WO2013157208A1 - Vascular insertion type treatment device - Google Patents

Vascular insertion type treatment device Download PDF

Info

Publication number
WO2013157208A1
WO2013157208A1 PCT/JP2013/002286 JP2013002286W WO2013157208A1 WO 2013157208 A1 WO2013157208 A1 WO 2013157208A1 JP 2013002286 W JP2013002286 W JP 2013002286W WO 2013157208 A1 WO2013157208 A1 WO 2013157208A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
treatment device
balloon
type treatment
acoustic mirror
Prior art date
Application number
PCT/JP2013/002286
Other languages
French (fr)
Japanese (ja)
Inventor
吏悟 小林
小林 淳一
杉本 良太
平原 一郎
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013157208A1 publication Critical patent/WO2013157208A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22055Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation with three or more balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22071Steering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/003Destruction of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/006Lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/0069Reflectors

Definitions

  • the present invention relates to a blood vessel insertion type treatment device, and particularly to a blood vessel insertion type treatment device that can be inserted into a blood vessel and cauterize a living tissue around the blood vessel from inside the blood vessel.
  • a blood vessel insertion type treatment device capable of cauterizing a living tissue around a blood vessel such as a renal artery sympathetic nerve around the renal artery while suppressing damage to the blood vessel.
  • a blood vessel insertion type treatment device includes: An elongated insertion tube having a proximal end and an insertion end at both ends; A first ultrasonic transducer that is provided near the insertion end in the insertion tube and emits ultrasonic waves for cauterization in a specific direction; An acoustic mirror is provided in a specific direction from the first ultrasonic transducer in the insertion tube and reflects the ablation ultrasonic waves in a direction different from the longitudinal direction of the insertion body.
  • the ultrasonic waves for cauterization generated by the first ultrasonic transducer are reflected by the acoustic mirror in a direction different from the longitudinal direction. Therefore, it is possible to cauterize living tissue in the direction of reflection by the acoustic mirror. Since ultrasonic waves are used for cauterization of a living tissue, it is possible to suppress damage to blood vessels or the like interposed between the first ultrasonic transducer and the ablation target tissue.
  • the blood vessel insertion type treatment device configured as described above, it is possible to suppress damage to blood vessels when removing living tissue around the blood vessels.
  • FIG. 2 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 1. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 1st Embodiment. It is a perspective view of the acoustic balloon lens for demonstrating the structure of an acoustic balloon lens. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 2nd Embodiment.
  • FIG. 6 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG.
  • FIG. 5 It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 3rd Embodiment. It is a figure which shows the 1st modification of a mesh balloon.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. It is a figure which shows the 2nd modification of a mesh balloon.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10.
  • FIG. 1 is a diagram for explaining a technique for removing a renal artery sympathetic nerve using the blood vessel insertion type treatment device according to the first embodiment of the present invention.
  • the operator inserts the guiding catheter 200 from the patient's thigh into the femoral artery FA in advance and allows the distal end of the guiding catheter 200 to reach the renal artery RA.
  • a guide wire (not shown) is used for reaching the guiding artery 200 to the renal artery RA.
  • the guiding catheter 200 is tubular, and a device for diagnosis and treatment can be inserted.
  • the blood vessel insertion type treatment device 100 is generally string-shaped, has an insertion end and a proximal end, and can be inserted into the lumen of the guiding catheter 200 from the insertion end.
  • the surgeon inserts the blood vessel insertion type treatment device 100 into the guiding catheter 200 and causes the insertion end to protrude from the guiding catheter 200 (see FIG. 2).
  • the acoustic balloon lens 101 provided in the vicinity of the insertion end of the blood vessel insertion type treatment device 100 is expanded to fix the blood vessel insertion type treatment device 100 in the renal artery RA.
  • the blood vessel insertion type treatment device 100 has an imaging function and an ablation function.
  • the blood vessel insertion type treatment device 100 can emit imaging ultrasound IUS. The surgeon executes an imaging function of the inserted blood vessel insertion type treatment device 100 to acquire an image around the renal artery from the renal artery RA.
  • the surgeon discriminates the sympathetic nerve SN to be cauterized based on the acquired image, and adjusts the position of the blood vessel insertion type treatment device 100 so that the cauterized ultrasound CUS is irradiated to the discriminated sympathetic nerve SN. . After the position adjustment, the surgeon performs the cauterization function of the blood vessel insertion type treatment device 100 to cauterize the desired sympathetic nerve SN.
  • the blood vessel insertion type treatment device 100 includes an insertion tube 102, a first ultrasonic transducer 103, an acoustic mirror 104, a torque transmission body 105, an image acquisition unit 106, an acoustic balloon lens 101 (see FIG. 2), and the like. Is done.
  • the insertion tube 102 is formed of a member having acoustic properties and flexibility.
  • the end of the insertion tube 102 on the insertion end side is open.
  • the inside of the insertion tube 102 is filled with a medium having acoustic transmission properties from the base end side.
  • the first ultrasonic transducer 103 is provided in the vicinity of the insertion end in the insertion tube 102.
  • the first ultrasonic transducer 103 has a disk shape and emits an ablation ultrasonic wave CUS in a direction perpendicular to the plate surface.
  • the first ultrasonic transducer 103 is fixed in the insertion tube 102 such that the ultrasonic wave CUS for cauterization is emitted toward the proximal end and the plate surface is perpendicular to the longitudinal direction of the insertion tube 102.
  • the distance for transmitting ultrasonic waves and the amount of heat generated at the position where the ultrasonic waves converge are determined by the frequency. Therefore, the frequency of the ultrasound CUS for cauterization is determined in advance based on the approximate interval from the inside of the renal artery RA to the renal artery sympathetic nerve SN and the amount of heat generated for cauterization of the sympathetic nerve SN.
  • a signal line extending from the first ultrasonic transducer 103 to the proximal end is connected to an ablation control unit (not shown).
  • the ablation control unit supplies a drive signal to the first ultrasonic transducer 103 so as to generate the ablation ultrasonic wave CUS at the above-described frequency.
  • the acoustic mirror 104 is provided in the insertion tube 102 on the proximal side with respect to the first ultrasonic transducer 103.
  • the acoustic mirror 104 has a conical shape and has a reflecting surface on the side surface.
  • the acoustic mirror 104 is fixed in the insertion tube 102 so that the bottom surface of the acoustic mirror 104 is perpendicular to the longitudinal direction of the insertion tube 102 and the apex faces the insertion end side.
  • the ablation ultrasonic wave CUS1 emitted from the first ultrasonic transducer 103 is surrounded by the acoustic mirror 104 in the longitudinal direction of the insertion tube 102. (Refer to reference sign “CUS2”).
  • the torque transmission body 105 is formed by a flexible member so as to extend from the vicinity of the proximal end of the insertion tube 102 to the insertion end. With the insertion end of the torque transmission body 105 reaching the bottom surface of the acoustic mirror 104 of the insertion tube 102, the proximal end of the torque transmission body 105 protrudes from the proximal end of the insertion tube 102.
  • the outer diameter of the torque transmission body 105 is determined to be smaller than the inner diameter of the insertion tube 102, and the torque transmission body 105 is rotatable within the insertion tube 102 about the longitudinal direction. Therefore, when torque that rotates about the longitudinal direction is supplied to the proximal end of the torque transmission body 105, the supplied torque is transmitted to the insertion end of the torque transmission body 105, and the entire torque transmission body 105 is transferred into the insertion tube 102. Rotate. Further, the torque transmission body 105 is freely displaceable along the longitudinal direction in the insertion tube 102.
  • the image acquisition unit 106 is provided in the vicinity of the insertion end of the torque transmission body 105.
  • the image acquisition unit 106 has a single imaging ultrasonic transducer 107.
  • the imaging ultrasonic transducer 107 is arranged so as to emit ultrasonic waves in a direction inclined by a predetermined angle from the direction perpendicular to the longitudinal direction of the torque transmitting body 105 to the insertion end side.
  • the imaging ultrasonic transducer 107 From the imaging ultrasonic transducer 107, it is possible to generate imaging ultrasonic IUS suitable for image acquisition.
  • the imaging ultrasonic transducer 107 generates a pixel signal corresponding to the reflected wave of the imaging ultrasonic IUS.
  • the resolution due to the reflected wave of the ultrasonic wave varies depending on the frequency.
  • the frequency of the imaging ultrasound IUS is determined in advance based on the resolution necessary for confirmation and diagnosis of the position of a specific sympathetic nerve.
  • a signal line extending from the imaging ultrasonic transducer 107 to the base end is connected to an imaging control unit (not shown).
  • the imaging control unit supplies a drive signal to the imaging ultrasonic transducer 107 so as to generate the imaging ultrasonic IUS at the above-described frequency.
  • the imaging control unit receives a pixel signal generated by the imaging ultrasonic transducer 107.
  • the imaging control unit creates an image based on pixel signals corresponding to a number of locations irradiated with imaging ultrasonic waves.
  • the irradiation position of the imaging ultrasonic waves can be determined by detecting the rotational position of the torque transmission body 105 and the displacement position along the longitudinal direction using an encoder or a position sensor, and is used for creating an image.
  • the acoustic balloon lens 101 is provided in the insertion tube 102 in the vicinity of the position where the acoustic mirror 104 is disposed.
  • the blood vessel insertion type treatment device 100 can be fixed in the blood vessel.
  • the acoustic balloon lens 101 has a double structure having an inner balloon 108 and an outer balloon 109. Different media are used to inflate the inner balloon 108 and the outer balloon 109, respectively. As the medium of the inner balloon 108, an object having an ultrasonic transmission speed smaller than that of the medium of the outer balloon 109 is used.
  • the ultrasonic wave CUS for cauterization reflected by the acoustic mirror 104 has the passage distance of the inner balloon 108 and the passage distance of the outer balloon 109 depending on the reflection position from the top side to the bottom side of the acoustic mirror 104. change. Therefore, the inner balloon 108 and the outer balloon 109 are formed so as to be able to converge the ultrasonic wave at a convergence position separated from the insertion tube 102 by a predetermined distance. The approximate distance from the renal artery to the renal artery sympathetic nerve is determined as a predetermined distance.
  • the blood vessel insertion type treatment device 100 of the first embodiment configured as described above, it is possible to maximize the heat generation energy at the convergence position of the ablation ultrasonic waves. Therefore, while it is possible to cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel, it is possible to suppress damage to the blood vessel interposed between the living tissue.
  • the blood vessel insertion type treatment device 100 of the first embodiment by using the conical acoustic mirror 104, an ultrasonic wave for ablation emitted from the first ultrasonic transducer 103 in a specific direction is inserted into the insertion tube. 102 can be reflected to the surroundings. Therefore, it is possible to easily cauterize an object extending in an annular shape or an arc shape outside the blood vessel without rotating the insertion tube 102.
  • the acoustic balloon lens 101 is used to fix the blood vessel insertion type treatment device 100 in the blood vessel and converge the ablation ultrasonic wave at a predetermined distance. Is feasible. Therefore, it is possible to reduce the number of components compared to the case where separate balloons and acoustic lenses are used.
  • the image acquisition unit 106 is provided in the vicinity of the first ultrasonic transducer 103, confirmation of a living tissue to be ablated, and ablation status Confirmation is easy.
  • the second embodiment is different from the first embodiment in that a cylindrical acoustic lens and a mesh balloon are used without using the acoustic balloon lens 101.
  • the second embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1000 includes an insertion tube 102, a first ultrasonic transducer 103, an acoustic mirror 104, a torque transmission body 105, an image acquisition unit 106, and a cylindrical acoustic device.
  • a lens 1100 and a mesh balloon 1110 are included.
  • the configurations and functions of the insertion tube 102, the first ultrasonic transducer 103, the acoustic mirror 104, the torque transmission body 105, and the image acquisition unit 106 are the same as those in the first embodiment.
  • the cylindrical acoustic lens 1100 has a cylindrical side surface on the inner surface and a concave surface in the cylinder height direction on the outer surface. Therefore, the cylindrical acoustic lens 1100 has a function of converging ultrasonic waves along the cylinder height direction.
  • the cylindrical acoustic lens 1100 is formed so that the length in the height direction of the cylindrical acoustic lens 1100 is longer than the length from the top to the bottom of the acoustic mirror 104.
  • the cylindrical acoustic lens 1100 is disposed in the insertion tube 102 so that the entire acoustic mirror 104 is accommodated inside the cylinder.
  • the mesh balloon 1110 is provided in the insertion tube 102.
  • the mesh balloon 1110 is provided on the base end side with respect to the image acquisition unit 106 in a state where the torque transmission body 105 reaches the bottom surface of the acoustic mirror 104.
  • the blood vessel insertion type treatment device 1000 of the second embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, similarly to the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the insertion tube 102. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
  • the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 can be temporarily fixed in the blood vessel using the mesh balloon 1110. Further, since the mesh balloon 1110 is used, blood flow can be secured, and overheating of the inner wall of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel can be prevented. It is.
  • a blood vessel insertion type treatment device according to a third embodiment of the present invention will be described.
  • the configuration of the acoustic mirror is different from that of the first embodiment.
  • the third embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1001 of the third embodiment includes an insertion tube 102, a first ultrasonic transducer 1031, an acoustic mirror 1041, a torque transmission body 1051, an image acquisition unit 106, and a mesh.
  • a balloon 1110 (see FIG. 6) and the like are included.
  • the configurations and functions of the insertion tube 102 and the image acquisition unit 106 are the same as those in the first embodiment.
  • the configuration and function of the mesh balloon 1110 are the same as those in the second embodiment.
  • the function of the first ultrasonic transducer 1031 is the same as that of the first embodiment. Unlike the first embodiment, the first ultrasonic transducer 1031 is provided in the torque transmission body 1051. A hollow h is formed in the torque transmission body 1051 in the vicinity of the insertion end, and the first ultrasonic transducer 1031 is provided in the hollow h.
  • the first ultrasonic transducer has a disk shape, emits the cauterization ultrasonic wave CUS on the base end side, and the plate surface is perpendicular to the longitudinal direction of the torque transmitting body 1051. So that it is fixed in the hollow h.
  • the acoustic mirror 1041 is provided closer to the base end side than the first ultrasonic transducer 1031 in the hollow h.
  • the acoustic mirror 1041 is a concave acoustic mirror whose reflecting surface is concave.
  • the acoustic mirror 1041 is fixed in the hollow h so that the ultrasonic waves for cauterization emitted from the first ultrasonic transducer 1031 in the proximal direction are reflected in a direction perpendicular to the longitudinal direction.
  • the torque transmission body 1051 has a hollow h in the vicinity of the insertion end.
  • the first ultrasonic transducer 1031 and the acoustic mirror 1041 are provided in the hollow h.
  • the hollow h is filled with the ultrasonic transmission substance in a state where the first ultrasonic transducer 1031 and the acoustic mirror 1041 are fixed.
  • the ultrasonic transmission material is a material that can reduce propagation loss compared to air and can reduce reflection at the interface with the insertion tube 102, and examples thereof include saline and resin.
  • the function and configuration of the torque transmission body 1051 other than the hollow h formed and filled with the ultrasonic transmission material are the same as those in the first embodiment.
  • the blood vessel insertion type treatment device 1001 of the third embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
  • the vicinity of the insertion end of the blood vessel insertion type treatment device 1001 is temporarily fixed in the blood vessel using the mesh balloon 1110 as in the second embodiment. Is possible. Further, since the mesh balloon 1110 is used, it is possible to prevent overheating of the inner wall portion of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1001 in the blood vessel.
  • the blood vessel insertion type treatment device 1001 of the third embodiment it is possible to change the irradiation position of the ultrasonic CUS for cauterization using the torque transmission body 1051.
  • the ultrasonic wave In ablation of a living tissue using an ultrasonic transducer, the ultrasonic wave is converged to the focal point, so that the region that can be cauterized is only near the focal point.
  • it is possible to rotate the blood vessel insertion type treatment device 1001 as a whole it is necessary to release the fixation by the mesh balloon 1110, which requires a complicated procedure.
  • the torque transmission body 1051 can be rotated manually or automatically.
  • the conical acoustic mirror 104 is provided in the first and second embodiments, it may be a cone-shaped acoustic mirror.
  • the mesh balloon 1110 is provided, but the blood vessel insertion type treatment devices 1000 and 1001 are temporarily fixed in the blood vessel using other balloons.
  • a possible configuration may be used.
  • a balloon that prevents overheating of the inner wall of the blood vessel is preferable.
  • the same overheating prevention effect as that of the mesh balloon 1110 can be obtained by a configuration having a plurality of balloons 112 that can be expanded in different directions around the insertion tube 102.
  • the mesh balloon 1110 may be configured to include a balloon 113 that is inflatable around the insertion tube 102 and has a hole OH that penetrates in the longitudinal direction. It is possible to obtain the same effect of preventing overheating.
  • the same overheating prevention effect as that of the mesh balloon 1110 can be obtained by the configuration having the balloon 114 formed so that the cross section along the plane perpendicular to the longitudinal direction has a star shape. Is possible.
  • the same overheating prevention effect as that of the mesh balloon 1110 can be obtained also by a configuration in which the balloon 116 is partially inflated using a plurality of wires 115.
  • a perfusion balloon or a cryoballoon that can cool the inner wall of the blood vessel using a refrigerant.
  • cauterization using ultrasonic waves it is possible to maximize the heat generation energy at the focal point, but the blood vessel walls including the inner wall of the blood vessel that propagates the ultrasonic waves before convergence can also generate heat due to the ultrasonic waves. Therefore, it is possible to further reduce the possibility of damage that can occur on the inner wall of the blood vessel by using a cooled balloon.
  • the image acquisition unit 106 is configured to acquire an image using ultrasonic waves, but acquires an image based on optical information such as TD-OCT and HUD-OCT. It may be a configuration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Abstract

This vascular insertion type treatment device (100) is provided with an insertion tube (102), a first ultrasonic transducer (103), and an acoustic mirror (104). The insertion tube (102) has a longitudinal shape, the two ends of which are a base end and an insertion end. The first ultrasonic transducer (103) is provided near the insertion end inside of the insertion tube (102). The first ultrasonic transducer (103) produces cauterizing ultrasonic waves in a specific direction. The acoustic mirror (104) is provided facing a specific direction relative to the first ultrasonic transducer (103) inside of the insertion tube (102). The acoustic mirror (104) reflects the cauterizing ultrasonic waves in a direction different than the longitudinal direction of the insertion body.

Description

血管挿入型治療デバイスVascular insertion device
 本発明は、血管挿入型治療デバイスに関する発明であって、特に、血管内に挿入し、血管内部から血管周辺の生体組織を焼灼可能な血管挿入型治療デバイスに関する。 The present invention relates to a blood vessel insertion type treatment device, and particularly to a blood vessel insertion type treatment device that can be inserted into a blood vessel and cauterize a living tissue around the blood vessel from inside the blood vessel.
 近年、腎動脈交感神経活動の異常が、鬱血性心不全、腎不全、高血圧症、およびこれら以外の心腎疾患を引起すことが、解明されている。また、腎動脈交感神経の除去等により、これらの疾患を治療することも知られている。腎動脈交感神経の焼灼のために、腎動脈内部に電極を挿入し、電極から腎動脈交換神経にパルス出力電界を印加する腎臓神経調節装置が提案されている(特許文献1参照)。 In recent years, it has been elucidated that abnormal renal artery sympathetic nerve activity causes congestive heart failure, renal failure, hypertension, and other cardiorenal diseases. It is also known to treat these diseases by removing renal artery sympathetic nerves. In order to cauterize the renal artery sympathetic nerve, a renal nerve control device has been proposed in which an electrode is inserted into the renal artery and a pulse output electric field is applied from the electrode to the renal artery replacement nerve (see Patent Document 1).
 しかし、特許文献1に記載の腎臓神経調節装置による、パルス出力電界を用いた腎動脈交感神経の焼灼では、血管内膜の電流密度が最も大きくなる。そのため、血管内膜において発生する熱が最も大きくなる。このため、血管内膜を含めた血管壁全体が焼灼される可能性があり、内膜肥厚および血栓等の副作用が発生し得る。 However, in the cauterization of the renal artery sympathetic nerve using the pulse output electric field by the renal nerve control device described in Patent Document 1, the current density of the intima becomes the largest. Therefore, the heat generated in the vascular intima is the largest. For this reason, the whole blood vessel wall including the intima of the blood vessel may be cauterized, and side effects such as intimal thickening and thrombus may occur.
特表2008-515544号公報Special table 2008-515544
 従って、上記のような問題点に鑑みてなされた本発明では、血管の損傷を抑制しながら腎動脈周囲の腎動脈交感神経等の血管周囲の生体組織の焼灼が可能な血管挿入型治療デバイスの提供を目的とする。 Therefore, in the present invention made in view of the above problems, there is provided a blood vessel insertion type treatment device capable of cauterizing a living tissue around a blood vessel such as a renal artery sympathetic nerve around the renal artery while suppressing damage to the blood vessel. For the purpose of provision.
 上述した諸課題を解決すべく、本発明による血管挿入型治療デバイスは、
 両端に基端および挿入端を有する長手形状の挿入管と、
 挿入管内の挿入端近傍に設けられ、特定の方向に焼灼用超音波を発する第1の超音波振動子と、
 挿入管内における第1の超音波振動子から特定の方向に設けられ、焼灼用超音波を挿入体の長手方向と異なる方向に反射する音響ミラーとを備える
 ことを特徴とするものである。
In order to solve the above-described problems, a blood vessel insertion type treatment device according to the present invention includes:
An elongated insertion tube having a proximal end and an insertion end at both ends;
A first ultrasonic transducer that is provided near the insertion end in the insertion tube and emits ultrasonic waves for cauterization in a specific direction;
An acoustic mirror is provided in a specific direction from the first ultrasonic transducer in the insertion tube and reflects the ablation ultrasonic waves in a direction different from the longitudinal direction of the insertion body.
 このような構成によれば、第1の超音波振動子が発する焼灼用超音波が音響ミラーにより長手方向と異なる方向に反射される。したがって、音響ミラーによる反射方向における生体組織を焼灼可能である。生体組織の焼灼に超音波を用いるので、第1の超音波振動子と焼灼対象組織との間に介在する血管等の損傷を抑制することが可能である。 According to such a configuration, the ultrasonic waves for cauterization generated by the first ultrasonic transducer are reflected by the acoustic mirror in a direction different from the longitudinal direction. Therefore, it is possible to cauterize living tissue in the direction of reflection by the acoustic mirror. Since ultrasonic waves are used for cauterization of a living tissue, it is possible to suppress damage to blood vessels or the like interposed between the first ultrasonic transducer and the ablation target tissue.
 上記のように構成された本発明に係る血管挿入型治療デバイスによれば、血管周囲の生体組織の除去に際し、血管の損傷を抑制することが可能である。 According to the blood vessel insertion type treatment device according to the present invention configured as described above, it is possible to suppress damage to blood vessels when removing living tissue around the blood vessels.
本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。It is a figure explaining the technique of renal artery sympathetic nerve removal using the blood vessel insertion type treatment device concerning a 1st embodiment of the present invention. 図1における、ガイディングカテーテルが挿入された腎動脈近辺の拡大図である。FIG. 2 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 1. 第1の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 1st Embodiment. 音響バルーンレンズの構成を説明するための、音響バルーンレンズの透視図である。It is a perspective view of the acoustic balloon lens for demonstrating the structure of an acoustic balloon lens. 第2の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 2nd Embodiment. 図5における、ガイディングカテーテルが挿入された腎動脈近辺の拡大図である。FIG. 6 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 5. 第3の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 3rd Embodiment. メッシュバルーンの第1の変形例を示す図である。It is a figure which shows the 1st modification of a mesh balloon. 図8におけるIX-IX線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. メッシュバルーンの第2の変形例を示す図である。It is a figure which shows the 2nd modification of a mesh balloon. 図10におけるXI-XI線に沿った断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10. メッシュバルーンの第3の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。It is sectional drawing of the blood vessel insertion type treatment device in the blood vessel along the direction perpendicular | vertical to a longitudinal direction for demonstrating the 3rd modification of a mesh balloon. メッシュバルーンの第4の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。It is sectional drawing of the blood vessel insertion type treatment device in the blood vessel along the direction perpendicular | vertical to a longitudinal direction for demonstrating the 4th modification of a mesh balloon.
 以下、本発明を適用した血管挿入型治療デバイスの実施形態について、図面を参照して説明する。図1は、本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。 Hereinafter, an embodiment of a blood vessel insertion type treatment device to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a diagram for explaining a technique for removing a renal artery sympathetic nerve using the blood vessel insertion type treatment device according to the first embodiment of the present invention.
 腎動脈交感神経除去の手技のために、術者は予めガイディングカテーテル200を患者の大腿部から大腿動脈FAに挿入し、ガイディングカテーテル200の先端を腎動脈RAに到達させる。ガイディングカテーテル200の腎動脈RAへの到達には、ガイドワイヤ(図示せず)が用いられる。 In order to remove the renal artery sympathetic nerve, the operator inserts the guiding catheter 200 from the patient's thigh into the femoral artery FA in advance and allows the distal end of the guiding catheter 200 to reach the renal artery RA. A guide wire (not shown) is used for reaching the guiding artery 200 to the renal artery RA.
 ガイディングカテーテル200は管状であり、診察および治療用のデバイスを挿入可能である。血管挿入型治療デバイス100は全体的に紐状であり、挿入端と基端とを有し、挿入端からガイディングカテーテル200の内腔に挿入可能である。術者は、血管挿入型治療デバイス100をガイディングカテーテル200内に挿入し、その挿入端をガイディングカテーテル200から突出させる(図2参照)。突出させた状態で、血管挿入型治療デバイス100の挿入端近傍に設けられる音響バルーンレンズ101を膨張させることにより、血管挿入型治療デバイス100を腎動脈RA内に固定する。 The guiding catheter 200 is tubular, and a device for diagnosis and treatment can be inserted. The blood vessel insertion type treatment device 100 is generally string-shaped, has an insertion end and a proximal end, and can be inserted into the lumen of the guiding catheter 200 from the insertion end. The surgeon inserts the blood vessel insertion type treatment device 100 into the guiding catheter 200 and causes the insertion end to protrude from the guiding catheter 200 (see FIG. 2). In the protruding state, the acoustic balloon lens 101 provided in the vicinity of the insertion end of the blood vessel insertion type treatment device 100 is expanded to fix the blood vessel insertion type treatment device 100 in the renal artery RA.
 後述するように、血管挿入型治療デバイス100は、撮像機能および焼灼機能を有する。撮像機能を実行するために、血管挿入型治療デバイス100は、撮像用超音波IUSを発することが可能である。術者は、挿入した血管挿入型治療デバイス100の撮像機能を実行させることにより、腎動脈RA内部からの腎動脈周囲の画像を取得させる。 As will be described later, the blood vessel insertion type treatment device 100 has an imaging function and an ablation function. In order to perform the imaging function, the blood vessel insertion type treatment device 100 can emit imaging ultrasound IUS. The surgeon executes an imaging function of the inserted blood vessel insertion type treatment device 100 to acquire an image around the renal artery from the renal artery RA.
 術者は、取得した画像に基づいて、焼灼すべき交感神経SNを判別し、判別した交感神経SNに焼灼用超音波CUSが照射されるように、血管挿入型治療デバイス100の位置を調節する。位置調節後、術者は血管挿入型治療デバイス100の焼灼機能を実行させて、所望の交感神経SNを焼灼する。 The surgeon discriminates the sympathetic nerve SN to be cauterized based on the acquired image, and adjusts the position of the blood vessel insertion type treatment device 100 so that the cauterized ultrasound CUS is irradiated to the discriminated sympathetic nerve SN. . After the position adjustment, the surgeon performs the cauterization function of the blood vessel insertion type treatment device 100 to cauterize the desired sympathetic nerve SN.
 次に、血管挿入型治療デバイス100の構成について、図3を用いて説明する。血管挿入型治療デバイス100は、挿入管102、第1の超音波振動子103、音響ミラー104、トルク伝達体105、画像取得ユニット106、および音響バルーンレンズ101(図2参照)等を含んで構成される。 Next, the configuration of the blood vessel insertion type treatment device 100 will be described with reference to FIG. The blood vessel insertion type treatment device 100 includes an insertion tube 102, a first ultrasonic transducer 103, an acoustic mirror 104, a torque transmission body 105, an image acquisition unit 106, an acoustic balloon lens 101 (see FIG. 2), and the like. Is done.
 挿入管102は、音響性および可撓性を有する部材によって形成される。挿入管102の挿入端側の端部は開放されている。また、使用開始時、挿入管102内部は基端側から音響伝達性を有する媒質により満たされる。 The insertion tube 102 is formed of a member having acoustic properties and flexibility. The end of the insertion tube 102 on the insertion end side is open. At the start of use, the inside of the insertion tube 102 is filled with a medium having acoustic transmission properties from the base end side.
 第1の超音波振動子103は、挿入管102内の挿入端近傍に設けられる。第1の超音波振動子103は円板状であり、板面に垂直な方向に焼灼用超音波CUSを発する。第1の超音波振動子103は基端側に焼灼用超音波CUSを発するように、かつ挿入管102の長手方向に板面が垂直となるように、挿入管102内に固定される。 The first ultrasonic transducer 103 is provided in the vicinity of the insertion end in the insertion tube 102. The first ultrasonic transducer 103 has a disk shape and emits an ablation ultrasonic wave CUS in a direction perpendicular to the plate surface. The first ultrasonic transducer 103 is fixed in the insertion tube 102 such that the ultrasonic wave CUS for cauterization is emitted toward the proximal end and the plate surface is perpendicular to the longitudinal direction of the insertion tube 102.
 周波数により、超音波を伝達させる距離および超音波の収束位置における発熱量等が定まる。それゆえ、腎動脈RA内部から腎動脈交感神経SNまでのおおよその間隔および交感神経SNの焼灼に必要な発熱量等に基づいて、焼灼用超音波CUSの周波数が予め定められる。 The distance for transmitting ultrasonic waves and the amount of heat generated at the position where the ultrasonic waves converge are determined by the frequency. Therefore, the frequency of the ultrasound CUS for cauterization is determined in advance based on the approximate interval from the inside of the renal artery RA to the renal artery sympathetic nerve SN and the amount of heat generated for cauterization of the sympathetic nerve SN.
 第1の超音波振動子103から基端まで延びる信号線が焼灼制御部(図示せず)に接続される。焼灼制御部は、前述の周波数で焼灼用超音波CUSを発生するように駆動信号を第1の超音波振動子103に供給する。 A signal line extending from the first ultrasonic transducer 103 to the proximal end is connected to an ablation control unit (not shown). The ablation control unit supplies a drive signal to the first ultrasonic transducer 103 so as to generate the ablation ultrasonic wave CUS at the above-described frequency.
 音響ミラー104は挿入管102内における、第1の超音波振動子103よりも基端側に設けられる。音響ミラー104は円錐状であり、側面に反射面を有する。音響ミラー104の底面を挿入管102の長手方向に垂直に、かつ頂点が挿入端側を向くように、音響ミラー104は挿入管102内に固定される。 The acoustic mirror 104 is provided in the insertion tube 102 on the proximal side with respect to the first ultrasonic transducer 103. The acoustic mirror 104 has a conical shape and has a reflecting surface on the side surface. The acoustic mirror 104 is fixed in the insertion tube 102 so that the bottom surface of the acoustic mirror 104 is perpendicular to the longitudinal direction of the insertion tube 102 and the apex faces the insertion end side.
 上述のような第1の超音波振動子103および音響ミラー104の構成により、第1の超音波振動子103が発する焼灼用超音波CUS1は、音響ミラー104により、挿入管102の長手方向の周囲に反射される(符号“CUS2”参照)。 Due to the configuration of the first ultrasonic transducer 103 and the acoustic mirror 104 as described above, the ablation ultrasonic wave CUS1 emitted from the first ultrasonic transducer 103 is surrounded by the acoustic mirror 104 in the longitudinal direction of the insertion tube 102. (Refer to reference sign “CUS2”).
 トルク伝達体105は、可撓性を有する部材によって挿入管102の基端近傍から挿入端まで延在するように形成される。トルク伝達体105の挿入端を挿入管102の音響ミラー104の底面に到達させた状態で、トルク伝達体105の基端は挿入管102の基端から突出する。 The torque transmission body 105 is formed by a flexible member so as to extend from the vicinity of the proximal end of the insertion tube 102 to the insertion end. With the insertion end of the torque transmission body 105 reaching the bottom surface of the acoustic mirror 104 of the insertion tube 102, the proximal end of the torque transmission body 105 protrudes from the proximal end of the insertion tube 102.
 トルク伝達体105の外径は挿入管102の内径より細くなるように定められ、トルク伝達体105は挿入管102内で長手方向を軸に回動自在である。したがって、トルク伝達体105の基端において、長手方向を軸に回転させるトルクを供給すると、供給されたトルクはトルク伝達体105の挿入端まで伝達され、トルク伝達体105全体が挿入管102内で回転する。また、トルク伝達体105は、挿入管102内で長手方向に沿って変位自在である。 The outer diameter of the torque transmission body 105 is determined to be smaller than the inner diameter of the insertion tube 102, and the torque transmission body 105 is rotatable within the insertion tube 102 about the longitudinal direction. Therefore, when torque that rotates about the longitudinal direction is supplied to the proximal end of the torque transmission body 105, the supplied torque is transmitted to the insertion end of the torque transmission body 105, and the entire torque transmission body 105 is transferred into the insertion tube 102. Rotate. Further, the torque transmission body 105 is freely displaceable along the longitudinal direction in the insertion tube 102.
 画像取得ユニット106は、トルク伝達体105の挿入端近傍に設けられる。画像取得ユニット106は、単一の撮像用超音波振動子107を有する。撮像用超音波振動子107は、トルク伝達体105の長手方向に垂直な方向から挿入端側に所定の角度だけ傾斜した方向に、超音波を発することが可能なように配置される。 The image acquisition unit 106 is provided in the vicinity of the insertion end of the torque transmission body 105. The image acquisition unit 106 has a single imaging ultrasonic transducer 107. The imaging ultrasonic transducer 107 is arranged so as to emit ultrasonic waves in a direction inclined by a predetermined angle from the direction perpendicular to the longitudinal direction of the torque transmitting body 105 to the insertion end side.
 撮像用超音波振動子107からは、画像の取得に適した撮像用超音波IUSを発生させることが可能である。また、撮像用超音波振動子107は、撮像用超音波IUSの反射波に応じた画素信号を生成する。周波数により、超音波の反射波による解像度が変動する。特定の交感神経の位置の確認および診断等に必要な解像度に基づいて、撮像用超音波IUSの周波数が予め定められる。 From the imaging ultrasonic transducer 107, it is possible to generate imaging ultrasonic IUS suitable for image acquisition. In addition, the imaging ultrasonic transducer 107 generates a pixel signal corresponding to the reflected wave of the imaging ultrasonic IUS. The resolution due to the reflected wave of the ultrasonic wave varies depending on the frequency. The frequency of the imaging ultrasound IUS is determined in advance based on the resolution necessary for confirmation and diagnosis of the position of a specific sympathetic nerve.
 撮像用超音波振動子107から基端まで延びる信号線が撮像制御部(図示せず)に接続される。撮像制御部は、前述の周波数で撮像用超音波IUSを発生するように駆動信号を撮像用超音波振動子107に供給する。 A signal line extending from the imaging ultrasonic transducer 107 to the base end is connected to an imaging control unit (not shown). The imaging control unit supplies a drive signal to the imaging ultrasonic transducer 107 so as to generate the imaging ultrasonic IUS at the above-described frequency.
 また、撮像制御部は撮像用超音波振動子107が生成する画素信号を受信する。撮像制御部は撮像用超音波が照射される多数の箇所に対応する画素信号に基づいて、画像を作成する。なお、撮像用超音波の照射位置は、エンコーダや位置センサを用いてトルク伝達体105の回転位置および長手方向に沿った変位位置を検出することにより判別可能であり、画像の作成に用いられる。 Also, the imaging control unit receives a pixel signal generated by the imaging ultrasonic transducer 107. The imaging control unit creates an image based on pixel signals corresponding to a number of locations irradiated with imaging ultrasonic waves. Note that the irradiation position of the imaging ultrasonic waves can be determined by detecting the rotational position of the torque transmission body 105 and the displacement position along the longitudinal direction using an encoder or a position sensor, and is used for creating an image.
 音響バルーンレンズ101は、音響ミラー104が配置された位置近傍の挿入管102に設けられる。音響バルーンレンズ101を挿入管102の外部に膨張させて、音響バルーンレンズ101を血管内壁に押圧することにより、血管挿入型治療デバイス100を血管内に固定可能である。 The acoustic balloon lens 101 is provided in the insertion tube 102 in the vicinity of the position where the acoustic mirror 104 is disposed. By inflating the acoustic balloon lens 101 outside the insertion tube 102 and pressing the acoustic balloon lens 101 against the inner wall of the blood vessel, the blood vessel insertion type treatment device 100 can be fixed in the blood vessel.
 図4に示すように、音響バルーンレンズ101は内部バルーン108および外部バルーン109を有する2重構造である。内部バルーン108および外部バルーン109の膨張には、それぞれ異なる媒質が用いられる。内部バルーン108の媒質には、外部バルーン109の媒質より超音波の伝達速度が小さな物体が用いられる。 As shown in FIG. 4, the acoustic balloon lens 101 has a double structure having an inner balloon 108 and an outer balloon 109. Different media are used to inflate the inner balloon 108 and the outer balloon 109, respectively. As the medium of the inner balloon 108, an object having an ultrasonic transmission speed smaller than that of the medium of the outer balloon 109 is used.
 上述のような構成において、音響ミラー104により反射される焼灼用超音波CUSは、音響ミラー104の頂点側から底面側までの反射位置によって、内部バルーン108の通過距離および外部バルーン109の通過距離が変わる。そこで、内部バルーン108および外部バルーン109は、挿入管102から所定の距離だけ離れた収束位置に超音波を収束可能となるように形成される。なお、腎動脈内部から腎動脈交感神経までのおおよその距離が所定の距離に定められる。 In the configuration as described above, the ultrasonic wave CUS for cauterization reflected by the acoustic mirror 104 has the passage distance of the inner balloon 108 and the passage distance of the outer balloon 109 depending on the reflection position from the top side to the bottom side of the acoustic mirror 104. change. Therefore, the inner balloon 108 and the outer balloon 109 are formed so as to be able to converge the ultrasonic wave at a convergence position separated from the insertion tube 102 by a predetermined distance. The approximate distance from the renal artery to the renal artery sympathetic nerve is determined as a predetermined distance.
 以上のような構成の第1の実施形態の血管挿入型治療デバイス100によれば、焼灼用超音波の収束位置において発熱エネルギーを最大化させることが可能である。したがって、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。 According to the blood vessel insertion type treatment device 100 of the first embodiment configured as described above, it is possible to maximize the heat generation energy at the convergence position of the ablation ultrasonic waves. Therefore, while it is possible to cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel, it is possible to suppress damage to the blood vessel interposed between the living tissue.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、円錐状の音響ミラー104を用いることにより、第1の超音波振動子103から特定の方向に発する焼灼用超音波を挿入管102に周囲に反射することが可能である。したがって、挿入管102を回転させることなく、血管外部において、環状または円弧状に延在する対象物を容易に焼灼可能である。 Further, according to the blood vessel insertion type treatment device 100 of the first embodiment, by using the conical acoustic mirror 104, an ultrasonic wave for ablation emitted from the first ultrasonic transducer 103 in a specific direction is inserted into the insertion tube. 102 can be reflected to the surroundings. Therefore, it is possible to easily cauterize an object extending in an annular shape or an arc shape outside the blood vessel without rotating the insertion tube 102.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、音響バルーンレンズ101を用いることにより、血管内における血管挿入型治療デバイス100の固定、および焼灼用超音波の所定の距離における収束を実現可能である。したがって、別々のバルーンおよび音響レンズを用いる場合に比べて、構成部材を減らすことが可能である。 Moreover, according to the blood vessel insertion type treatment device 100 of the first embodiment, the acoustic balloon lens 101 is used to fix the blood vessel insertion type treatment device 100 in the blood vessel and converge the ablation ultrasonic wave at a predetermined distance. Is feasible. Therefore, it is possible to reduce the number of components compared to the case where separate balloons and acoustic lenses are used.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、第1の超音波振動子103の近傍に画像取得ユニット106が設けられるため、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Further, according to the blood vessel insertion type treatment device 100 of the first embodiment, since the image acquisition unit 106 is provided in the vicinity of the first ultrasonic transducer 103, confirmation of a living tissue to be ablated, and ablation status Confirmation is easy.
 次に、本発明の第2の実施形態に係る血管挿入型治療デバイスについて説明する。第2の実施形態では音響バルーンレンズ101を用いずに円筒音響レンズおよびメッシュバルーンを用いる点において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。 Next, a blood vessel insertion type treatment device according to a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in that a cylindrical acoustic lens and a mesh balloon are used without using the acoustic balloon lens 101. The second embodiment will be described below with a focus on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the site | part which has the same function and structure as 1st Embodiment.
 図5に示すように、第2の実施形態の血管挿入型治療デバイス1000は、挿入管102、第1の超音波振動子103、音響ミラー104、トルク伝達体105、画像取得ユニット106、円筒音響レンズ1100、およびメッシュバルーン1110(図6参照)等を含んで構成される。 As shown in FIG. 5, the blood vessel insertion type treatment device 1000 according to the second embodiment includes an insertion tube 102, a first ultrasonic transducer 103, an acoustic mirror 104, a torque transmission body 105, an image acquisition unit 106, and a cylindrical acoustic device. A lens 1100 and a mesh balloon 1110 (see FIG. 6) are included.
 第2の実施形態では、第1の実施形態と異なり、音響バルーンレンズが設けられない。第2の実施形態において、挿入管102、第1の超音波振動子103、音響ミラー104、トルク伝達体105、および画像取得ユニット106の構成および機能は第1の実施形態と同じである。 In the second embodiment, unlike the first embodiment, no acoustic balloon lens is provided. In the second embodiment, the configurations and functions of the insertion tube 102, the first ultrasonic transducer 103, the acoustic mirror 104, the torque transmission body 105, and the image acquisition unit 106 are the same as those in the first embodiment.
 図5に示すように、円筒音響レンズ1100は内面が円筒側面状であり、外面が円筒高さ方向に凹面状である。したがって、円筒音響レンズ1100は、円筒高さ方向に沿った超音波を収束させる機能を有する。 As shown in FIG. 5, the cylindrical acoustic lens 1100 has a cylindrical side surface on the inner surface and a concave surface in the cylinder height direction on the outer surface. Therefore, the cylindrical acoustic lens 1100 has a function of converging ultrasonic waves along the cylinder height direction.
 円筒音響レンズ1100の高さ方向の長さは、音響ミラー104の頂点から底面までの長さより長くなるように、円筒音響レンズ1100は形成される。円筒音響レンズ1100は、音響ミラー104全体を円筒の内部に収容するように、挿入管102内に配置される。 The cylindrical acoustic lens 1100 is formed so that the length in the height direction of the cylindrical acoustic lens 1100 is longer than the length from the top to the bottom of the acoustic mirror 104. The cylindrical acoustic lens 1100 is disposed in the insertion tube 102 so that the entire acoustic mirror 104 is accommodated inside the cylinder.
 図6に示すように、メッシュバルーン1110は、挿入管102に設けられる。メッシュバルーン1110は、トルク伝達体105を音響ミラー104の底面に到達させた状態で、画像取得ユニット106よりも基端側に設けられる。メッシュバルーン1110を構成するワイヤを血管挿入型治療デバイス1000から外部に湾曲させてワイヤを血管内壁に押圧することにより、血管挿入型治療デバイス1000を血管内に固定可能である。 As shown in FIG. 6, the mesh balloon 1110 is provided in the insertion tube 102. The mesh balloon 1110 is provided on the base end side with respect to the image acquisition unit 106 in a state where the torque transmission body 105 reaches the bottom surface of the acoustic mirror 104. By bending the wire constituting the mesh balloon 1110 from the blood vessel insertion type treatment device 1000 to the outside and pressing the wire against the inner wall of the blood vessel, the blood vessel insertion type treatment device 1000 can be fixed in the blood vessel.
 以上のような構成の第2の実施形態の血管挿入型治療デバイス1000によっても、第1の実施形態と同じく、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、第1の実施形態と同じく、挿入管102を回転させることなく、血管外部において、環状または円弧状に延在する対象物を容易に焼灼可能である。また、第1の実施形態と同じく、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Similarly to the first embodiment, the blood vessel insertion type treatment device 1000 of the second embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, similarly to the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the insertion tube 102. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
 また、第2の実施形態の血管挿入型治療デバイス1000によれば、メッシュバルーン1110を用いて血管挿入型治療デバイス1000の挿入端近傍を血管内に一時的に固定することが可能である。また、メッシュバルーン1110を用いるので、血流を確保可能であり、血管挿入型治療デバイス1000を血管内で固定しながらも焼灼用超音波CUSを照射する血管内壁部の過熱を防止することが可能である。 Further, according to the blood vessel insertion type treatment device 1000 of the second embodiment, the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 can be temporarily fixed in the blood vessel using the mesh balloon 1110. Further, since the mesh balloon 1110 is used, blood flow can be secured, and overheating of the inner wall of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel can be prevented. It is.
 次に、本発明の第3の実施形態に係る血管挿入型治療デバイスについて説明する。第3の実施形態では音響ミラーの構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第3の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。 Next, a blood vessel insertion type treatment device according to a third embodiment of the present invention will be described. In the third embodiment, the configuration of the acoustic mirror is different from that of the first embodiment. The third embodiment will be described below with a focus on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the site | part which has the same function and structure as 1st Embodiment.
 図7に示すように、第3の実施形態の血管挿入型治療デバイス1001は、挿入管102、第1の超音波振動子1031、音響ミラー1041、トルク伝達体1051、画像取得ユニット106、およびメッシュバルーン1110(図6参照)等を含んで構成される。挿入管102および画像取得ユニット106の構成および機能は、第1の実施形態と同じである。また、メッシュバルーン1110の構成および機能は、第2の実施形態と同じである。 As shown in FIG. 7, the blood vessel insertion type treatment device 1001 of the third embodiment includes an insertion tube 102, a first ultrasonic transducer 1031, an acoustic mirror 1041, a torque transmission body 1051, an image acquisition unit 106, and a mesh. A balloon 1110 (see FIG. 6) and the like are included. The configurations and functions of the insertion tube 102 and the image acquisition unit 106 are the same as those in the first embodiment. The configuration and function of the mesh balloon 1110 are the same as those in the second embodiment.
 第1の超音波振動子1031の機能は第1の実施形態と同じである。第1の実施形態と異なり、第1の超音波振動子1031はトルク伝達体1051に設けられる。挿入端近傍においてトルク伝達体1051には中空hが形成され、中空h内に第1の超音波振動子1031は設けられる。 The function of the first ultrasonic transducer 1031 is the same as that of the first embodiment. Unlike the first embodiment, the first ultrasonic transducer 1031 is provided in the torque transmission body 1051. A hollow h is formed in the torque transmission body 1051 in the vicinity of the insertion end, and the first ultrasonic transducer 1031 is provided in the hollow h.
 第1の実施形態と同様に、第1の超音波振動子は円板状であり、基端側に焼灼用超音波CUSを発するように、かつトルク伝達体1051の長手方向に板面が垂直となるように、中空h内に固定される。 Similar to the first embodiment, the first ultrasonic transducer has a disk shape, emits the cauterization ultrasonic wave CUS on the base end side, and the plate surface is perpendicular to the longitudinal direction of the torque transmitting body 1051. So that it is fixed in the hollow h.
 音響ミラー1041は、中空h内における、第1の超音波振動子1031よりも基端側に設けられる。音響ミラー1041は、反射面が凹面である凹面音響ミラーである。音響ミラー1041は、第1の超音波振動子1031が基端方向に発する焼灼用超音波を長手方向に垂直な方向に反射するように、中空h内に固定される。 The acoustic mirror 1041 is provided closer to the base end side than the first ultrasonic transducer 1031 in the hollow h. The acoustic mirror 1041 is a concave acoustic mirror whose reflecting surface is concave. The acoustic mirror 1041 is fixed in the hollow h so that the ultrasonic waves for cauterization emitted from the first ultrasonic transducer 1031 in the proximal direction are reflected in a direction perpendicular to the longitudinal direction.
 トルク伝達体1051には、前述のように、挿入端近傍に中空hが形成される。前述のように、中空h内には第1の超音波振動子1031および音響ミラー1041が設けられる。中空h内には、第1の超音波振動子1031および音響ミラー1041を固定した状態で、超音波伝達物質が満たされる。超音波伝達物質としては、空気に比べて伝播損失を低減化させ、また挿入管102との界面における反射を低減化させ得る物質であり、例えば食塩水および樹脂が挙げられる。中空hが形成され、超音波伝達物質によって満たされる以外のトルク伝達体1051の機能および構成は、第1の実施形態と同様である。 As described above, the torque transmission body 1051 has a hollow h in the vicinity of the insertion end. As described above, the first ultrasonic transducer 1031 and the acoustic mirror 1041 are provided in the hollow h. The hollow h is filled with the ultrasonic transmission substance in a state where the first ultrasonic transducer 1031 and the acoustic mirror 1041 are fixed. The ultrasonic transmission material is a material that can reduce propagation loss compared to air and can reduce reflection at the interface with the insertion tube 102, and examples thereof include saline and resin. The function and configuration of the torque transmission body 1051 other than the hollow h formed and filled with the ultrasonic transmission material are the same as those in the first embodiment.
 以上のような構成の第3の実施形態の血管挿入型治療デバイス1001によっても、第1の実施形態と同じく、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、第1の実施形態と同じく、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Similarly to the first embodiment, the blood vessel insertion type treatment device 1001 of the third embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
 また、第3の実施形態の血管挿入型治療デバイス1001によっても、第2の実施形態と同様に、メッシュバルーン1110を用いて血管挿入型治療デバイス1001の挿入端近傍を血管内に一時的に固定することが可能である。また、メッシュバルーン1110を用いるので、血管挿入型治療デバイス1001を血管内で固定しながらも焼灼用超音波CUSを照射する血管内壁部の過熱を防止ことが可能である。 Further, also in the blood vessel insertion type treatment device 1001 of the third embodiment, the vicinity of the insertion end of the blood vessel insertion type treatment device 1001 is temporarily fixed in the blood vessel using the mesh balloon 1110 as in the second embodiment. Is possible. Further, since the mesh balloon 1110 is used, it is possible to prevent overheating of the inner wall portion of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1001 in the blood vessel.
 また、第3の実施形態の血管挿入型治療デバイス1001によれば、トルク伝達体1051を用いて焼灼用超音波CUSの照射位置を変えることが可能である。超音波振動子を用いた生体組織の焼灼においては、超音波を焦点に収束させるため、焼灼可能な領域は焦点付近のみである。血管挿入型治療デバイス1001全体を回転させることも可能であるが、メッシュバルーン1110による固定を解除する必要があり煩雑な手技を要する。 Further, according to the blood vessel insertion type treatment device 1001 of the third embodiment, it is possible to change the irradiation position of the ultrasonic CUS for cauterization using the torque transmission body 1051. In ablation of a living tissue using an ultrasonic transducer, the ultrasonic wave is converged to the focal point, so that the region that can be cauterized is only near the focal point. Although it is possible to rotate the blood vessel insertion type treatment device 1001 as a whole, it is necessary to release the fixation by the mesh balloon 1110, which requires a complicated procedure.
 そこで、本実施形態においては、トルク伝達体1051を用いて照射位置を変えることにより、挿入管102の挿入端近辺の様々な位置に分布する生体組織を焼灼することが可能である。なお、トルク伝達体1051は手動または自動で回転させることが可能である。 Therefore, in this embodiment, it is possible to cauterize living tissue distributed at various positions near the insertion end of the insertion tube 102 by changing the irradiation position using the torque transmission body 1051. The torque transmission body 1051 can be rotated manually or automatically.
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。 Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
 例えば、第1、第2の実施形態において円錐状の音響ミラー104を設けたが、錐体状の音響ミラーであってもよい。 For example, although the conical acoustic mirror 104 is provided in the first and second embodiments, it may be a cone-shaped acoustic mirror.
 また、第2、3の実施形態の血管挿入型治療デバイス1000、1001において、メッシュバルーン1110を設けたが、他のバルーンを用いて血管挿入型治療デバイス1000、1001を血管内に一時的に固定可能な構成であってもよい。 In the blood vessel insertion type treatment devices 1000 and 1001 of the second and third embodiments, the mesh balloon 1110 is provided, but the blood vessel insertion type treatment devices 1000 and 1001 are temporarily fixed in the blood vessel using other balloons. A possible configuration may be used.
 特に、血管内壁部の過熱を防止するバルーンであることが好ましい。例えば、図8、9に示すように、挿入管102を中心に異なる方向に膨張可能な複数のバルーン112を有する構成によってもメッシュバルーン1110と同様の過熱防止効果を得ることが可能である。また、例えば、図10、11に示すように、挿入管102を中心に全周囲に膨張可能であって、長手方向に貫通する孔部OHが形成されたバルーン113を有する構成によってもメッシュバルーン1110と同様の過熱防止効果を得ることが可能である。 In particular, a balloon that prevents overheating of the inner wall of the blood vessel is preferable. For example, as shown in FIGS. 8 and 9, the same overheating prevention effect as that of the mesh balloon 1110 can be obtained by a configuration having a plurality of balloons 112 that can be expanded in different directions around the insertion tube 102. Further, for example, as shown in FIGS. 10 and 11, the mesh balloon 1110 may be configured to include a balloon 113 that is inflatable around the insertion tube 102 and has a hole OH that penetrates in the longitudinal direction. It is possible to obtain the same effect of preventing overheating.
 また、例えば、図12に示すように、長手方向に垂直な平面にそった断面が星型となるように形成したバルーン114を有する構成によってもメッシュバルーン1110と同様の過熱防止効果を得ることが可能である。また、例えば、図13に示すように、複数のワイヤ115を用いてバルーン116を部分的に膨張させる構成によってもメッシュバルーン1110と同様の過熱防止効果を得ることが可能である。 Further, for example, as shown in FIG. 12, the same overheating prevention effect as that of the mesh balloon 1110 can be obtained by the configuration having the balloon 114 formed so that the cross section along the plane perpendicular to the longitudinal direction has a star shape. Is possible. For example, as shown in FIG. 13, the same overheating prevention effect as that of the mesh balloon 1110 can be obtained also by a configuration in which the balloon 116 is partially inflated using a plurality of wires 115.
 あるいは、血管内壁を冷媒により冷却可能な灌流バルーン、クライオバルーンを用いることが好ましい。超音波を用いた焼灼では、焦点において発熱エネルギーを最大化させることが可能であるが、収束前の超音波を伝播する血管内壁を含む血管壁も超音波により発熱し得る。それゆえ、冷却型バルーンを用いることにより血管内壁に生じ得る損傷の可能性をさらに低減化させることが可能である。 Alternatively, it is preferable to use a perfusion balloon or a cryoballoon that can cool the inner wall of the blood vessel using a refrigerant. In cauterization using ultrasonic waves, it is possible to maximize the heat generation energy at the focal point, but the blood vessel walls including the inner wall of the blood vessel that propagates the ultrasonic waves before convergence can also generate heat due to the ultrasonic waves. Therefore, it is possible to further reduce the possibility of damage that can occur on the inner wall of the blood vessel by using a cooled balloon.
 また、第1から3の実施形態において、画像取得ユニット106は超音波を用いて画像を取得する構成であるが、TD-OCTおよびHUD-OCT等のように光学情報に基づいて画像を取得する構成であってもよい。 In the first to third embodiments, the image acquisition unit 106 is configured to acquire an image using ultrasonic waves, but acquires an image based on optical information such as TD-OCT and HUD-OCT. It may be a configuration.
 100、1000、1001 血管挿入型治療デバイス
 101 音響バルーンレンズ
 102 挿入管
 103、1031 第1の超音波振動子
 104、1041 音響ミラー
 105、1051 トルク伝達体
 106 画像取得ユニット
 107 撮像用超音波振動子
 108 内部バルーン
 109 外部バルーン
 1100 円筒音響レンズ
 1110 メッシュバルーン
 112~114、116 バルーン
 115 ワイヤ
 200 ガイディングカテーテル
 CUS、CUS1、CUS2 焼灼用超音波
 FA 大腿動脈
 h 中空
 IUS 撮像用超音波
 OH 孔部
 RA 腎動脈
 SN 交感神経
100, 1000, 1001 Blood vessel insertion type treatment device 101 Acoustic balloon lens 102 Insertion tube 103, 1031 First ultrasonic transducer 104, 1041 Acoustic mirror 105, 1051 Torque transmission body 106 Image acquisition unit 107 Imaging ultrasonic transducer 108 Internal balloon 109 External balloon 1100 Cylindrical acoustic lens 1110 Mesh balloon 112-114, 116 Balloon 115 Wire 200 Guiding catheter CUS, CUS1, CUS2 Ablation ultrasound FA Femoral artery h Hollow IUS Imaging ultrasound OH Hole RA Renal artery SN Sympathetic nerve

Claims (7)

  1.  両端に基端および挿入端を有する長手形状の挿入管と、
     前記挿入管内の挿入端近傍に設けられ、特定の方向に焼灼用超音波を発する第1の超音波振動子と、
     前記挿入管内における前記第1の超音波振動子から前記特定の方向に設けられ、前記焼灼用超音波を前記挿入体の長手方向と異なる方向に反射する音響ミラーとを備える
     ことを特徴とする血管挿入型治療デバイス。
    An elongated insertion tube having a proximal end and an insertion end at both ends;
    A first ultrasonic transducer that is provided near the insertion end in the insertion tube and emits ultrasonic waves for cauterization in a specific direction;
    A blood vessel provided with an acoustic mirror provided in the specific direction from the first ultrasonic transducer in the insertion tube and reflecting the ultrasonic waves for cauterization in a direction different from the longitudinal direction of the insertion body. Insertion type treatment device.
  2.  前記音響ミラーは錐体状であり、側面において前記焼灼用超音波を反射することを特徴とする請求項1に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 1, wherein the acoustic mirror has a cone shape and reflects the ultrasonic waves for cauterization on a side surface.
  3.  前記挿入管の前記音響ミラーの配置される位置に設けられ、前記挿入管の周囲に膨張した状態において前記音響ミラーにより反射された前記焼灼用超音波を収束させる音響バルーンレンズを備えることを特徴とする請求項2に記載の血管挿入型治療デバイス。 An acoustic balloon lens is provided at a position where the acoustic mirror of the insertion tube is disposed, and converges the ultrasonic waves for ablation reflected by the acoustic mirror in a state of being expanded around the insertion tube. The blood vessel insertion type therapeutic device according to claim 2.
  4.  前記音響ミラーにより反射された前記焼灼用超音波を収束させる、円筒状であって収束面を有する円筒音響レンズを備えることを特徴とする請求項2に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 2, further comprising a cylindrical acoustic lens having a converging surface that is cylindrical and converges the ablation ultrasonic wave reflected by the acoustic mirror.
  5.  前記音響ミラーは凹面音響ミラーであることを特徴とする請求項1に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 1, wherein the acoustic mirror is a concave acoustic mirror.
  6.  前記挿入管の挿入端側の端部近傍に設けられ、前記挿入管の周囲に膨張可能なバルーンを備えることを特徴とする請求項1に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 1, further comprising an inflatable balloon provided around an insertion end side of the insertion tube and around the insertion tube.
  7.  前記バルーンは、前記バルーンの膨張時に前記バルーンに接触する部位の過熱を防ぐ冷却バルーンであることを特徴とする請求項6に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 6, wherein the balloon is a cooling balloon that prevents overheating of a portion that contacts the balloon when the balloon is inflated.
PCT/JP2013/002286 2012-04-20 2013-04-02 Vascular insertion type treatment device WO2013157208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012097101 2012-04-20
JP2012-097101 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157208A1 true WO2013157208A1 (en) 2013-10-24

Family

ID=49383182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002286 WO2013157208A1 (en) 2012-04-20 2013-04-02 Vascular insertion type treatment device

Country Status (1)

Country Link
WO (1) WO2013157208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085221A (en) * 1996-05-31 1998-04-07 Hewlett Packard Co <Hp> Ultrasonic probe
JP2001079016A (en) * 1999-07-13 2001-03-27 Terumo Corp Thermotherapy device
JP2002017743A (en) * 2000-07-03 2002-01-22 Olympus Optical Co Ltd Thermotherapeutic device
JP2003506132A (en) * 1999-08-05 2003-02-18 ブロンカス テクノロジーズ, インコーポレイテッド Methods and devices for creating collateral channels in the lung
JP2004503324A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド Energy imparting device with expandable annular lens
JP2004290548A (en) * 2003-03-28 2004-10-21 Toshiba Corp Diagnostic imaging device, diagnosis or therapeutic device and diagnosis or therapeutic method
JP2009536870A (en) * 2006-05-12 2009-10-22 ビトロンユーエス, インコーポレイテッド Device for excising body tissue
JP2011528580A (en) * 2008-07-18 2011-11-24 バイトロナス, インコーポレイテッド System and method for delivering energy to tissue

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085221A (en) * 1996-05-31 1998-04-07 Hewlett Packard Co <Hp> Ultrasonic probe
JP2001079016A (en) * 1999-07-13 2001-03-27 Terumo Corp Thermotherapy device
JP2003506132A (en) * 1999-08-05 2003-02-18 ブロンカス テクノロジーズ, インコーポレイテッド Methods and devices for creating collateral channels in the lung
JP2002017743A (en) * 2000-07-03 2002-01-22 Olympus Optical Co Ltd Thermotherapeutic device
JP2004503324A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド Energy imparting device with expandable annular lens
JP2004290548A (en) * 2003-03-28 2004-10-21 Toshiba Corp Diagnostic imaging device, diagnosis or therapeutic device and diagnosis or therapeutic method
JP2009536870A (en) * 2006-05-12 2009-10-22 ビトロンユーエス, インコーポレイテッド Device for excising body tissue
JP2011528580A (en) * 2008-07-18 2011-11-24 バイトロナス, インコーポレイテッド System and method for delivering energy to tissue

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions

Similar Documents

Publication Publication Date Title
WO2013150777A1 (en) Blood vessel insertion-type treatment device
US7066895B2 (en) Ultrasonic radial focused transducer for pulmonary vein ablation
AU2002312085B2 (en) Tissue-retaining system for ultrasound medical treatment
US7950397B2 (en) Method for ablating body tissue
US20110118632A1 (en) Cardiac ablation devices
US20090287087A1 (en) Devices for creating passages and sensing for blood vessels
JP2004532688A6 (en) Multi-faceted ultrasound therapy transducer assembly
JP2004174252A (en) Method and apparatus for isolating pulmonary vein by ultrasonic wave
WO2013140738A1 (en) Therapeutic device of blood vessel insertion type
WO2013157207A1 (en) Vascular insertion type treatment device
US11986204B2 (en) Ultrasonically flared medical-device components and methods thereof
WO2013157208A1 (en) Vascular insertion type treatment device
WO2013150776A1 (en) Blood vessel insertion-type treatment device
AU2002312083B2 (en) Treatment of lung lesions using ultrasound
JPH04285547A (en) Laser irradiating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13778559

Country of ref document: EP

Kind code of ref document: A1