WO2013161369A1 - Diaphragm and recriprocating pump - Google Patents

Diaphragm and recriprocating pump Download PDF

Info

Publication number
WO2013161369A1
WO2013161369A1 PCT/JP2013/054487 JP2013054487W WO2013161369A1 WO 2013161369 A1 WO2013161369 A1 WO 2013161369A1 JP 2013054487 W JP2013054487 W JP 2013054487W WO 2013161369 A1 WO2013161369 A1 WO 2013161369A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas barrier
diaphragm
rubber
porous
Prior art date
Application number
PCT/JP2013/054487
Other languages
French (fr)
Japanese (ja)
Inventor
伸治 九鬼
裕貴 木上
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013161369A1 publication Critical patent/WO2013161369A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/021Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms the plate-like flexible member is pressed against a wall by a number of elements, each having an alternating movement in a direction perpendicular to the plane of the plate-like flexible member and each having its own driving mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]

Definitions

  • the present invention relates to a diaphragm and a reciprocating pump.
  • the present invention relates to a diaphragm excellent in corrosion resistance or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm. Note that this application claims priority based on Japanese Patent Application No. 2012-98383 filed on April 24, 2012, the entire contents of which are incorporated herein by reference. .
  • tap water is made from the water of rivers and dams that serve as water sources.
  • the water of rivers and dams which are water sources, contain microorganisms, pathogenic organisms, viruses, etc., and cannot be used as tap water as they are. Therefore, it is necessary to sterilize and disinfect bacteria, microorganisms and viruses.
  • alkali hypochlorites such as sodium hypochlorite (NaClO) and calcium hypochlorite (Ca (ClO 2 ) are very often used.
  • hypochlorous acid H 2O
  • hypochlorite ions H 2O ⁇
  • residual chlorine is said to inhibit the respiratory enzymes of bacteria and microorganisms, stop the assimilation of cells, and kill bacteria and microorganisms.
  • chlorine dioxide ClO 2
  • chlorine dioxide is hardly affected by the sterilization effect depending on the pH value, and can be killed by oxidative decomposition of bacteria and microorganisms by the oxidation reaction itself.
  • Such sterilization is not limited to tap water, but is also used for sterilization of water in pools, super public baths, hot springs, and the like.
  • sterilization treatment methods using acidic ion water, hydrogen peroxide water (H 2 O 2 ), chlorine water, hypochlorous acid aqueous solution, etc. are also known.
  • Patent Document 1 discloses a diaphragm pump which is one of reciprocating pumps.
  • FIG. 1 shows a reciprocating pump (diaphragm pump) 1000 disclosed in Patent Document 1.
  • a reciprocating pump 1000 shown in FIG. 1 includes a pump head 110 and a diaphragm 120.
  • a piston portion 130 that is driven by a drive source is attached to the diaphragm 120. Then, by reciprocating the diaphragm 120 by the drive source, the fluid to be transported (for example, from the suction part 111a provided in the first joint 111 to the discharge part 112a provided in the second joint 112) (Alkaline hypochlorite aqueous solution or the like) can be transported.
  • the fluid to be transported for example, from the suction part 111a provided in the first joint 111 to the discharge part 112a provided in the second joint 112
  • Alkaline hypochlorite aqueous solution or the like can be transported.
  • a fluid supply source (not shown) for supplying fluid is connected to the first joint 111, and a fluid receiving unit (not shown) for receiving fluid supply is connected to the second joint 112.
  • the suction part 111a is provided with a suction side check ball 113, and the discharge part 112a is provided with a discharge side check ball 114.
  • the pump head 110 is formed with a pump chamber 110a for transporting fluid. Then, by moving the diaphragm 120 in the direction of arrow B, negative pressure is generated in the pump chamber 110a and each of the check balls 113, 114, and the suction side check balls 113 are moved (moved in the direction of arrow C). A fluid is caused to flow into the pump chamber 110a through the suction part 111a. On the other hand, by moving the diaphragm 120 in the direction opposite to the arrow B, positive pressure is generated in the pump chamber 110a and the check balls 113 and 114, and the discharge side check balls 114 are moved (moved in the direction of arrow D). ), Fluid is discharged from the pump chamber 110a through the discharge part 112a. Thus, the reciprocating pump 1000 can transport the fluid by reciprocating the diaphragm 120.
  • the diaphragm 120 in Patent Document 1 includes a base cloth 121 and a pair of film bodies 122 and 123 so as to sandwich the base cloth 121.
  • a fluorine-based resin 124 is provided on the first film body 122 of the diaphragm 120.
  • a metal core material can be included.
  • the base fabric 121, the first film body 122, the second film body 123, and the fluororesin 124 of the diaphragm 120 are joined together using an adhesive, and are integrated by vulcanization molding.
  • the first film body 122 is made of chlorinated polyethylene made of polyethylene containing chlorine.
  • the second film body 123 is made of neoprene rubber (or ethylene propylene rubber or fluorine rubber).
  • the first film body 122 disposed on the transport target fluid side is made of chlorinated polyethylene having excellent corrosion resistance against an oxidizing substance. Therefore, even if it contacts with an oxidizing substance, it will not corrode. Further, since the first film body 122 does not allow the gas composed of the oxidizing substance to enter, the first film body 122 prevents corrosion of other members constituting the diaphragm due to the permeation of the gas composed of the oxidizing substance. Can do. Therefore, the diaphragm 120 can be made excellent in corrosion resistance or durability against an oxidizing substance. Furthermore, since the fluororesin 124 can be disposed on the diaphragm 120, even a fluid other than a fluid containing an oxidizing substance can be used without damaging the diaphragm 120.
  • the inventor of the present application examined the problem of durability of a reciprocating pump using a diaphragm.
  • a reciprocating pump using a rubber diaphragm there is a problem that the components constituting the reciprocating pump are corroded by the strong oxidizing power of a solution containing an oxidizing substance (liquid to be sterilized).
  • the rubber material of the diaphragm is corroded and damaged by the oxidizing power of the oxidizing substance.
  • These oxidizing substances are also present in the aqueous solution in a gaseous state. Since the gas has higher permeability and stronger corrosiveness than liquid, the gas penetrates into the rubber material, expands, and further deteriorates the rubber material due to strong oxidizing power.
  • the rubber material cannot prevent gas permeation, there arises a problem that the pump components such as metal inside the diaphragm are corroded.
  • the corrosion resistance is improved in the case of the diaphragm in which the fluororesin is applied to the surface of the rubber material as compared with the case of the rubber material alone.
  • fluororesin has excellent corrosion resistance to various solutions, it is corrosion resistant to various solutions in the liquid state, and therefore prevents the permeation of oxidizing substances present in the gas state. The rubber material is deteriorated by the permeable gas.
  • the adhesive and the rubber material are deteriorated by the permeable gas made of an oxidizing substance.
  • the bonding between the fluororesin and the rubber material becomes weak, and the movement of the reciprocating pump is likely to be hindered.
  • the inventor of the present application has intensively studied a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance, and has completed the present invention.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm. There is.
  • the diaphragm according to the present invention is a diaphragm used to reciprocate and convey a fluid, and includes a non-porous film made of a fluorine-based resin and a rubber made of a rubber material laminated on the non-porous film.
  • a film member, and a gas barrier film disposed between the rubber film member and the non-porous film are provided, and the non-porous film and the gas barrier film are joined by thermocompression bonding.
  • the gas barrier film is made of a resin film that blocks permeation of chlorine-based gas, and no adhesive is used for joining the non-porous film and the gas barrier film.
  • the gas barrier film is made of polyvinylidene chloride.
  • the gas barrier film is composed of a laminated film of a gas barrier layer that blocks gas and a thermoplastic resin film, and the thermoplastic resin film of the gas barrier film is in contact with the non-porous film.
  • the gas barrier layer is a polyvinylidene chloride film
  • the thermoplastic resin film includes a linear low density polyethylene film.
  • the non-porous film is composed of a tetrafluoroethylene film.
  • the non-porous film is a cutting film or a casting film.
  • the rubber film member and the gas barrier film are joined by thermocompression bonding.
  • a piston portion for reciprocating the diaphragm is connected to the rubber film member, and no adhesive is used for joining the rubber film member and the gas barrier film.
  • the gas barrier film is composed of a laminated film of a gas barrier layer that blocks gas and a thermoplastic resin film formed on both surfaces of the gas barrier layer.
  • the rubber film member is made of ethylene propylene rubber.
  • the reciprocating pump according to the present invention is a reciprocating pump provided with the above diaphragm.
  • Another reciprocating pump according to the present invention is a reciprocating pump that reciprocates to convey a fluid, and includes a diaphragm to which a piston portion is attached, and a pump head to which the diaphragm is set. It is comprised from the film member laminated
  • the film member includes a fluorine-based resin film located on the pump head side, and a rubber film member bonded to the fluorine-based resin film via a gas barrier film.
  • the fluororesin film is a non-porous cutting film or casting film
  • the gas barrier film is a polyvinylidene chloride film
  • thermoplastic resin film is formed on at least one of the surface on the fluororesin film side and the surface on the rubber film member side of the gas barrier film.
  • the fluid to be transported is selected from the group consisting of an aqueous alkali hypochlorite solution, an aqueous hypochlorous acid solution, chlorine water, chlorine dioxide water, and hydrogen peroxide solution.
  • a non-porous film made of a fluororesin, a rubber film member laminated on the non-porous film, and a gas barrier film disposed between the rubber film member and the non-porous film are provided.
  • the non-porous film and the gas barrier film are joined by thermocompression bonding. Therefore, a non-porous membrane can make a solution containing an oxidizing substance water repellent (liquid repellency) with a fluororesin, and gas that has permeated through the non-porous membrane can be prevented from entering further into the interior by a gas barrier membrane. can do.
  • the non-porous film and the gas barrier film are bonded by thermocompression bonding, it is possible to avoid deterioration of the adhesive by the gas as compared with the case of bonding by the adhesive. As a result, a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance can be realized. In addition, the replacement frequency of the diaphragm can be reduced, and a reciprocating pump excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance can be realized.
  • FIG. 10 It is sectional drawing which shows the conventional reciprocating pump (diaphragm pump) 1000.
  • FIG. It is sectional drawing which shows the conventional diaphragm 120.
  • FIG. It is sectional drawing which shows the conventional diaphragm 120.
  • FIG. It is sectional drawing which shows the structure of the reciprocating pump 200 provided with the diaphragm 100 which concerns on embodiment of this invention.
  • (A) And (b) is sectional drawing for demonstrating operation
  • 3 is a partially enlarged cross-sectional view showing a configuration of a diaphragm 101.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the reciprocating pump 200 according to the embodiment of the present invention.
  • the reciprocating pump 200 of the present embodiment is a reciprocating pump (diaphragm pump) that reciprocates and conveys a fluid (solution) 50.
  • the reciprocating pump 200 includes a diaphragm 100 to which the piston portion 20 is attached, and a pump head 30 to which the diaphragm 100 is set.
  • the diaphragm 100 is composed of a film member 15, and a piston portion 20 driven by a driving source (for example, a motor) is connected to the film member 15.
  • the piston portion 20 moves in the directions of arrows 51 and 52, and the diaphragm 100 (film member 15) moves following the movement of the piston portion 20.
  • the diaphragm 100 when moving in the direction of the arrow 52, the diaphragm 100 generates a negative pressure, and when moving in the direction of the arrow 51, the diaphragm 100 generates a positive pressure.
  • the pump head 30 includes a pump chamber (including fluid paths 34 and 35) for transporting fluid.
  • a supply unit 31 that supplies the solution 50 and a delivery unit 32 that sends out the solution 50 are connected to the pump head 110.
  • the supply unit 31 is disposed below the gravity direction, while the delivery unit 32 is disposed above the gravity direction.
  • the piston part 20 is arrange
  • the supply section 31 is provided with an introduction path 31a for the solution 50.
  • a check valve (check ball) 41 that closes the outlet of the introduction path 31 a is set in the internal space 33 of the supply unit 31.
  • the check valve 41 is a lower check valve and has a role of preventing the solution 50 from flowing back into the introduction path 31a.
  • an end portion of the fluid path 34 of the pump head 30 is connected to the internal space 33 of the supply unit 31.
  • the delivery section 32 is provided with a delivery path (discharge path) 32a for the solution 50.
  • An end of the fluid path 35 of the pump head 30 is connected to the internal space 36 of the delivery unit 32.
  • a check valve (check ball) 42 is set in the internal space 36 of the delivery unit 32, and the check valve 42 closes the outlet of the fluid path 35 of the pump head 30, and the solution 50 is in the fluid path 35. It has a role to prevent backflow.
  • the fluid (solution) 50 of the present embodiment is a liquid containing an oxidizing substance.
  • the fluid 50 is, for example, an alkali hypochlorite aqueous solution, a hypochlorous acid aqueous solution, chlorine water, chlorine dioxide water, hydrogen peroxide solution, or the like, but is not limited thereto.
  • the reciprocating pump 200 according to the present embodiment is mainly used for water sterilization treatment, but is not limited to that use, and other uses (for example, medical sterilization use, foods) Sanitary sterilization applications, bleaching applications, industrial production applications, etc.).
  • the contact surface (surface) 15a to the solution 50 in the film member 15 constituting the diaphragm 100 touches an oxidizing substance of the solution 50 and also touches a gas (particularly a chlorine-based gas) from the oxidizing substance. It will be.
  • the back surface 15b of the film member 15 of this embodiment is comprised from the rubber material, a rubber material will deteriorate with the gas from an oxidizing substance.
  • sterilizing solutions that are frequently used in diaphragm pumps have changed from alkali hypochlorite to chlorine dioxide (ClO 2 ), which has excellent sterilizing power.
  • the influence of chlorine gas is also increasing.
  • the diaphragm 100 of the present embodiment has a structure as shown in FIG.
  • FIG. 6 is a cross-sectional view showing the structure of the diaphragm 100 according to the present embodiment.
  • the diaphragm 100 according to the present embodiment includes a non-porous film 14 made of a fluororesin, a rubber film member 10 laminated on the non-porous film 14 and made of a rubber material, and a rubber film.
  • a gas barrier film 12 is provided between the member 10 and the non-porous film 14. Furthermore, in the configuration of the present embodiment, the non-porous film 14 and the gas barrier film 12 are joined by thermocompression bonding.
  • the non-porous film 14 of this embodiment is composed of a film made of tetrafluoroethylene (PTFE).
  • Fluorine resin films include porous films and non-porous films (non-porous films).
  • a non-porous film is used.
  • Such a fluorine resin film (non-porous film 14) is a cutting film or a casting film.
  • a cutting film is produced as follows, for example. First, a commercially available PTFE molding powder is filled into a cylindrical mold (but closed at the lower end), and is preliminarily molded by pressurizing at a pressure of 200 kgf / cm 2 . Next, the preform (the round bar) is fired at a temperature of 380 ° C. for 3 hours. Then, a cutting film can be produced by cutting this fired product into a film shape with a lathe.
  • the casting film is produced, for example, as follows. First, a commercially available aqueous dispersion having a PTFE powder concentration of 60% by weight is applied to one side of a polyimide sheet (carrier sheet) having a thickness of 0.1 mm. Thereafter, the mixture is heated at 90 ° C. for 2 minutes and then heated at 360 ° C. for 2 minutes to evaporate and remove water as a dispersion medium, form a PTFE film, and fire the film. Next, after applying the dispersion to the polyimide sheet and multi-stage heating twice, a cast film can be produced by peeling the calcined PTFE film from the polyimide sheet.
  • the film thus produced is non-porous PTFE (or PTFE substantially free of pores), unlike porous PTFE.
  • a non-porous PTFE sheet (PTFE film) has pores of about 1 nm or less in a region through which ions and low molecules pass, and is not a porous PTFE sheet.
  • the gas barrier property is ensured by the gas barrier film 12, the size and number of holes of the fluororesin film do not necessarily need to be considered important.
  • the diaphragm 100 (film member 15) can be prevented from being deteriorated by the oxidizing power of the oxidizing substance.
  • the corrosion resistance and / or durability of the diaphragm 100 can be improved as compared with the case where the gas barrier film 12 is positioned on the surface 15a of the film member 15 without the fluorine resin film 14 being present. .
  • the gas barrier film 12 of the present embodiment is composed of a resin film that blocks permeation of an oxidative substance-derived chlorine-based gas (such as chlorine gas).
  • an oxidative substance-derived chlorine-based gas such as chlorine gas.
  • the material of the resin film constituting the gas barrier film 12 includes, for example, polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), and polyvinylidene chloride (PVDC, VDC).
  • -MA copolymer polyacrylonitrile (PAN), polyethylene terephthalate (PET), nylon 6, polyvinyl chloride (PVC), and the like.
  • PVDC polyvinylidene chloride
  • PVDC Polyacrylonitrile
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • PVDC polyvinylidene chloride
  • PVDC polyvinylidene chloride
  • PVDC Polyacrylonitrile
  • PET polyethylene terephthalate
  • the gas permeability of the gas barrier film 12 is evaluated by the permeability of oxygen gas smaller than the size of chlorine gas in order to obtain more stringency.
  • the gas permeability of the gas barrier film 12 is evaluated by O 2 permeability as follows.
  • O 2 permeability index is (cc / m 2 ⁇ 24 h ⁇ atom), 25 ° C., 65% RH (relative humidity), and a film thickness of 25 ⁇ m
  • PVDC is 1 to 2
  • EVOH is 0.2 to 1.5
  • PAN is 5
  • PET 80.
  • As a gas barrier property PVDC and EVOH are excellent, and PVDC is excellent in terms of durability to a gas having an oxidizing power.
  • the O 2 permeability index is about 7894, which allows gas to permeate as compared with PVDC. End up.
  • the gas barrier property of the high-density polyethylene is about 2900 as an index of the O 2 permeability. Therefore, the gas barrier property of chlorinated polyethylene obtained by chlorinating a part of the structure in polyethylene is expected to be the same as or around that of high-density polyethylene. In other words, the gas barrier property of chlorinated polyethylene is , PVDC (or EVOH) is not expected to be a good value.
  • the thickness of the gas barrier film 12 may be appropriately determined based on indices (tensile strength, elastic modulus, durability as a diaphragm) that determine the flexibility of the diaphragm 100.
  • the thickness of both the gas barrier film 12 and the fluororesin film 14 can be set to 0.01 mm to 3 mm, for example.
  • the thickness of the gas barrier film 12 can be set to 0.001 mm to 1 mm, for example.
  • the tensile strength and elastic modulus of the gas barrier film 12 are those having desired values that satisfy the function of the diaphragm 100.
  • the rubber film member 10 of the present embodiment is made of, for example, ethylene propylene rubber (EPDM), neoprene rubber, fluorine rubber, silicone rubber, or nitrile rubber.
  • EPDM ethylene propylene rubber
  • neoprene rubber neoprene rubber
  • fluorine rubber fluorine rubber
  • silicone rubber nitrile rubber
  • an ethylene propylene rubber sheet is preferable as the rubber film member 10 in terms of chemical resistance, weather resistance, and the like, but is not limited thereto.
  • the thickness of the rubber film member 10 is not particularly limited, but may be, for example, 0.1 mm to 5 mm.
  • the fluororesin film (non-porous film) 14 and the gas barrier film 12 are joined by thermocompression bonding. Therefore, it is not necessary to use an adhesive to join the fluorine resin film 14 and the gas barrier film 12. Therefore, it is possible to prevent the adhesive from being deteriorated by a gas (for example, chlorine gas) from the oxidizing substance. Therefore, the fluorine-based resin film 14 and the gas barrier film 12 are caused by the deterioration of the adhesive. Can be prevented from peeling off (separating).
  • a gas for example, chlorine gas
  • thermocompression bonding can be performed by the following method, for example.
  • a method of thermocompression bonding a hot plate type method in which the film is sandwiched between heating plates installed on the top and bottom of the film, and the film is heated and pressure-bonded, or hot air is blown between two films and heated
  • Hot air type method that heats and presses by pressure, or roll type that heats and presses between two rolls (one heated roll or both heated rolls) through two films
  • the method of etc. can be mentioned.
  • the hot plate type has a limit on the size of the hot plate
  • the hot air type has a problem that it is difficult to manage the hot air such as the hot air temperature, the air volume, and the position of the blowing nozzle.
  • thermoplastic resin film for example, a thermoplastic film having a melting point of 300 ° C. or lower
  • thermoplastic resin film linear low density polyethylene (LLDPE or linear polyethylene), ethylene vinyl acetate copolymer (EVA), unstretched polypropylene (CPP), or the like can be used.
  • the thickness of the interposed thermoplastic resin film is, for example, 0.001 mm to 0.5 mm.
  • the above-described thermocompression bonding method can be used.
  • thermoplastic resin film is disposed on the fluorine resin film 14, and lamination (lamination by thermocompression bonding) with the gas barrier film 12 may be executed.
  • a thermoplastic resin film may be disposed on the gas barrier film 12, and lamination (laminating by thermocompression bonding) with the fluororesin film 14 may be performed.
  • the gas barrier film 12 and the rubber film member 10 are joined by thermocompression bonding.
  • thermocompression bonding By joining the gas barrier film 12 and the rubber film member 10 by thermocompression bonding, it is possible to eliminate the need for joining using an adhesive. Since the bonding between the gas barrier film 12 and the rubber film member 10 is a portion where the gas is blocked by the gas barrier film 12, even if an adhesive is used, the influence of the deterioration of the adhesive due to the gas can be avoided. Therefore, it is possible to use an adhesive for the joining.
  • thermocompression bonding there is an advantage that the diaphragm 100 can be manufactured collectively without using an adhesive. is there.
  • thermocompression bonding Even when the bonding between the gas barrier film 12 and the rubber film member 10 is performed by thermocompression bonding, in order to improve the bonding property between the two (or to improve the laminating property by relaxing the compatibility between the materials as much as possible). It is also possible to interpose a thermoplastic resin film (for example, a thermoplastic film having a melting point of 300 ° C. or lower). Note that a thermoplastic resin film is disposed on the gas barrier film 12, and lamination with the rubber film member 10 (laminate by thermocompression bonding) may be executed. Alternatively, a thermoplastic resin film may be disposed on the rubber film member 10 and lamination (lamination by thermocompression bonding) with the gas barrier film 12 may be performed. Furthermore, a thermoplastic resin film is disposed on both surfaces of the gas barrier film 12, and the fluororesin film 14, the gas barrier film 12, and the rubber film member 10 may be laminated (lamination by thermocompression bonding).
  • a thermoplastic resin film for example, a thermoplastic film having
  • thermocompression bonding an adhesive may be used to improve the bonding property. In this case, even if the adhesive is deteriorated, the bonding between the two is ensured by thermocompression bonding, and the joining property by thermocompression bonding is further improved.
  • Example 1 A film sample having a gas barrier property is PTFE sheet No. manufactured by Nitto Denko Corporation. A sample obtained by laminating (thermocompression) 901UL (thickness: 100 ⁇ m) Asahi Kasei Chemicals Co., Ltd. Varioflex film (configuration: LLDPE (linear low density polyethylene) 30 ⁇ m / Saran UB (polyvinylidene chloride) 15 ⁇ m / LLDPE 30 ⁇ m)) is there. Oxygen permeability measurement was performed on the sample of Example 1 using an oxygen permeability measuring device (Model 8001 manufactured by Illinois Instruments, USA). As a result, the oxygen permeability of the film sample having gas barrier properties was 52.02 cc / (m 2 ⁇ day) in terms of 23 ° C. ⁇ RH 60% and thickness 20 ⁇ m.
  • thermocompression bonding of PTFE and LLDPE / PVDC / LLDPE in this example is performed under the conditions of a roll temperature of 160 ° C. (only one of the two rolls), a pressure of 0.5 MPa, and a roll speed of 0.1 m / min.
  • a laminate was produced.
  • LLDPE / PVDC / LLDPE is manufactured by Asahi Kasei Chemicals Corporation, and this film is a film produced by coextrusion.
  • Comparative Example 1 a reference value of a Teflon (registered trademark) sheet is used as a sample, and the oxygen permeability of the sample is about 16000 cc / (m in terms of 23 ° C./RH 60% and thickness 20 ⁇ m. 2 ⁇ day). That is, when compared with Example 1 and Comparative Example 1, it can be seen that the gas barrier properties in Example 1 are significantly improved. Therefore, chlorine gas larger than oxygen (or an oxidizing substance-derived gas) can be blocked by the gas barrier film 12 of this embodiment (that is, a laminate of the fluorine resin film 14 and the gas barrier film 12), Therefore, deterioration of the rubber film member 10 can be suppressed.
  • the gas barrier film 12 of this embodiment that is, a laminate of the fluorine resin film 14 and the gas barrier film 12
  • the fluorine resin film 14 can make the solution 50 containing an oxidizing substance water-repellent (liquid repellency) with the fluorine resin film 14, and a gas (chlorine gas or the like) that has passed through the fluorine resin film 14.
  • the gas barrier film 12 can prevent further penetration.
  • the fluororesin film 14 and the gas barrier film 12 are bonded by thermocompression bonding, it is possible to avoid deterioration of the adhesive by the gas as compared with the case of bonding by the adhesive. .
  • the diaphragm 100 having excellent corrosion resistance and / or durability against the liquid 50 containing an oxidizing substance can be realized.
  • the replacement frequency of the diaphragm 100 can be reduced, and the reciprocating pump 200 having excellent corrosion resistance and / or durability against the liquid 50 containing an oxidizing substance can be realized.
  • a diaphragm 101 as shown in FIG. 7 can be constructed.
  • a diaphragm 101 shown in FIG. 7 has a structure in which a vapor-deposited film 13 is vapor-deposited on a fluorine-based resin film 14 and is laminated on a rubber film member 10. Since the vapor deposition film 13 is made of an inorganic material and is vapor deposition of an inorganic material, a film having excellent gas barrier properties can be constructed. Examples of the inorganic material here include silica (SiO 2 ) and alumina (Al 2 O 3 ).
  • silica (SiO 2 ) is 1 to 5
  • alumina (Al 2 O 3 ) is 1 to 5.
  • Aluminum (Al) is 1 to 5 and niobium / palladium (hydrogen separation membrane) is almost 0.
  • the diaphragm 101 can be employed in the reciprocating pump 200.
  • the reciprocating pump 200 has been described with reference to FIGS. 4 and 5 (a) and 5 (b).
  • the diaphragm 100 according to the embodiment of the present invention can be used, the structure thereof is described. -Any type.
  • the laminated body (film member 15) of the fluorine-based resin film 14 / the gas barrier film 12 / the rubber film member 10 is shown as the configuration of the diaphragm 100.
  • the formation of the protective film is not prohibited, and a suitable layer (in the above example, a low melting point resin film) can be appropriately disposed between the layers.
  • the second gas barrier film 12 may be formed on the back surface side (15b) of the rubber film member 10 so that the gas does not enter the reciprocating pump 200.
  • the present invention it is possible to provide a diaphragm having excellent corrosion resistance and / or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

Provided is a diaphragm having excellent corrosion resistance and durability with respect to liquids containing oxidizing substances. This diaphragm (100), which undergoes reciprocal motion and is used to transport a liquid (50), is equipped with: a nonporous film (14) formed from a fluorine-based resin; a rubber film member (10) laminated on the nonporous film (14); and a gas barrier film (12) arranged between the rubber film member (10) and the nonporous film (14). The nonporous film (14) and the gas barrier film (12) are bonded together by thermo-compression bonding.

Description

ダイヤフラムおよび往復動ポンプDiaphragm and reciprocating pump
 本発明は、ダイヤフラムおよび往復動ポンプに関する。特に、酸化性物質を含む液体に対する耐食性または耐久性に優れたダイヤフラム、および、当該ダイヤフラムを用いた往復動ポンプに関する。
 なお、本出願は2012年4月24日に出願された日本国特許出願2012-98383号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a diaphragm and a reciprocating pump. In particular, the present invention relates to a diaphragm excellent in corrosion resistance or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm.
Note that this application claims priority based on Japanese Patent Application No. 2012-98383 filed on April 24, 2012, the entire contents of which are incorporated herein by reference. .
 一般的に、水道水は、水源となる川やダムの水から作られる。水源となる川やダムの水は、微生物や病原生物、ウイルスなどを含んでいるため、そのままでは水道水として使うことはできない。そのため、細菌・微生物・ウイルスなどを殺菌・消毒する必要がある。この殺菌・消毒のためには、次亜塩素酸ナトリウム(NaClO)や次亜塩素酸カルシウム(Ca(ClO2))などの次亜塩素酸アルカリが非常に良く用いられている。 Generally, tap water is made from the water of rivers and dams that serve as water sources. The water of rivers and dams, which are water sources, contain microorganisms, pathogenic organisms, viruses, etc., and cannot be used as tap water as they are. Therefore, it is necessary to sterilize and disinfect bacteria, microorganisms and viruses. For this sterilization / disinfection, alkali hypochlorites such as sodium hypochlorite (NaClO) and calcium hypochlorite (Ca (ClO 2 )) are very often used.
 次亜塩素酸アルカリは水溶液にすることにより、残留塩素と呼ばれる次亜塩素酸(HClO)、次亜塩素酸イオン(HClO-)などが生成する。この残留塩素が細菌や微生物の呼吸系酵素を阻害し、細胞の同化作用を停止させ、細菌・微生物などを死滅させることができると言われている。また、最近では、次亜塩素酸アルカリによる殺菌処理の代わりに、殺菌力に優れた二酸化塩素(ClO2)も使用されている。二酸化塩素は次亜塩素酸アルカリと異なり、pH値によって滅菌効果がほとんど影響されず、また、酸化反応そのもので細菌・微生物を酸化分解することによって死滅させることができる。 When alkali hypochlorite is made into an aqueous solution, hypochlorous acid (HClO), hypochlorite ions (HClO ) and the like called residual chlorine are generated. This residual chlorine is said to inhibit the respiratory enzymes of bacteria and microorganisms, stop the assimilation of cells, and kill bacteria and microorganisms. Recently, chlorine dioxide (ClO 2 ) having excellent sterilizing power is also used instead of sterilizing treatment with alkali hypochlorite. Unlike alkali hypochlorite, chlorine dioxide is hardly affected by the sterilization effect depending on the pH value, and can be killed by oxidative decomposition of bacteria and microorganisms by the oxidation reaction itself.
 また、このような殺菌処理は、水道水に限らず、プール、スーパー銭湯、温泉などの水の殺菌処理にも使用されている。さらに、殺菌処理方法も、この他に酸性イオン水や過酸化水素水(H22)、塩素水、次亜塩素酸水溶液などを用いたものも知られている。 Such sterilization is not limited to tap water, but is also used for sterilization of water in pools, super public baths, hot springs, and the like. In addition, sterilization treatment methods using acidic ion water, hydrogen peroxide water (H 2 O 2 ), chlorine water, hypochlorous acid aqueous solution, etc. are also known.
 このように、酸化性物質は、細菌・消毒・漂白などに幅広く利用されている。この酸化性物質を含む溶液を殺菌対象液体に搬送する方法としては、往復動ポンプによって定量搬送するものが用いられている。例えば、特許文献1には、往復動ポンプの1つであるダイヤフラムポンプが開示されている。 Thus, oxidizing substances are widely used for bacteria, disinfection, bleaching, and the like. As a method for transporting the solution containing the oxidizing substance to the liquid to be sterilized, a method of transporting a fixed amount by a reciprocating pump is used. For example, Patent Document 1 discloses a diaphragm pump which is one of reciprocating pumps.
 図1は、特許文献1に開示された往復動ポンプ(ダイヤフラムポンプ)1000を示している。図1に示した往復動ポンプ1000は、ポンプヘッド110と、ダイヤフラム120とから構成されている。ダイヤフラム120には、駆動源によって駆動するピストン部130が取り付けられている。そして、駆動源によりダイヤフラム120を往復動させることによって、第1継手111に設けられた吸入部111aから、第2継手112に設けられた吐出部112aに対して、搬送対象となる流体(例えば、次亜塩素酸アルカリ水溶液など)を搬送し得るように構成されている。第1継手111には、流体を供給する流体供給源(不図示)が接続されており、そして、第2継手112には、流体の供給を受ける流体受給部(不図示)が接続されている。また、吸入部111aには、吸入側チャッキボール113が設けられ、そして、吐出部112aには、吐出側チャッキボール114が設けられている。 FIG. 1 shows a reciprocating pump (diaphragm pump) 1000 disclosed in Patent Document 1. A reciprocating pump 1000 shown in FIG. 1 includes a pump head 110 and a diaphragm 120. A piston portion 130 that is driven by a drive source is attached to the diaphragm 120. Then, by reciprocating the diaphragm 120 by the drive source, the fluid to be transported (for example, from the suction part 111a provided in the first joint 111 to the discharge part 112a provided in the second joint 112) (Alkaline hypochlorite aqueous solution or the like) can be transported. A fluid supply source (not shown) for supplying fluid is connected to the first joint 111, and a fluid receiving unit (not shown) for receiving fluid supply is connected to the second joint 112. . The suction part 111a is provided with a suction side check ball 113, and the discharge part 112a is provided with a discharge side check ball 114.
 ポンプヘッド110には、流体を搬送するためのポンプ室110aが形成されている。そして、ダイヤフラム120を矢印B方向に動かすことにより、ポンプ室110a内および各チャッキボール113、114に対して負圧を発生させ、吸入側チャッキボール113を移動させ(矢印C方向に移動させ)、吸入部111aを介してポンプ室110aに流体を流入させる。一方、ダイヤフラム120を矢印Bの反対方向に動かすことにより、ポンプ室110a内および各チャッキボール113、114に対して正圧を発生させ、吐出側チャッキボール114を移動させ(矢印D方向に移動させ)、吐出部112aを介してポンプ室110aから流体を吐出させる。このように、往復動ポンプ1000ではダイヤフラム120を往復動させることによって、流体を搬送することができる。 The pump head 110 is formed with a pump chamber 110a for transporting fluid. Then, by moving the diaphragm 120 in the direction of arrow B, negative pressure is generated in the pump chamber 110a and each of the check balls 113, 114, and the suction side check balls 113 are moved (moved in the direction of arrow C). A fluid is caused to flow into the pump chamber 110a through the suction part 111a. On the other hand, by moving the diaphragm 120 in the direction opposite to the arrow B, positive pressure is generated in the pump chamber 110a and the check balls 113 and 114, and the discharge side check balls 114 are moved (moved in the direction of arrow D). ), Fluid is discharged from the pump chamber 110a through the discharge part 112a. Thus, the reciprocating pump 1000 can transport the fluid by reciprocating the diaphragm 120.
 特許文献1におけるダイヤフラム120は、図2に示すように、基布121と、基布121を挟むように一対の膜体122、123とから構成されている。また、図3に示すように、ダイヤフラム120の第1膜体122の上には、フッ素系樹脂124が設けられている。なお、ダイヤフラム120の強度を高めるべく、金属製の芯材を含めることができる。 As shown in FIG. 2, the diaphragm 120 in Patent Document 1 includes a base cloth 121 and a pair of film bodies 122 and 123 so as to sandwich the base cloth 121. In addition, as shown in FIG. 3, a fluorine-based resin 124 is provided on the first film body 122 of the diaphragm 120. In order to increase the strength of the diaphragm 120, a metal core material can be included.
 ダイヤフラム120の基布121、第1膜体122、第2膜体123、フッ素系樹脂124の間は、接着剤を用いて互いに接合されており、加硫成形によって一体化されている。第1膜体122は、ポリエチレンに塩素を含有させてなる塩素化ポリエチレンによって形成されている。第2膜体123は、ネオプレンゴム(または、エチレンプロピレンゴム、フッ素ゴム)によって形成されている。 The base fabric 121, the first film body 122, the second film body 123, and the fluororesin 124 of the diaphragm 120 are joined together using an adhesive, and are integrated by vulcanization molding. The first film body 122 is made of chlorinated polyethylene made of polyethylene containing chlorine. The second film body 123 is made of neoprene rubber (or ethylene propylene rubber or fluorine rubber).
 このダイヤフラム120によれば、搬送対象流体側に配設される第1膜体122が、酸化性物質に対する耐食性に優れた塩素化ポリエチレンによって構成されている。したがって、酸化性物質が接触しても腐食することはない。また、第1膜体122は、酸化性物質で構成されるガスを浸入させないため、酸化性物質で構成されるガスが浸透することによってダイヤフラムを構成する他の部材が腐食することを防止することができる。したがって、ダイヤフラム120を酸化性物質に対する耐食性または耐久性に優れたものにすることができる。さらには、ダイヤフラム120にフッ素系樹脂124を配設させることができるので、酸化性物質を含む流体以外の流体であっても、ダイヤフラム120を破損することなく使用することができる。 According to the diaphragm 120, the first film body 122 disposed on the transport target fluid side is made of chlorinated polyethylene having excellent corrosion resistance against an oxidizing substance. Therefore, even if it contacts with an oxidizing substance, it will not corrode. Further, since the first film body 122 does not allow the gas composed of the oxidizing substance to enter, the first film body 122 prevents corrosion of other members constituting the diaphragm due to the permeation of the gas composed of the oxidizing substance. Can do. Therefore, the diaphragm 120 can be made excellent in corrosion resistance or durability against an oxidizing substance. Furthermore, since the fluororesin 124 can be disposed on the diaphragm 120, even a fluid other than a fluid containing an oxidizing substance can be used without damaging the diaphragm 120.
特開2006-207533号公報JP 2006-207533 A
 本願発明者は、ダイヤフラムを用いた往復動ポンプの耐久性の問題について検討した。まず、ゴム製のダイヤフラムを用いた往復動ポンプでは、酸化性物質を含む溶液(殺菌対象液体)の強い酸化力によって、往復動ポンプを構成する部品が腐食してしまうという問題がある。具体的には、酸化性物質の酸化力によって、ダイヤフラムのゴム材料が腐食し破損してしまう。また、これらの酸化性物質は水溶液中にガスの状態でも存在している。当該ガスは、液体と比較して透過性が高くかつ強い腐食性を有するためにゴム材料にガスが浸透し、膨張し、強い酸化力によって、ゴム材料をより劣化させてしまう。さらには、ゴム材料は、ガスの透過を防ぐことができないので、ダイヤフラムの内部の金属などのポンプ構成部品を腐食させてしまうという問題が発生する。 The inventor of the present application examined the problem of durability of a reciprocating pump using a diaphragm. First, in a reciprocating pump using a rubber diaphragm, there is a problem that the components constituting the reciprocating pump are corroded by the strong oxidizing power of a solution containing an oxidizing substance (liquid to be sterilized). Specifically, the rubber material of the diaphragm is corroded and damaged by the oxidizing power of the oxidizing substance. These oxidizing substances are also present in the aqueous solution in a gaseous state. Since the gas has higher permeability and stronger corrosiveness than liquid, the gas penetrates into the rubber material, expands, and further deteriorates the rubber material due to strong oxidizing power. Furthermore, since the rubber material cannot prevent gas permeation, there arises a problem that the pump components such as metal inside the diaphragm are corroded.
 また、ゴム材料の腐食を防止するために、ゴム材料の表面にフッ素系樹脂を付与したダイヤフラムの場合には、ゴム材料だけの場合よりも耐食性は向上する。しかしながら、フッ素系樹脂は、様々な溶液に対する耐食性に優れているものの、それは液体状態における様々な溶液への耐食性であり、それゆえに、ガス状態で存在する酸化性物質が透過することを防止することはできず、その透過性ガスによって、ゴム材料は劣化してしまう。 Also, in order to prevent the corrosion of the rubber material, the corrosion resistance is improved in the case of the diaphragm in which the fluororesin is applied to the surface of the rubber material as compared with the case of the rubber material alone. However, although fluororesin has excellent corrosion resistance to various solutions, it is corrosion resistant to various solutions in the liquid state, and therefore prevents the permeation of oxidizing substances present in the gas state. The rubber material is deteriorated by the permeable gas.
 加えて、フッ素系樹脂とゴム材料とが接着剤によって接合されている場合は、酸化性物質からなる透過性ガスによって、その接着剤およびゴム材料の劣化が生じる。加えて、接着剤の劣化に伴って、フッ素系樹脂とゴム材料との接合が弱くなり、往復動ポンプの運動に支障が生じやすくなる。 In addition, when the fluororesin and the rubber material are bonded with an adhesive, the adhesive and the rubber material are deteriorated by the permeable gas made of an oxidizing substance. In addition, with the deterioration of the adhesive, the bonding between the fluororesin and the rubber material becomes weak, and the movement of the reciprocating pump is likely to be hindered.
 このために、往復動ポンプでは、フッ素系樹脂を付与したタイプであっても、月に1回程度はダイヤフラムを交換する必要がある。往復動ポンプは連続使用をすることが望ましいが、この交換時には停止する必要があるとともに、ダイヤフラムの交換手間および交換コストがかかってしまう。そして、特許文献1に開示された構成においても、ダイヤフラムを構成する各層は接着剤によって接合されているので、接着剤の劣化に伴った支障が生じる。 For this reason, with a reciprocating pump, it is necessary to replace the diaphragm about once a month even if it is a type to which a fluororesin is applied. Although it is desirable to use the reciprocating pump continuously, it is necessary to stop the reciprocating pump at the time of the replacement, and the labor and cost of exchanging the diaphragm are increased. And also in the structure disclosed by patent document 1, since each layer which comprises a diaphragm is joined by the adhesive agent, the trouble accompanying deterioration of an adhesive agent arises.
 本願発明者は、このような状況の中で、酸化性物質を含む液体に対する耐食性及び/又は耐久性に優れたダイヤフラムを鋭意検討し、本発明を完成するに至った。本発明はかかる点に鑑みてなされたものであり、その主な目的は、酸化性物質を含む液体に対する耐食性及び/又は耐久性に優れたダイヤフラム、および、それを用いた往復動ポンプを提供することにある。 In this situation, the inventor of the present application has intensively studied a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance, and has completed the present invention. The present invention has been made in view of such a point, and a main object thereof is to provide a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm. There is.
 本発明に係るダイヤフラムは、往復動させて流体を搬送するために用いられるダイヤフラムであり、フッ素系樹脂から構成された非多孔膜と、前記非多孔膜に積層され、ゴム材料から構成されたゴム膜部材と、前記ゴム膜部材と前記非多孔膜との間に配置されたガスバリア膜とを備え、前記非多孔膜とガスバリア膜とは、熱圧着によって接合されている。 The diaphragm according to the present invention is a diaphragm used to reciprocate and convey a fluid, and includes a non-porous film made of a fluorine-based resin and a rubber made of a rubber material laminated on the non-porous film. A film member, and a gas barrier film disposed between the rubber film member and the non-porous film are provided, and the non-porous film and the gas barrier film are joined by thermocompression bonding.
 ある好適な実施形態において、前記ガスバリア膜は、塩素系ガスの透過を遮断する樹脂フィルムから構成されており、前記非多孔膜と前記ガスバリア膜との接合には接着剤が用いられていない。 In a preferred embodiment, the gas barrier film is made of a resin film that blocks permeation of chlorine-based gas, and no adhesive is used for joining the non-porous film and the gas barrier film.
 ある好適な実施形態において、前記ガスバリア膜は、ポリ塩化ビニリデンから構成されている。 In a preferred embodiment, the gas barrier film is made of polyvinylidene chloride.
 ある好適な実施形態において、前記ガスバリア膜は、ガスを遮断するガスバリア層と熱可塑性樹脂フィルムとの積層膜から構成されており、前記ガスバリア膜の熱可塑性樹脂フィルムは、前記非多孔膜と接する。 In a preferred embodiment, the gas barrier film is composed of a laminated film of a gas barrier layer that blocks gas and a thermoplastic resin film, and the thermoplastic resin film of the gas barrier film is in contact with the non-porous film.
 ある好適な実施形態において、前記ガスバリア層は、ポリ塩化ビニリデンフィルムであり、前記熱可塑性樹脂フィルムは、直鎖状低密度ポリエチレンフィルムを含む。 In a preferred embodiment, the gas barrier layer is a polyvinylidene chloride film, and the thermoplastic resin film includes a linear low density polyethylene film.
 ある好適な実施形態において、前記非多孔膜は、テトラフルオロエチレンフィルムから構成されている。 In a preferred embodiment, the non-porous film is composed of a tetrafluoroethylene film.
 ある好適な実施形態において、前記非多孔膜は、切削フィルムまたはキャスティングフィルムである。 In a preferred embodiment, the non-porous film is a cutting film or a casting film.
 ある好適な実施形態において、前記ゴム膜部材と前記ガスバリア膜とは、熱圧着によって接合されている。 In a preferred embodiment, the rubber film member and the gas barrier film are joined by thermocompression bonding.
 ある好適な実施形態において、前記ゴム膜部材には、前記ダイヤフラムを往復動させるピストン部が接続されており、前記ゴム膜部材と前記ガスバリア膜との接合には接着剤が用いられていない。 In a preferred embodiment, a piston portion for reciprocating the diaphragm is connected to the rubber film member, and no adhesive is used for joining the rubber film member and the gas barrier film.
 ある好適な実施形態において、前記ガスバリア膜は、ガスを遮断するガスバリア層と、前記ガスバリア層の両面に形成された熱可塑性樹脂フィルムとの積層膜から構成されている。 In a preferred embodiment, the gas barrier film is composed of a laminated film of a gas barrier layer that blocks gas and a thermoplastic resin film formed on both surfaces of the gas barrier layer.
 ある好適な実施形態において、前記ゴム膜部材は、エチレンプロピレンゴムから構成されている。 In a preferred embodiment, the rubber film member is made of ethylene propylene rubber.
 本発明に係る往復動ポンプは、上記ダイヤフラムを備えた往復動ポンプである。 The reciprocating pump according to the present invention is a reciprocating pump provided with the above diaphragm.
 本発明に係る他の往復動ポンプは、往復動させて流体を搬送する往復動ポンプであり、ピストン部が取り付けられたダイヤフラムと、前記ダイヤフラムがセットされるポンプヘッドとを備え、前記ダイヤフラムは、接着剤を使用せずに熱圧着されて積層されたフィルム部材から構成されており、前記フィルム部材には、ガスバリア膜が含まれている。 Another reciprocating pump according to the present invention is a reciprocating pump that reciprocates to convey a fluid, and includes a diaphragm to which a piston portion is attached, and a pump head to which the diaphragm is set. It is comprised from the film member laminated | stacked by thermocompression bonding without using an adhesive agent, The gas barrier film | membrane is contained in the said film member.
 ある好適な実施形態において、前記フィルム部材は、前記ポンプヘッド側に位置するフッ素系樹脂フィルムと、前記フッ素系樹脂フィルムに、ガスバリア膜を介して接合されたゴム膜部材とを含んでいる。 In a preferred embodiment, the film member includes a fluorine-based resin film located on the pump head side, and a rubber film member bonded to the fluorine-based resin film via a gas barrier film.
 ある好適な実施形態において、前記フッ素系樹脂フィルムは、多孔質ではない切削フィルムまたはキャスティングフィルムであり、前記ガスバリア膜は、ポリ塩化ビニリデンフィルムである。 In a preferred embodiment, the fluororesin film is a non-porous cutting film or casting film, and the gas barrier film is a polyvinylidene chloride film.
 ある好適な実施形態では、前記ガスバリア膜における前記フッ素系樹脂フィルム側の面および前記ゴム膜部材側の面の少なくとも一方には、前記熱可塑性樹脂フィルムが形成されている。 In a preferred embodiment, the thermoplastic resin film is formed on at least one of the surface on the fluororesin film side and the surface on the rubber film member side of the gas barrier film.
 ある好適な実施形態において、搬送される前記流体は、次亜塩素酸アルカリ水溶液、次亜塩素酸水溶液、塩素水、二酸化塩素水および過酸化水素水からなる群から選択される。 In a preferred embodiment, the fluid to be transported is selected from the group consisting of an aqueous alkali hypochlorite solution, an aqueous hypochlorous acid solution, chlorine water, chlorine dioxide water, and hydrogen peroxide solution.
 本発明によれば、フッ素系樹脂から構成された非多孔膜と、非多孔膜に積層されたゴム膜部材と、ゴム膜部材と非多孔膜との間に配置されたガスバリア膜とを備えており、そして、非多孔膜とガスバリア膜とは熱圧着によって接合されている。したがって、非多孔膜によって、酸化性物質を含む溶液をフッ素系樹脂で撥水(撥液)することができるとともに、非多孔膜を透過したガスをガスバリア膜によって、更なる奥への浸入を防止することができる。また、非多孔膜とガスバリア膜とは熱圧着によって接合されているので、接着剤によって接合されている場合と比較して、当該ガスによって接着剤が劣化することを回避することができる。その結果、酸化性物質を含む液体に対する耐食性及び/又は耐久性に優れたダイヤフラムを実現することができる。加えて、ダイヤフラムの交換頻度を減らすことができ、酸化性物質を含む液体に対する耐食性及び/又は耐久性に優れた往復動ポンプを実現することができる。 According to the present invention, a non-porous film made of a fluororesin, a rubber film member laminated on the non-porous film, and a gas barrier film disposed between the rubber film member and the non-porous film are provided. The non-porous film and the gas barrier film are joined by thermocompression bonding. Therefore, a non-porous membrane can make a solution containing an oxidizing substance water repellent (liquid repellency) with a fluororesin, and gas that has permeated through the non-porous membrane can be prevented from entering further into the interior by a gas barrier membrane. can do. Moreover, since the non-porous film and the gas barrier film are bonded by thermocompression bonding, it is possible to avoid deterioration of the adhesive by the gas as compared with the case of bonding by the adhesive. As a result, a diaphragm excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance can be realized. In addition, the replacement frequency of the diaphragm can be reduced, and a reciprocating pump excellent in corrosion resistance and / or durability against a liquid containing an oxidizing substance can be realized.
従来の往復動ポンプ(ダイヤフラムポンプ)1000を示す断面図である。It is sectional drawing which shows the conventional reciprocating pump (diaphragm pump) 1000. FIG. 従来のダイヤフラム120を示す断面図である。It is sectional drawing which shows the conventional diaphragm 120. FIG. 従来のダイヤフラム120を示す断面図である。It is sectional drawing which shows the conventional diaphragm 120. FIG. 本発明の実施形態に係るダイヤフラム100を備えた往復動ポンプ200の構成を示す断面図である。It is sectional drawing which shows the structure of the reciprocating pump 200 provided with the diaphragm 100 which concerns on embodiment of this invention. (a)および(b)は、本発明の実施形態に係る往復動ポンプ200の動作を説明するための断面図である。(A) And (b) is sectional drawing for demonstrating operation | movement of the reciprocating pump 200 which concerns on embodiment of this invention. 本発明の実施形態に係るダイヤフラム100の構成を示す一部拡大断面図である。It is a partially expanded sectional view which shows the structure of the diaphragm 100 which concerns on embodiment of this invention. ダイヤフラム101の構成を示す一部拡大断面図である。3 is a partially enlarged cross-sectional view showing a configuration of a diaphragm 101. FIG.
 以下、図面を参照しながら、本発明の好適な実施形態を説明する。以下の図面においては、説明の簡潔化のために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書及び図面によって開示されている内容と当該分野における技術常識とに基づいて実施することができる。加えて、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of brevity. Further, matters necessary for the implementation of the present invention other than matters specifically mentioned in the present specification can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in the present specification and drawings and the common general technical knowledge in the field. In addition, the present invention is not limited to the following embodiments.
 図4を参照しながら、本発明の実施形態に係る往復動ポンプ200について説明する。図4は、本発明の実施形態に係る往復動ポンプ200の構成を模式的に示す断面図である。 A reciprocating pump 200 according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view schematically showing the configuration of the reciprocating pump 200 according to the embodiment of the present invention.
 本実施形態の往復動ポンプ200は、往復動させて流体(溶液)50を搬送する往復動ポンプ(ダイヤフラムポンプ)である。往復動ポンプ200は、ピストン部20が取り付けられたダイヤフラム100と、ダイヤフラム100がセットされるポンプヘッド30とから構成されている。 The reciprocating pump 200 of the present embodiment is a reciprocating pump (diaphragm pump) that reciprocates and conveys a fluid (solution) 50. The reciprocating pump 200 includes a diaphragm 100 to which the piston portion 20 is attached, and a pump head 30 to which the diaphragm 100 is set.
 ダイヤフラム100は、フィルム部材15から構成されており、駆動源(例えば、モータ)によって駆動するピストン部20がフィルム部材15に接続されている。ピストン部20は、矢印51、52の方向に移動し、そして、そのピストン部20の動きに追随してダイヤフラム100(フィルム部材15)は移動する。具体的には、矢印52の方向に移動した時は、ダイヤフラム100は負圧を発生させ、一方、矢印51の方向に移動した時は、ダイヤフラム100は正圧を発生させる。 The diaphragm 100 is composed of a film member 15, and a piston portion 20 driven by a driving source (for example, a motor) is connected to the film member 15. The piston portion 20 moves in the directions of arrows 51 and 52, and the diaphragm 100 (film member 15) moves following the movement of the piston portion 20. Specifically, when moving in the direction of the arrow 52, the diaphragm 100 generates a negative pressure, and when moving in the direction of the arrow 51, the diaphragm 100 generates a positive pressure.
 ポンプヘッド30には、流体を搬送するためのポンプ室(流体経路34、35を含む)が形成されている。ポンプヘッド110には、溶液50を供給する供給部31と、溶液50を送り出す送出部32が接続されている。本実施形態の往復動ポンプ200では、供給部31は重力方向の下方に位置し、一方、送出部32は重力方向の上方に位置するように配置されている。なお、ピストン部20は、水平方向に延びるように配置されている。 The pump head 30 includes a pump chamber (including fluid paths 34 and 35) for transporting fluid. A supply unit 31 that supplies the solution 50 and a delivery unit 32 that sends out the solution 50 are connected to the pump head 110. In the reciprocating pump 200 of the present embodiment, the supply unit 31 is disposed below the gravity direction, while the delivery unit 32 is disposed above the gravity direction. In addition, the piston part 20 is arrange | positioned so that it may extend in a horizontal direction.
 供給部31には、溶液50の導入経路31aが設けられている。また、供給部31の内部空間33には、導入経路31aの出口を塞ぐ逆止弁(チャッキボール)41がセットされている。この例では、逆止弁41は下部逆止弁であり、溶液50が導入経路31aへ逆流しないようにする役割を有している。また、供給部31の内部空間33には、ポンプヘッド30の流体経路34の端部が接続されている。 The supply section 31 is provided with an introduction path 31a for the solution 50. In addition, a check valve (check ball) 41 that closes the outlet of the introduction path 31 a is set in the internal space 33 of the supply unit 31. In this example, the check valve 41 is a lower check valve and has a role of preventing the solution 50 from flowing back into the introduction path 31a. Further, an end portion of the fluid path 34 of the pump head 30 is connected to the internal space 33 of the supply unit 31.
 送出部32には、溶液50の送出経路(排出経路)32aが設けられている。送出部32の内部空間36には、ポンプヘッド30の流体経路35の端部が接続されている。また、送出部32の内部空間36には、逆止弁(チャッキボール)42がセットされており、逆止弁42は、ポンプヘッド30の流体経路35の出口を塞ぎ、溶液50が流体経路35へ逆流しないようにする役割を有している。 The delivery section 32 is provided with a delivery path (discharge path) 32a for the solution 50. An end of the fluid path 35 of the pump head 30 is connected to the internal space 36 of the delivery unit 32. In addition, a check valve (check ball) 42 is set in the internal space 36 of the delivery unit 32, and the check valve 42 closes the outlet of the fluid path 35 of the pump head 30, and the solution 50 is in the fluid path 35. It has a role to prevent backflow.
 本実施形態の流体(溶液)50は、酸化性物質を含む液体である。流体50は、例えば、次亜塩素酸アルカリ水溶液、次亜塩素酸水溶液、塩素水、二酸化塩素水、過酸化水素水などであるが、これらに限定されるものではない。本実施形態における往復動ポンプ200は、主に、水の殺菌処理の用途に用いられるものであるが、その用途に限定されるものではなく、他の用途(例えば、医療用の殺菌用途、食品衛生の殺菌用途、漂白用途、工業生産用途など)に使用することともできる。 The fluid (solution) 50 of the present embodiment is a liquid containing an oxidizing substance. The fluid 50 is, for example, an alkali hypochlorite aqueous solution, a hypochlorous acid aqueous solution, chlorine water, chlorine dioxide water, hydrogen peroxide solution, or the like, but is not limited thereto. The reciprocating pump 200 according to the present embodiment is mainly used for water sterilization treatment, but is not limited to that use, and other uses (for example, medical sterilization use, foods) Sanitary sterilization applications, bleaching applications, industrial production applications, etc.).
 次に、図5(a)及び(b)も参照しながら、本実施形態の往復動ポンプ200の動作について説明する。まず、図4に示した状態からダイヤフラム100を矢印52の方向に移動させると、図5(a)に示すように、ポンプヘッド30のポンプ室30aは負圧となり、矢印61及び62に示すように、液体50が吸い上げられる。次いで、ダイヤフラム100を矢印51の方向に移動させると、ポンプヘッド30のポンプ室30aは正圧となり、矢印63及び64に示すように、液体50は送り出される。これを繰り返すことにより、液体50の供給および排出(流入および送り出し)を連続して行うことができる。 Next, the operation of the reciprocating pump 200 of this embodiment will be described with reference to FIGS. 5 (a) and 5 (b). First, when the diaphragm 100 is moved from the state shown in FIG. 4 in the direction of the arrow 52, the pump chamber 30a of the pump head 30 becomes negative pressure as shown in FIG. Then, the liquid 50 is sucked up. Next, when the diaphragm 100 is moved in the direction of the arrow 51, the pump chamber 30 a of the pump head 30 becomes positive pressure, and the liquid 50 is sent out as indicated by arrows 63 and 64. By repeating this, the liquid 50 can be continuously supplied and discharged (inflow and delivery).
 ここで、ダイヤフラム100を構成するフィルム部材15における溶液50への接触面(表面)15aは、溶液50の酸化性物質に触れるとともに、当該酸化性物質からのガス(特に、塩素系ガス)に触れることになる。本実施形態のフィルム部材15の裏面15bは、ゴム材料から構成されているが、ゴム材料は、酸化性物質からのガスによって劣化してしまう。特に、ダイヤフラムポンプにおいて使用頻度の高い殺菌溶液が、次亜塩素酸アルカリから、殺菌力に優れた二酸化塩素(ClO2)へと変わってきており、それにより、酸化性物質由来の塩素系ガス(例えば、塩素ガス)の影響も大きくなっている。そのようなガスによる劣化を防止するために、本実施形態のダイヤフラム100においては、図6に示すような構造を有している。 Here, the contact surface (surface) 15a to the solution 50 in the film member 15 constituting the diaphragm 100 touches an oxidizing substance of the solution 50 and also touches a gas (particularly a chlorine-based gas) from the oxidizing substance. It will be. Although the back surface 15b of the film member 15 of this embodiment is comprised from the rubber material, a rubber material will deteriorate with the gas from an oxidizing substance. In particular, sterilizing solutions that are frequently used in diaphragm pumps have changed from alkali hypochlorite to chlorine dioxide (ClO 2 ), which has excellent sterilizing power. For example, the influence of chlorine gas) is also increasing. In order to prevent such deterioration due to gas, the diaphragm 100 of the present embodiment has a structure as shown in FIG.
 図6は、本実施形態に係るダイヤフラム100の構造を示す断面図である。本実施形態のダイヤフラム100は、フッ素系樹脂から構成された非多孔膜14と、非多孔膜14に積層され、ゴム材料から構成されたゴム膜部材10とから構成されており、そして、ゴム膜部材10と非多孔膜14との間にはガスバリア膜12が設けられている。さらに、本実施形態の構成では、非多孔膜14とガスバリア膜12とは、熱圧着によって接合されている。 FIG. 6 is a cross-sectional view showing the structure of the diaphragm 100 according to the present embodiment. The diaphragm 100 according to the present embodiment includes a non-porous film 14 made of a fluororesin, a rubber film member 10 laminated on the non-porous film 14 and made of a rubber material, and a rubber film. A gas barrier film 12 is provided between the member 10 and the non-porous film 14. Furthermore, in the configuration of the present embodiment, the non-porous film 14 and the gas barrier film 12 are joined by thermocompression bonding.
 本実施形態の非多孔膜14は、テトラフルオロエチレン(PTFE)製フィルムから構成されている。フッ素系樹脂フィルムは、多孔質フィルムと、多孔質でないもの(非多孔フィルム)とが存在するが、本実施形態では、酸化性物質由来の塩素系ガス(塩素ガスなど)の透過をできるだけ抑制するために、多孔質でないフィルムを用いる。そのようなフッ素系樹脂フィルム(非多孔膜14)は、切削フィルム、または、キャスティングフィルムである。 The non-porous film 14 of this embodiment is composed of a film made of tetrafluoroethylene (PTFE). Fluorine resin films include porous films and non-porous films (non-porous films). In this embodiment, the permeation of chlorine-based gases (such as chlorine gas) derived from oxidizing substances is suppressed as much as possible. Therefore, a non-porous film is used. Such a fluorine resin film (non-porous film 14) is a cutting film or a casting film.
 本実施形態において切削フィルムは、例えば、次のようにして作製される。まず、市販のPTFEモールディングパウダーを円筒状金型(ただし、下端閉鎖)に充填し、圧力200kgf/cm2で加圧して予備成型する。次に、この予備成型物を(丸棒状物)を温度380℃で3時間加熱して焼成する。その後、この焼成物を旋盤でフィルム状に切削することにより、切削フィルムを作製することができる。 In this embodiment, a cutting film is produced as follows, for example. First, a commercially available PTFE molding powder is filled into a cylindrical mold (but closed at the lower end), and is preliminarily molded by pressurizing at a pressure of 200 kgf / cm 2 . Next, the preform (the round bar) is fired at a temperature of 380 ° C. for 3 hours. Then, a cutting film can be produced by cutting this fired product into a film shape with a lathe.
 また、本実施形態においてキャスティングフィルムは、例えば、次のようにして作製される。まず、市販のPTFE粉末濃度60重量%の水性ディスパージョンを、厚さ0.1mmのポリイミドシート(キャリアシート)の片面に塗布する。その後、90℃で2分間加熱し、次に、360℃で2分間加熱することにより、分散媒である水の蒸発除去、PTFEフィルムの形成および該フィルムの焼成を行う。次いで、ポリイミドシートへのディスパージョンの塗布および多段加熱を2回繰り返した後、焼成されたPTFEフィルムをポリイミドシートから剥離することにより、キャスティングフィルムを作製することができる。 In the present embodiment, the casting film is produced, for example, as follows. First, a commercially available aqueous dispersion having a PTFE powder concentration of 60% by weight is applied to one side of a polyimide sheet (carrier sheet) having a thickness of 0.1 mm. Thereafter, the mixture is heated at 90 ° C. for 2 minutes and then heated at 360 ° C. for 2 minutes to evaporate and remove water as a dispersion medium, form a PTFE film, and fire the film. Next, after applying the dispersion to the polyimide sheet and multi-stage heating twice, a cast film can be produced by peeling the calcined PTFE film from the polyimide sheet.
 このようにして作製されたフィルムは、多孔質のPTFEと異なり、無孔のPTFE(または、実質的に孔の無いPTFE)である。ここで、無孔のPTFEシート(PTFEフィルム)とは、イオンや低分子が通る領域の1nmまたはそれ以下程度の孔が空いており、多孔質PTFEシートのような孔があいているものではないものをいうが、ガスバリア性は、ガスバリア膜12によって担保されるので、フッ素系樹脂フィルムの孔の寸法・数などは必ずしも重要視しなくてよい。 The film thus produced is non-porous PTFE (or PTFE substantially free of pores), unlike porous PTFE. Here, a non-porous PTFE sheet (PTFE film) has pores of about 1 nm or less in a region through which ions and low molecules pass, and is not a porous PTFE sheet. Although the gas barrier property is ensured by the gas barrier film 12, the size and number of holes of the fluororesin film do not necessarily need to be considered important.
 また、フッ素系樹脂フィルム14は、撥水性(撥液性)に優れているので、ダイヤフラム100(フィルム部材15)が、酸化性物質の酸化力で劣化することを抑制することができる。この点、フッ素系樹脂フィルム14が存在せずに、ガスバリア膜12が、フィルム部材15の表面15aに位置している場合と比較して、ダイヤフラム100の耐食性及び又は耐久性を向上させることができる。 Moreover, since the fluororesin film 14 is excellent in water repellency (liquid repellency), the diaphragm 100 (film member 15) can be prevented from being deteriorated by the oxidizing power of the oxidizing substance. In this regard, the corrosion resistance and / or durability of the diaphragm 100 can be improved as compared with the case where the gas barrier film 12 is positioned on the surface 15a of the film member 15 without the fluorine resin film 14 being present. .
 本実施形態のガスバリア膜12は、酸化性物質由来の塩素系ガス(塩素ガスなど)の透過を遮断する樹脂フィルムから構成されている。ガスバリア膜12を構成する樹脂フィルムの材料(すなわち、高ガスバリア性を有する高分子材料)としては、例えば、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン(PVDC、VDC-MA共重合体)、ポリアクリロニトリル(PAN)、ポリエチレンテレフタレート(PET)、ナイロン6、ポリ塩化ビニル(PVC)などを挙げることができる。そして、酸化力のあるガスへの耐久性と、酸化性物質を含む溶液から発生するガスには湿分も含む可能性があるので耐水蒸気透過性とを考慮すると、ポリ塩化ビニリデン(PVDC)、ポリアクリロニトリル(PAN)、ポリエチレンテレフタレート(PET)が好ましい。これらの中では、特に、ポリ塩化ビニリデン(PVDC)が好ましい。 The gas barrier film 12 of the present embodiment is composed of a resin film that blocks permeation of an oxidative substance-derived chlorine-based gas (such as chlorine gas). Examples of the material of the resin film constituting the gas barrier film 12 (that is, a polymer material having high gas barrier properties) include, for example, polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), and polyvinylidene chloride (PVDC, VDC). -MA copolymer), polyacrylonitrile (PAN), polyethylene terephthalate (PET), nylon 6, polyvinyl chloride (PVC), and the like. In consideration of durability to oxidizing gas and gas generated from a solution containing an oxidizing substance, moisture may be included. Therefore, polyvinylidene chloride (PVDC), Polyacrylonitrile (PAN) and polyethylene terephthalate (PET) are preferable. Of these, polyvinylidene chloride (PVDC) is particularly preferable.
 ここで、本実施形態においては、ガスバリア膜12のガス透過性は、より厳密性を出すために、塩素ガスの大きさよりも小さい酸素ガスの透過性で評価するものとする。ガスバリア膜12のガス透過性をO2透過性で評価すると、次の通りである。O2透過性の指標として、(cc/m2・24h・atom)、25℃、65%RH(相対湿度)、フィルム厚25μmを用いた場合、PVDCは1~2、EVOHは0.2~1.5、PANは5、PETは80である。ガスバリア性としては、PVDCおよびEVOHが優れており、酸化力のあるガスへの耐久性の面で、PVDCが優れている。なお、テフロン(登録商標)の場合のPTFEは、撥水性(撥液性)に優れているものの、当該O2透過性の指標では、約7894であり、PVDCと比較して、ガスを透過させてしまう。なお、高密度ポリエチレンのガスバリア性は、上記のO2透過性の指標で、2900程度である。したがって、ポリエチレン内の一部の構造を塩素化した塩素化ポリエチレンのガスバリア性は、高密度ポリエチレンのガスバリア性と同程度かその周辺のものになると予想され、言い換えると、塩素化ポリエチレンのガスバリア性は、PVDC(またはEVOH)のような良好な値とはならないものと推測される。 Here, in this embodiment, the gas permeability of the gas barrier film 12 is evaluated by the permeability of oxygen gas smaller than the size of chlorine gas in order to obtain more stringency. The gas permeability of the gas barrier film 12 is evaluated by O 2 permeability as follows. When the O 2 permeability index is (cc / m 2 · 24 h · atom), 25 ° C., 65% RH (relative humidity), and a film thickness of 25 μm, PVDC is 1 to 2, EVOH is 0.2 to 1.5, PAN is 5, and PET is 80. As a gas barrier property, PVDC and EVOH are excellent, and PVDC is excellent in terms of durability to a gas having an oxidizing power. Although PTFE in the case of Teflon (registered trademark) is excellent in water repellency (liquid repellency), the O 2 permeability index is about 7894, which allows gas to permeate as compared with PVDC. End up. The gas barrier property of the high-density polyethylene is about 2900 as an index of the O 2 permeability. Therefore, the gas barrier property of chlorinated polyethylene obtained by chlorinating a part of the structure in polyethylene is expected to be the same as or around that of high-density polyethylene. In other words, the gas barrier property of chlorinated polyethylene is , PVDC (or EVOH) is not expected to be a good value.
 また、ガスバリア膜12の厚さは、厚ければ厚いほど、ガスバリア性の効果は高くなるが、ダイヤフラム100の往復動における変形が阻害されない程度の厚さにすることが望ましい。具体的には、ガスバリア膜12の厚さは、ダイヤフラム100における柔軟性を決定する指標(引っ張り強度、弾性率、ダイヤフラムとしての耐久力)に基づいて、適宜好適なものを決定すればよい。一例としては、ガスバリア膜12およびフッ素系樹脂フィルム14の両方の厚さとして、例えば0.01mm~3mmにすることができる。そして、ガスバリア膜12の厚さとしては、例えば0.001mm~1mmにすることができる。なお、ガスバリア膜12の引っ張り強度および弾性率は、ダイヤフラム100の機能を満たすような所望の値のものが用いられる。 Further, the thicker the gas barrier film 12, the higher the effect of the gas barrier property, but it is desirable that the thickness of the gas barrier film 12 is such that the deformation in the reciprocating motion of the diaphragm 100 is not hindered. Specifically, the thickness of the gas barrier film 12 may be appropriately determined based on indices (tensile strength, elastic modulus, durability as a diaphragm) that determine the flexibility of the diaphragm 100. As an example, the thickness of both the gas barrier film 12 and the fluororesin film 14 can be set to 0.01 mm to 3 mm, for example. The thickness of the gas barrier film 12 can be set to 0.001 mm to 1 mm, for example. The tensile strength and elastic modulus of the gas barrier film 12 are those having desired values that satisfy the function of the diaphragm 100.
 本実施形態のゴム膜部材10は、例えば、エチレンプロピレンゴム(EPDM)、ネオプレンゴム、フッ素ゴム、シリコーンゴム、ニトリルゴムから構成されている。本実施形態の構成では、耐薬品性・耐候性等の点から、ゴム膜部材10としてはエチレンプロピレンゴムシートが好ましいが、これに限定されるものではない。ここで、ゴム膜部材10の厚さは、特に限定されるものではないが、例えば、0.1mm~5mmにすることができる。 The rubber film member 10 of the present embodiment is made of, for example, ethylene propylene rubber (EPDM), neoprene rubber, fluorine rubber, silicone rubber, or nitrile rubber. In the configuration of the present embodiment, an ethylene propylene rubber sheet is preferable as the rubber film member 10 in terms of chemical resistance, weather resistance, and the like, but is not limited thereto. Here, the thickness of the rubber film member 10 is not particularly limited, but may be, for example, 0.1 mm to 5 mm.
 本実施形態の構成では、フッ素系樹脂フィルム(非多孔膜)14とガスバリア膜12とは、熱圧着によって接合されている。したがって、フッ素系樹脂フィルム14とガスバリア膜12とを接合するのに接着剤を用いる必要がない。それゆえに、酸化性物質からのガス(例えば、塩素ガス)によって接着剤が劣化することを防止することができ、それゆえ、接着剤の劣化に起因して、フッ素系樹脂フィルム14とガスバリア膜12とが剥がれる(分離する)ことを抑制することができる。 In the configuration of the present embodiment, the fluororesin film (non-porous film) 14 and the gas barrier film 12 are joined by thermocompression bonding. Therefore, it is not necessary to use an adhesive to join the fluorine resin film 14 and the gas barrier film 12. Therefore, it is possible to prevent the adhesive from being deteriorated by a gas (for example, chlorine gas) from the oxidizing substance. Therefore, the fluorine-based resin film 14 and the gas barrier film 12 are caused by the deterioration of the adhesive. Can be prevented from peeling off (separating).
 また、本実施形態において、熱圧着は、例えば、次のような方法で実行することができる。例えば、熱圧着の方法としては、フィルムの上下に設置した加熱板で挟み込み、フィルムを加熱し圧着するような熱板式の方法や、2枚のフィルムの間に熱風を吹きつけ加熱し、ロールの加圧によって加熱し圧着するような熱風式の方法や、2本のロールの間(片方が加熱されたロールもしくは両方とも加熱されたロール)を2枚のフィルムを通して加熱し圧着するようなロール式の方法などを挙げることができる。なお、熱板式の方式では熱板のサイズに限界があり、また熱風式では熱風温度、風量、吹出しノズルの位置調整等の熱風の管理が困難であるという問題もあるので、ロール式が一番連続生産可能であり、かつ管理が容易という点で望ましい。加えて、熱圧着によるラミネート処理を行いやすくするために、フッ素系樹脂フィルム14においてガスバリア膜12を付与する面に、化学処理(粗面処理)、または、スパッタエッチング処理などを行うことが好ましい。 Further, in the present embodiment, the thermocompression bonding can be performed by the following method, for example. For example, as a method of thermocompression bonding, a hot plate type method in which the film is sandwiched between heating plates installed on the top and bottom of the film, and the film is heated and pressure-bonded, or hot air is blown between two films and heated, Hot air type method that heats and presses by pressure, or roll type that heats and presses between two rolls (one heated roll or both heated rolls) through two films The method of etc. can be mentioned. The hot plate type has a limit on the size of the hot plate, and the hot air type has a problem that it is difficult to manage the hot air such as the hot air temperature, the air volume, and the position of the blowing nozzle. It is desirable because it can be continuously produced and is easy to manage. In addition, in order to facilitate the laminating process by thermocompression bonding, it is preferable to perform chemical treatment (rough surface treatment) or sputter etching treatment on the surface of the fluororesin film 14 to which the gas barrier film 12 is applied.
 また、フッ素系樹脂フィルム(非多孔膜)14の単体と、ガスバリア膜12の単体とを互いに熱圧着させる手法の他、両者の接合性を向上させる上で(または、材料同士の相性をできるだけ緩和してラミネート性を向上させる上で)、フッ素系樹脂フィルム14とガスバリア膜12との間に、熱可塑性樹脂フィルム(例えば、融点が300℃以下の熱可塑性フィルム)を介在させることも可能である。そのような熱可塑性樹脂フィルムとして、直鎖状低密度ポリエチレン(LLDPE、または、リニアポリエチレン)、エチレン酢酸ビニル共重合体(EVA)、無延伸ポリプロピレン(CPP)等を用いることができる。介在される熱可塑性樹脂フィルムの厚さは、例えば、0.001mm~0.5mmである。本実施形態の構成において、熱可塑性樹脂フィルムを介してフッ素系樹脂フィルム14とガスバリア膜12とを熱圧着させるには、例えば、上述した熱圧着方法を使用することができる。 In addition to the technique of thermocompression bonding of the fluorine-based resin film (non-porous film) 14 and the gas barrier film 12 to each other, the compatibility between the two is improved (or the compatibility between the materials is relaxed as much as possible). In order to improve laminating properties, a thermoplastic resin film (for example, a thermoplastic film having a melting point of 300 ° C. or lower) may be interposed between the fluorine-based resin film 14 and the gas barrier film 12. . As such a thermoplastic resin film, linear low density polyethylene (LLDPE or linear polyethylene), ethylene vinyl acetate copolymer (EVA), unstretched polypropylene (CPP), or the like can be used. The thickness of the interposed thermoplastic resin film is, for example, 0.001 mm to 0.5 mm. In the configuration of the present embodiment, in order to thermocompression bond the fluororesin film 14 and the gas barrier film 12 via the thermoplastic resin film, for example, the above-described thermocompression bonding method can be used.
 また、フッ素系樹脂フィルム14に熱可塑性樹脂フィルムを配置したもので、ガスバリア膜12とのラミネート(熱圧着による積層)を実行しても構わない。あるいは、ガスバリア膜12に熱可塑性樹脂フィルムを配置したもので、フッ素系樹脂フィルム14とのラミネート(熱圧着による積層)を実行しても構わない。 Further, a thermoplastic resin film is disposed on the fluorine resin film 14, and lamination (lamination by thermocompression bonding) with the gas barrier film 12 may be executed. Alternatively, a thermoplastic resin film may be disposed on the gas barrier film 12, and lamination (laminating by thermocompression bonding) with the fluororesin film 14 may be performed.
 さらに、ガスバリア膜12とゴム膜部材10との接合を熱圧着で行うことが好ましい。ガスバリア膜12とゴム膜部材10との接合を熱圧着で行うことで、接着剤を用いて接合する必要をなくすることができる。ガスバリア膜12とゴム膜部材10との接合は、ガスバリア膜12によってガスが遮断された箇所であるため、接着剤を用いても、ガスによる接着剤の劣化の影響を回避することができる。したがって、当該接合に接着剤を用いることは可能である。一方で、フッ素系樹脂フィルム14とガスバリア膜12とゴム膜部材10とを一体で熱圧着にてラミネートすることにより、接着剤を用いずにダイヤフラム100を一括して作製することができるという利点がある。 Furthermore, it is preferable that the gas barrier film 12 and the rubber film member 10 are joined by thermocompression bonding. By joining the gas barrier film 12 and the rubber film member 10 by thermocompression bonding, it is possible to eliminate the need for joining using an adhesive. Since the bonding between the gas barrier film 12 and the rubber film member 10 is a portion where the gas is blocked by the gas barrier film 12, even if an adhesive is used, the influence of the deterioration of the adhesive due to the gas can be avoided. Therefore, it is possible to use an adhesive for the joining. On the other hand, by laminating the fluororesin film 14, the gas barrier film 12, and the rubber film member 10 together by thermocompression bonding, there is an advantage that the diaphragm 100 can be manufactured collectively without using an adhesive. is there.
 なお、ガスバリア膜12とゴム膜部材10との接合を熱圧着で実行する場合にも、両者の接合性を向上させる上で(または、材料同士の相性をできるだけ緩和してラミネート性を向上させる上で)、熱可塑性樹脂フィルム(例えば、融点が300℃以下の熱可塑性フィルム)を介在させることも可能である。なお、ガスバリア膜12に熱可塑性樹脂フィルムを配置したもので、ゴム膜部材10とのラミネート(熱圧着による積層)を実行しても構わない。あるいは、ゴム膜部材10に熱可塑性樹脂フィルムを配置したもので、ガスバリア膜12とのラミネート(熱圧着による積層)を実行しても構わない。さらには、ガスバリア膜12の両面に熱可塑性樹脂フィルムを配置したもので、フッ素系樹脂フィルム14とガスバリア膜12とゴム膜部材10とを、ラミネート(熱圧着による積層)してもよい。 Even when the bonding between the gas barrier film 12 and the rubber film member 10 is performed by thermocompression bonding, in order to improve the bonding property between the two (or to improve the laminating property by relaxing the compatibility between the materials as much as possible). It is also possible to interpose a thermoplastic resin film (for example, a thermoplastic film having a melting point of 300 ° C. or lower). Note that a thermoplastic resin film is disposed on the gas barrier film 12, and lamination with the rubber film member 10 (laminate by thermocompression bonding) may be executed. Alternatively, a thermoplastic resin film may be disposed on the rubber film member 10 and lamination (lamination by thermocompression bonding) with the gas barrier film 12 may be performed. Furthermore, a thermoplastic resin film is disposed on both surfaces of the gas barrier film 12, and the fluororesin film 14, the gas barrier film 12, and the rubber film member 10 may be laminated (lamination by thermocompression bonding).
 また、フッ素系樹脂フィルム14とガスバリア膜12とは熱圧着によって接合(密着)されているのであれば、接合性を向上させるために接着剤を使用しても構わない。この場合、接着剤の劣化が生じても熱圧着によって両者の接合が確保されており、あくまで熱圧着による接合性をさらに向上させるものであるからである。 Further, if the fluorine-based resin film 14 and the gas barrier film 12 are bonded (adhered) by thermocompression bonding, an adhesive may be used to improve the bonding property. In this case, even if the adhesive is deteriorated, the bonding between the two is ensured by thermocompression bonding, and the joining property by thermocompression bonding is further improved.
 次に、本発明の実施例について説明する。なお、本実施例は、本発明を詳細に説明するものであり、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention will be described. In addition, a present Example demonstrates this invention in detail, This invention is not limited to these Examples.
 実施例1として次のサンプルを用いた。ガスバリア性を持つフィルムサンプルは、日東電工(株)製PTFEシートNo.901UL(厚さ100μm)に、旭化成ケミカルズ(株)バリオフレックスフィルム(構成:LLDPE(直鎖状低密度ポリエチレン)30μm/サランUB(ポリ塩化ビニリデン)15μm/LLDPE30μm)をラミネート(熱圧着)したサンプルである。この実施例1のサンプルに対して、酸素透過率測定装置(米国イリノイインスツルメンツ社製8001型)を用いて酸素透過率測定を実行した。その結果、ガスバリア性を持つフィルムサンプルの酸素透過率は、23℃・RH60%、厚み20μm換算にて、52.02cc/(m2・day)であった。 The following sample was used as Example 1. A film sample having a gas barrier property is PTFE sheet No. manufactured by Nitto Denko Corporation. A sample obtained by laminating (thermocompression) 901UL (thickness: 100μm) Asahi Kasei Chemicals Co., Ltd. Varioflex film (configuration: LLDPE (linear low density polyethylene) 30μm / Saran UB (polyvinylidene chloride) 15μm / LLDPE 30μm)) is there. Oxygen permeability measurement was performed on the sample of Example 1 using an oxygen permeability measuring device (Model 8001 manufactured by Illinois Instruments, USA). As a result, the oxygen permeability of the film sample having gas barrier properties was 52.02 cc / (m 2 · day) in terms of 23 ° C. · RH 60% and thickness 20 μm.
 なお、この実施例におけるPTFEとLLDPE/PVDC/LLDPEとの熱圧着は、ロール温度160℃(2本のロールの内片方のみ)、圧力0.5MPa、ロール速度0.1m/minの条件で行って、積層体を作製した。LLDPE/PVDC/LLDPEは、上記の旭化成ケミカルズ社製のものであり、このフィルムは共押出しで作製したフィルムである。 The thermocompression bonding of PTFE and LLDPE / PVDC / LLDPE in this example is performed under the conditions of a roll temperature of 160 ° C. (only one of the two rolls), a pressure of 0.5 MPa, and a roll speed of 0.1 m / min. Thus, a laminate was produced. LLDPE / PVDC / LLDPE is manufactured by Asahi Kasei Chemicals Corporation, and this film is a film produced by coextrusion.
 また、比較例1としてはテフロン(登録商標)のシートの文献値をサンプルとし、そして、これは、サンプルの酸素透過率は、23℃・RH60%、厚み20μm換算にて、約16000cc/(m2・day)になる。すなわち、実施例1と比較例1と比べると、実施例1におけるガスバリア性は顕著に向上していることがわかる。したがって、酸素よりも大きい塩素ガス(または、酸化性物質由来のガス)は、本実施形態のガスバリア膜12(すなわち、フッ素系樹脂フィルム14及びガスバリア膜12の積層体)によって遮断することができ、それゆえ、ゴム膜部材10の劣化を抑制することができる。 In addition, as Comparative Example 1, a reference value of a Teflon (registered trademark) sheet is used as a sample, and the oxygen permeability of the sample is about 16000 cc / (m in terms of 23 ° C./RH 60% and thickness 20 μm. 2 · day). That is, when compared with Example 1 and Comparative Example 1, it can be seen that the gas barrier properties in Example 1 are significantly improved. Therefore, chlorine gas larger than oxygen (or an oxidizing substance-derived gas) can be blocked by the gas barrier film 12 of this embodiment (that is, a laminate of the fluorine resin film 14 and the gas barrier film 12), Therefore, deterioration of the rubber film member 10 can be suppressed.
 本実施形態のダイヤフラム100によれば、フッ素系樹脂フィルム14とガスバリア膜12とゴム膜部材10との積層体を備え、フッ素系樹脂フィルム14とガスバリア膜12とは熱圧着によって接合されている。したがって、フッ素系樹脂フィルム14によって、酸化性物質を含む溶液50をフッ素系樹脂フィルム14で撥水(撥液)することができるとともに、フッ素系樹脂フィルム14を透過したガス(塩素ガスなど)をガスバリア膜12によって、更なる奥への浸入を防止することができる。また、フッ素系樹脂フィルム14とガスバリア膜12とは熱圧着によって接合されているので、接着剤によって接合されている場合と比較して、当該ガスによって接着剤が劣化することを回避することができる。その結果、酸化性物質を含む液体50に対する耐食性及び/又は耐久性に優れたダイヤフラム100を実現することができる。加えて、ダイヤフラム100の交換頻度を減らすことができ、酸化性物質を含む液体50に対する耐食性及び/又は耐久性に優れた往復動ポンプ200を実現することができる。 According to the diaphragm 100 of the present embodiment, a laminated body of the fluorine resin film 14, the gas barrier film 12, and the rubber film member 10 is provided, and the fluorine resin film 14 and the gas barrier film 12 are joined by thermocompression bonding. Therefore, the fluorine resin film 14 can make the solution 50 containing an oxidizing substance water-repellent (liquid repellency) with the fluorine resin film 14, and a gas (chlorine gas or the like) that has passed through the fluorine resin film 14. The gas barrier film 12 can prevent further penetration. Moreover, since the fluororesin film 14 and the gas barrier film 12 are bonded by thermocompression bonding, it is possible to avoid deterioration of the adhesive by the gas as compared with the case of bonding by the adhesive. . As a result, the diaphragm 100 having excellent corrosion resistance and / or durability against the liquid 50 containing an oxidizing substance can be realized. In addition, the replacement frequency of the diaphragm 100 can be reduced, and the reciprocating pump 200 having excellent corrosion resistance and / or durability against the liquid 50 containing an oxidizing substance can be realized.
 なお、本実施形態のダイヤフラム100の改変例として、図7に示したようなダイヤフラム101を構築することができる。図7に示したダイヤフラム101は、フッ素系樹脂フィルム14に蒸着膜13が蒸着された構造を有しており、それがゴム膜部材10に積層されている。蒸着膜13は、無機材料からなり、また、無機材料の蒸着であるので、ガスバリア性に優れたものを構築することができる。ここでの無機材料は、例えば、シリカ(SiO2)、アルミナ(Al23)を挙げることができる。 As a modification of the diaphragm 100 of the present embodiment, a diaphragm 101 as shown in FIG. 7 can be constructed. A diaphragm 101 shown in FIG. 7 has a structure in which a vapor-deposited film 13 is vapor-deposited on a fluorine-based resin film 14 and is laminated on a rubber film member 10. Since the vapor deposition film 13 is made of an inorganic material and is vapor deposition of an inorganic material, a film having excellent gas barrier properties can be constructed. Examples of the inorganic material here include silica (SiO 2 ) and alumina (Al 2 O 3 ).
 O2透過性の指標として、(cc/m2・24h・atom)、25℃、65%RH(相対湿度)、フィルム厚25μmを用いた場合、シリカ(SiO2)は1~5で、アルミナ(Al23)は1~5である。これらは、ガスバリア性では優れているが、当該ダイヤフラム101を往復動ポンプ200として使用する場合には、柔軟性・可撓性において、上述したダイヤフラム100の方が勝っている。また、アルミニウム(Al)は1~5で、ニオブ・パラジウム(水素分離膜)はほぼ0であり、これらもガスバリア性では優れているが、アルミニウムは塩素に対する耐食性に劣り、ニオブ・パラジウムはコスト面で問題がある。なお、これらの問題を解決できる構造を採用する場合には、ダイヤフラム101を往復動ポンプ200に採用することが可能である。 As an index of O 2 permeability, when using (cc / m 2 · 24h · atom), 25 ° C., 65% RH (relative humidity), and a film thickness of 25 μm, silica (SiO 2 ) is 1 to 5, and alumina (Al 2 O 3 ) is 1 to 5. These are excellent in gas barrier properties, but when the diaphragm 101 is used as the reciprocating pump 200, the above-described diaphragm 100 is superior in flexibility and flexibility. Aluminum (Al) is 1 to 5 and niobium / palladium (hydrogen separation membrane) is almost 0. These are also excellent in gas barrier properties, but aluminum is inferior in corrosion resistance to chlorine, and niobium / palladium is cost-effective. There is a problem. When a structure that can solve these problems is employed, the diaphragm 101 can be employed in the reciprocating pump 200.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、往復動ポンプ200は、図4及び図5(a)及び(b)に示したもので説明したが、本発明の実施形態に係るダイヤフラム100を使用することができるものであればその構造・タイプは問わない。加えて、本実施形態では、ダイヤフラム100の構成として、フッ素系樹脂フィルム14/ガスバリア膜12/ゴム膜部材10の積層体(フィルム部材15)を示したが、フッ素系樹脂フィルム14の表面にさらに保護膜を形成することを禁止するものではないし、各層の間に適宜好適な層(上述の例では、低融点の樹脂フィルム)を配置することができる。さらには、ゴム膜部材10の裏面側(15b)に、第2のガスバリア膜12を形成して、往復動ポンプ200の内部にガスが浸入しないような構造にすることも可能である。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and, of course, various modifications are possible. For example, the reciprocating pump 200 has been described with reference to FIGS. 4 and 5 (a) and 5 (b). However, if the diaphragm 100 according to the embodiment of the present invention can be used, the structure thereof is described. -Any type. In addition, in the present embodiment, the laminated body (film member 15) of the fluorine-based resin film 14 / the gas barrier film 12 / the rubber film member 10 is shown as the configuration of the diaphragm 100. The formation of the protective film is not prohibited, and a suitable layer (in the above example, a low melting point resin film) can be appropriately disposed between the layers. Furthermore, the second gas barrier film 12 may be formed on the back surface side (15b) of the rubber film member 10 so that the gas does not enter the reciprocating pump 200.
 本発明によれば、酸化性物質を含む液体に対する耐食性及び/又は耐久性に優れたダイヤフラム、および、それを用いた往復動ポンプを提供することができる。 According to the present invention, it is possible to provide a diaphragm having excellent corrosion resistance and / or durability against a liquid containing an oxidizing substance, and a reciprocating pump using the diaphragm.
10   ゴム膜部材
10a ポンプ室
12   ガスバリア膜
13   蒸着膜(ガスバリア膜)
14   非多孔膜(フッ素系樹脂フィルム)
15   フィルム部材
16   DLC膜(表面保護膜)
20   ピストン部
30   ポンプヘッド
30a ポンプ室
31   供給部
31a 導入経路
32   送出部
34   流体経路
35   流体経路
41   逆止弁
42   逆止弁
50   流体(溶液)
100 ダイヤフラム
101 ダイヤフラム
102 ダイヤフラム
110 ポンプヘッド
120 ダイヤフラム
121 基布
122 第1膜体
123 第2膜体
124 フッ素系樹脂
130 ピストン部
200 往復動ポンプ
1000 往復動ポンプ
10 Rubber film member 10a Pump chamber 12 Gas barrier film 13 Deposition film (gas barrier film)
14 Non-porous membrane (fluorinated resin film)
15 Film member 16 DLC film (surface protective film)
20 Piston part 30 Pump head 30a Pump chamber 31 Supply part 31a Introduction path 32 Delivery part 34 Fluid path 35 Fluid path 41 Check valve 42 Check valve 50 Fluid (solution)
DESCRIPTION OF SYMBOLS 100 Diaphragm 101 Diaphragm 102 Diaphragm 110 Pump head 120 Diaphragm 121 Base fabric 122 1st film body 123 2nd film body 124 Fluorine resin 130 Piston part 200 Reciprocating pump 1000 Reciprocating pump

Claims (17)

  1.  往復動させて流体を搬送するために用いられるダイヤフラムであって、
     フッ素系樹脂から構成された非多孔膜と、
     前記非多孔膜に積層され、ゴム材料から構成されたゴム膜部材と、
     前記ゴム膜部材と前記非多孔膜との間に配置されたガスバリア膜と
     を備え、
     前記非多孔膜とガスバリア膜とは、熱圧着によって接合されている、ダイヤフラム。
    A diaphragm used to reciprocate and convey a fluid,
    A non-porous membrane composed of a fluorine-based resin;
    A rubber film member laminated on the non-porous film and made of a rubber material;
    A gas barrier film disposed between the rubber film member and the non-porous film,
    The non-porous film and the gas barrier film are diaphragms joined by thermocompression bonding.
  2.  前記ガスバリア膜は、塩素系ガスの透過を遮断する樹脂フィルムから構成されており、
     前記非多孔膜と前記ガスバリア膜との接合には接着剤が用いられていないことを特徴とする、請求項1に記載のダイヤフラム。
    The gas barrier film is composed of a resin film that blocks permeation of chlorine-based gas,
    The diaphragm according to claim 1, wherein an adhesive is not used for joining the non-porous film and the gas barrier film.
  3.  前記ガスバリア膜は、ポリ塩化ビニリデンから構成されている、請求項1または2に記載のダイヤフラム。 The diaphragm according to claim 1 or 2, wherein the gas barrier film is made of polyvinylidene chloride.
  4.  前記ガスバリア膜は、ガスを遮断するガスバリア層と熱可塑性樹脂フィルムとの積層膜から構成されており、
     前記ガスバリア膜の熱可塑性樹脂フィルムは、前記非多孔膜と接する、請求項1または2に記載のダイヤフラム。
    The gas barrier film is composed of a laminated film of a gas barrier layer for blocking gas and a thermoplastic resin film,
    The diaphragm according to claim 1 or 2, wherein the thermoplastic resin film of the gas barrier film is in contact with the non-porous film.
  5.  前記ガスバリア層は、ポリ塩化ビニリデンフィルムであり、
     前記ガスバリア膜の熱可塑性樹脂フィルムは、直鎖状低密度ポリエチレンフィルムを含む、請求項4に記載のダイヤフラム。
    The gas barrier layer is a polyvinylidene chloride film,
    The diaphragm according to claim 4, wherein the thermoplastic resin film of the gas barrier film includes a linear low-density polyethylene film.
  6.  前記非多孔膜は、テトラフルオロエチレンフィルムから構成されている、請求項1から5の何れか1つに記載のダイヤフラム。 The diaphragm according to any one of claims 1 to 5, wherein the non-porous film is composed of a tetrafluoroethylene film.
  7.  前記非多孔膜は、切削フィルムまたはキャスティングフィルムである、請求項6に記載のダイヤフラム。 The diaphragm according to claim 6, wherein the non-porous film is a cutting film or a casting film.
  8.  前記ゴム膜部材と前記ガスバリア膜とは、熱圧着によって接合されている、請求項1から7の何れか1つに記載のダイヤフラム。 The diaphragm according to any one of claims 1 to 7, wherein the rubber film member and the gas barrier film are bonded by thermocompression bonding.
  9.  前記ゴム膜部材には、前記ダイヤフラムを往復動させるピストン部が接続されており、
     前記ゴム膜部材と前記ガスバリア膜との接合には接着剤が用いられていないことを特徴とする、請求項1から8の何れか1つに記載のダイヤフラム。
    The rubber film member is connected to a piston part that reciprocates the diaphragm,
    The diaphragm according to any one of claims 1 to 8, wherein an adhesive is not used for joining the rubber film member and the gas barrier film.
  10.  前記ガスバリア膜は、ガスを遮断するガスバリア層と、前記ガスバリア層の両面に形成された熱可塑性樹脂フィルムとの積層膜から構成されている、請求項1から9の何れか1つに記載のダイヤフラム。 The diaphragm according to any one of claims 1 to 9, wherein the gas barrier film is formed of a laminated film of a gas barrier layer that blocks gas and a thermoplastic resin film formed on both surfaces of the gas barrier layer. .
  11.  前記ゴム膜部材は、エチレンプロピレンゴムから構成されている、請求項1から10の何れか1つに記載のダイヤフラム。 The diaphragm according to any one of claims 1 to 10, wherein the rubber film member is made of ethylene propylene rubber.
  12.  請求項1から11の何れか1つに記載のダイヤフラムを備えたことを特徴とする往復動ポンプ。 A reciprocating pump comprising the diaphragm according to any one of claims 1 to 11.
  13.  往復動させて流体を搬送する往復動ポンプであって、
     ピストン部が取り付けられたダイヤフラムと、
     前記ダイヤフラムがセットされるポンプヘッドと
     を備え、
     前記ダイヤフラムは、接着剤を使用せずに熱圧着されて積層されたフィルム部材から構成されており、
     前記フィルム部材には、ガスバリア膜が含まれている、往復動ポンプ。
    A reciprocating pump that reciprocates and conveys fluid,
    A diaphragm with an attached piston,
    A pump head on which the diaphragm is set,
    The diaphragm is composed of a film member laminated by thermocompression bonding without using an adhesive,
    A reciprocating pump, wherein the film member includes a gas barrier film.
  14.  前記フィルム部材は、
           前記ポンプヘッド側に位置するフッ素系樹脂フィルムと、
           前記フッ素系樹脂フィルムに、ガスバリア膜を介して接合されたゴム膜部材と
     を含んでいる、請求項13に記載の往復動ポンプ。
    The film member is
    A fluorine-based resin film located on the pump head side;
    The reciprocating pump according to claim 13, further comprising: a rubber film member joined to the fluororesin film via a gas barrier film.
  15.  前記フッ素系樹脂フィルムは、多孔質ではない切削フィルムまたはキャスティングフィルムであり、
     前記ガスバリア膜は、ポリ塩化ビニリデンフィルムである、請求項14に記載の往復動ポンプ。
    The fluororesin film is a non-porous cutting film or casting film,
    The reciprocating pump according to claim 14, wherein the gas barrier film is a polyvinylidene chloride film.
  16.  前記ガスバリア膜における前記フッ素系樹脂フィルム側の面および前記ゴム膜部材側の面の少なくとも一方には、前記熱可塑性樹脂フィルムが形成されている、請求項13から15の何れか1つに記載の往復動ポンプ。 The thermoplastic resin film according to any one of claims 13 to 15, wherein the thermoplastic resin film is formed on at least one of the surface on the fluororesin film side and the surface on the rubber film member side in the gas barrier film. Reciprocating pump.
  17.  搬送される前記流体は、次亜塩素酸アルカリ水溶液、次亜塩素酸水溶液、塩素水、二酸化塩素水および過酸化水素水からなる群から選択される、請求項13から16の何れか1つに記載の往復動ポンプ。 The fluid to be conveyed is selected from the group consisting of an aqueous alkali hypochlorite solution, an aqueous hypochlorous acid solution, chlorine water, chlorine dioxide water and hydrogen peroxide solution, according to any one of claims 13 to 16. The described reciprocating pump.
PCT/JP2013/054487 2012-04-24 2013-02-22 Diaphragm and recriprocating pump WO2013161369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012098383A JP2013227870A (en) 2012-04-24 2012-04-24 Diaphragm and reciprocating pump
JP2012-098383 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161369A1 true WO2013161369A1 (en) 2013-10-31

Family

ID=49482710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054487 WO2013161369A1 (en) 2012-04-24 2013-02-22 Diaphragm and recriprocating pump

Country Status (2)

Country Link
JP (1) JP2013227870A (en)
WO (1) WO2013161369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566444A (en) * 2019-09-23 2019-12-13 四川金星清洁能源装备股份有限公司 diaphragm for diaphragm compressor and method for prolonging service life of diaphragm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240056581A (en) * 2021-12-17 2024-04-30 시케이디 가부시키가이샤 Diaphragm and chemical liquid control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825700Y1 (en) * 1969-12-31 1973-07-26
JPH1068383A (en) * 1996-07-09 1998-03-10 American Standard Inc Flexible diaphragm for inactive plastic covering
JP3504896B2 (en) * 1999-10-20 2004-03-08 株式会社タクミナ Reciprocating pump
JP4034973B2 (en) * 2002-01-31 2008-01-16 淀川ヒューテック株式会社 Diaphragm for small metering pumps using fluorine-based multilayer multilayer polyimide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825700Y1 (en) * 1969-12-31 1973-07-26
JPH1068383A (en) * 1996-07-09 1998-03-10 American Standard Inc Flexible diaphragm for inactive plastic covering
JP3504896B2 (en) * 1999-10-20 2004-03-08 株式会社タクミナ Reciprocating pump
JP4034973B2 (en) * 2002-01-31 2008-01-16 淀川ヒューテック株式会社 Diaphragm for small metering pumps using fluorine-based multilayer multilayer polyimide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566444A (en) * 2019-09-23 2019-12-13 四川金星清洁能源装备股份有限公司 diaphragm for diaphragm compressor and method for prolonging service life of diaphragm

Also Published As

Publication number Publication date
JP2013227870A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US20200339927A1 (en) Gas Permeable Material
EP2621615B1 (en) Thin film composite membranes for forward osmosis, and their preparation methods
US9695066B2 (en) Ionomer-membrane water processing apparatus
TW200536865A (en) Chlorotrifluoroethylene copolymer
US9511327B2 (en) Ionomer-membrane water processing methods
CN110099705B (en) Heat exchanger and artificial lung
WO2013161369A1 (en) Diaphragm and recriprocating pump
JP2010253355A (en) Membrane separation type activated sludge treatment apparatus
JPWO2012056812A1 (en) Hollow fiber membrane filtration device and method for cleaning hollow fiber membrane module
JP4993188B2 (en) Resin piping
US20090169789A1 (en) Resin pipe
JP2007216387A (en) Laminated tube
JP2006207533A (en) Diaphragm and reciprocating pump
WO2012151223A1 (en) Multilayer film structures including a polyester elastomer layer and a thermoplastic polyurethane layer
WO2013162036A1 (en) Small diaphragm pump
TWI647339B (en) Method for producing oxidizing solution and electrolytic battery used
JP5126153B2 (en) Membrane separation activated sludge treatment equipment
CN108722190A (en) A kind of resistance to chlorine type polyamide reverse osmosis composite film and preparation method thereof
US20090107521A1 (en) Chemical solution or pure water feeder, substrate processing system, substrate processing apparatus, or substrate processing method
JP2003088738A (en) Carbonated warm water production apparatus
JPH07213880A (en) Tubular membrane
KR20230135601A (en) cell culture system
KR102342446B1 (en) Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
JP2012000571A (en) Porous body for deaeration, and deaeration apparatus having the same
JP3540804B2 (en) Removal system for dissolved organic matter in water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781838

Country of ref document: EP

Kind code of ref document: A1