WO2013145002A1 - Power storage system and power storage method - Google Patents

Power storage system and power storage method Download PDF

Info

Publication number
WO2013145002A1
WO2013145002A1 PCT/JP2012/002133 JP2012002133W WO2013145002A1 WO 2013145002 A1 WO2013145002 A1 WO 2013145002A1 JP 2012002133 W JP2012002133 W JP 2012002133W WO 2013145002 A1 WO2013145002 A1 WO 2013145002A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode plate
charge
voltage
electric field
Prior art date
Application number
PCT/JP2012/002133
Other languages
French (fr)
Japanese (ja)
Inventor
難波 茂昭
加藤 陽一
康人 田原
宮川 純一
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2013549637A priority Critical patent/JP5696231B2/en
Priority to PCT/JP2012/002133 priority patent/WO2013145002A1/en
Publication of WO2013145002A1 publication Critical patent/WO2013145002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current

Definitions

  • the present invention relates to a power storage system and a power storage method, and more particularly to a power storage system and a method for storing electrostatic energy using a potential gradient generated in the atmosphere.
  • Patent Document 1 discloses that a charge is accumulated in a capacitor according to an electric field in the atmosphere accompanying thundercloud generation, and a midpoint potential of the capacitor is obtained. A technique for measuring the position and the amount of charge is described.
  • the present application includes a plurality of means for solving the above-described problems.
  • a band electrode plate that charges a charge according to a potential difference between an installation position and a grounding point, and is electrically connected to the band electrode plate.
  • a capacitor that moves the electric charge charged in the band electrode plate and accumulates the electric charge, and a switch provided between the band electrode plate and the capacitor, between the band electrode plate and the capacitor.
  • a switch provided so as to be able to cut off the electrical connection, a voltage of the strip electrode plate, or a plate plate voltage calculation unit for obtaining an amount of electric charge charged to the strip electrode plate, and a plate plate voltage calculation unit
  • a control unit that controls opening and closing of the switch according to the voltage of the band electrode plate or the amount of electric charge of the band electrode plate, and moves the electric charge charged on the band electrode plate to the capacitor. It is characterized by.
  • electric charges can be accumulated using a potential gradient existing in the atmosphere, and the accumulated electric charges can be accumulated in a capacitor or a storage battery as electrostatic energy.
  • FIG. 4 is a flowchart showing an example of the operation of the control unit 110 of the atmospheric electric field energy storage system 100.
  • FIG. It is a figure which shows the 2nd Example of this invention. It is a figure which shows the 3rd Example of this invention. It is a figure which shows a basic function when dielectric elastomer type EAP or EPAM is used for the outdoor electrode plate. It is a figure which shows the 4th Example of this invention.
  • Thunderclouds are associated with the updraft phenomenon of the atmosphere, and it is thought that damage caused by electric shock, such as human livestock damage, house fires, equipment destruction, etc., is significant when subjected to lightning strikes in the vicinity.
  • Thunderclouds can be predicted roughly in advance due to the development of meteorology, even if the occurrence time and duration cannot be deterministically predicted. In general, the annual frequency of each region and the secular trend of the frequency of each season are grasped. Therefore, the evaluation of the amount of power generation / storage at one station does not go out of the full year / outline, but it is almost certain that a certain amount of contribution can be expected. Therefore, it is also possible to supply power to the demand side while the energy in the atmosphere is not directly connected to the transmission / transformation system, but is once controlled and then controlled by the PCS.
  • FIG. 2 is a conceptual diagram for explaining that electric charges are accumulated in the capacitor when the thundercloud is in proximity.
  • FIG. 2 shows a case in which the lower surface side of the proximity thundercloud 201 is charged with a negative charge 202 and the upper surface is charged with a positive charge 203.
  • the comparison will be made in comparison with the lightning rod 205 provided at the highest position of a normal building or the like for comparison.
  • the lightning rod 205 is a metal stylus, and a metal conductor communicates with the ground, making it easy to construct a lightning strike circuit in the air space.
  • a metal conductor communicates with the ground, making it easy to construct a lightning strike circuit in the air space.
  • the lower surface of the upper thundercloud 201 is charged with a negative charge, it is induced by a negative charge 202 at the bottom of the thundercloud 201, a positive charge accumulates on the ground, and the grounded lightning rod 205 also shows a positive charge.
  • the capacitor 204 is such that the earth-side electrode plate is grounded through the metal conductor. Since the ground state electrode plate (grounding side electrode plate) of the capacitor 204 is charged by the positive charge induced to the ground, the sky side electrode plate is charged by the anti-ground side charge, that is, the negative charge. . In this way, charges are accumulated in the capacitor 204 due to the approach of the thundercloud 201.
  • the electric charge accumulated in the upper electrode of the capacitor 204 is supplied from the air, or is supplied from the lower electrode of the capacitor 204 through an insulator sandwiched between the terminals of the capacitor. In this way, by providing the capacitor in the atmosphere and grounding one of the poles, it is possible to accumulate electric charges according to the electric field existing in the atmosphere.
  • the negative charge is charged on the lower surface side of the thundercloud, but the lower surface side of the thundercloud may be positively charged.
  • the charge accumulated in the capacitor is also inverted, and accordingly The present invention can be applied by accumulating the accumulated charges.
  • Fig. 3 is a virtual equivalent circuit representation of the separation of electric charges (plus and minus) due to the rising air current in the atmosphere and the earth electromotive force that is considered to be the cause of these separations as a variable electromotive force.
  • the electrostatic energy accumulated in the capacitor due to the increase in the electric field strength in the atmospheric space as described above is stored in a battery separately prepared as a kind of natural energy.
  • a large-capacity capacitor device that has been utilized in various places is regarded as a kind of short-term power supply, and a combination of equipment and storage battery that can be configured to make a complete electric circuit configuration It is a thing.
  • the thundercloud when a thundercloud occurs, the thundercloud can be virtually regarded as a capacitor 301, and a positive charge is accumulated at the top of the thundercloud and a negative charge is accumulated at the bottom of the thundercloud.
  • the air region below the thundercloud is regarded as the insulation resistance 302, and so far is not artificial, and is represented by a broken line.
  • charges are accumulated on the outdoor (not electrostatically shielded) electrode plate 130 according to a potential gradient in the atmosphere, and the charges are transferred to a large-capacitance capacitor 140 electrically connected through a switch.
  • the stored electric energy is moved to the storage battery 170 by a PCS (Power Conditioning System) 150, but the intention is to accumulate in the storage battery having a large total energy amount, thereby enabling the next stage operation on the capacitor side. Is.
  • PCS Power Conditioning System
  • the large-capacitance capacitor 140 is assumed to be a lithium-ion capacitor, and the voltage control that puts the allowable voltage range of the input voltage during charging into the upper and lower limits is applied to the PCS 150 and the resistance voltage dividing circuit 160.
  • This is a configuration to be implemented. That is, as the operation end of this voltage control, the internal power element group of the PCS 150 itself, the voltage dividing step-down control by the resistance voltage dividing circuit 160, or the height of the electrode part of the outdoor electrode plate 130 from the ground, the electric field direction, and the like.
  • There are various types such as an angle (orientation), and a degree of insertion of a dielectric material sandwiched inside the outdoor electrode plate 130, but it is sufficient that the DC voltage can be controlled favorably, and there is no particular ordering.
  • the charging characteristic of the capacitor that can control the charging current value is proportional to the time change rate of the terminal voltage of both electrodes, with the capacitance value being a proportionality constant, as shown in Equation (3). Therefore, a control operation for determining the charging current can be performed by intentionally adjusting the time change rate of the voltage.
  • the charging current value can be calculated. Accordingly, the electric current in the atmosphere itself naturally changes in weather, and thus the voltage change with time dV / dt occurs, so that a charging current is generated. At this time, if the range of the allowable applied voltage of the large-capacitance capacitor 140 is known in advance, the charging current value can be controlled by controlling the voltage applied to the large-capacity capacitor 140 by the entire voltage dividing circuit.
  • the control of the allowable applied voltage of the other large-capacitance capacitor 140 can be dealt with, for example, by changing the position of the outdoor electrode plate 130 in the electric field of the non-ground side terminal.
  • the charge polarity of the earth may reverse positive and negative.
  • the polarity is switched by polarity switching on the charging circuit side or by a control mechanism such as PCS. Allows combination with reverse operation control.
  • FIG. 1 is an example showing in detail the configuration of an atmospheric electric field energy storage system using an atmospheric electric field.
  • the atmospheric electric field energy storage system 100 includes a grounded ground electrode plate, a grounded electrode plate and a non-grounded electrode plate provided as a counter electrode, and an outdoor electrode plate 130 that stores electric charges according to a potential in the atmosphere, and a grounding point.
  • a current detector 120 that detects a current flowing between the ground electrode plate 130 and the ground electrode plate of the outdoor electrode plate 130, and a capacitor 140 that is provided indoors and is connected to the non-ground electrode plate of the outdoor electrode plate 130.
  • a storage battery 170 that stores the charge accumulated in the capacitor 140
  • a PCS (Power Conditioning System) 150 that adjusts the current and voltage when the charge of the capacitor 140 is sent to the storage battery 170
  • a circuit between the capacitor 140 and the ground point A resistance voltage dividing circuit 160 for controlling a voltage applied to the capacitor 140, a plurality of switches 181, 182, 183, 184, 185 for opening and closing a part of the circuit,
  • a control unit 110 for performing power storage control of the gas-field power storage system 100, consisting of.
  • a dielectric is sandwiched between the ground-side electrode plate and the non-ground-side electrode plate, and only one capacitor 140 is shown in FIG. In FIG. 1, a capacitor in which a plurality of capacitors are connected in parallel or in series is virtually regarded as one capacitor 140 and is illustrated.
  • the control unit 110 also integrates the current detected by the current detector 120 by time integrating the PCS control unit 112 that controls the power conversion of the PCS 150, the switch control unit that controls the opening and closing of the switches 181 to 185, and the outdoor electrode plate 130.
  • the electrode plate voltage calculation unit 114 for obtaining the amount of charge accumulated in the capacitor 140
  • the capacitor voltage measurement unit 115 for measuring the voltage applied to both ends of the capacitor 140
  • the electrode plate voltage calculation unit 114 receive information.
  • a capacitor voltage control unit 111 that controls the voltage applied to the capacitor 140 by changing the variable resistance of the resistance voltage dividing circuit 160. Further, the capacitor voltage control unit 111 outputs a control command to the PCS control unit 112 and the switch control unit 113 in addition to the control of the resistance voltage dividing circuit 160.
  • the operation of the atmospheric electric field power storage system 100 according to this embodiment will be described.
  • there is a potential gradient in the atmosphere For example, high energy is accumulated in the atmospheric space due to a change in electric field strength before and after the occurrence of a thundercloud.
  • the electric charge according to the electric field distribution in the atmosphere is accumulated in the outdoor electrode plate 130.
  • the current detector 120 detects the electric charge moving between the ground plane and the outdoor electrode plate 130 as a current.
  • the electrode plate voltage calculation unit 114 in the control unit 110 takes in the current value detected by the current detector 120 and integrates the current value to calculate the amount of electric charge currently accumulated in the outdoor electrode plate.
  • the capacity of the capacitor formed by the outdoor electrode plate 130 is stored in the control unit 110 in advance, and the electrode plate voltage calculation unit 114 calculates the voltage between the electrode plates of the outdoor electrode plate 130 from the capacitor capacity and the charge amount.
  • Ask. you may comprise so that the voltage between electrode plates may be measured directly from the outdoor electrode plate 130 instead of an electric current detector.
  • the capacitor voltage control unit 111 sends the switches 181 and 185 to the switch control unit 113 based on the voltage calculated by the electrode plate voltage calculation unit 114 and the voltage applied between the terminals of the capacitor 140 measured by the capacitor voltage measurement unit 115. Outputs an open / close control command. Specifically, when it is detected that no current flows after detecting the current flowing through the outdoor electrode plate 130, the switches 181 and 185 are closed. In such a case, it is considered that the change in the potential gradient in the atmosphere is suppressed to some extent, and the electric charge corresponding to the potential gradient is accumulated in the outdoor electrode plate 130 and is in a steady state.
  • the switches 181 and 185 may be closed and controlled so that the charges accumulated in the outdoor electrode plate 130 are sequentially transferred to the capacitor 140 before the steady state is obtained as described above. At this time, when the voltage between the terminals of the capacitor 140 becomes higher than the voltage between the plates of the outdoor electrode plate 130, the reverse flow of the charge can be prevented by opening the switch 181. Further, an electric field strength meter may be provided in the atmosphere, and the switches 181 and 185 may be controlled to be closed by observing changes in the electric field strength in the atmosphere.
  • the charge between the terminals of the capacitor can be changed to generate and change the charging current, so that charge can be accumulated in the capacitor 140.
  • the charge accumulated in the capacitor 140 can be stored by controlling the switches 181 and 185 to open.
  • a switch is provided between the ground electrode plate of the outdoor electrode plate 130 and the ground, the electric charge accumulated in the outdoor electrode plate 130 can be stored.
  • the capacitor voltage control unit 111 is measured by the electrode plate voltage of the outdoor electrode plate 130 calculated by the electrode plate voltage calculation unit 114 and the capacitor voltage measurement unit 115.
  • the resistance value of the resistance voltage dividing circuit 160 is changed so that the voltage applied to the capacitor 140 falls within the allowable voltage range based on the voltage between the terminals of the capacitor 140.
  • the energy of the atmospheric field can be stored in the capacitor 140 by controlling the switch.
  • the total amount of charging energy to the capacitor 140 can be considered to be that the energy of the local electric field system of the atmospheric field is converted into the amount of electricity of the storage system only by electrical operation, and the equivalent amount is (1 / 2) If it is expressed as * CV 2 , the equivalent amount is theoretically dissipated as “space heat”. In practice, a heat generation phenomenon occurs in a place where there is a resistance component on the ground or a constituent electric circuit. can do.
  • the resistance heat generation in the water tank is applied to the resistance voltage dividing circuit 160, the heat source for heating to hot water, steam, or the like, and further, the road surface freezing prevention heat source or the heat pump system can be applied to air conditioning. it can. Since these do not involve combustion, it can be said that the environmental impact load is also light.
  • the capacitor voltage control unit 111 opens the switches 181 and 185 and closes the switches 182 and 183 to connect the capacitor 140 and the storage battery 170 when electric charges of a predetermined value or more are accumulated in the capacitor 140.
  • the storage battery 170 is less responsive to the charge / discharge current than the capacitor 140, and it is not preferable to connect the storage battery 170 directly. Therefore, this difference can be filled by converting the current from the capacitor 140 by the PCS 150 in accordance with the charging current of the storage battery 170. At this time, DC-DC conversion is performed inside the PCS 150 to convert the direct current discharged from the capacitor 140 into a charging current for the storage battery 170.
  • the storage battery 170 can be omitted if there is no operational problem with only short-term output.
  • FIG. 4 is a flowchart showing an example of the operation of the control unit 110 of the atmospheric electric field energy storage system 100.
  • the controller 110 detects the current flowing through the outdoor electrode plate 130 by using the current detector 120 (S401). Next, it is determined whether the steady state is reached when the current stops flowing (S402). When the steady state is reached, the switches 181 and 185 are closed (S403), and the capacitor 140 and the outdoor electrode plate 130 are connected. To do. At this time, the voltage applied to the capacitor 140 is adjusted by controlling the resistance voltage dividing circuit 160 (S404).
  • the switches 181 and 185 are controlled to be opened, and the switches 182 and 183 are controlled to be closed, so that the storage battery 170 and the capacitor 140 are connected.
  • the PCS 150 is controlled to charge the storage battery 170 from the capacitor 140 (S408).
  • the switches 182 and 183 are opened to disconnect the connection between the storage battery 170 and the capacitor 140.
  • energy stored in the atmosphere can be accumulated in the approach process of thunderclouds or in the process of thundercloud growth / decay in the growth process or separation process.
  • the time required for the ground electrostatic energy charging process of a thundercloud appearing at a certain point is related to the magnitude of the updraft and is considered to be slow compared to the instantaneous discharge phenomenon at the time of lightning strike.
  • the capacitor is charged by applying a time change in the capacitor electrode terminal voltage based on a change in the electric field strength in the atmosphere.
  • a capacitor a lithium ion capacitor or the like having a wide input voltage acceptance range is used, and as a form for combining with a voltage dividing resistor, the input voltage width is substantially reduced in response to a larger voltage application. Use an enlarged one.
  • the atmospheric electric field strength change is detected and the change is used.
  • the time change rate of the terminal voltage of both poles is zero and no current flows if nothing is done.
  • the capacitor terminal voltage can be adjusted by forcing the terminal voltage of the terminal voltage to be zero and forcibly changing the time change rate of the terminal voltage to zero.
  • the electricity stored in the storage battery 170 of this embodiment can be supplied to the distribution system via the PCS, and can be used for system stabilization, self-power demand, electric vehicles (EV), and the like.
  • EV electric vehicles
  • it can be installed in any of Yamano / desert / island area, urban area, rural area, etc., because it contributes to the reduction of lightning strike opportunities and the possibility of multiple sources of renewable energy storage. Considering the nature and contribution to multiplexing, it is also possible to contribute to disaster prevention and mitigation.
  • the heat that can be obtained can also be used for heat demand and heat exchange demand such as snow melting, hot water, air conditioning, etc., and energy supply that suppresses risk factors such as emission of high temperature, high pressure, and environmental impact substances Contribute to the realization of the system.
  • the atmospheric electric field energy storage system 100 and the outdoor electrode plate 130 can be installed on the sea.
  • grounding becomes possible by providing a grounding point in the sea.
  • a large-scale power generation system can be realized by providing a plurality of atmospheric electric field energy storage systems 100 on a ship or the ocean.
  • the target is about several dozen thru
  • FIG. 5 is a diagram showing a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the electrode plate operating unit 500 is provided on the non-grounded electrode plate of the outdoor electrode plate 130.
  • the change in the electric field strength in the atmosphere is used as the parameter to be adjusted. However, if the electric field strength in the atmosphere is not zero and continues to be maintained at a certain value, if no action is taken, both poles are used. The rate of change of the terminal voltage with time is zero and no current flows.
  • the electrode plate operating unit 500 is controlled by the control unit 110 and the non-grounded side electrode of the outdoor electrode plate 130 is controlled.
  • the plate is forcibly moved / rotated from the current spatial position to bring it to a different electric field strength position.
  • the ground potential is changed by changing the distance of the electric field strength, or by adjusting the effective cross-sectional area of charge accumulation and connecting the capacitor 140 with the change by making a change in the voltage between the terminals of the capacitor 140.
  • a charging current can be generated. That is, if the movement / adjustment is performed over a certain period of time, it corresponds to giving a “time change rate” to the potential determined at the point after the movement / adjustment.
  • FIG. 6 is a diagram showing a third embodiment of the present invention.
  • an EAP (electric field responsive polymer) 600 is disposed on a part of the non-grounded electrode plate of the outdoor electrode plate 130.
  • dielectric elastomer type EAP or EPAM of EAP is used, and applied to switching on / off of the atmospheric electric field energy storage system 100 by utilizing the mechanical property of contracting in the electric field direction under electric field and extending in the vertical direction.
  • a voltage can be generated by applying pressure to the dielectric elastomer type EAP or EPAM to expand and contract, and this voltage can be used as a control power source for a power generation / charging switch mechanism.
  • FIG. 7 is a diagram showing a basic function when dielectric elastomer type EAP or EPAM is used for the outdoor electrode plate 130.
  • the upper and lower contrasts in FIG. 7 (a) indicate that there is a difference in expansion and contraction of the dielectric elastomer 600 due to the strength of the electric field, and that the difference in shape appears in the length in the direction perpendicular to the electric field and in the length in the parallel direction. . That is, if the operation switch of the atmospheric electric field energy storage system 100 is provided at the expansion and contraction destination of the dielectric elastomer 600, the atmospheric electric field energy storage system 100 can be operated when a strong electric field is generated in the atmosphere.
  • a second dielectric elastomer 603 provided on the fixed-side insulating material 602 is provided via an insulating material 601 at the tip of the dielectric elastomer 600 in the expansion / contraction direction. Accordingly, the EAP presses the second dielectric elastomer 603 with the vertical “push” force of the first dielectric elastomer 600 by utilizing the property that the EAP itself receives external force to generate electric power. A voltage is generated in the second dielectric elastomer pressurized through the insulator due to expansion and contraction accompanying the pressurization. The electric power can be used as a control power source for the entire power generation / charging switch mechanism. This is intended for automatic generation of control power.
  • the shape change of the dielectric elastomer 600 is optically detected and the voltage can be estimated indirectly from the correlation with the electric field strength applied naturally, a system such as turning on and off the electric circuit switch using this is adopted. You can also
  • FIG. 8 is a diagram showing a fourth embodiment of the present invention.
  • the electrode plate disposed in the atmospheric space has a lightning protection capability. Therefore, in this embodiment, a power storage system that realizes a lightning protection function will be described.
  • the dielectric device 801 is a so-called lightning rod, and is generally a metal rod-shaped protrusion having a sharp angle configuration, which is intended to electrically connect a metal conductor to the ground.
  • This is conventionally called a lightning rod, but functionally it should be called a lightning strike (needle), avoiding lightning strikes to the main equipment on the side and inducing lightning strikes to the needle itself. is there. Since the lower surface of the sky thundercloud is negatively charged, the ground lightning rod is positively charged.
  • the capacitive lightning arrester 800 has been put into practical use for the past 10 years or so, and is a capacitor, and the earth-side electrode plate is also grounded via a metal conductor. Is. Since the ground side electrode plate (ground side electrode plate) of the capacitor is charged by the positive charge induced to the ground, the sky side electrode plate is charged with the anti-ground side charge, that is, the negative charge.
  • This latter lightning arrester has a repulsive relationship with the negative charge on the bottom of the thundercloud, so it does not adopt a circuit configuration as a lightning strike requirement, and even if a precursor discharge (step leader) phenomenon occurs from the thundercloud to the ground, There is no return lightning stroke phenomenon from to the thundercloud.
  • a lightning strike occurs when the insulation breakdown is caused by the generation of an excessive voltage, but after the insulation breakdown between the plates, the lightning strike current is released to the ground via the earth circuit of the device. It will have a back-up configuration with a "protection function" equivalent to the lightning rod of the lightning.
  • the atmospheric electric field energy storage system is combined with the lightning protection umbrella area of the capacitive lightning arrester 800. More specifically, a space where the electric force line vector is spatially calculated from the accumulated charge on the outdoor electrode plate 130 and the accumulated charge on the lower surface of the virtual thundercloud, and each of the repulsive force lines with the same sign charge on the lower surface of the thundercloud is surrounded by Deriving the boundary. Then, if there is a lightning arrester 800 in the dominant space created by the accumulated charges of the outdoor electrode plate 130, it is determined that it is not a lightning strike region, and if it is under thundercloud side control, it is determined that there is a high possibility of receiving a lightning strike. The power generation function of the atmospheric electric field energy storage system 100 is stopped and other measures are taken.
  • a dielectric device 801 can be further combined with the above configuration.
  • the lightning striker 801 is lifted higher than the capacitive lightning arrester 800, and it is easy to attract different polarity charges to the growing thundercloud above.
  • the voltage between the electrode plates of the capacitive lightning arrester 800 rises above the stable operation range, the lightning arrester 801 is placed in a safe air space below the capacitive lightning arrester 800, and the electrical thundercloud side is receiving a different kind of inquiry. A masking operation is performed so that there is no electric charge, and lightning strikes shall be avoided.
  • the lightning protection function can be realized while accumulating energy to be accumulated in the atmosphere.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Abstract

The purpose of the present invention is to provide a power storage system and a power storage method, wherein electrostatic energy is accumulated using electric potential gradient in the atmosphere. In order to solve the abovementioned problem, a power storage system is characterized in comprising: a charged plate that is charged with electric charges due to the potential difference between the installed position of the charged plate and a grounding point; a capacitor that is electrically connected to the charged plate, and that moves and accumulates the electric charges charged on the charged plate; switches that are provided between the charged plate and the capacitor, and that are provided so as to be capable of cutting off the electrical connection between the charged plate and the capacitor; a plate voltage calculation unit that obtains the voltage of the charged plate, or the amount of electric charges charged on the charged plate; and a control unit that carries out open/close control of the switches in accordance with the voltage of the charged plate or the amount of electric charges charged on the charged plate obtained by the plate voltage calculation unit, and moves the electric charges charged on the charged plate to the capacitor.

Description

蓄電システム及び蓄電方法Power storage system and power storage method
 本発明は、蓄電システム及び蓄電方法に関し、特に、大気中に発生する電位勾配を利用して静電エネルギーを蓄積する蓄電システム及び方法に関する。 The present invention relates to a power storage system and a power storage method, and more particularly to a power storage system and a method for storing electrostatic energy using a potential gradient generated in the atmosphere.
 大気中には、晴天時、1mあたり約500V~1000V程度の電位勾配が存在する。また、雷雨などの場合には、通念的には雷雲の成長に伴い、雷撃時放電のエネルギーが空間に蓄積されると考えられるが、その雷撃時の推定エネルギーについては、電圧で1億ボルト、電流で3万アンペア程度の概略数値が報告されおり、対地と雷雲下面の電荷の存在する部分の距離を5000mとすれば、2万ボルト/メートルもの電界強度を有することになる。 In the atmosphere, there is a potential gradient of about 500V to 1000V per meter when it is fine. Also, in the case of thunderstorms, etc., it is thought that the energy of discharge during lightning strikes is stored in space as the thundercloud grows, but the estimated energy during lightning strikes is 100 million volts, An approximate numerical value of about 30,000 amperes has been reported in terms of current. If the distance between the ground and the portion where charges exist on the bottom of the thundercloud is 5000 m, the electric field strength will be 20,000 volts / meter.
 ここで、雷雲発生時の電界強度を利用する技術として、例えば特許文献1には、雷雲発生に伴う大気中の電界に応じてコンデンサに電荷を蓄積し、コンデンサの中点電位を求めて、雷雲の位置、電荷量を測定する技術が記載されている。 Here, as a technique for using the electric field strength at the time of thundercloud generation, for example, Patent Document 1 discloses that a charge is accumulated in a capacitor according to an electric field in the atmosphere accompanying thundercloud generation, and a midpoint potential of the capacitor is obtained. A technique for measuring the position and the amount of charge is described.
特開平11-304950号公報Japanese Patent Laid-Open No. 11-304950
 昨今、エネルギー安全保障の確保及び地球環境負荷低減の観点から、再生可能エネルギーの利用拡大が急務となった。それらの中には、太陽光、太陽熱、風力、地熱、海洋潮汐、海洋海流、海洋波力等、多々様々な非枯渇性のエネルギー源があり、各々の特長を生かして、世界中で開発が進められている。 Recently, the expansion of the use of renewable energy has become an urgent task from the viewpoint of ensuring energy security and reducing the global environmental load. Among them, there are many non-depleting energy sources such as sunlight, solar heat, wind power, geothermal, ocean tide, ocean current, ocean wave power, etc. It is being advanced.
 ここで前述のように、大気中には高い電位勾配が存在し、特に雷雲発生前後は電界強度の変化によって高いエネルギーが大気空間に蓄積されると考えられるが、上記特許文献1のように従来までは、そのエネルギーは雷雲の観測等に用いられるにとどまっていた。 Here, as described above, there is a high potential gradient in the atmosphere, and it is considered that high energy is accumulated in the atmospheric space due to the change in electric field strength, especially before and after the occurrence of thunderclouds. Until then, the energy was only used for thundercloud observation.
 本発明では、大気中の電位勾配を利用して静電エネルギーを蓄積する蓄電システム及び蓄電方法を提供することを目的とする。 It is an object of the present invention to provide a power storage system and a power storage method for storing electrostatic energy using a potential gradient in the atmosphere.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、設置位置と接地点との電位差に伴い電荷を帯電する帯電極板と、前記帯電極板と電気的に接続し、前記帯電極板に帯電された電荷を移動させて当該電荷を蓄積するコンデンサと、前記帯電極板と前記コンデンサとの間に設けるスイッチであって、前記帯電極板と前記コンデンサとの間の電気的な接続を遮断可能に設けるスイッチと、前記帯電極板の電圧、または、前記帯電極板に帯電される電荷の量を求める極板電圧算出部と、前記極板電圧算出部により求められた前記帯電極板の電圧、または、前記帯電極板の電荷量に応じて前記スイッチを開閉制御し、前記帯電極板に帯電された電荷を前記コンデンサへ移動させる制御部と、を有することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-described problems. To give an example, a band electrode plate that charges a charge according to a potential difference between an installation position and a grounding point, and is electrically connected to the band electrode plate. A capacitor that moves the electric charge charged in the band electrode plate and accumulates the electric charge, and a switch provided between the band electrode plate and the capacitor, between the band electrode plate and the capacitor. A switch provided so as to be able to cut off the electrical connection, a voltage of the strip electrode plate, or a plate plate voltage calculation unit for obtaining an amount of electric charge charged to the strip electrode plate, and a plate plate voltage calculation unit A control unit that controls opening and closing of the switch according to the voltage of the band electrode plate or the amount of electric charge of the band electrode plate, and moves the electric charge charged on the band electrode plate to the capacitor. It is characterized by.
 本発明によれば、大気中に存在する電位勾配を利用して電荷を蓄積し、蓄積した電荷を静電エネルギーとしてコンデンサや蓄電池へ蓄積することができる。 According to the present invention, electric charges can be accumulated using a potential gradient existing in the atmosphere, and the accumulated electric charges can be accumulated in a capacitor or a storage battery as electrostatic energy.
大気電界蓄電システムの例である。It is an example of an atmospheric electric field electrical storage system. 雷雲近接時にコンデンサに電荷が蓄積されることを説明する概念図である。It is a conceptual diagram explaining that an electric charge is accumulate | stored in a capacitor | condenser at the time of thundercloud proximity. 大気中の上昇気流による電荷の分離を仮想等価回路表現したものである。This is a virtual equivalent circuit representation of charge separation due to an updraft in the atmosphere. 大気電界蓄電システム100の制御部110の動作の例を示すフロー図である。4 is a flowchart showing an example of the operation of the control unit 110 of the atmospheric electric field energy storage system 100. FIG. 本発明の第2の実施例を示す図である。It is a figure which shows the 2nd Example of this invention. 本発明の第3の実施例を示す図である。It is a figure which shows the 3rd Example of this invention. 誘電エラストマー型EAP若しくはEPAMを、屋外極板130に使用したときの基本機能を示す図である。It is a figure which shows a basic function when dielectric elastomer type EAP or EPAM is used for the outdoor electrode plate. 本発明の第4の実施例を示す図である。It is a figure which shows the 4th Example of this invention.
 以下、実施例について図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 前述のように大気中の電位勾配は、特に雷雲の発生時に大きくなる。ここで、雷雲の形成は自然現象であり、通常人工的には制御できないが、地域ごとに年間を通じて、或いは季節ごとの頻度や、一日の中でも時間帯によって、どこにいても確率論的にほぼ間違いなく来襲がある。雷雲は大気の上昇気流現象に伴うもので、その近接に引き続く雷撃を被ることで、感電による人畜被害、家屋の火災、装置破壊、等ダメージが大きいものと考えられている。 As mentioned above, the potential gradient in the atmosphere increases especially when thunderclouds occur. Here, thundercloud formation is a natural phenomenon and cannot usually be controlled artificially, but it is probabilistically almost everywhere, depending on the region, the frequency of each year, the frequency of each season, and the time of day. There is definitely an invasion. Thunderclouds are associated with the updraft phenomenon of the atmosphere, and it is thought that damage caused by electric shock, such as human livestock damage, house fires, equipment destruction, etc., is significant when subjected to lightning strikes in the vicinity.
 雷雲は、発生時間、継続時間を確定的には予測できなくとも、気象学の発展により、事前にほぼ概略の予測は可能である。また、地域ごとの年間頻度や、季節ごとの頻度の経年的な傾向の把握はなされているのが一般的である。従って、一局地点での発電・蓄電量の評価は、通期・概略の域を出ないが、ほぼ間違いなく、一定量の寄与が期待できるものでもある。従って、大気中にあるエネルギーを送変電系統との直接的な接続ではなく、一度ためてから、その後ほど良くPCSにて制御しながら、需要側に給電することも可能である。 Thunderclouds can be predicted roughly in advance due to the development of meteorology, even if the occurrence time and duration cannot be deterministically predicted. In general, the annual frequency of each region and the secular trend of the frequency of each season are grasped. Therefore, the evaluation of the amount of power generation / storage at one station does not go out of the full year / outline, but it is almost certain that a certain amount of contribution can be expected. Therefore, it is also possible to supply power to the demand side while the energy in the atmosphere is not directly connected to the transmission / transformation system, but is once controlled and then controlled by the PCS.
 図2は、雷雲近接時にコンデンサに電荷が蓄積されることを説明する概念図である。図2は、近接雷雲201の下面側がマイナス電荷202に帯電し、上面がプラス電荷203に帯電したケースである。ここではコンデンサ204の帯電の説明に際し、比較のため通常建物等の最高位置に設けられる避雷針205と比較して説明する。 FIG. 2 is a conceptual diagram for explaining that electric charges are accumulated in the capacitor when the thundercloud is in proximity. FIG. 2 shows a case in which the lower surface side of the proximity thundercloud 201 is charged with a negative charge 202 and the upper surface is charged with a positive charge 203. Here, in the description of the charging of the capacitor 204, the comparison will be made in comparison with the lightning rod 205 provided at the highest position of a normal building or the like for comparison.
 避雷針205は、金属突針で、金属導体が地中に通じており、大気空間中の落雷の電路を構成しやすくされている。ここで、上空雷雲201の下面はマイナス電荷の帯電としているので、雷雲201の底部のマイナス電荷202に誘起され、地面にはプラス電荷がたまり、接地されている避雷針205もプラス帯電を示す。 The lightning rod 205 is a metal stylus, and a metal conductor communicates with the ground, making it easy to construct a lightning strike circuit in the air space. Here, since the lower surface of the upper thundercloud 201 is charged with a negative charge, it is induced by a negative charge 202 at the bottom of the thundercloud 201, a positive charge accumulates on the ground, and the grounded lightning rod 205 also shows a positive charge.
 一方、コンデンサ204は、大地側極板が、やはり金属導体を介して地中アースされているものである。このコンデンサ204の大地側極板(接地側極板)は、大地に誘導されてきたプラス電荷により、帯電状態を決定されるので、上空側極板が、反接地側電荷即ちマイナス電荷で帯電する。このように、雷雲201の接近によってコンデンサ204に電荷が蓄積される。ここで、コンデンサ204の上側極に蓄積される電荷は、空気中から供給されるか、または、コンデンサ204の下側極からコンデンサの端子間に挟まれた絶縁体を介して供給される。このように、コンデンサを大気中に設け、一方の極を接地させることで、大気中に存在する電界に応じた電荷を蓄積することができる。 On the other hand, the capacitor 204 is such that the earth-side electrode plate is grounded through the metal conductor. Since the ground state electrode plate (grounding side electrode plate) of the capacitor 204 is charged by the positive charge induced to the ground, the sky side electrode plate is charged by the anti-ground side charge, that is, the negative charge. . In this way, charges are accumulated in the capacitor 204 due to the approach of the thundercloud 201. Here, the electric charge accumulated in the upper electrode of the capacitor 204 is supplied from the air, or is supplied from the lower electrode of the capacitor 204 through an insulator sandwiched between the terminals of the capacitor. In this way, by providing the capacitor in the atmosphere and grounding one of the poles, it is possible to accumulate electric charges according to the electric field existing in the atmosphere.
 尚、本実施例では雷雲の下面側にマイナス電荷が帯電した例を用いて説明するが、雷雲の下面側がプラスに帯電する場合もあり、その場合にはコンデンサにたまる電荷も反転し、それに応じた電荷を蓄積することで本発明を適用できる。 In this embodiment, the negative charge is charged on the lower surface side of the thundercloud, but the lower surface side of the thundercloud may be positively charged. In this case, the charge accumulated in the capacitor is also inverted, and accordingly The present invention can be applied by accumulating the accumulated charges.
 図3は、大気中の上昇気流による電荷の分離(プラスとマイナス)とそれらの原因であると考えられる地球起電力を可変起電力と見て仮想等価回路表現したものである。本発明は、上記の現象のように大気空間内の電界強度上昇によってコンデンサに蓄積される静電エネルギーを、自然エネルギーの一種として別途準備したバッテリーなどに貯蔵するものである。内容の一例は図3に示すように、各所に活用されてきている大容量キャパシタ装置を短期間の電源の一種と見立てて、それに入り切り可能な電路構成をすることの可能な装備と蓄電池を組み合わせたものである。 Fig. 3 is a virtual equivalent circuit representation of the separation of electric charges (plus and minus) due to the rising air current in the atmosphere and the earth electromotive force that is considered to be the cause of these separations as a variable electromotive force. According to the present invention, the electrostatic energy accumulated in the capacitor due to the increase in the electric field strength in the atmospheric space as described above is stored in a battery separately prepared as a kind of natural energy. As an example of the contents, as shown in Fig. 3, a large-capacity capacitor device that has been utilized in various places is regarded as a kind of short-term power supply, and a combination of equipment and storage battery that can be configured to make a complete electric circuit configuration It is a thing.
 図3に示すように、雷雲が発生すると仮想的に雷雲はコンデンサ301とみなすことができ、雷雲上部には正電荷、雷雲下部には負電荷が蓄積される。また雷雲下部の空気領域を絶縁抵抗302とみなし、ここまでを人工的ではないものであることで、破線表現としている。一方、屋外(静電遮蔽されていない)極板130には大気中の電位勾配に応じて電荷が蓄積され、電気的にスイッチを介して結ばれる大容量のコンデンサ140に電荷を移動させる。また、それらの蓄電された電気エネルギーをPCS(Power Conditioning System)150によって蓄電池170に移動させるが、意図は総合エネルギー量の大きな蓄電池にてためることで、コンデンサ側の次段の働きを可能とするものである。 As shown in FIG. 3, when a thundercloud occurs, the thundercloud can be virtually regarded as a capacitor 301, and a positive charge is accumulated at the top of the thundercloud and a negative charge is accumulated at the bottom of the thundercloud. In addition, the air region below the thundercloud is regarded as the insulation resistance 302, and so far is not artificial, and is represented by a broken line. On the other hand, charges are accumulated on the outdoor (not electrostatically shielded) electrode plate 130 according to a potential gradient in the atmosphere, and the charges are transferred to a large-capacitance capacitor 140 electrically connected through a switch. In addition, the stored electric energy is moved to the storage battery 170 by a PCS (Power Conditioning System) 150, but the intention is to accumulate in the storage battery having a large total energy amount, thereby enabling the next stage operation on the capacitor side. Is.
 ここで、大容量コンデンサ140は、リチウムイオンキャパシタを想定しており、充電時の入力電圧の許容電圧範囲を想定し、その上下限に入れるような電圧制御をPCS150および、抵抗分圧回路160にて実施させる構成である。すなわち、この電圧制御の操作端としては、PCS150自身の内部電力素子群、抵抗分圧回路160による分圧降圧制御、または、屋外極板130の電極部の大地面からの高さ、電界方向との角度(向き)、屋外極板130の内側に挟む誘電体の挿入程度など各種あるが、DC電圧の好ましい制御が可能なものであれば良く、特に順序付けをしない。 Here, the large-capacitance capacitor 140 is assumed to be a lithium-ion capacitor, and the voltage control that puts the allowable voltage range of the input voltage during charging into the upper and lower limits is applied to the PCS 150 and the resistance voltage dividing circuit 160. This is a configuration to be implemented. That is, as the operation end of this voltage control, the internal power element group of the PCS 150 itself, the voltage dividing step-down control by the resistance voltage dividing circuit 160, or the height of the electrode part of the outdoor electrode plate 130 from the ground, the electric field direction, and the like. There are various types such as an angle (orientation), and a degree of insertion of a dielectric material sandwiched inside the outdoor electrode plate 130, but it is sufficient that the DC voltage can be controlled favorably, and there is no particular ordering.
 次に、抵抗分圧回路160での電圧制御について説明する。コンデンサの容量、電荷、および、極板間の電圧には式(1)のような関係がある。また、コンデンサに充電される充電電流は式(2)のように電荷の時間微分で表される。
  Q=C*V                       …(1)
   (Q:電荷、C:コンデンサの容量、V:電極間の電圧)
  I=dQ/dt                     …(2)
   (充電電流I:電荷の時間微分)
Next, voltage control in the resistance voltage dividing circuit 160 will be described. The capacity of the capacitor, the electric charge, and the voltage between the electrode plates have a relationship as shown in Expression (1). Further, the charging current charged in the capacitor is represented by the time differentiation of the charge as shown in the equation (2).
Q = C * V (1)
(Q: charge, C: capacitance of capacitor, V: voltage between electrodes)
I = dQ / dt (2)
(Charging current I: Time derivative of charge)
 よって、充電電流値を制御可能であるコンデンサの充電特性は、式(3)のように、その容量値を比例定数とし、両極の端子電圧の時間変化率に比例する。従って、この電圧の時間変化率を意図的に調整することで充電電流を決める制御動作を行うことができる。
  I=dQ/dt=C*dV/dt             …(3)
Therefore, the charging characteristic of the capacitor that can control the charging current value is proportional to the time change rate of the terminal voltage of both electrodes, with the capacitance value being a proportionality constant, as shown in Equation (3). Therefore, a control operation for determining the charging current can be performed by intentionally adjusting the time change rate of the voltage.
I = dQ / dt = C * dV / dt (3)
 すなわち、直流回路におけるコンデンサ端子電圧Vが、ある値(V0)から、異なる値(V1)に変化(変動)するとき、経過時間(Δt)として、dV/dt=(V1-V0)/Δtと充電電流値は計算できる。よって、大気中の電界自体が自然に気象変化することで、電圧の時間変化dV/dtが生ずることで、充電電流は発生する。この時、大容量コンデンサ140の許容印加電圧の範囲を事前に承知しておけば、分圧回路全体で大容量コンデンサ140にかかる電圧制御を行うことで、充電電流値を制御可能になる。 That is, when the capacitor terminal voltage V in the DC circuit changes (fluctuates) from a certain value (V0) to a different value (V1), the elapsed time (Δt) is dV / dt = (V1−V0) / Δt The charging current value can be calculated. Accordingly, the electric current in the atmosphere itself naturally changes in weather, and thus the voltage change with time dV / dt occurs, so that a charging current is generated. At this time, if the range of the allowable applied voltage of the large-capacitance capacitor 140 is known in advance, the charging current value can be controlled by controlling the voltage applied to the large-capacity capacitor 140 by the entire voltage dividing circuit.
 他の大容量コンデンサ140の許容印加電圧の制御に関しては、例えば、屋外極板130の非接地側端子の電界中の位置を変化させることで対応することも可能である。また、大気中の電界変化が電圧発生の起因であることから、大地の電荷極性が正負逆転することもあり、この場合には、充電回路側の極性切替や、PCSなどの制御機構にて極性反転の操作制御との組み合わせを可能とする。 The control of the allowable applied voltage of the other large-capacitance capacitor 140 can be dealt with, for example, by changing the position of the outdoor electrode plate 130 in the electric field of the non-ground side terminal. In addition, since the electric field change in the atmosphere is the cause of voltage generation, the charge polarity of the earth may reverse positive and negative. In this case, the polarity is switched by polarity switching on the charging circuit side or by a control mechanism such as PCS. Allows combination with reverse operation control.
 図1は、大気電界を利用した大気電界蓄電システムの構成を詳細に示した例である。大気電界蓄電システム100は、接地された接地側極板と接地側極板と対極に設けられる非接地側極板とからなり、大気中の電位によって電荷を蓄電する屋外極板130と、接地点と屋外極板130の接地側極板との間に流れる電流を検出する電流検出器120と、遮蔽された屋内に設けられ、屋外極板130の非接地側極板と接続されるコンデンサ140と、コンデンサ140に蓄積された電荷を蓄電する蓄電池170と、コンデンサ140の電荷を蓄電池170へ送る際の電流、電圧を調整するPCS(Power Conditioning System)150と、コンデンサ140と接地点の間の回路に設けられコンデンサ140にかかる電圧を制御する抵抗分圧回路160と、回路の一部を開閉する複数のスイッチ181,182,183,184,185と、大気電界蓄電システム100の蓄電制御を行う制御部110と、からなる。尚、屋外極板130について、接地側極板と非接地側極板との間には誘電体が挟まれており、また、図1には、1つのコンデンサ140しか示していないが、実際には複数のコンデンサが並列、または直列に接続されたものを仮想的に1つのコンデンサ140とみなして図示している。 FIG. 1 is an example showing in detail the configuration of an atmospheric electric field energy storage system using an atmospheric electric field. The atmospheric electric field energy storage system 100 includes a grounded ground electrode plate, a grounded electrode plate and a non-grounded electrode plate provided as a counter electrode, and an outdoor electrode plate 130 that stores electric charges according to a potential in the atmosphere, and a grounding point. A current detector 120 that detects a current flowing between the ground electrode plate 130 and the ground electrode plate of the outdoor electrode plate 130, and a capacitor 140 that is provided indoors and is connected to the non-ground electrode plate of the outdoor electrode plate 130. , A storage battery 170 that stores the charge accumulated in the capacitor 140, a PCS (Power Conditioning System) 150 that adjusts the current and voltage when the charge of the capacitor 140 is sent to the storage battery 170, and a circuit between the capacitor 140 and the ground point A resistance voltage dividing circuit 160 for controlling a voltage applied to the capacitor 140, a plurality of switches 181, 182, 183, 184, 185 for opening and closing a part of the circuit, A control unit 110 for performing power storage control of the gas-field power storage system 100, consisting of. In addition, with respect to the outdoor electrode plate 130, a dielectric is sandwiched between the ground-side electrode plate and the non-ground-side electrode plate, and only one capacitor 140 is shown in FIG. In FIG. 1, a capacitor in which a plurality of capacitors are connected in parallel or in series is virtually regarded as one capacitor 140 and is illustrated.
 また、制御部110は、PCS150の電力変換を制御するPCS制御部112と、スイッチ181~185を開閉制御するスイッチ制御部と、電流検出器120が検出した電流を時間積分して屋外極板130に蓄積される電荷量を求める極板電圧算出部114と、コンデンサ140の両端にかかる電圧を測定するコンデンサ電圧測定部115と、極板電圧算出部114およびコンデンサ電圧測定部115から情報を受信し、抵抗分圧回路160の可変抵抗を変更してコンデンサ140へかかる電圧を制御するコンデンサ電圧制御部111と、を有する。また、コンデンサ電圧制御部111は、抵抗分圧回路160の制御の他、PCS制御部112、スイッチ制御部113へも制御命令を出力する。 The control unit 110 also integrates the current detected by the current detector 120 by time integrating the PCS control unit 112 that controls the power conversion of the PCS 150, the switch control unit that controls the opening and closing of the switches 181 to 185, and the outdoor electrode plate 130. The electrode plate voltage calculation unit 114 for obtaining the amount of charge accumulated in the capacitor 140, the capacitor voltage measurement unit 115 for measuring the voltage applied to both ends of the capacitor 140, the electrode plate voltage calculation unit 114, and the capacitor voltage measurement unit 115 receive information. A capacitor voltage control unit 111 that controls the voltage applied to the capacitor 140 by changing the variable resistance of the resistance voltage dividing circuit 160. Further, the capacitor voltage control unit 111 outputs a control command to the PCS control unit 112 and the switch control unit 113 in addition to the control of the resistance voltage dividing circuit 160.
 次に、本実施例による大気電界蓄電システム100の動作について説明する。前述のように大気中には電位勾配が存在し、例えば雷雲発生前後は電界強度の変化によって高いエネルギーが大気空間に蓄積されている。このとき、屋外極板130には、大気中の電界分布に応じた電荷が蓄積される。 Next, the operation of the atmospheric electric field power storage system 100 according to this embodiment will be described. As described above, there is a potential gradient in the atmosphere. For example, high energy is accumulated in the atmospheric space due to a change in electric field strength before and after the occurrence of a thundercloud. At this time, the electric charge according to the electric field distribution in the atmosphere is accumulated in the outdoor electrode plate 130.
 屋外極板130に電荷が蓄積される際、電流検出器120には接地面と屋外極板130間を移動する電荷を電流として検出する。制御部110内の極板電圧算出部114は電流検出器120が検出した電流値を取り込み、電流値を積分することで、現在屋外極板に蓄積される電荷の量を算出する。ここで制御部110には、屋外極板130によって構成するコンデンサの容量が予め記憶されており、極板電圧算出部114は、該コンデンサ容量と電荷量から屋外極板130の極板間電圧を求める。尚、電流検出器の代わりに屋外極板130から直接、極板間電圧を測定するように構成してもよい。 When the electric charge is accumulated in the outdoor electrode plate 130, the current detector 120 detects the electric charge moving between the ground plane and the outdoor electrode plate 130 as a current. The electrode plate voltage calculation unit 114 in the control unit 110 takes in the current value detected by the current detector 120 and integrates the current value to calculate the amount of electric charge currently accumulated in the outdoor electrode plate. Here, the capacity of the capacitor formed by the outdoor electrode plate 130 is stored in the control unit 110 in advance, and the electrode plate voltage calculation unit 114 calculates the voltage between the electrode plates of the outdoor electrode plate 130 from the capacitor capacity and the charge amount. Ask. In addition, you may comprise so that the voltage between electrode plates may be measured directly from the outdoor electrode plate 130 instead of an electric current detector.
 コンデンサ電圧制御部111は、極板電圧算出部114が算出した電圧と、コンデンサ電圧測定部115が測定したコンデンサ140の端子間にかかる電圧とに基づいて、スイッチ制御部113へスイッチ181,185の開閉制御指令を出力する。具体的には、屋外極板130に電流が流れることを検出後、電流が流れなくなったことを検出すると、スイッチ181,185に対して閉制御を行う。このような場合には、大気中の電位勾配の変化がある程度おさまり、屋外極板130にはその電位勾配に応じた電荷がたまって定常状態になっていると考えられる。そして、上記のスイッチ制御により、コンデンサ140と屋外極板と同電位になるように電流が流れ、屋外極板130にたまった電荷をコンデンサ140へ移すことができる。尚、スイッチ182,183,184は通常時は開状態となっている。 The capacitor voltage control unit 111 sends the switches 181 and 185 to the switch control unit 113 based on the voltage calculated by the electrode plate voltage calculation unit 114 and the voltage applied between the terminals of the capacitor 140 measured by the capacitor voltage measurement unit 115. Outputs an open / close control command. Specifically, when it is detected that no current flows after detecting the current flowing through the outdoor electrode plate 130, the switches 181 and 185 are closed. In such a case, it is considered that the change in the potential gradient in the atmosphere is suppressed to some extent, and the electric charge corresponding to the potential gradient is accumulated in the outdoor electrode plate 130 and is in a steady state. Then, by the switch control described above, a current flows so as to have the same potential as the capacitor 140 and the outdoor electrode plate, and the electric charge accumulated in the outdoor electrode plate 130 can be transferred to the capacitor 140. The switches 182, 183, and 184 are normally open.
 また、上記のように定常状態になる前にスイッチ181,185を閉制御して逐次屋外極板130にたまった電荷をコンデンサ140へ移すように構成してもよい。このとき、コンデンサ140の端子間電圧が、屋外極板130の極板間電圧よりも高くなる場合には、スイッチ181を開制御することで、電荷の逆流を防ぐことができる。また、大気中に電界強度計を設けて大気中の電界強度の変化を観測してスイッチ181,185を閉制御してもよい。 Alternatively, the switches 181 and 185 may be closed and controlled so that the charges accumulated in the outdoor electrode plate 130 are sequentially transferred to the capacitor 140 before the steady state is obtained as described above. At this time, when the voltage between the terminals of the capacitor 140 becomes higher than the voltage between the plates of the outdoor electrode plate 130, the reverse flow of the charge can be prevented by opening the switch 181. Further, an electric field strength meter may be provided in the atmosphere, and the switches 181 and 185 may be controlled to be closed by observing changes in the electric field strength in the atmosphere.
 このように、スイッチ181,185の開閉制御によって、コンデンサの端子間電圧を変化させて充電電流を発生変化させることで、コンデンサ140へ電荷をためることができる。また、コンデンサ140にある程度の電荷が蓄積したら、スイッチ181,185を開制御することで、コンデンサ140に蓄積された電荷を保存することができる。また、図示しないが、屋外極板130の接地側極板と大地との間にスイッチを設ければ屋外極板130に蓄積される電荷を保存することができる。 As described above, by controlling the opening and closing of the switches 181 and 185, the charge between the terminals of the capacitor can be changed to generate and change the charging current, so that charge can be accumulated in the capacitor 140. When a certain amount of charge is accumulated in the capacitor 140, the charge accumulated in the capacitor 140 can be stored by controlling the switches 181 and 185 to open. Although not shown, if a switch is provided between the ground electrode plate of the outdoor electrode plate 130 and the ground, the electric charge accumulated in the outdoor electrode plate 130 can be stored.
 次に、抵抗分圧回路160による分圧制御について説明する。コンデンサには、許容電圧があるため、その許容電圧の範囲内に収まるように、コンデンサにかかる電圧を制御する必要がある。本実施例ではコンデンサ140への電荷移動の際に、コンデンサ電圧制御部111は、極板電圧算出部114によって算出された屋外極板130の極板間電圧と、コンデンサ電圧測定部115によって測定されたコンデンサ140の端子間電圧とから、コンデンサ140にかかる電圧が許容電圧の範囲内に収まるように抵抗分圧回路160の抵抗値を変化させる。これによって、屋外極板130の電圧からかかる電圧を、コンデンサ140にかかる電圧と抵抗分圧回路160にかかる電圧とに分圧することで、過渡状態においてコンデンサ140にかかる電圧を許容電圧内に収めることができる。 Next, voltage division control by the resistance voltage dividing circuit 160 will be described. Since the capacitor has an allowable voltage, it is necessary to control the voltage applied to the capacitor so as to be within the allowable voltage range. In this embodiment, during the charge transfer to the capacitor 140, the capacitor voltage control unit 111 is measured by the electrode plate voltage of the outdoor electrode plate 130 calculated by the electrode plate voltage calculation unit 114 and the capacitor voltage measurement unit 115. The resistance value of the resistance voltage dividing circuit 160 is changed so that the voltage applied to the capacitor 140 falls within the allowable voltage range based on the voltage between the terminals of the capacitor 140. Thus, by dividing the voltage applied from the voltage of the outdoor electrode plate 130 into the voltage applied to the capacitor 140 and the voltage applied to the resistance voltage dividing circuit 160, the voltage applied to the capacitor 140 in the transient state is kept within the allowable voltage. Can do.
 上記のように、スイッチを制御することで大気の場の有するエネルギーをコンデンサ140へ蓄積することができる。ここで、コンデンサ140への充電エネルギー総量は、大気の場の有する局所電界系のエネルギーを、電気的操作のみで蓄電系の電気量に変換したとも考えることができ、その相当量を(1/2)*CV2と表現すれば、理論的に同等量を空間熱量として放散「消費」することとなる。実際上は対地や構成電気回路上の抵抗成分のある場所で発熱現象が起きることとなるので、抵抗分圧回路160の抵抗分の値とその空間的配置を適切に選べば、熱回収に応用することができる。例えば、抵抗分圧回路160に水タンク中の抵抗発熱を適用すれば、湯、蒸気等への加熱のための熱源、また更には、路面凍結防止熱源とか、ヒートポンプ方式の適用で空調へも応用できる。これらは燃焼を伴わないので、環境影響負荷も軽いといえる。 As described above, the energy of the atmospheric field can be stored in the capacitor 140 by controlling the switch. Here, the total amount of charging energy to the capacitor 140 can be considered to be that the energy of the local electric field system of the atmospheric field is converted into the amount of electricity of the storage system only by electrical operation, and the equivalent amount is (1 / 2) If it is expressed as * CV 2 , the equivalent amount is theoretically dissipated as “space heat”. In practice, a heat generation phenomenon occurs in a place where there is a resistance component on the ground or a constituent electric circuit. can do. For example, if the resistance heat generation in the water tank is applied to the resistance voltage dividing circuit 160, the heat source for heating to hot water, steam, or the like, and further, the road surface freezing prevention heat source or the heat pump system can be applied to air conditioning. it can. Since these do not involve combustion, it can be said that the environmental impact load is also light.
 次に、コンデンサ140に蓄積された電荷を蓄電池170へ移す動作について説明する。コンデンサ電圧制御部111は、コンデンサ140に既定値以上の電荷が蓄積されるとスイッチ181,185を開制御し、スイッチ182,183を閉制御してコンデンサ140と蓄電池170を接続する。ここで蓄電池170は、コンデンサ140に比べて充放電電流に対する応答性が遅く、直接接続することは好ましくない。そこで、蓄電池170の充電電流に合わせてコンデンサ140からの電流をPCS150によって電力変換することで、この差を埋めることができる。このときPCS150の内部では、コンデンサ140から放電される直流電流を蓄電池170への充電電流へとDC-DC変換を行う。 Next, an operation for transferring the charge accumulated in the capacitor 140 to the storage battery 170 will be described. The capacitor voltage control unit 111 opens the switches 181 and 185 and closes the switches 182 and 183 to connect the capacitor 140 and the storage battery 170 when electric charges of a predetermined value or more are accumulated in the capacitor 140. Here, the storage battery 170 is less responsive to the charge / discharge current than the capacitor 140, and it is not preferable to connect the storage battery 170 directly. Therefore, this difference can be filled by converting the current from the capacitor 140 by the PCS 150 in accordance with the charging current of the storage battery 170. At this time, DC-DC conversion is performed inside the PCS 150 to convert the direct current discharged from the capacitor 140 into a charging current for the storage battery 170.
 ここで、気象という大気現象の中では、アース側電荷がプラスかマイナスかを確定化できないので、コンデンサ140の電荷符号を検出して、回路接続を切り替えるものとしている。これは、蓄電システムが、一般的にハードウェアとして極性指定されていることへの対応である。また更に、このPCS140の中では、電圧の調整機構を司るものとしている。主たる制御の目的は、蓄電システムにおける入力電圧を規定の範囲内に収めるものであり、構成上別の制御装置としての自動電圧制御装置(AVR)を用いることでも問題はないが、制御機能を実現する上での盤構成の制約を与えることを本願は目的としない。 Here, in the atmospheric phenomenon of weather, it is not possible to determine whether the ground side charge is positive or negative. Therefore, the charge sign of the capacitor 140 is detected and the circuit connection is switched. This is a response to the fact that the polarity of the power storage system is generally designated as hardware. Furthermore, in this PCS 140, it is assumed to control a voltage adjustment mechanism. The main purpose of the control is to keep the input voltage in the power storage system within the specified range. There is no problem in using an automatic voltage control device (AVR) as another control device in terms of configuration, but the control function is realized. The purpose of this application is not to constrain the board configuration.
 このように、コンデンサ140で蓄電された電力エネルギー総量を蓄電池170へ移すことで、より多くのエネルギーを蓄積できる蓄電システムを提供できる。また、スイッチ183ではなく、スイッチ184によって蓄電池170とコンデンサ140を接続することで、回路内に抵抗分圧回路を有するため、過渡状態における蓄電池170、コンデンサ140にかかる電圧を調整することができる。尚、短期間出力の出入りのみで運用上の問題が無ければ蓄電池170を略すことは可能である。 Thus, by transferring the total amount of power energy stored in the capacitor 140 to the storage battery 170, a storage system that can store more energy can be provided. In addition, since the storage battery 170 and the capacitor 140 are connected not by the switch 183 but by the switch 184, the resistance voltage dividing circuit is included in the circuit, so that the voltage applied to the storage battery 170 and the capacitor 140 in the transient state can be adjusted. Note that the storage battery 170 can be omitted if there is no operational problem with only short-term output.
 図4は、大気電界蓄電システム100の制御部110の動作の例を示すフロー図である。制御部110は電流検出器120によって、屋外極板130に流れる電流を検出する(S401)。次に、電流が流れなくなると定常状態になったか判断し(S402)、定常状態になった場合には、スイッチ181,185を閉制御して(S403)、コンデンサ140と屋外極板130を接続する。このとき、抵抗分圧回路160を制御してコンデンサ140にかかる電圧を調整する(S404)。 FIG. 4 is a flowchart showing an example of the operation of the control unit 110 of the atmospheric electric field energy storage system 100. The controller 110 detects the current flowing through the outdoor electrode plate 130 by using the current detector 120 (S401). Next, it is determined whether the steady state is reached when the current stops flowing (S402). When the steady state is reached, the switches 181 and 185 are closed (S403), and the capacitor 140 and the outdoor electrode plate 130 are connected. To do. At this time, the voltage applied to the capacitor 140 is adjusted by controlling the resistance voltage dividing circuit 160 (S404).
 コンデンサ140と屋外極板130が等電位になり、これ以上電荷移動がなくなると、コンデンサに既定値以上の電荷がたまっているか判断する(S405)。コンデンサ140に既定値以上の電荷がたまっていない場合には、スイッチ181,185を開制御して(S406)、屋外極板130に新たに電荷が蓄積された後、再度スイッチ181,185を閉制御する(S403)。 When the capacitor 140 and the outdoor electrode plate 130 become equipotential and there is no more charge transfer, it is determined whether or not the capacitor has a charge higher than a predetermined value (S405). When the capacitor 140 does not accumulate charges equal to or greater than the predetermined value, the switches 181 and 185 are controlled to open (S406). After the charges are newly accumulated in the outdoor electrode plate 130, the switches 181 and 185 are closed again. Control is performed (S403).
 コンデンサ140に既定値以上の電荷がたまっている場合には、スイッチ181,185を開制御するとともに、スイッチ182,183を閉制御して、蓄電池170とコンデンサ140を接続する。そして、PCS150を制御してコンデンサ140から蓄電池170への充電を行い(S408)、充電が終わるとスイッチ182,183を開制御して蓄電池170とコンデンサ140の接続を切り離す。 When the capacitor 140 has a charge equal to or higher than a predetermined value, the switches 181 and 185 are controlled to be opened, and the switches 182 and 183 are controlled to be closed, so that the storage battery 170 and the capacitor 140 are connected. Then, the PCS 150 is controlled to charge the storage battery 170 from the capacitor 140 (S408). When charging is completed, the switches 182 and 183 are opened to disconnect the connection between the storage battery 170 and the capacitor 140.
 以上のように本実施例では、例えば雷雲の接近過程とか、成長過程または離反過程における雷雲成長・衰退の途中過程において大気中に蓄えられるエネルギーを蓄積することができる。すなわち、ある地点に現れてくる雷雲の対地静電エネルギーの充満過程の所要時間は、上昇気流の大きさに関係し、雷撃発生時の瞬間的な放電現象に較べれば緩慢であると考えられるので、このプロセスを利用する。具体的には、大気中の電界強度の変化に基づいて、コンデンサ極端子電圧の時間変化を与えることでコンデンサに蓄電を行う。また、コンデンサとしては、リチウムイオンキャパシタなどの、入力電圧の受け入れ幅の広いものを用い、更に大きな電圧印加への対応として、分圧化抵抗と組み合わせた形態として、実質的には入力電圧幅の拡大したものを用いる。 As described above, in the present embodiment, for example, energy stored in the atmosphere can be accumulated in the approach process of thunderclouds or in the process of thundercloud growth / decay in the growth process or separation process. In other words, the time required for the ground electrostatic energy charging process of a thundercloud appearing at a certain point is related to the magnitude of the updraft and is considered to be slow compared to the instantaneous discharge phenomenon at the time of lightning strike. Take advantage of this process. Specifically, the capacitor is charged by applying a time change in the capacitor electrode terminal voltage based on a change in the electric field strength in the atmosphere. In addition, as a capacitor, a lithium ion capacitor or the like having a wide input voltage acceptance range is used, and as a form for combining with a voltage dividing resistor, the input voltage width is substantially reduced in response to a larger voltage application. Use an enlarged one.
 また、本実施例では、調整対象のパラメータとして、大気の電界強度が零を継続している場合を除き、まず、大気の電界強度変化を検出して、その変化を利用していた。しかし、大気の電界強度が零ではなく、ある値を保持して継続している場合には、何もしなければ両極の端子電圧の時間変化率が零であって電流は流れないので、回路電圧の抵抗分圧回路160を操作して、強制的に端子電圧の時間変化率を零ではなくすことで、結果的にコンデンサ端子電圧を調整することもできる。 Further, in this embodiment, unless the atmospheric electric field strength continues to be zero as the parameter to be adjusted, first, the atmospheric electric field strength change is detected and the change is used. However, if the electric field strength in the atmosphere is not zero but is maintained at a certain value, the time change rate of the terminal voltage of both poles is zero and no current flows if nothing is done. As a result, the capacitor terminal voltage can be adjusted by forcing the terminal voltage of the terminal voltage to be zero and forcibly changing the time change rate of the terminal voltage to zero.
 また、本実施例の蓄電池170に蓄えられた電気は、PCSを介して配電系統への供給が可能であり、系統安定化、自己電力需要、電気自動車(EV)などに利用可能である。また雷撃機会の減少への寄与、再生可能エネルギーの蓄電の源泉を多種類化できるということで、山野/砂漠/島嶼地区、都市地区、農村地区等問わず、設置が可能であり、独立電源の性質や、多重化への寄与を鑑みれば、防災や減災への貢献も可能である。また、付随して得ることのできる熱についても、融雪、温水、空調など熱需要・熱交換需要に供すことが可能で、高温・高圧・環境影響物質の排出などの危険因子を抑制したエネルギー供給システムの実現に貢献する。 In addition, the electricity stored in the storage battery 170 of this embodiment can be supplied to the distribution system via the PCS, and can be used for system stabilization, self-power demand, electric vehicles (EV), and the like. In addition, it can be installed in any of Yamano / desert / island area, urban area, rural area, etc., because it contributes to the reduction of lightning strike opportunities and the possibility of multiple sources of renewable energy storage. Considering the nature and contribution to multiplexing, it is also possible to contribute to disaster prevention and mitigation. In addition, the heat that can be obtained can also be used for heat demand and heat exchange demand such as snow melting, hot water, air conditioning, etc., and energy supply that suppresses risk factors such as emission of high temperature, high pressure, and environmental impact substances Contribute to the realization of the system.
 また、本実施例では地上に設置されることを想定して説明したが、例えば、海上に大気電界蓄電システム100や、屋外極板130を設置することもできる。この場合、海中に接地点を設けることで、接地が可能となる。この方式によれば、例えば船舶上もしくは海洋上に複数の大気電界蓄電システム100を設けて、大規模な発電システムを実現することができる。 Further, in the present embodiment, the description has been made assuming that it is installed on the ground. However, for example, the atmospheric electric field energy storage system 100 and the outdoor electrode plate 130 can be installed on the sea. In this case, grounding becomes possible by providing a grounding point in the sea. According to this method, for example, a large-scale power generation system can be realized by providing a plurality of atmospheric electric field energy storage systems 100 on a ship or the ocean.
 さらには、今後導入が進むと予想されるEV車両の充電ステーションへの活用も可能である。設備が普及すれば、EVの残存充電量と近辺充電可能ステーション充電量の情報処理マッチングも可能であり、充電ステーション自体の無人化と既存配電系統からの充電処理の不要な、新たな独立充電ステーションとすることが可能である。 Furthermore, it can be used for EV vehicle charging stations that are expected to be introduced in the future. If the facilities become widespread, information processing matching between the remaining EV charge amount and the nearby chargeable station charge amount is possible, and a new independent charging station that eliminates the need for unmanned charging stations and charging processing from existing distribution systems Is possible.
 なお、ここで、蓄電量については、例えば数十乃至数百kwh程度を目標としている。これは雷撃時のエネルギーレベル・継続時間の過去の知見と民生利用上の1世帯1ヶ月使用電力量目安より、同レベルに仮に置いたものであり、また、設備の設けられる場所としての制約で、空間の電界変化状況が、他の人や団体などの活動状況への直接影響があるような場所でなければ問題ないが、少なくとも電界として相互の影響排除が可能な場所が望ましい。これは、従来では、再生可能エネルギー/自然エネルギーの分野として、人間の五感で「感覚的」検知可能なものであったのが、本発明では、通常五感では検知できない「電界」であるゆえである。 In addition, about the amount of electrical storage here, the target is about several dozen thru | or several hundred kwh, for example. This is based on the past knowledge of the energy level and duration during lightning strikes and the standard for the amount of electricity used per household per month for civilian use. There is no problem unless the change in the electric field in the space has a direct influence on the activity status of other people or groups, but at least a place where mutual influence can be eliminated as an electric field is desirable. This is because, in the past, in the field of renewable energy / natural energy, “sensory” can be detected by the human senses, but in the present invention, this is an “electric field” that cannot normally be detected by the five senses. is there.
 図5は、本発明の第2の実施例を示す図である。図1に示す実施例1との違いは、屋外極板130の非接地側極板に極板稼働部500を設ける点である。 FIG. 5 is a diagram showing a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the electrode plate operating unit 500 is provided on the non-grounded electrode plate of the outdoor electrode plate 130.
 実施例1では、調整対象のパラメータとして、大気の電界強度変化を利用したが、大気の電界強度が零ではなく、ある値を保持して継続している場合には、何もしなければ両極の端子電圧の時間変化率が零であって電流は流れない。 In the first embodiment, the change in the electric field strength in the atmosphere is used as the parameter to be adjusted. However, if the electric field strength in the atmosphere is not zero and continues to be maintained at a certain value, if no action is taken, both poles are used. The rate of change of the terminal voltage with time is zero and no current flows.
 そこで、本実施例では、大気中の電界強度変化がある値を保持して継続している場合には、制御部110によって極板稼働部500を制御し、屋外極板130の非接地側極板を、その時の空間位置から強制的に移動/回転させて異なる電界強度位置に持っていく。これによって、対地電位を、電界強度の距離を大小させることとか、電荷蓄積の有効断面積調整で、変化を与えてコンデンサ140と接続させることで、コンデンサ140の端子間電圧の変化を作ることにより、充電電流を発生させることができる。即ち、ある時間をかけて移動/調整させれば、移動/調整後の点で定まる電位への「時間変化率」を与えることに相当する。 Therefore, in this embodiment, when the change in the electric field strength in the atmosphere is maintained and maintained at a certain value, the electrode plate operating unit 500 is controlled by the control unit 110 and the non-grounded side electrode of the outdoor electrode plate 130 is controlled. The plate is forcibly moved / rotated from the current spatial position to bring it to a different electric field strength position. As a result, the ground potential is changed by changing the distance of the electric field strength, or by adjusting the effective cross-sectional area of charge accumulation and connecting the capacitor 140 with the change by making a change in the voltage between the terminals of the capacitor 140. A charging current can be generated. That is, if the movement / adjustment is performed over a certain period of time, it corresponds to giving a “time change rate” to the potential determined at the point after the movement / adjustment.
 図6は、本発明の第3の実施例を示す図である。本実施例では、屋外極板130の非接地側極板の一部に、EAP(電場応答性ポリマー)600を配設する。本実施例では、EAPのうち誘電エラストマー型EAP若しくはEPAMを用いて、電界下で電界方向に縮み、垂直方向に伸びる機械的性質を利用して、大気電界蓄電システム100のスイッチ入切りに応用する。また逆に、誘電エラストマー型EAP若しくはEPAMに圧力を与えて伸縮させることで、電圧を発生させ、この電圧を発電・充電のスイッチ機構の制御電源に用いることもできる。 FIG. 6 is a diagram showing a third embodiment of the present invention. In this embodiment, an EAP (electric field responsive polymer) 600 is disposed on a part of the non-grounded electrode plate of the outdoor electrode plate 130. In this embodiment, dielectric elastomer type EAP or EPAM of EAP is used, and applied to switching on / off of the atmospheric electric field energy storage system 100 by utilizing the mechanical property of contracting in the electric field direction under electric field and extending in the vertical direction. . Conversely, a voltage can be generated by applying pressure to the dielectric elastomer type EAP or EPAM to expand and contract, and this voltage can be used as a control power source for a power generation / charging switch mechanism.
 図7は、誘電エラストマー型EAP若しくはEPAMを、屋外極板130に使用したときの基本機能を示す図である。図7(a)の上下の対照は、電場の強弱で誘電エラストマー600の伸縮に差があり、電場に垂直方向の長さ、また平行方向の長さに形状差として現れることを示すものである。すなわち、誘電エラストマー600の伸縮先に大気電界蓄電システム100の稼働スイッチを設ければ、大気中の強い電界が生じているときに、大気電界蓄電システム100を稼働させることができる。 FIG. 7 is a diagram showing a basic function when dielectric elastomer type EAP or EPAM is used for the outdoor electrode plate 130. The upper and lower contrasts in FIG. 7 (a) indicate that there is a difference in expansion and contraction of the dielectric elastomer 600 due to the strength of the electric field, and that the difference in shape appears in the length in the direction perpendicular to the electric field and in the length in the parallel direction. . That is, if the operation switch of the atmospheric electric field energy storage system 100 is provided at the expansion and contraction destination of the dielectric elastomer 600, the atmospheric electric field energy storage system 100 can be operated when a strong electric field is generated in the atmosphere.
 また、図7(b)では、誘電エラストマー600の伸縮方向の先に、絶縁材601を介して固定側絶縁材602に備えられた第2の誘電エラストマー603を設ける。これによって、EAPが、自身が外力を受けて発電する性質を利用して、第1の誘電エラストマー600の垂直方向の「押し」の力で、第2の誘電エラストマー603を圧する。絶縁体を介して加圧された第2の誘電エラストマーには、加圧に伴う伸縮により電圧が発生する。そしてその電力で、全体の発電・充電のスイッチ機構の制御電源とすることができる。これは、制御電源の自動発生を意図するものである。 Further, in FIG. 7B, a second dielectric elastomer 603 provided on the fixed-side insulating material 602 is provided via an insulating material 601 at the tip of the dielectric elastomer 600 in the expansion / contraction direction. Accordingly, the EAP presses the second dielectric elastomer 603 with the vertical “push” force of the first dielectric elastomer 600 by utilizing the property that the EAP itself receives external force to generate electric power. A voltage is generated in the second dielectric elastomer pressurized through the insulator due to expansion and contraction accompanying the pressurization. The electric power can be used as a control power source for the entire power generation / charging switch mechanism. This is intended for automatic generation of control power.
 また、誘電エラストマー600の形状変化を光学的に検出し、自然印加された電界強度との相関性から間接的に電圧を推定し得るので、これを用いて電路スイッチを入り切りするなどの方式を採ることもできる。 Further, since the shape change of the dielectric elastomer 600 is optically detected and the voltage can be estimated indirectly from the correlation with the electric field strength applied naturally, a system such as turning on and off the electric circuit switch using this is adopted. You can also
 図8は、本発明の第4の実施例を示す図である。本発明は、大気中に強い電界が生じる場合、特に雷雲発生時等によるエネルギーを利用するものであるから、この大気空間に配置した極板は避雷能力のあるものが望ましい形態である。そこで、本実施例では避雷機能を実現する蓄電システムについて説明する。 FIG. 8 is a diagram showing a fourth embodiment of the present invention. In the present invention, when a strong electric field is generated in the atmosphere, energy is utilized especially when a thundercloud is generated. Therefore, it is desirable that the electrode plate disposed in the atmospheric space has a lightning protection capability. Therefore, in this embodiment, a power storage system that realizes a lightning protection function will be described.
 誘電装置801は、いわゆる避雷針であり、鋭い角度構成を持つ金属の棒状突起で、金属導体の地中への電気的接続を図っているものが一般的である。これを従来避雷針と呼んでいるが、機能的には正しくは誘雷(針)と呼ばれるべきもので、側らにある主要機器設備への雷撃を避け、針自身への雷撃を誘導するものである。上空雷雲の下面をマイナス電荷の帯電としているので、地上避雷針はプラス帯電を示す。 The dielectric device 801 is a so-called lightning rod, and is generally a metal rod-shaped protrusion having a sharp angle configuration, which is intended to electrically connect a metal conductor to the ground. This is conventionally called a lightning rod, but functionally it should be called a lightning strike (needle), avoiding lightning strikes to the main equipment on the side and inducing lightning strikes to the needle itself. is there. Since the lower surface of the sky thundercloud is negatively charged, the ground lightning rod is positively charged.
 一方、容量性避雷装置800は、過去10年程度前から実用に供され始めてきているもので、ものはコンデンサであり、大地側極板が、やはり金属導体を介して地中アースされているものである。コンデンサの大地側極板(接地側極板)は、大地に誘導されてきたプラス電荷により、帯電状態を決定されるので、上空側極板が、反接地側電荷即ちマイナス電荷で帯電する。この後者の避雷設備は、雷雲下面のマイナス電荷とは反発する関係にあるので、落雷要件としての電路構成を採らず、雷雲から地面に向かって前駆放電(ステップトリーダー)現象が起きても、大地から雷雲に向かう帰還雷撃現象を生じない。この帰還雷撃を防止する電荷配置を可能としたことで、定性的な意味で、落雷保護傘下領域への落雷を防ぐことができる。厳密には過大な電圧の発生で絶縁破壊される程になれば雷撃を受けるが、極板間の絶縁破壊の後には、雷撃電流が装置のアース電路を経て地中に逃されるので、旧来からの避雷針と同等の「保護機能」による後備構成を採ることとなる。 On the other hand, the capacitive lightning arrester 800 has been put into practical use for the past 10 years or so, and is a capacitor, and the earth-side electrode plate is also grounded via a metal conductor. Is. Since the ground side electrode plate (ground side electrode plate) of the capacitor is charged by the positive charge induced to the ground, the sky side electrode plate is charged with the anti-ground side charge, that is, the negative charge. This latter lightning arrester has a repulsive relationship with the negative charge on the bottom of the thundercloud, so it does not adopt a circuit configuration as a lightning strike requirement, and even if a precursor discharge (step leader) phenomenon occurs from the thundercloud to the ground, There is no return lightning stroke phenomenon from to the thundercloud. By enabling the charge arrangement to prevent this return lightning strike, it is possible to prevent lightning strikes to the area under the lightning protection umbrella in a qualitative sense. Strictly speaking, a lightning strike occurs when the insulation breakdown is caused by the generation of an excessive voltage, but after the insulation breakdown between the plates, the lightning strike current is released to the ground via the earth circuit of the device. It will have a back-up configuration with a "protection function" equivalent to the lightning rod of the lightning.
 本実施例では、上記容量性避雷装置800の落雷保護傘下領域に本発明による大気電界蓄電システムを組み合わせる。具体的には、屋外極板130の蓄積電荷と仮想の雷雲下面の蓄積電荷より、電気力線ベクトルを空間演算し、雷雲下面の同符号電荷との反発力線路の各々の支配的に囲む空間境界を導出する。そして、屋外極板130の蓄積電荷の作る支配空間内に、避雷装置800があれば、そこを落雷領域ではないと判定し、雷雲側支配下にあれば、雷撃を受ける可能性が高いと判断し、大気電界蓄電システム100の発電機能停止他の措置を採るものとする。 In this embodiment, the atmospheric electric field energy storage system according to the present invention is combined with the lightning protection umbrella area of the capacitive lightning arrester 800. More specifically, a space where the electric force line vector is spatially calculated from the accumulated charge on the outdoor electrode plate 130 and the accumulated charge on the lower surface of the virtual thundercloud, and each of the repulsive force lines with the same sign charge on the lower surface of the thundercloud is surrounded by Deriving the boundary. Then, if there is a lightning arrester 800 in the dominant space created by the accumulated charges of the outdoor electrode plate 130, it is determined that it is not a lightning strike region, and if it is under thundercloud side control, it is determined that there is a high possibility of receiving a lightning strike. The power generation function of the atmospheric electric field energy storage system 100 is stopped and other measures are taken.
 また、上記構成にさらに誘電装置801を組み合わせることもできる。大気電界強度が微弱であるときには、誘雷装置801を容量性避雷装置800より高上空に掲げ、上空の成長中雷雲との間での異極性電荷の引き合いをし易くする。容量性避雷装置800の極板間電圧が安定運用範囲より上に上昇すれば、誘雷装置801を容量性避雷装置800より下部側の安全空域内に納め、雷雲サイドからは電気的に異種引き合いの電荷がないように見せるマスキング操作をし、雷撃を避けるものとする。 Further, a dielectric device 801 can be further combined with the above configuration. When the atmospheric electric field strength is weak, the lightning striker 801 is lifted higher than the capacitive lightning arrester 800, and it is easy to attract different polarity charges to the growing thundercloud above. When the voltage between the electrode plates of the capacitive lightning arrester 800 rises above the stable operation range, the lightning arrester 801 is placed in a safe air space below the capacitive lightning arrester 800, and the electrical thundercloud side is receiving a different kind of inquiry. A masking operation is performed so that there is no electric charge, and lightning strikes shall be avoided.
 このように本実施例では、大気中に蓄積させるエネルギーを蓄積しつつも、避雷機能を実現することができる。 Thus, in this embodiment, the lightning protection function can be realized while accumulating energy to be accumulated in the atmosphere.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
100 大気電界蓄電システム
110 制御部
111 コンデンサ電圧制御部
112 PCS制御部
113 スイッチ制御部
114 極板電圧算出部
115 コンデンサ電圧測定部
120 電流検出器
130 屋外極板
140 コンデンサ
150 PCS
160 抵抗分圧回路
170 蓄電池
181~185 スイッチ
DESCRIPTION OF SYMBOLS 100 Atmospheric electric field electrical storage system 110 Control part 111 Capacitor voltage control part 112 PCS control part 113 Switch control part 114 Electrode plate voltage calculation part 115 Capacitor voltage measurement part 120 Current detector 130 Outdoor electrode plate 140 Capacitor 150 PCS
160 Resistance voltage dividing circuit 170 Storage battery 181 to 185 Switch

Claims (12)

  1.  設置位置と接地点との電位差に伴い電荷を帯電する帯電極板と、
     前記帯電極板と電気的に接続し、前記帯電極板に帯電された電荷を移動させて当該電荷を蓄積するコンデンサと、
     前記帯電極板と前記コンデンサとの間に設けるスイッチであって、前記帯電極板と前記コンデンサとの間の電気的な接続を遮断可能に設けるスイッチと、
     前記帯電極板の電圧、または、前記帯電極板に帯電される電荷の量を求める極板電圧算出部と、
     前記極板電圧算出部により求められた前記帯電極板の電圧、または、前記帯電極板の電荷量に応じて前記スイッチを開閉制御し、前記帯電極板に帯電された電荷を前記コンデンサへ移動させる制御部と、を有する蓄電システム。
    A band electrode plate that charges a charge according to the potential difference between the installation position and the grounding point;
    A capacitor that is electrically connected to the strip electrode plate and moves the charge charged on the strip electrode plate to store the charge;
    A switch provided between the strip electrode plate and the capacitor, the switch provided so as to be able to cut off an electrical connection between the strip electrode plate and the capacitor;
    An electrode plate voltage calculation unit for obtaining the voltage of the band electrode plate or the amount of charge charged in the band electrode plate;
    The switch is controlled to open and close in accordance with the voltage of the band electrode plate obtained by the electrode plate voltage calculation unit or the amount of charge of the band electrode plate, and the charge charged on the band electrode plate is moved to the capacitor. A power storage system.
  2.  請求項1においてさらに、
     前記コンデンサと第2のスイッチを介して電気的に接続する蓄電池を有し、
     前記制御部は、前記第2のスイッチを開閉制御して前記コンデンサに蓄電された電荷を前記蓄電池へ充電することを特徴とする蓄電システム。
    Further in claim 1,
    A storage battery electrically connected to the capacitor via a second switch;
    The control unit controls the opening and closing of the second switch to charge the storage battery with the charge stored in the capacitor.
  3.  請求項2において、
     前記制御部は、前記コンデンサに蓄積された電荷の容量が所定値より小さい場合には、前記スイッチを閉制御し、かつ、前記第2のスイッチを開制御して、前記帯電極板から前記コンデンサへ電荷を移動させ、
     前記コンデンサに蓄積された電荷の容量が前記所定値より大きい場合には、前記スイッチを開制御し、かつ、前記第2のスイッチを閉制御して、前記コンデンサから前記蓄電池への充電を行うことを特徴とする蓄電システム。
    In claim 2,
    The controller closes the switch and opens the second switch when the capacity of the charge accumulated in the capacitor is smaller than a predetermined value, and controls the capacitor from the band electrode plate to the capacitor. Move the charge to
    When the capacity of the electric charge stored in the capacitor is larger than the predetermined value, the switch is controlled to be opened and the second switch is closed to charge the storage battery from the capacitor. A power storage system characterized by this.
  4.  請求項2においてさらに、
     前記コンデンサから流れる電流を変換して前記蓄電池へ送る電力変換器と、前記電力変換器へ制御指令を出力するPCS制御部と、を有し、
     前記PCS制御部は、前記蓄電池の充電特性に基づいて前記蓄電池へ送る電流量を制御することを特徴とする蓄電システム。
    Further in claim 2,
    A power converter that converts the current flowing from the capacitor and sends it to the storage battery, and a PCS control unit that outputs a control command to the power converter,
    The said PCS control part controls the electric current amount sent to the said storage battery based on the charge characteristic of the said storage battery, The electrical storage system characterized by the above-mentioned.
  5.  請求項1においてさらに、
     前記帯電極板と対向して設けるとともに、接地点と電気的に接続される接地極板と、
     前記接地極板と接続し、前記接地点と前記接地極板との間に流れる電流を検出する電流検出器と、を有し、
     極板電圧算出部は、前記電流検出部が検出した電流量を用いて前記帯電極板の電圧、または、前記帯電極板に帯電される電荷の量を求めることを特徴とする蓄電システム。
    Further in claim 1,
    A ground electrode plate provided opposite to the band electrode plate and electrically connected to a ground point;
    A current detector connected to the ground plate and detecting a current flowing between the ground point and the ground plate;
    The electrode plate voltage calculation unit obtains the voltage of the band electrode plate or the amount of electric charge charged in the band electrode plate using the amount of current detected by the current detection unit.
  6.  請求項1において、
     前記コンデンサは、リチウムイオンキャパシタであることを特徴とする蓄電システム。
    In claim 1,
    The power storage system, wherein the capacitor is a lithium ion capacitor.
  7.  請求項1においてさらに、
     前記コンデンサと前記帯電極板の間に可変抵抗を有する抵抗分圧部と、
     前記コンデンサの耐圧特性に基づいて前記可変抵抗の抵抗値を設定し、前記コンデンサにかかる電圧を制御する分圧制御部と、を有することを特徴とする蓄電システム。
    Further in claim 1,
    A resistance voltage divider having a variable resistance between the capacitor and the strip electrode plate;
    And a voltage dividing control unit configured to set a resistance value of the variable resistor based on a withstand voltage characteristic of the capacitor and to control a voltage applied to the capacitor.
  8.  請求項7においてさらに、
     前記抵抗分圧部で発生する熱を回収する熱回収回路を有することを特徴とする蓄電システム。
    In claim 7 further:
    A power storage system comprising a heat recovery circuit that recovers heat generated in the resistance voltage divider.
  9.  請求項1においてさらに、
     前記制御部を稼働させる稼働手段を有し、
     前記稼動手段には、加わる電場強度の変化によって収縮または膨張する第一の電場応答部材と、前記第一の電場応答部材と交差して、かつ、隣接して設けられ、加圧されることによって電力を発生する第二の電場応答部材と、が含まれ、
     前記稼働手段は、前記第一の電場応答部材の伸縮または膨張によって前記第二の電場応答部材を加圧し、当該加圧によって前記第二の電場応答部材に発生する電力を用いて前記制御部の稼働を制御することを特徴とする蓄電システム。
    Further in claim 1,
    Having operating means for operating the control unit;
    The actuating means is provided with a first electric field response member that contracts or expands due to a change in electric field strength applied thereto, and is provided adjacent to and crossing the first electric field response member. A second electric field responsive member for generating electric power,
    The operating means pressurizes the second electric field response member by expansion or contraction or expansion of the first electric field response member, and uses the electric power generated in the second electric field response member by the pressurization. A power storage system characterized by controlling operation.
  10.  請求項1においてさらに、
     大気中に設けられるコンデンサであって、雷雲の接近によって電荷を誘起し落雷を抑制する避雷コンデンサを有し、
     前記帯電極板は、前記避雷コンデンサの避雷範囲に設けることを特徴とする蓄電システム。
    Further in claim 1,
    A capacitor provided in the atmosphere, which has a lightning protection capacitor that suppresses lightning by inducing charge by approaching thunderclouds,
    The power storage system, wherein the band electrode plate is provided in a lightning protection range of the lightning protection capacitor.
  11.  大気中の電界分布に応じて極板に電荷を帯電し、
     前記極板の電圧、または、前記極板の電荷量を算出し、
     前記極板の電圧、または、前記極板の電荷量に応じて、前記帯電極板と前記コンデンサとの間に設けるスイッチを開閉制御し、前記帯電極板に帯電された電荷を前記コンデンサへ移動させる蓄電方法。
    Charge the electrode plate according to the electric field distribution in the atmosphere,
    Calculate the voltage of the electrode plate or the amount of charge of the electrode plate,
    Depending on the voltage of the electrode plate or the amount of charge of the electrode plate, the switch provided between the band electrode plate and the capacitor is controlled to open and close, and the electric charge charged on the band electrode plate is transferred to the capacitor. A method of storing electricity.
  12.  請求項11において、
     前記コンデンサと第2のスイッチを介して蓄電池を接続し、
     前記第2のスイッチを制御して前記コンデンサに蓄電された電荷を前記蓄電池へ充電する蓄電方法。
    In claim 11,
    A storage battery is connected via the capacitor and the second switch,
    A power storage method for controlling the second switch to charge the storage battery with the charge stored in the capacitor.
PCT/JP2012/002133 2012-03-28 2012-03-28 Power storage system and power storage method WO2013145002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549637A JP5696231B2 (en) 2012-03-28 2012-03-28 Power storage system and power storage method
PCT/JP2012/002133 WO2013145002A1 (en) 2012-03-28 2012-03-28 Power storage system and power storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002133 WO2013145002A1 (en) 2012-03-28 2012-03-28 Power storage system and power storage method

Publications (1)

Publication Number Publication Date
WO2013145002A1 true WO2013145002A1 (en) 2013-10-03

Family

ID=49258377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002133 WO2013145002A1 (en) 2012-03-28 2012-03-28 Power storage system and power storage method

Country Status (2)

Country Link
JP (1) JP5696231B2 (en)
WO (1) WO2013145002A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067131A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Charger system
JP2016134934A (en) * 2015-01-15 2016-07-25 国立大学法人東北大学 Power storage device and manufacturing method thereof
WO2016203995A1 (en) * 2015-06-19 2016-12-22 三菱日立パワーシステムズ株式会社 Power supply system and charging station
WO2017022339A1 (en) * 2015-08-06 2017-02-09 三菱日立パワーシステムズ株式会社 Power supply system
CN109256867A (en) * 2018-12-05 2019-01-22 贵州电网有限责任公司 A kind of thunder and lightning power generator
GB2619962A (en) * 2022-06-23 2023-12-27 Z A Argo Ltd Capturing and storing static electricity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010241A (en) * 2006-06-28 2008-01-17 Sankosha Corp Lightning arrester
JP2009089585A (en) * 2007-09-13 2009-04-23 Ricoh Co Ltd Power supply device, scanner power supply device, and image forming apparatus
JP2009543534A (en) * 2006-07-03 2009-12-03 グランディクス、ピーター Power converter for extracting atmospheric electrical energy
US20100007218A1 (en) * 2008-07-14 2010-01-14 Mark Ellery Ogram Atmospheric electrical generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312438A (en) * 1994-05-17 1995-11-28 Masahide Ichikawa Power generating method using air space electric energy
JP3386323B2 (en) * 1996-11-13 2003-03-17 慎二 千葉 Generator
US7439712B2 (en) * 2006-02-21 2008-10-21 Mccowen Clint Energy collection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010241A (en) * 2006-06-28 2008-01-17 Sankosha Corp Lightning arrester
JP2009543534A (en) * 2006-07-03 2009-12-03 グランディクス、ピーター Power converter for extracting atmospheric electrical energy
JP2009089585A (en) * 2007-09-13 2009-04-23 Ricoh Co Ltd Power supply device, scanner power supply device, and image forming apparatus
US20100007218A1 (en) * 2008-07-14 2010-01-14 Mark Ellery Ogram Atmospheric electrical generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067131A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Charger system
JP2016134934A (en) * 2015-01-15 2016-07-25 国立大学法人東北大学 Power storage device and manufacturing method thereof
WO2016203995A1 (en) * 2015-06-19 2016-12-22 三菱日立パワーシステムズ株式会社 Power supply system and charging station
WO2017022339A1 (en) * 2015-08-06 2017-02-09 三菱日立パワーシステムズ株式会社 Power supply system
JPWO2017022339A1 (en) * 2015-08-06 2018-01-25 三菱日立パワーシステムズ株式会社 Power system
CN109256867A (en) * 2018-12-05 2019-01-22 贵州电网有限责任公司 A kind of thunder and lightning power generator
GB2619962A (en) * 2022-06-23 2023-12-27 Z A Argo Ltd Capturing and storing static electricity

Also Published As

Publication number Publication date
JPWO2013145002A1 (en) 2015-08-03
JP5696231B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5696231B2 (en) Power storage system and power storage method
Dragičević et al. DC microgrids—Part II: A review of power architectures, applications, and standardization issues
Nour et al. Review on voltage‐violation mitigation techniques of distribution networks with distributed rooftop PV systems
EP2418754A2 (en) Power-fluctuation reducing apparatus for power generation system
US20140042987A1 (en) Lightning energy storage system
Torres-Olguin et al. Inverse time overcurrent protection scheme for fault location in multi-terminal HVDC
KR20180064974A (en) A method for controlling an electric power distribution micro-grid
CA3006536A1 (en) Mobile electric power generating and conditioning system
Mukherjee et al. Cable overvoltage for MMC based VSC HVDC system: Interaction with converters
CN103474987B (en) Electric transmission line on-line monitoring device energy obtaining system based on ground wire induction
Pienaar et al. Usage of battery energy storage systems to defer substation upgrades
CN106410869A (en) Induction power supply, with lightning-protection ground wires, of high tension transmission line
Sharanya et al. Fault detection and location in DC microgrid
JP2015097188A (en) Lightning guide system
CN106877415A (en) A kind of transmission line online monitoring system power supply
Tong et al. Dynamic lightning protection of Smart Grid transmission system
Robak et al. Transient stability enhancement by series braking resistor control using local measurements
CN203434627U (en) Energy-obtaining system of power-transmission-line on-line monitoring device based on ground wire induction
Ameli et al. Optimal location of UPFC for enhancing voltage security and relieving congestion using Particle Swarm Optimization
CN207136060U (en) A kind of main frame and the solar energy electric shock type scarer of electric shock pole split arrangement
Coetzer Investigating PV module failure mechanisms caused by indirect lightning strikes
Dantas DC grid discriminating protection
Stuchly et al. A simulation of energy storage system for improving the power system stability with grid-connected pv using MCA analysis and labview tool
Lee et al. The Protection System Optimization of 154kV Shunt Capacitor Bank in Korea
US11031812B1 (en) Electric field powered devices in electric power systems

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873253

Country of ref document: EP

Kind code of ref document: A1