WO2013145887A1 - Imaging device and imaging method - Google Patents

Imaging device and imaging method Download PDF

Info

Publication number
WO2013145887A1
WO2013145887A1 PCT/JP2013/053034 JP2013053034W WO2013145887A1 WO 2013145887 A1 WO2013145887 A1 WO 2013145887A1 JP 2013053034 W JP2013053034 W JP 2013053034W WO 2013145887 A1 WO2013145887 A1 WO 2013145887A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
exposure
focus
unit
focus detection
Prior art date
Application number
PCT/JP2013/053034
Other languages
French (fr)
Japanese (ja)
Inventor
貴嗣 青木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013145887A1 publication Critical patent/WO2013145887A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/365Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to an imaging apparatus and an imaging method.
  • an imaging device In recent years, with the increase in the resolution of solid-state imaging devices such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors, digital still cameras, digital video cameras, mobile phones, PDA (Personal DigitalAssessment).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • phase difference AF Auto Focus
  • phase difference AF method a focus control method for focusing on a main subject. Since the phase difference AF method can detect the in-focus position at a higher speed and with higher accuracy than the contrast AF method, the phase difference AF method is widely used in various imaging apparatuses (see, for example, Patent Document 1).
  • the phase difference AF method detects the phase difference based on the image signal of the subject image output from the image sensor, and adjusts the focus of the focus lens based on the detected phase difference.
  • Patent Document 1 describes a method that enables high-speed continuous shooting in an imaging apparatus that employs the phase difference AF method.
  • Patent Document 1 stores a focus detection signal output from a focus detection pixel cell at the time of shooting in a memory, determines whether or not the current shooting is a continuous shooting following the previous shooting, and continues.
  • a technique is disclosed in which, when it is determined that shooting is performed, a focus detection signal at the time of previous shooting recorded in a memory is read, and focus adjustment for the current shooting is performed by phase difference AF using the focus detection signal. .
  • Patent Document 1 detects the phase difference based on the focus detection signal at the time of the first image read from the memory after the first image is captured, and the subsequent imaging optical system. Since focus adjustment is performed and then the second image is started, the time interval from the end of the first image to the start of the second image is long, and there is a limit to increasing the continuous shooting speed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
  • a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane.
  • Imaging optics based on the phase difference between a solid-state image sensor that receives an image formed by the imaging optical system and outputs a captured image signal, and a pair of focus detection signals output from a plurality of types of focus detection pixel cells In a mode in which a focus detection unit that calculates the defocus amount of the system and a focus adjustment unit that adjusts the focus of the photographing optical system by moving the focus lens based on the defocus amount, In the imaging period from the start of the first exposure of the solid-state imaging device to the end of reading of the captured image signal obtained by the first exposure from the solid-state imaging device, the focus detection unit performs the first exposure.
  • the defocus amount is calculated based on the phase difference between the pair of focus detection signals included in the captured image signal obtained by the previous exposure,
  • a plurality of imaging pixel cells and a plurality of focus detection pixel cells that receive a pair of light beams that have passed through different parts of the pupil region of the imaging optical system including the focus lens are arranged on a plane.
  • An imaging method using an imaging apparatus having a solid-state imaging device that receives an image formed by a photographing optical system and outputs a captured image signal, and in a mode in which shooting is continuously performed In the imaging period from the start of exposure to the end of readout of the imaged image signal obtained by the first exposure from the solid-state imaging device, a plurality of images included in the imaged image signal obtained by the exposure before the first exposure.
  • the defocus amount is calculated based on the phase difference between the pair of focus detection signals corresponding to the pair of light beams output from the focus detection pixel cell, and the focus is determined based on the calculated defocus amount. It is to start the focus adjustment of the photographing optical system by moving the lens.
  • an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method it is possible to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
  • FIG. 1 It is a schematic block diagram of the digital camera which is an example of the imaging device of this invention. It is a top view which shows schematic structure of the solid-state image sensor mounted in the digital camera shown in FIG. 3 is a flowchart illustrating an example of a shooting operation of the digital camera 1 illustrated in FIG. 1.
  • 6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1.
  • 6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1.
  • 6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1.
  • FIG. 1 is a diagram showing a schematic configuration of a digital camera as an example of an imaging apparatus for explaining the first embodiment of the present invention.
  • the imaging system of the digital camera shown in FIG. 1 includes a photographic lens 1 as a photographic optical system, a solid-state imaging device 5 such as a CCD image sensor or a CMOS image sensor, an aperture 2 provided between the two, and an infrared cut.
  • a filter (IRCUT) 3 and an optical low-pass filter (OLPF) 4 are provided.
  • the solid-state imaging device 5 has a configuration in which a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the photographing optical system are arranged two-dimensionally. The image formed by the photographing lens 1 is received and a picked-up image signal is output, and a pair of focus detection signals corresponding to the light flux are output.
  • the system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. Further, the system control unit 11 controls the lens driving unit 8 to adjust the position of the focus lens included in the photographing lens 1 or adjust the position of the zoom lens included in the photographing lens 1. Further, the system control unit 11 adjusts the exposure amount by controlling the aperture amount of the aperture 2 via the aperture drive unit 9.
  • system control unit 11 drives the solid-state imaging device 5 via the imaging device driving unit 10 and outputs a subject image captured through the photographing lens 1 as a captured image signal.
  • An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
  • the electrical control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signal into a digital signal.
  • the analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
  • the electric control system of the digital camera performs main memory 16, a memory control unit 15 connected to the main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, etc.
  • a digital signal processing unit 17 to be generated a compression / decompression processing unit 18 that compresses the captured image data generated by the digital signal processing unit 17 into a JPEG format or expands the compressed image data, and focus detection of the solid-state imaging device 5
  • a focus detection unit 19 that calculates a defocus amount of the photographing lens 1 based on a phase difference between a pair of focus detection signals output from the pixel cell, and an external memory control unit 20 to which a detachable recording medium 21 is connected.
  • a display control unit 22 to which a display unit 23 mounted on the rear surface of the camera or the like is connected.
  • the memory control unit 15, digital signal processing unit 17, compression / decompression processing unit 18, focus detection unit 19, external memory control unit 20, and display control unit 22 are mutually connected by a control bus 24 and a data bus 25, and system control is performed. It is controlled by a command from the unit 11.
  • FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 mounted on the digital camera shown in FIG.
  • the solid-state imaging device 5 includes a large number of pixel cells (each square in the drawing) arranged in a two-dimensional manner (in the example of FIG. 2, a square lattice shape) in the row direction X and the column direction Y orthogonal thereto. .
  • a large number of pixel cells are arranged such that pixel cell rows composed of a plurality of pixel cells arranged at a constant pitch in the row direction X are arranged at a constant pitch in the column direction Y.
  • the many pixel cells include an imaging pixel cell 30, a focus detection pixel cell 31L, and a focus detection pixel cell 31R.
  • the imaging pixel cell 30 has both a pair of lights that have passed through different portions of the pupil region of the photographing lens 1 shown in FIG. Is a pixel cell that receives light.
  • the focus detection pixel cell 31L is a pixel cell that receives one of the pair of lights. Compared with the imaging pixel cell 30, the opening (region not hatched) of the photoelectric conversion unit is eccentric to the left side. It has a configuration.
  • the focus detection pixel cell 31 ⁇ / b> R is a pixel cell that receives the other of the pair of lights. Compared with the imaging pixel cell 30, the opening of the photoelectric conversion unit (a region not hatched) is decentered to the right side. It has a configuration.
  • a color filter is mounted above the photoelectric conversion unit included in each of the pixel cells, and the array of the color filters is a Bayer array over the entire number of pixel cells constituting the solid-state imaging device 5.
  • R is written in the pixel cell on which the color filter that transmits red (R) light is mounted.
  • G is written in a pixel cell on which a color filter that transmits green (G) light is mounted.
  • B is written in the pixel cell on which the color filter that transmits blue (B) light is mounted.
  • the solid-state imaging device 5 is equipped with a color filter, but it may be one without a color filter.
  • the focus detection pixel cells 31L are arranged at intervals of three pixel cells in the third pixel cell row from the top of FIG. 2 at the positions of pixel cells on which a color filter that transmits green (G) light is mounted.
  • the focus difference detection pixel cell 31R is arranged at every third pixel cell at the position of the pixel cell on which the color filter that transmits green (G) light is mounted. .
  • the focus detection unit 19 shown in FIG. 1 uses a group of signals read from the focus detection pixel cell 31L and the focus detection pixel cell 31R and uses the signal group read out from the focus detection pixel cell 31R. And its direction, that is, the defocus amount is calculated.
  • the system control unit 11 illustrated in FIG. 1 performs focus adjustment by controlling the position of the focus lens included in the imaging lens 1 based on the defocus amount calculated by the focus detection unit 19.
  • FIG. 3 is a timing chart for explaining the photographing operation of the digital camera shown in FIG.
  • illustration and description of camera operations not directly related to the present invention are omitted.
  • a shooting start signal from a user is input to the system control unit 11 through the operation unit 14, the system control unit 11 performs one sheet via the image sensor driving unit 10. Eye exposure (photographing exposure (1)) is started.
  • the system control unit 11 When the photographic exposure (1) is completed, the system control unit 11 performs driving for reading out the captured image signal from the solid-state image sensor 5 via the image sensor driving unit 10, and stores the captured image signal in the main memory 16 (signal). Uptake (1)).
  • the digital signal processing unit 17 processes the captured image signal stored in the main memory 16, generates captured image data, and records the generated captured image data in the recording medium 21. .
  • the system control unit 11 starts the second exposure (shooting exposure (2)) via the image sensor driving unit 10.
  • the system control unit 11 When the photographic exposure (2) is completed, the system control unit 11 performs driving for reading out the captured image signal from the solid-state image sensor 5 via the image sensor driving unit 10, and stores the captured image signal in the main memory 16 (signal). Uptake (2)).
  • the digital signal processing unit 17 processes the captured image signal stored in the main memory 16, generates captured image data, and records the generated captured image data in the recording medium 21. .
  • the third exposure photographing exposure (3)
  • capture of the captured image signal obtained by the photographing exposure (3) signal capture (3)
  • the exposure of the first sheet (photographing exposure (4)) and the capture of the captured image signal (signal capture (4)) obtained by the photographing exposure (4) are sequentially performed.
  • the system control unit 11 repeatedly performs shooting exposure and signal capture control for a preset number of times in the continuous shooting mode.
  • the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (1), and among the captured image signals, focus detection pixel cells 31L and 31R. A pair of focus detection signals output from the image are subjected to correlation calculation to detect a phase difference (image shift amount), and AF calculation is performed to calculate a defocus amount based on the phase difference (AF calculation (1) in FIG. 3). ).
  • the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (1), and drives the photographing lens 1 to adjust the focus. (Lens drive (1) in FIG. 3).
  • the AF calculation (1) and the lens driving (1) are started in a period in which the photographing exposure (2) and the signal capture (2) are performed, respectively.
  • the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (2), and among the captured image signals, focus detection pixel cells 31L and 31R.
  • the pair of focus detection signals output from the signal are subjected to correlation calculation to detect a phase difference, and AF calculation for calculating a defocus amount based on the phase difference is performed (AF calculation (2) in FIG. 3).
  • the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (2), and drives the photographing lens 1 to adjust its focus. (Lens drive (2) in FIG. 3).
  • the AF calculation (2) and the lens driving (2) are started in a period in which the photographing exposure (3) and the signal capture (3) are performed, respectively.
  • the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (3), and among the captured image signals, focus detection pixel cells 31L and 31R.
  • a pair of focus detection signals output from the CPU are correlated to detect a phase difference, and an AF calculation is performed to calculate a defocus amount based on the phase difference (AF calculation (3) in FIG. 3).
  • the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (3), and drives the photographing lens 1 to adjust its focus. (Lens drive (3) in FIG. 3).
  • the AF calculation (3) and the lens driving (3) are started in a period in which the photographing exposure (4) and the signal capture (4) are performed, respectively.
  • the digital camera according to the present embodiment performs the previous exposure (shooting exposure N-1) during the exposure (shooting exposure N) and the captured image signal obtained thereby (signal capture N). Since the calculation of the defocus amount based on the obtained focus detection signal (AF calculation N-1) and the subsequent focus adjustment of the photographing lens 1 (lens driving N-1) are performed, continuous photographing using the phase difference AF method is performed. It can be done at high speed.
  • the photographic exposure (1) and the photographic exposure (2) are performed in a state where the focus is not achieved, and the focus is achieved from the third and subsequent exposures.
  • continuous shooting mode in which shooting is performed continuously, many exposures are performed in a short time, so there is no problem even if the first two shots are not in focus, and it is possible to shoot at a higher speed than that. Is a big advantage.
  • the focus adjustment (for example, lens driving (1)) of the photographing lens 1 is started before the exposure (for example, photographing exposure (2)) ends. Since the focus follows the movement of the subject by adjusting the focus of the photographing lens 1 in advance, an image with natural movement is often obtained.
  • the AF calculation is started simultaneously with the start of the shooting exposure, but the AF calculation may be started during the period when the shooting exposure is performed.
  • the lens driving is started simultaneously with the end of the AF calculation, but the lens driving may be started after a predetermined time from the end of the AF calculation.
  • the lens driving is started almost simultaneously with the end of the AF calculation, so that AF (shooting exposure N) and capture of a captured image signal (signal capture N) obtained thereby are performed during AF.
  • the probability that calculation and lens driving can be finished can be increased. As a result, it is possible to prevent the lens from being driven during the next photographing exposure, and to improve the image quality.
  • FIG. 4 is a timing chart showing another example of the photographing operation of the digital camera shown in FIG. Only the differences from the first embodiment will be described here.
  • the lens driving ((1), (2), (3)) is started after the end of each exposure ((2), (3), (4)). Different from the first embodiment.
  • the start of lens driving is coincident with the start of signal capture, but this may not be coincident.
  • the focus lens since the focus lens does not move during photographing exposure, it is possible to suppress a focus shift. Therefore, for example, when continuously shooting a subject that does not move, such as a landscape, it is effective to shoot in such an operation mode.
  • FIG. 5 is a timing chart showing another example of the photographing operation of the digital camera shown in FIG. Only the differences from the first embodiment will be described here.
  • the lens drive (N) (lens drive (1) in the example of FIG. 5) is the next exposure (N + 2) (shooting in the example of FIG. 5).
  • the system control unit 11 limits the end timing of lens driving (1) with the start timing of shooting exposure (3).
  • the lens driving (1) is forcibly terminated at the start timing of the photographing exposure (3).
  • the system control unit 11 determines that the subject continues to move in a certain direction after the start of continuous shooting, it is preferable not to limit the end timing of the lens drive (N). .
  • the system control unit 11 determines that the movement direction of the focus lens determined by the AF calculation (N) is the movement of the focus lens in the immediately preceding lens drive (N ⁇ 1).
  • the end timing is not limited in lens driving (N).
  • the system control unit 11 performs the AF calculation (N), and then the moving direction of the focus lens determined by the AF calculation (N) is different from the moving direction of the focus lens in the lens driving (N ⁇ 1) immediately before that.
  • N 1, the end timing is limited in lens driving (N).
  • the system control unit 11 limits the end timing for the lens drive (1), and the focus lens of the focus lens determined by the moving direction of the focus lens in the lens drive (1) and the AF calculation (2).
  • the end timing of the lens drive (2) is not limited.
  • Such control makes it possible to perform AF following a moving subject and improve the quality of continuous shot images.
  • FIG. 7 shows an appearance of a smartphone 200 that is an embodiment of the photographing apparatus of the present invention.
  • a smartphone 200 illustrated in FIG. 7 includes a flat housing 201, and a display input in which a display panel 202 as a display unit and an operation panel 203 as an input unit are integrated on one surface of the housing 201. Part 204 is provided.
  • Such a housing 201 includes a speaker 205, a microphone 206, an operation unit 207, and a camera unit 208.
  • the configuration of the housing 201 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent can be employed, or a configuration having a folding structure and a slide mechanism can be employed.
  • FIG. 8 is a block diagram showing a configuration of the smartphone 200 shown in FIG.
  • the main components of the smartphone include a wireless communication unit 210, a display input unit 204, a call unit 211, an operation unit 207, a camera unit 208, a storage unit 212, and an external input / output unit. 213, a GPS (Global Positioning System) receiving unit 214, a motion sensor unit 215, a power supply unit 216, and a main control unit 220.
  • a wireless communication function for performing mobile wireless communication via a base station device BS (not shown) and a mobile communication network NW (not shown) is provided.
  • the wireless communication unit 210 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 220. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
  • the display input unit 204 controls the main control unit 220 to display images (still images and moving images), character information, and the like to visually transmit information to the user and to detect user operations on the displayed information.
  • a so-called touch panel which includes a display panel 202 and an operation panel 203.
  • the display panel 202 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • LCD Liquid Crystal Display
  • OELD Organic Electro-Luminescence Display
  • the operation panel 203 is a device that is placed so that an image displayed on the display surface of the display panel 202 is visible and detects one or more coordinates operated by a user's finger or stylus.
  • a detection signal generated due to the operation is output to the main control unit 220.
  • the main control unit 220 detects an operation position (coordinates) on the display panel 202 based on the received detection signal.
  • the display panel 202 and the operation panel 203 of the smartphone 200 exemplified as an embodiment of the photographing apparatus of the present invention integrally constitute a display input unit 204.
  • the arrangement 203 covers the display panel 202 completely.
  • the operation panel 203 may have a function of detecting a user operation even in an area outside the display panel 202.
  • the operation panel 203 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 202 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 202. May be included).
  • the operation panel 203 may include two sensitive areas of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 201 and the like.
  • the position detection method employed in the operation panel 203 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, a capacitance method, and the like. You can also
  • the call unit 211 includes a speaker 205 and a microphone 206, converts user's voice input through the microphone 206 into voice data that can be processed by the main control unit 220, and outputs the voice data to the main control unit 220. 210 or the audio data received by the external input / output unit 213 is decoded and output from the speaker 205.
  • the speaker 205 can be mounted on the same surface as the display input unit 204 and the microphone 206 can be mounted on the side surface of the housing 201.
  • the operation unit 207 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 207 is mounted on the side surface of the housing 201 of the smartphone 200 and is turned on when pressed with a finger or the like, and is turned off by a restoring force such as a spring when the finger is released. It is a push button type switch.
  • the storage unit 212 includes a control program and control data of the main control unit 220, application software, address data that associates the name and telephone number of a communication partner, transmitted / received e-mail data, Web data downloaded by Web browsing, The downloaded content data is stored, and streaming data and the like are temporarily stored.
  • the storage unit 212 includes an internal storage unit 217 built in the smartphone and an external storage unit 218 having a removable external memory slot.
  • Each of the internal storage unit 217 and the external storage unit 218 constituting the storage unit 212 includes a flash memory type (hard memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • a flash memory type hard memory type
  • hard disk type hard disk type
  • multimedia card micro type multimedia card micro type
  • a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • the external input / output unit 213 serves as an interface with all external devices connected to the smartphone 200, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network.
  • external devices for example, universal serial bus (USB), IEEE 1394, etc.
  • a network for example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark, etc.) for direct or indirect connection.
  • an external device connected to the smartphone 200 for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber).
  • Identity Module Card / UIM (User Identity Module Card) card external audio / video equipment connected via audio / video I / O (Input / Output) terminal, external audio / video equipment connected wirelessly, yes / no
  • the external input / output unit 213 transmits data received from such an external device to each component inside the smartphone 200, or allows the data inside the smartphone 200 to be transmitted to the external device. Can do.
  • the GPS receiving unit 214 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 220, executes positioning calculation processing based on the received GPS signals, and calculates the latitude of the smartphone 200 Detect the position consisting of longitude and altitude.
  • the GPS reception unit 214 can acquire position information from the wireless communication unit 210 or the external input / output unit 213 (for example, a wireless LAN), the GPS reception unit 214 can also detect the position using the position information.
  • the motion sensor unit 215 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 200 in accordance with an instruction from the main control unit 220. By detecting the physical movement of the smartphone 200, the moving direction and acceleration of the smartphone 200 are detected. The detection result is output to the main control unit 220.
  • the power supply unit 216 supplies power stored in a battery (not shown) to each unit of the smartphone 200 in accordance with an instruction from the main control unit 220.
  • the main control unit 220 includes a microprocessor, operates according to a control program and control data stored in the storage unit 212, and controls each unit of the smartphone 200 in an integrated manner.
  • the main control unit 220 includes a mobile communication control function that controls each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 210.
  • the application processing function is realized by the main control unit 220 operating according to the application software stored in the storage unit 212.
  • Examples of the application processing function include an infrared communication function for controlling the external input / output unit 213 to perform data communication with the opposite device, an e-mail function for transmitting / receiving e-mails, and a web browsing function for browsing web pages. .
  • the main control unit 220 has an image processing function such as displaying video on the display input unit 204 based on image data (still image or moving image data) such as received data or downloaded streaming data.
  • the image processing function is a function in which the main control unit 220 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 204.
  • the main control unit 220 executes display control for the display panel 202 and operation detection control for detecting a user operation through the operation unit 207 and the operation panel 203.
  • the main control unit 220 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail.
  • a software key such as a scroll bar, or a window for creating an e-mail.
  • the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 202.
  • the main control unit 220 detects a user operation through the operation unit 207 or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 203. Or a display image scroll request through a scroll bar.
  • the main control unit 220 causes the operation position with respect to the operation panel 203 to overlap with the display panel 202 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 202.
  • a touch panel control function for controlling the sensitive area of the operation panel 203 and the display position of the software key.
  • the main control unit 220 can also detect a gesture operation on the operation panel 203 and execute a preset function in accordance with the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the camera unit 208 includes configurations other than the external memory control unit 20, the recording medium 21, the display control unit 22, the display unit 23, and the operation unit 14 in the digital camera shown in FIG.
  • the captured image data generated by the camera unit 208 can be recorded in the storage unit 212 or output through the input / output unit 213 or the wireless communication unit 210.
  • the camera unit 208 is mounted on the same surface as the display input unit 204, but the mounting position of the camera unit 208 is not limited to this, and the camera unit 208 may be mounted on the back surface of the display input unit 204. Good.
  • the camera unit 208 can be used for various functions of the smartphone 200. For example, an image acquired by the camera unit 208 can be displayed on the display panel 202, or the image of the camera unit 208 can be used as one of operation inputs of the operation panel 203. Further, when the GPS receiving unit 214 detects a position, the position can be detected with reference to an image from the camera unit 208. Furthermore, referring to the image from the camera unit 208, the optical axis direction of the camera unit 208 of the smartphone 200 can be determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment. Of course, the image from the camera unit 208 can also be used in the application software.
  • the position information acquired by the GPS receiving unit 214 to the image data of the still image or the moving image, the voice information acquired by the microphone 206 (the text information may be converted into voice information by the main control unit or the like), Posture information and the like acquired by the motion sensor unit 215 can be added and recorded in the recording unit 212, or can be output through the input / output unit 213 and the wireless communication unit 210.
  • a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane. Based on a phase difference between a solid-state image sensor that receives an image formed by the photographing optical system and outputs a captured image signal, and a pair of focus detection signals output from the plurality of types of focus detection pixel cells.
  • a focus detection unit that calculates a defocus amount of the imaging optical system; and a focus adjustment unit that adjusts the focus of the imaging optical system by moving the focus lens based on the defocus amount.
  • the focus detection unit calculates a defocus amount based on a phase difference between the pair of focus detection signals included in the captured image signal obtained by exposure before the first exposure, and the focus The adjustment unit starts focus adjustment of the photographing optical system based on the calculated defocus amount.
  • the focus adjustment unit starts focus adjustment of the imaging optical system after the first exposure is completed in the imaging period.
  • the disclosed imaging apparatus performs the focus adjustment when the end timing of the focus adjustment of the imaging optical system that is started in the imaging period is after the start of the second exposure that is performed following the first exposure.
  • a control unit that performs stop control to be terminated at the start timing of the second exposure is provided.
  • the control unit moves the focus lens based on a defocus amount calculated by the focus detection unit during the previous imaging period of two consecutive imaging periods, and the 2
  • the stop control is performed during the subsequent imaging period.
  • the focus detection unit starts calculating the defocus amount during the period in which the first exposure is performed.
  • the focus detection unit starts calculating the defocus amount almost simultaneously with the start of the first exposure.
  • a plurality of imaging pixel cells and a plurality of focus detection pixel cells that receive a pair of light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane.
  • an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method it is possible to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
  • Solid-state image sensor 30 Imaging pixel cell 31R, 31L Focus detection pixel cell

Abstract

A solid-state imaging element (5) is provided with pixel cells (30) for imaging and pixel cells (31R, 31L) for focus detection. While in a continuous shooting mode, a defocus amount is calculated between an exposure (1) and an exposure (2) of the imaging element (5) using the imaging signals of the pixel cells (31R, 31L) for focus detection that are included in the captured image signal obtained using the exposure (1), and focusing adjustment of a focus lens included in an imaging lens (1) is begun on the basis of the defocus amount.

Description

撮像装置及び撮像方法Imaging apparatus and imaging method
 本発明は、撮像装置及び撮像方法に関する。 The present invention relates to an imaging apparatus and an imaging method.
 近年、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像素子の高解像度化に伴い、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話機、PDA(Personal Digital Assistant,携帯情報端末)等の撮影機能を有する情報機器の需要が急増している。なお、以上のような撮像機能を有する情報機器を撮像装置と称する。 In recent years, with the increase in the resolution of solid-state imaging devices such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors, digital still cameras, digital video cameras, mobile phones, PDA (Personal DigitalAssessment). The demand for information equipment having a photographing function such as an information terminal is rapidly increasing. Note that an information device having the above imaging function is referred to as an imaging device.
 ところで、主要な被写体に焦点を合わせる合焦制御方法には、コントラストAF(Auto Focus,自動合焦)方式や位相差AF方式がある。位相差AF方式は、コントラストAF方式に比べて合焦位置の検出を高速、高精度に行うことができるため、様々な撮像装置で多く採用されている(例えば特許文献1参照)。 By the way, there are a contrast AF (Auto Focus) method and a phase difference AF method as a focus control method for focusing on a main subject. Since the phase difference AF method can detect the in-focus position at a higher speed and with higher accuracy than the contrast AF method, the phase difference AF method is widely used in various imaging apparatuses (see, for example, Patent Document 1).
 位相差AF方式は、撮像素子から出力される被写体像の画像信号に基づいて位相差を検出し、検出した位相差に基づいてフォーカスレンズの焦点調節を行うものである。 The phase difference AF method detects the phase difference based on the image signal of the subject image output from the image sensor, and adjusts the focus of the focus lens based on the detected phase difference.
 特許文献1には、上記位相差AF方式を採用する撮像装置において高速の連続撮影を可能にする方法が記載されている。 Patent Document 1 describes a method that enables high-speed continuous shooting in an imaging apparatus that employs the phase difference AF method.
 具体的には、特許文献1は、撮影時に焦点検出用画素セルから出力される焦点検出信号をメモリに記憶すると共に、今回の撮影が前回の撮影に続く連続撮影か否かを判定し、連続撮影と判定されたときには、メモリに記録された前回撮影時の焦点検出信号を読み出し、この焦点検出信号を用いた位相差AFによって、今回の撮影のための焦点調節を行う技術を開示している。 Specifically, Patent Document 1 stores a focus detection signal output from a focus detection pixel cell at the time of shooting in a memory, determines whether or not the current shooting is a continuous shooting following the previous shooting, and continues. A technique is disclosed in which, when it is determined that shooting is performed, a focus detection signal at the time of previous shooting recorded in a memory is read, and focus adjustment for the current shooting is performed by phase difference AF using the focus detection signal. .
日本国特開2008-310072号公報Japanese Unexamined Patent Publication No. 2008-310072
 しかしながら、特許文献1に記載された技術は、一枚目の撮影が終了した後に、メモリから読み出した一枚目の撮影時の焦点検出信号に基づく位相差の検出と、それに続く撮影光学系の焦点調節とを行い、その後に二枚目の撮影を開始するので、一枚目の撮影終了から二枚目の撮影開始までの時間間隔が長く、連写速度の高速化には限界がある。 However, the technique described in Patent Document 1 detects the phase difference based on the focus detection signal at the time of the first image read from the memory after the first image is captured, and the subsequent imaging optical system. Since focus adjustment is performed and then the second image is started, the time interval from the end of the first image to the start of the second image is long, and there is a limit to increasing the continuous shooting speed.
 本発明は、上記事情に鑑みてなされたものであり、位相差AF方式を用いた連続撮影を高速に行うことができる撮像装置及び撮像方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
 本発明の撮像装置は、複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した光束を受光する複数種類の焦点検出用画素セルとが平面上に配列され、撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子と、複数種類の焦点検出用画素セルから出力される一対の焦点検出信号の位相差に基づいて撮影光学系のデフォーカス量を算出する焦点検出部と、デフォーカス量に基づいてフォーカスレンズを移動させて撮影光学系の焦点調節を行う焦点調節部と、を備え、撮影を連続して行うモードにおいて、固体撮像素子の第一の露光開始から第一の露光によって得られる撮像画像信号の固体撮像素子からの読み出しが終了するまでの撮像期間において、焦点検出部が、第一の露光の前の露光によって得られる撮像画像信号に含まれる一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、焦点調節部が、算出されたデフォーカス量に基づく撮影光学系の焦点調節を開始するものである。 In the imaging device of the present invention, a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane. Imaging optics based on the phase difference between a solid-state image sensor that receives an image formed by the imaging optical system and outputs a captured image signal, and a pair of focus detection signals output from a plurality of types of focus detection pixel cells In a mode in which a focus detection unit that calculates the defocus amount of the system and a focus adjustment unit that adjusts the focus of the photographing optical system by moving the focus lens based on the defocus amount, In the imaging period from the start of the first exposure of the solid-state imaging device to the end of reading of the captured image signal obtained by the first exposure from the solid-state imaging device, the focus detection unit performs the first exposure. The defocus amount is calculated based on the phase difference between the pair of focus detection signals included in the captured image signal obtained by the previous exposure, and the focus adjustment unit adjusts the focus of the photographing optical system based on the calculated defocus amount. It is what is started.
 本発明の撮像方法は、複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した一対の光束を受光する複数の焦点検出用画素セルとが平面上に配列され、撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子を有する撮像装置による撮像方法であって、撮影を連続して行うモードにおいて、固体撮像素子の第一の露光開始から第一の露光によって得られる撮像画像信号の固体撮像素子からの読み出しが終了するまでの撮像期間中に、第一の露光の前の露光によって得られる撮像画像信号に含まれる複数の焦点検出用画素セルから出力される一対の光束に対応する一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、算出したデフォーカス量に基づいてフォーカスレンズを移動させて撮影光学系の焦点調節を開始するものである。 According to the imaging method of the present invention, a plurality of imaging pixel cells and a plurality of focus detection pixel cells that receive a pair of light beams that have passed through different parts of the pupil region of the imaging optical system including the focus lens are arranged on a plane. An imaging method using an imaging apparatus having a solid-state imaging device that receives an image formed by a photographing optical system and outputs a captured image signal, and in a mode in which shooting is continuously performed, In the imaging period from the start of exposure to the end of readout of the imaged image signal obtained by the first exposure from the solid-state imaging device, a plurality of images included in the imaged image signal obtained by the exposure before the first exposure The defocus amount is calculated based on the phase difference between the pair of focus detection signals corresponding to the pair of light beams output from the focus detection pixel cell, and the focus is determined based on the calculated defocus amount. It is to start the focus adjustment of the photographing optical system by moving the lens.
 本発明によれば、位相差AF方式を用いた連続撮影を高速に行うことができる撮像装置及び撮像方法を提供することができる。 According to the present invention, it is possible to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
本発明の撮像装置の一例であるデジタルカメラの概略構成図である。It is a schematic block diagram of the digital camera which is an example of the imaging device of this invention. 図1に示すデジタルカメラに搭載される固体撮像素子の概略構成を示す平面図である。It is a top view which shows schematic structure of the solid-state image sensor mounted in the digital camera shown in FIG. 図1に示すデジタルカメラ1の撮影動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of a shooting operation of the digital camera 1 illustrated in FIG. 1. 図1に示すデジタルカメラ1の撮影動作の別例を示すフローチャートである。6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1. 図1に示すデジタルカメラ1の撮影動作の別例を示すフローチャートである。6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1. 図1に示すデジタルカメラ1の撮影動作の別例を示すフローチャートである。6 is a flowchart illustrating another example of the photographing operation of the digital camera 1 illustrated in FIG. 1. 撮像装置としてスマートフォンを説明する図である。It is a figure explaining a smart phone as an imaging device. 図7のスマートフォンの内部ブロック図である。It is an internal block diagram of the smart phone of FIG.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第一実施形態)
 図1は、本発明の第一実施形態を説明するための撮像装置の一例としてのデジタルカメラの概略構成を示す図である。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a digital camera as an example of an imaging apparatus for explaining the first embodiment of the present invention.
 図1に示すデジタルカメラの撮像系は、撮影光学系としての撮影レンズ1と、CCDイメージセンサやCMOSイメージセンサ等の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ(IRCUT)3と、光学ローパスフィルタ(OLPF)4とを備えている。 The imaging system of the digital camera shown in FIG. 1 includes a photographic lens 1 as a photographic optical system, a solid-state imaging device 5 such as a CCD image sensor or a CMOS image sensor, an aperture 2 provided between the two, and an infrared cut. A filter (IRCUT) 3 and an optical low-pass filter (OLPF) 4 are provided.
 固体撮像素子5は、複数の撮像用画素セルと、撮影光学系の瞳領域の異なる部分を通過した光束を受光する複数種類の焦点検出用画素セルとを二次元状に配列した構成になっており、撮影レンズ1により結像される像を受光して撮像画像信号を出力すると共に、上記光束に対応する一対の焦点検出信号を出力する。 The solid-state imaging device 5 has a configuration in which a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the photographing optical system are arranged two-dimensionally. The image formed by the photographing lens 1 is received and a picked-up image signal is output, and a pair of focus detection signals corresponding to the light flux are output.
 デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御する。また、システム制御部11は、レンズ駆動部8を制御して撮影レンズ1に含まれるフォーカスレンズの位置を調整したり、撮影レンズ1に含まれるズームレンズの位置の調整を行ったりする。更に、システム制御部11は、絞り駆動部9を介して絞り2の開口量を制御することにより、露光量の調整を行う。 The system control unit 11 that controls the entire electric control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13. Further, the system control unit 11 controls the lens driving unit 8 to adjust the position of the focus lens included in the photographing lens 1 or adjust the position of the zoom lens included in the photographing lens 1. Further, the system control unit 11 adjusts the exposure amount by controlling the aperture amount of the aperture 2 via the aperture drive unit 9.
 また、システム制御部11は、撮像素子駆動部10を介して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体像を撮像画像信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。 Further, the system control unit 11 drives the solid-state imaging device 5 via the imaging device driving unit 10 and outputs a subject image captured through the photographing lens 1 as a captured image signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.
 デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されるRGBの色信号をデジタル信号に変換するA/D変換回路7とを備える。アナログ信号処理部6及びA/D変換回路7は、システム制御部11によって制御される。 The electrical control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signal into a digital signal. The analog signal processing unit 6 and the A / D conversion circuit 7 are controlled by the system control unit 11.
 更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、補間演算、ガンマ補正演算、及びRGB/YC変換処理等を行って撮影画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された撮影画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、固体撮像素子5の焦点検出用画素セルから出力される対の焦点検出信号の位相差に基づいて撮影レンズ1のデフォーカス量を算出する焦点検出部19と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された表示部23が接続される表示制御部22とを備えている。メモリ制御部15、デジタル信号処理部17、圧縮伸張処理部18、焦点検出部19、外部メモリ制御部20、及び表示制御部22は、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。 Further, the electric control system of the digital camera performs main memory 16, a memory control unit 15 connected to the main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, etc. A digital signal processing unit 17 to be generated, a compression / decompression processing unit 18 that compresses the captured image data generated by the digital signal processing unit 17 into a JPEG format or expands the compressed image data, and focus detection of the solid-state imaging device 5 A focus detection unit 19 that calculates a defocus amount of the photographing lens 1 based on a phase difference between a pair of focus detection signals output from the pixel cell, and an external memory control unit 20 to which a detachable recording medium 21 is connected. And a display control unit 22 to which a display unit 23 mounted on the rear surface of the camera or the like is connected. The memory control unit 15, digital signal processing unit 17, compression / decompression processing unit 18, focus detection unit 19, external memory control unit 20, and display control unit 22 are mutually connected by a control bus 24 and a data bus 25, and system control is performed. It is controlled by a command from the unit 11.
 図2は、図1に示すデジタルカメラに搭載される固体撮像素子5の概略構成を示す平面模式図である。 FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 mounted on the digital camera shown in FIG.
 固体撮像素子5は、行方向X及びこれに直交する列方向Yに二次元状(図2の例では正方格子状)に配列された多数の画素セル(図中の各正方形)を備えている。多数の画素セルは、行方向Xに一定ピッチで並ぶ複数の画素セルからなる画素セル行を、列方向Yに一定のピッチで並べた配置となっている。多数の画素セルは、撮像用画素セル30と焦点検出用画素セル31Lと焦点検出用画素セル31Rとを含んでいる。 The solid-state imaging device 5 includes a large number of pixel cells (each square in the drawing) arranged in a two-dimensional manner (in the example of FIG. 2, a square lattice shape) in the row direction X and the column direction Y orthogonal thereto. . A large number of pixel cells are arranged such that pixel cell rows composed of a plurality of pixel cells arranged at a constant pitch in the row direction X are arranged at a constant pitch in the column direction Y. The many pixel cells include an imaging pixel cell 30, a focus detection pixel cell 31L, and a focus detection pixel cell 31R.
 撮像用画素セル30は、図1に示す撮影レンズ1の瞳領域の異なる部分を通過した一対の光(例えば撮影レンズ1の主軸に対して左側を通過した光と右側を通過した光)の双方を受光する画素セルである。 The imaging pixel cell 30 has both a pair of lights that have passed through different portions of the pupil region of the photographing lens 1 shown in FIG. Is a pixel cell that receives light.
 焦点検出用画素セル31Lは、上記一対の光の一方を受光する画素セルであり、撮像用画素セル30と比較すると、光電変換部の開口(ハッチングを付していない領域)が左側に偏心した構成となっている。 The focus detection pixel cell 31L is a pixel cell that receives one of the pair of lights. Compared with the imaging pixel cell 30, the opening (region not hatched) of the photoelectric conversion unit is eccentric to the left side. It has a configuration.
 焦点検出用画素セル31Rは、上記一対の光の他方を受光する画素セルであり、撮像用画素セル30と比較すると、光電変換部の開口(ハッチングを付していない領域)が右側に偏心した構成となっている。 The focus detection pixel cell 31 </ b> R is a pixel cell that receives the other of the pair of lights. Compared with the imaging pixel cell 30, the opening of the photoelectric conversion unit (a region not hatched) is decentered to the right side. It has a configuration.
 上記各画素セルに含まれる光電変換部の上方にはカラーフィルタが搭載されており、このカラーフィルタの配列が固体撮像素子5を構成する多数の画素セル全体でベイヤー配列となっている。 A color filter is mounted above the photoelectric conversion unit included in each of the pixel cells, and the array of the color filters is a Bayer array over the entire number of pixel cells constituting the solid-state imaging device 5.
 図2では、赤色(R)光を透過するカラーフィルタが搭載される画素セルに“R”を記している。また、緑色(G)光を透過するカラーフィルタが搭載される画素セルに“G”を記している。更に、青色(B)光を透過するカラーフィルタが搭載される画素セルに“B”を記している。図2の例では、固体撮像素子5がカラーフィルタを搭載しているが、カラーフィルタは搭載していないものであってもよい。 In FIG. 2, “R” is written in the pixel cell on which the color filter that transmits red (R) light is mounted. In addition, “G” is written in a pixel cell on which a color filter that transmits green (G) light is mounted. Further, “B” is written in the pixel cell on which the color filter that transmits blue (B) light is mounted. In the example of FIG. 2, the solid-state imaging device 5 is equipped with a color filter, but it may be one without a color filter.
 焦点検出用画素セル31Lは、図2の上から3番目の画素セル行において、緑色(G)光を透過するカラーフィルタが搭載された画素セルの位置に3画素セルおきに配置されている。 The focus detection pixel cells 31L are arranged at intervals of three pixel cells in the third pixel cell row from the top of FIG. 2 at the positions of pixel cells on which a color filter that transmits green (G) light is mounted.
 焦点差検出用画素セル31Rは、図2の上から5番目の画素セル行において、緑色(G)光を透過するカラーフィルタが搭載された画素セルの位置に3画素セルおきに配置されている。 In the fifth pixel cell row from the top in FIG. 2, the focus difference detection pixel cell 31R is arranged at every third pixel cell at the position of the pixel cell on which the color filter that transmits green (G) light is mounted. .
 行方向Xにおいて同じ位置にある焦点検出用画素セル31Lと焦点検出用画素セル31Rはペアを構成しており、固体撮像素子5には、このペアが複数設けられた構成となっている。 The focus detection pixel cell 31L and the focus detection pixel cell 31R at the same position in the row direction X form a pair, and the solid-state imaging device 5 has a configuration in which a plurality of pairs are provided.
 図1に示す焦点検出部19は、焦点検出用画素セル31L及び焦点検出用画素セル31Rから読み出される信号群を用いて、撮影レンズ1の焦点調節状態、ここでは合焦状態から離れている量とその方向、すなわちデフォーカス量を算出する。 The focus detection unit 19 shown in FIG. 1 uses a group of signals read from the focus detection pixel cell 31L and the focus detection pixel cell 31R and uses the signal group read out from the focus detection pixel cell 31R. And its direction, that is, the defocus amount is calculated.
 図1に示すシステム制御部11は、焦点検出部19によって算出されたデフォーカス量に基づいて、撮像レンズ1に含まれるフォーカスレンズの位置を制御して焦点調節を行う。 The system control unit 11 illustrated in FIG. 1 performs focus adjustment by controlling the position of the focus lens included in the imaging lens 1 based on the defocus amount calculated by the focus detection unit 19.
 図3は、図1に示すデジタルカメラの撮影動作を説明するためのタイミングチャートである。なお、ここでは本願発明と直接的に関係のないカメラの動作については図示と説明を省略する。 FIG. 3 is a timing chart for explaining the photographing operation of the digital camera shown in FIG. Here, illustration and description of camera operations not directly related to the present invention are omitted.
 記録用の撮影を連続して行う連写モードにおいて、ユーザからの撮影開始信号が操作部14を通してシステム制御部11に入力されると、システム制御部11は撮像素子駆動部10を介して一枚目の露光(撮影露光(1))を開始させる。 In a continuous shooting mode in which shooting for recording is continuously performed, when a shooting start signal from a user is input to the system control unit 11 through the operation unit 14, the system control unit 11 performs one sheet via the image sensor driving unit 10. Eye exposure (photographing exposure (1)) is started.
 撮影露光(1)が終了すると、システム制御部11は、撮像素子駆動部10を介して、固体撮像素子5から撮像画像信号を読み出す駆動を行い、撮像画像信号をメインメモリ16に記憶させる(信号取り込み(1))。信号取り込み(1)が終了すると、デジタル信号処理部17が、メインメモリ16に記憶された撮像画像信号を処理して、撮像画像データを生成し、生成した撮像画像データを記録媒体21に記録する。 When the photographic exposure (1) is completed, the system control unit 11 performs driving for reading out the captured image signal from the solid-state image sensor 5 via the image sensor driving unit 10, and stores the captured image signal in the main memory 16 (signal). Uptake (1)). When the signal capture (1) is completed, the digital signal processing unit 17 processes the captured image signal stored in the main memory 16, generates captured image data, and records the generated captured image data in the recording medium 21. .
 信号取り込み(1)が終了すると、システム制御部11は、撮像素子駆動部10を介して、二枚目の露光(撮影露光(2))を開始させる。 When the signal capture (1) is completed, the system control unit 11 starts the second exposure (shooting exposure (2)) via the image sensor driving unit 10.
 撮影露光(2)が終了すると、システム制御部11は、撮像素子駆動部10を介して、固体撮像素子5から撮像画像信号を読み出す駆動を行い、撮像画像信号をメインメモリ16に記憶させる(信号取り込み(2))。信号取り込み(2)が終了すると、デジタル信号処理部17が、メインメモリ16に記憶された撮像画像信号を処理して、撮像画像データを生成し、生成した撮像画像データを記録媒体21に記録する。 When the photographic exposure (2) is completed, the system control unit 11 performs driving for reading out the captured image signal from the solid-state image sensor 5 via the image sensor driving unit 10, and stores the captured image signal in the main memory 16 (signal). Uptake (2)). When the signal capture (2) is completed, the digital signal processing unit 17 processes the captured image signal stored in the main memory 16, generates captured image data, and records the generated captured image data in the recording medium 21. .
 信号取り込み(2)の終了後は、上記と同様に、三枚目の露光(撮影露光(3))、撮影露光(3)によって得られる撮像画像信号の取り込み(信号取り込み(3))、四枚目の露光(撮影露光(4))、撮影露光(4)によって得られる撮像画像信号の取り込み(信号取り込み(4))が順次行われる。 After the completion of the signal capture (2), the third exposure (photographing exposure (3)), capture of the captured image signal obtained by the photographing exposure (3) (signal capture (3)), The exposure of the first sheet (photographing exposure (4)) and the capture of the captured image signal (signal capture (4)) obtained by the photographing exposure (4) are sequentially performed.
 システム制御部11は、撮影露光及び信号取り込みの制御を、連写モードにおいて予め設定されている回数分、繰り返し行う。 The system control unit 11 repeatedly performs shooting exposure and signal capture control for a preset number of times in the continuous shooting mode.
 信号取り込み(1)が終了すると、焦点検出部19は、信号取り込み(1)によってメインメモリ16に記憶された撮像画像信号を取得し、この撮像画像信号のうち、焦点検出用画素セル31L、31Rから出力された対の焦点検出信号を相関演算して位相差(像ずれ量)を検出し、この位相差に基づいてデフォーカス量を算出するAF演算を行う(図3のAF演算(1))。 When the signal capture (1) ends, the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (1), and among the captured image signals, focus detection pixel cells 31L and 31R. A pair of focus detection signals output from the image are subjected to correlation calculation to detect a phase difference (image shift amount), and AF calculation is performed to calculate a defocus amount based on the phase difference (AF calculation (1) in FIG. 3). ).
 AF演算(1)が終了すると、システム制御部11は、AF演算(1)によって算出されたデフォーカス量に基づいてレンズ駆動部8を制御し、撮影レンズ1を駆動してその焦点調節を行う(図3のレンズ駆動(1))。 When the AF calculation (1) ends, the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (1), and drives the photographing lens 1 to adjust the focus. (Lens drive (1) in FIG. 3).
 上記AF演算(1)とレンズ駆動(1)は、それぞれ、撮影露光(2)と信号取り込み(2)が行われる期間に開始される。 The AF calculation (1) and the lens driving (1) are started in a period in which the photographing exposure (2) and the signal capture (2) are performed, respectively.
 信号取り込み(2)が終了すると、焦点検出部19は、信号取り込み(2)によってメインメモリ16に記憶された撮像画像信号を取得し、この撮像画像信号のうち、焦点検出用画素セル31L、31Rから出力された対の焦点検出信号を相関演算して位相差を検出し、この位相差に基づいてデフォーカス量を算出するAF演算を行う(図3のAF演算(2))。 When the signal capture (2) is completed, the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (2), and among the captured image signals, focus detection pixel cells 31L and 31R. The pair of focus detection signals output from the signal are subjected to correlation calculation to detect a phase difference, and AF calculation for calculating a defocus amount based on the phase difference is performed (AF calculation (2) in FIG. 3).
 AF演算(2)が終了すると、システム制御部11は、AF演算(2)によって算出されたデフォーカス量に基づいてレンズ駆動部8を制御し、撮影レンズ1を駆動してその焦点調節を行う(図3のレンズ駆動(2))。 When the AF calculation (2) is completed, the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (2), and drives the photographing lens 1 to adjust its focus. (Lens drive (2) in FIG. 3).
 上記AF演算(2)とレンズ駆動(2)は、それぞれ、撮影露光(3)と信号取り込み(3)が行われる期間に開始される。 The AF calculation (2) and the lens driving (2) are started in a period in which the photographing exposure (3) and the signal capture (3) are performed, respectively.
 信号取り込み(3)が終了すると、焦点検出部19は、信号取り込み(3)によってメインメモリ16に記憶された撮像画像信号を取得し、この撮像画像信号のうち、焦点検出用画素セル31L、31Rから出力された対の焦点検出信号を相関演算して位相差を検出し、この位相差に基づいてデフォーカス量を算出するAF演算を行う(図3のAF演算(3))。 When the signal capture (3) is completed, the focus detection unit 19 acquires the captured image signal stored in the main memory 16 by the signal capture (3), and among the captured image signals, focus detection pixel cells 31L and 31R. A pair of focus detection signals output from the CPU are correlated to detect a phase difference, and an AF calculation is performed to calculate a defocus amount based on the phase difference (AF calculation (3) in FIG. 3).
 AF演算(3)が終了すると、システム制御部11は、AF演算(3)によって算出されたデフォーカス量に基づいてレンズ駆動部8を制御し、撮影レンズ1を駆動してその焦点調節を行う(図3のレンズ駆動(3))。 When the AF calculation (3) is completed, the system control unit 11 controls the lens driving unit 8 based on the defocus amount calculated by the AF calculation (3), and drives the photographing lens 1 to adjust its focus. (Lens drive (3) in FIG. 3).
 上記AF演算(3)とレンズ駆動(3)は、それぞれ、撮影露光(4)と信号取り込み(4)が行われる期間に開始される。 The AF calculation (3) and the lens driving (3) are started in a period in which the photographing exposure (4) and the signal capture (4) are performed, respectively.
 このように、本実施形態のデジタルカメラは、露光(撮影露光N)及びそれによって得られた撮像画像信号の取り込み(信号取り込みN)を行う間に、前回の露光(撮影露光N-1)によって得られた焦点検出信号に基づくデフォーカス量の算出(AF演算N-1)及びそれに続く撮影レンズ1の焦点調節(レンズ駆動N-1)を行うので、位相差AF方式を用いた連続撮影を高速に行うことができる。 As described above, the digital camera according to the present embodiment performs the previous exposure (shooting exposure N-1) during the exposure (shooting exposure N) and the captured image signal obtained thereby (signal capture N). Since the calculation of the defocus amount based on the obtained focus detection signal (AF calculation N-1) and the subsequent focus adjustment of the photographing lens 1 (lens driving N-1) are performed, continuous photographing using the phase difference AF method is performed. It can be done at high speed.
 なお、本実施形態では、撮影露光(1)と撮影露光(2)は、焦点が合わない状態で行われ、三枚目以降の露光から焦点が合った状態になる。しかし、撮影を連続して行う連写モードでは、短時間に多数枚の露光が行われるので、撮り始めの二枚が合焦されていなくても支障はなく、それよりも、高速に撮影できることの方が利点として大きい。 In the present embodiment, the photographic exposure (1) and the photographic exposure (2) are performed in a state where the focus is not achieved, and the focus is achieved from the third and subsequent exposures. However, in continuous shooting mode in which shooting is performed continuously, many exposures are performed in a short time, so there is no problem even if the first two shots are not in focus, and it is possible to shoot at a higher speed than that. Is a big advantage.
 また、図3に示した撮影動作では、露光(例えば撮影露光(2))の終了前に撮影レンズ1の焦点調節(例えばレンズ駆動(1))が開始されるが、動く被写体を撮影する場合は、撮影レンズ1の焦点調節を先行させることによって焦点が被写体の動きに追従することになるので、自然な動きの画像が得られることが多い。 In the photographing operation shown in FIG. 3, the focus adjustment (for example, lens driving (1)) of the photographing lens 1 is started before the exposure (for example, photographing exposure (2)) ends. Since the focus follows the movement of the subject by adjusting the focus of the photographing lens 1 in advance, an image with natural movement is often obtained.
 また、図3に示した撮影動作では、撮影露光の開始と同時にAF演算を開始しているが、AF演算の開始は、撮影露光がなされている期間中に行えばよい。 In the shooting operation shown in FIG. 3, the AF calculation is started simultaneously with the start of the shooting exposure, but the AF calculation may be started during the period when the shooting exposure is performed.
 図3に示すように、撮影露光の開始とほぼ同時にAF演算を開始することで、露光(撮影露光N)及びそれによって得られた撮像画像信号の取り込み(信号取り込みN)を行う間にレンズ駆動を終了させられる確率を上げることができる。この結果、次の撮影露光中にレンズ駆動がなされてしまうのを防ぐことができ、画質向上を図ることができる。 As shown in FIG. 3, by starting AF calculation almost simultaneously with the start of shooting exposure, lens driving is performed during exposure (shooting exposure N) and capturing of a captured image signal (signal capturing N) obtained thereby. Can increase the probability of being terminated. As a result, it is possible to prevent the lens from being driven during the next photographing exposure, and to improve the image quality.
 また、図3に示した撮影動作では、AF演算の終了と同時にレンズ駆動を開始しているが、AF演算の終了から所定時間後にレンズ駆動を開始してもよい。 Further, in the photographing operation shown in FIG. 3, the lens driving is started simultaneously with the end of the AF calculation, but the lens driving may be started after a predetermined time from the end of the AF calculation.
 図3に示すように、AF演算の終了とほぼ同時にレンズ駆動を開始することで、露光(撮影露光N)及びそれによって得られた撮像画像信号の取り込み(信号取り込みN)を行う間に、AF演算とレンズ駆動を終了させられる確率を上げることができる。この結果、次の撮影露光中にレンズ駆動がなされてしまうのを防ぐことができ、画質向上を図ることができる。 As shown in FIG. 3, the lens driving is started almost simultaneously with the end of the AF calculation, so that AF (shooting exposure N) and capture of a captured image signal (signal capture N) obtained thereby are performed during AF. The probability that calculation and lens driving can be finished can be increased. As a result, it is possible to prevent the lens from being driven during the next photographing exposure, and to improve the image quality.
 (第二実施形態)
 図4は、図1に示すデジタルカメラの撮影動作の別例を示すタイミングチャートである。なお、ここでは第一実施形態と相違する点についてのみ説明する。
(Second embodiment)
FIG. 4 is a timing chart showing another example of the photographing operation of the digital camera shown in FIG. Only the differences from the first embodiment will be described here.
 本実施形態は、図4に示すように、各露光((2),(3),(4))の終了後にレンズ駆動((1),(2),(3))を開始する点が第一実施形態とは異なる。なお、図4では、レンズ駆動の開始と、信号取り込みの開始を一致させているが、これは一致していなくてもよい。 In the present embodiment, as shown in FIG. 4, the lens driving ((1), (2), (3)) is started after the end of each exposure ((2), (3), (4)). Different from the first embodiment. In FIG. 4, the start of lens driving is coincident with the start of signal capture, but this may not be coincident.
 本実施形態によれば、撮影露光中はフォーカスレンズが動かないため、焦点のずれを抑制することができる。従って、例えば風景等の動きのない被写体を連続撮影する場合には、このような動作モードで撮影することが有効となる。 According to the present embodiment, since the focus lens does not move during photographing exposure, it is possible to suppress a focus shift. Therefore, for example, when continuously shooting a subject that does not move, such as a landscape, it is effective to shoot in such an operation mode.
 (第三実施形態)
 図5は、図1に示すデジタルカメラの撮影動作の別例を示すタイミングチャートである。なお、ここでは第一実施形態と相違する点についてのみ説明する。
(Third embodiment)
FIG. 5 is a timing chart showing another example of the photographing operation of the digital camera shown in FIG. Only the differences from the first embodiment will be described here.
 図3,4の動作では、例えば撮影露光(2)中に被写体の焦点距離が大きく変わり、レンズ駆動(2)に要する時間が長くなる場合に、例えば撮影露光(4)とレンズ駆動(2)とが重複してしまうことが考えられる。 3 and 4, for example, when the focal length of the subject changes greatly during shooting exposure (2) and the time required for lens driving (2) becomes longer, for example, shooting exposure (4) and lens driving (2). May overlap.
 そこで、本実施形態のデジタルカメラは、図5に示すように、レンズ駆動(N)(図5の例ではレンズ駆動(1))が、次の撮影露光(N+2)(図5の例では撮影露光(3))の開始までに終了しないような場合には、システム制御部11が、レンズ駆動(1)の終了タイミングを撮影露光(3)の開始タイミングで制限する。 Therefore, in the digital camera of this embodiment, as shown in FIG. 5, the lens drive (N) (lens drive (1) in the example of FIG. 5) is the next exposure (N + 2) (shooting in the example of FIG. 5). In the case where it does not end before the start of exposure (3)), the system control unit 11 limits the end timing of lens driving (1) with the start timing of shooting exposure (3).
 つまり、レンズ駆動(1)を撮影露光(3)の開始タイミングで強制的に終了させる。このような制御により、レンズ駆動に要する時間が長くなるような場合でも、撮影露光中にフォーカスレンズが動かないようにすることができるため、焦点のずれを抑制することができる。 That is, the lens driving (1) is forcibly terminated at the start timing of the photographing exposure (3). By such control, even when the time required for driving the lens becomes long, it is possible to prevent the focus lens from moving during the photographing exposure, and thus it is possible to suppress a shift in focus.
 なお、レンズ駆動(N)の終了タイミングを撮影露光(N+2)の開始タイミングで制限しない場合でも、動き続ける被写体を撮影する場合は、焦点が被写体の動きに追従することになるので、大きな弊害にはならない。 Even when the lens drive (N) end timing is not limited by the shooting exposure (N + 2) start timing, when shooting an object that continues to move, the focus will follow the movement of the object, which is a major disadvantage. Must not.
 例えば、AF演算(1)によって得られたデフォーカス量に応じたフォーカスレンズの移動方向と、AF演算(2)によって得られたデフォーカス量に応じたフォーカスレンズの移動方向とが同じである場合は、撮影露光(1)の開始から撮影露光(3)の開始までの間、被写体が動き続けていると判断することができる。 For example, when the moving direction of the focus lens according to the defocus amount obtained by the AF calculation (1) is the same as the moving direction of the focus lens according to the defocus amount obtained by the AF calculation (2) It can be determined that the subject continues to move from the start of shooting exposure (1) to the start of shooting exposure (3).
 このように、被写体が動き続けている場合には、上述したように、レンズ駆動(2)の終了タイミングを制限しなくても画質への影響は限定的となる。 As described above, when the subject continues to move, the influence on the image quality is limited even if the end timing of the lens drive (2) is not limited.
 そこで、システム制御部11は、連写撮影の開始後、被写体が一定方向に動き続けていると判断した場合には、レンズ駆動(N)の終了タイミングの制限を行わないようにすることが好ましい。 Therefore, when the system control unit 11 determines that the subject continues to move in a certain direction after the start of continuous shooting, it is preferable not to limit the end timing of the lens drive (N). .
 具体的には、システム制御部11は、AF演算(N)を行った後、AF演算(N)によって決まるフォーカスレンズの移動方向が、その直前のレンズ駆動(N-1)におけるフォーカスレンズの移動方向と同じであった場合に、レンズ駆動(N)においては、その終了タイミングを制限しない。 Specifically, after performing the AF calculation (N), the system control unit 11 determines that the movement direction of the focus lens determined by the AF calculation (N) is the movement of the focus lens in the immediately preceding lens drive (N−1). When the direction is the same, the end timing is not limited in lens driving (N).
 一方、システム制御部11は、AF演算(N)を行った後、AF演算(N)によって決まるフォーカスレンズの移動方向が、その直前のレンズ駆動(N-1)におけるフォーカスレンズの移動方向と異なる場合と、N=1の場合には、レンズ駆動(N)においては、その終了タイミングを制限する。 On the other hand, the system control unit 11 performs the AF calculation (N), and then the moving direction of the focus lens determined by the AF calculation (N) is different from the moving direction of the focus lens in the lens driving (N−1) immediately before that. In the case of N = 1, the end timing is limited in lens driving (N).
 例えば、図6に示すように、システム制御部11は、レンズ駆動(1)については終了タイミングを制限し、レンズ駆動(1)におけるフォーカスレンズの移動方向とAF演算(2)によって決まるフォーカスレンズの移動方向とが一致する場合は、レンズ駆動(2)の終了タイミングは制限しない。 For example, as shown in FIG. 6, the system control unit 11 limits the end timing for the lens drive (1), and the focus lens of the focus lens determined by the moving direction of the focus lens in the lens drive (1) and the AF calculation (2). When the movement direction matches, the end timing of the lens drive (2) is not limited.
 このような制御により、動き続ける被写体に追従したAFが可能になり、連写画像の品質を向上させることができる。 Such control makes it possible to perform AF following a moving subject and improve the quality of continuous shot images.
 (第四実施形態)
 本実施形態で、撮像装置としてスマートフォンの構成について説明する。
(Fourth embodiment)
In this embodiment, a configuration of a smartphone as an imaging device will be described.
 図7は、本発明の撮影装置の一実施形態であるスマートフォン200の外観を示すものである。図7に示すスマートフォン200は、平板状の筐体201を有し、筐体201の一方の面に表示部としての表示パネル202と、入力部としての操作パネル203とが一体となった表示入力部204を備えている。また、この様な筐体201は、スピーカ205と、マイクロホン206と、操作部207と、カメラ部208とを備えている。なお、筐体201の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造やスライド機構を有する構成を採用したりすることもできる。 FIG. 7 shows an appearance of a smartphone 200 that is an embodiment of the photographing apparatus of the present invention. A smartphone 200 illustrated in FIG. 7 includes a flat housing 201, and a display input in which a display panel 202 as a display unit and an operation panel 203 as an input unit are integrated on one surface of the housing 201. Part 204 is provided. Such a housing 201 includes a speaker 205, a microphone 206, an operation unit 207, and a camera unit 208. Note that the configuration of the housing 201 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent can be employed, or a configuration having a folding structure and a slide mechanism can be employed.
 図8は、図7に示すスマートフォン200の構成を示すブロック図である。図7に示すように、スマートフォンの主たる構成要素として、無線通信部210と、表示入力部204と、通話部211と、操作部207と、カメラ部208と、記憶部212と、外部入出力部213と、GPS(Global Positioning System)受信部214と、モーションセンサ部215と、電源部216と、主制御部220とを備える。また、スマートフォン200の主たる機能として、図示省略の基地局装置BSと図示省略の移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。 FIG. 8 is a block diagram showing a configuration of the smartphone 200 shown in FIG. As shown in FIG. 7, the main components of the smartphone include a wireless communication unit 210, a display input unit 204, a call unit 211, an operation unit 207, a camera unit 208, a storage unit 212, and an external input / output unit. 213, a GPS (Global Positioning System) receiving unit 214, a motion sensor unit 215, a power supply unit 216, and a main control unit 220. As a main function of the smartphone 200, a wireless communication function for performing mobile wireless communication via a base station device BS (not shown) and a mobile communication network NW (not shown) is provided.
 無線通信部210は、主制御部220の指示にしたがって、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。 The wireless communication unit 210 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 220. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
 表示入力部204は、主制御部220の制御により、画像(静止画像および動画像)や文字情報などを表示して視覚的にユーザに情報を伝達するとともに、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル202と、操作パネル203とを備える。 The display input unit 204 controls the main control unit 220 to display images (still images and moving images), character information, and the like to visually transmit information to the user and to detect user operations on the displayed information. A so-called touch panel, which includes a display panel 202 and an operation panel 203.
 表示パネル202は、LCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)などを表示デバイスとして用いたものである。 The display panel 202 uses an LCD (Liquid Crystal Display), an OELD (Organic Electro-Luminescence Display), or the like as a display device.
 操作パネル203は、表示パネル202の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。このデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部220に出力する。次いで、主制御部220は、受信した検出信号に基づいて、表示パネル202上の操作位置(座標)を検出する。 The operation panel 203 is a device that is placed so that an image displayed on the display surface of the display panel 202 is visible and detects one or more coordinates operated by a user's finger or stylus. When this device is operated with a user's finger or stylus, a detection signal generated due to the operation is output to the main control unit 220. Next, the main control unit 220 detects an operation position (coordinates) on the display panel 202 based on the received detection signal.
 図7に示すように、本発明の撮影装置の一実施形態として例示しているスマートフォン200の表示パネル202と操作パネル203とは一体となって表示入力部204を構成しているが、操作パネル203が表示パネル202を完全に覆うような配置となっている。 As shown in FIG. 7, the display panel 202 and the operation panel 203 of the smartphone 200 exemplified as an embodiment of the photographing apparatus of the present invention integrally constitute a display input unit 204. The arrangement 203 covers the display panel 202 completely.
 係る配置を採用した場合、操作パネル203は、表示パネル202外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル203は、表示パネル202に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル202に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。 When such an arrangement is adopted, the operation panel 203 may have a function of detecting a user operation even in an area outside the display panel 202. In other words, the operation panel 203 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 202 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 202. May be included).
 なお、表示領域の大きさと表示パネル202の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル203が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体201の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル203で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。 Although the size of the display area and the size of the display panel 202 may be completely matched, it is not always necessary to match the two. In addition, the operation panel 203 may include two sensitive areas of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 201 and the like. Furthermore, examples of the position detection method employed in the operation panel 203 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, a capacitance method, and the like. You can also
 通話部211は、スピーカ205やマイクロホン206を備え、マイクロホン206を通じて入力されたユーザの音声を主制御部220にて処理可能な音声データに変換して主制御部220に出力したり、無線通信部210あるいは外部入出力部213により受信された音声データを復号してスピーカ205から出力させたりするものである。また、図7に示すように、例えば、スピーカ205を表示入力部204が設けられた面と同じ面に搭載し、マイクロホン206を筐体201の側面に搭載することができる。 The call unit 211 includes a speaker 205 and a microphone 206, converts user's voice input through the microphone 206 into voice data that can be processed by the main control unit 220, and outputs the voice data to the main control unit 220. 210 or the audio data received by the external input / output unit 213 is decoded and output from the speaker 205. As shown in FIG. 7, for example, the speaker 205 can be mounted on the same surface as the display input unit 204 and the microphone 206 can be mounted on the side surface of the housing 201.
 操作部207は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図7に示すように、操作部207は、スマートフォン200の筐体201の側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。 The operation unit 207 is a hardware key using a key switch or the like, and receives an instruction from the user. For example, as illustrated in FIG. 7, the operation unit 207 is mounted on the side surface of the housing 201 of the smartphone 200 and is turned on when pressed with a finger or the like, and is turned off by a restoring force such as a spring when the finger is released. It is a push button type switch.
 記憶部212は、主制御部220の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータなどを一時的に記憶するものである。また、記憶部212は、スマートフォン内蔵の内部記憶部217と着脱自在な外部メモリスロットを有する外部記憶部218により構成される。なお、記憶部212を構成するそれぞれの内部記憶部217と外部記憶部218は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)などの格納媒体を用いて実現される。 The storage unit 212 includes a control program and control data of the main control unit 220, application software, address data that associates the name and telephone number of a communication partner, transmitted / received e-mail data, Web data downloaded by Web browsing, The downloaded content data is stored, and streaming data and the like are temporarily stored. The storage unit 212 includes an internal storage unit 217 built in the smartphone and an external storage unit 218 having a removable external memory slot. Each of the internal storage unit 217 and the external storage unit 218 constituting the storage unit 212 includes a flash memory type (hard memory type), a hard disk type (hard disk type), a multimedia card micro type (multimedia card micro type), This is realized using a storage medium such as a card type memory (for example, MicroSD (registered trademark) memory), a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
 外部入出力部213は、スマートフォン200に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394など)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)など)により直接的又は間接的に接続するためのものである。 The external input / output unit 213 serves as an interface with all external devices connected to the smartphone 200, and communicates with other external devices (for example, universal serial bus (USB), IEEE 1394, etc.) or a network. (For example, Internet, wireless LAN, Bluetooth (registered trademark), RFID (Radio Frequency Identification), Infrared Data Association (IrDA) (registered trademark), UWB (Ultra Wideband) (registered trademark) ZigBee) (registered trademark, etc.) for direct or indirect connection.
 スマートフォン200に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)やSIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホンなどがある。外部入出力部213は、このような外部機器から伝送を受けたデータをスマートフォン200の内部の各構成要素に伝達することや、スマートフォン200の内部のデータが外部機器に伝送されるようにすることができる。 As an external device connected to the smartphone 200, for example, a wired / wireless headset, a wired / wireless external charger, a wired / wireless data port, a memory card (Memory card) connected via a card socket, or a SIM (Subscriber). Identity Module Card / UIM (User Identity Module Card) card, external audio / video equipment connected via audio / video I / O (Input / Output) terminal, external audio / video equipment connected wirelessly, yes / no There are a wirelessly connected smartphone, a wired / wireless personal computer, a wired / wireless PDA, a wired / wireless personal computer, an earphone, and the like. The external input / output unit 213 transmits data received from such an external device to each component inside the smartphone 200, or allows the data inside the smartphone 200 to be transmitted to the external device. Can do.
 GPS受信部214は、主制御部220の指示にしたがって、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、当該スマートフォン200の緯度、経度、高度からなる位置を検出する。GPS受信部214は、無線通信部210や外部入出力部213(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。 The GPS receiving unit 214 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 220, executes positioning calculation processing based on the received GPS signals, and calculates the latitude of the smartphone 200 Detect the position consisting of longitude and altitude. When the GPS reception unit 214 can acquire position information from the wireless communication unit 210 or the external input / output unit 213 (for example, a wireless LAN), the GPS reception unit 214 can also detect the position using the position information.
 モーションセンサ部215は、例えば、3軸の加速度センサなどを備え、主制御部220の指示にしたがって、スマートフォン200の物理的な動きを検出する。スマートフォン200の物理的な動きを検出することにより、スマートフォン200の動く方向や加速度が検出される。係る検出結果は、主制御部220に出力されるものである。 The motion sensor unit 215 includes, for example, a three-axis acceleration sensor, and detects the physical movement of the smartphone 200 in accordance with an instruction from the main control unit 220. By detecting the physical movement of the smartphone 200, the moving direction and acceleration of the smartphone 200 are detected. The detection result is output to the main control unit 220.
 電源部216は、主制御部220の指示にしたがって、スマートフォン200の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。 The power supply unit 216 supplies power stored in a battery (not shown) to each unit of the smartphone 200 in accordance with an instruction from the main control unit 220.
 主制御部220は、マイクロプロセッサを備え、記憶部212が記憶する制御プログラムや制御データにしたがって動作し、スマートフォン200の各部を統括して制御するものである。また、主制御部220は、無線通信部210を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。 The main control unit 220 includes a microprocessor, operates according to a control program and control data stored in the storage unit 212, and controls each unit of the smartphone 200 in an integrated manner. In addition, the main control unit 220 includes a mobile communication control function that controls each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 210.
 アプリケーション処理機能は、記憶部212が記憶するアプリケーションソフトウェアにしたがって主制御部220が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部213を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。 The application processing function is realized by the main control unit 220 operating according to the application software stored in the storage unit 212. Examples of the application processing function include an infrared communication function for controlling the external input / output unit 213 to perform data communication with the opposite device, an e-mail function for transmitting / receiving e-mails, and a web browsing function for browsing web pages. .
 また、主制御部220は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画像や動画像のデータ)に基づいて、映像を表示入力部204に表示する等の画像処理機能を備える。画像処理機能とは、主制御部220が、上記画像データを復号し、この復号結果に画像処理を施して、画像を表示入力部204に表示する機能のことをいう。 Also, the main control unit 220 has an image processing function such as displaying video on the display input unit 204 based on image data (still image or moving image data) such as received data or downloaded streaming data. The image processing function is a function in which the main control unit 220 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 204.
 更に、主制御部220は、表示パネル202に対する表示制御と、操作部207、操作パネル203を通じたユーザ操作を検出する操作検出制御を実行する。表示制御の実行により、主制御部220は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトウェアキーを表示したり、あるいは電子メールを作成したりするためのウィンドウを表示する。なお、スクロールバーとは、表示パネル202の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。 Further, the main control unit 220 executes display control for the display panel 202 and operation detection control for detecting a user operation through the operation unit 207 and the operation panel 203. By executing the display control, the main control unit 220 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail. Note that the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the display panel 202.
 また、操作検出制御の実行により、主制御部220は、操作部207を通じたユーザ操作を検出したり、操作パネル203を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。 In addition, by executing the operation detection control, the main control unit 220 detects a user operation through the operation unit 207 or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 203. Or a display image scroll request through a scroll bar.
 更に、操作検出制御の実行により主制御部220は、操作パネル203に対する操作位置が、表示パネル202に重なる重畳部分(表示領域)か、それ以外の表示パネル202に重ならない外縁部分(非表示領域)かを判定し、操作パネル203の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。 Further, by executing the operation detection control, the main control unit 220 causes the operation position with respect to the operation panel 203 to overlap with the display panel 202 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 202. And a touch panel control function for controlling the sensitive area of the operation panel 203 and the display position of the software key.
 また、主制御部220は、操作パネル203に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。 The main control unit 220 can also detect a gesture operation on the operation panel 203 and execute a preset function in accordance with the detected gesture operation. Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
 カメラ部208は、図1に示したデジタルカメラにおける外部メモリ制御部20、記録媒体21、表示制御部22、表示部23、及び操作部14以外の構成を含む。カメラ部208によって生成された撮像画像データは、記憶部212に記録したり、入出力部213や無線通信部210を通じて出力したりすることができる。図7に示すにスマートフォン200において、カメラ部208は表示入力部204と同じ面に搭載されているが、カメラ部208の搭載位置はこれに限らず、表示入力部204の背面に搭載されてもよい。 The camera unit 208 includes configurations other than the external memory control unit 20, the recording medium 21, the display control unit 22, the display unit 23, and the operation unit 14 in the digital camera shown in FIG. The captured image data generated by the camera unit 208 can be recorded in the storage unit 212 or output through the input / output unit 213 or the wireless communication unit 210. In the smartphone 200 shown in FIG. 7, the camera unit 208 is mounted on the same surface as the display input unit 204, but the mounting position of the camera unit 208 is not limited to this, and the camera unit 208 may be mounted on the back surface of the display input unit 204. Good.
 また、カメラ部208はスマートフォン200の各種機能に利用することができる。例えば、表示パネル202にカメラ部208で取得した画像を表示することや、操作パネル203の操作入力のひとつとして、カメラ部208の画像を利用することができる。また、GPS受信部214が位置を検出する際に、カメラ部208からの画像を参照して位置を検出することもできる。更には、カメラ部208からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用し
て、スマートフォン200のカメラ部208の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部208からの画像をアプリケーションソフトウェア内で利用することもできる。
The camera unit 208 can be used for various functions of the smartphone 200. For example, an image acquired by the camera unit 208 can be displayed on the display panel 202, or the image of the camera unit 208 can be used as one of operation inputs of the operation panel 203. Further, when the GPS receiving unit 214 detects a position, the position can be detected with reference to an image from the camera unit 208. Furthermore, referring to the image from the camera unit 208, the optical axis direction of the camera unit 208 of the smartphone 200 can be determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment. Of course, the image from the camera unit 208 can also be used in the application software.
 その他、静止画又は動画の画像データにGPS受信部214により取得した位置情報、マイクロホン206により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)、モーションセンサ部215により取得した姿勢情報等などを付加して記録部212に記録したり、入出力部213や無線通信部210を通じて出力したりすることもできる。 In addition, the position information acquired by the GPS receiving unit 214 to the image data of the still image or the moving image, the voice information acquired by the microphone 206 (the text information may be converted into voice information by the main control unit or the like), Posture information and the like acquired by the motion sensor unit 215 can be added and recorded in the recording unit 212, or can be output through the input / output unit 213 and the wireless communication unit 210.
 以上のような構成のスマートフォン200においても、位相差AFを用いた高速連写撮影を行うことができる。 Even in the smartphone 200 configured as described above, high-speed continuous shooting using phase difference AF can be performed.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された撮像装置は、複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した光束を受光する複数種類の焦点検出用画素セルとが平面上に配列され、前記撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子と、前記複数種類の焦点検出用画素セルから出力される一対の焦点検出信号の位相差に基づいて前記撮影光学系のデフォーカス量を算出する焦点検出部と、前記デフォーカス量に基づいて前記フォーカスレンズを移動させて前記撮影光学系の焦点調節を行う焦点調節部と、を備え、撮影を連続して行うモードにおいて、前記固体撮像素子の第一の露光開始から当該第一の露光によって得られる前記撮像画像信号の前記固体撮像素子からの読み出しが終了するまでの撮像期間において、前記焦点検出部が、前記第一の露光の前の露光によって得られる前記撮像画像信号に含まれる前記一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、前記焦点調節部が、当該算出されたデフォーカス量に基づく前記撮影光学系の焦点調節を開始するものである。 In the disclosed imaging device, a plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane. Based on a phase difference between a solid-state image sensor that receives an image formed by the photographing optical system and outputs a captured image signal, and a pair of focus detection signals output from the plurality of types of focus detection pixel cells. A focus detection unit that calculates a defocus amount of the imaging optical system; and a focus adjustment unit that adjusts the focus of the imaging optical system by moving the focus lens based on the defocus amount. In the mode to be performed, from the start of the first exposure of the solid-state imaging device until the reading of the captured image signal obtained by the first exposure from the solid-state imaging device is completed. In the image period, the focus detection unit calculates a defocus amount based on a phase difference between the pair of focus detection signals included in the captured image signal obtained by exposure before the first exposure, and the focus The adjustment unit starts focus adjustment of the photographing optical system based on the calculated defocus amount.
 開示された撮像装置は、前記焦点調節部が、前記撮像期間において、前記第一の露光が終了してから前記撮影光学系の焦点調節を開始するものである。 In the disclosed imaging apparatus, the focus adjustment unit starts focus adjustment of the imaging optical system after the first exposure is completed in the imaging period.
 開示された撮像装置は、前記撮像期間において開始される前記撮影光学系の焦点調節の終了タイミングが、前記第一の露光に続けて行われる第二の露光開始後になる場合に、前記焦点調節を前記第二の露光の開始タイミングにおいて終了させる停止制御を行う制御部を備えるものである。 The disclosed imaging apparatus performs the focus adjustment when the end timing of the focus adjustment of the imaging optical system that is started in the imaging period is after the start of the second exposure that is performed following the first exposure. A control unit that performs stop control to be terminated at the start timing of the second exposure is provided.
 開示された撮像装置は、前記制御部が、連続する2つの撮像期間のうちの前の撮像期間中に前記焦点検出部により算出されるデフォーカス量に基づく前記フォーカスレンズの移動方向と、前記2つの撮像期間のうちの後の撮像期間中に前記焦点検出部により算出されるデフォーカス量に基づく前記フォーカスレンズの移動方向とが一致する場合に、前記後の撮像期間においては前記停止制御を行わないものである。 In the disclosed imaging device, the control unit moves the focus lens based on a defocus amount calculated by the focus detection unit during the previous imaging period of two consecutive imaging periods, and the 2 When the movement direction of the focus lens based on the defocus amount calculated by the focus detection unit coincides during the subsequent imaging period among the two imaging periods, the stop control is performed during the subsequent imaging period. There is nothing.
 開示された撮像装置は、前記焦点検出部が、前記第一の露光が行われる期間中に前記デフォーカス量の算出を開始するものである。 In the disclosed imaging apparatus, the focus detection unit starts calculating the defocus amount during the period in which the first exposure is performed.
 開示された撮像装置は、前記焦点検出部が、前記第一の露光の開始とほぼ同時に前記デフォーカス量の算出を開始するものである。 In the disclosed imaging apparatus, the focus detection unit starts calculating the defocus amount almost simultaneously with the start of the first exposure.
 開示された撮像方法は、複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した一対の光束を受光する複数の焦点検出用画素セルとが平面上に配列され、前記撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子を有する撮像装置による撮像方法であって、撮影を連続して行うモードにおいて、前記固体撮像素子の第一の露光開始から当該第一の露光によって得られる前記撮像画像信号の前記固体撮像素子からの読み出しが終了するまでの撮像期間中に、前記第一の露光の前の露光によって得られる前記撮像画像信号に含まれる前記複数の焦点検出用画素セルから出力される前記一対の光束に対応する一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、当該算出したデフォーカス量に基づいて前記フォーカスレンズを移動させて前記撮影光学系の焦点調節を開始するものである。 In the disclosed imaging method, a plurality of imaging pixel cells and a plurality of focus detection pixel cells that receive a pair of light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane. An imaging method using an imaging apparatus having a solid-state imaging device that receives an image formed by the imaging optical system and outputs a captured image signal, wherein the solid-state imaging device The imaging obtained by the exposure before the first exposure during the imaging period from the start of the first exposure until the readout of the captured image signal obtained by the first exposure from the solid-state imaging device is completed. Calculating a defocus amount based on a phase difference between a pair of focus detection signals corresponding to the pair of light fluxes output from the plurality of focus detection pixel cells included in the image signal; By moving the focus lens based on the defocus amount issued is to start the focus adjustment of the photographic optical system.
 本発明によれば、位相差AF方式を用いた連続撮影を高速に行うことができる撮像装置及び撮像方法を提供することができる。 According to the present invention, it is possible to provide an imaging apparatus and an imaging method capable of performing continuous imaging at high speed using the phase difference AF method.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2012年3月28日出願の日本特許出願(特願2012-074308)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on Mar. 28, 2012 (Japanese Patent Application No. 2012-074308), the contents of which are incorporated herein.
 1 撮影レンズ
 5 固体撮像素子
30 撮像用画素セル
31R,31L 焦点検出用画素セル
DESCRIPTION OF SYMBOLS 1 Shooting lens 5 Solid-state image sensor 30 Imaging pixel cell 31R, 31L Focus detection pixel cell

Claims (7)

  1.  複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した光束を受光する複数種類の焦点検出用画素セルとが平面上に配列され、前記撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子と、
     前記複数種類の焦点検出用画素セルから出力される一対の焦点検出信号の位相差に基づいて前記撮影光学系のデフォーカス量を算出する焦点検出部と、
     前記デフォーカス量に基づいて前記フォーカスレンズを移動させて前記撮影光学系の焦点調節を行う焦点調節部と、を備え、
     撮影を連続して行うモードにおいて、前記固体撮像素子の第一の露光開始から当該第一の露光によって得られる前記撮像画像信号の前記固体撮像素子からの読み出しが終了するまでの撮像期間において、前記焦点検出部が、前記第一の露光の前の露光によって得られる前記撮像画像信号に含まれる前記一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、前記焦点調節部が、当該算出されたデフォーカス量に基づく前記撮影光学系の焦点調節を開始する撮像装置。
    A plurality of imaging pixel cells and a plurality of types of focus detection pixel cells that receive light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane and are connected by the imaging optical system. A solid-state image sensor that receives an image to be imaged and outputs a captured image signal;
    A focus detection unit that calculates a defocus amount of the imaging optical system based on a phase difference between a pair of focus detection signals output from the plurality of types of focus detection pixel cells;
    A focus adjustment unit that adjusts the focus of the photographing optical system by moving the focus lens based on the defocus amount;
    In a mode in which shooting is continuously performed, in the imaging period from the start of the first exposure of the solid-state imaging device to the end of reading of the captured image signal obtained by the first exposure from the solid-state imaging device, The focus detection unit calculates a defocus amount based on a phase difference between the pair of focus detection signals included in the captured image signal obtained by exposure before the first exposure, and the focus adjustment unit An imaging apparatus that starts focus adjustment of the imaging optical system based on the calculated defocus amount.
  2.  請求項1記載の撮像装置であって、
     前記焦点調節部は、前記撮像期間において、前記第一の露光が終了してから前記撮影光学系の焦点調節を開始する撮像装置。
    The imaging apparatus according to claim 1,
    The focus adjustment unit is an imaging apparatus that starts focus adjustment of the photographing optical system after the first exposure is completed in the imaging period.
  3.  請求項1又は2記載の撮像装置であって、
     前記撮像期間において開始される前記撮影光学系の焦点調節の終了タイミングが、前記第一の露光に続けて行われる第二の露光開始後になる場合に、前記焦点調節を前記第二の露光の開始タイミングにおいて終了させる停止制御を行う制御部を備える撮像装置。
    The imaging apparatus according to claim 1 or 2,
    When the end timing of the focus adjustment of the imaging optical system that is started in the imaging period is after the start of the second exposure that is performed following the first exposure, the focus adjustment is started in the second exposure. An imaging apparatus including a control unit that performs stop control to be terminated at timing.
  4.  請求項3記載の撮像装置であって、
     前記制御部は、連続する2つの撮像期間のうちの前の撮像期間中に前記焦点検出部により算出されるデフォーカス量に基づく前記フォーカスレンズの移動方向と、前記2つの撮像期間のうちの後の撮像期間中に前記焦点検出部により算出されるデフォーカス量に基づく前記フォーカスレンズの移動方向とが一致する場合に、前記後の撮像期間においては前記停止制御を行わない撮像装置。
    The imaging apparatus according to claim 3,
    The control unit includes a moving direction of the focus lens based on a defocus amount calculated by the focus detection unit during a previous imaging period of two consecutive imaging periods, and a rear of the two imaging periods. An imaging apparatus that does not perform the stop control in the subsequent imaging period when the moving direction of the focus lens matches the movement direction of the focus lens based on the defocus amount calculated by the focus detection unit during the imaging period.
  5.  請求項1~4のいずれか1項記載の撮像装置であって、
     前記焦点検出部は、前記第一の露光が行われる期間中に前記デフォーカス量の算出を開始する撮像装置。
    The imaging apparatus according to any one of claims 1 to 4, wherein
    The focus detection unit is an imaging apparatus that starts calculating the defocus amount during a period in which the first exposure is performed.
  6.  請求項5記載の撮像装置であって、
     前記焦点検出部は、前記第一の露光の開始とほぼ同時に前記デフォーカス量の算出を開始する撮像装置。
    The imaging apparatus according to claim 5, wherein
    The focus detection unit is an imaging apparatus that starts calculating the defocus amount substantially simultaneously with the start of the first exposure.
  7.  複数の撮像用画素セルと、フォーカスレンズを含む撮影光学系の瞳領域の異なる部分を通過した一対の光束を受光する複数の焦点検出用画素セルとが平面上に配列され、前記撮影光学系により結像される像を受光して撮像画像信号を出力する固体撮像素子を有する撮像装置による撮像方法であって、
     撮影を連続して行うモードにおいて、前記固体撮像素子の第一の露光開始から当該第一の露光によって得られる前記撮像画像信号の前記固体撮像素子からの読み出しが終了するまでの撮像期間中に、前記第一の露光の前の露光によって得られる前記撮像画像信号に含まれる前記複数の焦点検出用画素セルから出力される前記一対の光束に対応する一対の焦点検出信号の位相差に基づいてデフォーカス量を算出し、当該算出したデフォーカス量に基づいて前記フォーカスレンズを移動させて前記撮影光学系の焦点調節を開始する撮像方法。
    A plurality of imaging pixel cells and a plurality of focus detection pixel cells that receive a pair of light beams that have passed through different portions of the pupil region of the imaging optical system including the focus lens are arranged on a plane, and the imaging optical system An imaging method by an imaging device having a solid-state imaging device that receives an imaged image and outputs a captured image signal,
    In the mode in which shooting is performed continuously, during the imaging period from the start of the first exposure of the solid-state imaging device to the end of reading of the captured image signal obtained by the first exposure from the solid-state imaging device, Based on the phase difference between the pair of focus detection signals corresponding to the pair of light fluxes output from the plurality of focus detection pixel cells included in the captured image signal obtained by the exposure before the first exposure. An imaging method for calculating a focus amount, and starting focus adjustment of the imaging optical system by moving the focus lens based on the calculated defocus amount.
PCT/JP2013/053034 2012-03-28 2013-02-08 Imaging device and imaging method WO2013145887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074308 2012-03-28
JP2012074308 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145887A1 true WO2013145887A1 (en) 2013-10-03

Family

ID=49259172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053034 WO2013145887A1 (en) 2012-03-28 2013-02-08 Imaging device and imaging method

Country Status (1)

Country Link
WO (1) WO2013145887A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285907A (en) * 1988-05-13 1989-11-16 Canon Inc Autofocusing device for camera
JP2005215373A (en) * 2004-01-30 2005-08-11 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2009109631A (en) * 2007-10-29 2009-05-21 Sony Corp Imaging device
JP2010101972A (en) * 2008-10-21 2010-05-06 Canon Inc Automatic focusing device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285907A (en) * 1988-05-13 1989-11-16 Canon Inc Autofocusing device for camera
JP2005215373A (en) * 2004-01-30 2005-08-11 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2009109631A (en) * 2007-10-29 2009-05-21 Sony Corp Imaging device
JP2010101972A (en) * 2008-10-21 2010-05-06 Canon Inc Automatic focusing device and method

Similar Documents

Publication Publication Date Title
JP5690974B2 (en) Imaging apparatus and focus control method
JP5542249B2 (en) Image pickup device, image pickup apparatus using the same, and image pickup method
JP5948492B2 (en) Imaging apparatus and focus control method
JP5799178B2 (en) Imaging apparatus and focus control method
JP5750550B2 (en) Imaging apparatus and focus control method
JP5982601B2 (en) Imaging apparatus and focus control method
JP5802846B2 (en) Imaging device
JP6307526B2 (en) Imaging apparatus and focus control method
JP5872122B2 (en) Imaging apparatus and focus control method
WO2015198690A1 (en) Imaging device
JP6028112B2 (en) Imaging apparatus and focus control method
WO2015045683A1 (en) Imaging device and focusing control method
WO2014080673A1 (en) Imaging device and exposure determination method
WO2013168493A1 (en) Signal processing device, imaging device, and signal correction method
WO2015141081A1 (en) Imaging device and focus control method
JP5542248B2 (en) Imaging device and imaging apparatus
JP5990665B2 (en) Imaging apparatus and focus control method
JPWO2017209252A1 (en) Image pickup apparatus, focusing control method, and focusing control program
JP5789725B2 (en) Imaging apparatus, focusing method thereof and focusing control program
WO2016038934A1 (en) Image pickup device and focus control method
JP5677628B2 (en) Imaging apparatus and imaging method
WO2014097792A1 (en) Imaging device, signal processing method, and signal processing program
WO2013145887A1 (en) Imaging device and imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP