WO2013144228A1 - Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests - Google Patents

Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests Download PDF

Info

Publication number
WO2013144228A1
WO2013144228A1 PCT/EP2013/056565 EP2013056565W WO2013144228A1 WO 2013144228 A1 WO2013144228 A1 WO 2013144228A1 EP 2013056565 W EP2013056565 W EP 2013056565W WO 2013144228 A1 WO2013144228 A1 WO 2013144228A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compounds
compound
alkyl
heterocyclic ring
Prior art date
Application number
PCT/EP2013/056565
Other languages
French (fr)
Inventor
Arun Narine
Joachim Dickhaut
Florian Kaiser
Nina Gertrud Bandur
Karsten KÖRBER
Wolfgang Von Deyn
Swetlana DERKSEN
Ralph Paulini
Deborah L. Culbertson
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Publication of WO2013144228A1 publication Critical patent/WO2013144228A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/82Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/42Radicals substituted by singly-bound nitrogen atoms having hetero atoms attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to pesticidal methods, to uses and to applications of heterocyclic compounds as described in the present invention and the stereoisomers, salts, tautomers and N-oxides thereof as well as compositions comprising them.
  • the invention also relates to insecti- cidal heterocyclic compounds and/or to the compositions comprising such compounds for combating invertebrate pests.
  • Invertebrate pests and in particular insects, arthropods and nematodes destroy growing and harvested crops and attack wooden dwelling and commercial structures, thereby causing large economic loss to the food supply and to property. While a large number of pesticidal agents are known, due to the ability of target pests to develop resistance to said agents, there is an ongoing need for new agents for combating invertebrate pests such as insects, arachnids and nematodes. It is therefore an object of the present invention to provide compounds having a good pesticidal activity and showing a broad activity spectrum against a large number of different invertebrate pests, especially against difficult to control insects, arachnids and nematodes.
  • heterocyclic compounds of the general formula (I), as defined below including their stereoisomers, their salts, in particular their agriculturally or veterinary acceptable salts, their tautomers and their N-oxides.
  • the present invention relates to methods for using heterocyclic compound of formula (I) or a composition comprising at least one compound of formula (I)
  • X, T are independently from one another O or S;
  • R 1 is hydrogen, Ci-Cs-alkyl, C2-Cs-alkenyl, C2-Cs-alkynyl, Ci-C6-alkoxy, C3-C10- cycloalkyl, C4-Cio-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or R 1 may form a three- to eleven-membered saturated, or partially unsaturated or aromatic carbo-or heterocyclic rings system, which may contain 1 to 4 heteroatoms selected from N-(R C ) P , O, and S, wherein S may be oxidized and wherein the aforementioned groups and the carbo- or heterocyclic rings system may be unsubstituted, or partially or fully substituted by R a ;
  • R a is each independently halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-
  • S(0) m R b or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N-(R C ) P , O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by R aa ;
  • R aa is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy or Ci-C6-haloalkoxy;
  • R b is each independently hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(R C ) P , O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by R aa
  • R c is each independently hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkylcarbonyl, C1-C6 cycloalkyl, C1-C4 alkoxyalkyl, Ci-C4-alkoxycarbonyl or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(R aa ) p , O and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by R aa ;
  • n 0, 1 , or 2;
  • p O or l ;
  • R 2 , R 3 are each independently from one another hydrogen, halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-haloalkoxy, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6- cycloalkyl, Cs-Ce-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or S(0) m R b , wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by R a ;
  • R d is each independently C1-C4 alkyl, C1-C6 cycloalkyl, C1-C4 alkoxyalkyl, or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from
  • Het is three- to eleven-membered heterocyclic ring or ring system, which may contain 1 to 6 heteroatoms selected from N(R C ) P , O and S, wherein S may be oxidized, where- in up to 3 C-atom of the heterocyclic ring may be independently selected from
  • R m is each independently selected from, halogen, CN, N0 2 , S(0) m R b , C(0)R a , C(0)OR a , C(0)NR a R c and C(S)NR a R c , Ci-C 6 -alkyl, C 3 -C 6 -cycloalkyl, C 2 -C 6 - alkenyl, C2-C6-alkynyl, Ci-C6-alkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen;
  • n 0, 1 or 2;
  • One embodiment of the present invention is a method for combating or controlling invertebrate pests comprising contacting the invertebrate pests, or their food supply, habitat or breeding grounds with a heterocyclic compound of the general formula (I) as defined above or a composition comprising at least one compound of formula (I) as defined above.
  • One embodiment of the present invention is a method for protecting crops, plants, plant propagation material and/or growing plants from attack or infestation by invertebrate pests comprising contacting or treating the crops, plants, plant propagation material and growing plants, or soil, material, surface, space, area or water in which the crops, plants, plant propagation material is stored or the plant is growing, with a heterocyclic compound of the general formula (I) as de- fined above or a composition comprising at least one compound of formula (I) as defined above.
  • One embodiment of the present invention is a method for treating, controlling, preventing or protecting animals against infestation or infection by parasites by administering or applying orally, topically or parenterally to the animals a heterocyclic compound of the general formula (I) as defined above or a composition comprising at least one compound of formula (I) as defined above.
  • the present inventions relates to heterocyclic compounds of formula (I) as above define and/or stereoisomer or agriculturally or veterinary acceptable salts or tautomers thereof.
  • the invention relates to processes for the synthesis of compounds of formula (I) according to the present invention wherein an intermediate compound of formula P-4 is used.
  • the present invention thus relates to intermediates compounds of formula P-4: , wherein # denotes the bond to P-4
  • R 1 , R 2 , R 3 and Het have the meaning as above defined for the compounds of formula (I)-
  • the invention relates to the use of a compound as disclosed in the present invention, for combating or controlling invertebrate pests, in particular invertebrate pests of the group of insects, arachnids or nematodes.
  • compound(s) according to the invention or “compound(s) of formula (I)” as used in the present invention refers to and comprises the compound(s) as defined herein and/or stereoisomers), salt(s), tautomer(s) or N-oxide(s) thereof.
  • compound(s) of the present invention is to be understood as equivalent to the term “compound(s) according to the invention”, therefore also comprising stereoisomer(s), salt(s), tautomer(s) or N-oxide(s) of compounds of formula (I).
  • composition(s) according to the invention or “composition(s) of the present invention” encompasses composition(s) comprising at least one compound of formula (I) according to the invention as defined above, therefore also including a stereoisomer, an agriculturally or veterinary acceptable salt, tautomer or an N-oxide of the compounds of formula (I).
  • the present invention relates to a composition comprising at least one compound according to the invention and at least one inert liquid and/or solid carrier.
  • the invention relates to an agricultural or veterinary composition comprising at least one compound according to the invention and at least one liquid and/or solid carrier.
  • the present invention relates to a method for combating or controlling invertebrate pests of the group of insects, arachnids or nematodes, which method comprises contacting said pest or its food supply, habitat or breeding grounds with a pesticidally effective amount of at least one compound according to the invention.
  • the present invention also relates to a method for protecting growing plants from attack or infestation by invertebrate pests of the group of insects, arachnids or nematodes which method comprises contacting a plant, or soil or water in which the plant is growing or may grow, with a pesticidally effective amount of at least one compound according to the invention.
  • the present invention also relates to a method for the protection of plant propagation material, preferably seeds, from soil insects and of the seedlings' roots and shoots from soil and foliar insects comprising contacting the seeds before sowing and/or after pregermination with at least one compound according to the invention.
  • the present invention also relates to plant propagation material, preferably seed, comprising a compound according to the invention.
  • the present invention also relates to the use of a compound or composition according to the invention for combating or controlling invertebrate pests of the group of insects, arachnids or nematodes.
  • the present invention also relates to the use of a compound according to the invention for protecting growing plants from attack or infestation by invertebrate pests of the group of insects, arachnids or nematodes.
  • the present invention also relates to the use of a compound according to the invention for combating or controlling invertebrate parasites in and on animals.
  • the present invention also relates to a method for treating an animal infested or infected by parasites or for preventing animals from getting infested or infected by parasites or for protecting an animal against infestation or infection by parasites which comprises orally, topically or parenterally administering or applying to the animal a parasiticidally effective amount of a compound or composition according to the invention.
  • the present invention also relates to the use of a compound or composition according to the invention for the manufacture of a medicament for protecting an animal against infestation or infection by parasites or treating an animal infested or infected by parasites. Therefore, the present invention also relates to a process for the preparation of a composition for the above cited uses.
  • the present invention also relates to a compound according to the invention for use as a veteri- nary medicament as well as for use in the treatment, control, prevention or protection of animals against infestation or infection by parasites.
  • heterocyclic compounds according to the present invention have not yet been described for pesticidal uses or pesticidal applications in agricultural industry or veterinary practice.
  • Heterocyclic substituted pyridinium derivatives and their use as pesticides have been disclosed WO 2009099929 as well as in WO 201 1017347 and in WO 201 1017351.
  • the compounds of the formula (I) may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers.
  • the invention provides both the single pure enantiomers or pure diastereomers of the compounds of formula (I), and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compound of formula (I) or its mixtures.
  • Suitable compounds of the formula (I) also include all possible geometrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be present with respect to an alkene, carbon- nitrogen double-bond or amide group.
  • stereoisomer(s) encompasses both optical isomers, such as enantiomers or diastereomers, the latter existing due to more than one center of chirality in the molecule, as well as geometrical isomers (cis/trans isomers).
  • the present invention relates to every possible stereoisomer of the compounds of formula (I), i.e. to single enantiomers or diastereomers, as well as to mixtures thereof.
  • the compounds of the formulae (I) may be present in the form of their tautomers.
  • the invention also relates to the tautomers of the formula (I) and the stereoisomers, salts, tautomers and N-oxides of said tautomers.
  • the compounds of the present invention may be amorphous or may exist in one or more differ- ent crystalline states (polymorphs) or modifications which may have a different macroscopic properties such as stability or show different biological properties such as activities.
  • the present invention includes both amorphous and crystalline compounds of the formula (I), mixtures of different crystalline states or modifications of the respective compound I, as well as amorphous or crystalline salts thereof.
  • Salts of the compounds of the formula (I) are preferably agriculturally and/or veterinary acceptable salts. They can be formed in a customary method, e.g. by reacting the compound with an acid of the anion in question if the compound of formula (I) has a basic functionality or by reacting an acidic compound of formula (I) with a suitable base.
  • Suitable agriculturally or veterinary useful salts are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, do not have any ad- verse effect on the action of the compounds according to the present invention.
  • Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium (NhV) and substituted ammonium in which one to four of the hydrogen atoms are replaced by Ci-C4-alkyl, C1-C4- hydroxyalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl.
  • substituted ammonium ions comprise methylammonium, isoprop- ylammonium, dimethylammonium, diisopropylammonium, trimethylammonium, tetrame- thylammonium, tetraethylammonium, tetrabutylammonium, 2-hydroxyethylammonium, 2-(2- hydroxyethoxy)ethyl-ammonium, bis(2-hydroxyethyl)ammonium, benzyltrimethylammonium and benzyltriethylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(Ci-C4- alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium.
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting the compounds of the formulae I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • N-oxide includes any compound of the present invention which has at least one tertiary nitrogen atom that is oxidized to an N-oxide moiety.
  • organic moieties groups mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members.
  • the prefix Cn-Cm indicates in each case the possible number of carbon atoms in the group.
  • Halogen will be taken to mean fluoro, chloro, bromo and iodo.
  • partially or fully halogenated will be taken to mean that 1 or more, e.g. 1 , 2, 3, 4 or 5 or all of the hydrogen atoms of a given radical have been replaced by a halogen atom, in particular by fluorine or chlorine.
  • C n -C m -alkyl refers to a branched or unbranched saturated hydrocarbon group having n to m, e.g.
  • 1 to 10 carbon atoms preferably 1 to 6 carbon atoms, for example methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 -methylpropyl, 2-methylpropyl, 1 ,1 -dimethylethyl, pentyl, 1 - methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1 -ethylpropyl, hexyl, 1 ,1 - dimethylpropyl, 1 ,2-dimethylpropyl, 1 -methylpentyl, 2-methylpentyl, 3-methylpentyl, 4- methylpentyl, 1 ,1 -dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3- dimethylbutyl, 3,3-dimethylbutyl, 1 -ethylbutyl,
  • Ci-C4-alkyl means for example methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 -methylpropyl, 2-methylpropyl or 1 ,1 -dimethylethyl.
  • C n -C m -haloalkyl refers to a straight-chain or branched alkyl group having n to m carbon atoms, e.g.
  • Ci-C4-haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodi- fluoromethyl, 1 -chloroethyl, 1 -bromoethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2- trichloroethyl, pentafluoro
  • Ci-Cio-haloalkyl in particular comprises Ci-C2-fluoroalkyl, which is synonym with methyl or ethyl, wherein 1 , 2, 3, 4 or 5 hydrogen atoms are substituted by fluorine atoms, such as fluoromethyl, difluoromethyl, trifluoromethyl, 1 - fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl and pentafluoromethyl.
  • C n -C m -alkoxy and “C n -C m -alkylthio" refer to straight-chain or branched alkyl groups having n to m carbon atoms, e.g. 1 to 10, in particular 1 to 6 or 1 to 4 carbon atoms (as mentioned above) bonded through oxygen (or sulfur linkages, respectively) at any bond in the alkyl group.
  • Ci-C4-alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, isobutoxy and tert-butoxy
  • C1-C4- alkylthio such as methylthio, ethylthio, propylthio, isopropylthio, and n-butylthio.
  • C n -C m -haloalkoxy and "C n -C m -haloalkylthio” (or C n -C m -haloalkylsulfenyl, respectively) refer to straight-chain or branched alkyl groups having n to m carbon atoms, e.g.
  • Ci-C2-haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichlorometh- oxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoro- methoxy, chlorodifluoromethoxy, 1 -chloroethoxy, 1 -bromoethoxy, 1 -fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro
  • Ci-C2-fluoroalkoxy and Ci-C2-fluoroalkylthio refer to C1-C2- fluoroalkyl which is bound to the remainder of the molecule via an oxygen atom or a sulfur atom, respectively.
  • C2-C m -alkenyl intends a branched or unbranched unsaturated hydrocarbon group having 2 to m, e.g. 2 to 10 or 2 to 6 carbon atoms and a double bond in any posi- tion, such as ethenyl, 1 -propenyl, 2-propenyl, 1 -methyl-ethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 -methyl-2-propenyl, 2-methyl-2-propenyl, 1 - pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1 -methyl-1 -butenyl, 2-methyl-1 -butenyl, 3-methyl- 1 -butenyl, 1 -methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl,
  • C2-C m -alkynyl refers to a branched or unbranched unsaturated hydrocarbon group having 2 to m, e.g. 2 to 10 or 2 to 6 carbon atoms and containing at least one triple bond, such as ethynyl, propynyl, 1 -butynyl, 2-butynyl, and the like.
  • C n -Cm-alkoxy-C n -Cm-alkyl refers to alkyl having n to m carbon atoms, e.g. like specific examples mentioned above, wherein one hydrogen atom of the alkyl radical is replaced by an C n -C m -alkoxy group; wherein the value of n and m of the alkoxy group are independently chosen from that of the alkyl group .
  • aryl refers to a mono-, bi- or tricyclic aromatic hydrocarbon radical such as phenyl or naphthyl, in particular phenyl.
  • ring system denotes two or more directly connected rings.
  • cycloalkylcycloalkyl denotes as well as the term "cycloalkyl which may be substituted by cycloalkyl” a cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members and the cycloalkyls are linked through one single bond or have one common carbon atom.
  • cycloalkylcycloalkyl include cyclopropylcyclopropyl (e.g. 1 ,1 '-bicyclopropyl-2-yl), cyclohexylcyclohexyl wherein the two rings are linked through one single common carbon atom (e.g.
  • C3-C m -cycloalkyl refers to a monocyclic ring of 3- to m-membered saturated cycloaliphatic radicals, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohep- tyl, cyclooctyl and cyclodecyl.
  • 3- to 6-membered carbocyclic ring refers to cyclopropane, cyclobu- tane, cyclopentane and cyclohexane rings.
  • heterocyclic radical 3-, 4-, 5-, 6- or 7-membered saturated, partially unsaturated or aromatic heterocyclic ring which may contain 1 , 2, 3 or 4 heteroatoms" or “containing heteroatom groups", wherein those heteroatom(s) (group(s)) are selected from N (N-substituted groups), O and S (S- substituted groups) as used herein refers to monocyclic radicals, the monocyclic radicals being saturated, partially unsaturated or aromatic.
  • the heterocyclic radical may be attached to the remainder of the molecule via a carbon ring member or via a nitrogen ring member.
  • Examples of 3-, 4-, 5-, 6- or 7-membered saturated heterocyclyl or heterocyclic rings include: Oxiranyl, aziridinyl, azetidinyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3- tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2- imidazolidinyl, 4-imidazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 3-isoxazolidinyl, 4- isoxazolidinyl, 5-isoxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 3-isothiazolidinyl, 4- isothiazolidinyl, 5-isothi
  • Examples of 3-, 4-, 5-, 6- or 7-membered partially unsaturated heterocyclyl or heterocyclic rings include: 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3- dihydrothien-2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2- yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin 3 yl, 2-isoxazolin-4-yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5
  • Examples of 5- or 6-membered aromatic heterocyclic (hetaryl) or heteroaromatic rings are: 2- furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2- oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1 ,3,4-triazol-2-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4- pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl.
  • C2-Cm-alkylene is divalent branched or preferably unbranched saturated aliphatic chain having 2 to m, e.g. 2 to 7 carbon atoms, for example CH 2 CH 2 , -CH(CH 3 )-, CH2CH2CH2,
  • variables of the compounds of formula (I) have the following meanings, these meanings, both on their own and in combination with one another, being particular embodiments of the compounds of the formula (I):
  • T is O. These compounds correspond to the formula 1.1 .
  • T is S. These compounds correspond to the formula 1.2.
  • X is S. These compounds respond to the formula I. A. In another embodiment of the compounds of formula (I), X is O. These compounds correspond to the formula I.B.
  • R 1 is hydrogen, CrC 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, d-C 6 -alkoxy, C 3 - C 6 -cycloalkyl, C 4 -Ci 0 -cycloalkenyl or C 5 -Cn-cycloalkylcycloalkyl, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by R a , wherein R a has the meaning as hereunder described.
  • R 1 is a three- to ten-membered saturated, or partially saturated or heterocyclic ring system, which may contain 1 to 3 heteroatoms selected from N(R C ) P , O, and S, wherein S may be oxidized and which heterocyclic ring may be unsubstituted or substituted by R a .
  • R 1 is hydrogen, Ci-C 4 -alkyl, C 2 -C 8 -alkenyl, CrC 6 -alkoxy, C 3 -C 6 - cycloalkyl or C 5 -Cn-cycloalkylcycloalkyl, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by halogen.
  • R 1 is H, Ci-C 4 -alkyl, C 2 -C 8 -alkenyl, C 3 -C 6 -cycloalkyl, wherein the C- atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by halogen.
  • R 1 is CrC 2 -alkyl substituted by halogen, preferably by F; particularly R 1 is CF 3 or CH 2 CHF 2 .
  • R 1 is C 2 -C 4 -alkenyl, preferably CHCH 2 .
  • R 1 is C 3 -C 6 -cycloalkyl, preferably cyclopropyl.
  • R 1 is CrC 2 -alkyl, preferably CH 3 or CH 2 CH 3 .
  • R 1 is CH 3 .
  • R 1 is H.
  • R a is halogen, CrC 6 -alkyl, CrC 6 -haloalkyl, CrC 6 -alkoxy, CrC 6 -haloalkoxy,
  • R a is halogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl or C 3 -C 6 -cycloalkyl.
  • R a is halogen
  • R b is hydrogen, CrC 6 -alkyl, CrC 6 -haloalkyl, CrC 6 -alkoxy, CrC 6 -haloalkoxy, phenyl, pyridyl, thiazyl or thienyl, wherein the carbo- or heterocyclic rings may be substituted by aa
  • R b is hydrogen, CrC 6 -alkyl, CrC 6 -haloalkyl, d-C 6 -alkoxy or CrC 6 - haloalkoxy.
  • R b is hydrogen, CrC 6 -alkyl or CrC 6 -haloalkyl
  • R b is CrC 6 -alkyl or CrC 6 -haloalkyl.
  • R b is H.
  • R c is hydrogen, CrC 4 -alkyl, CrC 4 -haloalkyl, CrC 4 -alkylcarbonyl, CrC 6 cycloalkyi, C1-C4 alkoxyalkyi, CrC 4 -alkoxycarbonyl, phenyl, pyridyl, thiazyl or thienyl wherein the carbo- or heterocyclic rings may be substituted by R aa .
  • R c is hydrogen, CrC 4 -alkyl, CrC 4 -haloalkyl, CrC 4 -alkylcarbonyl, CrC 6 cycloalkyi, C1-C4 alkoxyalkyi or CrC 4 -alkoxycarbonyl.
  • R c is hydrogen, CrC 6 -alkyl or CrC 6 -haloalkyl
  • R c is CrC 6 -alkyl or CrC 6 -haloalkyl.
  • R c is H.
  • R aa is halogen, CrC 6 -alkyl or CrC 6 -haloalkyl.
  • R aa is CrC 6 -alkoxy or CrC 6 -haloalkoxy.
  • R aa is halogen
  • m is 0.
  • n 1
  • n 2
  • p is 0.
  • p is 1 .
  • R 2 is hydrogen, halogen, CN or CrC 4 -alkyl which may be substituted by halogen.
  • R 2 is hydrogen or CrC 2 -alkyl, particularly CH 3 .
  • R 2 is H.
  • R 2 and R 3 are each independently from one another hydrogen, halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-haloalkoxy, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, Cs-Ce-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or S(0) m R b , wherein the C- atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by R a .
  • R 3 is hydrogen, halogen, CN, Ci-C6-alkyl, Ci-C2-alkoxy-Ci-C2-alkyl or C3-C6- cycloalkyl, wherein the C-atoms of the aforementioned groups may be substituted by halogen or CN.
  • R 3 is CrC 6 -haloalkyl, preferably CrC 2 -haloalkyl, particularly halome- thyl, such as CF 3 or CHF 2 .
  • R 3 is Ci-C2-alkoxy-Ci-C 2 -alkyl, preferably Ci-C 2 -alkoxy-methyl, particularly CH2OCH3.
  • R 3 is C 3 -C 6 -cycloalkyl, preferably cyclopropyl which may be substituted, preferably by halogen or cyano.
  • R 3 is C 2 -C 6 -alkyl, preferably C 2 -C 4 -alkyl, particularly CH 2 CH 3 or C(CH 3 ) 3 .
  • R 3 is CrC 6 -alkyl, preferably CrC 2 -alkyl, particularly CH 3 .
  • R 3 is halogen, preferably CI or F, particularly F.
  • R 3 is H.
  • R 3 is CN
  • R 2 and R 3 form a five- or six-membered saturated carbocyclic ring, such as cyclopentyl or cyclohexyl, which ring being unsubstituted or substituted by one or more groups R a , wherein R a when substituting the R 2 and R 3 groups is preferably halogen, cyano or halomethyl.
  • R 2 and R 3 form a five- or six-membered saturated heterocyclic ring, which contains 1 or 2, preferably 1 , heteroatom(s) selected from N-R c , O, and S, wherein S may be oxidised, which heterocyclic ring being unsubstituted or substituted by one or more groups R a , wherein R a when substituting the R 2 and R 3 groups is preferably halogen, cyano or halomethyl and R c when substituting the R 2 and R 3 groups preferably denotes CrC 2 -alkyl, particularly CH 3 , or CrC 2 -alkylcarbonyl, particularly acetyl.
  • n 0.
  • n 1 .
  • n is 2.
  • R m is halogen, CN, N0 2 , S(0) m R b , C(0)R a , C(0)OR a , C(0)NR a R c ,
  • R m is halogen, CN, Ci-C6-alkyl, C3-C6-cycloalkyl, C 2 -C6-alkenyl, C 2 -C6- alkynyl, Ci-C6-alkoxy, C 2 -C6-alkenyloxy or C 2 -C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen.
  • R m is halogen, CN, Ci-C6-alkyl, C3-C6-cycloalkyl, C 2 -C6-alkenyl, C 2 -C6- alkynyl, Ci-C6-alkoxy, C 2 -C6-alkenyloxy or C 2 -C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen.
  • R m is halogen, Ci-C6-haloalkyl or Ci-C6-alkoxy.
  • R m is halogen, CN or Ci-C 2 -haloalkyl.
  • R m is halogen or Ci-C 2 -haloalkyl.
  • R m is halogen, preferably Br, CI or F, particularly CI.
  • R m is Ci-C 2 -haloalkyl, preferably halomethyl such as CHF 2 or
  • Het is a five- or six-membered saturated, partially unsaturated or aromatic heterocyclic ring, which may contain 1 to 4 heteroatoms selected from N(R C ) P , O and S, wherein the heterocyclic ring is substituted by (R m ) n and the remaining variables in the meaning of Het are as above defined.
  • Het is a five- or six-membered saturated, partially unsaturated or aromatic heterocyclic ring, which may contain 1 to 2 heteroatoms selected from N(R C ) P , O and S, wherein the heterocyclic ring is substituted by (R m ) n .
  • Het is a five-membered aromatic heterocyclic ring, which contains 2 heteroa- toms selected from N(R C ) P , O and S, wherein the heterocyclic ring is substituted by (R m ) n .
  • Het is a five-membered saturated heterocyclic ring, which contains 1 heteroa- tom selected from N(R C ) P , O and S, preferably O, wherein the heterocyclic ring is substituted by
  • Het is a six-membered aromatic heterocyclic ring, which contains 2 heteroa- toms selected from N(R C ) P , O and S, preferably N(R C ) P , wherein the heterocyclic ring is substituted by (R m ) n .
  • Het is a six-membered aromatic heterocyclic ring, which contains 1 heteroa- tom selected from N(R C ) P , O and S, preferably N(R C ) P , wherein the heterocyclic ring is substitut- ed by (R m ) n .
  • Het is pyridyl which is substituted by (R m ) n .
  • Het is tetrahydrofuryl which is substituted by (R m ) n .
  • Het is selected from any one of the following ring systems D-1 to D-55:
  • Het is selected from the following rings systems D-2, D-22, D-25, D- 28, D-29 and D-54:
  • R m is preferably halogen or halomethyl.
  • Het is selected from the following rings systems D-2, D-25 or D-54:
  • R m is preferably halogen, particularly CI, Br or F or R m is halomethyl, particularly CF3.
  • Het is selected from the following rings systems D-2a, D-2b, D-2c, D-
  • R m and R ma are independently from each other selected from CI, Br, F or CF3.
  • Het is D-2, preferably D-2b or D-2c, particularly D-2b, wherein R m is CI and R a is F.
  • Het is D-25, preferably D-25a substituted by CI.
  • Het is D-54, preferably D-54a.
  • Table 2 Compounds of the formula (I) in which T is O, n is 1 , R 2 is H, Het is D-2b as above defined and the combination of R 1 , R 3 and R m for a compound corresponds in each case to one row of Table A.
  • Table 3 Compounds of the formula (I) in which T is O, n is 2, R 2 is H, R am is CI, Het is D-2c as above defined and the combination of R 1 , R 3 and R m for a compound corresponds in each case to one row of Table A.
  • Table 4 Compounds of the formula (I) in which T is O, n is 2, R 2 is H, R ma is F, Het is D-2c as above defined and the combination of R 1 , R 3 and R m for a compound correspond in each case to one row of Table A.
  • Table 5 Compounds of the formula (I) in which T is O, n is 2, R 2 is H, R ma is CF 3 , Het is D-2c as above defined and the combination of R 1 , R 3 and R m for a compound correspond in each case to one row of Table A.
  • Table 6 Compounds of the formula (I) in which T is O, n is 1 , R 2 is H, Het is D-25a as above defined and the combination of R 1 , R 3 and R m for a compound correspond in each case to one row of Table A.
  • Table 7 Compounds of the formula (I) in which T is O, n is 0, R 2 is H, Het is D-54a as above defined and the combination of R 1 , R 3 for a compound correspond in each case to one row of Table A.
  • Table 8 Compounds of formula (I) in which T is S and the remaining variables have the same meaning as in Table 1 .
  • Table 10 Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 3.
  • Table 1 1 Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 4.
  • Table 12 Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 5.
  • Table 13 Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 6.
  • Table 14 Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 7.
  • Table 15 to Table 28 correspond to compounds of formula (I) in which X is O and the remaining variables have the same meaning as respectively in anylogy to Tables 1 to 14.
  • CHCH2 and C-C3H5 respectively represent vinyl and cyclopropyl radicals.
  • the compound of formula (I) according to the present invention can be prepared ac- cording to the following syntheses routes, e.g. according to the preparation methods and preparation schemes as described below.
  • the compounds used as starting materials for the syntheses of the compounds according to the present invention can generally be prepared by standard methods of organic chemistry. If not otherwise specified, the definitions of the variables such as X, T, Het, R 1 , R 2 and R 3 of the structures given in the schemes have the same meaning as defined above.
  • Room temperature (rt) means a temperature range between about 20 and 25 °C.
  • Compounds of the formula I.1.B and I.2.B can for example be prepared from acylhy- drazides P-1 by reaction with phosgene (or a phosgene equivalent, e.g. diphosgene, triphosgene) or thiophosgene, respectively, in the presence or absence of a base (e.g Et 3 N, K2CO3) as described by, for example, Potts et al. Chem. Comm. 1968, 12, 672.
  • phosgene or a phosgene equivalent, e.g. diphosgene, triphosgene
  • thiophosgene e.g. diphosgene, triphosgene
  • a base e.g Et 3 N, K2CO3
  • Compounds of the formula 1.1.A and I.2.A can be prepared from thioacylhydrazides P-4 by reaction with phosgene (or a phosgene equivalent, e.g. diphosgene, triphosgene) or thiophosgene, respectively, in the presence or absence of a base (e.g. EtsN, K2CO3) as described by McCarthy et al. Chem. Comm. 1968, 9, 499.
  • Compounds P-4 can, in turn be prepared from compounds P-1 by reaction with P2S5 or Lawesson' s reagent as described by, for example, Chen et al. WO 2003/006429.
  • certain compounds of formula (I) can advantageously be prepared from other compounds of formula (I) by derivatization, e.g. by ester hydrolysis, amidation, esterification, ether cleavage, olefination, reduction, oxidation and the like, or by customary modifications of the synthesis routes described.
  • reaction mixtures are worked up in the customary manner, for example by mixing with water, separating the phases, and, if appropriate, purifying the crude products by chromatography, for example on alumina or silica gel.
  • Some of the intermediates and end products may be obtained in the form of colorless or pale brown viscous oils, which are freed or purified from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtained as solids, they may be purified by recrystallization, trituration or digestion.
  • invertebrate pest encompasses animal populations, such as arthropod pests, including insects and arachnids, as well as nematodes, which may attack plants thereby causing substantial damage to the plants attacked, as well as ectoparasites which may infest animals, in particular warm blooded animals such as e.g. mammals or birds, or other higher animals such as reptiles, amphibians or fish, thereby causing substantial damage to the animals infested.
  • arthropod pests including insects and arachnids, as well as nematodes, which may attack plants thereby causing substantial damage to the plants attacked, as well as ectoparasites which may infest animals, in particular warm blooded animals such as e.g. mammals or birds, or other higher animals such as reptiles, amphibians or fish, thereby causing substantial damage to the animals infested.
  • the compounds of formula (I) according to the present invention are in particular suitable for efficiently controlling arthropod pests such as arachnids, myriapedes and insects as well as nematodes.
  • the compounds of the formula (I) are especially suitable for efficiently combating the following pests:
  • Insects from the order of the lepidopterans for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Chei- matobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosel- la, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta,
  • mosquitoes e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anas- trepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrys- ops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex
  • Thrips thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci, termites (Isoptera), e.g.
  • Calotermes flavicollis Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Reticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
  • cockroaches e.g. Blattella germanica, Blattella asahinae, Peri- planeta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta australasiae, and Blatta orientalis;
  • insects e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solu- bea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis
  • crickets grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllo- talpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
  • Orthoptera e.g. Acheta domestica, Gryllotalpa gryllo- talpa, Locusta
  • arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hy- alomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holo- cyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyss
  • Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ul- mi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
  • fleas e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
  • silverfish, firebrat e.g. Lepisma saccharina and Thermobia domestica, centipedes (Chilopoda), e.g. Scutigera coleoptrata,
  • Earwigs e.g. forficula auricularia
  • Pediculus humanus capitis e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bo- vicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
  • Collembola springtails
  • the compounds of formula (I) are also suitable for controlling Nematodes: plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incog- nita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring
  • the compounds of formula (I) are particularly useful for controlling, or combating, or treating, or preventing or protecting each of the individual group of target pests as above listed as well as each combination thereof.
  • the Compounds of the formula (I) are particularly useful for controlling insects, preferably piercing-sucking insects such as insects from the genera Thysanoptera, Diptera and Hemiptera.
  • Compounds of the formula (I) are particularly useful for controlling insects of the orders Hemiptera and Thysanoptera.
  • the compounds of formula (I) can be converted into the customary formulations, e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules and directly sprayable solutions.
  • the use form depends on the particular purpose and application method. Formulations and application methods are chosen to ensure in each case a fine and uniform distribution of the compound of formula (I) according to the invention.
  • An agrochemical composition according to the present invention comprises a pesti- cidally effective amount of a compound of formula (I) according to the present invention.
  • effective amount denotes an amount of the composition or of the compounds of formula (I), which is sufficient for controlling animal pests on a locus, such as crops, cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the animal pest species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound of formula (I) used.
  • the compounds of formula (I) according to the invention can be converted into customary types of agrochemical compositions, e. g.
  • composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g.
  • compositions types are defined in the " Catalogue of pesticide for- mulation types and international coding system" , Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
  • compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F In- forma, London, 2005.
  • auxiliaries for the formulations and or the agrochemicals compositions according to the inventions are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, at- tractants, feeding stimulants, compatibilizers, bactericides, antifreezing agents, anti- foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetra- hydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
  • mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
  • oils of vegetable or animal origin oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetra- hydronaphthalene, alky
  • lactates carbonates, fatty acid esters, gammabutyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, lime-stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharide powders, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nut- shell meal, and mixtures thereof.
  • mineral earths e.g. silicates, silica gels, talc, kaolins, lime-stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
  • polysaccharide powders e.g.
  • Suitable surfactants are surface active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in
  • McCutcheon' s, Vol.1 Emulsifiers & Detergents, McCutcheon' s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
  • sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccin- ates or sulfosuccinamates.
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar based surfactants, polymeric surfactants, and mixtures thereof.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
  • Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
  • N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides.
  • polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinyl- alcohols, or vinylacetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long chain primary amines.
  • Suitable amphoteric surfactants are alkylbetains and imidazolines.
  • Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, poly- ethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or pol- ybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
  • Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound of formula (I) on the target.
  • examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothia- zolinones and benzisothiazolinones.
  • Suitable antifreezing agents are ethylene glycol, propylene glycol, urea and glycerine.
  • Suitable antifoaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants e.g. in red, blue, or green
  • Suitable colorants are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • composition types and their preparation are:
  • a compound of formula (I) according to the invention 10-60 wt% of a compound of formula (I) according to the invention and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water- soluble solvent (e.g. alcohols) up to 100 wt%.
  • the active substance dissolves upon dilution with water.
  • a compound of formula (I) according to the invention 5-25 wt% of a compound of formula (I) according to the invention and 1 -10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in up to 100 wt% organic solvent (e.g. cyclohexanone). Dilution with water gives a dispersion.
  • dispersant e. g. polyvinylpyrrolidone
  • emulsifiers e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • water insoluble organic solvent e.g. aromatic hydrocarbon
  • Emulsions (EW, EO, ES)
  • emulsifiers e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • 20-40 wt% water insoluble organic solvent e.g. aromatic hydrocarbon
  • a compound of formula (I) in an agitated ball mill, 20-60 wt% of a compound of formula (I) according to the invention are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0,1 -2 wt% thickener (e.g. xanthan gum) and up to 100 wt% water to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added.
  • WG, SG Water dispersible granules and water soluble granules
  • 50-80 wt% of a compound of formula (I) according to the invention are ground finely with addition of up to 100 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) and prepared as water dispersible or water soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • wt% of a compound of formula (I) according to the invention are ground in a rotor stator mill with addition of 1 -5 wt% dispersants (e.g. sodium ligno- sufonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and up to 100 wt% solid carrier, e.g. silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants e.g. sodium ligno- sufonate
  • 1 wt% wetting agents e.g. alcohol ethoxylate
  • solid carrier e.g. silica gel
  • a compound of formula (I) according to the invention are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lig- nosulfonate), 1 -5 wt% thickener (e.g. carboxymethylcellulose) and up to 100 wt% water to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance,
  • dispersants e.g. sodium lig- nosulfonate
  • 1 -5 wt% thickener e.g. carboxymethylcellulose
  • organic solvent blend e.g. fatty acid dimethylamide and cyclohexanone
  • surfactant blend e.g. alkohol ethoxylate and arylphenol ethoxylate
  • water up to 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • An oil phase comprising 5-50 wt% of a compound of formula (I) according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e.g.
  • an isocyanate monomer e.g. diphenylmethene-4,4' -diisocyanatae
  • a protective colloid e.g. polyvinyl alcohol
  • the addition of a polyam- ine results in the formation of a polyurea microcapsules.
  • the monomers amount to 1 -10 wt%. The wt% relate to the total CS composition.
  • 1 -10 wt% of a compound of formula (I) according to the invention are ground finely and mixed intimately with up to 100 wt% solid carrier, e.g. finely divided kaolin.
  • solid carrier e.g. finely divided kaolin.
  • 0.5-30 wt% of a compound of formula (I) according to the invention is ground finely and associated with up to 100 wt% solid carrier (e.g. silicate). Granulation is achieved by extrusion, spray drying or the fluidized bed.
  • solid carrier e.g. silicate
  • compositions types i) to xi) may optionally comprise further auxiliaries, such as 0,1 -1 wt% bactericides, 5-15 wt% antifreezing agents, 0,1 -1 wt% antifoaming agents, and 0,1 -1 wt% colorants.
  • auxiliaries such as 0,1 -1 wt% bactericides, 5-15 wt% antifreezing agents, 0,1 -1 wt% antifoaming agents, and 0,1 -1 wt% colorants.
  • the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and most preferably between 0.5 and 75%, by weight of active substance i.e. the compounds of formula (I) according to the invention.
  • the active substances are generally employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • Water soluble concentrates (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water dispersible powders for slurry treatment (WS), water soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
  • compositions according to the invention in question give, after two-to-tenfold dilution, concentrations of active substance of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations.
  • Methods for applying or treating compound of formula (I) and compositions thereof, respectively, on to plant propaga- tion material, especially seeds include dressing, coating, pelleting, dusting, soaking and in furrow application methods of the propagation material.
  • compound of formula (I) or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e.g. by seed dressing, pelleting, coating and dusting.
  • the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.
  • amounts of active substance In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.
  • the amount of active substance applied depends on the kind of application area and on the desired effect.
  • Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • oils, wetters, adjuvants, fertilizer, or micronutrients, and other pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
  • pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
  • the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • composition according to the invention such as parts of a kit or parts of a binary or ter- nary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
  • either individual components of the composition according to the invention or partially premixed components e. g. components comprising compounds of formula (I) and/or additional active substances from the groups M.1 ) to M.26, including M-X or F.I to F.XII, may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
  • either individual components of the composition according to the invention or partially premixed components e. g. components comprising compounds of formula (I) and/or active substances from the groups M.1 to M.26, including M-X or F.I to F.XII, can be applied jointly (e.g. after tank mix) or consecutively.
  • the following list M of pesticides represents insecticidal mixing partners, which are, whenever possible, classified according to the Insecticide Resistance Action Committee (IRAC), and together with which the compounds according to the present invention may be used.
  • IRAC Insecticide Resistance Action Committee
  • the combined use of the compounds of the present invention with the following pesticides may result in potential synergistic effects.
  • the following examples of insecticidal mixing partners are provided with the intention to illustrate the possible combinations, but not to impose any limitation to the obtainable mixtures:
  • Acetylcholine esterase (AChE) inhibitors from the class of
  • M.1 A carbamates for example aldicarb, alanycarb, bendiocarb, benfuracarb, butocar- boxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pi- rimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; or from the class of
  • M.1 B organophosphates for example acephate, azamethiphos, azinphos-ethyl, az- inphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethopro- phos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathi- on, mecarbam, meth
  • GABA-gated chloride channel antagonists such as:
  • M.2A cyclodiene organochlorine compounds as for example endosulfan or chlor- dane;
  • M.2B fiproles phenylpyrazoles
  • fipronil phenylpyrazoles
  • flufiprole pyra- fluprole
  • pyriprole phenylpyrazoles
  • M.3A pyrethroids for example acrinathrin, allethrin, d-cis-trans allethrin, d-trans alle- thrin, bifenthrin, bioallethnn, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cyper- methrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta- cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate
  • Nicotinic acetylcholine receptor agonists from the class of
  • M.4A neonicotinoids for example acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or
  • M.6 Chloride channel activators from the class of avermectins and milbemycins for example abamectin, emamectin benzoate, ivermectin, lepimectin or milbemectin; M.7 Juvenile hormone mimics, such as
  • M.7A juvenile hormone analogues as hydroprene, kinoprene and methoprene; or others as
  • M.8A alkyl halides as methyl bromide and other alkyl halides, or
  • M.10B etoxazole M.1 1 Microbial disruptors of insect midgut membranes, for example bacillus thuringiensis or bacillus sphaericus and the insecticidal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thuringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp. tenebri- onis, or the Bt crop proteins: Cry1 Ab, Cry1 Ac, Cry1 Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1 ;
  • M.12 Inhibitors of mitochondrial ATP synthase for example
  • M.12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or M.12C propargite, or
  • M.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient for example chlorfenapyr, DNOC or sulfluramid
  • M.14 Nicotinic acetylcholine receptor (nAChR) channel blockers for example nereis- toxin analogues as bensultap, cartap hydrochloride, thiocyclam or thiosultap sodium
  • M.16 Inhibitors of the chitin biosynthesis type 1 as for example buprofezin;
  • Ecdyson receptor agonists such as diacylhydrazines, for example methoxyfeno- zide, tebufenozide, halofenozide, fufenozide or chromafenozide;
  • Octopamin receptor agonists as for example amitraz
  • M.21A METI acaricides and insecticides such as fenazaquin, fenpyroximate, pyrimidif- en, pyridaben, tebufenpyrad or tolfenpyrad, or
  • M.23 Inhibitors of the of acetyl CoA carboxylase such as Tetronic and Tetramic acid derivatives, for example spirodiclofen, spiromesifen or spirotetramat;
  • M.24A phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or
  • M.25 Mitochondrial complex II electron transport inhibitors such as beta-ketonitrile derivatives, for example cyenopyrafen or cyflumetofen
  • M.26 Ryanodine receptor-modulators from the class of diamides as for example flubendiamide, chloranthraniliprole (rynaxypyr®), cyanthraniliprole
  • M.X insecticidal active compounds of unknown or uncertain mode of action as for ex- ample azadirachtin, amidoflumet, benzoximate, bifenazate, bromopropylate, chinome- thionat, cryolite, dicofol, flufenerim, flometoquin, fluensulfone, flupyradifurone, piperonyl butoxide, pyridalyl, pyrifluquinazon, sulfoxaflor, or the compound
  • M.X.2 cyclopropaneacetic acid, 1 ,1 '-[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-4-[[(2- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy- 4,6a, 12b-trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H , 1 1 H-naphtho[2, 1 -b]pyrano[3,4-e]pyran- 3,6-diyl] ester, or the compound
  • M.X.5 1 -[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)- 1 H-1 ,2,4-triazole-5-amine, or actives on basis of bacillus firmus (Votivo, 1-1582).
  • the phthalamides M.26.1 and M.28.2 are both known from WO 2007/101540.
  • the an- thranilamide M.26.3 has been described in WO2005/077943.
  • the hydrazide compound M.26.4 has been described in WO 2007/043677.
  • the quinoline derivative flometoquin is shown in WO2006/013896.
  • the aminofuranone compounds flupyradifurone is known from WO 2007/1 15644.
  • the sulfoximine compound sulfoxaflor is known from
  • strobilurins azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, ene- stroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyribencarb, triclopy- ricarb/chlorodincarb, trifloxystrobin, 2-[2-(2,5-dimethyl-phenoxymethyl)-phenyl]-3- methoxy-acrylic acid methyl ester and 2 (2-(3-(2,6-dichlorophenyl)-1 -methyl- allylideneaminooxymethyl)-phenyl)-2-methoxyimino-N methyl-acetamide;
  • oxazolidinediones and imidazolinones famoxadone, fenamidone;
  • Inhibitors of complex II e.g. carboxamides
  • carboxanilides benodanil, bixafen, boscalid, carboxin, fenfuram, fenhexamid, fluopy- ram, flutolanil, furametpyr, isopyrazam, isotianil, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, tiadinil, 2-amino-4 methyl-thiazole-5- carboxanilide, N-(3',4',5' trifluorobiphenyl-2 yl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4 carboxamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3 difluoromethyl-1 -methyl-1 H pyra- zole-4-carboxamide, N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-1
  • respiration inhibitors diflumetorim; tecnazen;
  • ferimzone ametoctradin
  • silthiofam nitrophenyl derivates: binapacryl, dinobuton, di- nocap, fluazinam, nitrthal-isopropyl, organometal compounds: fentin salts, such as fen- tin-acetate, fentin chloride or fentin hydroxide;
  • F.II-1 C14 demethylase inhibitors (DMI fungicides, e.g. triazoles, imidazoles) triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusi- lazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobu- tanil, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole;
  • DMI fungicides e.g. triazoles
  • imidazoles imazalil, pefurazoate, oxpoconazole, prochloraz, triflumizole; pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, 1 -[rel-
  • morpholines aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph; piperidines: fenpropidin, piperalin; spiroketalamines: spiroxamine;
  • phenylamides or acyl amino acid fungicides benalaxyl, benalaxyl-M, kiralaxyl, met- alaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;
  • isoxazoles and iosothiazolones hymexazole, octhilinone;
  • Tubulin inhibitors benzimidazoles and thiophanates: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl;
  • triazolopyrimidines 5-chloro-7 (4-methylpiperidin-1 -yl)-6-(2,4,6-trifluorophenyl)- [1 ,2,4]triazolo[1 ,5 a]pyrimidine;
  • benzamides and phenyl acetamides diethofencarb, ethaboxam, pencycuron, fluopico- lide, zoxamide;
  • Actin inhibitors benzophenones: metrafenone;
  • anilino-pyrimidines cyprodinil, mepanipyrim, nitrapyrin, pyrimethanil;
  • F.V-2 Protein synthesis inhibitors (anilino-pyrimidines)
  • antibiotics blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomy- cin, streptomycin, oxytetracyclin, polyoxine, validamycin A;
  • MAP / Histidine kinase inhibitors e.g. anilino-pyrimidines
  • dicarboximides fluoroimid, iprodione, procymidone, vinclozolin;
  • phenylpyrroles fenpiclonil, fludioxonil;
  • F.VI-2 G protein inhibitors: quinolines: quinoxyfen;
  • organophosphorus compounds edifenphos, iprobenfos, pyrazophos;
  • dithiolanes isoprothiolane
  • Lipid peroxidation aromatic hydrocarbons: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;
  • F.VII-3 Carboxyl acid amides (CAA fungicides) cinnamic or mandelic acid amides: dimethomorph, flumorph, mandiproamid, pyrimorph; valinamide carbamates: benthiavalicarb, iprovalicarb, pyribencarb, valifenalate and N- (1 -(1 -(4-cyano-phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester; F.VII-4) Compounds affecting cell membrane permeability and fatty acids:
  • Inorganic active substances Bordeaux mixture, copper acetate, copper hy- droxide, copper oxychloride, basic copper sulfate, sulfur;
  • Organochlorine compounds e.g. phthalimides, sulfamides, chloronitriles: anilazine, chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, flusulfa- mide, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4- chloro-2-nitro-phenyl)-N-ethyl-4-methyl-benzenesulfonamide;
  • phthalimides e.g. phthalimides, sulfamides, chloronitriles
  • Inhibitors of glucan synthesis validamycin, polyoxin B;
  • F.IX-2 Melanin synthesis inhibitors: pyroquilon, tricyclazole, carpropamide, dicyclomet, fenoxanil;
  • phosphonates fosetyl, fosetyl-aluminum, phosphorous acid and its salts;
  • F.XI Growth regulators: abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flur- primidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N 6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydro- jasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate
  • Bacillus substilis strain with NRRL No. B-21661 e.g. Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest, Inc., USA.
  • Bacillus pumilus strain with NRRL No. B-30087 e.g. Sonata® and Ballad® Plus from AgraQuest, Inc., USA
  • Ulocladium oudemansii e.g. the product Botry-Zen from BotriZen Ltd., New Zealand
  • Chitosan e.g. Armour-Zen from BotriZen Ltd., New Zealand.
  • the animal pest i.e. the insects, arachnids and nematodes, the plant, soil or water in which the plant is growing can be contacted with the present compounds of formula (I) or composition(s) containing them by any application method known in the art.
  • "contacting” includes both direct contact (applying the compounds/compositions directly on the animal pest or plant, typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/compositions to the locus of the animal pest or plant).
  • the compounds of formula (I) or the pesticidal compositions comprising them may be used to protect growing plants and crops from attack or infestation by animal pests, especially insects, acaridae or arachnids by contacting the plant/crop with a pesticidally effective amount of compounds of formula (I).
  • crop refers both to growing and harvested crops.
  • the compounds of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants, such as cereal, root crops, oil crops, vegetables, spices, ornamentals, for ex- ample seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugar beet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • the compounds of the present invention are employed as such or in form of compositions by treating the insects or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from insecticidal attack with an insec- ticidally effective amount of the compound of formula (I).
  • the application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the insects.
  • the present invention also includes a method of combating animal pests which comprises contacting the animal pests, their habit, breeding ground, food supply, cultivated plants, seed, soil, area, material or environment in which the animal pests are growing or may grow, or the materials, plants, seeds, soils, surfaces or spaces to be protected from animal attack or infestation with a pesticidally effective amount of a mixture of at least one compound of formula (I).
  • animal pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of compounds of formula (I).
  • the application may be carried out before or after the infection of the locus, growing crops, or harvested crops by the pest.
  • the compounds of the invention can also be applied preventively to places at which occurrence of the pests is expected.
  • the compounds of formula (I) may be also used to protect growing plants from attack or infestation by pests by contacting the plant with a pesticidally effective amount of compounds of formula (I).
  • "contacting” includes both direct contact (applying the compounds/compositions directly on the pest and/or plant - typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/compositions to the locus of the pest and/or plant).
  • “Locus” means a habitat, breeding ground, plant, seed, soil, area, material or environment in which a pest or parasite is growing or may grow.
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This in- eludes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be included. These plant propagation materials may be treated prophylactically with a plant protection compound either at or before planting or transplanting.
  • a plant protection compound either at or before planting or transplanting.
  • cultivadas plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering.
  • Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-transtional modification of protein(s) (oligo- or polypeptides) poly for example by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties(e.g. as disclosed in Biotechnol Prog. 2001 Jul- Aug;17(4):720-8., Protein Eng Des Sel. 2004 Jan;17(1 ):57-66, Nat Protoc.
  • cultivar plants are to be understood also including plants that have been rendered tolerant to applications of specific classes of herbicides, such as hy- droxy-phenylpyruvate dioxygenase (HPPD) inhibitors; acetolactate synthase (ALS) inhibitors, such as sulfonyl ureas (see e. g. US 6,222,100, WO 01/82685, WO
  • EP-A-0242236, EP-A-242246) or oxynil herbicides see e. g. US 5,559,024) as a result of conventional methods of breeding or genetic engineering.
  • mutagenesis for example Clearfield® summer rape (Canola) being tolerant to imidazolinones, e. g. imazamox.
  • cultiva plants is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as a-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example Photorhabdus spp.
  • VIP vegetative insecticidal proteins
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
  • toxins produced by fungi such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
  • proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
  • ion channel blockers such as blockers of sodium or calcium channels
  • these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
  • Hybrid proteins are characterized by a new com- bination of protein domains, (see, for example WO 02/015701 ).
  • Further examples of such toxins or genetically-modified plants capable of synthesizing such toxins are dis-closed, for example, in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/018810 und WO 03/052073.
  • cultivars are to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
  • proteins are the so-called " pathogenesis-related proteins” (PR proteins, see, for example EP-A 0 392 225), plant disease resistance genes (for example potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4- lyso-zym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora).
  • PR proteins pathogenesis-related proteins
  • plant disease resistance genes for example potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum
  • T4- lyso-zym e. g. potato
  • cultiva plants is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting envi- ron-mental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • cultiva plants is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, for ex-ample oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape).
  • cultiva plants is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, for example potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato).
  • pesticidally effective amount means the amount of active ingredient (here of compound of formula (I)) needed to achieve an observable effect on growth, includ- ing the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various compounds/compositions used in the invention.
  • a pesticidally effective amount of the compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 20 g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active ingredient per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and/or insecticide.
  • the rate of application of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
  • the compounds of formula (I) are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part).
  • the compounds of the invention may also be applied against non-crop insect pests, such as ants, termites, wasps, flies, mosquitos, crickets, or cockroaches.
  • non-crop insect pests such as ants, termites, wasps, flies, mosquitos, crickets, or cockroaches.
  • compounds of formula (I) are preferably used in a bait composition.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • Solid baits can be formed into various shapes and forms suitable to the respective application e.g. granules, blocks, sticks, disks.
  • Liquid baits can be filled into various devices to ensure proper application, e.g. open containers, spray devices, droplet sources, or evaporation sources.
  • Gels can be based on aqueous or oily matrices and can be formulated to particular necessities in terms of stickiness, moisture retention or aging characteristics.
  • the bait employed in the composition is a product, which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitos, crickets etc. or cock- roaches to eat it.
  • Food stimulants are chosen, for example, but not exclusively, from animal and/or plant proteins (meat-, fish- or blood meal, insect parts, egg yolk), from fats and oils of animal and/or plant origin, or mono-, oligo- or polyorganosaccharides, especially from sucrose, lactose, fructose, dextrose, glucose, starch, pectin or even molasses or honey.
  • Fresh or decaying parts of fruits, crops, plants, animals, insects or specific parts thereof can also serve as a feeding stimulant.
  • Sex pheromones are known to be more insect specific.
  • the typical content of active ingredient is from 0.001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active ingredient.
  • Formulations of compounds of formula (I) as aerosols are highly suitable for the non-professional user for controlling pests such as flies, fleas, ticks, mosquitos or cockroaches.
  • Aerosol recipes are preferably composed of the active ingredient, solvents such as lower alcohols (e.g. methanol, ethanol, propanol, butanol), ketones (e.g. acetone, methyl ethyl ketone), paraffin hydrocarbons (e.g.
  • kerosenes having boiling ranges of approximately 50 to 250 °C, dimethylforma- mide, N-methylpyrrolidone, dimethyl sulfoxide, aromatic hydrocarbons such as toluene, xylene, water, furthermore auxiliaries such as emulsifiers such as sorbitol monooleate, oleyl ethoxylate having 3-7 mol of ethylene oxide, fatty alcohol ethoxylate, perfume oils such as ethereal oils, esters of medium fatty acids with lower alcohols, aromatic car- bonyl compounds, if appropriate stabilizers such as sodium benzoate, amphoteric sur- factants, lower epoxides, triethyl orthoformate and, if required, propellants such as propane, butane, nitrogen, compressed air, dimethyl ether, carbon dioxide, nitrous oxide, or mixtures of these gases.
  • emulsifiers such as sorbitol monooleate, oleyl ethoxylate having
  • the oil spray formulations differ from the aerosol recipes in that no propellants are used.
  • the content of active ingredient is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • the compounds of formula (I) and its respective compositions can also be used in mosquito and fumigating coils, smoke cartridges, vaporizer plates or long-term vapor- izers and also in moth papers, moth pads or other heat-independent vaporizer systems.
  • Methods to control infectious diseases transmitted by insects e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis
  • compounds of formula (I) and its respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like.
  • Insecticidal compositions for application to fibers, fabric, knitgoods, nonwovens, netting material or foils and tarpaulins preferably comprise a mixture including the insecticide, optionally a repellent and at least one binder.
  • Suitable repellents for example are ⁇ , ⁇ -Diethyl-meta-toluamide (DEET), N,N-diethylphenylacetamide (DEPA), 1 -(3-cyclohexan-1 -yl-carbonyl)-2-methylpiperine, (2-hydroxymethylcyclohexyl) acetic acid lactone, 2-ethyl-1 ,3-hexandiol, indalone, Methylneodecanamide (MNDA), a pyrethroid not used for insect control such as ⁇ (+/-)-3-allyl-2-methyl-4-oxocyclopent-2- (+)-enyl-(+)-trans-chrysantemate (Esbiothrin), a repellent derived from or identical with plant extracts like limonene, eugenol, (+)-Eucamalol (1 ), (-)-l -epi-eucamalol or crude plant extracts from plants like
  • Suitable binders are selected for example from polymers and copolymers of vinyl esters of aliphatic acids (such as such as vinyl acetate and vinyl versatate), acrylic and methacrylic esters of alcohols, such as butyl acrylate, 2-ethylhexylacrylate, and methyl acrylate, mono- and di-ethylenically unsaturated hydrocarbons, such as styrene, and aliphatic diens, such as butadiene.
  • vinyl esters of aliphatic acids such as such as vinyl acetate and vinyl versatate
  • acrylic and methacrylic esters of alcohols such as butyl acrylate, 2-ethylhexylacrylate, and methyl acrylate
  • mono- and di-ethylenically unsaturated hydrocarbons such as styrene
  • aliphatic diens such as butadiene.
  • the impregnation of curtains and bednets is done in general by dipping the textile ma- terial into emulsions or dispersions of the insecticide or spraying them onto the nets.
  • the compounds of formula (I) and its compositions can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the compounds of formula (I) are applied not only to the surrounding soil surface or into the under-floor soil in order to protect wooden materials but it can also be applied to lumbered articles such as surfaces of the under-floor con- crete, alcove posts, beams, plywoods, furniture, etc., wooden articles such as particle boards, half boards, etc.
  • the ant controller of the present invention is applied to the crops or the surrounding soil, or is directly applied to the nest of ants or the like.
  • the compounds of formula (I) are also suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant' s roots and shoots against soil pests and foliar insects.
  • the compounds of formula (I) are particularly useful for the protection of the seed from soil pests and the resulting plant's roots and shoots against soil pests and foliar insects.
  • the protection of the resulting plant's roots and shoots is preferred. More preferred is the protection of resulting plant's shoots from piercing and sucking insects, wherein the protection from aphids is most preferred.
  • the present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedling's roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with a compound of the general formula (I) or a salt thereof.
  • a method wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected from piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting. 5
  • the present invention also comprises seeds coated with or containing the compound of formula (I).
  • coated with and/or containing generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.
  • Suitable seed is seed of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugar beet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • the compound of formula (I) may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
  • the compound of formula (I) can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imidazolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO
  • the compound of formula (I) can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures). For example, a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/1 1376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
  • the seed treatment application of the compound of formula (I) is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • compositions which are especially useful for seed treatment are e.g.:
  • a Soluble concentrates (SL, LS)
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter
  • a FS formulation is used for seed treatment.
  • a FS formulation may comprise 1 -800 g/l of active ingredient, 1 -200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Especially preferred FS formulations of compounds of formula (I) for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient, from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g.
  • surfactant e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by
  • seed Treatment formulations may additionally also comprise binders and optionally colorants.
  • Binders can be added to improve the adhesion of the active materials on the seeds after treatment.
  • Suitable binders are homo- and copolymers from alkylene oxides like ethylene oxide or propylene oxide, polyvinylacetate, polyvinylalcohols, polyvinylpyrrol- idones, and copolymers thereof, ethylene-vinyl acetate copolymers, acrylic homo- and copolymers, polyethyleneamines, polyethyleneamides and polyethyleneimines, polysaccharides like celluloses, tylose and starch, polyolefin homo- and copolymers like olefin/maleic anhydride copolymers, polyurethanes, polyesters, polystyrene homo and copolymers
  • colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 1 12, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pig- ment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • the application rates of the compounds I are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seed and in particular from 1 g to 200 g per 100 kg of seed.
  • the invention therefore also relates to seed comprising a compound of the formula (I), or an agriculturally useful salt of I, as defined herein.
  • the amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • the compounds of formula (I) or the enantiomers or veterinary acceptable salts thereof are in particular also suitable for being used for combating parasites in and on animals.
  • An object of the present invention is therefore also to provide new methods to control parasites in and on animals.
  • Another object of the invention is to provide safer pesti- cides for animals.
  • Another object of the invention is further to provide pesticides for animals that may be used in lower doses than existing pesticides.
  • Another object of the invention is to provide pesticides for animals, which provide a long residual control of the parasites.
  • the invention also relates to compositions containing a parasiticidally effective amount of compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and an acceptable carrier, for combating parasites in and on animals.
  • the present invention also provides a method for treating, controlling, preventing and protecting animals against infestation and infection by parasites, which comprises oral- ly, topically or parenterally administering or applying to the animals a parasiticidally effective amount of a compound of formula (I) or the enantiomers or veterinarily acceptable salts thereof or a composition comprising it.
  • the invention also provides a process for the preparation of a composition for treating, controlling, preventing or protecting animals against infestation or infection by parasites which comprises a parasiticidally effective amount of a compound of formula (I) or the enantiomers or veterinarily acceptable salts thereof or a composition comprising it.
  • Activity of compounds against agricultural pests does not suggest their suitability for control of endo- and ectoparasites in and on animals which requires, for example, low, non-emetic dosages in the case of oral application, metabolic compatibility with the animal, low toxicity, and a safe handling.
  • compounds of formula (I) are suitable for combating endo- and ectoparasites in and on animals.
  • Compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are preferably used for controlling and preventing infestations and infections animals including warm-blooded animals (including humans) and fish.
  • mammals such as cattle, sheep, swine, camels, deer, horses, pigs, poultry, rabbits, goats, dogs and cats, water buffalo, donkeys, fallow deer and reindeer, and also in fur-bearing animals such as mink, chinchilla and raccoon, birds such as hens, geese, turkeys and ducks and fish such as fresh- and salt-water fish such as trout, carp and eels.
  • Compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are preferably used for controlling and preventing infestations and infections in domestic animals, such as dogs or cats.
  • Infestations in warm-blooded animals and fish include, but are not limited to, lice, biting lice, ticks, nasal bots, keds, biting flies, muscoid flies, flies, myiasitic fly larvae, chig- gers, gnats, mosquitoes and fleas.
  • the compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are suitable for systemic and/or non- systemic control of ecto- and/or endoparasites. They are active against all or some stages of development.
  • the compounds of formula (I) are especially useful for combating ectoparasites.
  • the compounds of formula (I) are especially useful for combating parasites of the fol- lowing orders and species (e.g. as above previously listed in the target pests if not explicitly listed hereunder), respectively:
  • Anoplurida e.g. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., and Solenopotes spp; Mallophagida (suborders Arnblycerina and Ischnocerina), e.g. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Trichodectes spp., and Felicola spp;
  • Roundworms Nematoda e.g. Wipeworms and Trichinosis (Trichosyringida), e.g.
  • Trichinellidae Trichinella spp.
  • Trichuridae Trichuris spp., Capillaria spp; Rhabditida, e.g. Rhabditis spp, Strongyloides spp., Helicephalobus spp,
  • Strongylida e.g. Strongylus spp., Ancylostoma spp., Necator americanus, Bunosto- mum spp. (Hookworm), Trichostrongylus spp., Haemonchus contortus., Ostertagia spp.
  • Cooperia spp. Nematodirus spp., Dictyocaulus spp., Cyathostoma spp., Oesoph- agostomum spp., Stephanurus dentatus, Ollulanus spp., Chabertia spp., Stephanurus dentatus , Syngamus trachea, Ancylostoma spp., Uncinaria spp., Globocephalus spp., Necator spp., Metastrongylus spp., Muellerius capillaris, Protostrongylus spp., Angi- ostrongylus spp., Parelaphostrongylus spp.
  • Camallanida e.g. Dracunculus medinensis (guinea worm)
  • Spirurida e.g. Thelazia spp. Wuchereria spp., Brugia spp., Onchocerca spp., Dirofilari spp. a, Dipetalonema spp., Setaria spp., Elaeophora spp., Spirocerca lupi, and Habro- nema spp;
  • Planarians (Plathelminthes):
  • Flukes e.g. Faciola spp., Fascioloides magna, Paragonimus spp., Dicro- coelium spp., Fasciolopsis buski, Clonorchis sinensis, Schistosoma spp., Trichobilhar- zia spp., Alaria alata, Paragonimus spp., and Nanocyetes spp,
  • Cercomeromorpha in particular Cestoda (Tapeworms), e.g. Diphyllobothrium spp., Tenia spp., Echinococcus spp., Dipylidium caninum, Multiceps spp., Hymenolepis spp.,
  • the compounds of formula (I) and compositions containing them are particularly useful for the control of pests from the orders Diptera, Siphonaptera and Ixodida.
  • the compounds of formula (I) also are especially useful for combating endoparasites (roundworms nematoda, thorny headed worms and planarians).
  • Administration can be carried out both prophylactically and therapeutically.
  • Administration of the active component(s) is carried out directly or in the form of suitable preparations, orally, topically/dermally or parenterally.
  • the term active component(s) as used above mean comprising at least one compound of formula (I) and eventually further active compound(s).
  • the compounds of formula (I) may be formulated as animal feeds, animal feed premixes, animal feed concentrates, pills, solutions, pastes, suspensions, drenches, gels, tablets, boluses and capsules. In addi- tion, the compounds of formula (I) may be administered to the animals in their drinking water.
  • the dosage form chosen should provide the animal with 0.01 mg/kg to 100 mg/kg of animal body weight per day of the formula (I) compound, preferably with 0.5 mg/kg to 100 mg/kg of animal body weight per day. 5
  • the compounds of formula (I) may be administered to animals parenteral- ly, for example, by intraruminal, intramuscular, intravenous or subcutaneous injection.
  • the compounds of formula (I) may be dispersed or dissolved in a physiologically acceptable carrier for subcutaneous injection.
  • the compounds of formula (I) may be formulated into an implant for subcutaneous administration.
  • the compound of formula (I) may be transdermally administered to animals.
  • the dosage form chosen should provide the animal with 0.01 mg/kg to 100 mg/kg of animal body weight per day of the compound of formula (I).
  • the compounds of formula (I) may also be applied topically to the animals in the form of dips, dusts, powders, collars, medallions, sprays, shampoos, spot-on and pour-on formulations and in ointments or oil-in-water or water-in-oil emulsions.
  • dips and sprays usually contain 0.5 ppm to 5,000 ppm and preferably 1 ppm to 3,000 ppm of the compound of formula (I).
  • the compounds of formula (I) may be formulated as ear tags for animals, particularly quadrupeds such as cattle and sheep. Suitable preparations are:
  • Solutions such as oral solutions, concentrates for oral administration after dilution, solutions for use on the skin or in body cavities, pouring-on formulations, gels;
  • Solid preparations such as powders, premixes or concentrates, granules, pellets, tablets, boluses, capsules; aerosols and inhalants, and active component containing shaped articles.
  • compositions suitable for injection are prepared by dissolving the active ingredient in a suitable solvent and optionally adding further ingredients such as acids, bases, buffer salts, preservatives, and solubilizers.
  • the solutions are filtered and filled sterile.
  • Suitable solvents are physiologically tolerable solvents such as water, alkanols such as ethanol, butanol, benzyl alcohol, glycerol, propylene glycol, polyethylene glycols, N- methyl-pyrrolidone, 2-pyrrolidone, and mixtures thereof.
  • the active component(s) can optionally be dissolved in physiologically tolerable vegetable or synthetic oils which are suitable for injection.
  • Suitable solubilizers are solvents which promote the dissolution of the active component in the main solvent or prevent its precipitation.
  • examples are polyvinylpyrrolidone, polyvinyl alcohol, polyoxyethylated castor oil, and polyoxyethylated sorbitan ester.
  • Suitable preservatives are benzyl alcohol, trichlorobutanol, p-hydroxybenzoic acid esters, and n-butanol.
  • Oral solutions are administered directly. Concentrates are administered orally after prior dilution to the use concentration. Oral solutions and concentrates are prepared according to the state of the art and as described above for injection solutions, sterile procedures not being necessary.
  • Solutions for use on the skin are trickled on, spread on, rubbed in, sprinkled on or sprayed on. 5
  • Solutions for use on the skin are prepared according to the state of the art and according to what is described above for injection solutions, sterile procedures not being necessary.
  • parasiticidally effective amount means the amount of active ingredient needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the parasiticidally effective amount can vary for the various compounds/compositions used in the invention.
  • a parasiticidally effective amount of the compositions will also vary according to the prevailing condi- tions such as desired parasiticidal effect and duration, target species, mode of application, and the like.
  • compositions which can be used in the invention can comprise generally from about 0.001 to 95% of the compound of formula (I).
  • the compounds of formula (I) in total amounts of 0.5 mg/kg to 100 mg/kg per day, preferably 1 mg/kg to 50 mg/kg per day.
  • Ready-to-use preparations contain the compounds acting against parasites, preferably ectoparasites, in concentrations of 10 ppm to 80 per cent by weight, preferably from 0.1 to 65 per cent by weight, more preferably from 1 to 50 per cent by weight, most prefer- ably from 5 to 40 per cent by weight.
  • Preparations which are diluted before use contain the compounds acting against ectoparasites in concentrations of 0.5 to 90 per cent by weight, preferably of 1 to 50 per cent by weight.
  • the preparations comprise the compounds of formula (I) against endo- parasites in concentrations of 10 ppm to 2 per cent by weight, preferably of 0.05 to 0.9 per cent by weight, very particularly preferably of 0.005 to 0.25 per cent by weight.
  • compositions comprising the compounds of formula (I) are applied dermally / topically.
  • the topical application is conducted in the form of compound-containing shaped articles such as collars, medallions, ear tags, bands for fixing at body parts, and adhesive strips and foils.
  • solid formulations which release compounds of formula (I) in total amounts of 10 mg/kg to 300 mg/kg, preferably 20 mg/kg to 200 mg/kg, most preferably 25 mg/kg to 160 mg/kg body weight of the treated animal in the course of three weeks.
  • thermoplastic and flexible plastics as well as elastomers and thermoplastic elastomers are used.
  • Suitable plastics and elastomers are polyvinyl resins, polyurethane, polyacrylate, epoxy resins, cellulose, cellulose derivatives, polyamides and polyester which are sufficiently compatible with the compounds of formula (I).
  • a detailed list of plastics and elastomers as well as preparation procedures for the shaped articles is given e.g. in WO 03/086075. 5
  • Compounds can in general be characterized e.g. by coupled High Performance Liquid Chromatography / mass spectrometry (HPLC/MS), by 1 H-NMR and/or by their melting points.
  • HPLC/MS High Performance Liquid Chromatography / mass spectrometry
  • RT HPLC retention time; m/z of the [M+H]+, [M+Na]+ or [M+K]+ peaks.
  • Analytical HPLC column 2 Phenomenex Kinetex 1 ,7 ⁇ XB-C18 100A; 50 x 2,1 mm Elution: A: acetonitrile + 0.1 % trifluoroacetic acid (TFA) / water + 0.1 % trifluoroacetic acid (TFA) in a ratio of from 5:95 to 95:5 in 1 .5 minutes at 50 °C.
  • RT HPLC retention time; m/z of the [M+H]+, [M+Na]+ or [M+K]+ peaks.
  • the biological activity of the compounds of formula (I) of the present invention can be evaluated in biological tests as described in the following.
  • the active compound is dissolved at the desired concentration in a mixture of 1 :1 (vohvol) distilled water : acetone.
  • the test solutions are prepared at the day of use (and, if not otherwise specified, in general at concentrations wt vol).
  • mortality control was measured at concentration of 500 ppm (wt/vol) and assessed in comparison to the untreated plant control plant.
  • the active compounds were formulated in cyclohexanone as a 10,000 ppm solution supplied in 1.3 ml ABgene® tubes. These tubes were inserted into an automated electrostatic sprayer equipped with an atomizing nozzle and they served as stock solutions for which lower dilutions were made in 50% acetone: 50% water (v/v). A nonionic surfactant (Kinetic®) was included in the solution at a volume of 0.01 % (v/v). Cotton plants at the cotyledon stage (one plant per pot) were sprayed by an automated electrostatic plant sprayer equipped with an atomizing spray nozzle. The plants were dried in the sprayer fume hood and then removed from the sprayer.
  • Kinetic® nonionic surfactant
  • Each pot was placed into a plastic cup and 10 to 12 whitefly adults (approximately 3-5 days old) were introduced.
  • the insects were collected using an aspirator and 0.6 cm, nontoxic Tygon® tubing (R- 3603) connected to a barrier pipette tip.
  • the tip, containing the collected insects was then gently inserted into the soil containing the treated plant, allowing insects to crawl out of the tip to reach the foliage for feeding.
  • Cups were covered with a reusable screened lid (150-micron mesh polyester screen PeCap from Tetko, Inc.).
  • Test plants were maintained in a growth room at 25°C and 20-40% relative humidity for 3 days, avoiding direct exposure to fluorescent light (24 hour photoperiod) to prevent trapping of heat inside the cup. Mortality was assessed 3 days after treatment, compared to untreated control plants.
  • the active compounds were formulated in 50:50 (v/v) acetone: water.
  • the test solution was prepared at the day of use.
  • Potted cowpea plants colonized with 100 - 150 aphids of various stages were sprayed after the pest population had been recorded. Population reduction was assessed after 24, 72, and 120 hours.
  • Dichromothrips corbetti adults used for bioassay were obtained from a colony maintained continuously under laboratory conditions.
  • the test com- pound was diluted to a concentration of 300 ppm (wt compound: vol diluent) in a 1 :1 mixture of acetone: water (vohvol) plus 0.01 % vol/vol Kinetic ® surfactant.
  • Thrips potency of each compound was evaluated by using a floral immersion technique. Plastic petri dishes were used as test arenas. All petals of individual, intact orchid flowers were dipped into treatment solution and allowed to dry. Treated flowers were placed into individual petri dishes along with 10 - 15 adult thrips. The petri dishes were then covered with lids. All test arenas were held under continuous light and a temperature of about 28°C for duration of the assay. After 4 days, the numbers of live thrips were counted on each flower, and along inner walls of each petri dish. The level of thrips mortality was extrapolated from pre-treatment thrips numbers.
  • the compounds C-1 , C-2, C-3, C-4, C-7, C-8 and C-10 showed a mortality of at least 75%.
  • test unit For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consists of 24-well-microtiter plates containing broad bean leaf disks. The compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO (dimethylsulfoxide). Different concentrations of formulated compounds were sprayed onto the leaf disks at 2.5 ⁇ , using a custom built micro atomizer, at two replications.
  • DMSO dimethylsulfoxide
  • the leaf disks were air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at about 23 ⁇ 1 °C and about 50 ⁇ 5 % relative humidity for 5 days. Aphid mortality and fecundity was then visually assessed.
  • the active compounds were formulated in cyclohexanone as a 10,000 ppm solution supplied in tubes.
  • the tubes were inserted into an automated electrostatic sprayer equipped with an atomizing nozzle and they served as stock solutions for which lower dilutions were made in 50% acetone:50% water (v/v).
  • a nonionic surfactant (Kinetic®) was included in the solution at a volume of 0.01 % (v/v).
  • Bell pepper plants at the first true-leaf stage were infested prior to treatment by placing heavily infested leaves from the main colony on top of the treatment plants. Aphids were allowed to transfer overnight to accomplish an infestation of 30-50 aphids per plant and the host leaves were removed. The infested plants were then sprayed by an automated electrostatic plant sprayer equipped with an atomizing spray nozzle. The plants were dried in the sprayer fume hood, removed, and then maintained in a growth room under fluorescent lighting in a 24-hours photoperiod at about 25°C and about 20- 40% relative humidity. Aphid mortality on the treated plants, relative to mortality on untreated control plants, was determined after 5 days.
  • the compounds C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9 and C-10 and C-5 at a concentration of the test solution of 800 ppm showed a mortality of at least 75%.
  • test unit For evaluating control of boll weevil (Anthonomus grandis) the test unit consists of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs.
  • the compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 20 ⁇ , using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at about 23 ⁇ 1 °C and about 50 ⁇ 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test, the compounds C-2, C-3, C-7 and C-10 at a concentration of the test solution of 2500 ppm showed a mortality of at least 75%.
  • the compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 5 ⁇ , using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at about 28 ⁇ 1 °C and about 80 ⁇ 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test the eggs which have been treated with 800 ppm of C-2, C-3, C-4 and C-7 respectively showed a mortality of at least 75%.
  • test unit For evaluating control of tobacco budworm (Heliothis virescens) the test unit consists of 96-well-microtiter plates containing an insect diet and 15-25 H. virescens eggs. 5
  • the compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 10 ⁇ , using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at about 28 ⁇ 1 °C and about 80 ⁇ 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test, the compound C-4, C-7 and C-10 at a concentration of the test solution of 800 ppm showed a mortality of at least 75%.

Abstract

The present invention relates to pesticidal methods for the use and application of substituted heterocyclic compounds of formula (I) and the stereoisomers, salts, tautomers and N-oxides thereof and to compositions comprising the same. The invention also relates to insecticidal heterocyclic compounds of formula (I) or of the compositions comprising such compounds for combating invertebrate pests and uses thereof. The heterocyclic compounds of the present invention are defined by the following general formula (I) wherein X, T, R1, R2, R3 and Het are defined as in the description.

Description

Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests
The present invention relates to pesticidal methods, to uses and to applications of heterocyclic compounds as described in the present invention and the stereoisomers, salts, tautomers and N-oxides thereof as well as compositions comprising them. The invention also relates to insecti- cidal heterocyclic compounds and/or to the compositions comprising such compounds for combating invertebrate pests.
Invertebrate pests and in particular insects, arthropods and nematodes destroy growing and harvested crops and attack wooden dwelling and commercial structures, thereby causing large economic loss to the food supply and to property. While a large number of pesticidal agents are known, due to the ability of target pests to develop resistance to said agents, there is an ongoing need for new agents for combating invertebrate pests such as insects, arachnids and nematodes. It is therefore an object of the present invention to provide compounds having a good pesticidal activity and showing a broad activity spectrum against a large number of different invertebrate pests, especially against difficult to control insects, arachnids and nematodes.
It has been found that these objectives can be achieved by heterocyclic compounds of the general formula (I), as defined below, including their stereoisomers, their salts, in particular their agriculturally or veterinary acceptable salts, their tautomers and their N-oxides.
Therefore, in a first aspect the present invention relates to methods for using heterocyclic compound of formula (I) or a composition comprising at least one compound of formula (I)
Figure imgf000002_0001
wherein
X, T are independently from one another O or S;
R1 is hydrogen, Ci-Cs-alkyl, C2-Cs-alkenyl, C2-Cs-alkynyl, Ci-C6-alkoxy, C3-C10- cycloalkyl, C4-Cio-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or R1 may form a three- to eleven-membered saturated, or partially unsaturated or aromatic carbo-or heterocyclic rings system, which may contain 1 to 4 heteroatoms selected from N-(RC)P, O, and S, wherein S may be oxidized and wherein the aforementioned groups and the carbo- or heterocyclic rings system may be unsubstituted, or partially or fully substituted by Ra;
Ra is each independently halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-
Ce-haloalkoxy, C3-C6-cycloalkyl, CN, ORb, NRbRc, N02, C(=0)ORb,
Figure imgf000002_0002
S(0)mRb, or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N-(RC)P, O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa;
Raa is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy or Ci-C6-haloalkoxy; Rb is each independently hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(RC)P, O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa
Rc is each independently hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkylcarbonyl, C1-C6 cycloalkyl, C1-C4 alkoxyalkyl, Ci-C4-alkoxycarbonyl or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(Raa)p, O and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa;
m is 0, 1 , or 2;
p is O or l ;
R2, R3 are each independently from one another hydrogen, halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-haloalkoxy, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6- cycloalkyl, Cs-Ce-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or S(0)mRb, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by Ra;
R3 and R2 may together form a =0, =C(Rd)2, =S, =N(RC), =NN(RC)2 group or a three- to six- membered carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(Rc)p, O, and S, wherein S may be oxidized and wherein the carbo- or heterocyclic ring may be substituted by Ra;
Rd is each independently C1-C4 alkyl, C1-C6 cycloalkyl, C1-C4 alkoxyalkyl, or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from
N(Rc)p, O, and S, wherein S may be oxidized and wherein the above cited groups may be substituted by Raa;
Het is three- to eleven-membered heterocyclic ring or ring system, which may contain 1 to 6 heteroatoms selected from N(RC)P, O and S, wherein S may be oxidized, where- in up to 3 C-atom of the heterocyclic ring may be independently selected from
C(=0), C(=NRC) and C(=S) and wherein the heterocyclic ring is substituted by Ra and/or (Rm)n;
Rm is each independently selected from, halogen, CN, N02, S(0)mRb, C(0)Ra, C(0)ORa, C(0)NRaRc and C(S)NRaRc, Ci-C6-alkyl, C3-C6-cycloalkyl, C2-C6- alkenyl, C2-C6-alkynyl, Ci-C6-alkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen;
n is 0, 1 or 2;
and/or stereoisomer or agriculturally or veterinary acceptable salts or tautomers or N-oxides thereof. One embodiment of the present invention is a method for combating or controlling invertebrate pests comprising contacting the invertebrate pests, or their food supply, habitat or breeding grounds with a heterocyclic compound of the general formula (I) as defined above or a composition comprising at least one compound of formula (I) as defined above.
One embodiment of the present invention is a method for protecting crops, plants, plant propagation material and/or growing plants from attack or infestation by invertebrate pests comprising contacting or treating the crops, plants, plant propagation material and growing plants, or soil, material, surface, space, area or water in which the crops, plants, plant propagation material is stored or the plant is growing, with a heterocyclic compound of the general formula (I) as de- fined above or a composition comprising at least one compound of formula (I) as defined above. One embodiment of the present invention is a method for treating, controlling, preventing or protecting animals against infestation or infection by parasites by administering or applying orally, topically or parenterally to the animals a heterocyclic compound of the general formula (I) as defined above or a composition comprising at least one compound of formula (I) as defined above.
In another aspect, the present inventions relates to heterocyclic compounds of formula (I) as above define and/or stereoisomer or agriculturally or veterinary acceptable salts or tautomers thereof.
Furthermore, the invention relates to processes for the synthesis of compounds of formula (I) according to the present invention wherein an intermediate compound of formula P-4 is used.
The present invention thus relates to intermediates compounds of formula P-4: , wherein # denotes the bond to P-4
Figure imgf000004_0001
P-4
wherein R1, R2, R3 and Het have the meaning as above defined for the compounds of formula (I)-
All the compounds of the present invention including if applied their stereoisomers, their tauto- mers, their salts or their N-oxides as well as compositions thereof are particularly useful for controlling invertebrate pests, in particular for controlling arthropods and nematodes and especially insects. Therefore, the invention relates to the use of a compound as disclosed in the present invention, for combating or controlling invertebrate pests, in particular invertebrate pests of the group of insects, arachnids or nematodes.
The term "compound(s) according to the invention" or "compound(s) of formula (I)" as used in the present invention refers to and comprises the compound(s) as defined herein and/or stereoisomers), salt(s), tautomer(s) or N-oxide(s) thereof. The term "compound(s) of the present invention" is to be understood as equivalent to the term "compound(s) according to the invention", therefore also comprising stereoisomer(s), salt(s), tautomer(s) or N-oxide(s) of compounds of formula (I).
The term "composition(s) according to the invention" or "composition(s) of the present invention" encompasses composition(s) comprising at least one compound of formula (I) according to the invention as defined above, therefore also including a stereoisomer, an agriculturally or veterinary acceptable salt, tautomer or an N-oxide of the compounds of formula (I).
The present invention relates to a composition comprising at least one compound according to the invention and at least one inert liquid and/or solid carrier. In particular, the invention relates to an agricultural or veterinary composition comprising at least one compound according to the invention and at least one liquid and/or solid carrier.
The present invention relates to a method for combating or controlling invertebrate pests of the group of insects, arachnids or nematodes, which method comprises contacting said pest or its food supply, habitat or breeding grounds with a pesticidally effective amount of at least one compound according to the invention.
The present invention also relates to a method for protecting growing plants from attack or infestation by invertebrate pests of the group of insects, arachnids or nematodes which method comprises contacting a plant, or soil or water in which the plant is growing or may grow, with a pesticidally effective amount of at least one compound according to the invention.
The present invention also relates to a method for the protection of plant propagation material, preferably seeds, from soil insects and of the seedlings' roots and shoots from soil and foliar insects comprising contacting the seeds before sowing and/or after pregermination with at least one compound according to the invention.
The present invention also relates to plant propagation material, preferably seed, comprising a compound according to the invention.
The present invention also relates to the use of a compound or composition according to the invention for combating or controlling invertebrate pests of the group of insects, arachnids or nematodes.
The present invention also relates to the use of a compound according to the invention for protecting growing plants from attack or infestation by invertebrate pests of the group of insects, arachnids or nematodes.
The present invention also relates to the use of a compound according to the invention for combating or controlling invertebrate parasites in and on animals.
The present invention also relates to a method for treating an animal infested or infected by parasites or for preventing animals from getting infested or infected by parasites or for protecting an animal against infestation or infection by parasites which comprises orally, topically or parenterally administering or applying to the animal a parasiticidally effective amount of a compound or composition according to the invention.
The present invention also relates to the use of a compound or composition according to the invention for the manufacture of a medicament for protecting an animal against infestation or infection by parasites or treating an animal infested or infected by parasites. Therefore, the present invention also relates to a process for the preparation of a composition for the above cited uses.
The present invention also relates to a compound according to the invention for use as a veteri- nary medicament as well as for use in the treatment, control, prevention or protection of animals against infestation or infection by parasites.
The heterocyclic compounds according to the present invention have not yet been described for pesticidal uses or pesticidal applications in agricultural industry or veterinary practice.
Certain substituted thiadiazole compounds are disclosed in DE 19742408288 and DE
19732306543 as having anticonvulsant activity. None of these documents discloses oxadiazoli- um or thiadiazolium derivatives compounds showing insecticidal activity or their insecticidal uses methods.
Heterocyclic substituted pyridinium derivatives and their use as pesticides have been disclosed WO 2009099929 as well as in WO 201 1017347 and in WO 201 1017351.
However, five-membered heterocyclic compounds with the characteristic substitution pattern as defined in the present invention have not yet been described.
Depending on the substitution pattern, the compounds of the formula (I) may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers. The invention provides both the single pure enantiomers or pure diastereomers of the compounds of formula (I), and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compound of formula (I) or its mixtures. Suitable compounds of the formula (I) also include all possible geometrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be present with respect to an alkene, carbon- nitrogen double-bond or amide group. The term "stereoisomer(s)" encompasses both optical isomers, such as enantiomers or diastereomers, the latter existing due to more than one center of chirality in the molecule, as well as geometrical isomers (cis/trans isomers). The present invention relates to every possible stereoisomer of the compounds of formula (I), i.e. to single enantiomers or diastereomers, as well as to mixtures thereof.
Depending on the substitution pattern, the compounds of the formulae (I) may be present in the form of their tautomers. Hence the invention also relates to the tautomers of the formula (I) and the stereoisomers, salts, tautomers and N-oxides of said tautomers.
The compounds of the present invention may be amorphous or may exist in one or more differ- ent crystalline states (polymorphs) or modifications which may have a different macroscopic properties such as stability or show different biological properties such as activities. The present invention includes both amorphous and crystalline compounds of the formula (I), mixtures of different crystalline states or modifications of the respective compound I, as well as amorphous or crystalline salts thereof.
Salts of the compounds of the formula (I) are preferably agriculturally and/or veterinary acceptable salts. They can be formed in a customary method, e.g. by reacting the compound with an acid of the anion in question if the compound of formula (I) has a basic functionality or by reacting an acidic compound of formula (I) with a suitable base.
Suitable agriculturally or veterinary useful salts are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, do not have any ad- verse effect on the action of the compounds according to the present invention. Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium (NhV) and substituted ammonium in which one to four of the hydrogen atoms are replaced by Ci-C4-alkyl, C1-C4- hydroxyalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl. Examples of substituted ammonium ions comprise methylammonium, isoprop- ylammonium, dimethylammonium, diisopropylammonium, trimethylammonium, tetrame- thylammonium, tetraethylammonium, tetrabutylammonium, 2-hydroxyethylammonium, 2-(2- hydroxyethoxy)ethyl-ammonium, bis(2-hydroxyethyl)ammonium, benzyltrimethylammonium and benzyltriethylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(Ci-C4- alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium.
Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting the compounds of the formulae I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
The term " N-oxide" includes any compound of the present invention which has at least one tertiary nitrogen atom that is oxidized to an N-oxide moiety.
The organic moieties groups mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members. The prefix Cn-Cm indicates in each case the possible number of carbon atoms in the group.
"Halogen" will be taken to mean fluoro, chloro, bromo and iodo.
The term "partially or fully halogenated" will be taken to mean that 1 or more, e.g. 1 , 2, 3, 4 or 5 or all of the hydrogen atoms of a given radical have been replaced by a halogen atom, in particular by fluorine or chlorine.
The term "Cn-Cm-alkyl" as used herein (and also in Cn-Cm-alkylamino, di-Cn-Cm-alkylamino, Cn- Cm-alkylaminocarbonyl, di-(Cn-Cm-alkylamino)carbonyl, Cn-Cm-alkylthio, Cn-Cm-alkylsulfinyl and Cn-Cm-alkylsulfonyl) refers to a branched or unbranched saturated hydrocarbon group having n to m, e.g. 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, for example methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 -methylpropyl, 2-methylpropyl, 1 ,1 -dimethylethyl, pentyl, 1 - methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1 -ethylpropyl, hexyl, 1 ,1 - dimethylpropyl, 1 ,2-dimethylpropyl, 1 -methylpentyl, 2-methylpentyl, 3-methylpentyl, 4- methylpentyl, 1 ,1 -dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3- dimethylbutyl, 3,3-dimethylbutyl, 1 -ethylbutyl, 2-ethylbutyl, 1 ,1 ,2-trimethylpropyl, 1 ,2,2- trimethylpropyl, 1 -ethyl-1 -methylpropyl, 1 -ethyl-2-methylpropyl, heptyl, octyl, 2-ethylhexyl, nonyl and decyl and their isomers. Ci-C4-alkyl means for example methyl, ethyl, propyl, 1 -methylethyl, butyl, 1 -methylpropyl, 2-methylpropyl or 1 ,1 -dimethylethyl.
The term "Cn-Cm-haloalkyl" as used herein (and also in Cn-Cm-haloalkylsulfinyl and Cn-Cm- haloalkylsulfonyl) refers to a straight-chain or branched alkyl group having n to m carbon atoms, e.g. 1 to 10 in particular 1 to 6 carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, for example Ci-C4-haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodi- fluoromethyl, 1 -chloroethyl, 1 -bromoethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2- trichloroethyl, pentafluoroethyl and the like. The term Ci-Cio-haloalkyl in particular comprises Ci-C2-fluoroalkyl, which is synonym with methyl or ethyl, wherein 1 , 2, 3, 4 or 5 hydrogen atoms are substituted by fluorine atoms, such as fluoromethyl, difluoromethyl, trifluoromethyl, 1 - fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl and pentafluoromethyl.
Similarly, "Cn-Cm-alkoxy" and "Cn-Cm-alkylthio" (or Cn-Cm-alkylsulfenyl, respectively) refer to straight-chain or branched alkyl groups having n to m carbon atoms, e.g. 1 to 10, in particular 1 to 6 or 1 to 4 carbon atoms (as mentioned above) bonded through oxygen (or sulfur linkages, respectively) at any bond in the alkyl group. Examples include Ci-C4-alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, isobutoxy and tert-butoxy, further C1-C4- alkylthio such as methylthio, ethylthio, propylthio, isopropylthio, and n-butylthio.
Accordingly, the terms "Cn-Cm-haloalkoxy" and "Cn-Cm-haloalkylthio" (or Cn-Cm-haloalkylsulfenyl, respectively) refer to straight-chain or branched alkyl groups having n to m carbon atoms, e.g. 1 to 10, in particular 1 to 6 or 1 to 4 carbon atoms (as mentioned above) bonded through oxygen or sulfur linkages, respectively, at any bond in the alkyl group, where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, for example Ci-C2-haloalkoxy, such as chloromethoxy, bromomethoxy, dichloromethoxy, trichlorometh- oxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoro- methoxy, chlorodifluoromethoxy, 1 -chloroethoxy, 1 -bromoethoxy, 1 -fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy and pentafluoroethoxy, further C1-C2- haloalkylthio, such as chloromethylthio, bromomethylthio, dichloromethylthio, trichloromethyl- thio, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorofluoromethylthio, dichlorofluo- romethylthio, chlorodifluoromethylthio, 1 -chloroethylthio, 1 -bromoethylthio, 1 -fluoroethylthio, 2- fluoroethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro- 2,2-difluoroethylthio, 2,2-dichloro-2-fluoroethylthio, 2,2,2-trichloroethylthio and pentafluoroethyl- thio and the like. Similarly the terms Ci-C2-fluoroalkoxy and Ci-C2-fluoroalkylthio refer to C1-C2- fluoroalkyl which is bound to the remainder of the molecule via an oxygen atom or a sulfur atom, respectively.
The term "C2-Cm-alkenyl" as used herein intends a branched or unbranched unsaturated hydrocarbon group having 2 to m, e.g. 2 to 10 or 2 to 6 carbon atoms and a double bond in any posi- tion, such as ethenyl, 1 -propenyl, 2-propenyl, 1 -methyl-ethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 -methyl-2-propenyl, 2-methyl-2-propenyl, 1 - pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1 -methyl-1 -butenyl, 2-methyl-1 -butenyl, 3-methyl- 1 -butenyl, 1 -methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1 -methyl-3-butenyl, 2- methyl-3-butenyl, 3-methyl-3-butenyl, 1 ,1 -dimethyl-2-propenyl, 1 ,2-dimethyl-1 -propenyl, 1 ,2- dimethyl-2-propenyl, 1 -ethyl-1 -propenyl, 1 -ethyl-2-propenyl, 1 -hexenyl, 2-hexenyl, 3-hexenyl, 4- hexenyl, 5-hexenyl, 1 -methyl-1 -pentenyl, 2-methyl-1 -pentenyl, 3-methyl-1 -pentenyl, 4-methyl-1 - pentenyl, 1 -methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1 -methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1 -methyl- 4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1 ,1 -dimethyl-2- butenyl, 1 ,1 -dimethyl-3-butenyl, 1 ,2-dimethyl-1 -butenyl, 1 ,2-dimethyl-2-butenyl, 1 ,2-dimethyl-3- butenyl, 1 ,3-dimethyl-1 -butenyl, 1 ,3-dimethyl-2-butenyl, 1 ,3-dimethyl-3-butenyl, 2,2-dimethyl-3- butenyl, 2, 3-dimethyl-1 -butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1 - butenyl, 3,3-dimethyl-2-butenyl, 1 -ethyl-1 -butenyl, 1 -ethyl-2-butenyl, 1 -ethyl-3-butenyl, 2-ethyl-1 - butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1 ,1 ,2-trimethyl-2-propenyl, 1 -ethyl-1 -methyl-2- propenyl, 1 -ethyl-2-methyl-1 -propenyl and 1 -ethyl-2-methyl-2-propenyl.
The term "C2-Cm-alkynyl" as used herein refers to a branched or unbranched unsaturated hydrocarbon group having 2 to m, e.g. 2 to 10 or 2 to 6 carbon atoms and containing at least one triple bond, such as ethynyl, propynyl, 1 -butynyl, 2-butynyl, and the like.
The term "Cn-Cm-alkoxy-Cn-Cm-alkyl" as used herein refers to alkyl having n to m carbon atoms, e.g. like specific examples mentioned above, wherein one hydrogen atom of the alkyl radical is replaced by an Cn-Cm-alkoxy group; wherein the value of n and m of the alkoxy group are independently chosen from that of the alkyl group .
The suffix " -carbonyl" in a group or " C(=0)" denotes in each case that the group is bound to the remainder of the molecule via a carbonyl C=0 group. This is the case e.g. in alkylcarbon- yl, haloalkylcarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxycarbonyl, haloalkoxycarbonyl.
The term "aryl" as used herein refers to a mono-, bi- or tricyclic aromatic hydrocarbon radical such as phenyl or naphthyl, in particular phenyl.
The term "ring system" denotes two or more directly connected rings.
The term "cycloalkylcycloalkyl" denotes as well as the term " cycloalkyl which may be substituted by cycloalkyl" a cycloalkyl substitution on another cycloalkyl ring, wherein each cycloalkyl ring independently has from 3 to 7 carbon atom ring members and the cycloalkyls are linked through one single bond or have one common carbon atom. Examples of cycloalkylcycloalkyl include cyclopropylcyclopropyl (e.g. 1 ,1 '-bicyclopropyl-2-yl), cyclohexylcyclohexyl wherein the two rings are linked through one single common carbon atom (e.g. 1 ,1 '-bicyclohexyl-2-yl), cy- clohexylcyclopentyl wherein the two rings are linked through one single bond (e.g. 4- cyclopentylcyclohexyl) and their different stereoisomers such as (1 R,2S)-1 , 1 '-bicyclopropyl-2-yl and (1 R,2R)-1 ,1 '-bicyclopropyl-2-yl. The term "C3-Cm-cycloalkyl" as used herein refers to a monocyclic ring of 3- to m-membered saturated cycloaliphatic radicals, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohep- tyl, cyclooctyl and cyclodecyl.
The term "3- to 6-membered carbocyclic ring" as used herein refers to cyclopropane, cyclobu- tane, cyclopentane and cyclohexane rings.
The term "3-, 4-, 5-, 6- or 7-membered saturated, partially unsaturated or aromatic heterocyclic ring which may contain 1 , 2, 3 or 4 heteroatoms" or "containing heteroatom groups", wherein those heteroatom(s) (group(s)) are selected from N (N-substituted groups), O and S (S- substituted groups) as used herein refers to monocyclic radicals, the monocyclic radicals being saturated, partially unsaturated or aromatic. The heterocyclic radical may be attached to the remainder of the molecule via a carbon ring member or via a nitrogen ring member.
Examples of 3-, 4-, 5-, 6- or 7-membered saturated heterocyclyl or heterocyclic rings include: Oxiranyl, aziridinyl, azetidinyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3- tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2- imidazolidinyl, 4-imidazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 3-isoxazolidinyl, 4- isoxazolidinyl, 5-isoxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 3-isothiazolidinyl, 4- isothiazolidinyl, 5-isothiazolidinyl, 1 ,2,4-oxadiazolidin-3-yl, 1 ,2,4-oxadiazolidin 5 yl, 1 ,2,4- thiadiazolidin-3-yl, 1 ,2,4-thiadiazolidin-5-yl, 1 ,2,4-triazolidin-3-yl,-1 ,3,4-oxadiazolidin-2-yl, 1 ,3,4- thiadiazolidin-2-yl, 1 ,3,4-triazolidin-2-yl, 2-tetrahydropyranyl, 4-tetrahydropyranyl, 1 ,3-dioxan-5- yl, 1 ,4-dioxan-2-yl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 3-hexahydropyridazinyl, 4- hexahydropyridazinyl, 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl,
2- piperazinyl, 1 ,3,5-hexahydrotriazin-2-yl and 1 ,2,4-hexahydrotriazin-3-yl, 2-morpholinyl, 3- morpholinyl, 2-thiomorpholinyl, 3-thiomorpholinyl, 1 -oxothiomorpholin-2-yl, 1 -oxothiomorpholin-
3- yl, 1 ,1 -dioxothiomorpholin-2-yl, 1 ,1 -dioxothiomorpholin-3-yl, hexahydroazepin-1 -, -2-, -3- or -4- yl, hexahydrooxepinyl, hexahydro-1 ,3-diazepinyl, hexahydro-1 ,4-diazepinyl, hexahydro-1 ,3- oxazepinyl, hexahydro-1 ,4-oxazepinyl, hexahydro-1 ,3-dioxepinyl, hexahydro-1 ,4-dioxepinyl and the like.
Examples of 3-, 4-, 5-, 6- or 7-membered partially unsaturated heterocyclyl or heterocyclic rings include: 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3- dihydrothien-2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2- yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin 3 yl, 2-isoxazolin-4-yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5-yl, 3-isoxazolin-5-yl, 4- isoxazolin-5-yl, 2-isothiazolin-3-yl, 3-isothiazolin-3-yl, 4-isothiazolin-3-yl, 2-isothiazolin-4-yl, 3- isothiazolin-4-yl, 4-isothiazolin-4-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2,3 dihydropyrazol-1 -yl, 2,3-dihydropyrazol-2-yl, 2,3-dihydropyrazol-3-yl, 2,3-dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4-dihydropyrazol-1 -yl, 3,4-dihydropyrazol-3-yl, 3,4-dihydropyrazol-4- yl, 3,4-dihydropyrazol-5-yl, 4,5-dihydropyrazol-1 -yl, 4,5-dihydropyrazol-3-yl, 4,5-dihydropyrazol-
4- yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrooxazol- 4-yl, 2,3-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4- yl, 3,4-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4- yl, 2-, 3-, 4-, 5- or 6-di- or tetrahydropyridinyl, 3-di- or tetrahydropyridazinyl, 4-di- or tetrahydro- pyridazinyl, 2-di- or tetrahydropyrimidinyl, 4-di- or tetrahydropyrimidinyl, 5-di- or tetrahydropyrimidinyl, di- or tetrahydropyrazinyl, 1 ,3, 5-di- or tetrahydrotriazin-2-yl, 1 ,2, 4-di- or tetrahydrotriazin- 3-yl, 2,3,4,5-tetrahydro[1 H]azepin-1 -, -2-, -3-, -4-, -5-, -6- or -7-yl, 3,4,5,6-tetrahydro[2H]azepin- 2-, -3-, -4-, -5-, -6- or -7-yl, 2,3,4,7 tetrahydro[1 H]azepin-1 -, -2-, -3-, -4-, -5-, -6- or -7-yl, 2,3,6,7 tetrahydro[1 H]azepin-1 -, -2-, -3-, -4-, -5-, -6- or -7-yl, tetrahydrooxepinyl, such as 2,3,4,5- tetrahydro[1 H]oxepin-2-, -3-, -4-, -5-, -6- or -7-yl, 2,3,4,7 tetrahydro[1 H]oxepin-2-, -3-, -4-, -5-, -6- or -7-yl, 2,3,6,7 tetrahydro[1 H]oxepin-2-, -3-, -4-, -5-, -6- or -7-yl, tetrahydro-1 ,3-diazepinyl, tet- rahydro-1 ,4-diazepinyl, tetrahydro-1 ,3-oxazepinyl, tetrahydro-1 ,4-oxazepinyl, tetra hydro- 1 ,3- dioxepinyl and tetrahydro-1 ,4-dioxepinyl.
Examples of 5- or 6-membered aromatic heterocyclic (hetaryl) or heteroaromatic rings are: 2- furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2- oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1 ,3,4-triazol-2-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4- pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl.
A "C2-Cm-alkylene" is divalent branched or preferably unbranched saturated aliphatic chain having 2 to m, e.g. 2 to 7 carbon atoms, for example CH2CH2, -CH(CH3)-, CH2CH2CH2,
CH(CH3)CH2, CH2CH(CH3), CH2CH2CH2CH2, CH2CH2CH2CH2CH2, CH2CH2CH2CH2CH2CH2, and CH2CH2CH2CH2CH2CH2CH2. Embodiments and preferred compounds of the present invention for use in pesticidal methods and for insecticidal application purposes are outlined in the following paragraphs.
The remarks made below concerning preferred embodiments of the variables (substituents) of the compounds according to the invention, especially with respect to their substituents X, T, R1, Ra, Raa, Rb, Rc, R2, R3, Rd, Rm, Rma, m, n, p and Het are valid both on their own and, in particular, in every possible combination with each other and where applicable, the uses, the methods and the compositions according to the invention.
In a particular embodiment, the variables of the compounds of formula (I) have the following meanings, these meanings, both on their own and in combination with one another, being particular embodiments of the compounds of the formula (I):
In one preferred embodiment of the compounds of formula (I), T is O. These compounds correspond to the formula 1.1 .
In a further embodiment of the compounds of the formula (I), T is S. These compounds correspond to the formula 1.2.
Figure imgf000011_0001
In a first preferred embodiment of the compounds of formula (I), X is S. These compounds respond to the formula I. A. In another embodiment of the compounds of formula (I), X is O. These compounds correspond to the formula I.B.
Figure imgf000012_0001
Compounds of formula (I) wherein X is S and T is O correspond to compounds of formula 1.1 . A. Compounds of formula (I) wherein X is S and T is S correspond to compounds of formula I.2.A. Compounds of formula (I) wherein X is O and T is O correspond to compounds of formula I.1 .B. Compounds of formula (I) wherein X is O and T is S correspond to compounds of formula I.2.B.
In an embodiment, R1 is hydrogen, CrC8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, d-C6-alkoxy, C3- C6-cycloalkyl, C4-Ci0-cycloalkenyl or C5-Cn-cycloalkylcycloalkyl, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by Ra, wherein Ra has the meaning as hereunder described.
In another embodiment, R1 is a three- to ten-membered saturated, or partially saturated or heterocyclic ring system, which may contain 1 to 3 heteroatoms selected from N(RC)P, O, and S, wherein S may be oxidized and which heterocyclic ring may be unsubstituted or substituted by Ra.
In a further embodiment, R1 is hydrogen, Ci-C4-alkyl, C2-C8-alkenyl, CrC6-alkoxy, C3-C6- cycloalkyl or C5-Cn-cycloalkylcycloalkyl, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by halogen.
In a further embodiment R1 is H, Ci-C4-alkyl, C2-C8-alkenyl, C3-C6-cycloalkyl, wherein the C- atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by halogen.
In another embodiment R1 is CrC2-alkyl substituted by halogen, preferably by F; particularly R1 is CF3 or CH2CHF2.
In another embodiment, R1 is C2-C4-alkenyl, preferably CHCH2.
In another embodiment R1 is C3-C6-cycloalkyl, preferably cyclopropyl.
In another embodiment R1 is CrC2-alkyl, preferably CH3 or CH2CH3.
In one preferred embodiment R1 is CH3.
In another embodiment R1 is H.
In an embodiment, Ra is halogen, CrC6-alkyl, CrC6-haloalkyl, CrC6-alkoxy, CrC6-haloalkoxy,
C3-C6-cycloalkyl, CN, ORb, NRbRc, N02, phenyl, pyridyl, thiazyl, furanyl, pyrimidinyl or thienyl, which ring system may be unsubstituted or substituted by Raa.
In a further embodiment, Ra is halogen, Ci-C4-alkyl, Ci-C4-haloalkyl or C3-C6-cycloalkyl.
In a further embodiment, Ra is halogen.
In an embodiment, Rb is hydrogen, CrC6-alkyl, CrC6-haloalkyl, CrC6-alkoxy, CrC6-haloalkoxy, phenyl, pyridyl, thiazyl or thienyl, wherein the carbo- or heterocyclic rings may be substituted by aa
R' In a further embodiment, Rb is hydrogen, CrC6-alkyl, CrC6-haloalkyl, d-C6-alkoxy or CrC6- haloalkoxy.
In a further embodiment, Rb is hydrogen, CrC6-alkyl or CrC6-haloalkyl
In an embodiment, Rb is CrC6-alkyl or CrC6-haloalkyl.
In an embodiment, Rb is H.
In an embodiment, Rc is hydrogen, CrC4-alkyl, CrC4-haloalkyl, CrC4-alkylcarbonyl, CrC6 cycloalkyi, C1-C4 alkoxyalkyi, CrC4-alkoxycarbonyl, phenyl, pyridyl, thiazyl or thienyl wherein the carbo- or heterocyclic rings may be substituted by Raa.
In a further embodiment, Rc is hydrogen, CrC4-alkyl, CrC4-haloalkyl, CrC4-alkylcarbonyl, CrC6 cycloalkyi, C1-C4 alkoxyalkyi or CrC4-alkoxycarbonyl.
In an embodiment, Rc is hydrogen, CrC6-alkyl or CrC6-haloalkyl
In an embodiment, Rc is CrC6-alkyl or CrC6-haloalkyl.
In an embodiment, Rc is H.
In an embodiment, Raa is halogen, CrC6-alkyl or CrC6-haloalkyl.
In an embodiment, Raa is CrC6-alkoxy or CrC6-haloalkoxy.
In an embodiment, Raa is halogen.
In an embodiment, m is 0.
In another embodiment, m is 1.
In another embodiment, m is 2.
In an embodiment, p is 0.
In another embodiment, p is 1 .
In an embodiment, R2 is hydrogen, halogen, CN or CrC4-alkyl which may be substituted by halogen.
In a further embodiment, R2 is hydrogen or CrC2-alkyl, particularly CH3.
In one preferred embodiment, R2 is H.
In an embodiment, R2 and R3 are each independently from one another hydrogen, halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-haloalkoxy, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, Cs-Ce-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or S(0)mRb, wherein the C- atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by Ra. In an embodiment, R3 is hydrogen, halogen, CN, Ci-C6-alkyl, Ci-C2-alkoxy-Ci-C2-alkyl or C3-C6- cycloalkyl, wherein the C-atoms of the aforementioned groups may be substituted by halogen or CN.
In a further embodiment, R3 is CrC6-haloalkyl, preferably CrC2-haloalkyl, particularly halome- thyl, such as CF3 or CHF2.
In another embodiment, R3 is Ci-C2-alkoxy-Ci-C2-alkyl, preferably Ci-C2-alkoxy-methyl, particularly CH2OCH3.
In another embodiment, R3 is C3-C6-cycloalkyl, preferably cyclopropyl which may be substituted, preferably by halogen or cyano.
In another embodiment, R3 is C2-C6-alkyl, preferably C2-C4-alkyl, particularly CH2CH3 or C(CH3)3.
In another preferred embodiment, R3 is CrC6-alkyl, preferably CrC2-alkyl, particularly CH3. In another preferred embodiment, R3 is halogen, preferably CI or F, particularly F. In another embodiment, R3 is H.
In another embodiment, R3 is CN.
In another embodiment, R2 and R3 form a five- or six-membered saturated carbocyclic ring, such as cyclopentyl or cyclohexyl, which ring being unsubstituted or substituted by one or more groups Ra, wherein Ra when substituting the R2 and R3 groups is preferably halogen, cyano or halomethyl.
In another embodiment, R2 and R3 form a five- or six-membered saturated heterocyclic ring, which contains 1 or 2, preferably 1 , heteroatom(s) selected from N-Rc, O, and S, wherein S may be oxidised, which heterocyclic ring being unsubstituted or substituted by one or more groups Ra, wherein Ra when substituting the R2 and R3 groups is preferably halogen, cyano or halomethyl and Rc when substituting the R2 and R3 groups preferably denotes CrC2-alkyl, particularly CH3, or CrC2-alkylcarbonyl, particularly acetyl.
In an embodiment, n is 0.
In another embodiment, n is 1 .
In another embodiment, n is 2.
In an embodiment, Rm is halogen, CN, N02, S(0)mRb, C(0)Ra, C(0)ORa, C(0)NRaRc,
C(S)NRaRc, d-Ce-alkyl, C3-C6-cycloalkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-alkoxy, C2-C6- alkenyloxy or C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubsti- tuted, partially or fully substituted by halogen and the remaining variables in the meaning of Rm are as above defined.
In a further embodiment, Rm is halogen, CN, Ci-C6-alkyl, C3-C6-cycloalkyl, C2-C6-alkenyl, C2-C6- alkynyl, Ci-C6-alkoxy, C2-C6-alkenyloxy or C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen.
In a further embodiment, Rm is halogen, CN, Ci-C6-alkyl, C3-C6-cycloalkyl, C2-C6-alkenyl, C2-C6- alkynyl, Ci-C6-alkoxy, C2-C6-alkenyloxy or C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen.
In a further embodiment, Rm is halogen, Ci-C6-haloalkyl or Ci-C6-alkoxy.
In a further embodiment, Rm is halogen, CN or Ci-C2-haloalkyl.
In a further embodiment, Rm is halogen or Ci-C2-haloalkyl.
In one preferred embodiment, Rm is halogen, preferably Br, CI or F, particularly CI.
In another preferred embodiment, Rm is Ci-C2-haloalkyl, preferably halomethyl such as CHF2 or
CF3, particularly CF3.
In an embodiment Het is a five- or six-membered saturated, partially unsaturated or aromatic heterocyclic ring, which may contain 1 to 4 heteroatoms selected from N(RC)P, O and S, wherein the heterocyclic ring is substituted by (Rm)n and the remaining variables in the meaning of Het are as above defined.
In an embodiment Het is a five- or six-membered saturated, partially unsaturated or aromatic heterocyclic ring, which may contain 1 to 2 heteroatoms selected from N(RC)P, O and S, wherein the heterocyclic ring is substituted by (Rm)n.
In an embodiment Het is a five-membered aromatic heterocyclic ring, which contains 2 heteroa- toms selected from N(RC)P, O and S, wherein the heterocyclic ring is substituted by (Rm)n.
In an embodiment Het is a five-membered saturated heterocyclic ring, which contains 1 heteroa- tom selected from N(RC)P, O and S, preferably O, wherein the heterocyclic ring is substituted by In an embodiment Het is a six-membered aromatic heterocyclic ring, which contains 2 heteroa- toms selected from N(RC)P, O and S, preferably N(RC)P, wherein the heterocyclic ring is substituted by (Rm)n.
In an embodiment Het is a six-membered aromatic heterocyclic ring, which contains 1 heteroa- tom selected from N(RC)P, O and S, preferably N(RC)P, wherein the heterocyclic ring is substitut- ed by (Rm)n.
In an embodiment Het is pyridyl which is substituted by (Rm)n.
In an embodiment Het is tetrahydrofuryl which is substituted by (Rm)n.
In another embodiment, Het is selected from any one of the following ring systems D-1 to D-55:
Figure imgf000015_0001
D-1 D-2 D-3 D-4 D-5
Figure imgf000015_0002
D-6 D-7 D-8 D-9 D-10
Figure imgf000015_0003
D-11 D-12 D-13 D-14 D-15
(
D-16 D-17 D-18 D-19 D-20
Figure imgf000015_0005
D-21 D-22 D-23 D-24 D-25 5
Figure imgf000016_0001
D-26 D-28 D-29 D-30
D-27
Figure imgf000016_0002
D-31 D-32 D-33 D-34 D-35
Figure imgf000016_0003
D-36 D-37 D-38 D-39 D^O
(
Figure imgf000016_0004
D-46 D-47 D-48 D-49 D-50
Figure imgf000016_0005
D-51 D-52 D-53 D-54 D-55 wherever used in a structure, the following: denotes the bond in formula (I). In a further embodiment Het is selected from any one of the following ring systems:
Figure imgf000016_0006
D-1 D-2 D-3 D-5 D-6 D-7 .X N N-a -Ν p. (R <Rm)" (Rm)" _N
Figure imgf000016_0007
(Rm A)" N
D-16 D-17 D-20 D-22 D-23 D-24
Figure imgf000017_0001
Figure imgf000017_0002
D-36
In a further embodiment, Het is selected from the following rings systems D-2, D-22, D-25, D- 28, D-29 and D-54:
Figure imgf000017_0003
D-2 D-22 D-25 D-28 D-29 D-54
wherein
Rm is preferably halogen or halomethyl.
In a further embodiment Het is selected from the following rings systems D-2, D-25 or D-54:
Figure imgf000017_0004
D-2 D-25 D-54 , wherein
Rm is preferably halogen, particularly CI, Br or F or Rm is halomethyl, particularly CF3.
In another embodiment Het is selected from the following rings systems D-2a, D-2b, D-2c, D-
25a and D-54a:
Figure imgf000017_0005
wherein Rm and Rma are independently from each other selected from CI, Br, F or CF3.
In another embodiment Het is D-2, preferably D-2b or D-2c, particularly D-2b, wherein Rm is CI and Ra is F.
In another embodiment, Het is D-25, preferably D-25a substituted by CI.
In another embodiment, Het is D-54, preferably D-54a.
In particular with a view to their use, preference is given to the compounds of the formula (I) compiled in the tables below, which compounds correspond to the formulae I .A. Each of the groups mentioned for the substituents in the tables are furthermore per se, independently of the combination in which they are mentioned, a particularly preferred aspect of the substituent in question. Further, each individual meaning of a substituent in the tables constitutes a particularly preferred embodiment of the substituents in question. Table 1 : Compounds of the formula (I) in which T is O, n is 0, R2 is H, Het is D-2a as above defined and the combination of R1 and R3 for a compound corresponds in each case to one row of Table A.
Table 2 : Compounds of the formula (I) in which T is O, n is 1 , R2 is H, Het is D-2b as above defined and the combination of R1, R3 and Rm for a compound corresponds in each case to one row of Table A.
Table 3 : Compounds of the formula (I) in which T is O, n is 2, R2 is H, Ram is CI, Het is D-2c as above defined and the combination of R1, R3 and Rm for a compound corresponds in each case to one row of Table A.
Table 4 : Compounds of the formula (I) in which T is O, n is 2, R2 is H, Rma is F, Het is D-2c as above defined and the combination of R1, R3 and Rm for a compound correspond in each case to one row of Table A.
Table 5 : Compounds of the formula (I) in which T is O, n is 2, R2 is H, Rma is CF3, Het is D-2c as above defined and the combination of R1, R3 and Rm for a compound correspond in each case to one row of Table A.
Table 6 : Compounds of the formula (I) in which T is O, n is 1 , R2 is H, Het is D-25a as above defined and the combination of R1, R3 and Rm for a compound correspond in each case to one row of Table A.
Table 7 : Compounds of the formula (I) in which T is O, n is 0, R2 is H, Het is D-54a as above defined and the combination of R1, R3 for a compound correspond in each case to one row of Table A.
Table 8 : Compounds of formula (I) in which T is S and the remaining variables have the same meaning as in Table 1 .
Table 9 : Compounds of formula (I) in which T is S and the remaining variables have the same meaning as in Table 2.
Table 10 : Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 3.
Table 1 1 : Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 4.
Table 12 : Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 5.
Table 13 : Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 6.
Table 14 : Compounds of formula ) in which T is S and the remaining variables have the same meaning as in Table 7.
Table 15 to Table 28: correspond to compounds of formula (I) in which X is O and the remaining variables have the same meaning as respectively in anylogy to Tables 1 to 14. Table A:
Rm Rm
No. R1 R3 No. R1 R3
A-1 CHs H CI A-37 CHs CI F
A-2 CFs H CI A-38 CFs CI F
A-3 CH2CH3 H CI A-39 CH2CH3 CI F
A-4 CH2CHF2 H CI A-40 CH2CHF2 CI F
A-5 CHCH2 H CI A-41 CHCH2 CI F
A-6 C-C3H5 H CI A-42 C-C3H5 CI F
A-7 CHs H Br A-43 CHs CI CFs
A-8 CFs H Br A-44 CFs CI CFs
A-9 CH2CH3 H Br A-45 CH2CH3 CI CFs
A-10 CH2CHF2 H Br A-46 CH2CHF2 CI CFs
A-1 1 CHCH2 H Br A-47 CHCH2 CI CFs
A-12 C-C3H5 H Br A-48 C-C3H5 CI CFs
A-13 CHs H F A-49 CHs F CI
A-14 CFs H F A-50 CFs F CI
A-15 CH2CH3 H F A-51 CH2CH3 F CI
A-16 CH2CHF2 H F A-52 CH2CHF2 F CI
A-17 CHCH2 H F A-53 CHCH2 F CI
A-18 C-C3H5 H F A-54 C-C3H5 F CI
A-19 CHs H CFs A-55 CHs F Br
A-20 CFs H CFs A-56 CFs F Br
A-21 CH2CH3 H CFs A-57 CH2CH3 F Br
A-22 CH2CHF2 H CFs A-58 CH2CHF2 F Br
A-23 CHCH2 H CFs A-59 CHCH2 F Br
A-24 C-C3H5 H CFs A-60 C-C3H5 F Br
A-25 CHs CI CI A-61 CHs F F
A-26 CFs CI CI A-62 CFs F F
A-27 CH2CH3 CI CI A-63 CH2CH3 F F
A-28 CH2CHF2 CI CI A-64 CH2CHF2 F F
A-29 CHCH2 CI CI A-65 CHCH2 F F
A-30 C-C3H5 CI CI A-66 C-C3H5 F F
A-31 CHs CI Br A-67 CHs F CFs
A-32 CFs CI Br A-68 CFs F CFs
A-33 CH2CH3 CI Br A-69 CH2CH3 F CFs
A-34 CH2CHF2 CI Br A-70 CH2CHF2 F CFs
A-35 CHCH2 CI Br A-71 CHCH2 F CFs
A-36 C-C3H5 CI Br A-72 C-C3H5 F CFs No. R1 R3 Rm
No. R1 R3 Rm
A-73 CHs CN CI A-97 CHs H CI
A-74 CFs CN CI A-98 CFs CHs CI
A-75 CH2CH3 CN CI A-99 CH2CH3 CHs CI
A-76 CH2CHF2 CN CI A-100 CH2CHF2 CHs CI
A-77 CHCH2 CN CI A-101 CHCH2 CHs CI
A-78 C-C3H5 CN CI A-102 C-C3H5 CHs CI
A-79 CHs CN Br A-103 CHs CHs Br
A-80 CFs CN Br A-104 CFs CHs Br
A-81 CH2CH3 CN Br A-105 CH2CH3 CHs Br
A-82 CH2CHF2 CN Br A-106 CH2CHF2 CHs Br
A-83 CHCH2 CN Br A-107 CHCH2 CHs Br
A-84 C-C3H5 CN Br A-108 C-C3H5 CHs Br
A-85 CHs CN F A-109 CHs CHs F
A-86 CFs CN F A-1 10 CFs CHs F
A-87 CH2CH3 CN F A-1 1 1 CH2CH3 CHs F
A-88 CH2CHF2 CN F A-1 12 CH2CHF2 CHs F
A-89 CHCH2 CN F A-1 13 CHCH2 CHs F
A-90 C-C3H5 CN F A-1 14 C-C3H5 CHs F
A-91 CHs CN CFs A-1 15 CHs CHs CFs
A-92 CFs CN CFs A-1 16 CFs CHs CFs
A-93 CH2CH3 CN CFs A-1 17 CH2CH3 CHs CFs
A-94 CH2CHF2 CN CFs A-1 18 CH2CHF2 CHs CFs
A-95 CHCH2 CN CFs A-1 19 CHCH2 CHs CFs
A-96 C-C3H5 CN CFs A-120 C-C3H5 CHs CFs
CHCH2 and C-C3H5 respectively represent vinyl and cyclopropyl radicals.
The compound of formula (I) according to the present invention can be prepared ac- cording to the following syntheses routes, e.g. according to the preparation methods and preparation schemes as described below.
The compounds used as starting materials for the syntheses of the compounds according to the present invention can generally be prepared by standard methods of organic chemistry. If not otherwise specified, the definitions of the variables such as X, T, Het, R1, R2 and R3 of the structures given in the schemes have the same meaning as defined above. Room temperature (rt) means a temperature range between about 20 and 25 °C.
When used, Q in the present invention has the following meaning: wherein denotes the bond in formula (I).
Figure imgf000020_0001
Compounds of the formula I.1.B and I.2.B can for example be prepared from acylhy- drazides P-1 by reaction with phosgene (or a phosgene equivalent, e.g. diphosgene, triphosgene) or thiophosgene, respectively, in the presence or absence of a base (e.g Et3N, K2CO3) as described by, for example, Potts et al. Chem. Comm. 1968, 12, 672.
Figure imgf000021_0001
Compounds of the formula 1.1.A and I.2.A can be prepared from thioacylhydrazides P-4 by reaction with phosgene (or a phosgene equivalent, e.g. diphosgene, triphosgene) or thiophosgene, respectively, in the presence or absence of a base (e.g. EtsN, K2CO3) as described by McCarthy et al. Chem. Comm. 1968, 9, 499. Compounds P-4 can, in turn be prepared from compounds P-1 by reaction with P2S5 or Lawesson' s reagent as described by, for example, Chen et al. WO 2003/006429.
P-1
Figure imgf000021_0002
P2S5 or Lawesson's
reagent
Figure imgf000021_0003
Intermediates of the formula P-4 can also be prepared by reaction of thioesters of the formula P-10 with a hydrazine P-1 1 in the presence of a base (e.g. KOH). P-10 may be prepared by know organic synthetic chemistry and WO 1989/08830 may be cited as reference for further details.
Figure imgf000021_0004
Compounds of the formula I.2.A can also be prepared by reacting compounds of the formula P-12 with an acid chloride P-13. The corresponding reactants P-12 and P-13 may be obtained by classic organic chemistry synthesis and following references may be cited: Ohta et al. Bull. Chem. Soc. Jpn. 1967, 40, 579. and Kier et al. Nature, 1964, 204, 697.
Figure imgf000021_0005
If individual compounds cannot be prepared via the above described routes, they can be prepared by derivatization of other compounds of formula (I) or by customary modifications of the synthesis routes described.
For example, in individual cases, certain compounds of formula (I) can advantageously be prepared from other compounds of formula (I) by derivatization, e.g. by ester hydrolysis, amidation, esterification, ether cleavage, olefination, reduction, oxidation and the like, or by customary modifications of the synthesis routes described.
The reaction mixtures are worked up in the customary manner, for example by mixing with water, separating the phases, and, if appropriate, purifying the crude products by chromatography, for example on alumina or silica gel. Some of the intermediates and end products may be obtained in the form of colorless or pale brown viscous oils, which are freed or purified from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtained as solids, they may be purified by recrystallization, trituration or digestion.
The term "invertebrate pest" as used herein encompasses animal populations, such as arthropod pests, including insects and arachnids, as well as nematodes, which may attack plants thereby causing substantial damage to the plants attacked, as well as ectoparasites which may infest animals, in particular warm blooded animals such as e.g. mammals or birds, or other higher animals such as reptiles, amphibians or fish, thereby causing substantial damage to the animals infested.
The compounds of formula (I) according to the present invention are in particular suitable for efficiently controlling arthropod pests such as arachnids, myriapedes and insects as well as nematodes.
The compounds of the formula (I) are especially suitable for efficiently combating the following pests:
Insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Chei- matobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosel- la, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliar- ia, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fis- cellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blan- cardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugi- perda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viri- dana, Trichoplusia ni and Zeiraphera canadensis; beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscur- us, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus po- morum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastopha- gus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus len- tis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthor- rhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vesperti- nus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipunc- tata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brun- neipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptino- tarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus com- munis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobi- us pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus grana- ria;
flies, mosquitoes (Diptera), e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anas- trepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrys- ops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbi- tae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gaster- ophilus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachinoides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Leptoconops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mansonia titillanus, Mayetiola destructor, Musca autumnalis, Musca domestica, Muscina stabulans, Oes- trus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phor- bia brassicae, Phorbia coarctata, Phlebotomus argentipes, Psorophora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhagoletis cerasi, Rhagoletis pomonella, Sarcophaga haemorrhoidalis, Sarcophaga spp., Simulium vittatum, Stomoxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, Tabanus similis, Tipula oleracea, and Tipula paludosa;
thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci, termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Reticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Peri- planeta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta australasiae, and Blatta orientalis;
bugs, aphids, leafhoppers, whiteflies, scale insects, cicadas (Hemiptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solu- bea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Bemisia argentifolii, Brachycaudus cardui, Brachycaudus helichrysi, Brachycau- dus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmanni- anae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lac- tucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzus persicae, Myzus ascalo- nicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera au- rantiiand, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvius senilis, Tria- toma spp., and Arilus critatus;
ants, bees, wasps, sawflies (Hymenoptera), e.g. Athalia rosae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Crematogaster spp., Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Mon- omorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri, So- lenopsis xyloni, Pogonomyrmex barbatus, Pogonomyrmex californicus, Pheidole meg- acephala, Dasymutilla occidentalis, Bombus spp., Vespula squamosa, Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Dolichovespula macula- ta, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile;
crickets, grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllo- talpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
arachnoidea, such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hy- alomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holo- cyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus sanguineus, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ul- mi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
fleas (Siphonaptera), e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
silverfish, firebrat (Thysanura), e.g. Lepisma saccharina and Thermobia domestica, centipedes (Chilopoda), e.g. Scutigera coleoptrata,
millipedes (Diplopoda), e.g. Narceus spp.,
Earwigs (Dermaptera), e.g. forficula auricularia,
lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bo- vicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus. Collembola (springtails), e.g. Onychiurus ssp..
The compounds of formula (I) are also suitable for controlling Nematodes: plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incog- nita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species, Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor, Ditylen- chus dipsaci and other Ditylenchus species; Awl nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nematodes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; Lance nematodes, Hoploaimus species; false root- knot nematodes, Nacobbus species; Needle nematodes, Longidorus elongatus and other Longidorus species; Lesion nematodes, Pratylenchus neglectus, Pratylenchus 5 penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus and other Rotylenchus species; Scutello- nema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylen- chorhynchus dubius and other Tylenchorhynchus species; Citrus nematodes, Tylen- chulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species.
The compounds of formula (I) are particularly useful for controlling, or combating, or treating, or preventing or protecting each of the individual group of target pests as above listed as well as each combination thereof.
Each of the groups or subgroup of the above listed pests constitute per se, independently of every possible combination a particular preferred target pests for which the compounds of the present invention are useful and therefore particular embodi- ment. Useful in this context is to be understood as:
use for combating such pest(s) or,
use for controlling such pest(s) or,
use for protecting from attack by such pest(s) or,
use for treating against infestation or infection by such pest(s) or,
use for controlling against infestation or infection by such pest(s) or,
use for preventing against infestation or infection by such pest(s) or,
use for protecting against infestation or infection by such pest(s).
The Compounds of the formula (I) are particularly useful for controlling insects, preferably piercing-sucking insects such as insects from the genera Thysanoptera, Diptera and Hemiptera.
Compounds of the formula (I) are particularly useful for controlling insects of the orders Hemiptera and Thysanoptera.
For use in a method according to the present invention, the compounds of formula (I) can be converted into the customary formulations, e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules and directly sprayable solutions. The use form depends on the particular purpose and application method. Formulations and application methods are chosen to ensure in each case a fine and uniform distribution of the compound of formula (I) according to the invention.
An agrochemical composition according to the present invention comprises a pesti- cidally effective amount of a compound of formula (I) according to the present invention. The term "effective amount" denotes an amount of the composition or of the compounds of formula (I), which is sufficient for controlling animal pests on a locus, such as crops, cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the animal pest species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound of formula (I) used. The compounds of formula (I) according to the invention can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the " Catalogue of pesticide for- mulation types and international coding system" , Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F In- forma, London, 2005.
Examples for suitable auxiliaries for the formulations and or the agrochemicals compositions according to the inventions are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, at- tractants, feeding stimulants, compatibilizers, bactericides, antifreezing agents, anti- foaming agents, colorants, tackifiers and binders.
Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetra- hydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gammabutyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, lime-stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharide powders, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nut- shell meal, and mixtures thereof.
Suitable surfactants are surface active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in
McCutcheon' s, Vol.1 : Emulsifiers & Detergents, McCutcheon' s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccin- ates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinyl- alcohols, or vinylacetate.
Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, poly- ethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or pol- ybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound of formula (I) on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates. Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothia- zolinones and benzisothiazolinones.
Suitable antifreezing agents are ethylene glycol, propylene glycol, urea and glycerine. Suitable antifoaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
Examples for composition types and their preparation are:
i) Water soluble concentrates (SL, LS)
10-60 wt% of a compound of formula (I) according to the invention and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water- soluble solvent (e.g. alcohols) up to 100 wt%. The active substance dissolves upon dilution with water.
ii) Dispersible concentrates (DC)
5-25 wt% of a compound of formula (I) according to the invention and 1 -10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in up to 100 wt% organic solvent (e.g. cyclohexanone). Dilution with water gives a dispersion.
iii) Emulsifiable concentrates (EC)
15-70 wt% of a compound of formula (I) according to the invention and 5-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in up to 100 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon). Dilution with water gives an emulsion.
iv) Emulsions (EW, EO, ES)
5-40 wt% of a compound of formula (I) according to the invention and 1 -10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into up to 100 wt% water by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
v) Suspensions (SC, OD, FS)
In an agitated ball mill, 20-60 wt% of a compound of formula (I) according to the invention are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0,1 -2 wt% thickener (e.g. xanthan gum) and up to 100 wt% water to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added. vi) Water dispersible granules and water soluble granules (WG, SG)
50-80 wt% of a compound of formula (I) according to the invention are ground finely with addition of up to 100 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) and prepared as water dispersible or water soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
vii) Water dispersible powders and water-soluble powders (WP, SP, WS)
50-80 wt% of a compound of formula (I) according to the invention are ground in a rotor stator mill with addition of 1 -5 wt% dispersants (e.g. sodium ligno- sufonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and up to 100 wt% solid carrier, e.g. silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
viii) Gel (GW, GF)
In an agitated ball mill, 5-25 wt% of a compound of formula (I) according to the invention are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lig- nosulfonate), 1 -5 wt% thickener (e.g. carboxymethylcellulose) and up to 100 wt% water to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance,
iv) Microemulsion (ME)
5-20 wt% of a compound of formula (I) according to the invention are added to 5-
30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alkohol ethoxylate and arylphenol ethoxylate), and water up to 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
iv) Microcapsules (CS)
An oil phase comprising 5-50 wt% of a compound of formula (I) according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4' -diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyam- ine (e.g. hexamethylenediamine) results in the formation of a polyurea microcapsules. The monomers amount to 1 -10 wt%. The wt% relate to the total CS composition.
ix) Dunstable powders (DP, DS)
1 -10 wt% of a compound of formula (I) according to the invention are ground finely and mixed intimately with up to 100 wt% solid carrier, e.g. finely divided kaolin. x) Granules (GR, FG)
0.5-30 wt% of a compound of formula (I) according to the invention is ground finely and associated with up to 100 wt% solid carrier (e.g. silicate). Granulation is achieved by extrusion, spray drying or the fluidized bed.
xi) Ultra-low volume liquids (UL)
1 -50 wt% of a compound of formula (I) according to the invention are dissolved in up to 100 wt% organic solvent, e.g. aromatic hydrocarbon.
The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0,1 -1 wt% bactericides, 5-15 wt% antifreezing agents, 0,1 -1 wt% antifoaming agents, and 0,1 -1 wt% colorants.
The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and most preferably between 0.5 and 75%, by weight of active substance i.e. the compounds of formula (I) according to the invention. The active substances are generally employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum). Water soluble concentrates (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water dispersible powders for slurry treatment (WS), water soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
The compositions according to the invention in question give, after two-to-tenfold dilution, concentrations of active substance of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations.
Application can be carried out before or during sowing. Methods for applying or treating compound of formula (I) and compositions thereof, respectively, on to plant propaga- tion material, especially seeds include dressing, coating, pelleting, dusting, soaking and in furrow application methods of the propagation material. Preferably, compound of formula (I) or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e.g. by seed dressing, pelleting, coating and dusting.
When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.
In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required. When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect.
Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and other pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usual- ly, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
According to one embodiment of the present invention, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ter- nary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising compounds of formula (I) and/or additional active substances from the groups M.1 ) to M.26, including M-X or F.I to F.XII, may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising compounds of formula (I) and/or active substances from the groups M.1 to M.26, including M-X or F.I to F.XII, can be applied jointly (e.g. after tank mix) or consecutively.
The following list M of pesticides together with which the compounds according to the invention can be used and with which potential synergistic effects might be produced, is intended to illustrate the possible combinations, but not to impose any limitation:
The following list M of pesticides represents insecticidal mixing partners, which are, whenever possible, classified according to the Insecticide Resistance Action Committee (IRAC), and together with which the compounds according to the present invention may be used. The combined use of the compounds of the present invention with the following pesticides may result in potential synergistic effects. The following examples of insecticidal mixing partners are provided with the intention to illustrate the possible combinations, but not to impose any limitation to the obtainable mixtures:
M.1 Acetylcholine esterase (AChE) inhibitors from the class of
M.1 A carbamates, for example aldicarb, alanycarb, bendiocarb, benfuracarb, butocar- boxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pi- rimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; or from the class of
M.1 B organophosphates, for example acephate, azamethiphos, azinphos-ethyl, az- inphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethopro- phos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathi- on, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, prope- tamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, trichlorfon and vami- dothion;
M.2. GABA-gated chloride channel antagonists such as:
M.2A cyclodiene organochlorine compounds, as for example endosulfan or chlor- dane;or
M.2B fiproles (phenylpyrazoles), as for example ethiprole, fipronil, flufiprole, pyra- fluprole and pyriprole;
M.3 Sodium channel modulators from the class of
M.3A pyrethroids, for example acrinathrin, allethrin, d-cis-trans allethrin, d-trans alle- thrin, bifenthrin, bioallethnn, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cyper- methrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta- cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imipro- thrin, meperfluthrin, metofluthrin, permethrin, phenothrin, prallethrin, profluthrin, pyre- thrin (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethylfluthrin, tetramethrin, tralomethrin and transfluthrin; or
M.3B sodium channel modulators such as DDT or methoxychlor;
M.4 Nicotinic acetylcholine receptor agonists (nAChR) from the class of
M.4A neonicotinoids, for example acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or
M.4B nicotine.
M.5 Nicotinic acetylcholine receptor allosteric activators from the class of spinosyns, for example spinosad or spinetoram;
M.6 Chloride channel activators from the class of avermectins and milbemycins, for example abamectin, emamectin benzoate, ivermectin, lepimectin or milbemectin; M.7 Juvenile hormone mimics, such as
M.7A juvenile hormone analogues as hydroprene, kinoprene and methoprene; or others as
M.7B fenoxycarb, or
M.7C pyriproxyfen;
M.8 miscellaneous non-specific (multi-site) inhibitors, for example
M.8A alkyl halides as methyl bromide and other alkyl halides, or
M.8B chloropicrin, or
M.8C sulfuryl fluoride, or
M.8D borax, or
M.8E tartar emetic;
M.9 Selective homopteran feeding blockers, for example
M.9B pymetrozine, or
M.9C flonicamid;
M.10 Mite growth inhibitors, for example
M.10A clofentezine, hexythiazox and diflovidazin, or
M.10B etoxazole; M.1 1 Microbial disruptors of insect midgut membranes, for example bacillus thuringiensis or bacillus sphaericus and the insecticidal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thuringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp. tenebri- onis, or the Bt crop proteins: Cry1 Ab, Cry1 Ac, Cry1 Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1 ;
M.12 Inhibitors of mitochondrial ATP synthase, for example
M.12A diafenthiuron, or
M.12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or M.12C propargite, or
M.12D tetradifon;
M.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient, for example chlorfenapyr, DNOC or sulfluramid; M.14 Nicotinic acetylcholine receptor (nAChR) channel blockers, for example nereis- toxin analogues as bensultap, cartap hydrochloride, thiocyclam or thiosultap sodium; M.15 Inhibitors of the chitin biosynthesis type 0, such as benzoylureas as for example bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron or triflumuron;
M.16 Inhibitors of the chitin biosynthesis type 1 , as for example buprofezin;
M.17 Moulting disruptors, Dipteran, as for example cyromazine;
M.18 Ecdyson receptor agonists such as diacylhydrazines, for example methoxyfeno- zide, tebufenozide, halofenozide, fufenozide or chromafenozide;
M.19 Octopamin receptor agonists, as for example amitraz;
M.20 Mitochondrial complex III electron transport inhibitors, for example
M.20A hydramethylnon, or
M.20B acequinocyl, or
M.20C fluacrypyrim;
M.21 Mitochondrial complex I electron transport inhibitors, for example
M.21A METI acaricides and insecticides such as fenazaquin, fenpyroximate, pyrimidif- en, pyridaben, tebufenpyrad or tolfenpyrad, or
M.21 B rotenone;
M.22 Voltage-dependent sodium channel blockers, for example
M.22A indoxacarb, or
M.22B metaflumizone;
M.23 Inhibitors of the of acetyl CoA carboxylase, such as Tetronic and Tetramic acid derivatives, for example spirodiclofen, spiromesifen or spirotetramat;
M.24 Mitochondrial complex IV electron transport inhibitors, for example
M.24A phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or
M.24B cyanide.
M.25 Mitochondrial complex II electron transport inhibitors, such as beta-ketonitrile derivatives, for example cyenopyrafen or cyflumetofen; M.26 Ryanodine receptor-modulators from the class of diamides, as for example flubendiamide, chloranthraniliprole (rynaxypyr®), cyanthraniliprole
(cyazypyr®), or
the phthalamide compounds
M.26.1 : (R)-3-Chlor-N1 -{2-methyl-4-[1 , 2,2,2 - tetrafluor-1 -(trifluormethyl)ethyl]phenyl}- N2-(1 -methyl-2-methylsulfonylethyl)phthalamid and
M.26.2: (S)-3-Chlor-N1 -{2-methyl-4-[1 ,2,2,2 - tetrafluor-1 -(trifluormethyl)ethyl]phenyl}- N2-(1 -methyl-2-methylsulfonylethyl)phthalamid, or the compound
M.26.3: 3-bromo-N-{2-bromo-4-chloro-6-[(1 -cyclopropylethyl)carbamoyl]phenyl}-1 -(3- chlorpyridin-2-yl)-1 H-pyrazole-5-carboxamide, or the compound
M.26.4: methyl-2-[3,5-dibromo-2-({[3-bromo-1 -(3-chlorpyridin-2-yl)-1 H-pyrazol-5- yl]carbonyl}amino)benzoyl]-1 ,2-dimethylhydrazinecarboxylate;
M.X insecticidal active compounds of unknown or uncertain mode of action, as for ex- ample azadirachtin, amidoflumet, benzoximate, bifenazate, bromopropylate, chinome- thionat, cryolite, dicofol, flufenerim, flometoquin, fluensulfone, flupyradifurone, piperonyl butoxide, pyridalyl, pyrifluquinazon, sulfoxaflor, or the compound
M.X.1 : 4-[5-(3,5-Dichloro-phenyl)-5-trifluoromethyl-4,5-dihydro-isoxazol-3-yl]-2-methyl- N-[(2,2,2-trifluoro-ethylcarbamoyl)-methyl]-benzamide, or the compound
M.X.2: cyclopropaneacetic acid, 1 ,1 '-[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-4-[[(2- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy- 4,6a, 12b-trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H , 1 1 H-naphtho[2, 1 -b]pyrano[3,4-e]pyran- 3,6-diyl] ester, or the compound
M.X.3: 1 1 -(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1 ,4-dioxa-9-azadispiro[4.2.4.2]- tetradec-1 1 -en-10-one, or the compound
M.X.4: 3-(4' -fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1 -azaspiro[4.5]dec-3- en-2-one, or the compound
M.X.5: 1 -[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)- 1 H-1 ,2,4-triazole-5-amine, or actives on basis of bacillus firmus (Votivo, 1-1582).
The commercially available compounds of the group M listed above may be found in The Pesticide Manual, 15th Edition, C. D. S. Tomlin, British Crop Protection Council (201 1 ) among other publications.
The phthalamides M.26.1 and M.28.2 are both known from WO 2007/101540. The an- thranilamide M.26.3 has been described in WO2005/077943. The hydrazide compound M.26.4 has been described in WO 2007/043677. The quinoline derivative flometoquin is shown in WO2006/013896. The aminofuranone compounds flupyradifurone is known from WO 2007/1 15644. The sulfoximine compound sulfoxaflor is known from
WO2007/149134. The isoxazoline compound M.X.1 has been described in
WO2005/085216. The pyripyropene derivative M.X.2 has been described in WO
2006/129714. The spiroketal-substituted cyclic ketoenol derivative M.X.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ketoenol derivative M.X.4 from WO2008/06791 1 . Finally triazoylphenylsulfide like M.X.5 have been described in 5
WO2006/043635 and biological control agents on basis of bacillus firmus in
WO2009/124707.
The following list F of active substances, in conjunction with which the compounds ac- cording to the invention can be used, is intended to illustrate the possible combinations but does not limit them:
F.I) Respiration Inhibitors
F.1-1 ) Inhibitors of complex III at Qo site:
strobilurins: azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, ene- stroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyribencarb, triclopy- ricarb/chlorodincarb, trifloxystrobin, 2-[2-(2,5-dimethyl-phenoxymethyl)-phenyl]-3- methoxy-acrylic acid methyl ester and 2 (2-(3-(2,6-dichlorophenyl)-1 -methyl- allylideneaminooxymethyl)-phenyl)-2-methoxyimino-N methyl-acetamide;
oxazolidinediones and imidazolinones: famoxadone, fenamidone;
F.I-2) Inhibitors of complex II (e.g. carboxamides):
carboxanilides: benodanil, bixafen, boscalid, carboxin, fenfuram, fenhexamid, fluopy- ram, flutolanil, furametpyr, isopyrazam, isotianil, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, tiadinil, 2-amino-4 methyl-thiazole-5- carboxanilide, N-(3',4',5' trifluorobiphenyl-2 yl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4 carboxamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3 difluoromethyl-1 -methyl-1 H pyra- zole-4-carboxamide, N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5 fluoro-1 H- pyrazole-4 carboxamide, 3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4- yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethylindan-4- yl)pyrazole-4-carboxamide, 1 ,3-dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4- carboxamide, 3-(trifluoromethyl)-1 ,5-dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4- carboxamide, 3-(difluoromethyl)-1 ,5-dimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4- carboxamide and 1 ,3,5-trimethyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4-carboxamide; F.I-3) Inhibitors of complex III at Qi site: cyazofamid, amisulbrom, 3S,6S,7R,8R)-3-[[(3- hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl-4,9-dioxo-8-(phenylmethyl)- 1 ,5-dioxonan-7-yl 2-methylpropanoate;
F.I-4) Other respiration inhibitors (complex I, uncouplers) diflumetorim; tecnazen;
ferimzone; ametoctradin; silthiofam; nitrophenyl derivates: binapacryl, dinobuton, di- nocap, fluazinam, nitrthal-isopropyl, organometal compounds: fentin salts, such as fen- tin-acetate, fentin chloride or fentin hydroxide;
F.ll) Sterol biosynthesis inhibitors (SBI fungicides)
F.II-1 ) C14 demethylase inhibitors (DMI fungicides, e.g. triazoles, imidazoles) triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusi- lazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobu- tanil, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole;
imidazoles: imazalil, pefurazoate, oxpoconazole, prochloraz, triflumizole; pyrimidines, pyridines and piperazines: fenarimol, nuarimol, pyrifenox, triforine, 1 -[rel-
(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1 H-
[1 ,2,4]triazole, 2-[rel-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-
2H-[1 ,2,4]triazole-3-thiol;
F.II-2) Delta14-reductase inhitors (Amines, e.g. morpholines, piperidines)
morpholines: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph; piperidines: fenpropidin, piperalin; spiroketalamines: spiroxamine;
F.II-3) Inhibitors of 3-keto reductase: hydroxyanilides: fenhexamid;
F.lll) Nucleic acid synthesis inhibitors
F.III-1 ) RNA, DNA synthesis
phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl, met- alaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;
isoxazoles and iosothiazolones: hymexazole, octhilinone;
F.III-2) DNA topisomerase inhibitors: oxolinic acid;
F.III-3) Nucleotide metabolism (e.g. adenosin-deaminase), hydroxy (2-amino)- pyrimidines: bupirimate;
F.IV) Inhibitors of cell division and or cytoskeleton
F.IV-1 ) Tubulin inhibitors: benzimidazoles and thiophanates: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl;
triazolopyrimidines: 5-chloro-7 (4-methylpiperidin-1 -yl)-6-(2,4,6-trifluorophenyl)- [1 ,2,4]triazolo[1 ,5 a]pyrimidine;
F.IV-2) Other cell division inhibitors
benzamides and phenyl acetamides: diethofencarb, ethaboxam, pencycuron, fluopico- lide, zoxamide;
F.IV-3) Actin inhibitors: benzophenones: metrafenone;
F.V) Inhibitors of amino acid and protein synthesis
F.V-1 ) Methionine synthesis inhibitors (anilino-pyrimidines)
anilino-pyrimidines: cyprodinil, mepanipyrim, nitrapyrin, pyrimethanil;
F.V-2) Protein synthesis inhibitors (anilino-pyrimidines)
antibiotics: blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomy- cin, streptomycin, oxytetracyclin, polyoxine, validamycin A;
F.VI) Signal transduction inhibitors
F.VI-1 ) MAP / Histidine kinase inhibitors (e.g. anilino-pyrimidines)
dicarboximides: fluoroimid, iprodione, procymidone, vinclozolin;
phenylpyrroles: fenpiclonil, fludioxonil;
F.VI-2) G protein inhibitors: quinolines: quinoxyfen;
F.VI I) Lipid and membrane synthesis inhibitors
F.VI 1-1 ) Phospholipid biosynthesis inhibitors
organophosphorus compounds: edifenphos, iprobenfos, pyrazophos;
dithiolanes: isoprothiolane;
F.VII-2) Lipid peroxidation: aromatic hydrocarbons: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;
F.VII-3) Carboxyl acid amides (CAA fungicides) cinnamic or mandelic acid amides: dimethomorph, flumorph, mandiproamid, pyrimorph; valinamide carbamates: benthiavalicarb, iprovalicarb, pyribencarb, valifenalate and N- (1 -(1 -(4-cyano-phenyl)ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester; F.VII-4) Compounds affecting cell membrane permeability and fatty acids:
1 -[4-[4-[5-(2,6-difluorophenyl)-4,5-dihydro-3-isoxazolyl]-2-thiazolyl]-1 -piperidinyl]-2-[5- methyl-3-(trifluoromethyl)-1 H-pyrazol-1 -yl]ethanone, carbamates: propamocarb, pro- pamocarb-hydrochlorid,
F.VIII) Inhibitors with Multi Site Action
F.VIII-1 ) Inorganic active substances: Bordeaux mixture, copper acetate, copper hy- droxide, copper oxychloride, basic copper sulfate, sulfur;
F.VIII-2) Thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam,
methasulphocarb, metiram, propineb, thiram, zineb, ziram;
F.VIII-3) Organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine, chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, flusulfa- mide, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4- chloro-2-nitro-phenyl)-N-ethyl-4-methyl-benzenesulfonamide;
F.VIII-4) Guanidines and other: guanidine, dodine, dodine free base, guazatine, guaza- tine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), 2,6- dimethyl-1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;
F.VIII-5) Ahtraquinones: dithianon;
F.IX) Cell wall synthesis inhibitors
F.IX-1 ) Inhibitors of glucan synthesis: validamycin, polyoxin B;
F.IX-2) Melanin synthesis inhibitors: pyroquilon, tricyclazole, carpropamide, dicyclomet, fenoxanil;
F.X) Plant defence inducers
F.X-1 ) Salicylic acid pathway: acibenzolar-S-methyl;
F.X-2) Others: probenazole, isotianil, tiadinil, prohexadione-calcium;
phosphonates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts;
F.XI) Unknown mode of action:bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat-methylsulfate, diphenyla- min, flumetover, flusulfamide, flutianil, methasulfocarb, oxin-copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen-4-one, N- (cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)-methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N methyl formamidine, N' (4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N- ethyl-N-methyl formamidine, N'-(2-methyl-5-trifluoromethyl-4-(3-trimethylsilanyl- propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl-2 methyl-4-(3- trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, 2-{1 -[2-(5-methyl-3- trifluoromethyl-pyrazole-1 -yl)-acetyl]-piperidin-4-yl}-thiazole-4-carboxylic acid methyl- (1 ,2,3,4-tetrahydro-naphthalen-1 -yl)-amide, 2-{1 -[2-(5-methyl-3-trifluoromethyl- pyrazole-1 -yl)-acetyl]-piperidin-4-yl}-thiazole-4-carboxylic acid methyl-(R)-1 ,2,3,4- tetrahydro-naphthalen-1 -yl-amide, methoxy-acetic acid 6-tert-butyl-8-fluoro-2,3- dimethyl-quinolin-4-yl ester and N-Methyl-2-{1 -[(5-methyl-3-trifluoromethyl-1 H-pyrazol- 1 -yl)-acetyl]-piperidin-4-yl}-N-[(1 R)-1 ,2,3,4-tetrahydronaphthalen-1 -yl]-4- thiazolecarboxamide, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3 yl]-pyridine, pyrisoxazole, 5-amino-2-isopropyl-3-oxo-4-ortho-tolyl-2,3-dihydro-pyrazole-1 carbothi- oic acid S-allyl ester, N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide, 5- chloro-1 (4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 2-(4-chloro- phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide,.
F.XI) Growth regulators: abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flur- primidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N 6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydro- jasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5 tri iodobenzoic acid, trinexapac-ethyl and uniconazole;
F.XI I) Biological control agents
antifungal biocontrol agents: Bacillus substilis strain with NRRL No. B-21661 (e.g. Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest, Inc., USA.), Bacillus pumilus strain with NRRL No. B-30087 (e.g. Sonata® and Ballad® Plus from AgraQuest, Inc., USA), Ulocladium oudemansii (e.g. the product Botry-Zen from BotriZen Ltd., New Zealand), Chitosan (e.g. Armour-Zen from BotriZen Ltd., New Zealand).
The animal pest, i.e. the insects, arachnids and nematodes, the plant, soil or water in which the plant is growing can be contacted with the present compounds of formula (I) or composition(s) containing them by any application method known in the art. As such, "contacting" includes both direct contact (applying the compounds/compositions directly on the animal pest or plant, typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/compositions to the locus of the animal pest or plant).
The compounds of formula (I) or the pesticidal compositions comprising them may be used to protect growing plants and crops from attack or infestation by animal pests, especially insects, acaridae or arachnids by contacting the plant/crop with a pesticidally effective amount of compounds of formula (I). The term "crop" refers both to growing and harvested crops.
The compounds of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants, such as cereal, root crops, oil crops, vegetables, spices, ornamentals, for ex- ample seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugar beet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens. The compounds of the present invention are employed as such or in form of compositions by treating the insects or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from insecticidal attack with an insec- ticidally effective amount of the compound of formula (I). The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the insects.
The present invention also includes a method of combating animal pests which comprises contacting the animal pests, their habit, breeding ground, food supply, cultivated plants, seed, soil, area, material or environment in which the animal pests are growing or may grow, or the materials, plants, seeds, soils, surfaces or spaces to be protected from animal attack or infestation with a pesticidally effective amount of a mixture of at least one compound of formula (I).
Moreover, animal pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of compounds of formula (I). As such, the application may be carried out before or after the infection of the locus, growing crops, or harvested crops by the pest.
The compounds of the invention can also be applied preventively to places at which occurrence of the pests is expected.
The compounds of formula (I) may be also used to protect growing plants from attack or infestation by pests by contacting the plant with a pesticidally effective amount of compounds of formula (I). As such, "contacting" includes both direct contact (applying the compounds/compositions directly on the pest and/or plant - typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/compositions to the locus of the pest and/or plant).
"Locus" means a habitat, breeding ground, plant, seed, soil, area, material or environment in which a pest or parasite is growing or may grow.
The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This in- eludes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be included. These plant propagation materials may be treated prophylactically with a plant protection compound either at or before planting or transplanting.
The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering. Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-transtional modification of protein(s) (oligo- or polypeptides) poly for example by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties(e.g. as disclosed in Biotechnol Prog. 2001 Jul- Aug;17(4):720-8., Protein Eng Des Sel. 2004 Jan;17(1 ):57-66, Nat Protoc.
2007;2(5):1225-35., Curr Opin Chem Biol. 2006 Oct;10(5):487-91. Epub 2006 Aug 28., Biomaterials. 2001 Mar;22(5):405-17, Bioconjug Chem. 2005 Jan-Feb;16(1 ):1 13-21 ). The term "cultivated plants" is to be understood also including plants that have been rendered tolerant to applications of specific classes of herbicides, such as hy- droxy-phenylpyruvate dioxygenase (HPPD) inhibitors; acetolactate synthase (ALS) inhibitors, such as sulfonyl ureas (see e. g. US 6,222,100, WO 01/82685, WO
00/26390, WO 97/41218, WO 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073) or imidazolinones (see e. g. US 6,222,100, WO 01/82685, WO 00/26390, WO 97/41218, WO 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073); enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate (see e. g. WO 92/00377); glutamine synthetase (GS) inhibitors, such as glufosinate (see e. g. EP-A-0242236, EP-A-242246) or oxynil herbicides (see e. g. US 5,559,024) as a result of conventional methods of breeding or genetic engineering. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), for example Clearfield® summer rape (Canola) being tolerant to imidazolinones, e. g. imazamox. Genetic engineering methods have been used to render cultivated plants, such as soybean, cotton, corn, beets and rape, tolerant to herbicides, such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate) and LibertyLink® (glufosinate).
The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as a-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diu- retic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new com- bination of protein domains, (see, for example WO 02/015701 ). Further examples of such toxins or genetically-modified plants capable of synthesizing such toxins are dis-closed, for example, in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/018810 und WO 03/052073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins protection from harmful pests from certain taxonomic groups of arthropods, particularly to beetles (Coleoptera), flies (Diptera), and butterflies and moths (Lepidop- tera) and to plant parasitic nematodes (Nematoda).
The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called " pathogenesis-related proteins" (PR proteins, see, for example EP-A 0 392 225), plant disease resistance genes (for example potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4- lyso-zym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting envi- ron-mental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
The term "cultivated plants" is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, for ex-ample oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape).
The term "cultivated plants" is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, for example potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato).
In general, "pesticidally effective amount" means the amount of active ingredient (here of compound of formula (I)) needed to achieve an observable effect on growth, includ- ing the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various compounds/compositions used in the invention. A pesticidally effective amount of the compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
In the case of soil treatment or of application to the pests dwelling place or nest, the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 20 g per 100 m2.
Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active ingredient per m2 treated material, desirably from 0.1 g to 50 g per m2.
Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and/or insecticide.
For use in treating crop plants, the rate of application of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
The compounds of formula (I) are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part).
The compounds of the invention may also be applied against non-crop insect pests, such as ants, termites, wasps, flies, mosquitos, crickets, or cockroaches. For use against said non-crop pests, compounds of formula (I) are preferably used in a bait composition.
The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel). Solid baits can be formed into various shapes and forms suitable to the respective application e.g. granules, blocks, sticks, disks. Liquid baits can be filled into various devices to ensure proper application, e.g. open containers, spray devices, droplet sources, or evaporation sources. Gels can be based on aqueous or oily matrices and can be formulated to particular necessities in terms of stickiness, moisture retention or aging characteristics. The bait employed in the composition is a product, which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitos, crickets etc. or cock- roaches to eat it. The attractiveness can be manipulated by using feeding stimulants or sex pheromones. Food stimulants are chosen, for example, but not exclusively, from animal and/or plant proteins (meat-, fish- or blood meal, insect parts, egg yolk), from fats and oils of animal and/or plant origin, or mono-, oligo- or polyorganosaccharides, especially from sucrose, lactose, fructose, dextrose, glucose, starch, pectin or even molasses or honey. Fresh or decaying parts of fruits, crops, plants, animals, insects or specific parts thereof can also serve as a feeding stimulant. Sex pheromones are known to be more insect specific. Specific pheromones are described in the literature and are known to those skilled in the art. For use in bait compositions, the typical content of active ingredient is from 0.001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active ingredient.
Formulations of compounds of formula (I) as aerosols (e.g. in spray cans), oil sprays or pump sprays are highly suitable for the non-professional user for controlling pests such as flies, fleas, ticks, mosquitos or cockroaches. Aerosol recipes are preferably composed of the active ingredient, solvents such as lower alcohols (e.g. methanol, ethanol, propanol, butanol), ketones (e.g. acetone, methyl ethyl ketone), paraffin hydrocarbons (e.g. kerosenes) having boiling ranges of approximately 50 to 250 °C, dimethylforma- mide, N-methylpyrrolidone, dimethyl sulfoxide, aromatic hydrocarbons such as toluene, xylene, water, furthermore auxiliaries such as emulsifiers such as sorbitol monooleate, oleyl ethoxylate having 3-7 mol of ethylene oxide, fatty alcohol ethoxylate, perfume oils such as ethereal oils, esters of medium fatty acids with lower alcohols, aromatic car- bonyl compounds, if appropriate stabilizers such as sodium benzoate, amphoteric sur- factants, lower epoxides, triethyl orthoformate and, if required, propellants such as propane, butane, nitrogen, compressed air, dimethyl ether, carbon dioxide, nitrous oxide, or mixtures of these gases.
The oil spray formulations differ from the aerosol recipes in that no propellants are used.
For use in spray compositions, the content of active ingredient is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
The compounds of formula (I) and its respective compositions can also be used in mosquito and fumigating coils, smoke cartridges, vaporizer plates or long-term vapor- izers and also in moth papers, moth pads or other heat-independent vaporizer systems.
Methods to control infectious diseases transmitted by insects (e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis) with compounds of formula (I) and its respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like. Insecticidal compositions for application to fibers, fabric, knitgoods, nonwovens, netting material or foils and tarpaulins preferably comprise a mixture including the insecticide, optionally a repellent and at least one binder. Suitable repellents for example are Ν,Ν-Diethyl-meta-toluamide (DEET), N,N-diethylphenylacetamide (DEPA), 1 -(3-cyclohexan-1 -yl-carbonyl)-2-methylpiperine, (2-hydroxymethylcyclohexyl) acetic acid lactone, 2-ethyl-1 ,3-hexandiol, indalone, Methylneodecanamide (MNDA), a pyrethroid not used for insect control such as {(+/-)-3-allyl-2-methyl-4-oxocyclopent-2- (+)-enyl-(+)-trans-chrysantemate (Esbiothrin), a repellent derived from or identical with plant extracts like limonene, eugenol, (+)-Eucamalol (1 ), (-)-l -epi-eucamalol or crude plant extracts from plants like Eucalyptus maculata, Vitex rotundifolia, Cymbopogan martinii, Cymbopogan citratus (lemon grass), Cymopogan nartdus (citronella). Suitable binders are selected for example from polymers and copolymers of vinyl esters of aliphatic acids (such as such as vinyl acetate and vinyl versatate), acrylic and methacrylic esters of alcohols, such as butyl acrylate, 2-ethylhexylacrylate, and methyl acrylate, mono- and di-ethylenically unsaturated hydrocarbons, such as styrene, and aliphatic diens, such as butadiene.
The impregnation of curtains and bednets is done in general by dipping the textile ma- terial into emulsions or dispersions of the insecticide or spraying them onto the nets.
The compounds of formula (I) and its compositions can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities). The compounds of formula (I) are applied not only to the surrounding soil surface or into the under-floor soil in order to protect wooden materials but it can also be applied to lumbered articles such as surfaces of the under-floor con- crete, alcove posts, beams, plywoods, furniture, etc., wooden articles such as particle boards, half boards, etc. and vinyl articles such as coated electric wires, vinyl sheets, heat insulating material such as styrene foams, etc. In case of application against ants doing harm to crops or human beings, the ant controller of the present invention is applied to the crops or the surrounding soil, or is directly applied to the nest of ants or the like.
The compounds of formula (I) are also suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant' s roots and shoots against soil pests and foliar insects.
The compounds of formula (I) are particularly useful for the protection of the seed from soil pests and the resulting plant's roots and shoots against soil pests and foliar insects. The protection of the resulting plant's roots and shoots is preferred. More preferred is the protection of resulting plant's shoots from piercing and sucking insects, wherein the protection from aphids is most preferred.
The present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedling's roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with a compound of the general formula (I) or a salt thereof. Particularly preferred is a method, wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected from piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
The term seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting. 5
The present invention also comprises seeds coated with or containing the compound of formula (I). The term "coated with and/or containing" generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.
Suitable seed is seed of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugar beet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
In addition, the compound of formula (I) may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
For example, the compound of formula (I) can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imidazolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO
92/00377) (EP-A-0257993, U.S. Pat. No. 5,013,659) or in transgenic crop plants, for example cotton, with the capability of producing Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259), Furthermore, the compound of formula (I) can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures). For example, a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/1 1376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
The seed treatment application of the compound of formula (I) is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
Compositions which are especially useful for seed treatment are e.g.:
A Soluble concentrates (SL, LS)
D Emulsions (EW, EO, ES)
E Suspensions (SC, OD, FS)
F Water-dispersible granules and water-soluble granules (WG, SG) G Water-dispersible powders and water-soluble powders (WP, SP, WS)
H Gel-Formulations (GF)
I Dustable powders (DP, DS)
Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter
In a preferred embodiment a FS formulation is used for seed treatment. Typically, a FS formulation may comprise 1 -800 g/l of active ingredient, 1 -200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
Especially preferred FS formulations of compounds of formula (I) for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient, from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g. 1 to 40 % by weight of a binder (sticker /adhesion agent), optionally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight. Seed Treatment formulations may additionally also comprise binders and optionally colorants.
Binders can be added to improve the adhesion of the active materials on the seeds after treatment. Suitable binders are homo- and copolymers from alkylene oxides like ethylene oxide or propylene oxide, polyvinylacetate, polyvinylalcohols, polyvinylpyrrol- idones, and copolymers thereof, ethylene-vinyl acetate copolymers, acrylic homo- and copolymers, polyethyleneamines, polyethyleneamides and polyethyleneimines, polysaccharides like celluloses, tylose and starch, polyolefin homo- and copolymers like olefin/maleic anhydride copolymers, polyurethanes, polyesters, polystyrene homo and copolymers
Optionally, also colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 1 12, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pig- ment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
Examples of a gelling agent is carrageen (Satiagel®) In the treatment of seed, the application rates of the compounds I are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seed and in particular from 1 g to 200 g per 100 kg of seed.
The invention therefore also relates to seed comprising a compound of the formula (I), or an agriculturally useful salt of I, as defined herein. The amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
The compounds of formula (I) or the enantiomers or veterinary acceptable salts thereof are in particular also suitable for being used for combating parasites in and on animals. An object of the present invention is therefore also to provide new methods to control parasites in and on animals. Another object of the invention is to provide safer pesti- cides for animals. Another object of the invention is further to provide pesticides for animals that may be used in lower doses than existing pesticides. And another object of the invention is to provide pesticides for animals, which provide a long residual control of the parasites. The invention also relates to compositions containing a parasiticidally effective amount of compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and an acceptable carrier, for combating parasites in and on animals.
The present invention also provides a method for treating, controlling, preventing and protecting animals against infestation and infection by parasites, which comprises oral- ly, topically or parenterally administering or applying to the animals a parasiticidally effective amount of a compound of formula (I) or the enantiomers or veterinarily acceptable salts thereof or a composition comprising it.
The invention also provides a process for the preparation of a composition for treating, controlling, preventing or protecting animals against infestation or infection by parasites which comprises a parasiticidally effective amount of a compound of formula (I) or the enantiomers or veterinarily acceptable salts thereof or a composition comprising it. Activity of compounds against agricultural pests does not suggest their suitability for control of endo- and ectoparasites in and on animals which requires, for example, low, non-emetic dosages in the case of oral application, metabolic compatibility with the animal, low toxicity, and a safe handling.
Surprisingly it has now been found that compounds of formula (I) are suitable for combating endo- and ectoparasites in and on animals. Compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are preferably used for controlling and preventing infestations and infections animals including warm-blooded animals (including humans) and fish. They are for example suitable for controlling and preventing infestations and infections in mammals such as cattle, sheep, swine, camels, deer, horses, pigs, poultry, rabbits, goats, dogs and cats, water buffalo, donkeys, fallow deer and reindeer, and also in fur-bearing animals such as mink, chinchilla and raccoon, birds such as hens, geese, turkeys and ducks and fish such as fresh- and salt-water fish such as trout, carp and eels.
Compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are preferably used for controlling and preventing infestations and infections in domestic animals, such as dogs or cats.
Infestations in warm-blooded animals and fish include, but are not limited to, lice, biting lice, ticks, nasal bots, keds, biting flies, muscoid flies, flies, myiasitic fly larvae, chig- gers, gnats, mosquitoes and fleas.
The compounds of formula (I) or the enantiomers or veterinarily acceptable salts thereof and compositions comprising them are suitable for systemic and/or non- systemic control of ecto- and/or endoparasites. They are active against all or some stages of development.
The compounds of formula (I) are especially useful for combating ectoparasites.
The compounds of formula (I) are especially useful for combating parasites of the fol- lowing orders and species (e.g. as above previously listed in the target pests if not explicitly listed hereunder), respectively:
fleas (Siphonaptera);
cockroaches (Blattaria - Blattodea);
flies, mosquitoes (Diptera);
lice (Phthiraptera);
ticks and parasitic mites (Parasitiformes) from arachnoidea;
Actinedida (Prostigmata) und Acaridida (Astigmata);
Bugs (Heteropterida);
Anoplurida, e.g. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., and Solenopotes spp; Mallophagida (suborders Arnblycerina and Ischnocerina), e.g. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Trichodectes spp., and Felicola spp;
Roundworms Nematoda, e.g. Wipeworms and Trichinosis (Trichosyringida), e.g.
Trichinellidae (Trichinella spp.), (Trichuridae) Trichuris spp., Capillaria spp; Rhabditida, e.g. Rhabditis spp, Strongyloides spp., Helicephalobus spp,
Strongylida, e.g. Strongylus spp., Ancylostoma spp., Necator americanus, Bunosto- mum spp. (Hookworm), Trichostrongylus spp., Haemonchus contortus., Ostertagia spp. , Cooperia spp., Nematodirus spp., Dictyocaulus spp., Cyathostoma spp., Oesoph- agostomum spp., Stephanurus dentatus, Ollulanus spp., Chabertia spp., Stephanurus dentatus , Syngamus trachea, Ancylostoma spp., Uncinaria spp., Globocephalus spp., Necator spp., Metastrongylus spp., Muellerius capillaris, Protostrongylus spp., Angi- ostrongylus spp., Parelaphostrongylus spp. Aleurostrongylus abstrusus, and Diocto- phyma renale; Intestinal roundworms (Ascaridida), e.g. Ascaris lumbricoides, Ascaris suum, Ascaridia galli, Parascaris equorum, Enterobius vermicularis (Threadworm), Toxocara canis, Toxascaris leonine, Skrjabinema spp., and Oxyuris equi,
Camallanida, e.g. Dracunculus medinensis (guinea worm)
Spirurida, e.g. Thelazia spp. Wuchereria spp., Brugia spp., Onchocerca spp., Dirofilari spp. a, Dipetalonema spp., Setaria spp., Elaeophora spp., Spirocerca lupi, and Habro- nema spp;
Thorny headed worms (Acanthocephala), e.g. Acanthocephalus spp.,
Macracanthorhynchus hirudinaceus and Oncicola spp,
Planarians (Plathelminthes):
Flukes (Trematoda), e.g. Faciola spp., Fascioloides magna, Paragonimus spp., Dicro- coelium spp., Fasciolopsis buski, Clonorchis sinensis, Schistosoma spp., Trichobilhar- zia spp., Alaria alata, Paragonimus spp., and Nanocyetes spp,
Cercomeromorpha, in particular Cestoda (Tapeworms), e.g. Diphyllobothrium spp., Tenia spp., Echinococcus spp., Dipylidium caninum, Multiceps spp., Hymenolepis spp.,
Mesocestoides spp., Vampirolepis spp., Moniezia spp., Anoplocephala spp., Sirometra spp., Anoplocephala spp., and Hymenolepis spp.
The compounds of formula (I) and compositions containing them are particularly useful for the control of pests from the orders Diptera, Siphonaptera and Ixodida.
Moreover, the use of the compounds of formula (l)formula (I) and compositions containing them for combating mosquitoes is especially preferred.
The use of the compounds of formula I and compositions containing them for combating flies is a further preferred embodiment of the present invention.
Furthermore, the use of the compounds of formula (I) and compositions containing them for combating fleas is especially preferred.
The use of the compounds of formula (I) and compositions containing them for combating ticks is a further preferred embodiment of the present invention.
The compounds of formula (I) also are especially useful for combating endoparasites (roundworms nematoda, thorny headed worms and planarians).
Administration can be carried out both prophylactically and therapeutically. Administration of the active component(s) is carried out directly or in the form of suitable preparations, orally, topically/dermally or parenterally. The term active component(s) as used above mean comprising at least one compound of formula (I) and eventually further active compound(s).
For oral administration to warm-blooded animals, the compounds of formula (I) may be formulated as animal feeds, animal feed premixes, animal feed concentrates, pills, solutions, pastes, suspensions, drenches, gels, tablets, boluses and capsules. In addi- tion, the compounds of formula (I) may be administered to the animals in their drinking water. For oral administration, the dosage form chosen should provide the animal with 0.01 mg/kg to 100 mg/kg of animal body weight per day of the formula (I) compound, preferably with 0.5 mg/kg to 100 mg/kg of animal body weight per day. 5
Alternatively, the compounds of formula (I) may be administered to animals parenteral- ly, for example, by intraruminal, intramuscular, intravenous or subcutaneous injection. The compounds of formula (I) may be dispersed or dissolved in a physiologically acceptable carrier for subcutaneous injection. Alternatively, the compounds of formula (I) may be formulated into an implant for subcutaneous administration. In addition the compound of formula (I) may be transdermally administered to animals. For parenteral administration, the dosage form chosen should provide the animal with 0.01 mg/kg to 100 mg/kg of animal body weight per day of the compound of formula (I).
The compounds of formula (I) may also be applied topically to the animals in the form of dips, dusts, powders, collars, medallions, sprays, shampoos, spot-on and pour-on formulations and in ointments or oil-in-water or water-in-oil emulsions. For topical application, dips and sprays usually contain 0.5 ppm to 5,000 ppm and preferably 1 ppm to 3,000 ppm of the compound of formula (I). In addition, the compounds of formula (I) may be formulated as ear tags for animals, particularly quadrupeds such as cattle and sheep. Suitable preparations are:
- Solutions such as oral solutions, concentrates for oral administration after dilution, solutions for use on the skin or in body cavities, pouring-on formulations, gels;
- Emulsions and suspensions for oral or dermal administration; semi-solid preparations;
- Formulations in which the active component is processed in an ointment base or in an oil-in-water or water-in-oil emulsion base;
- Solid preparations such as powders, premixes or concentrates, granules, pellets, tablets, boluses, capsules; aerosols and inhalants, and active component containing shaped articles.
Compositions suitable for injection are prepared by dissolving the active ingredient in a suitable solvent and optionally adding further ingredients such as acids, bases, buffer salts, preservatives, and solubilizers. The solutions are filtered and filled sterile.
Suitable solvents are physiologically tolerable solvents such as water, alkanols such as ethanol, butanol, benzyl alcohol, glycerol, propylene glycol, polyethylene glycols, N- methyl-pyrrolidone, 2-pyrrolidone, and mixtures thereof.
The active component(s) can optionally be dissolved in physiologically tolerable vegetable or synthetic oils which are suitable for injection.
Suitable solubilizers are solvents which promote the dissolution of the active component in the main solvent or prevent its precipitation. Examples are polyvinylpyrrolidone, polyvinyl alcohol, polyoxyethylated castor oil, and polyoxyethylated sorbitan ester. Suitable preservatives are benzyl alcohol, trichlorobutanol, p-hydroxybenzoic acid esters, and n-butanol.
Oral solutions are administered directly. Concentrates are administered orally after prior dilution to the use concentration. Oral solutions and concentrates are prepared according to the state of the art and as described above for injection solutions, sterile procedures not being necessary.
Solutions for use on the skin are trickled on, spread on, rubbed in, sprinkled on or sprayed on. 5
Solutions for use on the skin are prepared according to the state of the art and according to what is described above for injection solutions, sterile procedures not being necessary.
In general, "parasiticidally effective amount" means the amount of active ingredient needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The parasiticidally effective amount can vary for the various compounds/compositions used in the invention. A parasiticidally effective amount of the compositions will also vary according to the prevailing condi- tions such as desired parasiticidal effect and duration, target species, mode of application, and the like.
The compositions which can be used in the invention can comprise generally from about 0.001 to 95% of the compound of formula (I).
Generally it is favorable to apply the compounds of formula (I) in total amounts of 0.5 mg/kg to 100 mg/kg per day, preferably 1 mg/kg to 50 mg/kg per day.
Ready-to-use preparations contain the compounds acting against parasites, preferably ectoparasites, in concentrations of 10 ppm to 80 per cent by weight, preferably from 0.1 to 65 per cent by weight, more preferably from 1 to 50 per cent by weight, most prefer- ably from 5 to 40 per cent by weight.
Preparations which are diluted before use contain the compounds acting against ectoparasites in concentrations of 0.5 to 90 per cent by weight, preferably of 1 to 50 per cent by weight.
Furthermore, the preparations comprise the compounds of formula (I) against endo- parasites in concentrations of 10 ppm to 2 per cent by weight, preferably of 0.05 to 0.9 per cent by weight, very particularly preferably of 0.005 to 0.25 per cent by weight.
In a preferred embodiment of the present invention, the compositions comprising the compounds of formula (I) are applied dermally / topically.
In a further preferred embodiment, the topical application is conducted in the form of compound-containing shaped articles such as collars, medallions, ear tags, bands for fixing at body parts, and adhesive strips and foils.
Generally it is favorable to apply solid formulations which release compounds of formula (I) in total amounts of 10 mg/kg to 300 mg/kg, preferably 20 mg/kg to 200 mg/kg, most preferably 25 mg/kg to 160 mg/kg body weight of the treated animal in the course of three weeks.
For the preparation of the shaped articles, thermoplastic and flexible plastics as well as elastomers and thermoplastic elastomers are used. Suitable plastics and elastomers are polyvinyl resins, polyurethane, polyacrylate, epoxy resins, cellulose, cellulose derivatives, polyamides and polyester which are sufficiently compatible with the compounds of formula (I). A detailed list of plastics and elastomers as well as preparation procedures for the shaped articles is given e.g. in WO 03/086075. 5
The present invention is now illustrated in further details by the following examples, without imposing any limitation thereto.
Synthesis of the example C-3, which corresponds to a compound of formula 1.1. A:
Synthesis
Figure imgf000053_0001
S-1 S-2 S-3
To a solution of compound S-1 (22.2 g) and benzophenone S-2 (27.3 g) in EtOH (300 ml.) was added AcOH (8 ml) and the solution was heated at reflux overnight. The solution was then concentrated in vacuum and the resulting residue was purified by flash chromatography to give compound S-3 (19.5 g).
Figure imgf000053_0002
To the solution of compound S-3 (9.6 g) in anhydrous DMF (150 ml) was added sodium hydride (2.4 g) at 0°C and the solution was stirred for 30 min at rt. Compound S-4 (16.9 g) was then added and the solution was heated at 100°C for 8 hours. After usual workup of the reaction mixture, the crude product was purified by flash chromatography to give compound S-5 (14 g).
Figure imgf000053_0003
To the solution of compound S-5 (10 g) in EtOH (200 ml) was added concentrated HCI (20 ml) at rt and the solution was stirred for 3 hours at r.t. The solution was adjusted to pH around 7 with aq. NaHC03 and concentrated in vacuum. Methanol was then added and the mixture was filtered. The filtrate was concentrated to give crude compound, which was purified by flash chromatography to give compound S-6 (4.6 g). 5
Figure imgf000054_0001
To a solution of compound S-6 (1.25 g) in anhydrous toluene (60 mL) was added P2S5 (1 .25 g). The solution was heated at reflux for 2.5 hours then the solvent was removed in vacuum. After usual worked up, the residue obtained, compound S-7 (0.5 g) was used without further purification:
Figure imgf000054_0002
To the solution of compound S-7 (0.45 g) and K2CO3 (0.84 g) in anhydrous CHCI3 (90 mL) was added trichloromethyl chloroformate (1 g) at rt under inert atmosphere. The mixture was stirred for 1 hour at r.t., then filtered and the filtrate was concentrated in vacuum. The residue was purified by preparative-TLC to give compound C-3 (0.18 g). H NMR (400 MHz, CDCI3): δ 7.59 (s, 1 H), 5.32 (s, 2 H), 2.69 (s, 3 H).
Compounds can in general be characterized e.g. by coupled High Performance Liquid Chromatography / mass spectrometry (HPLC/MS), by 1H-NMR and/or by their melting points.
Analytical HPLC column 1 : RP-18 column Chromolith Speed ROD from Merck KgaA, Germany). Elution: acetonitrile + 0.1 % trifluoroacetic acid (TFA) / water + 0.1 % tri- fluoroacetic acid (TFA) in a ratio from 5:95 to 95:5 in 5 minutes at 40 °C.
RT = HPLC retention time; m/z of the [M+H]+, [M+Na]+ or [M+K]+ peaks.
Analytical HPLC column 2: Phenomenex Kinetex 1 ,7μηι XB-C18 100A; 50 x 2,1 mm Elution: A: acetonitrile + 0.1 % trifluoroacetic acid (TFA) / water + 0.1 % trifluoroacetic acid (TFA) in a ratio of from 5:95 to 95:5 in 1 .5 minutes at 50 °C.
RT = HPLC retention time; m/z of the [M+H]+, [M+Na]+ or [M+K]+ peaks.
1H-NMR, respectively 13C-NMR: The signals are characterized by chemical shift δ
(ppm) vs. tetramethylsilane, respectively CDCI3 for 13C-NMR, by their multiplicity and by their integral (relative number of hydrogen atoms given). The following abbreviations are used to characterize the multiplicity of the signals: m = multiplett, q = quartett, t = triplett, d = doublet and s = singulett. The coupling constant (J) is expressed in Hertz
(Hz).
Further compounds examples of the present invention were prepared by analogy to the above described synthetic methods and the hereunder table illustrates, without imposing any limitation thereto, compounds examples of formula (I) including their corresponding characterization data:
Figure imgf000055_0001
C-9 1.1.A H H 8.42 (s), 7.88 (d,
J = 7.6), 7.40 (d, J = 8.4 ), 7.27 (s), 5.32 (s), 2.10 (m), 1 .37 (d, J = 6.8), 0.97 (d, J = 3.6)
C-10 I.2.A CHs H H
8.52 (s), 7.93 (dd, J = 8, 2.4), 7.60 (d, J = 8), 5.47 (s)
C-1 1 1.1 .A CHF2 H H 8.49 (s), 7.90 (d,
J = 8 ), 7.41 (d, J = 8.4), 6.89 (t, J = 53), 5.36 (s)
The biological activity of the compounds of formula (I) of the present invention can be evaluated in biological tests as described in the following.
General conditions: If not otherwise specified, most test solutions are to be prepared as follows:
The active compound is dissolved at the desired concentration in a mixture of 1 :1 (vohvol) distilled water : acetone. The test solutions are prepared at the day of use (and, if not otherwise specified, in general at concentrations wt vol).
If not indicated, mortality control was measured at concentration of 500 ppm (wt/vol) and assessed in comparison to the untreated plant control plant.
B.1 Silverleaf Whitefly (Bemisia argentifolii, adult)
The active compounds were formulated in cyclohexanone as a 10,000 ppm solution supplied in 1.3 ml ABgene® tubes. These tubes were inserted into an automated electrostatic sprayer equipped with an atomizing nozzle and they served as stock solutions for which lower dilutions were made in 50% acetone: 50% water (v/v). A nonionic surfactant (Kinetic®) was included in the solution at a volume of 0.01 % (v/v). Cotton plants at the cotyledon stage (one plant per pot) were sprayed by an automated electrostatic plant sprayer equipped with an atomizing spray nozzle. The plants were dried in the sprayer fume hood and then removed from the sprayer. Each pot was placed into a plastic cup and 10 to 12 whitefly adults (approximately 3-5 days old) were introduced. The insects were collected using an aspirator and 0.6 cm, nontoxic Tygon® tubing (R- 3603) connected to a barrier pipette tip. The tip, containing the collected insects, was then gently inserted into the soil containing the treated plant, allowing insects to crawl out of the tip to reach the foliage for feeding. Cups were covered with a reusable screened lid (150-micron mesh polyester screen PeCap from Tetko, Inc.). Test plants were maintained in a growth room at 25°C and 20-40% relative humidity for 3 days, avoiding direct exposure to fluorescent light (24 hour photoperiod) to prevent trapping of heat inside the cup. Mortality was assessed 3 days after treatment, compared to untreated control plants.
In this test, compound C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-10 and C-1 1 at a concen- 5 tration of the test solution of 300 ppm showed a mortality of at least 75%. B.2 Cowpea Aphid (Aphis craccivora)
The active compounds were formulated in 50:50 (v/v) acetone: water. The test solution was prepared at the day of use.
Potted cowpea plants colonized with 100 - 150 aphids of various stages were sprayed after the pest population had been recorded. Population reduction was assessed after 24, 72, and 120 hours.
In this test, the compounds C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9, C-10 and C-1 1 showed a mortality of at least 75%.
B.3 Orchid thrips (Dichromothrips corbetti)
Dichromothrips corbetti adults used for bioassay were obtained from a colony maintained continuously under laboratory conditions. For testing purposes, the test com- pound was diluted to a concentration of 300 ppm (wt compound: vol diluent) in a 1 :1 mixture of acetone: water (vohvol) plus 0.01 % vol/vol Kinetic® surfactant.
Thrips potency of each compound was evaluated by using a floral immersion technique. Plastic petri dishes were used as test arenas. All petals of individual, intact orchid flowers were dipped into treatment solution and allowed to dry. Treated flowers were placed into individual petri dishes along with 10 - 15 adult thrips. The petri dishes were then covered with lids. All test arenas were held under continuous light and a temperature of about 28°C for duration of the assay. After 4 days, the numbers of live thrips were counted on each flower, and along inner walls of each petri dish. The level of thrips mortality was extrapolated from pre-treatment thrips numbers.
In this test, the compounds C-1 , C-2, C-3, C-4, C-7, C-8 and C-10 showed a mortality of at least 75%.
B.4 Vetch aphid (Megoura viciae)
For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consists of 24-well-microtiter plates containing broad bean leaf disks. The compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO (dimethylsulfoxide). Different concentrations of formulated compounds were sprayed onto the leaf disks at 2.5 μΙ, using a custom built micro atomizer, at two replications.
After application, the leaf disks were air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at about 23 ± 1 °C and about 50 ± 5 % relative humidity for 5 days. Aphid mortality and fecundity was then visually assessed.
In this test, the compounds C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9 and C-1 Oat a concentration of the test solution of 800 ppm showed a mortality of at least 75%. B.5 Green Peach Aphid (Myzus persicae, mixed life stages) 5
The active compounds were formulated in cyclohexanone as a 10,000 ppm solution supplied in tubes. The tubes were inserted into an automated electrostatic sprayer equipped with an atomizing nozzle and they served as stock solutions for which lower dilutions were made in 50% acetone:50% water (v/v). A nonionic surfactant (Kinetic®) was included in the solution at a volume of 0.01 % (v/v).
Bell pepper plants at the first true-leaf stage were infested prior to treatment by placing heavily infested leaves from the main colony on top of the treatment plants. Aphids were allowed to transfer overnight to accomplish an infestation of 30-50 aphids per plant and the host leaves were removed. The infested plants were then sprayed by an automated electrostatic plant sprayer equipped with an atomizing spray nozzle. The plants were dried in the sprayer fume hood, removed, and then maintained in a growth room under fluorescent lighting in a 24-hours photoperiod at about 25°C and about 20- 40% relative humidity. Aphid mortality on the treated plants, relative to mortality on untreated control plants, was determined after 5 days.
In this test, the compounds C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9 and C-10 and C-5 at a concentration of the test solution of 800 ppm showed a mortality of at least 75%.
B.6 Boll weevil (Anthonomus grandis)
For evaluating control of boll weevil (Anthonomus grandis) the test unit consists of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs.
The compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 20 μΙ, using a custom built micro atomizer, at two replications.
After application, microtiter plates were incubated at about 23 ± 1 °C and about 50 ± 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test, the compounds C-2, C-3, C-7 and C-10 at a concentration of the test solution of 2500 ppm showed a mortality of at least 75%.
B.7 Mediterranean fruitfly (Ceratitis capitata) For evaluating control of Mediterranean fruit fly (Ceratitis capitata) the test unit consisted of microtiter plates containing an insect diet and 50-80 C. capitata eggs.
The compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 5 μΙ, using a custom built micro atomizer, at two replications.
After application, microtiter plates were incubated at about 28 ± 1 °C and about 80 ± 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test the eggs which have been treated with 800 ppm of C-2, C-3, C-4 and C-7 respectively showed a mortality of at least 75%.
B.8 Tobacco budworm (Heliothis virescens) For evaluating control of tobacco budworm (Heliothis virescens) the test unit consists of 96-well-microtiter plates containing an insect diet and 15-25 H. virescens eggs. 5
The compounds were formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds were sprayed onto the insect diet at 10 μΙ, using a custom built micro atomizer, at two replications.
After application, microtiter plates were incubated at about 28 ± 1 °C and about 80 ± 5 % relative humidity for 5 days. Egg and larval mortality was then visually assessed. In this test, the compound C-4, C-7 and C-10 at a concentration of the test solution of 800 ppm showed a mortality of at least 75%.

Claims

Claims:
A method for combating or controlling invertebrate pests comprising contacting the invertebrate pests, or their food supply, habitat or breeding grounds with a heterocyclic compound of formula (I) or a composition comprising at least one compound of formula (I)
Figure imgf000060_0001
T are independently from one another O or S;
is hydrogen, d-Cs-alkyl, C2-C8-alkenyl, C2-Cs-alkynyl, Ci-C6-alkoxy, C3-C10- cycloalkyl, C4-Cio-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or R1 may form a three- to eleven-membered saturated, or partially unsaturated or aromatic carbo-or heterocyclic rings system, which may contain 1 to 4 heteroatoms selected from N-(RC)P, O, and S, wherein S may be oxidized and wherein the aforementioned groups and the carbo- or heterocyclic rings system may be unsubstituted, or partially or fully substituted by Ra;
Ra is each independently halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci- Ce-haloalkoxy, C3-C6-cycloalkyl, CN, ORb, NRbRc, N02, C(=0)ORb,
Figure imgf000060_0002
S(0)mRb, or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N-(RC)P, O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa;
Raa is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy or Ci-C6-haloalkoxy;
Rb is each independently hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(RC)P, O, and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa
Rc is each independently hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkylcarbonyl, CrC6 cycloalkyl, C1-C4 alkoxyalkyl, Ci-C4-alkoxycarbonyl or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(Raa)p, O and S, wherein S may be oxidized and which carbo- or heterocyclic ring may be substituted by Raa;
m is 0, 1 , or 2;
p is O or l ;
, R3 are each independently from one another hydrogen, halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-haloalkoxy, Ci-C6-alkoxy, C2-C6-alkenyl, C2-C6-alkynyl, C3-C6- cycloalkyl, Cs-Ce-cycloalkenyl, Cs-C-u-cycloalkylcycloalkyl or S(0)mRb, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by Ra;
R3 and R2 may together form a =0, =C(Rd)2, =S, =N(RC), =N N(RC)2 group or a three- to six- membered carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(Rc)p, O, and S, wherein S may be oxidized and wherein the carbo- or heterocyclic ring may be substituted by Ra;
Rd is each independently C1-C4 alkyl, C1-C6 cycloalkyl, C1-C4 alkoxyalkyl, or a three- to six-membered saturated, or partially unsaturated or aromatic carbo- or heterocyclic ring, which may contain 1 to 3 heteroatoms selected from N(Rc)p, O, and S, wherein S may be oxidized and wherein the above cited groups may be substituted by Raa;
Het is three- to eleven-membered heterocyclic ring or ring system, which may contain 1 to 6 heteroatoms selected from N(RC)P, O and S, wherein S may be oxidized, wherein up to 3 C-atom of the heterocyclic ring may be independently selected from C(=0), C(=NRC) and C(=S) and wherein the heterocyclic ring is substituted by Ra and/or (Rm)n;
Rm is each independently selected from, halogen, CN , N02, S(0)mRb, C(0)Ra, C(0)ORa, C(0)NRaRc and C(S)NRaRc, Ci-C6-alkyl, C3-C6-cycloalkyl, C2-C6- alkenyl, C2-C6-alkynyl, Ci-C6-alkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, which C-atoms of the aforementioned groups may be unsubstituted, partially or fully substituted by halogen;
n is 0, 1 or 2;
and/or stereoisomer or agriculturally or veterinary acceptable salts or tautomers or N- oxides thereof.
A method according to claim 1 , wherein in the compounds of formula (I), Het is a five- or six-membered saturated, partially unsaturated or aromatic heterocyclic ring, which may contain 1 to 2 heteroatoms selected from N(RC)P, O and S, which heterocyclic ring is substituted by (Rm)n, wherein Rc, Rm, p and n are as defined in claiml .
A method according to claim 1 or 2, wherein in the compounds of formula (I), X is S.
A method according to any one of the preceding claims, wherein in the compounds of formula (I), R2 and R3 are each independently from one another selected from hydrogen, halogen, CN and C1-C4 alkyl.
A method according to any one of the preceding claims, wherein in the compounds of formula (I), R1 is H, Ci-C4-alkyl, C2-Cs-alkenyl, Ci-C6-alkoxy, C3-C6-cycloalkyl or Cs-Cn- cycloalkylcycloalkyl, wherein the C-atoms of the aforementioned groups may be unsubstituted, or partially or fully substituted by halogen.
A method according to any one of the preceding claims, wherein in the compounds of formula (I) R1 is H, CH3, CH2CH3, CF3, CH2CHF2, cyclopropyl or vinyl;
R3 is H, CI, F, CN or CH3;
Het is selected from the hereunder mentioned structures D-2, D-22, D25, D28, D-29 and
Figure imgf000062_0001
D-2 D-22 D-25 D-28 D-29 D-54 i wherein
Rm is CI, Br, F or Ci-C4-haloalkyl,
n is 0, 1 or 2 and wherever used in a structure, the following: denotes the bond in formula (I).
A method according to any one of the preceding claims, wherein in the compounds of formula (I), Het is D-2 or D-25 and Rm is CI, Br, F or CF3.
A method for protecting crops, plants, plant propagation material and/or growing plants from attack or infestation by invertebrate pests comprising contacting or treating the crops, plants, plant propagation material and growing plants, or soil, material, surface, space, area or water in which the crops, plants, plant propagation material is stored or the plant is growing with a compound of the formula I or a composition comprising at least one compound of formula (I) as defined in any one of the preceding claims.
A method of treating, controlling, preventing or protecting animals against infestation or infection by parasites by administering or applying orally, topically or parentally to the animals a compound of formula (I) or composition comprising at least one compound of formula (I) as defined in any one of the preceding claims.
Heterocyclic compounds of formula (I) as defined in any one of the claims 1 to 7 and/or stereoisomer or agriculturally or veterinary acceptable salts or tautomers or N-oxides thereof.
1 1 . An intermediate compound of formula P-4)
Figure imgf000062_0002
P-4
R1, R2, R3 and Het have the meaning as defined in any one of the claims 1 to 7.
12. A process for the preparation of compounds of formula (I) as defined in any of claims 1 to 7, wherein an intermediate compound of formula (P-4) as defined in claim 1 1 is used.
13. A composition comprising at least one compound according to claim 10 and at least one inert liquid and/or solid carrier.
14. An agricultural composition for combating animal pests comprising at least one compound as defined in claim 10 and at least one inert liquid and/or solid acceptable carrier and, if desired, at least one surfactant.
15. The use of the compounds as defined in claim 10 for protecting growing plants or plant propagation material from attack or infestation by invertebrate pests.
16. The use of the compounds as define in claim 10 or the enantiomers, diastereomers or veterinary acceptable salts, tautomers or N-oxides thereof, for combating parasites in and on animals.
PCT/EP2013/056565 2012-03-29 2013-03-27 Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests WO2013144228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261617096P 2012-03-29 2012-03-29
US61/617,096 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013144228A1 true WO2013144228A1 (en) 2013-10-03

Family

ID=48184141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/056565 WO2013144228A1 (en) 2012-03-29 2013-03-27 Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests

Country Status (1)

Country Link
WO (1) WO2013144228A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052103A1 (en) * 2013-10-11 2015-04-16 Syngenta Participations Ag Pesticidally active n-iminopyridinium ylide compounds
US10328053B2 (en) 2016-08-26 2019-06-25 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
CN111100033A (en) * 2019-12-25 2020-05-05 合肥工业大学 Synthesis method and application of amide crystal compound
US11420974B2 (en) 2018-02-26 2022-08-23 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224937A (en) * 1958-10-22 1965-12-21 Lilly Co Eli Sydnone-containing insecticidal compositions and methods
DE2306543A1 (en) 1973-02-10 1974-08-15 Basf Ag ANTI-CONVULSIVE MEDIUM
DE2408288A1 (en) 1974-02-21 1975-09-04 Basf Ag NEW ANHYDRO-2-MERCAPTO-1,3,4-THIADIAZOLIUM HYDROXIDE
EP0142924A2 (en) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insect resistant plants
EP0193259A1 (en) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifying plants by genetic engineering to combat or control insects
EP0242236A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0257993A2 (en) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1989008830A1 (en) 1988-03-10 1989-09-21 Bio-Affinity Systems, Inc. Thioacylation peptide sequencing with alcoholysis of thiazolinones
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
US5559024A (en) 1988-03-23 1996-09-24 Rhone-Poulenc Agrochimie Chimeric nitrilase-encoding gene for herbicidal resistance
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1998002527A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998002526A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO2000026390A2 (en) 1998-10-29 2000-05-11 American Cyanamid Company Genes and vectors for conferring herbicide resistance in plants
US6222100B1 (en) 1984-03-06 2001-04-24 Mgi Pharma, Inc. Herbicide resistance in plants
WO2001082685A1 (en) 2000-04-28 2001-11-08 Basf Aktiengesellschaft Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003006429A1 (en) 2001-07-10 2003-01-23 Synta Pharmaceuticals Corp. Synthesis of taxol enhancers
WO2003014356A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003013225A2 (en) 2001-08-09 2003-02-20 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
WO2003014357A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003086075A1 (en) 2002-04-16 2003-10-23 Bayer Healthcare Ag Parasite control in animals
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005077943A1 (en) 2004-01-09 2005-08-25 Cadila Healthcare Limited 1 , 3 - dioxane derivatives and analogues thereof useful in the treatment of i.a. obesity and diabetes
WO2005085216A1 (en) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2006013896A1 (en) 2004-08-04 2006-02-09 Meiji Seika Kaisha, Ltd. Quinoline derivative and insecticide containing same as active constituent
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006089633A2 (en) 2005-02-22 2006-08-31 Bayer Cropscience Ag Spiroketal-substituted cyclic ketoenols
WO2006129714A1 (en) 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. Pest control agent
WO2007043677A1 (en) 2005-10-14 2007-04-19 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
WO2007101540A1 (en) 2006-03-06 2007-09-13 Bayer Cropscience Ag Combinations of active ingredients with insecticidal properties
WO2007115644A1 (en) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituted enaminocarbonyl compounds
WO2007149134A1 (en) 2006-06-23 2007-12-27 Dow Agrosciences Llc A method to control insects resistant to common insecticides
WO2008067911A1 (en) 2006-12-04 2008-06-12 Bayer Cropscience Ag Biphenyl-substituted spirocyclic ketoenols
WO2009099929A1 (en) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Mesoionic pesticides
WO2009124707A2 (en) 2008-04-07 2009-10-15 Bayer Cropscience Ag Combinations of biological control agents and insecticides or fungicides
WO2011017347A2 (en) 2009-08-05 2011-02-10 E. I. Du Pont De Nemours And Company Mesoionic pesticides
WO2011017351A2 (en) 2009-08-05 2011-02-10 E. I. Du Pont De Nemours And Company Mixtures of mesoionic pesticides

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224937A (en) * 1958-10-22 1965-12-21 Lilly Co Eli Sydnone-containing insecticidal compositions and methods
DE2306543A1 (en) 1973-02-10 1974-08-15 Basf Ag ANTI-CONVULSIVE MEDIUM
DE2408288A1 (en) 1974-02-21 1975-09-04 Basf Ag NEW ANHYDRO-2-MERCAPTO-1,3,4-THIADIAZOLIUM HYDROXIDE
EP0142924A2 (en) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insect resistant plants
US6222100B1 (en) 1984-03-06 2001-04-24 Mgi Pharma, Inc. Herbicide resistance in plants
EP0193259A1 (en) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifying plants by genetic engineering to combat or control insects
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0242236A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0257993A2 (en) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1989008830A1 (en) 1988-03-10 1989-09-21 Bio-Affinity Systems, Inc. Thioacylation peptide sequencing with alcoholysis of thiazolinones
US5559024A (en) 1988-03-23 1996-09-24 Rhone-Poulenc Agrochimie Chimeric nitrilase-encoding gene for herbicidal resistance
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1998002527A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998002526A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO2000026390A2 (en) 1998-10-29 2000-05-11 American Cyanamid Company Genes and vectors for conferring herbicide resistance in plants
WO2001082685A1 (en) 2000-04-28 2001-11-08 Basf Aktiengesellschaft Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003006429A1 (en) 2001-07-10 2003-01-23 Synta Pharmaceuticals Corp. Synthesis of taxol enhancers
WO2003014356A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003013225A2 (en) 2001-08-09 2003-02-20 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
WO2003014357A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003086075A1 (en) 2002-04-16 2003-10-23 Bayer Healthcare Ag Parasite control in animals
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005077943A1 (en) 2004-01-09 2005-08-25 Cadila Healthcare Limited 1 , 3 - dioxane derivatives and analogues thereof useful in the treatment of i.a. obesity and diabetes
WO2005085216A1 (en) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2006013896A1 (en) 2004-08-04 2006-02-09 Meiji Seika Kaisha, Ltd. Quinoline derivative and insecticide containing same as active constituent
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006089633A2 (en) 2005-02-22 2006-08-31 Bayer Cropscience Ag Spiroketal-substituted cyclic ketoenols
WO2006129714A1 (en) 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. Pest control agent
WO2007043677A1 (en) 2005-10-14 2007-04-19 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
WO2007101540A1 (en) 2006-03-06 2007-09-13 Bayer Cropscience Ag Combinations of active ingredients with insecticidal properties
WO2007115644A1 (en) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituted enaminocarbonyl compounds
WO2007149134A1 (en) 2006-06-23 2007-12-27 Dow Agrosciences Llc A method to control insects resistant to common insecticides
WO2008067911A1 (en) 2006-12-04 2008-06-12 Bayer Cropscience Ag Biphenyl-substituted spirocyclic ketoenols
WO2009099929A1 (en) 2008-02-06 2009-08-13 E. I. Du Pont De Nemours And Company Mesoionic pesticides
WO2009124707A2 (en) 2008-04-07 2009-10-15 Bayer Cropscience Ag Combinations of biological control agents and insecticides or fungicides
WO2011017347A2 (en) 2009-08-05 2011-02-10 E. I. Du Pont De Nemours And Company Mesoionic pesticides
WO2011017351A2 (en) 2009-08-05 2011-02-10 E. I. Du Pont De Nemours And Company Mixtures of mesoionic pesticides

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Technical Monograph No. 2, 6th Ed.", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
BIOCONJUG CHEM., vol. 16, no. 1, January 2005 (2005-01-01), pages 113 - 21
BIOMATERIALS, vol. 22, no. 5, March 2001 (2001-03-01), pages 405 - 17
BIOTECHNOL PROG., vol. 17, no. 4, July 2001 (2001-07-01), pages 720 - 8
C. D. S. TOMLIN: "The Pesticide Manual", 2011, BRITISH CROP PROTECTION COUNCIL
CURR OPIN CHEM BIOL., vol. 1 0, no. 5, 28 August 2006 (2006-08-28), pages 487 - 91
KIER ET AL., NATURE, vol. 204, 1964, pages 697
KNOWLES: "Adjuvants and additives", 2006, T&F INFORMA UK
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
MCCARTHY ET AL., CHEM. COMM., vol. 9, 1968, pages 499
MCCUTCHEON' S: "Emulsifiers & Detergents, McCutcheon' s Directories", vol. 1, 2008, INTERNATIONAL ED. OR NORTH AMERICAN ED.
MOLLET; GRUBEMANN: "Formulation technology", 2001, WILEY VCH
NAT PROTOC., vol. 2, no. 5, 2007, pages 1225 - 35
OHTA ET AL., BULL. CHEM. SOC. JPN., vol. 40, 1967, pages 579
POTTS ET AL., CHEM. COMM., vol. 12, 1968, pages 672
PROTEIN ENG DES SEL., vol. 17, no. 1, January 2004 (2004-01-01), pages 57 - 66

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052103A1 (en) * 2013-10-11 2015-04-16 Syngenta Participations Ag Pesticidally active n-iminopyridinium ylide compounds
US10328053B2 (en) 2016-08-26 2019-06-25 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US10874640B2 (en) 2016-08-26 2020-12-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US11420974B2 (en) 2018-02-26 2022-08-23 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
CN111100033A (en) * 2019-12-25 2020-05-05 合肥工业大学 Synthesis method and application of amide crystal compound
CN111100033B (en) * 2019-12-25 2022-07-26 合肥工业大学 Synthesis method and application of amide crystal compound

Similar Documents

Publication Publication Date Title
US11019820B2 (en) Substituted pyrimidinium compounds and derivatives for combating animal pests
US9204651B2 (en) N-substituted hetero-bicyclic compounds and derivatives for combating animal pests
WO2013010947A2 (en) Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests ii
EP2831076B1 (en) N-substituted hetero-bicyclic compounds and derivatives for combating animal pests ii
EP2830421A1 (en) N-substituted pyridinylidene compounds and derivatives for combating animal pests
EP2834228A1 (en) N- substituted hetero - bicyclic furanone derivatives for combating animal
WO2013144223A1 (en) N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
WO2013150115A1 (en) N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
EP3010921B1 (en) Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2013144228A1 (en) Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests
WO2013186089A2 (en) Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
WO2014096238A1 (en) Cycloclavine and derivatives thereof for controlling invertebrate pests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13718514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13718514

Country of ref document: EP

Kind code of ref document: A1