WO2013141117A1 - Active energy ray-curable composition, active energy ray-curable coating material using same, and active energy ray-curable printing ink using same - Google Patents

Active energy ray-curable composition, active energy ray-curable coating material using same, and active energy ray-curable printing ink using same Download PDF

Info

Publication number
WO2013141117A1
WO2013141117A1 PCT/JP2013/057057 JP2013057057W WO2013141117A1 WO 2013141117 A1 WO2013141117 A1 WO 2013141117A1 JP 2013057057 W JP2013057057 W JP 2013057057W WO 2013141117 A1 WO2013141117 A1 WO 2013141117A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
curable composition
curable
printing ink
Prior art date
Application number
PCT/JP2013/057057
Other languages
French (fr)
Japanese (ja)
Inventor
向井 隆
竜志 奥田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201380015498.2A priority Critical patent/CN104220478B/en
Priority to IN8494DEN2014 priority patent/IN2014DN08494A/en
Priority to JP2013546113A priority patent/JP5495087B2/en
Publication of WO2013141117A1 publication Critical patent/WO2013141117A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1067Esters of polycondensation macromers of alcohol terminated epoxy functional polymers, e.g. epoxy(meth)acrylates

Definitions

  • the present invention relates to an active energy ray-curable composition useful as a raw material for paints, inks and the like. Furthermore, the present invention relates to an active energy ray curable coating and an active energy ray curable printing ink using the composition.
  • Active energy ray-curable composition has a low heat history on the coated substrate and is excellent in coating film hardness and scratch resistance.
  • hard coating agents for various plastic substrates such as home appliances and mobile phones, paper, etc. It is used in various fields such as overcoat agent, binder for printing ink, solder resist.
  • an epoxy acrylate resin obtained by adding acrylic acid or methacrylic acid to an epoxy resin has been widely used in various fields as a material excellent in adhesion and adhesion to a base material (for example, see Patent Document 1).
  • the problem to be solved by the present invention is that it can impart excellent scratch resistance when used in paints such as hard coat agents, and has excellent misting resistance when used in printing ink. It is providing the active energy ray-curable composition which can provide adhesiveness and solvent resistance. Moreover, it is providing the active energy ray-curable coating material and active energy ray-curable printing ink using this active energy ray-curable composition.
  • the present inventors reacted polyfunctional acrylate, aromatic dicarboxylic acid, and aromatic epoxy resin, and then obtained polymerizable product was polymerized.
  • An active energy ray-curable composition obtained by reacting a carboxylic acid having an unsaturated group can impart high scratch resistance to the cured coating film when used in a coating material such as a hard coating agent, and printing.
  • the inventors When used in inks, the inventors have found that the inks can be provided with high misting resistance, and that the cured coating film can be provided with high adhesion to the substrate and high solvent resistance, and the present invention has been completed.
  • a polyfunctional acrylate (A), an aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C) are reacted, and then a polymerizable unsaturated group is added to the obtained reaction product.
  • the present invention relates to an active energy ray-curable composition obtained by reacting a carboxylic acid (D) having an active energy ray-curable composition, an active energy ray-curable coating material and an active energy ray-curable printing ink using the composition.
  • the active energy ray-curable composition of the present invention when used in a paint such as a hard coat agent, can impart high scratch resistance to the cured coating film, so that home appliances such as televisions, refrigerators, washing machines, air conditioners, etc.
  • home appliances such as televisions, refrigerators, washing machines, air conditioners, etc.
  • Housing of products Housing of electronic devices such as personal computers, smartphones, mobile phones, digital cameras and game machines; Interior materials of various vehicles such as automobiles and railway vehicles; Various building materials such as decorative panels; Woodworking materials such as furniture; Artificial / synthetic leather; useful as a material for hard coat agents that form a protective film on the surface of articles such as FRP bathtubs.
  • the active energy ray-curable composition of the present invention when used in printing ink, can impart high misting resistance to the ink, and the cured coating film has high adhesion to the substrate and high solvent resistance. Therefore, it is useful as a binder for various printing inks such as lithographic inks and gravure inks.
  • the active energy ray-curable aqueous resin composition of the present invention is obtained by reacting a polyfunctional acrylate (A), an aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C), and then the obtained reaction product. And a carboxylic acid (D) having a polymerizable unsaturated group.
  • the polyfunctional acrylate (A) is a compound having two or more acryloyl groups, and the number of acryloyl groups is preferably three.
  • the compound having three acryloyl groups include trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, and glycerin propoxytriacrylate.
  • these polyfunctional acrylates (A) ethylene oxide-modified trimethylolpropane triacrylate is preferable.
  • these polyfunctional acrylates (A) can be used alone or in combination of two or more.
  • the aromatic dicarboxylic acid (B) is a dicarboxylic acid having an aromatic ring.
  • the aromatic dicarboxylic acid (B) include phthalic acid, isophthalic acid, terephthalic acid, and the like.
  • anhydrides of aromatic dicarboxylic acids such as phthalic anhydride and trimellitic anhydride can also be used.
  • isophthalic acid is preferable because of its high reactivity with the epoxy group of the aromatic epoxy resin.
  • these aromatic dicarboxylic acids (B) can be used alone or in combination of two or more.
  • the aromatic epoxy resin (C) is an epoxy resin having an aromatic ring.
  • the aromatic epoxy resin (C) include biphenol type epoxy resins such as tetramethylbiphenol type epoxy resins; bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins; Dicyclopentadiene-modified aromatic bifunctional epoxy resin; dihydroxynaphthalene type epoxy resin obtained by epoxidizing dihydroxynaphthalene; glycidyl ester type resin of aromatic dicarboxylic acid; bifunctional epoxy resin derived from xylenol, naphthalene aralkyl Epoxy resins; epoxy resins obtained by modifying these aromatic bifunctional epoxy resins with dicyclopentadiene; ester-modified epoxy resins obtained by modifying these aromatic bifunctional epoxy resins with dibasic acids, etc.
  • aromatic epoxy resins (C) the reactivity of the secondary hydroxyl group generated by the ring opening of the epoxy group by the reaction with the aromatic dicarboxylic acid (B) with the acryloyl group of the polyfunctional acrylate (A) is high. Since it is high, bisphenol A type epoxy resin is preferable. Moreover, these aromatic epoxy resins (C) can be used alone or in combination of two or more.
  • the carboxylic acid (D) is a carboxylic acid having a polymerizable unsaturated group.
  • Examples of the carboxylic acid (D) include acrylic acid and methacrylic acid.
  • acrylic acid is preferable because of its good curability by active energy ray irradiation.
  • These carboxylic acids (D) can be used alone or in combination of two or more.
  • the active energy ray-curable composition of the present invention can be produced by the following two steps.
  • First step The process with which a polyfunctional acrylate (A), aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C) are made to react.
  • Second step The process with which the carboxylic acid (D) which has a polymerizable unsaturated group is made to react with the reaction material obtained at the 1st process.
  • the carboxyl group of aromatic dicarboxylic acid (B) and the epoxy group of aromatic epoxy resin (C) couple
  • ethylene oxide-modified pentaerythritol triacrylate is used for the polyfunctional acrylate (A)
  • isophthalic acid is used for the aromatic dicarboxylic acid (B)
  • bisphenol A type epoxy resin is used for the aromatic epoxy resin (C).
  • the progress of the reaction in this case is considered to be as shown in the following (Reaction Formula 1).
  • the segment which the said aromatic dicarboxylic acid (B) after the Michael addition reaction reacted with the said aromatic epoxy resin (C) is abbreviated.
  • n, x, y and z each represent a repeating unit in parentheses.
  • the usage-amount of the said aromatic epoxy resin (C) in said 1st process is an epoxy group which the said aromatic epoxy resin (C) has with respect to 1 mol of carboxyl groups which the said aromatic dicarboxylic acid (B) has. Is preferably in the range of 1 to 5, more preferably in the range of 1.1 to 3, and still more preferably in the range of 1.5 to 3.
  • the reaction product obtained in the first step has an epoxy group.
  • the amount of the polyfunctional acrylate (A) used in the first step is 20 to 20 parts per 100 parts by mass of the total amount of the aromatic dicarboxylic acid (B) and the aromatic epoxy resin (C).
  • the range of 300 parts by mass is preferable, the range of 50 to 200 parts by mass is more preferable, and the range of 80 to 120 parts by mass is more preferable.
  • the first step is preferably performed in the presence of a catalyst (E).
  • a catalyst (E) examples include triphenylphosphine, 2-methylimidazole, trimethylammonium chloride, and the like.
  • triphenylphosphine is preferable because the reaction can be easily controlled.
  • these catalysts (E) can be used alone or in combination of two or more.
  • the first step is preferably carried out in the presence of a polymerization inhibitor (F).
  • a polymerization inhibitor (F) a nitroso polymerization inhibitor such as nitrosophenylhydroxylamine ammonium salt; hydroquinone , Quinone polymerization inhibitors such as methoquinone (hydroquinone monomethyl ether) and benzoquinone; radical scavengers such as N, N-diphenylpicrylhydrazyl (DPPH), triphenylmethyl and butylhydroxytoluene; benzotriazole antioxidants Etc.
  • methoquinone is preferred because of its high solubility in the resin.
  • These polymerization inhibitors (F) can be used alone or in combination of two or more.
  • the reaction temperature in the first step is preferably in the range of 100 to 140 ° C., more preferably in the range of 110 to 130 ° C., because the epoxy ring-opening reaction and the addition reaction proceed well.
  • the epoxy equivalent of the reaction product obtained in the first step is 100 to 2,000 g / eq. In the range of 100 to 500 g / eq. The range of 100 to 300 g / eq. The range of is more preferable.
  • the acid value is preferably in the range of 0.1 to 3.0, more preferably in the range of 0.1 to 2.0, and still more preferably in the range of 0.1 to 1.0.
  • the epoxy group of the reaction product obtained in the first step is reacted with the carboxyl group of the carboxylic acid (D) having a polymerizable unsaturated group such as acrylic acid, thereby causing the first step.
  • a polymerizable unsaturated group can be introduced into the reaction product obtained in one step.
  • the reaction product obtained in the first step is the one shown in (Reaction Formula 1) and acrylic acid is used as the carboxylic acid (D), the following (Reaction Formula 2) )become that way.
  • the epoxy equivalent of the active energy ray-curable composition of the present invention obtained through the first step and the second step is 5,000 to 50,000 g / eq. In the range of 10,000 to 50,000 g / eq. The range of 14,000 to 50,000 g / eq. The range of is more preferable.
  • the acid value is preferably in the range of 0.5 to 10, more preferably in the range of 0.5 to 5, and further preferably in the range of 0.5 to 3, from the viewpoint of the stability of the composition.
  • a polyfunctional acrylate (A ′) may be further added to the active energy ray-curable composition of the present invention. When this polyfunctional acrylate (A ′) is added, it may be added during the second step or after the second step.
  • the polyfunctional acrylate (A ′) can be the same as the polyfunctional acrylate (A), and may be the same as or different from the polyfunctional acrylate (A). Ethylene oxide-modified trimethylolpropane triacrylate is preferred.
  • These polyfunctional acrylates (A ′) can be used alone or in combination of two or more.
  • the active energy ray-curable coating material of the present invention contains the active energy ray-curable composition of the present invention, and other compounds include pigments, dyes, extender pigments, organic or inorganic fillers, active energy rays.
  • Additives such as pigment dispersants can be used.
  • the active energy ray-curable coating material of the present invention can be formed into a cured coating film by irradiating active energy rays after being applied to a substrate.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a cured coating film is formed by irradiating ultraviolet rays as active energy rays, it is preferable to add a photopolymerization initiator (G) to the active energy ray-curable aqueous coating material of the present invention to improve curability.
  • a photosensitizer can be further added to improve curability.
  • ionizing radiation such as electron beam, ⁇ -ray, ⁇ -ray, and ⁇ -ray
  • it cures quickly without using a photopolymerization initiator or photosensitizer. It is not necessary to add G) or a photosensitizer.
  • Examples of the photopolymerization initiator (G) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy.
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 A thioxanthone compound such as dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone; an aminobenzophenone compound such as Michler ketone and 4,4′-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.
  • These photopolymerization initiators (G) can be used alone or in combination of two or more.
  • the photosensitizer examples include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And sulfur compounds.
  • photopolymerization initiators and photosensitizers are preferably used in an amount of 0.05 to 20 parts by mass, preferably 0.5 to 10 mass% is more preferable.
  • the active energy ray-curable coating material of the present invention can be used as a coating material for coating various articles.
  • Articles that can be coated with the active energy ray-curable paint of the present invention include housings for home appliances such as televisions, refrigerators, washing machines, and air conditioners; electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines.
  • Equipment casings interior materials for various vehicles such as automobiles and railway vehicles; various building materials such as decorative panels; woodwork materials such as furniture; artificial and synthetic leather; FRP bathtubs.
  • the application method of the active energy ray-curable paint of the present invention varies depending on the application, for example, gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, Examples of the method include spin coater, dipping, screen printing, spraying, applicator, and bar coater.
  • the active energy ray for curing the active energy ray-curable coating of the present invention is ionizing radiation such as ultraviolet rays, electron rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • curing devices include germicidal lamps, fluorescent lamps for ultraviolet rays, carbon arc, xenon lamps, high-pressure mercury lamps for copying, medium or high-pressure mercury lamps, ultra-high pressure mercury lamps, electrodeless lamps, metal halide lamps, and ultraviolet light that uses natural light as a light source.
  • an electron beam by a scanning type or curtain type electron beam accelerator an electron beam by a scanning type or curtain type electron beam accelerator.
  • the active energy ray curable printing ink of the present invention contains the active energy ray curable composition of the present invention, and is formulated with other suitable formulations for various printing methods.
  • additives such as pigments, dyes, extender pigments, paraffin wax, polyolefin wax, organic solvents, and pigment dispersants can be used.
  • a photopolymerization initiator and a photosensitizer are blended as necessary, and the blending amount is the same as in the case of the paint. Furthermore, the same thing can be used also about the active energy ray used in the case of an effect, and the apparatus which irradiates it.
  • the active energy ray-curable printing ink of the present invention can be used for printing various printed materials.
  • the printed material include paper base materials used for catalogs, pamphlets, cosmetic packages, and the like; films used for various food packaging materials such as polypropylene films and polyethylene terephthalate (PET) films.
  • examples of the printing method of the active energy ray-curable printing ink of the present invention include lithographic printing, gravure printing, gravure offset printing, flexographic printing, and the like.
  • Example 1 In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (hereinafter abbreviated as “EOTMPTA”), bisphenol A type epoxy resin (Dow “DER331” manufactured by Chemical Japan Co., Ltd., epoxy equivalent of 185 g / eq., Hereinafter abbreviated as “Bis-A type epoxy resin”) 145 parts by mass, terephthalic acid (hereinafter abbreviated as “TPA”) 32 masses Parts, dibutylhydroxytoluene (polymerization inhibitor; hereinafter abbreviated as “BHT”) 1.8 parts by mass, and methoquinone (polymerization inhibitor; hereinafter abbreviated as “MQ”) 0.2 parts by mass.
  • ETMPTA ethylene oxide-modified trimethylolpropane triacrylate
  • TPP triphenylphosphine
  • Example 2 In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of EOTMPTA, 145 parts by mass of Bis-A type epoxy resin, 32 parts by mass of isophthalic acid (hereinafter abbreviated as “IPA”), After charging 1.8 parts by mass of BHT and 0.2 parts by mass of MQ and raising the temperature to 120 ° C., 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq.
  • EOTMPTA EOTMPTA
  • Bis-A type epoxy resin 32 parts by mass of isophthalic acid (hereinafter abbreviated as “IPA”)
  • IPA isophthalic acid
  • Example 3 In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, EOTMPTA 177.5 parts by mass, Bis-A type epoxy resin 149.5 parts by mass, IPA 21 parts by mass, BHT 1.8 parts by mass, and MQ 0.2 parts by mass Parts were charged and the temperature was raised to 120 ° C., and then 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 28 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further carried out at 120 ° C. for 2 hours, so that the epoxy equivalent was 15,500 g / eq. And an active energy ray-curable composition (3) having an acid value of 1.5 was obtained.
  • Example 4 In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of trimethylolpropane triacrylate (hereinafter abbreviated as “TMPTA”), 145 parts by mass of Bis-A type epoxy resin, IPA32 After adding a mass part, 1.8 mass parts of BHT, and 0.2 mass part of MQ, and heating up at 120 degreeC, 2.7 mass parts of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq.
  • TMPTA trimethylolpropane triacrylate
  • Example 5 In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of glycerin propoxytriacrylate (hereinafter abbreviated as “GPTA”), 145 parts by mass of Bis-A type epoxy resin, 32 parts by mass of IPA Part, BHT 1.8 parts by mass, and MQ 0.2 parts by mass were heated to 120 ° C., and then 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq.
  • GPTA glycerin propoxytriacrylate
  • Example 6 [Preparation of active energy ray curable paint] 100 parts by mass of the active energy ray-curable composition (1) obtained in Example 1 above, 4 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd .; 1-hydroxycyclohexyl-phenylketone), And 20 mass parts of butyl acetate was mixed and the active energy ray-curable coating material (1) was obtained. Subsequently, the following scratch resistance evaluation was performed about the cured coating film of the obtained active energy ray-curable coating material (1).
  • a photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd .; 1-hydroxycyclohexyl-phenylketone)
  • the active energy ray-curable paint (1) obtained above was applied on a glass plate (thickness 2 mm) using an applicator so as to have a dry film thickness of 10 ⁇ m, and after drying the solvent, a high pressure of 80 W / cm. Curing was performed using a mercury lamp at an ultraviolet irradiation amount of 0.8 J / cm 2 to obtain a coating film for evaluation of scratch resistance.
  • the obtained coating film for evaluation was obtained with a wear tester (500 g / cm 2 load) in which steel wool (“Bonster No. 0000” manufactured by Nippon Steel Wool Co., Ltd.) was attached to a circular jig having a diameter of 27 mm. The surface was worn 100 reciprocating times.
  • the coating film after the test was measured with a haze meter (“NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd.), and the scratch resistance was evaluated according to the following criteria from the obtained haze value.
  • Haze value is less than 5.
  • Haze value is 5 or more and less than 10.
  • X Haze value is 10 or more.
  • Examples 7 to 10 and Comparative Example 2 Instead of the active energy ray-curable composition (1) used in Example 6, the active energy ray-curable compositions (2) to (5) and (R1) obtained in Examples 2 to 5 and Comparative Example 1 were used.
  • the active energy ray-curable paints (2) to (5) and (R1) were prepared in the same manner except that (1) was used, and a cured coating film was obtained, and the scratch resistance was evaluated.
  • Table 2 summarizes the compositions of the active energy ray-curable paints obtained in Examples 6 to 10 and Comparative Example 2 and the evaluation results of scratch resistance.
  • the cured coating films of the active energy ray-curable coatings of Examples 6 to 10 using the active energy ray-curable composition of the present invention have a very low haze value of 1 to 2% after abrasion with steel wool, and are high. It was found to have scratch resistance.
  • the active energy ray-curable coating material of Comparative Example 2 is an example using an active energy ray-curable composition that does not use the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention. It was found that the haze value after abrasion with steel wool was as high as 11% and the scratch resistance was poor.
  • Example 11 [Preparation of active energy ray-curable printing ink] 23 parts by mass of the active energy ray-curable composition (1) obtained in Example 1 above, 19 parts by mass of a red pigment (Pigment Red 57-1), 3 parts by mass of a yellow pigment (Pigment Yellow 13), linear 25 parts by mass of polyester acrylate (“Evekril 657” manufactured by USB Chemicals; hereinafter abbreviated as “PEsA”), 13 parts by mass of TMPTA, 8 parts by mass of talc, 5 parts by mass of polyethylene wax, photopolymerization initiator (BASF Japan Ltd.) “Irgacure 907”, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one; hereinafter abbreviated as “photopolymerization initiator (1)”) 2 parts by mass, photopolymerization initiator (4,4′-diethylaminobenzophenone; hereinafter abbreviated as “photopolymerization initiator (2)”) 2
  • the active energy ray-curable printing ink (1) obtained above was applied to a polyethylene terephthalate film (corona-treated PET film manufactured by Toyobo Co., Ltd .; thickness 50 ⁇ m) as a base material using a bar coater # 4.
  • the film was cured with an ultraviolet irradiation amount of 0.8 J / cm 2 using an 80 W / cm high-pressure mercury lamp to obtain a coating film for evaluating adhesion.
  • a cellophane tape was applied to the surface of the obtained coating film for evaluation, and the peeled state of the coating film from the substrate when peeled vigorously was visually observed, and the adhesion was evaluated according to the following criteria.
  • Example 12 to 15 and Comparative Example 3 Instead of the active energy ray-curable composition (1) used in Example 11, the active energy ray-curable compositions (2) to (5) and (R1) obtained in Examples 2 to 5 and Comparative Example 1 were used.
  • the active energy ray-curable printing inks (2) to (5) and (R1) were prepared in the same manner except that was used. Using the obtained active energy ray-curable printing ink, evaluation of misting resistance, adhesion and solvent resistance was carried out in the same manner as in Example 11.
  • Table 3 summarizes the compositions of the active energy ray-curable printing inks obtained in Examples 11 to 15 and Comparative Examples 3 and 4, and the evaluation results of misting resistance, adhesion, and solvent resistance.
  • the active energy ray-curable printing inks of Examples 11 to 15 using the active energy ray-curable composition of the present invention were excellent in misting resistance. Moreover, it turned out that the cured coating film of the active energy ray curable printing ink of this invention has very high adhesiveness with respect to a polyethylene terephthalate film, and has high solvent resistance.
  • the active energy ray-curable printing ink of Comparative Example 3 is an example using an active energy ray-curable composition that did not use the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention.
  • this active energy ray-curable printing ink has a very large amount of mist and has a problem in misting resistance.
  • the cured coating film of this printing ink is poor in adhesiveness with respect to a polyethylene terephthalate film, and also solvent resistance is not enough.
  • the active energy ray-curable printing ink of Comparative Example 4 is an example in which an active energy ray-curable composition not using the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention and a rosin resin are used in combination.
  • this active energy ray-curable printing ink can suppress the amount of mist as compared with that of Comparative Example 3, but the cured coating film of this printing ink has poor adhesion to the polyethylene terephthalate film. It was found that there was no solvent resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is an active energy ray-curable composition which is characterized by being obtained by reacting (A) a polyfunctional acrylate, (B) an aromatic dicarboxylic acid and (C) an aromatic epoxy resin, and then reacting the obtained reactant with (D) a carboxylic acid having a polymerizable unsaturated group. In cases where this active energy ray-curable composition is used in a coating material such as a hard coat agent, this active energy ray-curable composition is capable of providing a cured film of the coating material with high scratch resistance. Consequently, this active energy ray-curable composition is suitable as a material for a hard coat agent that forms a protective film on the surface of an article. In cases where this active energy ray-curable composition is used in a printing ink, this active energy ray-curable composition is capable of providing the ink with high anti-misting properties and is also capable of providing a cured film of the printing ink with high adhesion to a base and high solvent resistance. Consequently, this active energy ray-curable composition is suitable as a binder for various printing inks such as a lithographic printing ink and a gravure printing ink.

Description

活性エネルギー線硬化性組成物、それを用いた活性エネルギー線硬化性塗料及び活性エネルギー線硬化性印刷インキActive energy ray curable composition, active energy ray curable coating and active energy ray curable printing ink using the same
 塗料、インキ等の原料として有用な活性エネルギー線硬化性組成物に関する。さらには、該組成物を用いた活性エネルギー線硬化性塗料及び活性エネルギー線硬化性印刷インキに関する。 The present invention relates to an active energy ray-curable composition useful as a raw material for paints, inks and the like. Furthermore, the present invention relates to an active energy ray curable coating and an active energy ray curable printing ink using the composition.
 活性エネルギー線硬化性組成物は、塗装基材への熱履歴が少なく、塗膜硬度や擦り傷性に優れるという特長から、家電製品、携帯電話等の各種プラスチック基材用ハードコート剤、紙等のオーバーコート剤、印刷インキ用バインダー、ソルダーレジスト等の様々な分野で使用されている。中でもエポキシ樹脂に、アクリル酸又はメタクリル酸を付加したエポキシアクリレート樹脂は、基材への密着性、接着性に優れる材料として、様々な分野において多用されてきた(例えば、特許文献1参照。)。 Active energy ray-curable composition has a low heat history on the coated substrate and is excellent in coating film hardness and scratch resistance. For example, hard coating agents for various plastic substrates such as home appliances and mobile phones, paper, etc. It is used in various fields such as overcoat agent, binder for printing ink, solder resist. Among them, an epoxy acrylate resin obtained by adding acrylic acid or methacrylic acid to an epoxy resin has been widely used in various fields as a material excellent in adhesion and adhesion to a base material (for example, see Patent Document 1).
 しかしながら、従来のエポキシアクリレート樹脂を、例えば、家電製品、携帯電話等のプラスチック基材用ハードコート剤として用いた場合には、スマートフォンのタッチパネルようにハードコートの表面を指で擦る機会が増加するために、その表面により高い耐擦傷性が必要となってきた。また、エポキシアクリレート樹脂を印刷インキ用バインダーとして用いる場合には、印刷インキに必要な乳化適性が乏しかったり、印刷インキの耐ミスチング性が劣ったりする問題があった。この問題を解決するために、ロジン系樹脂、ジアリルフタレート樹脂等の印刷適性に優れる樹脂を併用する手法があるが(例えば、特許文献2参照。)、この併用でも、印刷インキのポリプロピレンやナイロンフィルムへの密着性が低下したり、活性エネルギー線による硬化性が低下したりする問題があった。 However, when a conventional epoxy acrylate resin is used, for example, as a hard coat agent for plastic substrates of home appliances, mobile phones, etc., the chance of rubbing the surface of the hard coat with a finger like a smartphone touch panel increases. In addition, higher scratch resistance is required on the surface. In addition, when an epoxy acrylate resin is used as a binder for printing ink, there are problems that the emulsification suitability required for the printing ink is poor and the misting resistance of the printing ink is poor. In order to solve this problem, there is a method of using a resin having excellent printability such as rosin resin and diallyl phthalate resin (see, for example, Patent Document 2). Even in this combination, polypropylene or nylon film of printing ink is used. There was a problem that the adhesiveness to the surface was lowered or the curability by the active energy ray was lowered.
 そこで、ハードコート剤に用いた場合には、その硬化塗膜に高い耐擦傷性を付与でき、印刷インキに用いた場合には、該インキに高い耐ミスチング性を付与でき、その硬化塗膜に基材に対する高い密着性と高い耐溶剤性を付与できる活性エネルギー線硬化性組成物が求められていた。 Therefore, when used in a hard coating agent, high scratch resistance can be imparted to the cured coating film, and when used in printing ink, high misting resistance can be imparted to the ink. There has been a demand for an active energy ray-curable composition that can provide high adhesion to a substrate and high solvent resistance.
特開昭61-218620号公報Japanese Patent Laid-Open No. 61-218620 特開2010-241866号公報JP 2010-241866 A
 本発明が解決しようとする課題は、ハードコート剤等の塗料に用いた場合に優れた耐擦傷性を付与することができ、印刷インキに用いた場合には優れた耐ミスチング性、基材への密着性及び耐溶剤性を付与することのできる活性エネルギー線硬化性組成物を提供することである。また、この活性エネルギー線硬化性組成物を用いた活性エネルギー線硬化性塗料及び活性エネルギー線硬化性印刷インキを提供することである。 The problem to be solved by the present invention is that it can impart excellent scratch resistance when used in paints such as hard coat agents, and has excellent misting resistance when used in printing ink. It is providing the active energy ray-curable composition which can provide adhesiveness and solvent resistance. Moreover, it is providing the active energy ray-curable coating material and active energy ray-curable printing ink using this active energy ray-curable composition.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、多官能アクリレートと、芳香族ジカルボン酸と、芳香族エポキシ樹脂とを反応させ、次いで、得られた反応物に、重合性不飽和基を有するカルボン酸を反応させることにより得られる活性エネルギー線硬化性組成物は、ハードコート剤等の塗料に用いた場合には、その硬化塗膜に高い耐擦傷性を付与でき、印刷インキに用いた場合には、該インキに高い耐ミスチング性を付与でき、その硬化塗膜に基材に対する高い密着性と高い耐溶剤性を付与できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors reacted polyfunctional acrylate, aromatic dicarboxylic acid, and aromatic epoxy resin, and then obtained polymerizable product was polymerized. An active energy ray-curable composition obtained by reacting a carboxylic acid having an unsaturated group can impart high scratch resistance to the cured coating film when used in a coating material such as a hard coating agent, and printing. When used in inks, the inventors have found that the inks can be provided with high misting resistance, and that the cured coating film can be provided with high adhesion to the substrate and high solvent resistance, and the present invention has been completed.
 すなわち、本発明は、多官能アクリレート(A)と、芳香族ジカルボン酸(B)と、芳香族エポキシ樹脂(C)とを反応させ、次いで、得られた反応物に、重合性不飽和基を有するカルボン酸(D)を反応させることにより得られることを特徴とする活性エネルギー線硬化性組成物、該組成物を用いた活性エネルギー線硬化性塗料及び活性エネルギー線硬化性印刷インキに関する。 That is, in the present invention, a polyfunctional acrylate (A), an aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C) are reacted, and then a polymerizable unsaturated group is added to the obtained reaction product. The present invention relates to an active energy ray-curable composition obtained by reacting a carboxylic acid (D) having an active energy ray-curable composition, an active energy ray-curable coating material and an active energy ray-curable printing ink using the composition.
 本発明の活性エネルギー線硬化性組成物は、ハードコート剤等の塗料に用いた場合には、その硬化塗膜に高い耐擦傷性を付与できることから、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;自動車、鉄道車輌等の各種車輌の内装材;化粧板等の各種建材;家具等の木工材料、人工・合成皮革;FRP浴槽などの物品の表面に保護膜を形成するハードコート剤の材料として有用である。 The active energy ray-curable composition of the present invention, when used in a paint such as a hard coat agent, can impart high scratch resistance to the cured coating film, so that home appliances such as televisions, refrigerators, washing machines, air conditioners, etc. Housing of products; Housing of electronic devices such as personal computers, smartphones, mobile phones, digital cameras and game machines; Interior materials of various vehicles such as automobiles and railway vehicles; Various building materials such as decorative panels; Woodworking materials such as furniture; Artificial / synthetic leather; useful as a material for hard coat agents that form a protective film on the surface of articles such as FRP bathtubs.
 また、本発明の活性エネルギー線硬化性組成物は、印刷インキに用いた場合には、該インキに高い耐ミスチング性を付与でき、その硬化塗膜に基材に対する高い密着性と高い耐溶剤性を付与できることから、平版インキ、グラビアインキ等の各種印刷インキ用のバインダーとして有用である。 In addition, the active energy ray-curable composition of the present invention, when used in printing ink, can impart high misting resistance to the ink, and the cured coating film has high adhesion to the substrate and high solvent resistance. Therefore, it is useful as a binder for various printing inks such as lithographic inks and gravure inks.
 本発明の活性エネルギー線硬化型水性樹脂組成物は、多官能アクリレート(A)と、芳香族ジカルボン酸(B)と、芳香族エポキシ樹脂(C)とを反応させ、次いで、得られた反応物に、重合性不飽和基を有するカルボン酸(D)を反応させることにより得られるものである。 The active energy ray-curable aqueous resin composition of the present invention is obtained by reacting a polyfunctional acrylate (A), an aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C), and then the obtained reaction product. And a carboxylic acid (D) having a polymerizable unsaturated group.
 前記多官能アクリレート(A)は、2つ以上のアクリロイル基を有する化合物であるが、アクリロイル基の数は3つのものが好ましい。アクリロイル基を3つ有する化合物としては、トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート及びグリセリンプロポキシトリアクリレート等が挙げられる。これらの多官能アクリレート(A)の中でも、エチレンオキサイド変性トリメチロールプロパントリアクリレートが好ましい。また、これらの多官能アクリレート(A)は、単独で用いることも2種以上併用することもできる。 The polyfunctional acrylate (A) is a compound having two or more acryloyl groups, and the number of acryloyl groups is preferably three. Examples of the compound having three acryloyl groups include trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, and glycerin propoxytriacrylate. Among these polyfunctional acrylates (A), ethylene oxide-modified trimethylolpropane triacrylate is preferable. Moreover, these polyfunctional acrylates (A) can be used alone or in combination of two or more.
 前記芳香族ジカルボン酸(B)は、芳香環を有するジカルボン酸である。この芳香族ジカルボン酸(B)としては、例えば、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。また、芳香族ジカルボン酸(B)として、無水フタル酸、無水トリメリット酸のような芳香族ジカルボン酸の無水物も用いることができる。これらの芳香族ジカルボン酸(B)の中でも、前記芳香族エポキシ樹脂が有するエポキシ基との反応性が高いことから、イソフタル酸が好ましい。また、これらの芳香族ジカルボン酸(B)は、単独で用いることも2種以上併用することもできる。 The aromatic dicarboxylic acid (B) is a dicarboxylic acid having an aromatic ring. Examples of the aromatic dicarboxylic acid (B) include phthalic acid, isophthalic acid, terephthalic acid, and the like. As the aromatic dicarboxylic acid (B), anhydrides of aromatic dicarboxylic acids such as phthalic anhydride and trimellitic anhydride can also be used. Among these aromatic dicarboxylic acids (B), isophthalic acid is preferable because of its high reactivity with the epoxy group of the aromatic epoxy resin. Moreover, these aromatic dicarboxylic acids (B) can be used alone or in combination of two or more.
 前記芳香族エポキシ樹脂(C)は、芳香環を有するエポキシ樹脂である。この芳香族エポキシ樹脂(C)としては、例えば、テトラメチルビフェノール型エポキシ樹脂等のビフェノール型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ジシクロペンタジエン変性の芳香族二官能エポキシ樹脂;ジヒドロキシナフタレン類をエポキシ化してなるジヒドロキシナフタレン型エポキシ樹脂;芳香族二価カルボン酸のグリシジルエステル型樹脂;キシレノールから誘導された二官能エポキシ樹脂、ナフタレンアラルキルエポキシ樹脂;これら芳香族二官能エポキシ樹脂をジシクロペンタジエンで変性したエポキシ樹脂;これら芳香族二官能エポキシ樹脂を二塩基酸類で変性したエステル変性エポキシ樹脂等が挙げられる。これらの芳香族エポキシ樹脂(C)の中でも、前記芳香族ジカルボン酸(B)との反応でエポキシ基が開環し生じる2級水酸基の前記多官能アクリレート(A)のアクリロイル基との反応性が高いことから、ビスフェノールA型エポキシ樹脂が好ましい。また、これらの芳香族エポキシ樹脂(C)は、単独で用いることも2種以上併用することもできる。 The aromatic epoxy resin (C) is an epoxy resin having an aromatic ring. Examples of the aromatic epoxy resin (C) include biphenol type epoxy resins such as tetramethylbiphenol type epoxy resins; bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins; Dicyclopentadiene-modified aromatic bifunctional epoxy resin; dihydroxynaphthalene type epoxy resin obtained by epoxidizing dihydroxynaphthalene; glycidyl ester type resin of aromatic dicarboxylic acid; bifunctional epoxy resin derived from xylenol, naphthalene aralkyl Epoxy resins; epoxy resins obtained by modifying these aromatic bifunctional epoxy resins with dicyclopentadiene; ester-modified epoxy resins obtained by modifying these aromatic bifunctional epoxy resins with dibasic acids, etc. It is. Among these aromatic epoxy resins (C), the reactivity of the secondary hydroxyl group generated by the ring opening of the epoxy group by the reaction with the aromatic dicarboxylic acid (B) with the acryloyl group of the polyfunctional acrylate (A) is high. Since it is high, bisphenol A type epoxy resin is preferable. Moreover, these aromatic epoxy resins (C) can be used alone or in combination of two or more.
 前記カルボン酸(D)は、重合性不飽和基を有するカルボン酸である。このカルボン酸(D)としては、例えば、アクリル酸、メタクリル酸等が挙げられる。これらのカルボン酸(D)の中でも、活性エネルギー線照射による硬化性が良好なことから、アクリル酸が好ましい。また、これらのカルボン酸(D)は、単独で用いることも2種以上併用することもできる。 The carboxylic acid (D) is a carboxylic acid having a polymerizable unsaturated group. Examples of the carboxylic acid (D) include acrylic acid and methacrylic acid. Among these carboxylic acids (D), acrylic acid is preferable because of its good curability by active energy ray irradiation. These carboxylic acids (D) can be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化性組成物は、下記の2つの工程により製造することができる。
[第1工程]
 多官能アクリレート(A)と、芳香族ジカルボン酸(B)と、芳香族エポキシ樹脂(C)とを反応させる工程。
[第2工程]
 第1工程で得られた反応物に、重合性不飽和基を有するカルボン酸(D)を反応させる工程。
The active energy ray-curable composition of the present invention can be produced by the following two steps.
[First step]
The process with which a polyfunctional acrylate (A), aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C) are made to react.
[Second step]
The process with which the carboxylic acid (D) which has a polymerizable unsaturated group is made to react with the reaction material obtained at the 1st process.
 上記の第1工程では、芳香族ジカルボン酸(B)のカルボキシル基と、芳香族エポキシ樹脂(C)のエポキシ基とが、エポキシ基の開環付加反応により結合し、これにより生じた2級水酸基が、多官能アクリレート(A)のアクリロイル基とマイケル付加反応により反応する。したがって、得られる反応物は、前記芳香族ジカルボン酸(B)と、前記芳香族エポキシ樹脂(C)とが反応して生じたポリマー鎖が、前記多官能アクリレート(A)によって架橋された構造を有するものと考えられる。また、例えば、多官能アクリレート(A)にエチレンオキサイド変性ペンタエリスリトールトリアクリレートを用い、芳香族ジカルボン酸(B)にイソフタル酸を用い、芳香族エポキシ樹脂(C)にビスフェノールA型エポキシ樹脂を用いた場合の反応の進行は、下記の(反応式1)のようになるものと考えられる。なお、マイケル付加反応後の前記芳香族ジカルボン酸(B)と前記芳香族エポキシ樹脂(C)とが反応したセグメントについては略記している。 In said 1st process, the carboxyl group of aromatic dicarboxylic acid (B) and the epoxy group of aromatic epoxy resin (C) couple | bond together by the ring-opening addition reaction of an epoxy group, and the secondary hydroxyl group produced | generated by this Reacts with the acryloyl group of the polyfunctional acrylate (A) by a Michael addition reaction. Therefore, the obtained reaction product has a structure in which the polymer chain formed by the reaction of the aromatic dicarboxylic acid (B) and the aromatic epoxy resin (C) is cross-linked by the polyfunctional acrylate (A). It is thought to have. Further, for example, ethylene oxide-modified pentaerythritol triacrylate is used for the polyfunctional acrylate (A), isophthalic acid is used for the aromatic dicarboxylic acid (B), and bisphenol A type epoxy resin is used for the aromatic epoxy resin (C). The progress of the reaction in this case is considered to be as shown in the following (Reaction Formula 1). In addition, the segment which the said aromatic dicarboxylic acid (B) after the Michael addition reaction reacted with the said aromatic epoxy resin (C) is abbreviated.
Figure JPOXMLDOC01-appb-C000001
(式中、n、x、y及びzは、それぞれカッコ内の繰り返し単位を表す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, n, x, y and z each represent a repeating unit in parentheses.)
 上記の第1工程での前記芳香族エポキシ樹脂(C)の使用量は、前記芳香族ジカルボン酸(B)が有するカルボキシル基1モルに対して、前記芳香族エポキシ樹脂(C)が有するエポキシ基が1~5となる範囲が好ましく、1.1~3となる範囲がより好ましく、1.5~3となる範囲がさらに好ましい。芳香族エポキシ樹脂(C)が有するエポキシ基を過剰にして用いることで、第1工程で得られる反応物は、エポキシ基を有するものとなる。 The usage-amount of the said aromatic epoxy resin (C) in said 1st process is an epoxy group which the said aromatic epoxy resin (C) has with respect to 1 mol of carboxyl groups which the said aromatic dicarboxylic acid (B) has. Is preferably in the range of 1 to 5, more preferably in the range of 1.1 to 3, and still more preferably in the range of 1.5 to 3. By using the epoxy group of the aromatic epoxy resin (C) in excess, the reaction product obtained in the first step has an epoxy group.
 また、上記の第1工程での前記多官能アクリレート(A)の使用量は、前記芳香族ジカルボン酸(B)及び前記芳香族エポキシ樹脂(C)の合計量100質量部に対して、20~300質量部の範囲が好ましく、50~200質量部の範囲がより好ましく、80~120質量部の範囲がさらに好ましい。 The amount of the polyfunctional acrylate (A) used in the first step is 20 to 20 parts per 100 parts by mass of the total amount of the aromatic dicarboxylic acid (B) and the aromatic epoxy resin (C). The range of 300 parts by mass is preferable, the range of 50 to 200 parts by mass is more preferable, and the range of 80 to 120 parts by mass is more preferable.
 また、上記の第1工程は、触媒(E)の存在下で行うことが好ましく、この触媒(E)としては、トリフェニルホスフィン、2-メチルイミダゾール、トリメチルアンモアニウムクロライド等が挙げられる。これらの触媒(E)の中でも、反応を制御しやすいことから、トリフェニルホスフィンが好ましい。また、これらの触媒(E)は、単独で用いることも2種以上併用することもできる。 The first step is preferably performed in the presence of a catalyst (E). Examples of the catalyst (E) include triphenylphosphine, 2-methylimidazole, trimethylammonium chloride, and the like. Among these catalysts (E), triphenylphosphine is preferable because the reaction can be easily controlled. Moreover, these catalysts (E) can be used alone or in combination of two or more.
 さらに、上記の第1工程においては、重合禁止剤(F)の存在下で行うことが好ましく、この重合禁止剤(F)としては、ニトロソフェニルヒドロキシルアミンアンモニウム塩等のニトロソ系重合禁止剤;ハイドロキノン、メトキノン(ハイドロキノンモノメチルエーテル)、ベンゾキノン等のキノン系重合禁止剤;N,N-ジフェニルピクリルヒドラジル(DPPH)、トリフェニルメチル、ブチルヒドロキシトルエン等のラジカル捕獲剤;ベンゾトリアゾール系の酸化防止剤などが挙げられる。これらの重合禁止剤(F)の中でも、樹脂への溶解性を高いことから、メトキノンが好ましい。また、これらの重合禁止剤(F)は、単独で用いることも2種以上併用することもできる。 Furthermore, the first step is preferably carried out in the presence of a polymerization inhibitor (F). As the polymerization inhibitor (F), a nitroso polymerization inhibitor such as nitrosophenylhydroxylamine ammonium salt; hydroquinone , Quinone polymerization inhibitors such as methoquinone (hydroquinone monomethyl ether) and benzoquinone; radical scavengers such as N, N-diphenylpicrylhydrazyl (DPPH), triphenylmethyl and butylhydroxytoluene; benzotriazole antioxidants Etc. Among these polymerization inhibitors (F), methoquinone is preferred because of its high solubility in the resin. These polymerization inhibitors (F) can be used alone or in combination of two or more.
 また、上記の第1工程での反応温度は、エポキシ開環反応及び付加反応が良好に進行することから、100~140℃の範囲が好ましく、110~130℃の範囲がより好ましい。 The reaction temperature in the first step is preferably in the range of 100 to 140 ° C., more preferably in the range of 110 to 130 ° C., because the epoxy ring-opening reaction and the addition reaction proceed well.
 上記の第1工程により得られる反応物のエポキシ当量は、100~2,000g/eq.の範囲が好ましく、100~500g/eq.の範囲がより好ましく、100~300g/eq.の範囲がさらに好ましい。また、酸価については、0.1~3.0の範囲が好ましく、0.1~2.0の範囲がより好ましく、0.1~1.0の範囲がさらに好ましい。 The epoxy equivalent of the reaction product obtained in the first step is 100 to 2,000 g / eq. In the range of 100 to 500 g / eq. The range of 100 to 300 g / eq. The range of is more preferable. The acid value is preferably in the range of 0.1 to 3.0, more preferably in the range of 0.1 to 2.0, and still more preferably in the range of 0.1 to 1.0.
 一方、上記の第2工程では、第1工程で得られた反応物が有するエポキシ基に、アクリル酸等の重合性不飽和基を有するカルボン酸(D)のカルボキシル基を反応させることにより、第1工程で得られた反応物に重合性不飽和基を導入することができる。この反応については、例えば、第1工程で得られた反応物が上記の(反応式1)で示したものであり、カルボン酸(D)にアクリル酸を用いた場合、下記の(反応式2)のようになる。 On the other hand, in the second step, the epoxy group of the reaction product obtained in the first step is reacted with the carboxyl group of the carboxylic acid (D) having a polymerizable unsaturated group such as acrylic acid, thereby causing the first step. A polymerizable unsaturated group can be introduced into the reaction product obtained in one step. Regarding this reaction, for example, when the reaction product obtained in the first step is the one shown in (Reaction Formula 1) and acrylic acid is used as the carboxylic acid (D), the following (Reaction Formula 2) )become that way.
Figure JPOXMLDOC01-appb-C000002
(式中、x、y及びzは、それぞれカッコ内の繰り返し単位を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, x, y and z each represent a repeating unit in parentheses.)
 また、この第1工程で得られた反応物と重合性不飽和基を有するカルボン酸(D)との反応についても、必要に応じて、第1工程で説明した前記触媒(E)及び重合禁止剤(F)を用いることができる。 In addition, for the reaction between the reaction product obtained in the first step and the carboxylic acid (D) having a polymerizable unsaturated group, the catalyst (E) described in the first step and the polymerization prohibition are also necessary. Agent (F) can be used.
 上記の第1工程及び第2工程を経て得られる本発明の活性エネルギー線硬化性組成物のエポキシ当量は、組成物の安定性が良好となることから、5,000~50,000g/eq.の範囲が好ましく、10,000~50,000g/eq.の範囲がより好ましく、14,000~50,000g/eq.の範囲がさらに好ましい。また、酸価については、組成物の安定性の観点から0.5~10の範囲が好ましく、0.5~5の範囲がより好ましく、0.5~3の範囲がさらに好ましい。 The epoxy equivalent of the active energy ray-curable composition of the present invention obtained through the first step and the second step is 5,000 to 50,000 g / eq. In the range of 10,000 to 50,000 g / eq. The range of 14,000 to 50,000 g / eq. The range of is more preferable. The acid value is preferably in the range of 0.5 to 10, more preferably in the range of 0.5 to 5, and further preferably in the range of 0.5 to 3, from the viewpoint of the stability of the composition.
 また、本発明の活性エネルギー線硬化性組成物には、さらに多官能アクリレート(A’)を加えてもよい。この多官能アクリレート(A’)を加える場合は、上記の第2工程時に加えても、第2工程後に加えても構わない。多官能アクリレート(A’)としては、多官能アクリレート(A)と同様のものを用いることができ、多官能アクリレート(A)と同一のものであっても、異なるものであっても構わないが、エチレンオキサイド変性トリメチロールプロパントリアクリレートが好ましい。また、これらの多官能アクリレート(A’)は、単独で用いることも2種以上併用することもできる。 In addition, a polyfunctional acrylate (A ′) may be further added to the active energy ray-curable composition of the present invention. When this polyfunctional acrylate (A ′) is added, it may be added during the second step or after the second step. The polyfunctional acrylate (A ′) can be the same as the polyfunctional acrylate (A), and may be the same as or different from the polyfunctional acrylate (A). Ethylene oxide-modified trimethylolpropane triacrylate is preferred. These polyfunctional acrylates (A ′) can be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化性塗料は、本発明の活性エネルギー線硬化性組成物を含有するものであるが、その他の配合物として、顔料、染料、体質顔料、有機又は無機フィラー、活性エネルギー線硬化性単量体、活性エネルギー線硬化性オリゴマー、有機溶剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、顔料分散剤等の添加剤を使用することができる。 The active energy ray-curable coating material of the present invention contains the active energy ray-curable composition of the present invention, and other compounds include pigments, dyes, extender pigments, organic or inorganic fillers, active energy rays. Curing monomer, active energy ray curable oligomer, organic solvent, antistatic agent, antifoaming agent, viscosity modifier, light stabilizer, weather stabilizer, heat stabilizer, ultraviolet absorber, antioxidant, leveling agent Additives such as pigment dispersants can be used.
 本発明の活性エネルギー線硬化性塗料は、基材に塗布後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、本発明の活性エネルギー線硬化型水性塗料中に光重合開始剤(G)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤(G)や光増感剤を添加する必要はない。 The active energy ray-curable coating material of the present invention can be formed into a cured coating film by irradiating active energy rays after being applied to a substrate. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When a cured coating film is formed by irradiating ultraviolet rays as active energy rays, it is preferable to add a photopolymerization initiator (G) to the active energy ray-curable aqueous coating material of the present invention to improve curability. Further, if necessary, a photosensitizer can be further added to improve curability. On the other hand, when ionizing radiation such as electron beam, α-ray, β-ray, and γ-ray is used, it cures quickly without using a photopolymerization initiator or photosensitizer. It is not necessary to add G) or a photosensitizer.
 前記光重合開始剤(G)としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。 Examples of the photopolymerization initiator (G) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy. -2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thio Acetophenone compounds such as methylphenyl) propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether and benzoin isopropyl ether; 4,6-trimethylbenzoindiphenylphos In'okishido, bis (2,4,6-trimethylbenzoyl) - acyl phosphine oxide-based compounds such as triphenylphosphine oxide; benzyl, and methyl phenylglyoxylate ester.
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラーケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が挙げられる。これらの光重合開始剤(G)は、単独で用いることも、2種以上を併用することもできる。 On the other hand, examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 A thioxanthone compound such as dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone; an aminobenzophenone compound such as Michler ketone and 4,4′-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like. These photopolymerization initiators (G) can be used alone or in combination of two or more.
 また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o-トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。 Examples of the photosensitizer include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And sulfur compounds.
 これらの光重合開始剤及び光増感剤の使用量は、本発明の活性エネルギー線硬化性塗料中の不揮発成分100質量部に対し、各々0.05~20質量部が好ましく、0.5~10質量%がより好ましい。 These photopolymerization initiators and photosensitizers are preferably used in an amount of 0.05 to 20 parts by mass, preferably 0.5 to 10 mass% is more preferable.
 また、本発明の活性エネルギー線硬化性塗料は、各種物品を塗装する塗料として用いることができる。本発明の活性エネルギー線硬化性塗料を塗装することのできる物品としては、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;自動車、鉄道車輌等の各種車輌の内装材;化粧板等の各種建材;家具等の木工材料、人工・合成皮革;FRP浴槽などが挙げられる。 Moreover, the active energy ray-curable coating material of the present invention can be used as a coating material for coating various articles. Articles that can be coated with the active energy ray-curable paint of the present invention include housings for home appliances such as televisions, refrigerators, washing machines, and air conditioners; electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines. Equipment casings; interior materials for various vehicles such as automobiles and railway vehicles; various building materials such as decorative panels; woodwork materials such as furniture; artificial and synthetic leather; FRP bathtubs.
 また、本発明の活性エネルギー線硬化性塗料の塗装方法としては、用途により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等の方法が挙げられる。 In addition, the application method of the active energy ray-curable paint of the present invention varies depending on the application, for example, gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, Examples of the method include spin coater, dipping, screen printing, spraying, applicator, and bar coater.
 本発明の活性エネルギー線硬化性塗料を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。 As described above, the active energy ray for curing the active energy ray-curable coating of the present invention is ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays. Examples of curing devices include germicidal lamps, fluorescent lamps for ultraviolet rays, carbon arc, xenon lamps, high-pressure mercury lamps for copying, medium or high-pressure mercury lamps, ultra-high pressure mercury lamps, electrodeless lamps, metal halide lamps, and ultraviolet light that uses natural light as a light source. Or an electron beam by a scanning type or curtain type electron beam accelerator.
 本発明の活性エネルギー線硬化性印刷インキは、本発明の活性エネルギー線硬化性組成物を含有するものであるが、その他、各種印刷方式に適した配合物が配合されたものである。例えば、平版印刷用印刷インキの場合は、顔料、染料、体質顔料、パラフィンワックス、ポリオレフィンワックス、有機溶剤、顔料分散剤等の添加剤を使用することができる。 The active energy ray curable printing ink of the present invention contains the active energy ray curable composition of the present invention, and is formulated with other suitable formulations for various printing methods. For example, in the case of printing ink for lithographic printing, additives such as pigments, dyes, extender pigments, paraffin wax, polyolefin wax, organic solvents, and pigment dispersants can be used.
 また、本発明の活性エネルギー線硬化性印刷インキの場合も、必要に応じて、光重合開始剤や光増感剤を配合し、その配合量も塗料の場合と同様である。さらに、効果の際に用いる活性エネルギー線及びそれを照射する装置も同様なものを用いることができる。 Also in the case of the active energy ray-curable printing ink of the present invention, a photopolymerization initiator and a photosensitizer are blended as necessary, and the blending amount is the same as in the case of the paint. Furthermore, the same thing can be used also about the active energy ray used in the case of an effect, and the apparatus which irradiates it.
 また、本発明の活性エネルギー線硬化性印刷インキは、各種被印刷物を印刷するものとして用いることができる。当該被印刷物としては、カタログ、パンフレット、化粧品パッケージ等に用いる紙基材;ポリプロピレンフィルム、ポリエチレンテレフタレート(PET)フィルム等の各種食品包装用資材に用いられるフィルムなどが挙げられる。 Moreover, the active energy ray-curable printing ink of the present invention can be used for printing various printed materials. Examples of the printed material include paper base materials used for catalogs, pamphlets, cosmetic packages, and the like; films used for various food packaging materials such as polypropylene films and polyethylene terephthalate (PET) films.
 また、本発明の活性エネルギー線硬化性印刷インキの印刷方法としては、例えば、平版印刷、グラビア印刷、グラビアオフセット印刷、フレキソ印刷等が挙げられる。 Also, examples of the printing method of the active energy ray-curable printing ink of the present invention include lithographic printing, gravure printing, gravure offset printing, flexographic printing, and the like.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、得られたものの酸価は、JIS試験方法K 0070-1992に準拠して測定し、エポキシ当量は、JIS試験方法K 7236:2001に準拠して測定した。 Hereinafter, the present invention will be described in more detail with reference to specific examples. The acid value of the obtained product was measured according to JIS test method K 0070-1992, and the epoxy equivalent was measured according to JIS test method K 7236: 2001.
(実施例1)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、エチレンオキサイド変性トリメチロールプロパントリアクリレート(以下、「EOTMPTA」と略記する。)177.5質量部、ビスフェノールA型エポキシ樹脂(ダウ・ケミカル日本株式会社製「DER331」、エポキシ当量185g/eq.;以下、「Bis-A型エポキシ樹脂」と略記する。)145質量部、テレフタル酸(以下、「TPA」と略記する。)32質量部、ジブチルヒドロキシトルエン(重合禁止剤;以下、「BHT」と略記する。)1.8質量部、及びメトキノン(重合禁止剤;以下、「MQ」と略記する。)0.2質量部を仕込み、120℃に昇温した後、トリフェニルホスフィン(触媒;以下、「TPP」と略記する。)2.7質量部を加えた。120℃で5時間反応を継続し、反応溶液のエポキシ当量が1,050g/eq.となった時点で、アクリル酸24質量部、EOTMPTA105質量部、及びTPP1.2質量部を仕込んだ後、さらに120℃で2時間反応を行うことで、エポキシ当量が15,000g/eq.であり、酸価が3.4である活性エネルギー線硬化性組成物(1)を得た。
Example 1
In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (hereinafter abbreviated as “EOTMPTA”), bisphenol A type epoxy resin (Dow “DER331” manufactured by Chemical Japan Co., Ltd., epoxy equivalent of 185 g / eq., Hereinafter abbreviated as “Bis-A type epoxy resin”) 145 parts by mass, terephthalic acid (hereinafter abbreviated as “TPA”) 32 masses Parts, dibutylhydroxytoluene (polymerization inhibitor; hereinafter abbreviated as “BHT”) 1.8 parts by mass, and methoquinone (polymerization inhibitor; hereinafter abbreviated as “MQ”) 0.2 parts by mass. The temperature was raised to 120 ° C., and 2.7 parts by mass of triphenylphosphine (catalyst; hereinafter abbreviated as “TPP”) was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 24 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further carried out at 120 ° C. for 2 hours, so that the epoxy equivalent was 15,000 g / eq. And an active energy ray-curable composition (1) having an acid value of 3.4 was obtained.
(実施例2)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、EOTMPTA177.5質量部、Bis-A型エポキシ樹脂145質量部、イソフタル酸(以下、「IPA」と略記する。)32質量部、BHT1.8質量部、及びMQ0.2質量部を仕込み、120℃に昇温した後、TPP2.7質量部を加えた。120℃で5時間反応を継続し、反応溶液のエポキシ当量が1,050g/eq.となった時点で、アクリル酸25質量部、EOTMPTA105質量部、及びTPP1.2質量部を仕込んだ後、さらに120℃で2時間反応を行うことで、エポキシ当量が16,000g/eq.であり、酸価が2.1である活性エネルギー線硬化性組成物(2)を得た。
(Example 2)
In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of EOTMPTA, 145 parts by mass of Bis-A type epoxy resin, 32 parts by mass of isophthalic acid (hereinafter abbreviated as “IPA”), After charging 1.8 parts by mass of BHT and 0.2 parts by mass of MQ and raising the temperature to 120 ° C., 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 25 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further performed at 120 ° C. for 2 hours, so that the epoxy equivalent was 16,000 g / eq. And an active energy ray-curable composition (2) having an acid value of 2.1 was obtained.
(実施例3)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、EOTMPTA177.5質量部、Bis-A型エポキシ樹脂149.5質量部、IPA21質量部、BHT1.8質量部、及びMQ0.2質量部を仕込み、120℃に昇温した後、TPP2.7質量部を加えた。120℃で5時間反応を継続し、反応溶液のエポキシ当量が1,050g/eq.となった時点で、アクリル酸28質量部、EOTMPTA105質量部、及びTPP1.2質量部を仕込んだ後、さらに120℃で2時間反応を行うことで、エポキシ当量が15,500g/eq.であり、酸価が1.5である活性エネルギー線硬化性組成物(3)を得た。
(Example 3)
In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, EOTMPTA 177.5 parts by mass, Bis-A type epoxy resin 149.5 parts by mass, IPA 21 parts by mass, BHT 1.8 parts by mass, and MQ 0.2 parts by mass Parts were charged and the temperature was raised to 120 ° C., and then 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 28 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further carried out at 120 ° C. for 2 hours, so that the epoxy equivalent was 15,500 g / eq. And an active energy ray-curable composition (3) having an acid value of 1.5 was obtained.
(実施例4)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、トリメチロールプロパントリアクリレート(以下、「TMPTA」と略記する。)177.5質量部、Bis-A型エポキシ樹脂145質量部、IPA32質量部、BHT1.8質量部、及びMQ0.2質量部を仕込み、120℃に昇温した後、TPP2.7質量部を加えた。120℃で5時間反応を継続し、反応溶液のエポキシ当量が1,050g/eq.となった時点で、アクリル酸25質量部、EOTMPTA105質量部、及びTPP1.2質量部を仕込んだ後、さらに120℃で2時間反応を行うことで、エポキシ当量が15,100g/eq.であり、酸価が2.5である活性エネルギー線硬化性組成物(4)を得た。
(Example 4)
In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of trimethylolpropane triacrylate (hereinafter abbreviated as “TMPTA”), 145 parts by mass of Bis-A type epoxy resin, IPA32 After adding a mass part, 1.8 mass parts of BHT, and 0.2 mass part of MQ, and heating up at 120 degreeC, 2.7 mass parts of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 25 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further performed at 120 ° C. for 2 hours, so that the epoxy equivalent was 15,100 g / eq. And an active energy ray-curable composition (4) having an acid value of 2.5 was obtained.
(実施例5)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、グリセリンプロポキシトリアクリレート(以下、「GPTA」と略記する。)177.5質量部、Bis-A型エポキシ樹脂145質量部、IPA32質量部、BHT1.8質量部、及びMQ0.2質量部を仕込み、120℃に昇温した後、TPP2.7質量部を加えた。120℃で5時間反応を継続し、反応溶液のエポキシ当量が1,050g/eq.となった時点で、アクリル酸24質量部、EOTMPTA105質量部、及びTPP1.2質量部を仕込んだ後、さらに120℃で2時間反応を行うことで、エポキシ当量が16,000g/eq.であり、酸価が2.2である活性エネルギー線硬化性組成物(5)を得た。
(Example 5)
In a four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 177.5 parts by mass of glycerin propoxytriacrylate (hereinafter abbreviated as “GPTA”), 145 parts by mass of Bis-A type epoxy resin, 32 parts by mass of IPA Part, BHT 1.8 parts by mass, and MQ 0.2 parts by mass were heated to 120 ° C., and then 2.7 parts by mass of TPP was added. The reaction was continued at 120 ° C. for 5 hours, and the epoxy equivalent of the reaction solution was 1,050 g / eq. Then, after charging 24 parts by mass of acrylic acid, 105 parts by mass of EOTMPTA, and 1.2 parts by mass of TPP, the reaction was further carried out at 120 ° C. for 2 hours, so that the epoxy equivalent was 16,000 g / eq. And an active energy ray-curable composition (5) having an acid value of 2.2 was obtained.
 上記の実施例1~5で得られた活性エネルギー線硬化性組成物(1)~(5)の原料組成、エポキシ当量、及び酸価を表1にまとめた。 The raw material compositions, epoxy equivalents, and acid values of the active energy ray-curable compositions (1) to (5) obtained in Examples 1 to 5 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(比較例1)
 攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、Bis-A型エポキシ樹脂145質量部、アクリル酸56質量部、BHT1.8質量部、及びMQ0.2質量部を仕込み、120℃に昇温した後、TPP1.2質量部を加えた。次いで、120℃で5時間反応を行うことで、エポキシ当量が15,000g/eq.であり、酸価が1.0である活性エネルギー線硬化性組成物(R1)を得た。
(Comparative Example 1)
A four-necked flask equipped with a stirrer, a thermometer and a condenser tube was charged with 145 parts by mass of Bis-A type epoxy resin, 56 parts by mass of acrylic acid, 1.8 parts by mass of BHT, and 0.2 parts by mass of MQ, and 120 ° C. Then, 1.2 parts by mass of TPP was added. Subsequently, by reacting at 120 ° C. for 5 hours, an epoxy equivalent of 15,000 g / eq. And an active energy ray-curable composition (R1) having an acid value of 1.0 was obtained.
(実施例6)
[活性エネルギー線硬化性塗料の調製]
 上記の実施例1で得られた活性エネルギー線硬化性組成物(1)100質量部、光重合開始剤(BASFジャパン株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)4質量部、及び酢酸ブチル20質量部を混合して、活性エネルギー線硬化性塗料(1)を得た。次いで、得られた活性エネルギー線硬化性塗料(1)の硬化塗膜について、下記の耐擦傷性の評価を行った。
(Example 6)
[Preparation of active energy ray curable paint]
100 parts by mass of the active energy ray-curable composition (1) obtained in Example 1 above, 4 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd .; 1-hydroxycyclohexyl-phenylketone), And 20 mass parts of butyl acetate was mixed and the active energy ray-curable coating material (1) was obtained. Subsequently, the following scratch resistance evaluation was performed about the cured coating film of the obtained active energy ray-curable coating material (1).
[耐擦傷性の評価]
 上記で得られた活性エネルギー線硬化性塗料(1)を、アプリケーターを用いてガラス板(厚さ2mm)上に乾燥膜厚10μmとなるように塗布し、溶剤を乾燥後、80W/cmの高圧水銀ランプを用いて0.8J/cmの紫外線照射量で硬化させて、耐擦傷性の評価用塗膜を得た。次いで、直径27mmの円形の治具にスチールウール(日本スチールウール株式会社製「ボンスター No,0000」)を取り付けた磨耗試験機(500g/cm荷重)にて、得られた評価用塗膜の表面を100往復磨耗させた。試験後の塗膜をヘイズメーター(日本電色工業株式会社製「NDH5000」)で測定し、得られたヘイズ値から、下記の基準にしたがって耐擦傷性を評価した。
 ○:ヘイズ値が5未満である。
 △:ヘイズ値が5以上10未満である。
 ×:ヘイズ値が10以上である。
[Evaluation of scratch resistance]
The active energy ray-curable paint (1) obtained above was applied on a glass plate (thickness 2 mm) using an applicator so as to have a dry film thickness of 10 μm, and after drying the solvent, a high pressure of 80 W / cm. Curing was performed using a mercury lamp at an ultraviolet irradiation amount of 0.8 J / cm 2 to obtain a coating film for evaluation of scratch resistance. Next, the obtained coating film for evaluation was obtained with a wear tester (500 g / cm 2 load) in which steel wool (“Bonster No. 0000” manufactured by Nippon Steel Wool Co., Ltd.) was attached to a circular jig having a diameter of 27 mm. The surface was worn 100 reciprocating times. The coating film after the test was measured with a haze meter (“NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd.), and the scratch resistance was evaluated according to the following criteria from the obtained haze value.
○: Haze value is less than 5.
Δ: Haze value is 5 or more and less than 10.
X: Haze value is 10 or more.
(実施例7~10及び比較例2)
 実施例6で用いた活性エネルギー線硬化性組成物(1)に代えて、実施例2~5及び比較例1で得られた活性エネルギー線硬化性組成物(2)~(5)及び(R1)を用いた以外は同様に操作して、活性エネルギー線硬化性塗料(2)~(5)及び(R1)を調製し、硬化塗膜を得て、耐擦傷性の評価を行った。
(Examples 7 to 10 and Comparative Example 2)
Instead of the active energy ray-curable composition (1) used in Example 6, the active energy ray-curable compositions (2) to (5) and (R1) obtained in Examples 2 to 5 and Comparative Example 1 were used. The active energy ray-curable paints (2) to (5) and (R1) were prepared in the same manner except that (1) was used, and a cured coating film was obtained, and the scratch resistance was evaluated.
 上記の実施例6~10及び比較例2で得られた活性エネルギー線硬化性塗料の組成と、耐擦傷性の評価結果を表2にまとめた。 Table 2 summarizes the compositions of the active energy ray-curable paints obtained in Examples 6 to 10 and Comparative Example 2 and the evaluation results of scratch resistance.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の活性エネルギー線硬化性組成物を用いた実施例6~10の活性エネルギー線硬化性塗料の硬化塗膜は、スチールウールによる摩耗後のヘイズ値が1~2%と非常に小さく、高い耐擦傷性を有することが分かった。 The cured coating films of the active energy ray-curable coatings of Examples 6 to 10 using the active energy ray-curable composition of the present invention have a very low haze value of 1 to 2% after abrasion with steel wool, and are high. It was found to have scratch resistance.
 一方、比較例2の活性エネルギー線硬化性塗料は、本発明で用いる多官能アクリレート(A)及び芳香族ジカルボン酸(B)を用いなかった活性エネルギー線硬化性組成物を用いた例であるが、スチールウールによる摩耗後のヘイズ値が11%と高く、耐擦傷性に劣っていることが分かった。 On the other hand, the active energy ray-curable coating material of Comparative Example 2 is an example using an active energy ray-curable composition that does not use the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention. It was found that the haze value after abrasion with steel wool was as high as 11% and the scratch resistance was poor.
(実施例11)
[活性エネルギー線硬化性印刷インキの調製]
 上記の実施例1で得られた活性エネルギー線硬化性組成物(1)23質量部、赤色顔料(Pigment Red 57-1)19質量部、黄色顔料(Pigment Yellow 13)3質量部、直鎖状ポリエステルアクリレート(USBケミカルズ社製「エベクリル657」;以下、「PEsA」と略記する。)25質量部、TMPTA13質量部、タルク8質量部、ポリエチレンワックス5質量部、光重合開始剤(BASFジャパン株式会社製「イルガキュア907」、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン;以下、「光重合開始剤(1)」と略記する。)2質量部、光重合開始剤(4,4’-ジエチルアミノベンゾフェノン;以下、「光重合開始剤(2)」と略記する。)2質量部及びを混合した後、3本ロールで練肉して、活性エネルギー線硬化性印刷インキ(1)を得た。次いで、得られた活性エネルギー線硬化性印刷インキ(1)について、下記の耐ミスチング性を評価し、また、活性エネルギー線硬化性印刷インキ(1)の硬化塗膜について、下記の密着性及び耐溶剤性の評価を行った。
(Example 11)
[Preparation of active energy ray-curable printing ink]
23 parts by mass of the active energy ray-curable composition (1) obtained in Example 1 above, 19 parts by mass of a red pigment (Pigment Red 57-1), 3 parts by mass of a yellow pigment (Pigment Yellow 13), linear 25 parts by mass of polyester acrylate (“Evekril 657” manufactured by USB Chemicals; hereinafter abbreviated as “PEsA”), 13 parts by mass of TMPTA, 8 parts by mass of talc, 5 parts by mass of polyethylene wax, photopolymerization initiator (BASF Japan Ltd.) “Irgacure 907”, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one; hereinafter abbreviated as “photopolymerization initiator (1)”) 2 parts by mass, photopolymerization initiator (4,4′-diethylaminobenzophenone; hereinafter abbreviated as “photopolymerization initiator (2)”) 2 parts by mass and After, the mixture was kneaded with a three-roll to obtain an active energy ray-curable printing ink (1). Subsequently, about the obtained active energy ray-curable printing ink (1), the following misting resistance was evaluated, and about the cured coating film of the active energy ray-curable printing ink (1), the following adhesion and resistance. Solvent properties were evaluated.
[耐ミスチング性の評価]
 上記で得られた活性エネルギー線硬化性印刷インキ(1)を、インコメーター(Thwing-Albert社「Model 101」)を用いて、1200rpm、32℃の条件で1分間インキのランニングを行い、ミスチングの状態(発生するミスト量)を目視で観察して、下記の基準にしたがって耐ミスチング性を評価した。
 5:ミストが発生しない。
 4:ごくわずかにミストが発生する。
 3:ややミストが発生する。
 2:ミストが発生する。
 1:激しくミストが発生する。
[Evaluation of misting resistance]
The active energy ray-curable printing ink (1) obtained above was run for 1 minute under the conditions of 1200 rpm and 32 ° C. using an incometer (Thwing-Albert “Model 101”). The state (amount of mist generated) was visually observed, and the misting resistance was evaluated according to the following criteria.
5: No mist is generated.
4: Very little mist is generated.
3: Slight mist is generated.
2: Mist is generated.
1: Vigorous mist is generated.
[密着性の評価]
 上記で得られた活性エネルギー線硬化性印刷インキ(1)を、基材であるポリエチレンテレフタレートフィルム(東洋紡績株式会社製のコロナ処理PETフィルム;厚さ50μm)にバーコーター#4を用いて塗布し、80W/cmの高圧水銀ランプを用いて0.8J/cmの紫外線照射量で硬化させて、密着性の評価用塗膜を得た。得られた評価用塗膜の表面にセロハンテープを貼り、勢いよく剥がした際の塗膜の基材からの剥離状態を目視で観察して、下記の基準にしたがって密着性を評価した。
 ◎:基材から塗膜が全く剥離しない。
 ○:基材からは剥離しないが、塗膜中で凝集破壊を生じて塗膜の一部が剥離する。
 △:基材から塗膜の一部が剥離する。
 ×:基材からセロハンテープを貼った部分が全面剥離する。
[Evaluation of adhesion]
The active energy ray-curable printing ink (1) obtained above was applied to a polyethylene terephthalate film (corona-treated PET film manufactured by Toyobo Co., Ltd .; thickness 50 μm) as a base material using a bar coater # 4. The film was cured with an ultraviolet irradiation amount of 0.8 J / cm 2 using an 80 W / cm high-pressure mercury lamp to obtain a coating film for evaluating adhesion. A cellophane tape was applied to the surface of the obtained coating film for evaluation, and the peeled state of the coating film from the substrate when peeled vigorously was visually observed, and the adhesion was evaluated according to the following criteria.
(Double-circle): A coating film does not peel from a base material at all.
◯: Although not peeled off from the substrate, cohesive failure occurs in the coating film, and a part of the coating film peels off.
(Triangle | delta): A part of coating film peels from a base material.
X: The part which stuck the cellophane tape from the base material peels entirely.
[耐溶剤性の評価]
 上記で得られた活性エネルギー線硬化性印刷インキ(1)を、バーコーター#4を用いて塗布し、80W/cmの高圧水銀ランプを用いて0.8J/cmの紫外線照射量で硬化させて、耐溶剤性の評価用塗膜を得た。得られた評価用塗膜の表面にエタノールを含ませたフェルトで、10回擦った後の塗膜表面の状態を目視で観察して、下記の基準にしたがって耐溶剤性を評価した。
 ○:変化なし。
 △:擦れ痕が残る。
 ×:インキが消失し、基材が確認できる。
[Evaluation of solvent resistance]
The active energy ray-curable printing ink (1) obtained above is applied using a bar coater # 4, and cured with an ultraviolet irradiation amount of 0.8 J / cm 2 using an 80 W / cm high-pressure mercury lamp. Thus, a coating film for evaluation of solvent resistance was obtained. The condition of the coating film surface after rubbing 10 times with a felt containing ethanol on the surface of the obtained coating film for evaluation was visually observed, and the solvent resistance was evaluated according to the following criteria.
○: No change.
Δ: Rub marks remain.
X: The ink disappears and the substrate can be confirmed.
(実施例12~15及び比較例3)
 実施例11で用いた活性エネルギー線硬化性組成物(1)に代えて、実施例2~5及び比較例1で得られた活性エネルギー線硬化性組成物(2)~(5)及び(R1)を用いた以外は同様に操作して、活性エネルギー線硬化性印刷インキ(2)~(5)及び(R1)を調製した。得られた活性エネルギー線硬化性印刷インキを用いて、実施例11と同様に、耐ミスチング性、密着性及び耐溶剤性の評価を行った。
(Examples 12 to 15 and Comparative Example 3)
Instead of the active energy ray-curable composition (1) used in Example 11, the active energy ray-curable compositions (2) to (5) and (R1) obtained in Examples 2 to 5 and Comparative Example 1 were used. The active energy ray-curable printing inks (2) to (5) and (R1) were prepared in the same manner except that was used. Using the obtained active energy ray-curable printing ink, evaluation of misting resistance, adhesion and solvent resistance was carried out in the same manner as in Example 11.
(比較例4)
 実施例11で用いた活性エネルギー線硬化性組成物(1)23質量部に代えて、比較例1で得られた活性エネルギー線硬化性組成物(R1)10質量部及びロジン変性フェノール樹脂(DIC株式会社製「ベッカサイト F-7305」)13質量部を用いた以外は同様に操作して、活性エネルギー線硬化性印刷インキ(R2)を調製した。得られた活性エネルギー線硬化性印刷インキを用いて、実施例11と同様に、密着性、耐ミスチング性及び耐溶剤性の評価を行った。
(Comparative Example 4)
Instead of 23 parts by mass of active energy ray-curable composition (1) used in Example 11, 10 parts by mass of active energy ray-curable composition (R1) obtained in Comparative Example 1 and rosin-modified phenolic resin (DIC) An active energy ray-curable printing ink (R2) was prepared in the same manner except that 13 parts by mass of “Beccasite F-7305” manufactured by Co., Ltd. was used. Using the obtained active energy ray-curable printing ink, the adhesion, misting resistance and solvent resistance were evaluated in the same manner as in Example 11.
 上記の実施例11~15、比較例3及び4で得られた活性エネルギー線硬化性印刷インキの組成と、耐ミスチング性、密着性及び耐溶剤性の評価結果を表3にまとめた。 Table 3 summarizes the compositions of the active energy ray-curable printing inks obtained in Examples 11 to 15 and Comparative Examples 3 and 4, and the evaluation results of misting resistance, adhesion, and solvent resistance.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の活性エネルギー線硬化性組成物を用いた実施例11~15の活性エネルギー線硬化性印刷インキは、耐ミスチング性に優れることが分かった。また、本発明の活性エネルギー線硬化性印刷インキの硬化塗膜は、ポリエチレンテレフタレートフィルムに対して非常に高い密着性を有し、かつ高い耐溶剤性を有することが分かった。 It was found that the active energy ray-curable printing inks of Examples 11 to 15 using the active energy ray-curable composition of the present invention were excellent in misting resistance. Moreover, it turned out that the cured coating film of the active energy ray curable printing ink of this invention has very high adhesiveness with respect to a polyethylene terephthalate film, and has high solvent resistance.
 一方、比較例3の活性エネルギー線硬化性印刷インキは、本発明で用いる多官能アクリレート(A)及び芳香族ジカルボン酸(B)を用いなかった活性エネルギー線硬化性組成物を用いた例であるが、この活性エネルギー線硬化性印刷インキは、ミスト量が非常に多く、耐ミスチング性に問題があることが分かった。また、この印刷インキの硬化塗膜は、ポリエチレンテレフタレートフィルムに対して密着性に乏しく、さらに耐溶剤性が十分でないことが分かった。 On the other hand, the active energy ray-curable printing ink of Comparative Example 3 is an example using an active energy ray-curable composition that did not use the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention. However, it has been found that this active energy ray-curable printing ink has a very large amount of mist and has a problem in misting resistance. Moreover, it turned out that the cured coating film of this printing ink is poor in adhesiveness with respect to a polyethylene terephthalate film, and also solvent resistance is not enough.
 比較例4の活性エネルギー線硬化性印刷インキは、本発明で用いる多官能アクリレート(A)及び芳香族ジカルボン酸(B)を用いなかった活性エネルギー線硬化性組成物とロジン樹脂とを併用した例であるが、この活性エネルギー線硬化性印刷インキは、比較例3のものと比較するとミスト量が抑制できるが、この印刷インキの硬化塗膜は、ポリエチレンテレフタレートフィルムに対して密着性に乏しく、さらに耐溶剤性が全くないことが分かった。 The active energy ray-curable printing ink of Comparative Example 4 is an example in which an active energy ray-curable composition not using the polyfunctional acrylate (A) and aromatic dicarboxylic acid (B) used in the present invention and a rosin resin are used in combination. However, this active energy ray-curable printing ink can suppress the amount of mist as compared with that of Comparative Example 3, but the cured coating film of this printing ink has poor adhesion to the polyethylene terephthalate film. It was found that there was no solvent resistance.

Claims (7)

  1.  多官能アクリレート(A)と、芳香族ジカルボン酸(B)と、芳香族エポキシ樹脂(C)とを反応させ、次いで、得られた反応物に、重合性不飽和基を有するカルボン酸(D)を反応させることにより得られることを特徴とする活性エネルギー線硬化性組成物。 A polyfunctional acrylate (A), an aromatic dicarboxylic acid (B), and an aromatic epoxy resin (C) are reacted, and then the resulting reaction product is reacted with a carboxylic acid (D) having a polymerizable unsaturated group. An active energy ray-curable composition obtained by reacting
  2.  前記多官能アクリレート(A)が、トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート及びグリセリンプロポキシトリアクリレートからなる群から選ばれる少なくとも1種の多官能アクリレートである請求項1記載の活性エネルギー線硬化性組成物。 The active energy according to claim 1, wherein the polyfunctional acrylate (A) is at least one polyfunctional acrylate selected from the group consisting of trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, and glycerin propoxytriacrylate. A linear curable composition.
  3.  前記芳香族ジカルボン酸(B)が、フタル酸、イソフタル酸及びテレフタル酸からなる群から選ばれる少なくとも1種の芳香族ジカルボン酸である請求項1又は2記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1 or 2, wherein the aromatic dicarboxylic acid (B) is at least one aromatic dicarboxylic acid selected from the group consisting of phthalic acid, isophthalic acid and terephthalic acid.
  4.  前記芳香族エポキシ樹脂(C)が、ビスフェノールA型エポキシ樹脂である請求項1~3のいずれか1項記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 3, wherein the aromatic epoxy resin (C) is a bisphenol A type epoxy resin.
  5.  前記重合性不飽和基を有するカルボン酸(D)が、アクリル酸である請求項1~4のいずれか1項記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 4, wherein the carboxylic acid (D) having a polymerizable unsaturated group is acrylic acid.
  6.  請求項1~5のいずれか1項記載の活性エネルギー線硬化性組成物を含有することを特徴とする活性エネルギー線硬化性塗料。 An active energy ray-curable coating composition comprising the active energy ray-curable composition according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項記載の活性エネルギー線硬化性組成物を含有することを特徴とする活性エネルギー線硬化性印刷インキ。 An active energy ray-curable printing ink comprising the active energy ray-curable composition according to any one of claims 1 to 5.
PCT/JP2013/057057 2012-03-19 2013-03-13 Active energy ray-curable composition, active energy ray-curable coating material using same, and active energy ray-curable printing ink using same WO2013141117A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380015498.2A CN104220478B (en) 2012-03-19 2013-03-13 Actinic-radiation curable composition, the active energy ray-curable coating using it and active energy ray-curable printing ink
IN8494DEN2014 IN2014DN08494A (en) 2012-03-19 2013-03-13
JP2013546113A JP5495087B2 (en) 2012-03-19 2013-03-13 Active energy ray curable composition, active energy ray curable coating and active energy ray curable printing ink using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-062043 2012-03-19
JP2012062043 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013141117A1 true WO2013141117A1 (en) 2013-09-26

Family

ID=49222577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057057 WO2013141117A1 (en) 2012-03-19 2013-03-13 Active energy ray-curable composition, active energy ray-curable coating material using same, and active energy ray-curable printing ink using same

Country Status (5)

Country Link
JP (1) JP5495087B2 (en)
CN (1) CN104220478B (en)
IN (1) IN2014DN08494A (en)
TW (1) TWI557143B (en)
WO (1) WO2013141117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081264A (en) * 2013-10-21 2015-04-27 サカタインクス株式会社 Active energy ray-curable ink composition for offset printing and printing method using the composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362272B2 (en) * 2015-03-13 2018-07-25 日本化薬株式会社 Carboxyl group-containing reactive compound, curable resin composition using the same, and use thereof.
JP6996284B2 (en) * 2016-12-28 2022-01-17 荒川化学工業株式会社 Resin and its manufacturing method, active energy ray-curable resin composition, cured product, active energy ray-curable printing ink, and printed matter.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216016A (en) * 1988-07-01 1990-01-19 Showa Highpolymer Co Ltd Manufacture of molded form
JP2004067814A (en) * 2002-08-05 2004-03-04 Showa Highpolymer Co Ltd Polycarboxylic acid resin, polycarboxylic acid resin composition and its cured product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935967B2 (en) * 2005-07-27 2012-05-23 Dic株式会社 Method for producing branched polyether resin composition and method for producing acid pendant type branched polyether resin composition
KR100883047B1 (en) * 2006-07-10 2009-02-11 다이요 잉키 세이조 가부시키가이샤 Photocurable/thermosetting resin composition, cured product thereof and printed wiring board
JP5467556B2 (en) * 2009-04-01 2014-04-09 東京インキ株式会社 Lithographic printing ink and printed matter printed using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216016A (en) * 1988-07-01 1990-01-19 Showa Highpolymer Co Ltd Manufacture of molded form
JP2004067814A (en) * 2002-08-05 2004-03-04 Showa Highpolymer Co Ltd Polycarboxylic acid resin, polycarboxylic acid resin composition and its cured product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081264A (en) * 2013-10-21 2015-04-27 サカタインクス株式会社 Active energy ray-curable ink composition for offset printing and printing method using the composition

Also Published As

Publication number Publication date
IN2014DN08494A (en) 2015-05-08
TWI557143B (en) 2016-11-11
CN104220478A (en) 2014-12-17
JPWO2013141117A1 (en) 2015-08-03
JP5495087B2 (en) 2014-05-21
CN104220478B (en) 2016-03-02
TW201343690A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
US6767980B2 (en) Reactive diluent and curable resin composition
EP1505090B1 (en) Reactive diluent composition and curable resin composition
JP6690554B2 (en) Photocurable resin composition, ink and paint
JP5517112B2 (en) Photocurable resin composition and its use
JP5495087B2 (en) Active energy ray curable composition, active energy ray curable coating and active energy ray curable printing ink using the same
JP2017066347A (en) Curable composition
JP2005179511A (en) Radically polymerizable coating material composition
CN105086605B (en) A kind of photocuring heat-curing composition ink, purposes and the wiring board containing it
JP4134606B2 (en) Active energy ray-curable pressure-sensitive adhesive and pressure-sensitive adhesive sheet
JPS63145372A (en) Actinic radiation curable paint
TW201610028A (en) Active-energy-ray-curable composition
JPH01131223A (en) Resin composition, coating composition and printing ink composition curable with actinic energy radiation
JP2018178071A (en) Active energy ray-curable resin composition and cured product thereof
JPH11302562A (en) Photocurable coating composition
TWI808944B (en) Photocurable resin composition, ink and paint
JP4337206B2 (en) Active energy ray-curable composition
JPH11140108A (en) Actinic radiation curable composition
TWI827588B (en) Radiation curable compositions
JP4973072B2 (en) Active energy ray-curable composition
WO2003085028A1 (en) Novel polyether compound containing acid group and unsaturated group, process for producing the same, and resin composition
KR20210141923A (en) coating composition
JPH10237288A (en) Composition curable with active energy ray
JP2021024906A (en) Photocurable resin composition
JP2019151774A (en) Active energy ray-curable adhesive composition
JPS6357678A (en) Lithographic ink curable by actinic radiation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013546113

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764833

Country of ref document: EP

Kind code of ref document: A1