectrum data sequence of the same set of complex symbol data is mapped to different time-frequency resources.
44、 如权利要求 42或 43所述的用户设备, 其特征在于, 所述调制模块具体用于: 将 所述扩频数据序列映射到全部或部分时频资源上。  The user equipment according to claim 42 or 43, wherein the modulation module is specifically configured to: map the spread spectrum data sequence to all or part of time-frequency resources.
45、 如权利要求 42或 43所述的用户设备, 其特征在于, 所述调制模块具体用于: 釆用时域方式,将一个复符号数据对应的扩频数据序列映射到不同 OFDM符号的同一 个子载波上; 或釆用频域方式, 将一个复符号数据对应的扩频数据序列映射到同一个 OFDM符号的多个子载波上; 或釆用时域和频域结合的方式, 将一个复符号数据对应的扩 频数据序列映射到多个 OFDM符号的多个子载波上。  The user equipment according to claim 42 or 43, wherein the modulation module is specifically configured to: map the spread spectrum data sequence corresponding to one complex symbol data to the same sub-symbol of different OFDM symbols in a time domain manner Or mapping the spread spectrum data sequence corresponding to one complex symbol data to multiple subcarriers of the same OFDM symbol in a frequency domain manner; or using a combination of time domain and frequency domain, corresponding to a complex symbol data The spread spectrum data sequence is mapped onto a plurality of subcarriers of a plurality of OFDM symbols.
46、 如权利要求 42或 43所述的用户设备, 其特征在于, 所述调制模块还用于: 根据传输参数确定每个子帧内占用的时频资源。  The user equipment according to claim 42 or 43, wherein the modulation module is further configured to: determine a time-frequency resource occupied in each subframe according to the transmission parameter.
47、 如权利要求 29 31、 36~43任一所述的用户设备, 其特征在于, 所述处理模块还 用于: 根据传输参数确定 Q值。  The user equipment according to any one of claims 29 to 31, wherein the processing module is further configured to: determine a Q value according to the transmission parameter.
48、 一种进行上行传输的网络侧设备, 其特征在于, 该网络侧设备包括:  48. A network side device that performs uplink transmission, where the network side device includes:
提取模块, 用于在 Q个子帧内的特定时频资源上提取扩频数据序列, 其中该扩频数据 序列对应同一个复符号数据 , Q是正整数;  An extracting module, configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and Q is a positive integer;
组合模块, 用于将 Q个子帧的扩频数据序列进行组合, 得到一个复符号数据的完整扩 频数据序列;  a combining module, configured to combine the spread spectrum data sequences of the Q subframes to obtain a complete spread data sequence of the complex symbol data;
解扩频模块,用于对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。 The despreading module is configured to despread the complete spread spectrum data sequence to obtain despread data corresponding to the complex symbol data.
49、 如权利要求 48所述的网络侧设备, 其特征在于, 所述提取模块具体用于: 釆用时域方式,在 Q个子帧内的特定时域资源上提取扩频数据序列;或釆用频域方式, 在 Q个子帧内的特定频域资源上提取扩频数据序列; 或釆用釆用时域和频域结合的方式, 在 Q个子帧内的特定时域和频域资源上提取扩频数据序列。 The network side device according to claim 48, wherein the extraction module is specifically configured to: Extracting a spread spectrum data sequence on a specific time domain resource in Q subframes in a time domain manner; or extracting a spread spectrum data sequence on a specific frequency domain resource in Q subframes by using a frequency domain method; The spread spectrum data sequence is extracted on a specific time domain and frequency domain resource within Q subframes by combining the time domain and the frequency domain.
50、 如权利要求 48所述的网络侧设备, 其特征在于, 所述组合模块具体用于: 按子帧顺序将 Q个子帧上的扩频数据序列进行组合。  The network side device according to claim 48, wherein the combining module is specifically configured to: combine the spread spectrum data sequences on the Q subframes in a subframe order.
51、 如权利要求 50 所述的网络侧设备, 其特征在于, 所述组合模块根据下列公式按 子帧顺序将 Q个子帧上的扩频数据序列进行组合:  The network side device according to claim 50, wherein the combining module combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to the following formula:
x(m) = r q, k) . 其中, 为组合后的第 个扩频数据序列; W是子帧 q上的第 k个扩频 数据序列; q = _m 1 M Sf \ Λ = m - qx M Sf , M 是映射到每个子帧内的扩频 数据序列的长度。 x(m) = rq, k) . where is the combined first spread spectrum data sequence; W is the kth spread spectrum data sequence on subframe q; q = _ m 1 M S f \ Λ = m - q x M S f , M is the length of the sequence of spread spectrum data mapped into each sub-frame.
52、 如权利要求 48 所述的网络侧设备, 其特征在于, 所述组合模块具体用于: 间隔 选取 Q个子帧上的扩频数据序列进行组合。  The network side device according to claim 48, wherein the combining module is specifically configured to: select and combine the spread spectrum data sequences on the Q subframes.
53、 如权利要求 52 所述的网络侧设备, 其特征在于, 所述组合模块根据下列公式按 子帧顺序将 Q个子帧上的扩频数据序列进行组合:  The network side device according to claim 52, wherein the combining module combines the spread spectrum data sequences on the Q subframes in a sub-frame order according to the following formula:
x(m) = r q, k) . 其中, 为组合后的第 个扩频数据序列; W是子帧 q上的第 k个扩频 数据序列; k = [ n l Q\ , q = m - kxQ , Q是子巾贞个数。 x(m) = rq, k) . where is the combined first spread spectrum data sequence; W is the kth spread spectrum data sequence on subframe q; k = [ nl Q\ , q = m - kxQ , Q is the number of children.
54、如权利要求 48~53任一所述的网络侧设备, 其特征在于, 所述网络侧设备还包括: 通知模块, 用于为所述用户设备配置传输参数。  The network side device according to any one of claims 48 to 53, wherein the network side device further comprises: a notification module, configured to configure a transmission parameter for the user equipment.
55、 如权利要求 54 所述的网络侧设备, 其特征在于, 所述传输参数包括下列信息中 的一种或多种:  The network side device according to claim 54, wherein the transmission parameter comprises one or more of the following information:
Q值、 映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。  The Q value, the length of the spread spectrum data sequence mapped to one subframe, and the time-frequency resource occupied in each subframe.
56、 如权利要求 55所述的网络侧设备, 其特征在于, 所述通知模块具体用于: 通过高层信令半静态, 为所述用户设备配置传输参数; 或通过调度上行传输的控制信 令, 为所述用户设备配置传输参数。  The network side device according to claim 55, wherein the notification module is specifically configured to: configure a transmission parameter for the user equipment by using high-level signaling semi-static; or control signaling by scheduling uplink transmission , configuring transmission parameters for the user equipment.
57、 一种进行上行传输的系统, 其特征在于, 该系统包括:  57. A system for performing uplink transmission, characterized in that the system comprises:
用户设备, 用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序 列, 并将每个复符号数据的扩频数据序列映射到 Q个子帧上, 其中 Q是正整数, 将映射到 每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号, 将发送信号在对 应的子帧上发送; a user equipment, configured to separately spread each complex symbol data to obtain a spread spectrum data sequence of each complex symbol data, and map the spread spectrum data sequence of each complex symbol data to Q subframes, where Q is a positive integer And respectively modulating the spread spectrum data sequence mapped to each subframe to generate a transmission signal corresponding to each subframe, and transmitting the signal in the pair Sent on the appropriate subframe;
网络侧设备, 用于在 Q个子帧内的特定时频资源上提取扩频数据序列, 其中该扩频数 据序列对应同一个复符号数据, 将 Q个子帧的扩频数据序列进行组合, 得到一个复符号数 据的完整扩频数据序列, 对完整扩频数据序列进行解扩频, 得到复符号数据对应的解扩数 据。  a network side device, configured to extract a spread spectrum data sequence on a specific time-frequency resource in the Q subframes, where the spread spectrum data sequence corresponds to the same complex symbol data, and the spread spectrum data sequences of the Q subframes are combined to obtain one The complete spread spectrum data sequence of the complex symbol data, despreading the complete spread spectrum data sequence, and obtaining despread data corresponding to the complex symbol data.
PCT/CN2013/075086 2012-05-04 2013-05-02 Method, system and apparatus for uplink transmission WO2013163955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210137904.XA CN103384182B (en) 2012-05-04 2012-05-04 A kind of carry out the method for uplink, system and equipment
CN201210137904.X 2012-05-04

Publications (1)

Publication Number Publication Date
WO2013163955A1 true WO2013163955A1 (en) 2013-11-07

Family

ID=49491891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075086 WO2013163955A1 (en) 2012-05-04 2013-05-02 Method, system and apparatus for uplink transmission

Country Status (2)

Country Link
CN (1) CN103384182B (en)
WO (1) WO2013163955A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076155A1 (en) * 2015-11-06 2017-05-11 中兴通讯股份有限公司 Data sending method and apparatus
EP3292670A4 (en) * 2015-05-29 2018-06-20 Huawei Technologies Co., Ltd. Mc-cdma with low peak-to-average power ratio multi-carrier waveform
US10326547B2 (en) 2014-09-25 2019-06-18 Zte Corporation Multi-user code division multiple access communication method, and corresponding transmitter and receiver
CN112788631A (en) * 2021-01-26 2021-05-11 北京升哲科技有限公司 Information transmission method and device, communication equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320849B (en) * 2014-10-08 2018-09-14 黄淮学院 The resource allocation methods of VoIP business in LTE system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013166A1 (en) * 2002-07-19 2004-01-22 Goodings Chris J. Hybrid frame structure for wireless communications
CN101060363A (en) * 2006-04-17 2007-10-24 华为技术有限公司 Universal mobile communication system transmission method and its system
US20100074347A1 (en) * 2008-09-25 2010-03-25 Yuval Lomnitz Method and apparatus of subchannelization of wireless communication system
CN102148669A (en) * 2010-01-08 2011-08-10 捷讯研究有限公司 Transmit diversity using low code rate spatial multiplexing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084740A2 (en) * 2000-05-01 2001-11-08 Interdigital Technology Corporation Downlink power control for multiple downlink time slots in tdd communication systems
US7733846B2 (en) * 2003-08-26 2010-06-08 Alcatel-Lucent Usa Inc. Method and control channel for uplink signaling in a communication system
CN101174879B (en) * 2006-11-02 2011-09-28 鼎桥通信技术有限公司 Scheduling method for mixed automatic request retransmission
KR100956494B1 (en) * 2007-06-14 2010-05-07 엘지전자 주식회사 Method for transmitting control signal
KR20090006708A (en) * 2007-07-12 2009-01-15 엘지전자 주식회사 Method for transmitting scheduling request signal
US8503375B2 (en) * 2007-08-13 2013-08-06 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013166A1 (en) * 2002-07-19 2004-01-22 Goodings Chris J. Hybrid frame structure for wireless communications
CN101060363A (en) * 2006-04-17 2007-10-24 华为技术有限公司 Universal mobile communication system transmission method and its system
US20100074347A1 (en) * 2008-09-25 2010-03-25 Yuval Lomnitz Method and apparatus of subchannelization of wireless communication system
CN102148669A (en) * 2010-01-08 2011-08-10 捷讯研究有限公司 Transmit diversity using low code rate spatial multiplexing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326547B2 (en) 2014-09-25 2019-06-18 Zte Corporation Multi-user code division multiple access communication method, and corresponding transmitter and receiver
EP3292670A4 (en) * 2015-05-29 2018-06-20 Huawei Technologies Co., Ltd. Mc-cdma with low peak-to-average power ratio multi-carrier waveform
US10917167B2 (en) 2015-05-29 2021-02-09 Huawei Technologies Co., Ltd. MC-CDMA with low peak-to-average power ratio multi-carrier waveform
WO2017076155A1 (en) * 2015-11-06 2017-05-11 中兴通讯股份有限公司 Data sending method and apparatus
CN112788631A (en) * 2021-01-26 2021-05-11 北京升哲科技有限公司 Information transmission method and device, communication equipment and storage medium
CN112788631B (en) * 2021-01-26 2022-09-30 北京升哲科技有限公司 Information transmission method and device, communication equipment and storage medium

Also Published As

Publication number Publication date
CN103384182B (en) 2016-12-14
CN103384182A (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP7442853B2 (en) Method, device, and system for transmitting and receiving data channels and control channels in wireless communication systems
US11172473B2 (en) Radio base station and user equipment and methods therein
JP5972953B2 (en) Apparatus and method for transmitting / receiving hybrid automatic repeat request ACK / NACK signal in mobile communication system
KR101227520B1 (en) Method for transmitting uplink reference signal in multiple antenna wireless communication system and apparatus therefor
JP5791749B2 (en) HARQ execution method and apparatus in wireless communication system
KR100922950B1 (en) Apparatus and method for transmitting and receiving process result of a data frame in a orthogonal frequency division multiple system
JP6049083B2 (en) Apparatus and method for transmitting uplink scheduling request in mobile communication system
RU2548657C2 (en) Mobile terminal and radio communication method
WO2017110166A1 (en) Base station device, terminal device, and communication method
JP5420275B2 (en) Code multiplex transmission method, transmitter, and receiver
WO2011087314A2 (en) Method and apparatus for transmitting control information in a wireless communication system
WO2014110928A1 (en) Uplink demodulation reference signal sending method, apparatus and system
CN105680979A (en) Method and apparatus for transmitting control information in wireless communication system
JP2013501472A5 (en)
CN102823182B (en) Send the method and apparatus of ack/nack signal
WO2013163955A1 (en) Method, system and apparatus for uplink transmission
CN104378178B (en) A kind of transmission method and equipment of confirmation message
WO2008051020A1 (en) Method and apparatus for configuring channel node tree in an ofdma wireless communication system
TWI558139B (en) A method, system, and device for performing uplink transmission
JP2014096805A (en) Mobile terminal device, radio communication method and radio communication system
WO2012005523A2 (en) Method for transmitting response information in a wireless communication system, and apparatus for same
JP5570567B2 (en) Base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit
WO2018121599A1 (en) Data transmission method, data demodulation method, device and terminal
JP5094991B2 (en) User device, transmission method, and mobile communication system
JP2011254355A (en) Radio communications system, mobile station device and base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784609

Country of ref document: EP

Kind code of ref document: A1