WO2013136781A1 - Driving operation assisting device, driving operation assisting method, and holding state determination method - Google Patents

Driving operation assisting device, driving operation assisting method, and holding state determination method Download PDF

Info

Publication number
WO2013136781A1
WO2013136781A1 PCT/JP2013/001628 JP2013001628W WO2013136781A1 WO 2013136781 A1 WO2013136781 A1 WO 2013136781A1 JP 2013001628 W JP2013001628 W JP 2013001628W WO 2013136781 A1 WO2013136781 A1 WO 2013136781A1
Authority
WO
WIPO (PCT)
Prior art keywords
guidance
driving
driver
reaction force
steering
Prior art date
Application number
PCT/JP2013/001628
Other languages
French (fr)
Japanese (ja)
Inventor
祐香 吉松
山村 智弘
洋之 蘆田
真規 義平
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013136781A1 publication Critical patent/WO2013136781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation

Definitions

  • the present invention relates to a driving operation support device, a driving operation support method, and a gripping state determination method.
  • Patent Document 1 detects a deviation amount with respect to a traveling lane, and gives a warning to the driver by vibrating the steering mechanism when the deviation amount exceeds a predetermined value. At this time, until the predetermined time elapses after the alarm is given, the steering reaction force is increased as the steering operation speed is increased, thereby preventing an excessive operation in the departure avoidance direction or an erroneous operation in the departure direction. .
  • An object of the present invention is to more appropriately promote appropriate driving operation.
  • a driving operation support device includes a driving operator operated by a driver, and applies an operating force to the driving operator. Then, the guidance direction for guiding the vehicle is set, and as the operation force for the driving operator, the direction is alternately changed to the guidance direction and the reverse direction of the guidance, and the vibration is generated with different frequencies in the guidance direction and the reverse direction of the guidance. Set the operating force. Then, this operating force is applied to the driving operator.
  • the driving operation is guided by changing the direction alternately in the guiding direction and the guiding reverse direction and applying an operating force that vibrates at different frequencies in the guiding direction and the guiding reverse direction to the driving operator. It can be guided in the direction. Thereby, an appropriate driving operation can be actively promoted.
  • FIG. 2 is a schematic configuration of the controller 20. It is a map used for calculation of the steering angle ratio R according to the vehicle speed V. It is a map used for calculation of the steering angle ratio R according to the steering angle ⁇ s.
  • 3 is a block diagram showing a steering reaction force control unit 22.
  • FIG. It is a flowchart which shows a base reaction force setting process. It is a flowchart which shows an additional reaction force setting process. It is a figure which shows the relationship between the frequency of disturbance, and admittance. It is a figure which shows an example of a parking scene. It is a time chart which shows additional reaction force Tp and steering angle (theta) s.
  • FIG. 1 is a schematic configuration diagram of a steering device using steering-by-wire.
  • the steering wheel 1 is connected to a steering shaft 2, and steered wheels (steering wheels) 3L and 3R are connected to a pinion shaft 7 through a knuckle arm 4, a tie rod 5, and a rack and pinion 6 in this order.
  • the steering shaft 2 and the pinion shaft 7 are connected via a clutch 10 so as to be able to be interrupted.
  • a steered motor 9 is connected to the pinion shaft 7.
  • the pinion shaft 7 rotates to steer the steered wheels 3L and 3R.
  • the Accordingly, the steering angle ⁇ w of the steered wheels 3L and 3R is controlled by detecting the steering angle ⁇ s of the steering wheel 1 and drivingly controlling the steered motor 9 in accordance with the detected steering angle ⁇ s.
  • the reaction force motor 8 is connected to the steering shaft 2, and when the reaction force motor 8 is driven in a state where the clutch 10 is disengaged, reaction force torque is applied to the steering shaft 2. Therefore, the reaction force received from the road surface when the steered wheels 3L and 3R are steered is detected or estimated, and the reaction force motor 8 is driven and controlled in accordance with the detected or estimated reaction force. In contrast, an operation reaction force is applied.
  • the steering motor 9 is driven and controlled while the clutch 10 is disengaged, and the reaction force motor 8 is driven and controlled to execute steer-by-wire to achieve desired steering characteristics and turning behavior characteristics. Moreover, a good operation feeling is realized.
  • the steer-by-wire is stopped and the clutch 10 is returned to the engaged state as fail-safe to ensure mechanical backup.
  • the steered motor 9 and the reaction force motor 8 are driven and controlled by a controller 20 composed of, for example, a microcomputer.
  • the controller 20 inputs various signals detected by the steering angle sensor 11, the turning angle sensor 12, the hub sensor 13, the vehicle speed sensor 14, and the yaw rate sensor 15. Further, the controller 20 inputs various data from the surrounding environment recognition device 16 and the navigation system 17.
  • the steering angle sensor 11 detects the steering angle ⁇ s of the steering shaft 2.
  • the steering angle sensor 11 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the steering shaft 2 by two MR (ferro-Magneto Resistance) elements, and a magnetic field accompanying rotation of the steering shaft 2.
  • the direction vector change is converted into an electric signal and input to the controller 20.
  • the controller 20 determines the steering angle ⁇ s of the steering shaft 2 from the input electric signal.
  • the steering angle sensor 11 detects right turn as a positive value and detects left turn as a negative value.
  • the turning angle sensor 12 detects the turning angle ⁇ w of the pinion shaft 7.
  • the turning angle sensor 12 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the pinion shaft 7 with two MR (ferro-Magneto®Resistance) elements, and accompanies the rotation of the pinion shaft 7.
  • the vector change in the magnetic field direction is converted into an electrical signal and input to the controller 20.
  • the controller 20 determines the turning angle ⁇ w of the pinion shaft 7 from the input electrical signal.
  • the turning angle sensor 12 detects a right turn as a positive value and a left turn as a negative value.
  • the hub sensor 13 detects the tire lateral force Yf.
  • the hub sensor 13 is provided in each hub unit of the left and right wheels, and converts, for example, a change in displacement difference between the inner ring and the outer ring in a bearing in the hub unit into an electric signal using a hall element and a magnetized encoder. Input to the controller 20.
  • the controller 20 determines the tire lateral force from the input electrical signal.
  • the tire lateral force Yf is the total value of the tire lateral forces of the left and right wheels detected by the hub sensor 13.
  • the vehicle speed sensor 14 detects a vehicle body speed (hereinafter referred to as a vehicle speed) V.
  • This vehicle speed sensor 14 is provided, for example, in a driven gear on the output side of the transmission, detects the magnetic lines of force of the sensor rotor by a detection circuit, converts the change in the magnetic field accompanying the rotation of the sensor rotor into a pulse signal, and inputs it to the controller 20. To do.
  • the controller 20 determines the vehicle speed V from the input pulse signal.
  • the yaw rate sensor 15 detects the yaw rate ⁇ of the vehicle body.
  • the yaw rate sensor 15 is provided on a body on a spring, and vibrates a vibrator made of, for example, a crystal tuning fork with an alternating voltage, and converts the distortion amount of the vibrator caused by the Coriolis force at the time of angular velocity input into an electric signal. Input to the controller 20.
  • the controller 20 determines the yaw rate ⁇ of the vehicle from the input electric signal.
  • the yaw rate sensor 15 detects right turn as a positive value and detects left turn as a negative value.
  • the controller 20 inputs each detection signal directly from sensors, it is not limited to this.
  • the controller 20 may be connected to another control unit, and for example, various data may be received via CSMA / CA multiplex communication (CAN: Controller Area Network).
  • the surrounding environment recognition device 16 recognizes the surrounding environment of the own vehicle.
  • the surrounding environment recognition device 16 captures, for example, the front, rear, left side, and right side of the vehicle body with a camera, and displays the parking frame (partition line) and the traffic line marked on the road surface by general image processing. It recognizes and inputs the relative relationship of the own vehicle with respect to a parking frame or a traffic division line into the controller 20.
  • ultrasonic sensors are provided at the four corners of the vehicle body, and distances to objects existing diagonally left front, diagonally right front, diagonally left rear, and diagonally right rear of the vehicle body are recognized and input to the controller 20.
  • a laser radar is provided at the front part of the vehicle body or the rear part of the vehicle body, and distances to an object existing in front and side of the own vehicle or an object existing behind and side of the own vehicle are recognized and input to the controller 20.
  • driving operation support is performed by guiding a steering operation during parking. Therefore, the surrounding environment recognition device 16 recognizes at least the parking frame marked on the road surface, and inputs the distance to the parking frame and the posture (angle) with respect to the parking frame to the controller 20.
  • the navigation system 17 recognizes the current position of the host vehicle and road information at the current position.
  • This navigation system 17 has a GPS receiver, and recognizes the position (latitude, longitude, altitude) of the host vehicle and the traveling direction based on the time difference between radio waves arriving from four or more GPS satellites. Then, the road information including the road type, road alignment, lane width, direction of traffic of the vehicle, etc. stored in the DVD-ROM drive or hard disk drive is referred to, and the road information at the current position of the host vehicle is recognized. input.
  • DSSS Driving Safety Support Systems
  • two-way wireless communication may be used to receive various data from the infrastructure.
  • FIG. 2 is a schematic configuration of the controller 20.
  • the controller 20 includes a turning angle control unit 21 that drives and controls the turning motor 9 and a steering reaction force control unit 22 that drives and controls the reaction force motor 8.
  • the steering angle ratio R is determined, for example, in the following manner.
  • the steering angle ratio R is calculated according to the vehicle speed V with reference to the map of FIG. FIG. 3 is a map used to calculate the steering angle ratio R according to the vehicle speed V.
  • the steering angle ratio R decreases as the vehicle speed V decreases. Accordingly, when the vehicle is stationary or traveling at a low speed, a large steering angle ⁇ w can be obtained with a small steering angle ⁇ s, so that the operation burden on the driver is reduced.
  • the change in the turning angle ⁇ w with respect to the change in the steering angle ⁇ s is suppressed, so that the sensitive vehicle behavior is suppressed and traveling stability is ensured.
  • the steering angle ratio R may be calculated according to the steering angle ⁇ s with reference to the map of FIG. FIG. 4 is a map used for calculating the steering angle ratio R according to the steering angle ⁇ s. According to this map, the steering angle ratio R increases as the steering angle ⁇ s decreases. Therefore, as the steering angle ⁇ s is increased, a larger turning angle ⁇ w is obtained, so that the operation burden on the driver is reduced. On the other hand, in a scene such as when traveling substantially straight, the change in the turning angle ⁇ w with respect to the change in the steering angle ⁇ s is suppressed, so that a sensitive vehicle is suppressed and traveling stability is ensured.
  • the steering angle ratio R may be determined according to both the vehicle speed V and the steering angle ⁇ s. That is, the steering angle ratio Rv corresponding to the vehicle speed V and the steering angle ratio Rs corresponding to the steering angle ⁇ s are individually calculated, and an average of these is calculated, or each is weighted and added. Thus, the final steering angle ratio R may be determined. As described above, after determining the steering angle ratio R, the target turning angle ⁇ w * is calculated according to the steering angle ⁇ s and the steering angle ratio R, and the turning angle ⁇ w is equal to the target turning angle ⁇ w *.
  • the steering motor 9 is driven and controlled using, for example, a robust model matching method so as to match.
  • FIG. 5 is a block diagram showing the steering reaction force control unit 22.
  • the steering reaction force control unit 22 includes a base reaction force setting unit 23, an additional reaction force setting unit 24, an addition unit 25, and a drive control unit 26.
  • the base reaction force setting unit 23 sets a base reaction force Tb for the driver's steering operation
  • the additional reaction force setting unit 24 sets an additional reaction force Tp for guiding the driver's steering operation.
  • the adding unit 25 adds the base reaction force Tb and the additional reaction force Tp to set the final steering reaction force Tr
  • the drive control unit 26 sets the reaction force motor 8 according to the steering reaction force Tr. Drive control.
  • FIG. 6 is a flowchart showing the base reaction force setting process.
  • a steering speed d ⁇ s is calculated by time differentiation of the steering angle ⁇ s.
  • the angular term torque Ta is calculated by multiplying the steering angle ⁇ s by the gain Ka.
  • Ta Ka ⁇ ⁇ s (1)
  • the speed term torque Ts is calculated by multiplying the steering speed d ⁇ s by the gain Ks as shown in the following equation (2).
  • Ts Ks ⁇ d ⁇ s (2)
  • the base reaction force Tb is calculated by adding the angular torque Ta and the speed term torque Ts.
  • Tb Ta + Ts (3)
  • a road surface friction coefficient ⁇ is calculated based on the vehicle speed V, the yaw rate ⁇ , and the lateral acceleration Yg.
  • an upper limit value TL of the steering reaction force is calculated based on the vehicle speed V, the steering angle ⁇ s, and the road surface friction coefficient ⁇ .
  • the smaller one of the base reaction force Tb and the upper limit value TL is calculated as the final base reaction force Tb, and then the process returns to a predetermined main program.
  • FIG. 7 is a flowchart showing the additional reaction force setting process of the first embodiment.
  • step S201 the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
  • step S202 a target trajectory from the current position of the host vehicle to the target parking position is set based on the distance to the parking frame, that is, the target parking position, and the attitude (angle) with respect to the parking frame, and the target trajectory is followed. Sets the steering operation guidance direction.
  • the additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • FIG. 8 is a diagram illustrating the relationship between the frequency of disturbance and admittance.
  • Admittance is a steering angle (change amount) per 1 Nm that moves when a disturbance is input, and represents the ease of movement (gain) with respect to the disturbance. That is, the larger the admittance, the easier the steering angle to change with respect to the disturbance, and the smaller the admittance, the less likely the steering angle to change with respect to the disturbance.
  • the characteristics of the admittance according to the frequency are shown by distinguishing between the case where the driver is firmly holding the steering wheel 1, the case where the driver is holding it lightly, and the case where the driver is releasing it.
  • the admittance characteristics corresponding to the frequency are determined by vehicle specifications, but the tendency is common.
  • the admittance is about 0.02 [rad / Nm]. That is, since the arm is difficult to move, the steering wheel 1 does not move much. However, when a disturbance having a frequency around 3 [Hz] is input to the steering operation system, the admittance increases to about 0.03 [rad / Nm]. That is, the arm and the steering are in a resonance state, and the arm is easy to move as compared with the case of about 1 [Hz], and the steering wheel 1 is also easy to move. At higher frequencies, the admittance decreases with increasing frequency. That is, the arm becomes difficult to move, and the steering wheel 1 also becomes difficult to move.
  • the admittance becomes about 0.08 [rad / Nm]. That is, since the arm is easy to move as compared to when the hand is firmly grasped, the steering wheel 1 is also easy to move. However, when a disturbance having a frequency near 3 [Hz] is input to the steering operation system, the admittance becomes about 0.03 [rad / Nm]. That is, compared to the case of about 1 [Hz], the arm is less likely to move, so the steering wheel 1 is also less likely to move. At higher frequencies, the admittance decreases with increasing frequency. That is, the arm becomes difficult to move, and the steering wheel 1 also becomes difficult to move.
  • the admittance becomes 0.5 [rad / Nm]. That is, the steering wheel 1 moves largely compared to when it is lightly gripped. However, when a disturbance having a frequency around 3 [Hz] is input to the steering operation system, the admittance becomes 0.05 [rad / Nm]. That is, the steering wheel 1 does not move as compared with the case of about 1 [Hz]. As described above, when the driver does not hold the steering wheel 1, the admittance decreases as the disturbance frequency increases, and the steering wheel 1 does not move. Based on the frequency and admittance characteristics as described above, the waveform of the additional reaction force Tp that changes the direction alternately between the steering operation guidance direction and the guidance reverse direction is set.
  • FIG. 9 is a diagram illustrating an example of a parking scene.
  • the set target trajectory is in the left direction, so the steering operation guidance direction is set in the left direction. .
  • FIG. 10 is a time chart showing the additional reaction force Tp and the steering angle ⁇ s.
  • the additional reaction force Tp when the steering operation guidance direction is set to the left direction will be described.
  • the additional reaction force Tp is a waveform that changes its direction alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
  • the frequency of the waveform changing in the reverse direction is, for example, about 1 [Hz]
  • the frequency of the waveform changing in the induction direction (left direction) is, for example, 3 [ Hz]. That is, the low frequency when changing in the reverse direction of guidance (right direction) is a range in which a clear difference can be made in the admittance between the case where the driver firmly holds the steering wheel 1 and the case where the driver holds it lightly. Set with. Furthermore, as the frequency is lowered, the period is extended and the time is lengthened. Therefore, the frequency is set within a range that can be output within a predetermined time.
  • the high-frequency waveform that changes in the guidance direction is within a range in which there is no clear difference in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly.
  • the admittance difference between the case where the object is firmly grasped and the case where the object is lightly grasped is set in a range where the difference is smaller than that at the low frequency.
  • the ratio of the amplitude of the waveform changing in the reverse direction (right direction) to the amplitude of the waveform changing in the induction direction (left direction) is, for example, 3: 8.
  • This is for the purpose of causing the steering wheel 1 to move to the same extent in the left and right directions when the driver is lightly holding the steering wheel 1. That is, when the driver is lightly grasping the steering wheel 1, the admittance is about 0.08 [rad / Nm] at a low frequency of about 1 [Hz] which changes in the reverse direction of guidance (rightward).
  • the amplitude at this time is 3 ⁇ ( ⁇ is a constant).
  • the admittance is about 0.03 [rad / Nm] at a high frequency of about 3 [Hz] changing in the guidance direction (left direction).
  • the low frequency that changes in the reverse direction (right direction) first is set to 1 ⁇ 4 period
  • the high frequency that changes in the direction of induction (left direction) is set to 2/4 period
  • Waveforms having 2/4 cycles are alternately set in the direction (right direction) and the guidance direction (left direction).
  • the low frequency which changes to a guidance reverse direction (right direction) is output initially here
  • the high frequency which changes to a guidance direction (left direction) is output, However, it is not limited to this. You may output the low frequency which changes to a guidance reverse direction (right direction) after outputting the high frequency which changes to a guidance direction (left direction) first.
  • a waveform changing in the reverse direction of the guidance may be set to a low frequency
  • a waveform changing in the direction of guidance may be set to a high frequency.
  • the additional reaction force Tp set in this way is input to the steering operation system.
  • a low-frequency additional reaction force Tp having a small amplitude that changes in the reverse direction of the guidance (right direction) is input for a 1 ⁇ 4 period.
  • a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period.
  • the admittance is larger and the amplitude is larger than at the low frequency, so that the steering wheel 1 moves greatly in the guiding direction (left direction).
  • an additional reaction force Tp that alternately changes in the reverse direction (right direction) and in the induction direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 firmly, when the low-frequency additional reaction force Tp that changes in the reverse direction (right direction) is input, the steering wheel 1 slightly moves in the reverse direction (right direction). When a high-frequency additional reaction force Tp that moves and changes in the guidance direction (left direction) is input, the steering wheel 1 moves greatly in the guidance direction (left direction).
  • the steering angle ⁇ s increases in the guidance direction (left direction) by alternately repeating the slight movement in the reverse direction (right direction) and the large movement in the guidance direction (left direction).
  • a low-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction (right direction) of the guidance is input for 1 ⁇ 4 period.
  • this low frequency additional reaction force Tp since the admittance is larger than when firmly grasping, the steering wheel 1 moves in the reverse direction of guidance (right direction).
  • a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period.
  • the amplitude is large. Therefore, the steering wheel 1 moves in the guiding direction (left direction) by the same degree as at the low frequency.
  • an additional reaction force Tp that alternately changes in the reverse direction (right direction) and in the induction direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 lightly, even if a low-frequency additional reaction force Tp that changes in the reverse direction of the guidance (right direction) is input, a high frequency that changes in the guidance direction (left direction) is applied. Even if the reaction force Tp is input, it moves in the same direction in the reverse direction (right direction) and in the induction direction (left direction). The same degree of movement in the reverse direction (right direction) and the induction direction (left direction) is alternately repeated, so that vibration is generated in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input.
  • a low-frequency additional reaction force Tp having a small amplitude that changes in the reverse direction of the guidance (right direction) is first input for 1 ⁇ 4 period.
  • the steering wheel 1 moves more in the reverse direction (right direction) than when grasped lightly.
  • a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period.
  • the steering wheel 1 moves in the guidance direction (left direction) even if it is not as low as at low frequencies.
  • the steering angle ⁇ s increases in the reverse guide direction (right direction) by alternately repeating the large movement in the reverse guide direction (right direction) and the movement in the guide direction (left direction).
  • the above is an explanation of the additional reaction force Tp when the steering operation guidance direction is set to the left direction and the steering angle ⁇ s that changes when the additional reaction force Tp is input.
  • the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is set.
  • the direction is alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle ⁇ s (t1) .
  • the time t1 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the first extreme value.
  • an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the reverse direction of the induction (right direction) is input for 1 ⁇ 4 period, it is about 0.25 [sec].
  • of the later steering angle is larger than a predetermined threshold ⁇ 1. To do.
  • Threshold ⁇ 1 if you enter the additional reaction force Tp of the low-frequency changes in the induced opposite direction (right direction), the absolute value of the later time steering angle when the driver has been gripped lightly steering wheel 1
  • of the later steering angle when the steering wheel 1 is lightly gripped is about 0.03 as shown in FIG. 10, and the steering wheel 1 is not gripped.
  • of the later steering angle is about 0.16. Therefore, the threshold value ⁇ 1 is set to about 0.09 as an intermediate value so that 0.03 ⁇ 1 ⁇ 0.16, for example.
  • step S207 when the later steering angle ⁇ s (t1) is in the reverse direction (right direction) and the absolute value
  • the later steering angle ⁇ s (t1) is in the guiding direction (leftward), or when the absolute value
  • step S208 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S208 the steering angle ⁇ s at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as the steering angle ⁇ s (t2) at a later time.
  • the time t2 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the second inflection point.
  • An inflection point is a point where the direction of bending changes in a curve, that is, a point where the state of convexity in the reverse direction of the waveform (right direction) and the state of convexity in the direction of guidance (left direction) change. It is.
  • an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the reverse direction of the induction (right direction) is first input for 1 ⁇ 4 period, and subsequently changes in the induction direction (left direction) of 3 [
  • step S209 it is determined whether or not the later steering angle ⁇ s (t2) is in the guiding direction (leftward) and the absolute value
  • the threshold ⁇ 2 is larger than the absolute value
  • of the later steering angle when the steering wheel 1 is lightly gripped is, for example, about 0 as shown in FIG. 10, and when the steering wheel 1 is gripped.
  • of the later steering angle is, for example, about 0.04 as shown in FIG. Therefore, the threshold ⁇ 2 is set to about 0.02 as an intermediate value so that the relationship 0 ⁇ 2 ⁇ 0.04 is satisfied.
  • step S210 when the later steering angle ⁇ s (t1) is in the guiding direction (leftward) and the absolute value
  • the steering angle ⁇ s (t2) at the later time is in the reverse direction (right direction), or when the absolute value
  • step S210 the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
  • the output stop of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction and the output of the additional reaction force Tp in the guidance direction will be described.
  • FIG. 11 is a time chart showing the additional reaction force Tp and the steering angle ⁇ s.
  • the oscillating additional reaction force Tp and the steering angle when the driver holds the steering wheel 1 firmly ⁇ s (amount of change) and the steering angle ⁇ s when the driver gently holds the steering wheel 1 are the same as those in FIG. 10 described above.
  • the additional reaction force Tp after the time t2 has elapsed since the input of the additional reaction force Tp that mainly vibrates into the steering operation system, and the steering angle when the driver firmly holds the steering wheel 1 are shown.
  • ⁇ s (change amount) is shown.
  • the driver since the driver can determine that he / she accepts or desires guidance by driving operation support, the driver vibrates from the additional reaction force Tp which vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction. It switches to the additional reaction force Tp to the guidance direction (left direction) which has nothing.
  • the additional reaction force Tp that gradually increases (monotonically increases) in the guiding direction (left direction) is used.
  • the driver can determine that he / she does not accept or desire the guidance by the driving operation support, the input of the additional reaction force Tp which vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped. Thereafter, the additional reaction force Tp is reset to zero.
  • a parking frame on the road surface is recognized (step S201), a target trajectory from the current position of the host vehicle to the parking frame is set, and a steering operation guidance direction according to the target trajectory is set (step S202).
  • the steering operation guidance direction is set to the left direction.
  • the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S203).
  • Output step S204).
  • ⁇ ⁇ Parking operation is generally extremely low speed, and requires a certain amount of operation and accuracy.
  • the driver is careful in steering operation and tends to hold the steering wheel 1 firmly, which becomes more noticeable as an unfamiliar driver. That is, it is considered that the driver needs active information only when the driver firmly holds the steering wheel 1, so that the driving operation support for guiding the steering operation is effective.
  • an additional reaction force Tp is set so that the steering operation can be guided in the guiding direction when the driver holds the steering wheel 1 firmly.
  • an additional reaction force Tp that alternately repeats a low-frequency waveform with a small amplitude changing in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude changing in the induction direction (left direction).
  • This is determined according to the characteristics of disturbance frequency and admittance (FIG. 8), and the driver firmly holds the steering wheel 1 by inputting such an additional reaction force Tp to the steering operation system.
  • the steering angle ⁇ can be guided in the guiding direction (left direction).
  • the steering angle ⁇ s When the driver is lightly grasping the steering wheel 1, the steering angle ⁇ s is in the reverse direction (right direction) and the induction direction (left direction) in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. Will swing alternately. Further, when the driver is not gripping the steering wheel 1, the steering angle ⁇ s greatly swings in the reverse direction of guidance (right direction).
  • the steering operation is guided in the guiding direction only when the driver is firmly holding the steering wheel 1, and when the driver is lightly holding the steering wheel 1, and when the driver is steering wheel. When it is not grasping 1, steering guidance is stopped. Therefore, the gripping state of the driver with respect to the steering wheel 1 is determined.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the steering operation system is detected as the later steering angle ⁇ s (t1) (step S205), and the later steering angle ⁇ s (t1). ) Is larger than a predetermined threshold value ⁇ 1 (step S206).
  • of the steering angle at a later time is larger than the threshold value ⁇ 1, it is determined that the driver is not grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S207). .
  • the steering angle ⁇ s at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle ⁇ s (t2) (step S208), and the absolute value of the later steering angle is detected. It is determined whether or not
  • the driver firmly holds the steering wheel 1 It is determined that the vehicle is gripped, and the driver's steering operation is further guided in the guidance direction (step S210). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction of the guidance to the additional reaction force Tp in the guidance direction (left direction) that does not vibrate.
  • the driver's steering operation can be smoothly guided in the guidance direction (left direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
  • the time t1 for detecting the steering angle ⁇ s (t1) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the first extreme value is reached.
  • Tp additional reaction force
  • the threshold value ⁇ 1 used for determining the released state is larger than the absolute value
  • of the later steering angle when not being set is set in a smaller range. As described above, the absolute value of the later steering angle when the driver is holding the steering wheel 1
  • the additional reaction force Tp is set to a waveform starting from a relatively low frequency.
  • the smaller the disturbance frequency the larger the admittance and the easier the steering wheel 1 moves (FIG. 8). That is, as long as the driver does not hold the steering wheel 1, if the additional reaction force Tp starting from a relatively low frequency is set, the steering angle ⁇ s (t 1) increases later as much. Therefore, by letting the waveform start from a relatively low frequency, it is possible to quickly detect the driver's hand-off state.
  • the time t2 for detecting the steering angle ⁇ s (t2) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached.
  • the later steering angle ⁇ s (t2) when the driver gently holds the steering wheel 1 is near the initial steering angle just before the additional reaction force Tp is input (see FIG. 10 and substantially 0) in FIG.
  • ⁇ s (T2) This is the time when
  • the additional reaction force Tp is set so that the amplitude is relatively small when facing the reverse direction of the guidance (right direction) and the amplitude is relatively large when facing the direction of guidance (left direction). This is for the purpose of causing the steering wheel 1 to move to the same extent in the left and right directions when the driver is lightly holding the steering wheel 1. That is, if the product of the admittance and amplitude of the waveform changing in the induction reverse direction (right direction) and the product of the admittance and amplitude of the waveform changing in the induction direction (left direction) are made the same, the additional reaction force Tp is induced reverse.
  • the steering angle ⁇ s (amount of change) is the same when facing the direction and when facing the guidance direction.
  • the surrounding environment recognition device 16 recognizes the parking frame marked on the road surface, thereby setting the target trajectory from the current position of the host vehicle to the parking position, and the guidance direction according to the set target trajectory.
  • route guidance may be set by the navigation system 17 and the guidance direction may be set according to the set route guidance. That is, when passing through an intersection or a branch point, the traveling direction according to the set route guidance may be set as the guidance direction.
  • the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
  • ⁇ Modification 1 In the present embodiment, the case where the steering wheel 1 is adopted as the steering operator for manipulating the steering angle of the vehicle has been described. However, the present invention is not limited to this, and a steering operator such as a joystick may be adopted. . The point is that any steering operator can be adopted as long as it is configured to be able to input an additional reaction force Tp that changes its direction alternately in one and the other of the operation directions.
  • the present invention may be applied to an electric power steering apparatus that applies assist torque to the steering system in accordance with the steering torque of the driver.
  • an electric power steering motor instead of the above-described additional reaction force Tp, torque as an operation force that alternately changes the direction to the left steering direction and the right steering direction is input to the steering system. Then, the steering operation of the driver is guided.
  • the present invention can be applied to any steering device as long as it is configured to be able to input a torque as an operation force that alternately changes the direction in the left steering direction and the right steering direction to the steering system.
  • the additional reaction force Tp is constantly set and output.
  • the present invention is not limited to this.
  • the steering angle ⁇ s is larger than a predetermined set value as in turning, or when the change speed of the steering angle ⁇ s is larger than a predetermined set value as in a sudden steering operation, the steering of the driver In order to give priority to the operation, the setting and output of the additional reaction force Tp may be prohibited. According to this, it is possible to suppress unnecessary driving operation support for the steering operation that the driver is taking the initiative during turning or sudden steering operation.
  • the steering wheel 1 corresponds to the “driving operator”
  • the reaction force motor 8 corresponds to the “operation force applying unit”
  • the processing in step S202 corresponds to the “guidance direction setting unit”
  • the processing in step S203 is performed.
  • the drive control unit 26 corresponds to the “control unit”.
  • the processes in steps S206 and S207 correspond to the “operation support cancel unit”
  • the processes in steps S209 and S210 correspond to the “operation support switching unit”.
  • the additional reaction force Tp corresponds to the “operation force”
  • the steering angle ⁇ s corresponds to the “state variable”
  • the time t1 corresponds to the “first time”
  • the steering angle ⁇ s (t1) at a later time is the “first”.
  • the threshold value ⁇ 1 corresponds to the “first threshold value”. Further, the time t2 corresponds to the “second time”, the later steering angle ⁇ s (t2) corresponds to the “second latter state variable”, and the threshold ⁇ 2 corresponds to the “second threshold”.
  • the steering wheel 1 operated by the driver is provided, and the additional reaction force Tp is applied to the steering wheel 1 separately from the operation by the driver. is there. Then, a guidance direction for guiding the vehicle is set, and the additional reaction force Tp for the steering wheel 1 is changed alternately between the guidance direction and the guidance reverse direction, and with different frequencies in the guidance direction and the guidance reverse direction. The additional reaction force Tp that vibrates is set. Then, this additional reaction force Tp is applied to the steering wheel 1.
  • the disturbance frequency and admittance can be obtained by alternately changing the direction in the guidance direction and the guidance reverse direction and inputting the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction to the steering system. Based on the characteristics, it is possible to promptly promote appropriate driving operation.
  • of the later steering angle when the time t1 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value.
  • it is larger than ⁇ 1 it is determined that the driver does not hold the steering wheel 1. Then, the application of the vibrating additional reaction force Tp to the steering wheel 1 is stopped. In this way, in a situation where the driver's steering operation cannot be guided, such as when the driver is letting it go, unnecessary power consumption can be reduced by stopping the application of the additional reaction force Tp to the steering wheel 1. Can be avoided.
  • of the later steering angle when the time t2 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value.
  • ⁇ 2 the absolute value
  • of the later steering angle when the time t2 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value.
  • it is smaller than ⁇ 2 it is determined that the driver is grasping the steering wheel 1 lightly. Then, the application of the vibrating additional reaction force Tp to the steering wheel 1 is stopped. In this way, in a situation where the driver does not desire active driving operation support, such as when the driver is lightly grasping the steering wheel 1, by stopping the application of the additional reaction force Tp to the steering wheel 1, Unnecessary power consumption can be avoided.
  • the time t1 is set to the time from when the additional reaction force Tp starts to be applied to the steering wheel 1 until the first extreme value in vibration is reached. The In this way, by setting the time until the first extreme value in the vibration is reached as the time t1, if the driver does not hold the steering wheel 1, the absolute value
  • of the later steering angle when the driver is holding the steering wheel 1 and the driver
  • of the later steering angle when not gripping is obtained in advance.
  • the absolute value of the later steering angle when the driver is gripping the steering wheel 1 is larger than the absolute value
  • the threshold ⁇ 1 is set in a range smaller than the value
  • is greater than the absolute value
  • the additional reaction force Tp starting from a relatively low frequency is set.
  • the admittance when the driver does not hold the steering wheel 1 is larger than when starting from a relatively high frequency.
  • the steering angle ⁇ s (t1) increases quickly. Therefore, it is possible to detect the driver's hand-off state earlier than when starting from a relatively high frequency.
  • the time t2 is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached.
  • of the later steering angle when the driver is lightly holding the steering wheel 1 and the driver The absolute value
  • the absolute value of the later steering angle when the driver is lightly grasping the steering wheel 1 is larger than the absolute value
  • the threshold ⁇ 2 is set in a range smaller than the value
  • is greater than the absolute value
  • the additional reaction force Tp is set so that the amplitude is relatively small when facing in the guidance reverse direction and the amplitude is relatively large when facing in the guidance direction. Set. In this way, when the driver is gripping the steering wheel 1 lightly by setting a relatively small amplitude when facing the reverse direction of the guidance and a relatively large amplitude when facing the guidance direction, The amount by which the steering wheel 1 moves in the guidance direction can be made closer to the amount by which the steering wheel 1 moves in the direction opposite to the guidance.
  • the addition is performed so that the steering angle ⁇ s (change amount) is the same when the additional reaction force Tp is directed in the guidance reverse direction and when it is directed in the guidance direction.
  • An amplitude ratio between the direction opposite to the induction direction and the direction toward the induction direction in the reaction force Tp is set. In this way, by setting the amplitude ratio between the direction opposite to the guidance reverse direction and the direction toward the guidance direction in the additional reaction force Tp, when the driver gently holds the steering wheel 1, the steering wheel 1
  • the amount of movement in the guiding direction can be made equal to the amount of movement in the guiding reverse direction.
  • the steering wheel 1 that controls the steering angle of the vehicle is used as the driving operator, and the additional reaction force Tp is applied to the steering wheel 1.
  • the steering operation of the driver can be guided by using the steering wheel 1 that controls the steering angle of the vehicle as the driving operation element.
  • route guidance by the navigation system can be set, and the guidance direction can be set according to the set route guidance.
  • the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
  • the steering angle ⁇ s of the steering wheel 1 is detected as a state variable.
  • the steering angle ⁇ s (change amount) of the steering wheel 1 is detected as a state variable.
  • the guidance direction and the guidance reverse An additional reaction force Tp that changes its direction alternately and vibrates at different frequencies in the guiding direction and the guiding reverse direction is set, and the additional reaction force Tp is applied to the steering wheel 1.
  • the disturbance frequency and admittance can be obtained by alternately changing the direction in the guidance direction and the guidance reverse direction and inputting the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction to the steering system. Based on the characteristics, it is possible to promptly promote appropriate driving operation.
  • the gripping state determination method in order to set the guidance direction for guiding the vehicle and to apply the additional reaction force Tp to the steering wheel 1, the guidance direction and the guidance reverse An additional reaction force Tp that changes its direction alternately and vibrates at different frequencies in the guiding direction and the guiding reverse direction is set, and the additional reaction force Tp is applied to the steering wheel 1.
  • the gripping state of the driver with respect to the steering wheel 1 is determined according to the steering angle ⁇ s of the steering wheel 1 after the application of the additional reaction force Tp to the steering wheel 1.
  • the gripping state of the driver by determining the gripping state of the driver with respect to the steering wheel 1 in accordance with the steering angle ⁇ s of the steering wheel 1 after starting to apply the additional reaction force Tp to the steering wheel 1. Can be accurately determined.
  • driving operation support is provided by guiding the driver's steering operation. Especially in a scene where the vehicle travels at a certain vehicle speed and requires only a small amount of operation such as fine adjustment. It encourages proper steering operation.
  • driving operation support is performed by, for example, guiding a steering operation in order to suppress deviation from a traveling lane. Therefore, the surrounding environment recognition device 16 recognizes at least the traffic marking line marked on the road surface, and inputs the distance to the traffic marking line and the posture (angle) with respect to the traffic marking line to the controller 20.
  • Other device configurations are the same as those of the first embodiment described above.
  • FIG. 12 is a flowchart illustrating an additional reaction force setting process according to the second embodiment.
  • step S301 the surrounding environment of the host vehicle is recognized.
  • the road marking line recognized by the surrounding environment recognition device 16 is read.
  • step S302 the steering operation guidance direction is set according to the distance to the traffic lane marking and the attitude (angle) with respect to the traffic lane marking. That is, when leaving the right traffic division line in the travel lane, the steering operation guidance direction is set to the left direction, and when leaving the left traffic division line in the travel lane, the steering operation guidance direction is set to the right direction.
  • the additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. That is, based on the frequency and admittance characteristics as described above, the waveform of the additional reaction force Tp that alternately changes the direction of steering operation to the guidance reverse direction is set.
  • FIG. 13 is a diagram illustrating an example of a lane keep. For example, if a departure tendency of the host vehicle is detected with respect to the left traffic division line in the traveling lane, steering operation in a direction away from the left traffic division line is required, so the steering operation guidance direction is rightward. Is set. Next, the additional reaction force Tp when the steering operation guidance direction is set to the right as described above and the steering angle ⁇ s that changes when the additional reaction force Tp is input will be described.
  • FIG. 14 is a time chart showing the additional reaction force Tp and the steering angle ⁇ s.
  • the additional reaction force Tp when the steering operation guidance direction is set to the right direction will be described.
  • the additional reaction force Tp is a waveform that changes its direction alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
  • the frequency of the waveform changing in the induction direction (right direction) is set to, for example, about 1 [Hz]
  • the frequency of the waveform changing in the induction reverse direction (left direction) is set to, for example, 3 [ Hz]. That is, the low frequency when changing in the guiding direction (right direction) is within a range in which a clear difference can be made in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly. Set. Furthermore, as the frequency is lowered, the period is extended and the time is lengthened. Therefore, the frequency is set within a predetermined output range.
  • the high-frequency waveform that changes in the reverse direction of the guidance is a range in which there is no clear difference in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly.
  • the admittance difference between the case where the object is firmly grasped and the case where the object is lightly grasped is set in a range where the difference is smaller than that at the low frequency.
  • the ratio between the amplitude of the waveform changing in the guiding direction (right direction) and the amplitude of the waveform changing in the reverse direction of guidance (left direction) is, for example, 3: 2. This is because when the driver holds the steering wheel 1 firmly, the steering wheel 1 moves to the same extent in the right and left directions. That is, when the driver holds the steering wheel 1 firmly, the admittance is about 0.02 [rad / Nm] at a low frequency of about 1 [Hz] that changes in the guiding direction (right direction). The amplitude is 3 ⁇ ( ⁇ is a constant).
  • the admittance is about 0.03 [rad / Nm] at a high frequency of about 3 [Hz] that changes in the reverse direction of guidance (leftward).
  • the low frequency that first changes in the guiding direction (right direction) is set to 1 ⁇ 4 cycle
  • the high frequency that changes in the reverse direction of guidance (left direction) is set to 1 ⁇ 4 cycle
  • Waveforms having a 2/4 period are alternately set in the (right direction) and the reverse guide direction (left direction).
  • the low frequency which changes to a guidance direction (right direction) is output here first
  • the high frequency which changes to a guidance reverse direction (left direction) is output, but it is not limited to this. You may output the high frequency which changes to a guidance reverse direction (left direction) first, and then outputs the low frequency which changes to a guidance direction (right direction).
  • a waveform changing in the guiding direction may be set to a low frequency
  • a waveform changing in the reverse direction may be set to a high frequency.
  • the additional reaction force Tp set in this way is input to the steering operation system.
  • a low-frequency additional reaction force Tp having a large amplitude that changes in the guiding direction (rightward direction) is input for 1 ⁇ 4 period.
  • a high-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period.
  • the admittance is larger than that at the low frequency, the amplitude is small, so that the steering wheel 1 moves in the reverse direction (left direction) by the same degree as at the low frequency.
  • the additional reaction force Tp that alternately changes in the guiding direction (right direction) and the guiding reverse direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 firmly, even if a low-frequency additional reaction force Tp that changes in the guidance direction (right direction) is input, a high frequency that changes in the reverse direction (left direction) is applied. Even if the reaction force Tp is input, it moves in the same direction in the guiding direction (right direction) and the reverse direction (left direction). The same degree of movement in the guiding direction (right direction) and the reverse guiding direction (left direction) is alternately repeated to vibrate near the initial steering angle immediately before the additional reaction force Tp is input.
  • a low-frequency additional reaction force Tp having a large amplitude that changes in the guiding direction (right direction) is input for a quarter period.
  • the admittance is larger than when grasping firmly, the steering wheel 1 moves more in the guiding direction (rightward) than when grasping firmly.
  • a high-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period.
  • the admittance is smaller and the amplitude is smaller than at the low frequency, and therefore the steering wheel 1 moves only slightly in the reverse direction of guidance (left direction).
  • the additional reaction force Tp that alternately changes in the guiding direction (right direction) and the guiding reverse direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 lightly, if the low-frequency additional reaction force Tp that changes in the guidance direction (right direction) is input, the steering wheel 1 moves greatly in the guidance direction (right direction) and guidance is performed. When a high-frequency additional reaction force Tp that changes in the reverse direction (left direction) is input, the steering wheel 1 slightly moves in the reverse direction of guidance (left direction).
  • the steering angle ⁇ s increases in the guiding direction (right direction) by alternately repeating the large movement in the guiding direction (right direction) and the slight movement in the reverse guiding direction (left direction).
  • a low-frequency additional reaction force Tp having a small amplitude that changes in the guidance direction (right direction) is first input for 1 ⁇ 4 period.
  • the admittance is larger than when grasping lightly, the steering wheel 1 moves more in the guiding direction (rightward) than when grasping lightly.
  • a high-frequency additional reaction force Tp with a large amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period.
  • the steering wheel 1 moves in the reverse direction (left direction) even if it is not as low as the low frequency.
  • the steering angle ⁇ s increases in the guiding direction (right direction) by alternately repeating the large movement in the guiding direction (right direction) and the movement in the guiding reverse direction (left direction).
  • the above is an explanation of the additional reaction force Tp when the steering operation guidance direction is set to the right direction and the steering angle ⁇ s that changes when the additional reaction force Tp is input.
  • the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is set.
  • the directions are alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle ⁇ s (t1) .
  • the time t1 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the first extreme value.
  • an additional reaction force Tp having a low frequency of about 1 [Hz], which first changes in the guiding direction (rightward) is input for 1 ⁇ 4 period, it is about 0.25 [sec].
  • of the later steering angle is larger than a predetermined threshold ⁇ 1. .
  • the threshold value ⁇ 1 is the absolute value of the steering angle at a later time when the driver gently holds the steering wheel 1 when a low-frequency additional reaction force Tp that changes in the guiding direction (rightward direction) is input
  • of the later steering angle when the steering wheel 1 is lightly gripped is about 0.03 as shown in FIG. 14, and the steering wheel 1 is not gripped.
  • is about 0.16. Therefore, the threshold value ⁇ 1 is set to about 0.09 as an intermediate value so that 0.03 ⁇ 1 ⁇ 0.16, for example.
  • step S307 when the later steering angle ⁇ s (t1) is in the guiding direction (rightward) and the absolute value
  • the process proceeds to step S308.
  • step S307 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S308 the steering angle ⁇ s at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as a later steering angle ⁇ s (t2) .
  • the time t2 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the second inflection point.
  • An inflection point is a point where the direction of the curve changes in the curve, that is, a point where the convex shape in the guiding direction (right direction) and the convex state in the reverse direction (left direction) change in the waveform. It is.
  • an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the induction direction (right direction) is first input for 1 ⁇ 4 period, and subsequently changes in the reverse direction (left direction) of 3 [
  • step S309 it is determined whether or not the later steering angle ⁇ s (t2) is in the reverse direction (left direction) and the absolute value
  • the threshold ⁇ 2 is larger than the absolute value
  • of the later steering angle when the steering wheel 1 was firmly held was, for example, about 0 as shown in FIG. 14, and the steering wheel 1 was lightly gripped.
  • of the later steering angle is, for example, about 0.04 as shown in FIG. Therefore, the threshold ⁇ 2 is set to about 0.02 as an intermediate value so that the relationship 0 ⁇ 2 ⁇ 0.04 is satisfied.
  • step S310 when the later steering angle ⁇ s (t1) is in the reverse direction of guidance (leftward) and the absolute value
  • of the later steering angle is larger than the threshold ⁇ 2, the driver gently turns the steering wheel 1 It means holding. Accordingly, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S310.
  • the later steering angle ⁇ s (t2) is in the guiding direction (rightward), or when the absolute value
  • step S310 the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. To the predetermined main program.
  • a traffic lane marking on the road surface is recognized (step S301), and a steering operation guidance direction is set according to the distance to the traffic lane marking and the posture (angle) with respect to the traffic lane marking (step S302).
  • the steering direction is set to the right direction because of the tendency to deviate from the left traffic line.
  • the directions are alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S303).
  • Output step S304).
  • the vehicle In lane keeping operation, the vehicle generally travels at a certain vehicle speed, and a slight operation amount of fine adjustment is sufficient. In such a scene, the driver tends to grasp the steering wheel 1 lightly. That is, the time when the driver gently holds the steering wheel 1 is when the driver needs active information, and the driving operation support for guiding the steering operation becomes effective.
  • an additional reaction force Tp is set so that the steering operation can be guided in the guiding direction when the driver is grasping the steering wheel 1 lightly.
  • an additional reaction force Tp that alternately repeats a low-frequency waveform with a large amplitude that changes in the guiding direction (right direction) and a high-frequency waveform with a small amplitude that changes in the guiding reverse direction (left direction).
  • This is determined in accordance with the characteristics of disturbance frequency and admittance (FIG. 8), and the driver gently holds the steering wheel 1 by inputting such an additional reaction force Tp to the steering operation system.
  • the steering angle ⁇ can be guided in the guiding direction (right direction).
  • the steering angle ⁇ s is in the guidance direction (right direction) and the guidance reverse direction (left direction) in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. Will swing alternately. Further, when the driver is not gripping the steering wheel 1, the steering angle ⁇ s greatly swings in the guidance direction (right direction).
  • the steering operation is guided in the guiding direction only when the driver is lightly grasping the steering wheel 1, and when the driver is firmly grasping the steering wheel 1, and when the driver is steering wheel. When it is not grasping 1, steering guidance is stopped. Therefore, the gripping state of the driver with respect to the steering wheel 1 is determined.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle ⁇ s (t1) (step S305), and the later steering angle ⁇ s (t1). ) Is larger than a predetermined threshold value ⁇ 1 (step S306).
  • of the steering angle at a later time is larger than the threshold value ⁇ 1, it is determined that the driver is not grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S307). .
  • the steering angle ⁇ s at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle ⁇ s (t2) (step S308), and the absolute value of the later steering angle is detected. It is determined whether or not
  • step S310 when the absolute value
  • the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction to the additional reaction force Tp in the guidance direction (right direction) that does not vibrate.
  • the driver's steering operation can be smoothly guided in the guidance direction (right direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
  • the time t2 for detecting the steering angle ⁇ s (t2) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached.
  • the later steering angle ⁇ s (t2) when the driver firmly holds the steering wheel 1 is in the vicinity of the initial steering angle just before the additional reaction force Tp is input (see FIG. 14 is substantially 0). Therefore, the absolute value
  • T2 This is the time when
  • the additional reaction force Tp is set so as to have a relatively large amplitude when facing the guiding direction (right direction) and a relatively small amplitude when facing the guiding reverse direction (left direction). This is because when the driver holds the steering wheel 1 firmly, the steering wheel 1 moves to the same extent in the left direction and the right direction. That is, if the product of the admittance and amplitude of the waveform changing in the induction direction (right direction) and the product of the admittance and amplitude of the waveform changing in the induction reverse direction (left direction) are made the same, the additional reaction force Tp is generated in the induction direction.
  • the steering angle ⁇ s (amount of change) becomes the same when facing the direction and the direction opposite to the guidance.
  • the surrounding environment recognition device 16 recognizes the parking frame marked on the road surface, thereby setting the target trajectory from the current position of the host vehicle to the parking position, and the guidance direction according to the set target trajectory.
  • route guidance may be set by the navigation system 17 and the guidance direction may be set according to the set route guidance. That is, when passing through an intersection or a branch point, the traveling direction according to the set route guidance may be set as the guidance direction.
  • the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
  • of the later steering angle when the driver firmly holds the steering wheel 1 The absolute value
  • the absolute value of the later steering angle when the driver firmly holds the steering wheel 1 is larger than the absolute value
  • the threshold ⁇ 2 is set in a range smaller than the value
  • the addition is performed so that the steering angle ⁇ s (change amount) is the same when the additional reaction force Tp is directed in the guidance direction and when it is directed in the reverse direction.
  • An amplitude ratio between the direction of the reaction force Tp in the induction direction and the direction in the reverse direction of the induction is set. In this way, by setting the amplitude ratio between the direction of the additional reaction force Tp in the guidance direction and the direction in the guidance reverse direction, when the driver holds the steering wheel 1 firmly, the steering wheel 1 The amount of movement in the guiding direction can be made equal to the amount of movement in the guiding reverse direction.
  • FIG. 15 is a flowchart illustrating an additional reaction force setting process according to the third embodiment.
  • step S401 the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
  • step S402 the center position in the parking frame is set as the target parking position of the host vehicle, and the target parking position is determined from the current position of the host vehicle based on the distance to the target parking position and the posture (angle) with respect to the parking frame. Set the target trajectory up to.
  • the steering operation guidance direction and the target operation amount are set according to the vehicle speed V and the target track of the host vehicle. That is, when the target trajectory is in the left direction, the steering operation guidance direction is set to the left direction, and the target operation amount according to the target trajectory is set. Further, when the target trajectory is in the right direction, the steering operation guidance direction is set to the right direction, and the target operation amount according to the target trajectory is set.
  • the deviation between the current position of the host vehicle and the target track is calculated.
  • the guide direction and the target operation amount are corrected (reset) according to the deviation.
  • the additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
  • the direction is alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle ⁇ s (t1) .
  • of the later steering angle is larger than a predetermined threshold ⁇ 1. To do.
  • the later steering angle ⁇ s (t1) is in the reverse direction (right direction) and the absolute value
  • step S410 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then the process returns to a predetermined main program.
  • step S411 the steering angle ⁇ s at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as a later steering angle ⁇ s (t2) .
  • step S412 it is determined whether or not the later steering angle ⁇ s (t2) is in the guiding direction (leftward) and the absolute value
  • the steering angle ⁇ s (t1) at the later time is the guiding direction (leftward) and the absolute value
  • the later steering angle ⁇ s (t2) is in the reverse direction (right direction), or when the absolute value
  • step S410 the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
  • a parking frame on the road surface is recognized (step S401), a target trajectory from the current position of the host vehicle to the parking frame is set (step S402), and a steering operation guidance direction according to the target trajectory is set (step S403).
  • the steering operation guidance direction is set in the left direction.
  • step S404 the deviation between the current position of the host vehicle and the target track is calculated (step S404), and the guidance direction and the target operation amount are set again according to the deviation (step S405).
  • step S405 the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S406).
  • step S407 Output (step S407).
  • Other operations are the same as those in the first embodiment described above.
  • the target trajectory from the current position of the host vehicle to the parking position is set, and the guidance direction is set according to the set target trajectory.
  • the guidance direction is set according to the set target trajectory.
  • ⁇ 4th Embodiment >> "Constitution"
  • driving operation support is performed by guiding a steering operation in order to suppress deviation from the driving lane
  • the processing in step S302 in the second embodiment described above will be specifically described. Is. Therefore, the device configuration is the same as that of the second embodiment described above.
  • the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
  • an example will be described in which a lane departure tendency to the left is detected and the steering operation guidance direction is set to the right (see FIG. 13). Note that detailed description of portions common to the second embodiment described above is omitted.
  • FIG. 16 is a flowchart illustrating an additional reaction force setting process according to the fourth embodiment.
  • step S501 the surrounding environment of the host vehicle is recognized.
  • the road marking line recognized by the surrounding environment recognition device 16 is read.
  • an estimated lateral position d which is the vehicle position after a predetermined time with respect to the target track, is calculated according to the vehicle speed V, the distance to the traffic lane marking, and the attitude (angle) with respect to the traffic lane marking.
  • the target track is a track along the traffic division line passing through the center in the width direction in the travel lane (vehicle lane).
  • step S503 it is determined whether or not the absolute value
  • a predetermined threshold value ds it is determined that the steering operation guidance by the driving operation support is unnecessary, and the process proceeds to step S504.
  • of the estimated lateral position is larger than a predetermined threshold value ds, it is determined that steering operation guidance by driving operation support is necessary, and the process proceeds to step S505.
  • step S504 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S505 the steering operation guidance direction and the target operation amount are set according to the absolute value
  • an additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
  • the directions are alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
  • the steering angle ⁇ s at the time when a predetermined time t1 has passed after the input of the additional reaction force Tp to the steering operation system is read as the steering angle ⁇ s (t1) later.
  • step S509 it is determined whether or not the later steering angle ⁇ s (t1) is in the guiding direction (right direction) and the absolute value
  • of the later steering angle is larger than a predetermined threshold ⁇ 1.
  • the driver holds the steering wheel 1. If it is determined that there is not, the process proceeds to step S504.
  • step S510 the steering angle ⁇ s at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the steering angle ⁇ s (t2) at a later time.
  • step S511 it is determined whether or not the later steering angle ⁇ s (t2) is in the reverse direction (left direction) and the absolute value
  • of the later steering angle is greater than a predetermined threshold ⁇ 2.
  • the driver gently turns the steering wheel 1 It means holding. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S511.
  • step S512 the output of the additional reaction force Tp that oscillates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. To the predetermined main program.
  • a road marking line is recognized (step S501), an estimated lateral position d after a predetermined time with respect to the target trajectory is calculated (step S502), and the absolute value
  • of the estimated lateral position is reduced is set as the steering operation guiding direction, and the absolute value of the estimated lateral position is determined.
  • the steering direction is set to the right direction because of the tendency to deviate from the left traffic line.
  • the directions are alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S506).
  • Output step S507).
  • Other operations are the same as those in the second embodiment described above.
  • the driving operation support apparatus According to the driving operation support apparatus according to the present embodiment, the relative relationship between the own vehicle and the traffic lane marking is detected, and the guidance direction is set according to the detected relative relationship with the traffic lane marking. As described above, when the lane keeping operation is performed along the traveling lane, the information required by the driver can be positively given, and an appropriate driving operation can be promoted more actively.
  • driving operation support is performed by guiding a steering operation in order to suppress contact with an object existing around the host vehicle. Therefore, the surrounding environment recognition device 16 has, for example, a laser radar at the front part of the vehicle body and the rear part of the vehicle body, and determines the distance to an object existing in front and side of the own vehicle and an object existing in the rear and side of the own vehicle. Recognize and input to controller 20.
  • the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
  • the host vehicle is about to enter the adjacent lane on the left side, a vehicle approaching from the left rear is detected, and the steering operation guidance direction is set to the right direction. Note that detailed description of portions common to the second embodiment described above is omitted.
  • FIG. 17 is a flowchart illustrating an additional reaction force setting process according to the fifth embodiment.
  • step S601 the surrounding environment of the host vehicle is recognized. That is, the distance to the surrounding object recognized by the surrounding environment recognition device 16 is read.
  • step S602 the vehicle position after a predetermined time is calculated based on the vehicle speed V, the steering angle ⁇ s, the lateral acceleration Gy, the yaw rate ⁇ , and the like.
  • step S603 it is determined whether or not an obstacle exists at the vehicle position after a predetermined time.
  • step S605 the surrounding environment of the host vehicle is recognized. That is, the distance to the surrounding object recognized by the surrounding environment recognition device 16 is read.
  • step S603 the vehicle position after a predetermined time is calculated based on the vehicle speed V, the steering angle ⁇ s, the lateral acceleration Gy, the yaw rate ⁇ , and the like.
  • step S604 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S605 the steering operation guidance direction and the target operation amount are set according to the distance from the obstacle at the vehicle position that arrives after a predetermined time. That is, the direction away from the obstacle is set as the steering operation guiding direction, and the target operation amount is set larger as the distance from the obstacle is shorter. For example, if an obstacle is detected when the host vehicle is about to enter the left adjacent lane, the steering operation guidance direction is set to the right direction and the host vehicle is about to enter the right adjacent lane. Is detected, the steering operation guidance direction is set to the left direction.
  • the additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
  • the direction is alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
  • the steering angle ⁇ s at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the steering angle ⁇ s (t1) at a later time.
  • step S609 it is determined whether or not the later steering angle ⁇ s (t1) is in the guiding direction (right direction) and the absolute value
  • of the later steering angle is larger than a predetermined threshold ⁇ 1.
  • the driver holds the steering wheel 1. If it is not determined, the process proceeds to step S604.
  • step S610 the steering angle ⁇ s at the time when a predetermined time t2 has passed after the input of the additional reaction force Tp to the steering operation system is read as the steering angle ⁇ s (t2) at a later time.
  • step S611 it is determined whether or not the later steering angle ⁇ s (t2) is in the reverse direction of guidance (leftward), and the absolute value
  • of the later steering angle is larger than a predetermined threshold ⁇ 2.
  • the driver gently turns the steering wheel 1 It means holding. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S611.
  • step S612 the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. And then return to a predetermined main program.
  • Step S601 the distance to the distance to the surrounding object is recognized (step S601), the vehicle position after a predetermined time is calculated (step S602), and it is determined whether there is an obstacle at the vehicle position after the predetermined time. (Step S603).
  • the direction away from the obstacle is set as the steering operation guiding direction, and the target operation amount is set larger as the distance from the obstacle is shorter ( Step S605).
  • step S606 an obstacle is detected when the host vehicle is about to enter the left adjacent lane, and the steering operation guidance direction is set to the right direction. Then, the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S606). Tp is output (step S607).
  • Other operations are the same as those in the second embodiment described above.
  • the driving operation support apparatus According to the driving operation support apparatus according to the present embodiment, the relative relationship between the host vehicle and an object existing around the host vehicle is detected, and the guidance direction is set according to the relative relationship with the detected object. . In this way, by setting the guidance direction according to the relative relationship with the objects existing around the host vehicle, the driver is required when traveling in the presence of an object that can be an obstacle around the host vehicle. give information to positively, can be promoted more actively proper driving operation.
  • the gripping state of the steering wheel 1 is determined in accordance with the change in the yaw rate ⁇ since the input of the additional reaction force Tp to the steering operation system.
  • the apparatus configuration is the same as that of the first embodiment described above.
  • the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
  • a target trajectory for reversing and parking the vehicle is set for the parking frame located diagonally left rear of the host vehicle, and the steering operation guidance direction is set to the left (See FIG. 9). Detailed description of portions common to the first embodiment described above will be omitted.
  • FIG. 18 is a flowchart illustrating an additional reaction force setting process according to the sixth embodiment.
  • step S701 the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
  • step S702 a target trajectory from the current position of the host vehicle to the target parking position is set based on the distance to the parking frame, that is, the target parking position and the attitude (angle) with respect to the parking frame, and the target trajectory is followed.
  • Sets the steering operation guidance direction that is, when the target track is the left direction, the steering operation guidance direction is set to the left direction, and when the target track is the right direction, the steering operation guidance direction is set to the right direction.
  • the additional reaction force Tp is set based on the steering operation guidance direction.
  • the additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
  • a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
  • the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
  • the yaw rate ⁇ at the time when a predetermined time t1 has passed after the input of the additional reaction force Tp to the steering operation system is read as the yaw rate ⁇ (t1) later.
  • of the subsequent yaw rate is greater than a predetermined threshold ⁇ 1.
  • Threshold ⁇ 1 if you enter the additional reaction force Tp of the low-frequency changes in the induced opposite direction (right direction), the absolute value of the later time the yaw rate when the driver had gripped lightly steering wheel 1
  • of the later yaw rate when the steering wheel 1 is lightly held is the yaw rate value that occurs when the steering angle ⁇ s is about 0.03 (see FIG. 10), for example.
  • the threshold value ⁇ 1 is set such that the steering angle ⁇ s is, for example, about 0.09 (see FIG. 10), for example, as an intermediate value so that ⁇ (0.03) ⁇ 1 ⁇ (0.16) .
  • step S707 when the later yaw rate ⁇ (t1) is in the reverse direction (right direction) and the absolute value
  • the later yaw rate ⁇ (t1) is in the guiding direction (leftward), or the absolute value
  • step S707 in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S708 the yaw rate ⁇ at the time when a predetermined time t2 has elapsed after the input of the additional reaction force Tp to the steering operation system is read as the yaw rate ⁇ (t2) later.
  • step S709 it is determined whether or not the subsequent yaw rate ⁇ (t2) is in the guiding direction (left direction) and the absolute value
  • the threshold ⁇ 2 is larger than the absolute value
  • of the later yaw rate when the steering wheel 1 is lightly gripped is the yaw rate value ⁇ ( 0)
  • is a yaw rate value that occurs when the steering angle ⁇ s is, for example, about 0.04 (see FIG. 10).
  • ⁇ (0.04) is a yaw rate value that occurs when the steering angle ⁇ s is, for example, about 0.04 (see FIG. 10).
  • ⁇ (0.04) . Therefore, the threshold value ⁇ 2 is, for example, an intermediate value when the steering angle ⁇ s is, for example, about 0.02 (see FIG. 10) so that the relationship of ⁇ (0) ⁇ 2 ⁇ (0.04) is satisfied.
  • the yaw rate value ⁇ (0.02) is set.
  • step S710 when the later yaw rate ⁇ (t1) is in the guiding direction (leftward) and the absolute value
  • the later yaw rate ⁇ (t2) is in the reverse direction (right direction), or the absolute value of the later yaw rate
  • step S710 output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
  • a target trajectory for reversing and parking a vehicle is set for a parking frame located diagonally left rear of the host vehicle, and the steering operation guidance direction is set to the left direction (See FIG. 9).
  • the parking frame on the road surface is recognized (step S701), the guidance direction is set (step S702), the additional reaction force Tp is set (step S703), and the additional reaction force Tp is output (step S704).
  • step S701 the parking frame on the road surface is recognized (step S701)
  • the guidance direction is set (step S702)
  • the additional reaction force Tp is set (step S703)
  • the additional reaction force Tp is output (step S704). This is the same as the first embodiment.
  • the yaw rate ⁇ at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later yaw rate ⁇ (t1) (step S705), and the later yaw rate ⁇ (t1) is detected in advance. It is determined whether or not the threshold value is larger than the predetermined threshold value ⁇ 1 (step S706). At this time, if the absolute value
  • the yaw rate ⁇ at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later yaw rate ⁇ (t2) (step S708), and the absolute value of the later yaw rate
  • of the yaw rate at a later time is equal to or smaller than the threshold ⁇ 2, it is determined that the driver is grasping the steering wheel 1 lightly, and the application of the additional reaction force Tp is stopped (step S707). . In this way, in a situation where the driver is lightly holding the steering wheel 1 and does not want to actively support driving operation, unnecessary power can be generated by stopping the application of the additional reaction force Tp to the steering wheel 1. Consumption can be avoided.
  • the driver holds the steering wheel 1 firmly.
  • the driver's steering operation is further guided in the guidance direction (step S710). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction of the guidance to the additional reaction force Tp in the guidance direction (left direction) that does not vibrate.
  • the driver's steering operation can be smoothly guided in the guidance direction (left direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
  • Other operations are the same as those in the first embodiment described above.
  • the gripping state of the steering wheel 1 is determined based on the change in the yaw rate ⁇ since the input of the additional reaction force Tp to the steering operation system based on the first embodiment described above.
  • the present invention is not limited to this.
  • the gripping state of the steering wheel 1 may be determined based on the change in the yaw rate ⁇ after the input of the additional reaction force Tp to the steering operation system is based on the second embodiment described above.
  • the yaw rate ⁇ corresponds to the “state variable”
  • the later yaw rate ⁇ (t1) corresponds to the “first latter state variable”
  • the threshold ⁇ 1 corresponds to the “first threshold”
  • the later yaw rate ⁇ (t2 ) Corresponds to the “second later state variable”
  • the threshold ⁇ 2 corresponds to the “second threshold”.
  • the yaw rate ⁇ that becomes the vehicle behavior is detected as a state variable.
  • the gripping state of the driver can be easily determined.
  • FIG. 19 is a schematic configuration diagram showing an acceleration / deceleration control device using an accelerator / brake lever.
  • the present embodiment employs an accelerator / brake lever 31 as a manual acceleration / deceleration operator for manipulating the acceleration / deceleration of the vehicle. For example, when the accelerator / brake lever 31 is pushed forward, it is decelerated, and when it is pulled backward, it is accelerated.
  • the accelerator / brake lever 31 is connected to a reaction force motor 32 for applying an operation reaction force.
  • a reaction force motor 32 By controlling the reaction force motor 32, any one of an acceleration operation direction and a deceleration operation direction can be arbitrarily set.
  • the additional reaction force Tp is input.
  • the engine output control device 33 controls the engine output (the number of revolutions and the engine torque) by adjusting the throttle valve opening, the fuel injection amount, the ignition timing, and the like in the engine 7.
  • the brake actuator 34 uses a brake fluid pressure control circuit used for anti-skid control (ABS), traction control (TCS), stability control (VDC: Vehicle Dynamics Control), and the like.
  • ABS anti-skid control
  • TCS traction control
  • VDC Vehicle Dynamics Control
  • the braking force is controlled by increasing pressure, holding pressure, and reducing pressure.
  • the reaction motor 32, the engine output control device 33, and the brake actuator 34 are driven and controlled by the controller 20.
  • the controller 20 inputs various signals detected by the accelerator / brake sensor 35, the vehicle speed sensor 14, and the yaw rate sensor 15. Further, the controller 20 inputs various data from the surrounding environment recognition device 16 and the navigation system 17.
  • the accelerator / brake sensor 35 detects the acceleration / deceleration operation amount S of the accelerator / brake lever 31.
  • the accelerator / brake sensor 35 is a potentiometer, for example, and converts the acceleration / deceleration operation amount of the accelerator / brake lever 31 into a voltage signal and inputs it to the controller 20.
  • the controller 20 determines the acceleration / deceleration operation amount of the accelerator / brake lever 31 from the input voltage signal.
  • the controller 20 first sets a target acceleration / deceleration according to the acceleration / deceleration operation amount S, and drives and controls the engine output control device 33 and the brake actuator 34 according to the set target acceleration / deceleration. That is, when the accelerator / brake lever 31 is in the acceleration operation region, the target acceleration / deceleration is set to the acceleration side, and the engine output control device 33 is driven and controlled so that the driving force increases, and the braking force is suppressed.
  • the brake actuator 34 is driven and controlled.
  • the target acceleration / deceleration is set to the deceleration side so that the engine output control device 33 is driven and controlled so that the driving force is suppressed, and the braking force is increased.
  • the brake actuator 34 is driven and controlled.
  • the drive control for the reaction force motor 32 is the same as in the first embodiment described above. That is, the controller 20 sets the base reaction force Tb, sets the additional reaction force Tp, adds the base reaction force Tb and the additional reaction force Tp, and sets the final operation reaction force Tr.
  • the reaction force motor 32 is driven and controlled according to the operation reaction force Tr.
  • driving operation support is performed by guiding an acceleration / deceleration operation in order to suppress contact (or approach) with a preceding vehicle. Therefore, the surrounding environment recognition device 16 has, for example, a laser radar at the front part of the vehicle body and the rear part of the vehicle body, and determines the distance to an object existing in front and side of the own vehicle and an object existing behind and side of the own vehicle. Recognize and input to controller 20.
  • FIG. 20 is a flowchart illustrating an additional reaction force setting process according to the seventh embodiment.
  • step S801 the surrounding environment of the host vehicle is recognized. That is, the inter-vehicle distance with the preceding vehicle recognized by the surrounding environment recognition device 16 is read.
  • step S802 the inter-vehicle distance with respect to the preceding vehicle is calculated by dividing the inter-vehicle distance from the preceding vehicle by the host vehicle speed V.
  • step S803 it is determined whether the inter-vehicle time td is shorter than a predetermined threshold value tb or the own vehicle speed V is higher than the set vehicle speed Vs.
  • the threshold value tb is, for example, 1 [sec]
  • the set vehicle speed Vs is, for example, a vehicle speed input in advance by the driver through a switch operation or the like.
  • the inter-vehicle time td is equal to or greater than a predetermined threshold value tb and the host vehicle speed V is equal to or less than the set vehicle speed Vs, it is determined that at least a deceleration operation guidance by driving operation support is unnecessary, and the process proceeds to step S804. .
  • step S806 when the inter-vehicle time td is shorter than the predetermined threshold value tb or the host vehicle speed V is higher than the set vehicle speed Vs, it is determined that a deceleration operation guidance by driving operation support is necessary, and the process proceeds to step S806.
  • step S804 it is determined whether the inter-vehicle time td is longer than a predetermined threshold ta.
  • the threshold value ta is, for example, 5 [sec].
  • the inter-vehicle time td is less than a predetermined threshold ta, it is determined that at least a deceleration operation guidance by driving operation support is unnecessary, and the process proceeds to step S805.
  • the inter-vehicle time td is longer than the threshold value ta, it is determined that the acceleration operation guidance by the driving operation support is necessary, and the process proceeds to step S807.
  • step S805 in order to stop the input of the additional reaction force Tp to the acceleration / deceleration operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
  • step S806 the deceleration direction is set as the acceleration / deceleration operation guidance direction, the target operation amount in the deceleration direction is set according to the deviation between the inter-vehicle time td and the threshold value tb, and then the process proceeds to step S808. That is, the larger the deviation between the inter-vehicle time td and the threshold value tb, the larger the target operation amount is set.
  • step S807 the acceleration direction is set as the guidance direction of the acceleration / deceleration operation, and the target operation amount is set according to the deviation between the inter-vehicle time td and the threshold value ta, and then the process proceeds to step S808. That is, the larger the deviation between the inter-vehicle time td and the threshold value ta, the larger the target operation amount in the acceleration direction.
  • step S808 the additional reaction force Tp is set based on the guiding direction of the acceleration / deceleration operation.
  • the additional reaction force Tp is a waveform that changes directions alternately in the induction direction of the acceleration / deceleration operation and the reverse direction of the operation, and vibrates at different frequencies in the induction direction and the reverse direction of the induction.
  • a low-frequency waveform with a large amplitude changing in the guiding direction (deceleration direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (acceleration direction) are alternately repeated.
  • the direction is alternately changed in the guiding direction of the acceleration / deceleration operation and the reverse direction of the guiding operation, and an additional reaction force Tp that vibrates at different frequencies in the guiding direction and the guiding reverse direction is output.
  • the acceleration / deceleration operation amount S at the time when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later acceleration / deceleration operation amount S (t1) .
  • the subsequent acceleration / deceleration operation amount S (t1) is in the guiding direction (deceleration direction), and whether the absolute value
  • the threshold value Sh1 is the absolute value of the subsequent acceleration / deceleration operation amount when the driver is lightly holding the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input.
  • of the subsequent acceleration / deceleration operation amount is set as the threshold value Sh1.
  • step S812 when the subsequent acceleration / deceleration operation amount S (t1) is in the guiding direction (deceleration direction) and the absolute value
  • the subsequent acceleration / deceleration operation amount S (t1) is in the reverse direction (acceleration direction), or when the absolute value
  • the brake lever 31 is being gripped, and the process proceeds to step S812.
  • step S812 the acceleration / deceleration operation amount S at the time when a predetermined time t2 has elapsed after starting to input the additional reaction force Tp to the acceleration / deceleration operation system is read as the acceleration / deceleration operation amount S (t2) later.
  • step S813 whether the subsequent acceleration / deceleration operation amount S (t2) is in the reverse direction (acceleration direction) and whether the absolute value
  • the threshold value Sh2 is the absolute value
  • of the subsequent acceleration / deceleration operation amount is set as the threshold value Sh2.
  • the driver -It means that the brake lever 31 is lightly grasped. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814.
  • the subsequent acceleration / deceleration operation amount S (t2) is in the guiding direction (deceleration direction) or the absolute value
  • step S814 the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guide direction and the reverse direction of the guide is stopped, and the additional reaction force Tp in the guide direction (deceleration direction) that does not vibrate is replaced. And then return to a predetermined main program.
  • an acceleration / deceleration operation is induced in order to suppress contact (or approach) with a preceding vehicle.
  • an inter-vehicle distance from the preceding vehicle is detected (step S801)
  • an inter-vehicle time td for the preceding vehicle is calculated (step S802)
  • the inter-vehicle time td is shorter than a predetermined threshold value tb or the host vehicle speed V is set to the set vehicle speed Vs. It is determined whether or not it is higher (step S803).
  • the deceleration direction is set as the guiding direction of the acceleration / deceleration operation, and according to the deviation between the inter-vehicle time td and the threshold value tb.
  • the target operation amount in the deceleration direction is set (step S806).
  • step S804 when the inter-vehicle time td is equal to or greater than a predetermined threshold tb and the host vehicle speed V is equal to or less than the set vehicle speed Vs, it is determined whether or not the inter-vehicle time td is longer than a predetermined threshold ta (step S804).
  • the acceleration direction is set as the guiding direction of the acceleration / deceleration operation, and the target operation amount is set according to the deviation between the inter-vehicle time td and the threshold value ta (step S807).
  • step S808 the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set.
  • the vehicle travels at a certain vehicle speed, and a slight operation amount of fine adjustment is sufficient.
  • the driver tends to grasp the accelerator / brake lever 31 lightly. That is, the time when the driver gently holds the accelerator / brake lever 31 is when the driver needs active information, and driving operation support for inducing acceleration / deceleration operations is effective.
  • an additional reaction force Tp is set so that the acceleration / deceleration operation can be guided in the guiding direction when the driver is lightly holding the accelerator / brake lever 31.
  • an additional reaction force Tp that alternately repeats a low-frequency waveform with a large amplitude that changes in the guidance direction (deceleration direction) and a high-frequency waveform with a small amplitude that changes in the reverse direction of the guidance (acceleration direction).
  • the acceleration / deceleration operation amount ⁇ can be guided in the guidance direction (deceleration direction).
  • the acceleration / deceleration operation amount S is in the guidance direction (deceleration direction) and the guidance reverse direction near the initial deceleration operation amount immediately before the additional reaction force Tp is input. Swing alternately (acceleration direction).
  • the acceleration / deceleration operation amount S greatly fluctuates in the guidance direction (deceleration direction).
  • the acceleration / deceleration operation is guided in the guiding direction only when the driver is lightly holding the accelerator / brake lever 31, and when the driver is firmly holding the accelerator / brake lever 31, and When the driver does not hold the accelerator / brake lever 31, the acceleration / deceleration operation is stopped. Therefore, the gripping state of the driver with respect to the accelerator / brake lever 31 is determined.
  • the acceleration / deceleration operation amount S at the time when a predetermined time t1 has elapsed after the input of the additional reaction force Tp to the acceleration / deceleration operation system is detected as an acceleration / deceleration operation amount S (t1) later (step S810). It is determined whether the acceleration / deceleration operation amount S (t1) is larger than a predetermined threshold value Sh1 (step S811). At this time, if the absolute value
  • the acceleration / deceleration operation amount S at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the accelerator / brake lever 31 is detected as an acceleration / deceleration operation amount S (t2) later (step S812). It is determined whether or not the absolute value
  • the driver It is determined that the brake lever 31 is lightly grasped, and further, the driver's acceleration / deceleration operation is continuously guided in the guiding direction (step S814). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction to the additional reaction force Tp in the guidance direction (deceleration direction) that does not vibrate.
  • the driver's acceleration / deceleration operation can be smoothly guided in the guidance direction (deceleration direction). It can. Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
  • Other operations are the same as those in the second embodiment described above.
  • the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31.
  • the present invention is not limited to this. Is not to be done. That is, the gripping state of the accelerator / brake lever 31 may be determined according to, for example, a change in the vehicle speed V after the input of the additional reaction force Tp to the accelerator / brake lever 31 is started.
  • FIG. 21 is a flowchart showing an additional reaction force setting process showing the first application example.
  • the processes of steps S810, S811, S812, and S813 described above are changed as follows.
  • step S810 the vehicle speed V at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later vehicle speed V (t1) .
  • step S811 it is determined whether the subsequent vehicle speed V (t1) is the guidance direction (deceleration direction) and the subsequent vehicle speed V is greater than a predetermined threshold value V1.
  • the threshold value V1 is realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input.
  • the vehicle speed V is set within a range that is greater than the vehicle speed V and is smaller than the vehicle speed V realized by the subsequent acceleration / deceleration operation amount when the driver does not hold the accelerator / brake lever 31.
  • An intermediate value with respect to the vehicle speed V realized by the acceleration / deceleration operation amount is set as the threshold value V1.
  • step S812 the vehicle speed V at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later vehicle speed V (t2) .
  • step S813 it is determined whether or not the subsequent vehicle speed V (t2) is in the reverse direction (acceleration direction) and the subsequent vehicle speed V is greater than a predetermined threshold value V2.
  • the threshold value V2 is greater than the vehicle speed V realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when the additional reaction force Tp is input to the acceleration / deceleration operation system.
  • the vehicle speed V is set in a range smaller than the vehicle speed V realized by the amount of acceleration / deceleration operation at a later time when the driver firmly holds the accelerator / brake lever 31.
  • An intermediate value with the vehicle speed V realized by the acceleration / deceleration operation amount is set as the threshold value V2.
  • step S814 when the subsequent vehicle speed V (t1) is in the reverse direction (acceleration direction) and the subsequent vehicle speed V is larger than the threshold value V2, it means that the driver is lightly holding the accelerator / brake lever 31. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814.
  • the later vehicle speed V (t2) is in the guiding direction (deceleration direction), or when the later vehicle speed V is equal to or less than the threshold value V2, it means that the driver holds the accelerator / brake lever 31 firmly. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S805.
  • the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31.
  • the present invention is not limited to this. Is not to be done. That is, the holding state of the accelerator / brake lever 31 may be determined according to, for example, a change in the inter-vehicle time td after the input of the additional reaction force Tp to the accelerator / brake lever 31.
  • FIG. 21 is a flowchart showing an additional reaction force setting process showing the first application example.
  • steps S810, S811, S812, and S813 described above are changed as follows.
  • step S810 the inter-vehicle time td when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the inter-vehicle time td (t1) .
  • step S811 it is determined whether the subsequent inter-vehicle time td (t1) is in the guidance direction (deceleration direction) and the subsequent inter-vehicle time td is greater than a predetermined threshold value td1.
  • the threshold value td1 is realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input. It is set within a range that is greater than the inter-vehicle time td and is smaller than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver does not hold the accelerator / brake lever 31.
  • An intermediate value between the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount is set as the threshold value td1.
  • step S805 when the following inter-vehicle time td (t1) is in the guidance direction (deceleration direction) and the subsequent inter-vehicle time td is larger than the threshold value td1, it is determined that the driver is not grasping the accelerator / brake lever 31 and The process proceeds to step S805.
  • the following inter-vehicle time td (t1) is in the reverse direction (acceleration direction), or when the following inter-vehicle time td is less than or equal to the threshold value td1, it is determined that the driver is holding the accelerator / brake lever 31.
  • the process proceeds to S812.
  • step S812 the inter-vehicle time td when a predetermined time t2 has elapsed since the start of the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the inter-vehicle time td (t2) .
  • step S813 it is determined whether the subsequent inter-vehicle time td (t2) is in the reverse direction (acceleration direction) and the subsequent inter-vehicle time td is greater than a predetermined threshold value td2.
  • the threshold value td2 is greater than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when the additional reaction force Tp is input to the acceleration / deceleration operation system. In addition, it is set within a range smaller than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver holds the accelerator / brake lever 31 firmly. Specifically, the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver is lightly holding the accelerator / brake lever 31, and the time when the driver holds the accelerator / brake lever 31 firmly. An intermediate value between the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount is set as the threshold value td2.
  • inter-vehicle time td (t1) is in the reverse direction (acceleration direction) and the subsequent inter-vehicle time td is larger than the threshold value td2, it means that the driver is lightly holding the accelerator / brake lever 31. To do. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814.
  • the following inter-vehicle time td (t2) is in the guiding direction (deceleration direction) or the following inter-vehicle time td is equal to or less than the threshold value td2, it means that the driver holds the accelerator / brake lever 31 firmly.
  • the gripping state of the accelerator / brake lever 31 is determined according to, for example, a change in the inter-vehicle time td after the input of the additional reaction force Tp to the accelerator / brake lever 31, the seventh embodiment Equivalent effects can be obtained.
  • the driver's acceleration / deceleration operation is induced by applying an additional reaction force Tp to the accelerator / brake lever 31 as an acceleration / deceleration operator that controls acceleration / deceleration of the vehicle.
  • the present invention is not limited to this. It is not something.
  • the driver's acceleration operation may be induced by applying an additional reaction force Tp to an accelerator pedal as an acceleration operation element that controls acceleration of the vehicle.
  • the driver's deceleration operation may be guided by applying an additional reaction force Tp to a brake pedal as a deceleration operation element that controls the deceleration of the vehicle.
  • the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31.
  • the present invention is not limited to this. Is not to be done. That is, the gripping state of the accelerator / brake lever 31 may be determined according to, for example, the movement distance (travel distance) after the addition reaction force Tp starts to be input to the accelerator / brake lever 31. This uses a travel distance calculated based on the elapsed time from the start of input of the additional reaction force Tp and the vehicle speed as a state variable instead of the vehicle speed V of the application example 1 described above.
  • the accelerator / brake lever 31 corresponds to the “driving operator”
  • the reaction motor 32 corresponds to the “operating force applying unit”
  • the processes in steps S803, S804, S806, and S807 are changed to the “guidance direction setting unit”.
  • the processing in step S808 corresponds to the “operation force setting unit”
  • the drive control unit 26 corresponds to the “control unit”.
  • the processes in steps S811 and S805 correspond to the “operation support cancel unit”
  • the processes in steps S813 and S814 correspond to the “operation support switching unit”.
  • the additional reaction force Tp corresponds to the “operation force”
  • the acceleration / deceleration operation amount S corresponds to the “state variable”
  • the time t1 corresponds to the “first time”
  • the threshold value Sh1 corresponds to the “first threshold value”.
  • the time t2 corresponds to the “second time”
  • the subsequent acceleration / deceleration operation amount S (t2) corresponds to the “second subsequent state variable”
  • the threshold Sh2 corresponds to the “second threshold”.
  • the accelerator / brake lever 31 that controls acceleration / deceleration of the vehicle is used as the driving operator, and the additional reaction force Tp is applied to the accelerator / brake lever 31. To do.
  • the driver's acceleration / deceleration operation can be guided.
  • the acceleration / deceleration operation amount S of the accelerator / brake lever 31 is detected as a state variable.
  • the gripping state of the driver can be easily determined.
  • the vehicle speed V that causes the vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31 can also be detected as a state variable.
  • the vehicle speed V, which is a vehicle behavior it is possible to easily determine the gripping state of the driver.
  • the movement distance from the initial state that is the vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31 can also be detected as a state variable. . As described above, by detecting the movement distance from the initial state as the vehicle behavior as the state variable, it is possible to easily determine the gripping state of the driver.
  • the relative relationship between the host vehicle and an object existing ahead of the host vehicle course that has a vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31. are detected as state variables.
  • the gripping state of the driver can be easily determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

In order to more actively promote an appropriate driving operation, additional reaction force (Tp) is applied to a steering operation system in addition to an operation by a driver. A guidance direction for guiding a vehicle is set, and as the additional reaction force (Tp) to the steering operation system, additional reaction force (Tp) the direction of which is alternately switched between the guidance direction and an anti-guidance direction and which vibrates at different frequencies in the guidance direction and in the anti-guidance direction is set. Then, this additional reaction force (Tp) is applied to the steering operation system. For example, in a scene in which, as in a steering operation at the time of parking, an extremely low speed, a certain level of large operation amount and operation accuracy are required, the additional reaction force (Tp) which vibrates at a relatively low frequency in the anti-guidance direction, and vibrates at a relatively high frequency in the guidance direction is set.

Description

運転操作支援装置、運転操作支援方法、把持状態判定方法Driving operation support device, driving operation support method, gripping state determination method
 本発明は、運転操作支援装置、運転操作支援方法、及び把持状態判定方法に関するものである。 The present invention relates to a driving operation support device, a driving operation support method, and a gripping state determination method.
 特許文献1に記載された従来技術は、走行車線に対するずれ量を検出し、ずれ量が所定値を超えたときに、ステアリング機構を振動させて運転者に警報を与えるものである。このとき、警報を与えてから所定時間が経過するまでは、ステアリング操作速度が大きいほど操舵反力を大きくすることで、逸脱回避方向への過剰な操作や、逸脱方向への誤操作を防いでいる。 The prior art described in Patent Document 1 detects a deviation amount with respect to a traveling lane, and gives a warning to the driver by vibrating the steering mechanism when the deviation amount exceeds a predetermined value. At this time, until the predetermined time elapses after the alarm is given, the steering reaction force is increased as the steering operation speed is increased, thereby preventing an excessive operation in the departure avoidance direction or an erroneous operation in the departure direction. .
特開2002-59857号公報JP 2002-59857 A
 しかしながら、上記特許文献1に記載された従来技術では、走行車線に対するずれ量が所定値を超えるような不適切なステアリング操作がなされたときにだけ警報を与えるものである。すなわち、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切なステアリング操作を促すという点で改善の余地があった。
 本発明の課題は、より能動的に適切な運転操作を促すことである。
However, in the conventional technique described in Patent Document 1, an alarm is given only when an inappropriate steering operation is performed such that the amount of deviation with respect to the traveling lane exceeds a predetermined value. That is, there is room for improvement in that the information required by the driver is positively given and the appropriate steering operation is promoted more actively.
An object of the present invention is to more appropriately promote appropriate driving operation.
 本発明の一態様に係る運転操作支援装置は、運転者によって操作される運転操作子を備え、この運転操作子に対して操作力を付与するものである。そして、車両を誘導するための誘導方向を設定し、運転操作子に対する操作力として、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する操作力を設定する。そして、この操作力を運転操作子に付与する。 A driving operation support device according to an aspect of the present invention includes a driving operator operated by a driver, and applies an operating force to the driving operator. Then, the guidance direction for guiding the vehicle is set, and as the operation force for the driving operator, the direction is alternately changed to the guidance direction and the reverse direction of the guidance, and the vibration is generated with different frequencies in the guidance direction and the reverse direction of the guidance. Set the operating force. Then, this operating force is applied to the driving operator.
 本発明によれば、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する操作力を運転操作子に付与することにより、運転操作を誘導方向へと誘導することができる。これにより、適切な運転操作を能動的に促すことができる。 According to the present invention, the driving operation is guided by changing the direction alternately in the guiding direction and the guiding reverse direction and applying an operating force that vibrates at different frequencies in the guiding direction and the guiding reverse direction to the driving operator. It can be guided in the direction. Thereby, an appropriate driving operation can be actively promoted.
ステアリングバイワイヤによるステアリング装置の概略構成図である。It is a schematic block diagram of the steering device by a steering by wire. コントローラ20の概略構成である。2 is a schematic configuration of the controller 20. 車速Vに応じた舵角比Rの算出に用いるマップである。It is a map used for calculation of the steering angle ratio R according to the vehicle speed V. 操舵角θsに応じた舵角比Rの算出に用いるマップである。It is a map used for calculation of the steering angle ratio R according to the steering angle θs. 操舵反力制御部22を示すブロック図である。3 is a block diagram showing a steering reaction force control unit 22. FIG. ベース反力設定処理を示すフローチャートである。It is a flowchart which shows a base reaction force setting process. 付加反力設定処理を示すフローチャートである。It is a flowchart which shows an additional reaction force setting process. 外乱の周波数とアドミタンスとの関係を示す図である。It is a figure which shows the relationship between the frequency of disturbance, and admittance. 駐車シーンの一例を示す図である。It is a figure which shows an example of a parking scene. 付加反力Tp及び操舵角θsを示すタイムチャートである。It is a time chart which shows additional reaction force Tp and steering angle (theta) s. 付加反力Tp及び操舵角θsを示すタイムチャートである。It is a time chart which shows additional reaction force Tp and steering angle (theta) s. 第2実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 2nd Embodiment. レーンキープの一例を示す図である。It is a figure which shows an example of a lane keep. 付加反力Tp及び操舵角θsを示すタイムチャートである。It is a time chart which shows additional reaction force Tp and steering angle (theta) s. 第3実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 3rd Embodiment. 第4実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 4th Embodiment. 第5実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 5th Embodiment. 第6実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 6th Embodiment. アクセル・ブレーキレバーによる加減速制御装置を示す概略構成図である。It is a schematic block diagram which shows the acceleration / deceleration control apparatus by an accelerator and a brake lever. 第7実施形態の付加反力設定処理を示すフローチャートである。It is a flowchart which shows the additional reaction force setting process of 7th Embodiment. 応用例1を示す付加反力設定処理を示すフローチャートである。10 is a flowchart showing an additional reaction force setting process showing an application example 1; 応用例2を示す付加反力設定処理を示すフローチャートである。10 is a flowchart showing an additional reaction force setting process showing an application example 2.
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 《構成》
 本実施形態は、運転者のステアリング操作を誘導することで、運転操作支援を行うものであり、特に極低速で或る程度の大きな操作量と操作精度が求められるようなシーンにおいて、適切なステアリング操作を促すものである。
 図1は、ステアリングバイワイヤによるステアリング装置の概略構成図である。
 ステアリングホイール1は、ステアリングシャフト2に連結され、転舵輪(操向輪)3L及び3Rは、ナックルアーム4、タイロッド5、及びラックアンドピニヨン6を順に介してピニヨンシャフト7に連結される。ステアリングシャフト2及びピニヨンシャフト7は、クラッチ10を介して断続可能な状態で連結されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<< First Embodiment >>
"Constitution"
In the present embodiment, driving operation support is performed by guiding the steering operation of the driver. In particular, in a scene where a certain amount of operation amount and operation accuracy at a very low speed are required, appropriate steering is performed. It encourages operation.
FIG. 1 is a schematic configuration diagram of a steering device using steering-by-wire.
The steering wheel 1 is connected to a steering shaft 2, and steered wheels (steering wheels) 3L and 3R are connected to a pinion shaft 7 through a knuckle arm 4, a tie rod 5, and a rack and pinion 6 in this order. The steering shaft 2 and the pinion shaft 7 are connected via a clutch 10 so as to be able to be interrupted.
 したがって、クラッチ10を接続(締結)した状態では、ステアリングホイール1を回転させると、ステアリングシャフト2、クラッチ10、及びピニヨンシャフト7が回転する。ピニオンシャフト7の回転運動は、ラック&ピニヨン6によってタイロッド5の進退運動となり、ナックルアーム4を介して転舵輪3L及び3Rが転舵される。 Therefore, in a state where the clutch 10 is connected (fastened), when the steering wheel 1 is rotated, the steering shaft 2, the clutch 10, and the pinion shaft 7 are rotated. The rotational movement of the pinion shaft 7 is the forward and backward movement of the tie rod 5 by the rack and pinion 6, and the steered wheels 3 </ b> L and 3 </ b> R are steered via the knuckle arm 4.
 ピニオンシャフト7には、転舵モータ9を連結してあり、クラッチ10を遮断した状態で、転舵モータ9を駆動すると、ピニオンシャフト7が回転することで、転舵輪3L及び3Rが転舵される。したがって、ステアリングホイール1の操舵角θsを検出し、検出した操舵角θsに応じて転舵モータ9を駆動制御することで、転舵輪3L及び3Rの転舵角θwが制御される。 A steered motor 9 is connected to the pinion shaft 7. When the steered motor 9 is driven with the clutch 10 disconnected, the pinion shaft 7 rotates to steer the steered wheels 3L and 3R. The Accordingly, the steering angle θw of the steered wheels 3L and 3R is controlled by detecting the steering angle θs of the steering wheel 1 and drivingly controlling the steered motor 9 in accordance with the detected steering angle θs.
 ステアリングシャフト2には、反力モータ8を連結してあり、クラッチ10を遮断した状態で、反力モータ8を駆動すると、ステアリングシャフト2に反力トルクが付与される。したがって、転舵輪3L及び3Rを転舵したときに路面から受ける反力を検出又は推定し、検出又は推定した反力に応じて反力モータ8を駆動制御することで、運転者のステアリング操作に対して操作反力が付与される。 The reaction force motor 8 is connected to the steering shaft 2, and when the reaction force motor 8 is driven in a state where the clutch 10 is disengaged, reaction force torque is applied to the steering shaft 2. Therefore, the reaction force received from the road surface when the steered wheels 3L and 3R are steered is detected or estimated, and the reaction force motor 8 is driven and controlled in accordance with the detected or estimated reaction force. In contrast, an operation reaction force is applied.
 通常は、クラッチ10を遮断した状態で、転舵モータ9を駆動制御すると共に、反力モータ8を駆動制御することで、ステアバイワイヤを実行し、所望のステアリング特性や旋回挙動特性を実現し、且つ良好な操作フィーリングを実現する。一方、システムに異常が生じた場合には、ステアバイワイヤを中止し、フェールセーフとしてクラッチ10を締結状態に戻すことで、機械的なバックアップを確保する。 Normally, the steering motor 9 is driven and controlled while the clutch 10 is disengaged, and the reaction force motor 8 is driven and controlled to execute steer-by-wire to achieve desired steering characteristics and turning behavior characteristics. Moreover, a good operation feeling is realized. On the other hand, when an abnormality occurs in the system, the steer-by-wire is stopped and the clutch 10 is returned to the engaged state as fail-safe to ensure mechanical backup.
 転舵モータ9及び反力モータ8は、例えばマイクロコンピュータで構成されたコントローラ20によって駆動制御される。コントローラ20は、操舵角センサ11、転舵角センサ12、ハブセンサ13、車速センサ14、及びヨーレートセンサ15で検出される各種信号を入力する。さらに、コントローラ20は、周辺環境認識装置16、及びナビゲーションシステム17から各種データを入力する。 The steered motor 9 and the reaction force motor 8 are driven and controlled by a controller 20 composed of, for example, a microcomputer. The controller 20 inputs various signals detected by the steering angle sensor 11, the turning angle sensor 12, the hub sensor 13, the vehicle speed sensor 14, and the yaw rate sensor 15. Further, the controller 20 inputs various data from the surrounding environment recognition device 16 and the navigation system 17.
 操舵角センサ11は、ステアリングシャフト2の操舵角θsを検出する。この操舵角センサ11は、例えばステアリングシャフト2と同期して回転する検出ギヤに内蔵された磁石の回転を、二つのMR(ferro-Magneto Resistance)素子で検出し、ステアリングシャフト2の回転に伴う磁界方向のベクトル変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からステアリングシャフト2の操舵角θsを判断する。なお、操舵角センサ11は、右旋回を正の値として検出し、左旋回を負の値として検出する。 The steering angle sensor 11 detects the steering angle θs of the steering shaft 2. The steering angle sensor 11 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the steering shaft 2 by two MR (ferro-Magneto Resistance) elements, and a magnetic field accompanying rotation of the steering shaft 2. The direction vector change is converted into an electric signal and input to the controller 20. The controller 20 determines the steering angle θs of the steering shaft 2 from the input electric signal. The steering angle sensor 11 detects right turn as a positive value and detects left turn as a negative value.
 転舵角センサ12は、ピニヨンシャフト7の転舵角θwを検出する。この転舵角センサ12は、例えばピニヨンシャフト7と同期して回転する検出ギヤに内蔵された磁石の回転を、二つのMR(ferro-Magneto Resistance)素子で検出し、ピニヨンシャフト7の回転に伴う磁界方向のベクトル変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からピニヨンシャフト7の転舵角θwを判断する。なお、転舵角センサ12は、右旋回を正の値として検出し、左旋回を負の値として検出する。 The turning angle sensor 12 detects the turning angle θw of the pinion shaft 7. The turning angle sensor 12 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the pinion shaft 7 with two MR (ferro-Magneto®Resistance) elements, and accompanies the rotation of the pinion shaft 7. The vector change in the magnetic field direction is converted into an electrical signal and input to the controller 20. The controller 20 determines the turning angle θw of the pinion shaft 7 from the input electrical signal. The turning angle sensor 12 detects a right turn as a positive value and a left turn as a negative value.
 ハブセンサ13は、タイヤ横力Yfを検出する。このハブセンサ13は、左右輪の夫々のハブユニットに設けられ、例えばホール素子と着磁式のエンコーダを用いて、ハブユニット内の軸受における内輪と外輪の変位差の変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からタイヤ横力を判断する。なお、タイヤ横力Yfは、ハブセンサ13で検出された左右輪のタイヤ横力の合計値とする。 The hub sensor 13 detects the tire lateral force Yf. The hub sensor 13 is provided in each hub unit of the left and right wheels, and converts, for example, a change in displacement difference between the inner ring and the outer ring in a bearing in the hub unit into an electric signal using a hall element and a magnetized encoder. Input to the controller 20. The controller 20 determines the tire lateral force from the input electrical signal. The tire lateral force Yf is the total value of the tire lateral forces of the left and right wheels detected by the hub sensor 13.
 車速センサ14は、車体速度(以下、車速と称す)Vを検出する。この車速センサ14は、例えばトランスミッションにおける出力側のドリブンギヤに設けられ、センサロータの磁力線を検出回路によって検出しており、センサロータの回転に伴う磁界の変化をパルス信号に変換してコントローラ20に入力する。コントローラ20は、入力されたパルス信号から車速Vを判断する。 The vehicle speed sensor 14 detects a vehicle body speed (hereinafter referred to as a vehicle speed) V. This vehicle speed sensor 14 is provided, for example, in a driven gear on the output side of the transmission, detects the magnetic lines of force of the sensor rotor by a detection circuit, converts the change in the magnetic field accompanying the rotation of the sensor rotor into a pulse signal, and inputs it to the controller 20. To do. The controller 20 determines the vehicle speed V from the input pulse signal.
 ヨーレートセンサ15は、車体のヨーレートγを検出する。このヨーレートセンサ15は、バネ上となる車体に設けられ、例えば水晶音叉からなる振動子を交流電圧によって振動させ、そして角速度入力時のコリオリ力によって生じる振動子の歪み量を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号から車両のヨーレートγを判断する。なお、ヨーレートセンサ15は、右旋回を正の値として検出し、左旋回を負の値として検出する。
 なお、コントローラ20は、センサ類から各検出信号を直接入力しているが、これに限定されるものではない。コントローラ20を他のコントロールユニットと接続し、例えばCSMA/CA方式の多重通信(CAN:Controller Area Network)を介して各種データを受信してもよい。
The yaw rate sensor 15 detects the yaw rate γ of the vehicle body. The yaw rate sensor 15 is provided on a body on a spring, and vibrates a vibrator made of, for example, a crystal tuning fork with an alternating voltage, and converts the distortion amount of the vibrator caused by the Coriolis force at the time of angular velocity input into an electric signal. Input to the controller 20. The controller 20 determines the yaw rate γ of the vehicle from the input electric signal. The yaw rate sensor 15 detects right turn as a positive value and detects left turn as a negative value.
In addition, although the controller 20 inputs each detection signal directly from sensors, it is not limited to this. The controller 20 may be connected to another control unit, and for example, various data may be received via CSMA / CA multiplex communication (CAN: Controller Area Network).
 周辺環境認識装置16は、自車両の周辺環境を認識する。この周辺環境認識装置16は、例えば車体の前方、後方、左側方、及び右側方をカメラで撮像し、一般的な画像処理により、路面に標示された駐車枠(区画線)や通行区分線を認識し、駐車枠や通行区分線に対する自車両の相対関係をコントローラ20に入力する。あるいは、車体の四隅に超音波センサを有し、車体の斜め左前方、斜め右前方、斜め左後方、及び斜め右後方に存在する物体までの距離を認識しコントローラ20に入力する。あるいは、車体前部や車体後部にレーザレーダを有し、自車両の前方及び側方に存在する物体や自車両の後方及び側方に存在する物体までの距離を認識しコントローラ20に入力する。 The surrounding environment recognition device 16 recognizes the surrounding environment of the own vehicle. The surrounding environment recognition device 16 captures, for example, the front, rear, left side, and right side of the vehicle body with a camera, and displays the parking frame (partition line) and the traffic line marked on the road surface by general image processing. It recognizes and inputs the relative relationship of the own vehicle with respect to a parking frame or a traffic division line into the controller 20. Alternatively, ultrasonic sensors are provided at the four corners of the vehicle body, and distances to objects existing diagonally left front, diagonally right front, diagonally left rear, and diagonally right rear of the vehicle body are recognized and input to the controller 20. Alternatively, a laser radar is provided at the front part of the vehicle body or the rear part of the vehicle body, and distances to an object existing in front and side of the own vehicle or an object existing behind and side of the own vehicle are recognized and input to the controller 20.
 本実施形態は、例えば駐車時のステアリング操作を誘導することで運転操作支援を行うものである。したがって、周辺環境認識装置16は、少なくとも路面に標示された駐車枠を認識し、駐車枠までの距離や、駐車枠に対する姿勢(角度)をコントローラ20に入力する。 In the present embodiment, for example, driving operation support is performed by guiding a steering operation during parking. Therefore, the surrounding environment recognition device 16 recognizes at least the parking frame marked on the road surface, and inputs the distance to the parking frame and the posture (angle) with respect to the parking frame to the controller 20.
 ナビゲーションシステム17は、自車両の現在位置と、その現在位置における道路情報を認識する。このナビゲーションシステム17は、GPS受信機を有し、四つ以上のGPS衛星から到着する電波の時間差に基づいて自車両の位置(緯度、経度、高度)と進行方向とを認識する。そして、DVD‐ROMドライブやハードディスクドライブに記憶された道路種別、道路線形、車線幅員、車両の通行方向等を含めた道路情報を参照し、自車両の現在位置における道路情報を認識しコントローラ20に入力する。なお、安全運転支援システム(DSSS:Driving Safety Support Systems)として、双方向無線通信(DSRC:Dedicated Short Range Communication)を利用し、各種データをインフラストラクチャから受信してもよい。 The navigation system 17 recognizes the current position of the host vehicle and road information at the current position. This navigation system 17 has a GPS receiver, and recognizes the position (latitude, longitude, altitude) of the host vehicle and the traveling direction based on the time difference between radio waves arriving from four or more GPS satellites. Then, the road information including the road type, road alignment, lane width, direction of traffic of the vehicle, etc. stored in the DVD-ROM drive or hard disk drive is referred to, and the road information at the current position of the host vehicle is recognized. input. In addition, as a safe driving support system (DSSS: Driving Safety Support Systems), two-way wireless communication (DSRC: Dedicated Short Range Communication) may be used to receive various data from the infrastructure.
 図2は、コントローラ20の概略構成である。
 コントローラ20は、図2に示すように、転舵モータ9を駆動制御する転舵角制御部21と、反力モータ8を駆動制御する操舵反力制御部22と、を備える。
 転舵角制御部21は、操舵角θsに対する転舵角θwの舵角比R(=θs/θw)を決定してから、転舵モータ9を駆動することで転舵角θwを制御する。
FIG. 2 is a schematic configuration of the controller 20.
As shown in FIG. 2, the controller 20 includes a turning angle control unit 21 that drives and controls the turning motor 9 and a steering reaction force control unit 22 that drives and controls the reaction force motor 8.
The turning angle control unit 21 controls the turning angle θw by driving the turning motor 9 after determining the steering angle ratio R (= θs / θw) of the turning angle θw with respect to the steering angle θs.
 舵角比Rは、例えば下記の要領で決定する。
 例えば、図3のマップを参照し、車速Vに応じて舵角比Rを算出する。
 図3は、車速Vに応じた舵角比Rの算出に用いるマップである。
 このマップによれば、車速Vが低いほど舵角比Rが小さくなる。したがって、据え切り時や低速走行時には、小さな操舵角θsで大きな転舵角θwが得られるので、運転者の操作負担が軽減される。一方、高速走行時には、操舵角θsの変化に対する転舵角θwの変化が抑制されるので、過敏な車両挙動が抑制され、走行安定性が確保される。
The steering angle ratio R is determined, for example, in the following manner.
For example, the steering angle ratio R is calculated according to the vehicle speed V with reference to the map of FIG.
FIG. 3 is a map used to calculate the steering angle ratio R according to the vehicle speed V.
According to this map, the steering angle ratio R decreases as the vehicle speed V decreases. Accordingly, when the vehicle is stationary or traveling at a low speed, a large steering angle θw can be obtained with a small steering angle θs, so that the operation burden on the driver is reduced. On the other hand, during high speed traveling, the change in the turning angle θw with respect to the change in the steering angle θs is suppressed, so that the sensitive vehicle behavior is suppressed and traveling stability is ensured.
 また、図4のマップを参照し、操舵角θsに応じて舵角比Rを算出してもよい。
 図4は、操舵角θsに応じた舵角比Rの算出に用いるマップである。
 このマップによれば、操舵角θsが小さいほど舵角比Rが大きくなる。したがって、操舵角θsを切り増しするほど、大きな転舵角θwが得られるので、運転者の操作負担が軽減される。一方、略直進走行しているときのようなシーンでは、操舵角θsの変化に対する転舵角θwの変化が抑制されるので、過敏な車両が抑制され、走行安定性が確保される。
Further, the steering angle ratio R may be calculated according to the steering angle θs with reference to the map of FIG.
FIG. 4 is a map used for calculating the steering angle ratio R according to the steering angle θs.
According to this map, the steering angle ratio R increases as the steering angle θs decreases. Therefore, as the steering angle θs is increased, a larger turning angle θw is obtained, so that the operation burden on the driver is reduced. On the other hand, in a scene such as when traveling substantially straight, the change in the turning angle θw with respect to the change in the steering angle θs is suppressed, so that a sensitive vehicle is suppressed and traveling stability is ensured.
 なお、車速V及び操舵角θsの双方に応じて舵角比Rを決定してもよい。すなわち、車速Vに応じた舵角比Rv、及び操舵角θsに応じた舵角比Rsを個別に算出し、これらの平均を算出したり、夫々に重み付けをしてから加算したりする等して、最終的な舵角比Rを決定すればよい。
 上記のように、舵角比Rを決定してから、操舵角θs及び舵角比Rに応じて、目標転舵角θwを算出し、この目標転舵角θwに転舵角θwが一致するように、例えばロバストモデルマッチング手法などを用いて転舵モータ9を駆動制御する。
The steering angle ratio R may be determined according to both the vehicle speed V and the steering angle θs. That is, the steering angle ratio Rv corresponding to the vehicle speed V and the steering angle ratio Rs corresponding to the steering angle θs are individually calculated, and an average of these is calculated, or each is weighted and added. Thus, the final steering angle ratio R may be determined.
As described above, after determining the steering angle ratio R, the target turning angle θw * is calculated according to the steering angle θs and the steering angle ratio R, and the turning angle θw is equal to the target turning angle θw *. The steering motor 9 is driven and controlled using, for example, a robust model matching method so as to match.
 図5は、操舵反力制御部22を示すブロック図である。
 操舵反力制御部22は、ベース反力設定部23と、付加反力設定部24と、加算部25と、駆動制御部26と、を備える。ここで、ベース反力設定部23は、運転者のステアリング操作に対するベース反力Tbを設定し、付加反力設定部24は、運転者のステアリング操作を誘導するための付加反力Tpを設定する。また、加算部25は、ベース反力Tbと付加反力Tpとを加算して最終的な操舵反力Trを設定し、駆動制御部26は、操舵反力Trに応じて反力モータ8を駆動制御する。
FIG. 5 is a block diagram showing the steering reaction force control unit 22.
The steering reaction force control unit 22 includes a base reaction force setting unit 23, an additional reaction force setting unit 24, an addition unit 25, and a drive control unit 26. Here, the base reaction force setting unit 23 sets a base reaction force Tb for the driver's steering operation, and the additional reaction force setting unit 24 sets an additional reaction force Tp for guiding the driver's steering operation. . The adding unit 25 adds the base reaction force Tb and the additional reaction force Tp to set the final steering reaction force Tr, and the drive control unit 26 sets the reaction force motor 8 according to the steering reaction force Tr. Drive control.
 次に、ベース反力設定部23で実行するベース反力設定処理について説明する。
 図6は、ベース反力設定処理を示すフローチャートである。
 先ずステップS101では、操舵角θsを時間微分して操舵速度dθsを算出する。
 続くステップS102では、下記(1)に示すように、操舵角θsにゲインKaを乗じて角度項トルクTaを算出する。
  Ta=Ka×θs               ………(1)
 続くステップS103では、下記(2)式に示すように、操舵速度dθsにゲインKsを乗じて速度項トルクTsを算出する。
  Ts=Ks×dθs                    ………(2)
Next, the base reaction force setting process executed by the base reaction force setting unit 23 will be described.
FIG. 6 is a flowchart showing the base reaction force setting process.
First, in step S101, a steering speed dθs is calculated by time differentiation of the steering angle θs.
In the subsequent step S102, as shown in (1) below, the angular term torque Ta is calculated by multiplying the steering angle θs by the gain Ka.
Ta = Ka × θs (1)
In the subsequent step S103, the speed term torque Ts is calculated by multiplying the steering speed dθs by the gain Ks as shown in the following equation (2).
Ts = Ks × dθs (2)
 続くステップS104では、下記(3)式に示すように、角度トルクTaと速度項トルクTsとを加算してベース反力Tbを算出する。
  Tb=Ta+Ts               ………(3)
 続くステップS105では、車速V、ヨーレートγ、及び横加速度Ygに基づいて路面摩擦係数μを算出する。
 続くステップS106では、車速V、操舵角θs、及び路面摩擦係数μに基づいて操舵反力の上限値TLを算出する。
 続くステップS107では、ベース反力Tbと上限値TLとのうち、小さい方の値を最終的なベース反力Tbとして算出してから所定のメインプログラムに復帰する。
In subsequent step S104, as shown in the following equation (3), the base reaction force Tb is calculated by adding the angular torque Ta and the speed term torque Ts.
Tb = Ta + Ts (3)
In subsequent step S105, a road surface friction coefficient μ is calculated based on the vehicle speed V, the yaw rate γ, and the lateral acceleration Yg.
In subsequent step S106, an upper limit value TL of the steering reaction force is calculated based on the vehicle speed V, the steering angle θs, and the road surface friction coefficient μ.
In the subsequent step S107, the smaller one of the base reaction force Tb and the upper limit value TL is calculated as the final base reaction force Tb, and then the process returns to a predetermined main program.
 次に、付加反力設定部24で実行する付加反力設定処理について説明する。
 図7は、第1実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS201では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した路面の駐車枠を読込む。
 続くステップS202では、駐車枠つまり目標駐車位置までの距離や、駐車枠に対する姿勢(角度)に基づいて、自車両の現在位置から目標駐車位置までの目標軌道を設定し、その目標軌道に従ったステアリング操作の誘導方向を設定する。すなわち、目標軌道が左方向であるときには、ステアリング操作の誘導方向を左方向に設定し、目標軌道が右方向であるときには、ステアリング操作の誘導方向を右方向に設定する。
 続くステップS203では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。
Next, an additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
FIG. 7 is a flowchart showing the additional reaction force setting process of the first embodiment.
First, in step S201, the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
In the subsequent step S202, a target trajectory from the current position of the host vehicle to the target parking position is set based on the distance to the parking frame, that is, the target parking position, and the attitude (angle) with respect to the parking frame, and the target trajectory is followed. Sets the steering operation guidance direction. That is, when the target track is the left direction, the steering operation guidance direction is set to the left direction, and when the target track is the right direction, the steering operation guidance direction is set to the right direction.
In the subsequent step S203, the additional reaction force Tp is set based on the steering operation guidance direction.
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction.
 以下、付加反力Tpの波形設定について説明する。
 先ず、ステアリング操作系に外乱を入力したときに変化する操舵角のアドミタンス特性について説明する。
 図8は、外乱の周波数とアドミタンスとの関係を示す図である。
 アドミタンスとは、外乱が入力されたときに動く1Nmあたりの操舵角(変化量)であり、外乱に対する動きやすさ(ゲイン)を表す。すなわち、アドミタンスが大きいほど、外乱に対して操舵角が変化しやすく、アドミタンスが小さいほど、外乱に対して操舵角が変化しにくいことを表す。ここでは、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合と、手放ししている場合とに区別して、周波数に応じたアドミタンスの特性を示している。なお、周波数に応じたアドミタンス特性は、車両諸元によって定まるが、傾向は共通するものである。
Hereinafter, the waveform setting of the additional reaction force Tp will be described.
First, the admittance characteristic of the steering angle that changes when a disturbance is input to the steering operation system will be described.
FIG. 8 is a diagram illustrating the relationship between the frequency of disturbance and admittance.
Admittance is a steering angle (change amount) per 1 Nm that moves when a disturbance is input, and represents the ease of movement (gain) with respect to the disturbance. That is, the larger the admittance, the easier the steering angle to change with respect to the disturbance, and the smaller the admittance, the less likely the steering angle to change with respect to the disturbance. Here, the characteristics of the admittance according to the frequency are shown by distinguishing between the case where the driver is firmly holding the steering wheel 1, the case where the driver is holding it lightly, and the case where the driver is releasing it. The admittance characteristics corresponding to the frequency are determined by vehicle specifications, but the tendency is common.
 先ず、運転者がステアリングホイール1をしっかり握っている場合、1[Hz]程度の周波数の外乱をステアリング操作系に入力しても、アドミタンスは約0.02[rad/Nm]となる。つまり、腕が動きにくいため、ステアリングホイール1もあまり動かない。ところが、3[Hz]付近の周波数の外乱をステアリング操作系に入力すると、アドミタンスは約0.03[rad/Nm]まで大きくなる。つまり、腕とステアリングが共振状態となり、1[Hz]程度のときと比べて、腕が動きやすくなるため、ステアリングホイール1も動きやすい。なお、それ以上の周波数では、周波数を大きくするほどアドミタンスが小さくなる。つまり、腕が動きにくくなり、ステアリングホイール1も動きにくくなる。 First, when the driver holds the steering wheel 1 firmly, even if a disturbance with a frequency of about 1 [Hz] is input to the steering operation system, the admittance is about 0.02 [rad / Nm]. That is, since the arm is difficult to move, the steering wheel 1 does not move much. However, when a disturbance having a frequency around 3 [Hz] is input to the steering operation system, the admittance increases to about 0.03 [rad / Nm]. That is, the arm and the steering are in a resonance state, and the arm is easy to move as compared with the case of about 1 [Hz], and the steering wheel 1 is also easy to move. At higher frequencies, the admittance decreases with increasing frequency. That is, the arm becomes difficult to move, and the steering wheel 1 also becomes difficult to move.
 次に、運転者がステアリングホイール1を軽く握っている場合、1[Hz]程度の周波数の外乱をステアリング操作系に入力すると、アドミタンスが約0.08[rad/Nm]となる。つまり、しっかり握っているときと比べて、腕が動きやすいため、ステアリングホイール1も動きやすい。ところが、3[Hz]付近の周波数の外乱をステアリング操作系に入力すると、アドミタンスが約0.03[rad/Nm]となる。つまり、1[Hz]程度のときと比べて、腕が動きにくくなるため、ステアリングホイール1も動きにくい。なお、それ以上の周波数では、周波数を大きくするほどアドミタンスが小さくなる。つまり、腕が動きにくくなり、ステアリングホイール1も動きにくくなる。 Next, when the driver is lightly grasping the steering wheel 1, when a disturbance having a frequency of about 1 [Hz] is input to the steering operation system, the admittance becomes about 0.08 [rad / Nm]. That is, since the arm is easy to move as compared to when the hand is firmly grasped, the steering wheel 1 is also easy to move. However, when a disturbance having a frequency near 3 [Hz] is input to the steering operation system, the admittance becomes about 0.03 [rad / Nm]. That is, compared to the case of about 1 [Hz], the arm is less likely to move, so the steering wheel 1 is also less likely to move. At higher frequencies, the admittance decreases with increasing frequency. That is, the arm becomes difficult to move, and the steering wheel 1 also becomes difficult to move.
 次に、運転者がステアリングホイール1を握っていない、つまり手放しの場合、1[Hz]程度の周波数の外乱をステアリング操作系に入力すると、アドミタンスが0.5[rad/Nm]となる。つまり、軽く握っているときと比べて、ステアリングホイール1が大きく動く。ところが、3[Hz]付近の周波数の外乱をステアリング操作系に入力すると、アドミタンスが0.05[rad/Nm]となる。つまり、1[Hz]程度のときと比べて、ステアリングホイール1が動かなくなる。このように、運転者がステアリングホイール1を握っていない場合には、外乱の周波数が大きくなるほどアドミタンスは小さくなるので、ステアリングホイール1が動かなくなる。
 上記のような周波数とアドミタンスの特性に基づいて、ステアリング操作の誘導方向と誘導逆方向とに交互に向きを変える付加反力Tpの波形を設定する。
Next, in the case where the driver does not hold the steering wheel 1, that is, when the driver does not let go of the steering wheel, when a disturbance having a frequency of about 1 [Hz] is input to the steering operation system, the admittance becomes 0.5 [rad / Nm]. That is, the steering wheel 1 moves largely compared to when it is lightly gripped. However, when a disturbance having a frequency around 3 [Hz] is input to the steering operation system, the admittance becomes 0.05 [rad / Nm]. That is, the steering wheel 1 does not move as compared with the case of about 1 [Hz]. As described above, when the driver does not hold the steering wheel 1, the admittance decreases as the disturbance frequency increases, and the steering wheel 1 does not move.
Based on the frequency and admittance characteristics as described above, the waveform of the additional reaction force Tp that changes the direction alternately between the steering operation guidance direction and the guidance reverse direction is set.
 以下、具体的なシーンを例にして説明する。
 図9は、駐車シーンの一例を示す図である。
 例えば、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する場合、設定される目標軌道が左方向となるので、ステアリング操作の誘導方向が左方向に設定される。
Hereinafter, a specific scene will be described as an example.
FIG. 9 is a diagram illustrating an example of a parking scene.
For example, when the vehicle is retracted and parked with respect to a parking frame located diagonally left rear of the host vehicle, the set target trajectory is in the left direction, so the steering operation guidance direction is set in the left direction. .
 次に、上記のようにステアリング操作の誘導方向が左方向に設定されたときの付加反力Tpと、その付加反力Tpを入力したときに変化する操舵角θsについて説明する。
 図10は、付加反力Tp及び操舵角θsを示すタイムチャートである。
 先ず、ステアリング操作の誘導方向が左方向に設定されたときの付加反力Tpについて説明する。
 付加反力Tpは、前述したように、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導逆方向(右方向)に変化する振幅の小さい低周波の波形と、誘導方向(左方向)に変化する振幅の大きい高周波の波形と、を交互に繰り返している。
Next, the additional reaction force Tp when the steering operation guidance direction is set to the left as described above and the steering angle θs that changes when the additional reaction force Tp is input will be described.
FIG. 10 is a time chart showing the additional reaction force Tp and the steering angle θs.
First, the additional reaction force Tp when the steering operation guidance direction is set to the left direction will be described.
As described above, the additional reaction force Tp is a waveform that changes its direction alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
 前述の周波数に応じたアドミタンス特性に基づいて、誘導逆方向(右方向)に変化する波形の周波数は例えば1[Hz]程度とし、誘導方向(左方向)に変化する波形の周波数は例えば3[Hz]程度とする。すなわち、誘導逆方向(右方向)に変化させるときの低い周波数は、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合とで、アドミタンスに明確な差を出せる範囲で設定する。さらに、周波数を低くするほど、周期が延び時間が長くなるので、予め定めた時間以内に出力できる範囲で設定する。一方、誘導方向(左方向)に変化する高周波の波形は、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合とで、アドミタンスに明確な差が出ない範囲で設定する。つまり、しっかり把持しているときと軽く把持しているときとのアドミタンス差が、低周波のときよりも小さくなる範囲で設定する。 Based on the admittance characteristics according to the above-described frequency, the frequency of the waveform changing in the reverse direction (right direction) is, for example, about 1 [Hz], and the frequency of the waveform changing in the induction direction (left direction) is, for example, 3 [ Hz]. That is, the low frequency when changing in the reverse direction of guidance (right direction) is a range in which a clear difference can be made in the admittance between the case where the driver firmly holds the steering wheel 1 and the case where the driver holds it lightly. Set with. Furthermore, as the frequency is lowered, the period is extended and the time is lengthened. Therefore, the frequency is set within a range that can be output within a predetermined time. On the other hand, the high-frequency waveform that changes in the guidance direction (left direction) is within a range in which there is no clear difference in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly. Set. That is, the admittance difference between the case where the object is firmly grasped and the case where the object is lightly grasped is set in a range where the difference is smaller than that at the low frequency.
 また、誘導逆方向(右方向)に変化する波形の振幅と、誘導方向(左方向)に変化する波形の振幅との比は例えば3:8とする。これは、運転者がステアリングホイール1を軽く把持している場合に、ステアリングホイール1が左方向と右方向に同程度だけ動くようにするためである。すなわち、運転者がステアリングホイール1を軽く把持している場合に、誘導逆方向(右方向)に変化する1[Hz]程度の低周波では、アドミタンスが約0.08[rad/Nm]となり、このときの振幅を3αとする(αは定数)。また、運転者がステアリングホイール1を軽く把持している場合に、誘導方向(左方向)に変化する3[Hz]程度の高周波では、アドミタンスが約0.03[rad/Nm]となり、このときの振幅を8αとする(αは定数)。したがって、誘導逆方向(右方向)に変化する波形において、アドミタンスと振幅の積が0.08×3α=0.24αとなり、誘導方向(左方向)に変化する波形において、アドミタンスと振幅の積が0.03×8α=0.24αとなり、これらが一致することで、周期的に変化する付加反力Tpが入力されたときの操舵角(変化量)が一致する。すなわち、運転者がステアリングホイール1を軽く把持している場合、付加反力Tpを入力しても、付加反力Tpが入力される直前の初期操舵角付近で、振動することになる。 Also, the ratio of the amplitude of the waveform changing in the reverse direction (right direction) to the amplitude of the waveform changing in the induction direction (left direction) is, for example, 3: 8. This is for the purpose of causing the steering wheel 1 to move to the same extent in the left and right directions when the driver is lightly holding the steering wheel 1. That is, when the driver is lightly grasping the steering wheel 1, the admittance is about 0.08 [rad / Nm] at a low frequency of about 1 [Hz] which changes in the reverse direction of guidance (rightward). The amplitude at this time is 3α (α is a constant). In addition, when the driver is lightly holding the steering wheel 1, the admittance is about 0.03 [rad / Nm] at a high frequency of about 3 [Hz] changing in the guidance direction (left direction). Is 8α (α is a constant). Therefore, the product of admittance and amplitude is 0.08 × 3α = 0.24α in the waveform changing in the reverse direction (right direction), and the product of admittance and amplitude is in the waveform changing in the induction direction (left direction). 0.03 × 8α = 0.24α, and when these coincide, the steering angle (change amount) when the periodically added additional reaction force Tp is input coincides. That is, when the driver gently holds the steering wheel 1, even if the additional reaction force Tp is input, the driver vibrates in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input.
 なお、図10においては、最初に誘導逆方向(右方向)に変化する低周波を1/4周期とし、次いで誘導方向(左方向)に変化する高周波を2/4周期とし、以降は誘導逆方向(右方向)と誘導方向(左方向)に夫々2/4周期とする波形を交互に設定している。なお、ここでは、最初に誘導逆方向(右方向)に変化する低周波を出力してから誘導方向(左方向)に変化する高周波を出力しているが、これに限定されるものではない。最初に誘導方向(左方向)に変化する高周波を出力してから誘導逆方向(右方向)に変化する低周波を出力してもよい。要は、誘導逆方向(右方向)に変化する波形を低周波に設定し、誘導方向(左方向)に変化する波形を高周波に設定すればよい。
 こうして設定された付加反力Tpをステアリング操作系に入力する。
In FIG. 10, the low frequency that changes in the reverse direction (right direction) first is set to ¼ period, the high frequency that changes in the direction of induction (left direction) is set to 2/4 period, and thereafter Waveforms having 2/4 cycles are alternately set in the direction (right direction) and the guidance direction (left direction). In addition, although the low frequency which changes to a guidance reverse direction (right direction) is output initially here, the high frequency which changes to a guidance direction (left direction) is output, However, it is not limited to this. You may output the low frequency which changes to a guidance reverse direction (right direction) after outputting the high frequency which changes to a guidance direction (left direction) first. In short, a waveform changing in the reverse direction of the guidance (right direction) may be set to a low frequency, and a waveform changing in the direction of guidance (left direction) may be set to a high frequency.
The additional reaction force Tp set in this way is input to the steering operation system.
 次に、上記のような付加反力Tpをステアリング操作系に入力したときに変化する操舵角θsについて説明する。
 図10では、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合と、手放ししている場合とを区別して、付加反力Tpをステアリング操作系に入力したときの操舵角θs(変化量)を示す。
Next, the steering angle θs that changes when the additional reaction force Tp as described above is input to the steering operation system will be described.
In FIG. 10, when the driver is firmly grasping the steering wheel 1, when it is lightly grasped, and when it is let go, the additional reaction force Tp is input to the steering operation system. The steering angle θs (change amount) is shown.
 先ず、運転者がステアリングホイール1をしっかり握っている場合、最初に誘導逆方向(右方向)に変化する振幅の小さい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、アドミタンスが小さいため、ステアリングホイール1は誘導逆方向(右方向)に僅かに動くだけである。続いて誘導方向(左方向)に変化する振幅の大きい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりもアドミタンスが大きく、且つ振幅が大きいため、ステアリングホイール1が誘導方向(左方向)に大きく動く。以降は、誘導逆方向(右方向)と誘導方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1をしっかり握っている限り、誘導逆方向(右方向)に変化する低周波の付加反力Tpを入力すると、ステアリングホイール1は誘導逆方向(右方向)に僅かに動き、誘導方向(左方向)に変化する高周波の付加反力Tpを入力すると、ステアリングホイール1が誘導方向(左方向)に大きく動く。この誘導逆方向(右方向)への僅かな動きと、誘導方向(左方向)への大きな動きが交互に繰り返されることで、操舵角θsが誘導方向(左方向)へと増加してゆく。 First, when the driver holds the steering wheel 1 firmly, first, a low-frequency additional reaction force Tp having a small amplitude that changes in the reverse direction of the guidance (right direction) is input for a ¼ period. At this low frequency additional reaction force Tp, since the admittance is small, the steering wheel 1 only moves slightly in the reverse direction (right direction) of guidance. Subsequently, a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period. At this high frequency additional reaction force Tp, the admittance is larger and the amplitude is larger than at the low frequency, so that the steering wheel 1 moves greatly in the guiding direction (left direction). Thereafter, an additional reaction force Tp that alternately changes in the reverse direction (right direction) and in the induction direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 firmly, when the low-frequency additional reaction force Tp that changes in the reverse direction (right direction) is input, the steering wheel 1 slightly moves in the reverse direction (right direction). When a high-frequency additional reaction force Tp that moves and changes in the guidance direction (left direction) is input, the steering wheel 1 moves greatly in the guidance direction (left direction). The steering angle θs increases in the guidance direction (left direction) by alternately repeating the slight movement in the reverse direction (right direction) and the large movement in the guidance direction (left direction).
 次に、運転者がステアリングホイール1を軽く握っている場合、最初に誘導逆方向(右方向)に変化する振幅の小さい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、しっかり握っているときと比べて、アドミタンスが大きいため、ステアリングホイール1は誘導逆方向(右方向)に動く。続いて誘導方向(左方向)に変化する振幅の大きい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりもアドミタンスが小さいものの、振幅が大きいため、ステアリングホイール1は低周波のときと同程度だけ誘導方向(左方向)に動く。以降は、誘導逆方向(右方向)と誘導方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1を軽く握っている限り、誘導逆方向(右方向)に変化する低周波の付加反力Tpを入力しても、誘導方向(左方向)に変化する高周波の付加反力Tpを入力しても、誘導逆方向(右方向)と誘導方向(左方向)とに同程度だけ動く。この誘導逆方向(右方向)と誘導方向(左方向)への同程度の動きが交互に繰り返されることで、付加反力Tpが入力される直前の初期操舵角付近で振動する。 Next, when the driver is lightly holding the steering wheel 1, first, a low-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction (right direction) of the guidance is input for ¼ period. In this low frequency additional reaction force Tp, since the admittance is larger than when firmly grasping, the steering wheel 1 moves in the reverse direction of guidance (right direction). Subsequently, a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period. In this high frequency additional reaction force Tp, although the admittance is smaller than that at the low frequency, the amplitude is large. Therefore, the steering wheel 1 moves in the guiding direction (left direction) by the same degree as at the low frequency. Thereafter, an additional reaction force Tp that alternately changes in the reverse direction (right direction) and in the induction direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 lightly, even if a low-frequency additional reaction force Tp that changes in the reverse direction of the guidance (right direction) is input, a high frequency that changes in the guidance direction (left direction) is applied. Even if the reaction force Tp is input, it moves in the same direction in the reverse direction (right direction) and in the induction direction (left direction). The same degree of movement in the reverse direction (right direction) and the induction direction (left direction) is alternately repeated, so that vibration is generated in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input.
 次に、運転者がステアリングホイール1を握っていない、つまり手放しの場合、最初に誘導逆方向(右方向)に変化する振幅の小さい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、軽く握っているときと比べて、アドミタンスが大きいため、軽く握っているときよりもステアリングホイール1は誘導逆方向(右方向)に大きく動く。続いて誘導方向(左方向)に変化する振幅の大きい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりはアドミタンスが小さいものの、それでも比較的大きなアドミタンスがあるため、ステアリングホイール1は誘導方向(左方向)に動く。以降は、誘導逆方向(右方向)と誘導方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1を握らない限り、誘導逆方向(右方向)に変化する低周波の付加反力Tpを入力すると、ステアリングホイール1は誘導逆方向(右方向)に大きく動き、誘導方向(左方向)に変化する高周波の付加反力Tpを入力すると、低周波のとき程ではないとしてもステアリングホイール1が誘導方向(左方向)に動く。この誘導逆方向(右方向)への大きな動きと、誘導方向(左方向)への動きが交互に繰り返されることで、操舵角θsが誘導逆方向(右方向)へと増加してゆく。 Next, when the driver does not hold the steering wheel 1, that is, when the driver does not let go of the steering wheel 1, a low-frequency additional reaction force Tp having a small amplitude that changes in the reverse direction of the guidance (right direction) is first input for ¼ period. . At this low frequency additional reaction force Tp, since the admittance is larger than when lightly grasped, the steering wheel 1 moves more in the reverse direction (right direction) than when grasped lightly. Subsequently, a high-frequency additional reaction force Tp with a large amplitude that changes in the guiding direction (left direction) is input for 2/4 period. In this high frequency additional reaction force Tp, although the admittance is smaller than that at the low frequency, there is still a relatively large admittance, so that the steering wheel 1 moves in the guiding direction (left direction). Thereafter, an additional reaction force Tp that alternately changes in the reverse direction (right direction) and in the induction direction (left direction) is input every 2/4 period. Therefore, as long as the driver does not hold the steering wheel 1, when the low-frequency additional reaction force Tp that changes in the reverse direction of the guidance (right direction) is input, the steering wheel 1 moves greatly in the reverse direction of the guidance (right direction). When a high-frequency additional reaction force Tp that changes in the direction (left direction) is input, the steering wheel 1 moves in the guidance direction (left direction) even if it is not as low as at low frequencies. The steering angle θs increases in the reverse guide direction (right direction) by alternately repeating the large movement in the reverse guide direction (right direction) and the movement in the guide direction (left direction).
 上記が、ステアリング操作の誘導方向が左方向に設定されたときの付加反力Tpと、その付加反力Tpを入力したときに変化する操舵角θsについての説明である。
 このように、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定する。
 続くステップS204では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
The above is an explanation of the additional reaction force Tp when the steering operation guidance direction is set to the left direction and the steering angle θs that changes when the additional reaction force Tp is input.
In this manner, the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is set.
In the subsequent step S204, the direction is alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
 続くステップS205では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として読込む。時間t1は、図10に示すように、ステアリング操作系に付加反力Tpを入力し始めてから最初の極値までの時間に相当する。ここでは、最初に誘導逆方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期分だけ入力しているので、約0.25[sec]である。
 続くステップS206では、後刻操舵角θs(t1)が誘導逆方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が予め定めた閾値θ1よりも大きいか否かを判定する。
In the subsequent step S205, the steering angle θs at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle θs (t1) . As shown in FIG. 10, the time t1 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the first extreme value. Here, since an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the reverse direction of the induction (right direction) is input for ¼ period, it is about 0.25 [sec]. .
In subsequent step S206, it is determined whether or not the later steering angle θs (t1) is in the reverse direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than a predetermined threshold θ1. To do.
 閾値θ1は、誘導逆方向(右方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を握っていなかったときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で設定する。ここで、ステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t1)|とは、図10に示すように、0.03程度であり、ステアリングホイール1を握っていなかったときの後刻操舵角の絶対値|θs(t1)|とは、0.16程度である。したがって、0.03<θ1<0.16の関係となるように、閾値θ1は、例えば夫々の中間値として0.09程度に設定する。 Threshold θ1, if you enter the additional reaction force Tp of the low-frequency changes in the induced opposite direction (right direction), the absolute value of the later time steering angle when the driver has been gripped lightly steering wheel 1 | [theta] s ( t1) is set in a range that is larger than | and smaller than the absolute value | θs (t1) | Here, the absolute value | θs (t1) | of the later steering angle when the steering wheel 1 is lightly gripped is about 0.03 as shown in FIG. 10, and the steering wheel 1 is not gripped. The absolute value | θs (t1) | of the later steering angle is about 0.16. Therefore, the threshold value θ1 is set to about 0.09 as an intermediate value so that 0.03 <θ1 <0.16, for example.
 ここで、後刻操舵角θs(t1)が誘導逆方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断してステップS207に移行する。一方、後刻操舵角θs(t1)が誘導方向(左方向)である、又は後刻操舵角の絶対値|θs(t1)|が閾値θ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS208に移行する。
 ステップS207では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
Here, when the later steering angle θs (t1) is in the reverse direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than the threshold value θ1, the driver holds the steering wheel 1. If not, the process proceeds to step S207. On the other hand, when the later steering angle θs (t1) is in the guiding direction (leftward), or when the absolute value | θs (t1) | of the later steering angle is equal to or smaller than the threshold θ1, the driver holds the steering wheel 1. And the process proceeds to step S208.
In step S207, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
 ステップS208では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として読込む。時間t2は、図10に示すように、ステアリング操作系に付加反力Tpを入力し始めてから二つ目の変曲点までの時間に相当する。変曲点とは、曲線において曲がる方向が変化する点のことであり、つまり波形における誘導逆方向(右方向)に凸の状態と、誘導方向(左方向)に凸の状態とが変化する点である。ここでは、最初に誘導逆方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期だけ入力し、続いて誘導方向(左方向)に変化する3[Hz]程度の低周波の付加反力Tpを2/4周期分だけ入力し、続いて誘導逆方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期分だけ入力している。したがって、約0.25[sec]+約0.165[sec]+約0.25[sec]=約0.665[sec]である。 In step S208, the steering angle θs at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as the steering angle θs (t2) at a later time. As shown in FIG. 10, the time t2 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the second inflection point. An inflection point is a point where the direction of bending changes in a curve, that is, a point where the state of convexity in the reverse direction of the waveform (right direction) and the state of convexity in the direction of guidance (left direction) change. It is. Here, an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the reverse direction of the induction (right direction) is first input for ¼ period, and subsequently changes in the induction direction (left direction) of 3 [ The low-frequency additional reaction force Tp of about [Hz] is input for 2/4 cycles, and then the low-frequency additional reaction force Tp of about 1 [Hz] that changes in the reverse direction of the induction (rightward) is 1/4. Only the period is entered. Therefore, about 0.25 [sec] + about 0.165 [sec] + about 0.25 [sec] = about 0.665 [sec].
 続くステップS209では、後刻操舵角θs(t2)が誘導方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する。
 閾値θ2は、ステアリング操作系に付加反力Tpを入力した場合に、運転者がステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1をしっかり握っていたときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で設定する。ここで、ステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t2)|とは、図10に示すように、例えば0程度であり、ステアリングホイール1を握っていたときの後刻操舵角の絶対値|θs(t2)|とは、図10に示すように、例えば0.04程度である。したがって、0<θ2<0.04の関係となるように、閾値θ2は、例えば夫々の中間値として0.02程度に設定する。
In subsequent step S209, it is determined whether or not the later steering angle θs (t2) is in the guiding direction (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than a predetermined threshold θ2. .
The threshold θ2 is larger than the absolute value | θs (t2) | of the later steering angle when the driver gently holds the steering wheel 1 when the additional reaction force Tp is input to the steering operation system, and the driving This is set in a range smaller than the absolute value | θs (t2) | Here, the absolute value | θs (t2) | of the later steering angle when the steering wheel 1 is lightly gripped is, for example, about 0 as shown in FIG. 10, and when the steering wheel 1 is gripped. The absolute value | θs (t2) | of the later steering angle is, for example, about 0.04 as shown in FIG. Therefore, the threshold θ2 is set to about 0.02 as an intermediate value so that the relationship 0 <θ2 <0.04 is satisfied.
 ここで、後刻操舵角θs(t1)が誘導方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS210に移行する。一方、後刻操舵角θs(t2)が誘導逆方向(右方向)である、又は後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であるときには、運転者がステアリングホイール1の把持をやめた、又は軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS207に移行する。 Here, when the later steering angle θs (t1) is in the guiding direction (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than the threshold θ2, the driver holds the steering wheel 1 firmly. Means that Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S210. On the other hand, when the steering angle θs (t2) at the later time is in the reverse direction (right direction), or when the absolute value | θs (t2) | Means you quit or hold lightly. Accordingly, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S207.
 ステップS210では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(左方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
 ここで、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力中止と、誘導方向への付加反力Tpの出力について説明する。
In step S210, the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
Here, the output stop of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction and the output of the additional reaction force Tp in the guidance direction will be described.
 図11は、付加反力Tp及び操舵角θsを示すタイムチャートである。
 ここで、ステアリング操作系に振動する付加反力Tpを入力し始めてから時間t2が経過するまでは、振動する付加反力Tpと、運転者がステアリングホイール1をしっかり把持しているときの操舵角θs(変化量)と、運転者がステアリングホイール1を軽く把持しているときの操舵角θsとは、前述した図10と同様である。
 ここでは、主にステアリング操作系に振動する付加反力Tpを入力し始めてから時間t2が経過した後の、付加反力Tpと、運転者がステアリングホイール1をしっかり把持しているときの操舵角θs(変化量)とを示す。
FIG. 11 is a time chart showing the additional reaction force Tp and the steering angle θs.
Here, from the start of input of the additional reaction force Tp that oscillates to the steering operation system, until the time t2 elapses, the oscillating additional reaction force Tp and the steering angle when the driver holds the steering wheel 1 firmly. θs (amount of change) and the steering angle θs when the driver gently holds the steering wheel 1 are the same as those in FIG. 10 described above.
Here, the additional reaction force Tp after the time t2 has elapsed since the input of the additional reaction force Tp that mainly vibrates into the steering operation system, and the steering angle when the driver firmly holds the steering wheel 1 are shown. θs (change amount) is shown.
 先ず、運転者がステアリングホイール1をしっかり握っている場合、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの入力により、誘導逆方向(右方向)への僅かな動きと、誘導方向(左方向)への動きが交互に繰り返されることで、操舵角θsが誘導方向(左方向)へと増加してゆく。したがって、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点で、後刻操舵角θs(t2)が予め定めた閾値θ2よりも大きくなる。このとき、運転者は運転操作支援による誘導を受け入れている、又は望んでいると判断できるので、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpから、振動することなのない誘導方向(左方向)への付加反力Tpに切り替える。ここでは、誘導方向(左方向)に徐々に増加(単調増加)する付加反力Tpとしている。 First, when the driver holds the steering wheel 1 firmly, an input of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction causes a slight increase in the guidance reverse direction (right direction). By alternately repeating the movement and the movement in the guidance direction (left direction), the steering angle θs increases in the guidance direction (left direction). Therefore, the steering angle θs (t2) at a later time becomes larger than the predetermined threshold θ2 when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system. At this time, since the driver can determine that he / she accepts or desires guidance by driving operation support, the driver vibrates from the additional reaction force Tp which vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction. It switches to the additional reaction force Tp to the guidance direction (left direction) which has nothing. Here, the additional reaction force Tp that gradually increases (monotonically increases) in the guiding direction (left direction) is used.
 次に、運転者がステアリングホイール1を軽く握っている場合、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpが入力されても、誘導逆方向(右方向)と誘導方向(左方向)への同程度の動きが交互に繰り返されることで、付加反力Tpが入力される直前の初期操舵角付近で振動する。したがって、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点で、後刻操舵角θs(t2)が予め定めた閾値θ2以下となる。このとき、運転者は運転操作支援による誘導を受け入れていない、又は望んでいないと判断できるので、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの入力を中止し、それ以降も付加反力Tpを0にリセットする。 Next, when the driver holds the steering wheel 1 lightly, even if the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction is input, the guidance reverse direction (right direction) The same level of movement in the guiding direction (left direction) is alternately repeated, so that vibration occurs in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. Therefore, when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system, the later steering angle θs (t2) becomes equal to or less than the predetermined threshold θ2. At this time, since the driver can determine that he / she does not accept or desire the guidance by the driving operation support, the input of the additional reaction force Tp which vibrates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped. Thereafter, the additional reaction force Tp is reset to zero.
 《作用》
 次に、第1実施形態の作用について説明する。
 ここでは、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する場合を例に説明する(図9参照)。
 先ず路面の駐車枠を認識し(ステップS201)、自車両の現在位置から駐車枠までの目標軌道を設定し、その目標軌道に従ったステアリング操作の誘導方向を設定する(ステップS202)。ここでは、目標軌道が左方向となるため、ステアリング操作の誘導方向は左方向に設定される。そして、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS203)、その付加反力Tpを出力する(ステップS204)。
<Action>
Next, the operation of the first embodiment will be described.
Here, the case where the vehicle is parked backward with respect to the parking frame located diagonally left rear of the host vehicle will be described as an example (see FIG. 9).
First, a parking frame on the road surface is recognized (step S201), a target trajectory from the current position of the host vehicle to the parking frame is set, and a steering operation guidance direction according to the target trajectory is set (step S202). Here, since the target trajectory is in the left direction, the steering operation guidance direction is set to the left direction. Then, the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S203). Output (step S204).
 駐車操作では、一般に極低速走行となり、或る程度の大きな操作量と操作精度が求められる。このようなシーンでは、運転者はステアリング操作が慎重になり、ステアリングホイール1をしっかりと握る傾向があり、これは不慣れな運転者であるほど顕著になる。すなわち、運転者がステアリングホイール1をしっかりと握るときこそ、運転者は積極的なインフォメーションを必要としていると考えられるため、ステアリング操作を誘導する運転操作支援が効果的になる。 駐 車 Parking operation is generally extremely low speed, and requires a certain amount of operation and accuracy. In such a scene, the driver is careful in steering operation and tends to hold the steering wheel 1 firmly, which becomes more noticeable as an unfamiliar driver. That is, it is considered that the driver needs active information only when the driver firmly holds the steering wheel 1, so that the driving operation support for guiding the steering operation is effective.
 そこで、運転者がステアリングホイール1をしっかり握っているときに、ステアリング操作を誘導方向へと誘導できるような付加反力Tpを設定する。具体的には、誘導逆方向(右方向)に変化する振幅の小さい低周波の波形と、誘導方向(左方向)に変化する振幅の大きい高周波の波形と、を交互に繰り返す付加反力Tpを設定する。これは、外乱の周波数とアドミタンスとの特性に従って決定しており(図8)、このような付加反力Tpをステアリング操作系に入力とすることで、運転者がステアリングホイール1をしっかり握っているときに、操舵角θを誘導方向(左方向)へと誘導することができる。また、運転者がステアリングホイール1を軽く握っているときには、付加反力Tpが入力される直前の初期操舵角付近で、操舵角θsが誘導逆方向(右方向)と誘導方向(左方向)とに交互に振れることになる。また、運転者がステアリングホイール1を握っていないときには、操舵角θsが誘導逆方向(右方向)へと大きく振れることになる。 Therefore, an additional reaction force Tp is set so that the steering operation can be guided in the guiding direction when the driver holds the steering wheel 1 firmly. Specifically, an additional reaction force Tp that alternately repeats a low-frequency waveform with a small amplitude changing in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude changing in the induction direction (left direction). Set. This is determined according to the characteristics of disturbance frequency and admittance (FIG. 8), and the driver firmly holds the steering wheel 1 by inputting such an additional reaction force Tp to the steering operation system. Sometimes, the steering angle θ can be guided in the guiding direction (left direction). When the driver is lightly grasping the steering wheel 1, the steering angle θs is in the reverse direction (right direction) and the induction direction (left direction) in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. Will swing alternately. Further, when the driver is not gripping the steering wheel 1, the steering angle θs greatly swings in the reverse direction of guidance (right direction).
 本実施形態では、運転者がステアリングホイール1をしっかり握っているときだけ、ステアリング操作を誘導方向に誘導するものであり、運転者がステアリングホイール1を軽く握っているとき、及び運転者がステアリングホイール1を握っていないときには、ステアリング操作の誘導を中止する。
 そこで、ステアリングホイール1に対する運転者の把持状態を判定する。
In the present embodiment, the steering operation is guided in the guiding direction only when the driver is firmly holding the steering wheel 1, and when the driver is lightly holding the steering wheel 1, and when the driver is steering wheel. When it is not grasping 1, steering guidance is stopped.
Therefore, the gripping state of the driver with respect to the steering wheel 1 is determined.
 先ず、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として検出し(ステップS205)、後刻操舵角θs(t1)が予め定めた閾値θ1よりも大きいか否かを判定する(ステップS206)。このとき、後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きければ、運転者がステアリングホイール1を握っていないと判断し、付加反力Tpの付与を中止する(ステップS207)。このように、運転者がステアリングホイール1を握っておらず、運転者のステアリング操作を誘導できない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、操舵角θsの大振れや不必要な電力消費を避けることができる。 First, the steering angle θs at the time when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the steering operation system is detected as the later steering angle θs (t1) (step S205), and the later steering angle θs (t1). ) Is larger than a predetermined threshold value θ1 (step S206). At this time, if the absolute value | θs (t1) | of the steering angle at a later time is larger than the threshold value θ1, it is determined that the driver is not grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S207). . As described above, in a situation where the driver does not hold the steering wheel 1 and the driver's steering operation cannot be guided, the application of the additional reaction force Tp to the steering wheel 1 is stopped, thereby causing a large fluctuation of the steering angle θs. And unnecessary power consumption can be avoided.
 また、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として検出し(ステップS208)、後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する(ステップS209)。このとき、後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であれば、運転者がステアリングホイール1を軽く握っていると判断し、付加反力Tpの付与を中止する(ステップS207)。このように、運転者がステアリングホイール1を軽く握っており、積極的な運転操作支援を望んでいない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、不必要な電力消費を避けることができる。 Further, the steering angle θs at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle θs (t2) (step S208), and the absolute value of the later steering angle is detected. It is determined whether or not | θs (t2) | is larger than a predetermined threshold value θ2 (step S209). At this time, if the absolute value | θs (t2) | of the steering angle at a later time is equal to or smaller than the threshold value θ2, it is determined that the driver is gently grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S207). ). In this way, in a situation where the driver is lightly holding the steering wheel 1 and does not want to actively support driving operation, unnecessary power can be generated by stopping the application of the additional reaction force Tp to the steering wheel 1. Consumption can be avoided.
 そして、後刻操舵角の絶対値|θs(t1)|が閾値θ1以下で、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときに、運転者がステアリングホイール1をしっかり握っていると判断し、さらに継続して運転者のステアリング操作を誘導方向へと誘導する(ステップS210)。具体的には、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力から、振動することのない誘導方向(左方向)への付加反力Tpへと切り替える。この振動することのない誘導方向(左方向)への付加反力Tpをステアリング操作系に入力することで、運転者のステアリング操作を誘導方向(左方向)へとスムーズに誘導することができる。これにより、運転者が積極的なインフォメーションを必要としているようなシーンで、効果的な運転操作支援を行うことができる。 When the absolute value | θs (t1) | of the later steering angle is equal to or smaller than the threshold value θ1 and the absolute value | θs (t2) | of the later steering angle is larger than the threshold value θ2, the driver firmly holds the steering wheel 1 It is determined that the vehicle is gripped, and the driver's steering operation is further guided in the guidance direction (step S210). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction of the guidance to the additional reaction force Tp in the guidance direction (left direction) that does not vibrate. By inputting the additional reaction force Tp in the guidance direction (left direction) without vibration to the steering operation system, the driver's steering operation can be smoothly guided in the guidance direction (left direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
 なお、後刻操舵角θs(t1)を検出する時間t1は、ステアリングホイール1に対して付加反力Tpを付与し始めてから、最初の極値に達するまでの時間である。このように、少なくとも最初の極値に達するまでは、手放し判定を行わないので、手放ししているか否かを精度よく判定することができる。すなわち、運転者がステアリングホイール1を握っていなければ、後刻操舵角の絶対値|θs(t1)|が閾値θ1を確実に超えるので、運転者の把持状態を正確に判定することができる。 The time t1 for detecting the steering angle θs (t1) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the first extreme value is reached. As described above, since the hand release determination is not performed at least until the first extreme value is reached, it is possible to accurately determine whether or not the hand is released. That is, if the driver does not hold the steering wheel 1, the absolute value | θs (t1) | of the steering angle at a later time surely exceeds the threshold value θ1, so that the driver's gripping state can be accurately determined.
 また、手放し状態の判定に用いる閾値θ1は、運転者がステアリングホイール1を把持しているときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を把持していないときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で設定される。このように、運転者がステアリングホイール1を把持しているときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を把持していないときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で閾値θ1を設定することで、運転者の把持状態を正確に判定することができる。 Further, the threshold value θ1 used for determining the released state is larger than the absolute value | θs (t1) | of the later steering angle when the driver is holding the steering wheel 1, and the driver holds the steering wheel 1. The absolute value | θs (t1) | of the later steering angle when not being set is set in a smaller range. As described above, the absolute value of the later steering angle when the driver is holding the steering wheel 1 | θs (t1) | is greater than the absolute value | θs (t1) | and the later steering angle when the driver is not holding the steering wheel 1. By setting the threshold value θ1 in a range smaller than the absolute value | θs (t1) |, the gripping state of the driver can be accurately determined.
 また、付加反力Tpは、相対的に低い周波数から始まる波形に設定される。外乱の周波数とアドミタンスの特性によれば、運転者がステアリングホイール1を握っていない場合には、外乱の周波数が小さいほどアドミタンスが大きくなり、ステアリングホイール1が動きやすくなる(図8)。すなわち、運転者がステアリングホイール1を握らない限り、相対的に低い周波数から始まる付加反力Tpを設定すると、それだけ後刻操舵角θs(t1)が早く増加する。したがって、相対的に低い周波数から始まる波形にすることで、運転者の手放し状態を早く検知することができる。 Further, the additional reaction force Tp is set to a waveform starting from a relatively low frequency. According to the disturbance frequency and admittance characteristics, when the driver does not hold the steering wheel 1, the smaller the disturbance frequency, the larger the admittance and the easier the steering wheel 1 moves (FIG. 8). That is, as long as the driver does not hold the steering wheel 1, if the additional reaction force Tp starting from a relatively low frequency is set, the steering angle θs (t 1) increases later as much. Therefore, by letting the waveform start from a relatively low frequency, it is possible to quickly detect the driver's hand-off state.
 また、後刻操舵角θs(t2)を検出する時間t2は、ステアリングホイール1に対して付加反力Tpを付与し始めてから、振動における二つ目の変曲点に達するまでの時間である。このように、振動波形の変曲点では、運転者がステアリングホイール1を軽く握っているときの後刻操舵角θs(t2)は、付加反力Tpが入力される直前の初期操舵角付近(図10、図11では略0)にある。したがって、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|と、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|とが大きく離れる時点となる。したがって、振動における二つ目の変曲点に達するまでの時間をt2として設定することで、運転者がステアリングホイール1をしっかり握っているか、それとも軽く握っているかを精度よく判定することができる。すなわち、運転者がステアリングホイール1をしっかり握っていれば、後刻操舵角の絶対値|θs(t2)|が閾値θ2を確実に超えるので、運転者の把持状態を正確に判定することができる。 The time t2 for detecting the steering angle θs (t2) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached. Thus, at the inflection point of the vibration waveform, the later steering angle θs (t2) when the driver gently holds the steering wheel 1 is near the initial steering angle just before the additional reaction force Tp is input (see FIG. 10 and substantially 0) in FIG. Therefore, the absolute value of the later steering angle when the driver is grasping the steering wheel 1 | θs (t2) | and the absolute value of the later steering angle when the driver is holding the steering wheel 1 | θs (T2) This is the time when | Therefore, by setting the time to reach the second inflection point in vibration as t2, it is possible to accurately determine whether the driver is grasping the steering wheel 1 firmly or lightly. That is, if the driver holds the steering wheel 1 firmly, the absolute value | θs (t2) | of the steering angle at a later time surely exceeds the threshold value θ2, so that the driver's gripping state can be accurately determined.
 また、誘導逆方向(右方向)に向くときに相対的に小さい振幅とし、且つ誘導方向(左方向)に向くときに相対的に大きい振幅となるように付加反力Tpを設定する。これは、運転者がステアリングホイール1を軽く把持している場合に、ステアリングホイール1が左方向と右方向に同程度だけ動くようにするためである。すなわち、誘導逆方向(右方向)に変化する波形のアドミタンスと振幅の積と、誘導方向(左方向)に変化する波形のアドミタンスと振幅の積を同一にすれば、付加反力Tpが誘導逆方向に向くときと誘導方向に向くときとで、操舵角θs(変化量)が一致するようになる。すなわち、運転者がステアリングホイール1を軽く把持している場合、付加反力Tpを入力しても、付加反力Tpが入力される直前の初期操舵角付近で振動する。これにより、運転者がステアリングホイール1を軽く把持し、ステアリング操作に対する積極的な誘導を望んでいないようなときに、操舵角θsが初期操舵角からずれてゆく(片流れする)ことを抑制することができる。 Further, the additional reaction force Tp is set so that the amplitude is relatively small when facing the reverse direction of the guidance (right direction) and the amplitude is relatively large when facing the direction of guidance (left direction). This is for the purpose of causing the steering wheel 1 to move to the same extent in the left and right directions when the driver is lightly holding the steering wheel 1. That is, if the product of the admittance and amplitude of the waveform changing in the induction reverse direction (right direction) and the product of the admittance and amplitude of the waveform changing in the induction direction (left direction) are made the same, the additional reaction force Tp is induced reverse. The steering angle θs (amount of change) is the same when facing the direction and when facing the guidance direction. That is, when the driver gently holds the steering wheel 1, even if the additional reaction force Tp is input, the driver vibrates in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. This suppresses the steering angle θs from deviating from the initial steering angle (single-flow) when the driver gently grasps the steering wheel 1 and does not want to actively guide the steering operation. Can do.
 《応用例1》
 本実施形態では、周辺環境認識装置16により、路面に標示された駐車枠を認識することで、自車両の現在位置から駐車位置までの目標軌道を設定し、設定した目標軌道に応じて誘導方向を設定しているが、これに限定されるものではない。例えば、ナビゲーションシステム17でルート案内を設定し、設定したルート案内に応じて誘導方向を設定してもよい。すなわち、交差点や分岐点を通過する際に、設定されたルート案内に従った進行方向を誘導方向として設定してもよい。このように、ルート案内に応じて誘導方向を設定することで、ナビゲーションシステム17と連動した運転操作支援により、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
<< Application Example 1 >>
In the present embodiment, the surrounding environment recognition device 16 recognizes the parking frame marked on the road surface, thereby setting the target trajectory from the current position of the host vehicle to the parking position, and the guidance direction according to the set target trajectory. However, the present invention is not limited to this. For example, route guidance may be set by the navigation system 17 and the guidance direction may be set according to the set route guidance. That is, when passing through an intersection or a branch point, the traveling direction according to the set route guidance may be set as the guidance direction. In this way, by setting the guidance direction according to the route guidance, the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
 《変形例1》
 本実施形態では、車両の操舵角を操るステアリング操作子として、ステアリングホイール1を採用した場合について説明したが、これに限定されるものではなく、ジョイスティックのようなステアリング操作子を採用してもよい。要は、操作方向の一方及び他方に交互に向きを変える付加反力Tpを入力可能な構成であれば、任意のステアリング操作子を採用することができる。
<< Modification 1 >>
In the present embodiment, the case where the steering wheel 1 is adopted as the steering operator for manipulating the steering angle of the vehicle has been described. However, the present invention is not limited to this, and a steering operator such as a joystick may be adopted. . The point is that any steering operator can be adopted as long as it is configured to be able to input an additional reaction force Tp that changes its direction alternately in one and the other of the operation directions.
 《変形例2》
 本実施形態では、ステアリング装置として、ステアリングシャフト2とピニヨンシャフト7とを、クラッチ10を介して断続可能な状態で連結したステアリングバイワイヤ技術を採用した場合について説明したが、これに限定されるものではない。他にも、運転者の操舵トルクに応じて、ステアリング系統にアシストトルクを付与する電動パワーステアリング装置に適用してもよい。この場合、電動パワーステアリング用のモータを利用し、前述した付加反力Tpの代わりに、左操舵方向、及び右操舵方向に交互に向きを変える操作力としてのトルクを、ステアリング系統に入力することで、運転者のステアリング操作を誘導する。要は、左操舵方向、及び右操舵方向に交互に向きを変える操作力としてのトルクを、ステアリング系統に入力可能な構成であれば、如何なるステアリング装置にも適用できる。
<< Modification 2 >>
In the present embodiment, the case where the steering-by-wire technology in which the steering shaft 2 and the pinion shaft 7 are connected via the clutch 10 in an intermittent state is adopted as the steering device has been described. However, the present invention is not limited to this. Absent. In addition, the present invention may be applied to an electric power steering apparatus that applies assist torque to the steering system in accordance with the steering torque of the driver. In this case, using an electric power steering motor, instead of the above-described additional reaction force Tp, torque as an operation force that alternately changes the direction to the left steering direction and the right steering direction is input to the steering system. Then, the steering operation of the driver is guided. In short, the present invention can be applied to any steering device as long as it is configured to be able to input a torque as an operation force that alternately changes the direction in the left steering direction and the right steering direction to the steering system.
 《変形例3》
 本実施形態では、付加反力設定処理において、付加反力Tpを絶えず設定し出力しているが、これに限定されるものではない。例えば、旋回走行のように操舵角θsが予め定めた設定値よりも大きいときや、急なステアリング操作のように操舵角θsの変化速度が予め定めた設定値よりも大きいときには、運転者のステアリング操作を優先するために、付加反力Tpの設定及び出力を禁止してもよい。これによれば、旋回走行中や急なステアリング操作時には、運転者が率先して行っているステアリング操作に対して、不必要に運転操作支援を行うことを抑制できる。
<< Modification 3 >>
In this embodiment, in the additional reaction force setting process, the additional reaction force Tp is constantly set and output. However, the present invention is not limited to this. For example, when the steering angle θs is larger than a predetermined set value as in turning, or when the change speed of the steering angle θs is larger than a predetermined set value as in a sudden steering operation, the steering of the driver In order to give priority to the operation, the setting and output of the additional reaction force Tp may be prohibited. According to this, it is possible to suppress unnecessary driving operation support for the steering operation that the driver is taking the initiative during turning or sudden steering operation.
 以上、ステアリングホイール1が「運転操作子」に対応し、反力モータ8が「操作力付与部」に対応し、ステップS202の処理が「誘導方向設定部」に対応し、ステップS203の処理が「操作力設定部」に対応し、駆動制御部26が「制御部」に対応する。また、ステップS206、S207の処理が「操作支援中止部」に対応し、ステップS209、S210の処理が「操作支援切替部」に対応する。また、付加反力Tpが「操作力」に対応し、操舵角θsが「状態変数」に対応し、時間t1が「第一の時間」に対応し、後刻操舵角θs(t1)が「第一の後刻状態変数」に対応し、閾値θ1が「第一の閾値」に対応する。また、時間t2が「第二の時間」に対応し、後刻操舵角θs(t2)が「第二の後刻状態変数」に対応し、閾値θ2が「第二の閾値」に対応する。 As described above, the steering wheel 1 corresponds to the “driving operator”, the reaction force motor 8 corresponds to the “operation force applying unit”, the processing in step S202 corresponds to the “guidance direction setting unit”, and the processing in step S203 is performed. Corresponding to the “operation force setting unit”, the drive control unit 26 corresponds to the “control unit”. Further, the processes in steps S206 and S207 correspond to the “operation support cancel unit”, and the processes in steps S209 and S210 correspond to the “operation support switching unit”. Further, the additional reaction force Tp corresponds to the “operation force”, the steering angle θs corresponds to the “state variable”, the time t1 corresponds to the “first time”, and the steering angle θs (t1) at a later time is the “first”. The threshold value θ1 corresponds to the “first threshold value”. Further, the time t2 corresponds to the “second time”, the later steering angle θs (t2) corresponds to the “second latter state variable”, and the threshold θ2 corresponds to the “second threshold”.
 《効果》
 次に、第1実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、運転者によって操作されるステアリングホイール1を備え、運転者による操作とは別にステアリングホイール1に対して付加反力Tpを付与するものである。そして、車両を誘導するための誘導方向を設定し、ステアリングホイール1に対する付加反力Tpとして、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定する。そして、この付加反力Tpをステアリングホイール1に付与する。
 このように、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpをステアリング系統に入力することにより、外乱の周波数とアドミタンスとの特性に基づき、より能動的に適切な運転操作を促すことができる。
"effect"
Next, the effect of the main part in 1st Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the steering wheel 1 operated by the driver is provided, and the additional reaction force Tp is applied to the steering wheel 1 separately from the operation by the driver. is there. Then, a guidance direction for guiding the vehicle is set, and the additional reaction force Tp for the steering wheel 1 is changed alternately between the guidance direction and the guidance reverse direction, and with different frequencies in the guidance direction and the guidance reverse direction. The additional reaction force Tp that vibrates is set. Then, this additional reaction force Tp is applied to the steering wheel 1.
In this way, the disturbance frequency and admittance can be obtained by alternately changing the direction in the guidance direction and the guidance reverse direction and inputting the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction to the steering system. Based on the characteristics, it is possible to promptly promote appropriate driving operation.
(2)本実施形態に係る運転操作支援装置によれば、異なる二つの周波数を予め設定し、誘導逆方向に向くときに相対的に低い周波数で振動すると共に、誘導方向に向くときに相対的に高い周波数で振動する付加反力Tpを設定する。
 このように、誘導逆方向に向くときに周波数を低くし、誘導方向に向くときに周波数を高くすることで、外乱の周波数とアドミタンスとの特性に基づき、特に極低速で或る程度の大きな操作量と操作精度が求められるようなシーンにおいて、適切なステアリング操作を促すことができる。
(2) According to the driving operation support apparatus according to the present embodiment, two different frequencies are set in advance, and the vibrations are relatively low when facing in the reverse direction of the guidance, and relative when facing in the guidance direction. An additional reaction force Tp that vibrates at a high frequency is set.
In this way, by lowering the frequency when facing in the reverse direction of the induction and increasing the frequency when moving in the direction of the induction, it is possible to operate a certain large operation particularly at extremely low speeds based on the characteristics of the frequency and admittance Appropriate steering operation can be promoted in a scene where the amount and operation accuracy are required.
(3)本実施形態に係る運転操作支援装置によれば、付加反力Tpをステアリングホイール1に付与し始めてから時間t1が経過したときの後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断する。そして、ステアリングホイール1への振動する付加反力Tpの付与を中止する。
 このように、運転者が手放ししているときのように、運転者のステアリング操作を誘導できない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、不必要な電力消費を避けることができる。
(3) According to the driving operation support apparatus according to the present embodiment, the absolute value | θs (t1) | of the later steering angle when the time t1 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value. When it is larger than θ1, it is determined that the driver does not hold the steering wheel 1. Then, the application of the vibrating additional reaction force Tp to the steering wheel 1 is stopped.
In this way, in a situation where the driver's steering operation cannot be guided, such as when the driver is letting it go, unnecessary power consumption can be reduced by stopping the application of the additional reaction force Tp to the steering wheel 1. Can be avoided.
(4)本実施形態に係る運転操作支援装置によれば、付加反力Tpをステアリングホイール1に付与し始めてから時間t2が経過したときの後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1をしっかり握っていると判断する。そして、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpから、振動することなのない誘導方向への付加反力Tpに切り替える。
 このように、振動する付加反力Tpから、振動することのない誘導方向への付加反力Tpへと切り替わることで、運転者のステアリング操作を誘導方向へとスムーズに誘導することができる。
(4) According to the driving operation support apparatus according to the present embodiment, the absolute value | θs (t2) | of the later steering angle when the time t2 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value. When it is larger than θ2, it is determined that the driver holds the steering wheel 1 firmly. And it switches from the additional reaction force Tp which vibrates by changing a direction alternately to a guidance direction and a guidance reverse direction to the additional reaction force Tp to the guidance direction which does not vibrate.
Thus, by switching from the additional reaction force Tp that vibrates to the additional reaction force Tp in the guidance direction that does not vibrate, the driver's steering operation can be smoothly guided in the guidance direction.
(5)本実施形態に係る運転操作支援装置によれば、付加反力Tpをステアリングホイール1に付与し始めてから時間t2が経過したときの後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも小さいときには、運転者がステアリングホイール1を軽く握っていると判断する。そして、ステアリングホイール1への振動する付加反力Tpの付与を中止する。
 このように、運転者がステアリングホイール1を軽く握っているときのように、積極的な運転操作支援を望んでいない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、不必要な電力消費を避けることができる。
(5) According to the driving operation support apparatus according to the present embodiment, the absolute value | θs (t2) | of the later steering angle when the time t2 has elapsed since the start of applying the additional reaction force Tp to the steering wheel 1 is the threshold value. When it is smaller than θ2, it is determined that the driver is grasping the steering wheel 1 lightly. Then, the application of the vibrating additional reaction force Tp to the steering wheel 1 is stopped.
In this way, in a situation where the driver does not desire active driving operation support, such as when the driver is lightly grasping the steering wheel 1, by stopping the application of the additional reaction force Tp to the steering wheel 1, Unnecessary power consumption can be avoided.
(6)本実施形態に係る運転操作支援装置によれば、時間t1は、ステアリングホイール1に対して付加反力Tpを付与し始めてから、振動における最初の極値に達するまでの時間に設定される。
 このように、振動における最初の極値に達するまでの時間を時間t1として設定することで、運転者がステアリングホイール1を握っていなければ、後刻操舵角の絶対値|θs(t1)|が閾値θ1を確実に超えるので、運転者の把持状態を正確に判定することができる。
(6) According to the driving operation support apparatus according to the present embodiment, the time t1 is set to the time from when the additional reaction force Tp starts to be applied to the steering wheel 1 until the first extreme value in vibration is reached. The
In this way, by setting the time until the first extreme value in the vibration is reached as the time t1, if the driver does not hold the steering wheel 1, the absolute value | θs (t1) | Since θ1 is surely exceeded, the gripping state of the driver can be accurately determined.
(7)本実施形態に係る運転操作支援装置によれば、運転者がステアリングホイール1を把持しているときの後刻操舵角の絶対値|θs(t1)|と、運転者がステアリングホイール1を把持していないときの後刻操舵角の絶対値|θs(t1)|と、を予め求める。そして、運転者がステアリングホイール1を把持しているときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を把持していないときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で閾値θ1を設定する。
 このように、運転者がステアリングホイール1を把持しているときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を把持していないときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で閾値θ1を設定することで、運転者の把持状態を正確に判定することができる。
(7) According to the driving operation support device according to the present embodiment, the absolute value | θs (t1) | of the later steering angle when the driver is holding the steering wheel 1, and the driver The absolute value | θs (t1) | of the later steering angle when not gripping is obtained in advance. The absolute value of the later steering angle when the driver is gripping the steering wheel 1 is larger than the absolute value | θs (t1) | and the absolute steering angle when the driver is not gripping the steering wheel 1. The threshold θ1 is set in a range smaller than the value | θs (t1) |.
As described above, the absolute value of the later steering angle when the driver is holding the steering wheel 1 | θs (t1) | is greater than the absolute value | θs (t1) | and the later steering angle when the driver is not holding the steering wheel 1. By setting the threshold value θ1 in a range smaller than the absolute value | θs (t1) |, the gripping state of the driver can be accurately determined.
(8)本実施形態に係る運転操作支援装置によれば、相対的に低い周波数から始まる付加反力Tpを設定する。
 このように、相対的に低い周波数から始まる付加反力Tpを設定すると、相対的に高い周波数から始めたときよりも、運転者がステアリングホイール1を握っていないときのアドミタンスが大きいので、それだけ後刻操舵角θs(t1)が早く大きくなる。したがって、相対的に高い周波数から始めるときよりも、運転者の手放し状態を早く検知することができる。
(8) According to the driving operation support apparatus according to the present embodiment, the additional reaction force Tp starting from a relatively low frequency is set.
Thus, when the additional reaction force Tp starting from a relatively low frequency is set, the admittance when the driver does not hold the steering wheel 1 is larger than when starting from a relatively high frequency. The steering angle θs (t1) increases quickly. Therefore, it is possible to detect the driver's hand-off state earlier than when starting from a relatively high frequency.
(9)本実施形態に係る運転操作支援装置によれば、時間t2は、ステアリングホイール1に対して付加反力Tpを付与し始めてから、振動における二つ目の変曲点に達するまでの時間に設定される。
 このように、振動における二つ目の変曲点に達するまでの時間をt2として設定することで、運転者がステアリングホイール1をしっかり握っていれば、後刻操舵角の絶対値|θs(t2)|が閾値θ2を確実に超えるので、運転者の把持状態を正確に判定することができる。
(9) According to the driving operation support apparatus according to the present embodiment, the time t2 is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached. Set to
In this way, by setting the time to reach the second inflection point in vibration as t2, if the driver holds the steering wheel 1 firmly, the absolute value of the steering angle later | θs (t2) Since | exceeds the threshold value θ2, it is possible to accurately determine the gripping state of the driver.
(10)本実施形態に係る運転操作支援装置によれば、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|と、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|と、を予め求める。そして、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で閾値θ2を設定する。
 このように、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で閾値θ2を設定することで、運転者の把持状態を正確に判定することができる。
(10) According to the driving operation support apparatus according to the present embodiment, the absolute value | θs (t2) | of the later steering angle when the driver is lightly holding the steering wheel 1 and the driver The absolute value | θs (t2) | of the later steering angle when firmly grasping is obtained in advance. The absolute value of the later steering angle when the driver is lightly grasping the steering wheel 1 is larger than the absolute value | θs (t2) | and the absolute steering angle when the driver is holding the steering wheel 1 firmly. The threshold θ2 is set in a range smaller than the value | θs (t2) |.
As described above, the absolute value of the later steering angle when the driver is grasping the steering wheel 1 | θs (t2) | is greater than the absolute value | θs (t2) | and the later steering angle when the driver is firmly holding the steering wheel 1. By setting the threshold value θ2 in a range smaller than the absolute value | θs (t2) |, the driver's gripping state can be accurately determined.
(11)本実施形態に係る運転操作支援装置によれば、誘導逆方向に向くときに相対的に小さい振幅とし、且つ誘導方向に向くときに相対的に大きい振幅となるように付加反力Tpを設定する。
 このように、誘導逆方向に向くときに相対的に小さい振幅とし、且つ誘導方向に向くときに相対的に大きい振幅とすることで、運転者がステアリングホイール1を軽く把持している場合に、ステアリングホイール1が誘導方向へ動く量と、誘導逆方向へ動く量とを近づけることができる。
(11) According to the driving operation support apparatus according to the present embodiment, the additional reaction force Tp is set so that the amplitude is relatively small when facing in the guidance reverse direction and the amplitude is relatively large when facing in the guidance direction. Set.
In this way, when the driver is gripping the steering wheel 1 lightly by setting a relatively small amplitude when facing the reverse direction of the guidance and a relatively large amplitude when facing the guidance direction, The amount by which the steering wheel 1 moves in the guidance direction can be made closer to the amount by which the steering wheel 1 moves in the direction opposite to the guidance.
(12)本実施形態に係る運転操作支援装置によれば、付加反力Tpが誘導逆方向に向くときと誘導方向に向くときとで、操舵角θs(変化量)が一致するように、付加反力Tpにおける誘導逆方向に向くときと誘導方向に向くときとの振幅比を設定する。
 このように、付加反力Tpにおける誘導逆方向に向くときと誘導方向に向くときとの振幅比を設定することで、運転者がステアリングホイール1を軽く把持している場合に、ステアリングホイール1が誘導方向へ動く量と、誘導逆方向へ動く量とを同等にすることができる。
(12) According to the driving operation support device according to the present embodiment, the addition is performed so that the steering angle θs (change amount) is the same when the additional reaction force Tp is directed in the guidance reverse direction and when it is directed in the guidance direction. An amplitude ratio between the direction opposite to the induction direction and the direction toward the induction direction in the reaction force Tp is set.
In this way, by setting the amplitude ratio between the direction opposite to the guidance reverse direction and the direction toward the guidance direction in the additional reaction force Tp, when the driver gently holds the steering wheel 1, the steering wheel 1 The amount of movement in the guiding direction can be made equal to the amount of movement in the guiding reverse direction.
(13)本実施形態に係る運転操作支援装置によれば、運転操作子として、車両の操舵角を操るステアリングホイール1を用い、このステアリングホイール1に対して付加反力Tpを付与する。
 このように、運転操作子として、車両の操舵角を操るステアリングホイール1を用いることで、運転者のステアリング操作を誘導することができる。
(13) According to the driving support device according to the present embodiment, the steering wheel 1 that controls the steering angle of the vehicle is used as the driving operator, and the additional reaction force Tp is applied to the steering wheel 1.
Thus, the steering operation of the driver can be guided by using the steering wheel 1 that controls the steering angle of the vehicle as the driving operation element.
(14)本実施形態に係る運転操作支援装置によれば、ナビゲーションシステムによるルート案内を設定し、設定したルート案内に応じて、誘導方向を設定することができる。
 このように、ルート案内に応じて誘導方向を設定することで、ナビゲーションシステム17と連動した運転操作支援により、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
(14) According to the driving operation support device according to the present embodiment, route guidance by the navigation system can be set, and the guidance direction can be set according to the set route guidance.
In this way, by setting the guidance direction according to the route guidance, the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
(15)本実施形態に係る運転操作支援装置によれば、ステアリングホイール1の操舵角θsを、状態変数として検出する。
 このように、ステアリングホイール1の操舵角θs(変化量)を、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
(15) According to the driving operation support apparatus according to the present embodiment, the steering angle θs of the steering wheel 1 is detected as a state variable.
Thus, by detecting the steering angle θs (change amount) of the steering wheel 1 as a state variable, it is possible to easily determine the gripping state of the driver.
(16)本実施形態に係る運転操作支援方法によれば、車両を誘導するための誘導方向を設定し、ステアリングホイール1に対して付加反力Tpを付与するために、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し、付加反力Tpをステアリングホイール1に付与する。
 このように、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpをステアリング系統に入力することにより、外乱の周波数とアドミタンスとの特性に基づき、より能動的に適切な運転操作を促すことができる。
(16) According to the driving operation support method according to the present embodiment, in order to set the guidance direction for guiding the vehicle and to apply the additional reaction force Tp to the steering wheel 1, the guidance direction and the guidance reverse An additional reaction force Tp that changes its direction alternately and vibrates at different frequencies in the guiding direction and the guiding reverse direction is set, and the additional reaction force Tp is applied to the steering wheel 1.
In this way, the disturbance frequency and admittance can be obtained by alternately changing the direction in the guidance direction and the guidance reverse direction and inputting the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction to the steering system. Based on the characteristics, it is possible to promptly promote appropriate driving operation.
(17)本実施形態に係る把持状態判定方法によれば、車両を誘導するための誘導方向を設定し、ステアリングホイール1に対して付加反力Tpを付与するために、誘導方向、及び誘導逆方向に交互に向きを変え、且つ誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し、付加反力Tpをステアリングホイール1に付与する。付加反力Tpをステアリングホイール1に付与し始めてからの、ステアリングホイール1の操舵角θsに応じて、ステアリングホイール1に対する運転者の把持状態を判定する。
 このように、付加反力Tpをステアリングホイール1に付与し始めてからの、ステアリングホイール1の操舵角θsに応じて、ステアリングホイール1に対する運転者の把持状態を判定することで、運転者の把持状態を正確に判定することができる。
(17) According to the gripping state determination method according to the present embodiment, in order to set the guidance direction for guiding the vehicle and to apply the additional reaction force Tp to the steering wheel 1, the guidance direction and the guidance reverse An additional reaction force Tp that changes its direction alternately and vibrates at different frequencies in the guiding direction and the guiding reverse direction is set, and the additional reaction force Tp is applied to the steering wheel 1. The gripping state of the driver with respect to the steering wheel 1 is determined according to the steering angle θs of the steering wheel 1 after the application of the additional reaction force Tp to the steering wheel 1.
As described above, the gripping state of the driver by determining the gripping state of the driver with respect to the steering wheel 1 in accordance with the steering angle θs of the steering wheel 1 after starting to apply the additional reaction force Tp to the steering wheel 1. Can be accurately determined.
《第2実施形態》
 《構成》
 本実施形態は、運転者のステアリング操作を誘導することで、運転操作支援を行うものであり、特に或る程度の車速で走行し、微調整程度の僅かな操作量で済むようなシーンにおいて、適切なステアリング操作を促すものである。
 本実施形態は、例えば走行車線からの逸脱を抑制するためにステアリング操作を誘導することで運転操作支援を行うものである。したがって、周辺環境認識装置16は、少なくとも路面に標示された通行区分線を認識し、通行区分線までの距離や、通行区分線に対する姿勢(角度)をコントローラ20に入力する。
 他の装置構成は、前述した第1実施形態と同様である。
<< Second Embodiment >>
"Constitution"
In the present embodiment, driving operation support is provided by guiding the driver's steering operation. Especially in a scene where the vehicle travels at a certain vehicle speed and requires only a small amount of operation such as fine adjustment. It encourages proper steering operation.
In the present embodiment, driving operation support is performed by, for example, guiding a steering operation in order to suppress deviation from a traveling lane. Therefore, the surrounding environment recognition device 16 recognizes at least the traffic marking line marked on the road surface, and inputs the distance to the traffic marking line and the posture (angle) with respect to the traffic marking line to the controller 20.
Other device configurations are the same as those of the first embodiment described above.
 次に、付加反力設定部24で実行する付加反力設定処理について説明する。
 図12は、第2実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS301では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した路面の通行区分線を読込む。
 続くステップS302では、通行区分線までの距離や、通行区分線に対する姿勢(角度)に応じて、ステアリング操作の誘導方向を設定する。すなわち、走行車線における右側の通行区分線から離れるときには、ステアリング操作の誘導方向を左方向に設定し、走行車線における左側の通行区分線から離れるときには、ステアリング操作の誘導方向を右方向に設定する。
Next, an additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
FIG. 12 is a flowchart illustrating an additional reaction force setting process according to the second embodiment.
First, in step S301, the surrounding environment of the host vehicle is recognized. In other words, the road marking line recognized by the surrounding environment recognition device 16 is read.
In subsequent step S302, the steering operation guidance direction is set according to the distance to the traffic lane marking and the attitude (angle) with respect to the traffic lane marking. That is, when leaving the right traffic division line in the travel lane, the steering operation guidance direction is set to the left direction, and when leaving the left traffic division line in the travel lane, the steering operation guidance direction is set to the right direction.
 続くステップS303では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。すなわち、前述のような周波数とアドミタンスの特性に基づいて、ステアリング操作の誘導方向と誘導逆方向とに交互に向きを変える付加反力Tpの波形を設定する。
In the subsequent step S303, the additional reaction force Tp is set based on the steering operation guidance direction.
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. That is, based on the frequency and admittance characteristics as described above, the waveform of the additional reaction force Tp that alternately changes the direction of steering operation to the guidance reverse direction is set.
 以下、具体的なシーンを例にして説明する。
 図13は、レーンキープの一例を示す図である。
 例えば、走行車線における左側の通行区分線に対して、自車両の逸脱傾向を検出した場合、左側の通行区分線から離れる方向のステアリング操作が必要となるので、ステアリング操作の誘導方向が右方向に設定される。
 次に、上記のようにステアリング操作の誘導方向が右方向に設定されたときの付加反力Tpと、その付加反力Tpを入力したときに変化する操舵角θsについて説明する。
Hereinafter, a specific scene will be described as an example.
FIG. 13 is a diagram illustrating an example of a lane keep.
For example, if a departure tendency of the host vehicle is detected with respect to the left traffic division line in the traveling lane, steering operation in a direction away from the left traffic division line is required, so the steering operation guidance direction is rightward. Is set.
Next, the additional reaction force Tp when the steering operation guidance direction is set to the right as described above and the steering angle θs that changes when the additional reaction force Tp is input will be described.
 図14は、付加反力Tp及び操舵角θsを示すタイムチャートである。
 先ず、ステアリング操作の誘導方向が右方向に設定されたときの付加反力Tpについて説明する。
 付加反力Tpは、前述したように、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導方向(右方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(左方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返している。
FIG. 14 is a time chart showing the additional reaction force Tp and the steering angle θs.
First, the additional reaction force Tp when the steering operation guidance direction is set to the right direction will be described.
As described above, the additional reaction force Tp is a waveform that changes its direction alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
 前述の周波数に応じたアドミタンス特性に基づいて、誘導方向(右方向)に変化する波形の周波数は例えば1[Hz]程度とし、誘導逆方向(左方向)に変化する波形の周波数は例えば3[Hz]程度とする。すなわち、誘導方向(右方向)に変化させるときの低い周波数は、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合とで、アドミタンスに明確な差を出せる範囲で設定する。さらに、周波数を低くするほど、周期が延び時間が長くなるので、予め定めた時間以内に出力できる範囲で設定する。一方、誘導逆方向(左方向)に変化する高周波の波形は、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合とで、アドミタンスに明確な差が出ない範囲で設定する。つまり、しっかり把持しているときと軽く把持しているときとのアドミタンス差が、低周波のときよりも小さくなる範囲で設定する。 Based on the admittance characteristics according to the above-described frequency, the frequency of the waveform changing in the induction direction (right direction) is set to, for example, about 1 [Hz], and the frequency of the waveform changing in the induction reverse direction (left direction) is set to, for example, 3 [ Hz]. That is, the low frequency when changing in the guiding direction (right direction) is within a range in which a clear difference can be made in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly. Set. Furthermore, as the frequency is lowered, the period is extended and the time is lengthened. Therefore, the frequency is set within a predetermined output range. On the other hand, the high-frequency waveform that changes in the reverse direction of the guidance (left direction) is a range in which there is no clear difference in admittance between when the driver is firmly holding the steering wheel 1 and when the driver is holding it lightly. Set with. That is, the admittance difference between the case where the object is firmly grasped and the case where the object is lightly grasped is set in a range where the difference is smaller than that at the low frequency.
 また、誘導方向(右方向)に変化する波形の振幅と、誘導逆方向(左方向)に変化する波形の振幅との比は例えば3:2とする。これは、運転者がステアリングホイール1をしっかり把持している場合に、ステアリングホイール1が右方向と左方向に同程度だけ動くようにするためである。すなわち、運転者がステアリングホイール1をしっかり把持している場合に、誘導方向(右方向)に変化する1[Hz]程度の低周波では、アドミタンスが約0.02[rad/Nm]となり、このときの振幅を3αとする(αは定数)。また、運転者がステアリングホイール1をしっかり把持している場合に、誘導逆方向(左方向)に変化する3[Hz]程度の高周波では、アドミタンスが約0.03[rad/Nm]となり、このときの振幅を2αとする(αは定数)。したがって、誘導方向(右方向)に変化する波形において、アドミタンスと振幅の積が0.02×3α=0.06αとなり、誘導逆方向(左方向)に変化する波形において、アドミタンスと振幅の積が0.03×2α=0.06αとなり、これらが一致することで、周期的に変化する付加反力Tpが入力されたときの操舵角(変化量)が一致する。すなわち、運転者がステアリングホイール1をしっかり把持している場合、付加反力Tpを入力しても、付加反力Tpが入力される直前の初期操舵角付近で、振動することになる。 Also, the ratio between the amplitude of the waveform changing in the guiding direction (right direction) and the amplitude of the waveform changing in the reverse direction of guidance (left direction) is, for example, 3: 2. This is because when the driver holds the steering wheel 1 firmly, the steering wheel 1 moves to the same extent in the right and left directions. That is, when the driver holds the steering wheel 1 firmly, the admittance is about 0.02 [rad / Nm] at a low frequency of about 1 [Hz] that changes in the guiding direction (right direction). The amplitude is 3α (α is a constant). In addition, when the driver holds the steering wheel 1 firmly, the admittance is about 0.03 [rad / Nm] at a high frequency of about 3 [Hz] that changes in the reverse direction of guidance (leftward). The amplitude is 2α (α is a constant). Therefore, the product of admittance and amplitude is 0.02 × 3α = 0.06α in the waveform changing in the induction direction (right direction), and the product of admittance and amplitude is in the waveform changing in the induction reverse direction (left direction). 0.03 × 2α = 0.06α, and these coincide with each other, so that the steering angle (change amount) when the periodically changing additional reaction force Tp is input coincides. That is, when the driver holds the steering wheel 1 firmly, even if the additional reaction force Tp is input, the driver vibrates in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input.
 なお、図14においては、最初に誘導方向(右方向)に変化する低周波を1/4周期とし、次いで誘導逆方向(左方向)に変化する高周波を2/4周期とし、以降は誘導方向(右方向)と誘導逆方向(左方向)に夫々2/4周期とする波形を交互に設定している。なお、ここでは、最初に誘導方向(右方向)に変化する低周波を出力してから誘導逆方向(左方向)に変化する高周波を出力しているが、これに限定されるものではない。最初に誘導逆方向(左方向)に変化する高周波を出力してから誘導方向(右方向)に変化する低周波を出力してもよい。要は、誘導方向(右方向)に変化する波形を低周波に設定し、誘導逆方向(左方向)に変化する波形を高周波に設定すればよい。
 こうして設定された付加反力Tpをステアリング操作系に入力する。
In FIG. 14, the low frequency that first changes in the guiding direction (right direction) is set to ¼ cycle, the high frequency that changes in the reverse direction of guidance (left direction) is set to ¼ cycle, and thereafter the guiding direction. Waveforms having a 2/4 period are alternately set in the (right direction) and the reverse guide direction (left direction). In addition, although the low frequency which changes to a guidance direction (right direction) is output here first, the high frequency which changes to a guidance reverse direction (left direction) is output, but it is not limited to this. You may output the high frequency which changes to a guidance reverse direction (left direction) first, and then outputs the low frequency which changes to a guidance direction (right direction). In short, a waveform changing in the guiding direction (right direction) may be set to a low frequency, and a waveform changing in the reverse direction (left direction) may be set to a high frequency.
The additional reaction force Tp set in this way is input to the steering operation system.
 次に、上記のような付加反力Tpをステアリング操作系に入力したときに変化する操舵角θsについて説明する。
 図14では、運転者がステアリングホイール1をしっかり把持している場合と、軽く把持している場合と、手放ししている場合とを区別して、付加反力Tpをステアリング操作系に入力したときの操舵角θs(変化量)を示す。
Next, the steering angle θs that changes when the additional reaction force Tp as described above is input to the steering operation system will be described.
In FIG. 14, when the driver is firmly holding the steering wheel 1, when it is lightly gripped, and when it is let go, the additional reaction force Tp is input to the steering operation system. The steering angle θs (change amount) is shown.
 先ず、運転者がステアリングホイール1をしっかり握っている場合、最初に誘導方向(右方向)に変化する振幅の大きい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、アドミタンスが小さいため、ステアリングホイール1は誘導方向(右方向)に僅かに動くだけである。続いて誘導逆方向(左方向)に変化する振幅の小さい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりもアドミタンスが大きいものの、振幅が小さいため、ステアリングホイール1は低周波のときと同程度だけ誘導逆方向(左方向)に動く。以降は、誘導方向(右方向)と誘導逆方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1をしっかり握っている限り、誘導方向(右方向)に変化する低周波の付加反力Tpを入力しても、誘導逆方向(左方向)に変化する高周波の付加反力Tpを入力しても、誘導方向(右方向)と誘導逆方向(左方向)とに同程度だけ動く。この誘導方向(右方向)と誘導逆方向(左方向)への同程度の動きが交互に繰り返されることで、付加反力Tpが入力される直前の初期操舵角付近で振動する。 First, when the driver holds the steering wheel 1 firmly, first, a low-frequency additional reaction force Tp having a large amplitude that changes in the guiding direction (rightward direction) is input for ¼ period. At this low frequency additional reaction force Tp, since the admittance is small, the steering wheel 1 moves only slightly in the guiding direction (right direction). Subsequently, a high-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period. In this high frequency additional reaction force Tp, although the admittance is larger than that at the low frequency, the amplitude is small, so that the steering wheel 1 moves in the reverse direction (left direction) by the same degree as at the low frequency. Thereafter, the additional reaction force Tp that alternately changes in the guiding direction (right direction) and the guiding reverse direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 firmly, even if a low-frequency additional reaction force Tp that changes in the guidance direction (right direction) is input, a high frequency that changes in the reverse direction (left direction) is applied. Even if the reaction force Tp is input, it moves in the same direction in the guiding direction (right direction) and the reverse direction (left direction). The same degree of movement in the guiding direction (right direction) and the reverse guiding direction (left direction) is alternately repeated to vibrate near the initial steering angle immediately before the additional reaction force Tp is input.
 次に、運転者がステアリングホイール1を軽く握っている場合、最初に誘導方向(右方向)に変化する振幅の大きい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、しっかり握っているときと比べて、アドミタンスが大きいため、しっかり握っているときよりもステアリングホイール1は誘導方向(右方向)に大きく動く。続いて誘導逆方向(左方向)に変化する振幅の小さい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりもアドミタンスが小さく、且つ振幅が小さいため、ステアリングホイール1は誘導逆方向(左方向)に僅かに動くだけである。以降は、誘導方向(右方向)と誘導逆方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1を軽く握っている限り、誘導方向(右方向)に変化する低周波の付加反力Tpを入力すると、ステアリングホイール1は誘導方向(右方向)に大きく動き、誘導逆方向(左方向)に変化する高周波の付加反力Tpを入力すると、ステアリングホイール1が誘導逆方向(左方向)に僅かに動く。この誘導方向(右方向)への大きな動きと、誘導逆方向(左方向)への僅かな動きが交互に繰り返されることで、操舵角θsが誘導方向(右方向)へと増加してゆく。 Next, when the driver is lightly holding the steering wheel 1, first, a low-frequency additional reaction force Tp having a large amplitude that changes in the guiding direction (right direction) is input for a quarter period. At this low frequency additional reaction force Tp, since the admittance is larger than when grasping firmly, the steering wheel 1 moves more in the guiding direction (rightward) than when grasping firmly. Subsequently, a high-frequency additional reaction force Tp with a small amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period. At this high frequency additional reaction force Tp, the admittance is smaller and the amplitude is smaller than at the low frequency, and therefore the steering wheel 1 moves only slightly in the reverse direction of guidance (left direction). Thereafter, the additional reaction force Tp that alternately changes in the guiding direction (right direction) and the guiding reverse direction (left direction) is input every 2/4 period. Therefore, as long as the driver holds the steering wheel 1 lightly, if the low-frequency additional reaction force Tp that changes in the guidance direction (right direction) is input, the steering wheel 1 moves greatly in the guidance direction (right direction) and guidance is performed. When a high-frequency additional reaction force Tp that changes in the reverse direction (left direction) is input, the steering wheel 1 slightly moves in the reverse direction of guidance (left direction). The steering angle θs increases in the guiding direction (right direction) by alternately repeating the large movement in the guiding direction (right direction) and the slight movement in the reverse guiding direction (left direction).
 次に、運転者がステアリングホイール1を握っていない、つまり手放しの場合、最初に誘導方向(右方向)に変化する振幅の小さい低周波の付加反力Tpを1/4周期分だけ入力する。この低周波の付加反力Tpでは、軽く握っているときと比べて、アドミタンスが大きいため、軽く握っているときよりもステアリングホイール1は誘導方向(右方向)に大きく動く。続いて誘導逆方向(左方向)に変化する振幅の大きい高周波の付加反力Tpを2/4周期分だけ入力する。この高周波の付加反力Tpでは、低周波のときよりはアドミタンスが小さいものの、それでも比較的大きなアドミタンスがあるため、ステアリングホイール1は誘導逆方向(左方向)に動く。以降は、誘導方向(右方向)と誘導逆方向(左方向)に交互に変化する付加反力Tpを2/4周期ずつ入力する。したがって、運転者がステアリングホイール1を握らない限り、誘導方向(右方向)に変化する低周波の付加反力Tpを入力すると、ステアリングホイール1は誘導方向(右方向)に大きく動き、誘導逆方向(左方向)に変化する高周波の付加反力Tpを入力すると、低周波のとき程ではないとしてもステアリングホイール1が誘導逆方向(左方向)に動く。この誘導方向(右方向)への大きな動きと、誘導逆方向(左方向)への動きが交互に繰り返されることで、操舵角θsが誘導方向(右方向)へと増加してゆく。 Next, when the driver does not hold the steering wheel 1, that is, when the driver does not let go of the steering wheel 1, a low-frequency additional reaction force Tp having a small amplitude that changes in the guidance direction (right direction) is first input for ¼ period. At this low frequency additional reaction force Tp, since the admittance is larger than when grasping lightly, the steering wheel 1 moves more in the guiding direction (rightward) than when grasping lightly. Subsequently, a high-frequency additional reaction force Tp with a large amplitude that changes in the reverse direction of the induction (left direction) is input for 2/4 period. At this high frequency additional reaction force Tp, although the admittance is smaller than that at the low frequency, there is still a relatively large admittance, so the steering wheel 1 moves in the reverse direction of guidance (left direction). Thereafter, the additional reaction force Tp that alternately changes in the guiding direction (right direction) and the guiding reverse direction (left direction) is input every 2/4 period. Therefore, unless the driver holds the steering wheel 1, when the low-frequency additional reaction force Tp that changes in the guidance direction (right direction) is input, the steering wheel 1 moves greatly in the guidance direction (right direction), and the reverse direction of guidance. When a high-frequency additional reaction force Tp that changes in the (left direction) is input, the steering wheel 1 moves in the reverse direction (left direction) even if it is not as low as the low frequency. The steering angle θs increases in the guiding direction (right direction) by alternately repeating the large movement in the guiding direction (right direction) and the movement in the guiding reverse direction (left direction).
 上記が、ステアリング操作の誘導方向が右方向に設定されたときの付加反力Tpと、その付加反力Tpを入力したときに変化する操舵角θsについての説明である。
 このように、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定する。
 続くステップS304では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
The above is an explanation of the additional reaction force Tp when the steering operation guidance direction is set to the right direction and the steering angle θs that changes when the additional reaction force Tp is input.
In this manner, the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is set.
In the subsequent step S304, the directions are alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
 続くステップS305では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として読込む。時間t1は、図14に示すように、ステアリング操作系に付加反力Tpを入力し始めてから最初の極値までの時間に相当する。ここでは、最初に誘導方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期分だけ入力しているので、約0.25[sec]である。
 続くステップS306では、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が予め定めた閾値θ1よりも大きいか否かを判定する。
In the subsequent step S305, the steering angle θs at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle θs (t1) . As shown in FIG. 14, the time t1 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the first extreme value. Here, since an additional reaction force Tp having a low frequency of about 1 [Hz], which first changes in the guiding direction (rightward), is input for ¼ period, it is about 0.25 [sec].
In subsequent step S306, it is determined whether or not the later steering angle θs (t1) is the guiding direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than a predetermined threshold θ1. .
 閾値θ1は、誘導方向(右方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t1)|よりも大きく、且つ運転者がステアリングホイール1を握っていなかったときの後刻操舵角の絶対値|θs(t1)|よりも小さな範囲で設定する。ここで、ステアリングホイール1を軽く把持していたときの後刻操舵角の絶対値|θs(t1)|とは、図14に示すように、0.03程度であり、ステアリングホイール1を握っていなかったときの後刻操舵角の絶対値|θs(t1)|とは、0.16程度である。したがって、0.03<θ1<0.16の関係となるように、閾値θ1は、例えば夫々の中間値として0.09程度に設定する。 The threshold value θ1 is the absolute value of the steering angle at a later time when the driver gently holds the steering wheel 1 when a low-frequency additional reaction force Tp that changes in the guiding direction (rightward direction) is input | θs (t1 ) Greater than | and set in a range smaller than the absolute value | θs (t1) | of the later steering angle when the driver does not hold the steering wheel 1. Here, the absolute value | θs (t1) | of the later steering angle when the steering wheel 1 is lightly gripped is about 0.03 as shown in FIG. 14, and the steering wheel 1 is not gripped. The absolute value of the steering angle at the later time | θs (t1) | is about 0.16. Therefore, the threshold value θ1 is set to about 0.09 as an intermediate value so that 0.03 <θ1 <0.16, for example.
 ここで、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断してステップS307に移行する。一方、後刻操舵角θs(t1)が誘導逆方向(左方向)である、又は後刻操舵角の絶対値|θs(t1)|が閾値θ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS308に移行する。 Here, when the later steering angle θs (t1) is in the guiding direction (rightward) and the absolute value | θs (t1) | of the later steering angle is larger than the threshold value θ1, the driver holds the steering wheel 1. If it is determined that there is not, the process proceeds to step S307. On the other hand, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward), or the absolute value | θs (t1) | The process proceeds to step S308.
 ステップS307では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS308では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として読込む。時間t2は、図14に示すように、ステアリング操作系に付加反力Tpを入力し始めてから二つ目の変曲点までの時間に相当する。変曲点とは、曲線において曲がる方向が変化する点のことであり、つまり波形における誘導方向(右方向)に凸の状態と、誘導逆方向(左方向)に凸の状態とが変化する点である。ここでは、最初に誘導方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期だけ入力し、続いて誘導逆方向(左方向)に変化する3[Hz]程度の低周波の付加反力Tpを2/4周期分だけ入力し、続いて誘導方向(右方向)に変化する1[Hz]程度の低周波の付加反力Tpを1/4周期分だけ入力している。したがって、約0.25[sec]+約0.165[sec]+約0.25[sec]=約0.665[sec]である。
In step S307, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
In step S308, the steering angle θs at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as a later steering angle θs (t2) . As shown in FIG. 14, the time t2 corresponds to the time from the start of input of the additional reaction force Tp to the steering operation system to the second inflection point. An inflection point is a point where the direction of the curve changes in the curve, that is, a point where the convex shape in the guiding direction (right direction) and the convex state in the reverse direction (left direction) change in the waveform. It is. Here, an additional reaction force Tp having a low frequency of about 1 [Hz] that changes in the induction direction (right direction) is first input for ¼ period, and subsequently changes in the reverse direction (left direction) of 3 [ [Additional reaction force Tp with a low frequency of about Hz] is input for 2/4 cycles, and then the additional reaction force Tp with a low frequency of about 1 [Hz] that changes in the guiding direction (rightward) is applied to the 1/4 cycle. Enter only minutes. Therefore, about 0.25 [sec] + about 0.165 [sec] + about 0.25 [sec] = about 0.665 [sec].
 続くステップS309では、後刻操舵角θs(t2)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する。
 閾値θ2は、ステアリング操作系に付加反力Tpを入力した場合に、運転者がステアリングホイール1をしっかり把持していたときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1を軽く握っていたときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で設定する。ここで、ステアリングホイール1をしっかり把持していたときの後刻操舵角の絶対値|θs(t2)|とは、図14に示すように、例えば0程度であり、ステアリングホイール1を軽く握っていたときの後刻操舵角の絶対値|θs(t2)|とは、図14に示すように、例えば0.04程度である。したがって、0<θ2<0.04の関係となるように、閾値θ2は、例えば夫々の中間値として0.02程度に設定する。
In subsequent step S309, it is determined whether or not the later steering angle θs (t2) is in the reverse direction (left direction) and the absolute value | θs (t2) | of the later steering angle is greater than a predetermined threshold θ2. To do.
The threshold θ2 is larger than the absolute value | θs (t2) | of the later steering angle when the driver firmly holds the steering wheel 1 when the additional reaction force Tp is input to the steering operation system, and the driving It is set in a range smaller than the absolute value | θs (t2) | of the steering angle at a later time when the person gently holds the steering wheel 1. Here, the absolute value | θs (t2) | of the later steering angle when the steering wheel 1 was firmly held was, for example, about 0 as shown in FIG. 14, and the steering wheel 1 was lightly gripped. The absolute value | θs (t2) | of the later steering angle is, for example, about 0.04 as shown in FIG. Therefore, the threshold θ2 is set to about 0.02 as an intermediate value so that the relationship 0 <θ2 <0.04 is satisfied.
 ここで、後刻操舵角θs(t1)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS310に移行する。一方、後刻操舵角θs(t2)が誘導方向(右方向)である、又は後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であるときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS307に移行する。
 ステップS310では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(右方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
Here, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than the threshold θ2, the driver gently turns the steering wheel 1 It means holding. Accordingly, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S310. On the other hand, when the later steering angle θs (t2) is in the guiding direction (rightward), or when the absolute value | θs (t2) | Means that Therefore, it is determined that the guidance by the driving operation support is not accepted or not desired, and the process proceeds to step S307.
In step S310, the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. To the predetermined main program.
 《作用》
 次に、第2実施形態の作用について説明する。
 ここでは、走行車線における左側の通行区分線に対して、自車両の逸脱傾向を検出した場合を例に説明する(図13参照)。
 先ず路面の通行区分線を認識し(ステップS301)、通行区分線までの距離や、通行区分線に対する姿勢(角度)に応じたステアリング操作の誘導方向を設定する(ステップS302)。ここでは、左側の通行区分線に対する逸脱傾向であるため、ステアリング操作の誘導方向は右方向に設定される。そして、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS303)、その付加反力Tpを出力する(ステップS304)。
<Action>
Next, the operation of the second embodiment will be described.
Here, the case where the deviation tendency of the own vehicle is detected with respect to the left traffic division line in the traveling lane will be described as an example (see FIG. 13).
First, a traffic lane marking on the road surface is recognized (step S301), and a steering operation guidance direction is set according to the distance to the traffic lane marking and the posture (angle) with respect to the traffic lane marking (step S302). Here, the steering direction is set to the right direction because of the tendency to deviate from the left traffic line. Then, the directions are alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S303). Output (step S304).
 レーンキープ操作では、一般に或る程度の車速で走行し、微調整程度の僅かな操作量で済む。このようなシーンでは、運転者はステアリングホイール1を軽く握る傾向がある。すなわち、運転者がステアリングホイール1を軽く握るときこそ、運転者が積極的なインフォメーションを必要としているときであり、ステアリング操作を誘導する運転操作支援が効果的になる。 In lane keeping operation, the vehicle generally travels at a certain vehicle speed, and a slight operation amount of fine adjustment is sufficient. In such a scene, the driver tends to grasp the steering wheel 1 lightly. That is, the time when the driver gently holds the steering wheel 1 is when the driver needs active information, and the driving operation support for guiding the steering operation becomes effective.
 そこで、運転者がステアリングホイール1を軽く握っているときに、ステアリング操作を誘導方向へと誘導できるような付加反力Tpを設定する。具体的には、誘導方向(右方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(左方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返す付加反力Tpを設定する。これは、外乱の周波数とアドミタンスとの特性に従って決定しており(図8)、このような付加反力Tpをステアリング操作系に入力とすることで、運転者がステアリングホイール1を軽く握っているときに、操舵角θを誘導方向(右方向)へと誘導することができる。また、運転者がステアリングホイール1をしっかり握っているときには、付加反力Tpが入力される直前の初期操舵角付近で、操舵角θsが誘導方向(右方向)と誘導逆方向(左方向)とに交互に振れることになる。また、運転者がステアリングホイール1を握っていないときには、操舵角θsが誘導方向(右方向)へと大きく振れることになる。 Therefore, an additional reaction force Tp is set so that the steering operation can be guided in the guiding direction when the driver is grasping the steering wheel 1 lightly. Specifically, an additional reaction force Tp that alternately repeats a low-frequency waveform with a large amplitude that changes in the guiding direction (right direction) and a high-frequency waveform with a small amplitude that changes in the guiding reverse direction (left direction). Set. This is determined in accordance with the characteristics of disturbance frequency and admittance (FIG. 8), and the driver gently holds the steering wheel 1 by inputting such an additional reaction force Tp to the steering operation system. Sometimes, the steering angle θ can be guided in the guiding direction (right direction). Further, when the driver holds the steering wheel 1 firmly, the steering angle θs is in the guidance direction (right direction) and the guidance reverse direction (left direction) in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. Will swing alternately. Further, when the driver is not gripping the steering wheel 1, the steering angle θs greatly swings in the guidance direction (right direction).
 本実施形態では、運転者がステアリングホイール1を軽く握っているときだけ、ステアリング操作を誘導方向に誘導するものであり、運転者がステアリングホイール1をしっかり握っているとき、及び運転者がステアリングホイール1を握っていないときには、ステアリング操作の誘導を中止する。
 そこで、ステアリングホイール1に対する運転者の把持状態を判定する。
In the present embodiment, the steering operation is guided in the guiding direction only when the driver is lightly grasping the steering wheel 1, and when the driver is firmly grasping the steering wheel 1, and when the driver is steering wheel. When it is not grasping 1, steering guidance is stopped.
Therefore, the gripping state of the driver with respect to the steering wheel 1 is determined.
 先ず、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として検出し(ステップS305)、後刻操舵角θs(t1)が予め定めた閾値θ1よりも大きいか否かを判定する(ステップS306)。このとき、後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きければ、運転者がステアリングホイール1を握っていないと判断し、付加反力Tpの付与を中止する(ステップS307)。このように、運転者がステアリングホイール1を握っておらず、運転者のステアリング操作を誘導できない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、操舵角θsの大振れや不必要な電力消費を避けることができる。 First, the steering angle θs at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle θs (t1) (step S305), and the later steering angle θs (t1). ) Is larger than a predetermined threshold value θ1 (step S306). At this time, if the absolute value | θs (t1) | of the steering angle at a later time is larger than the threshold value θ1, it is determined that the driver is not grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S307). . As described above, in a situation where the driver does not hold the steering wheel 1 and the driver's steering operation cannot be guided, the application of the additional reaction force Tp to the steering wheel 1 is stopped, thereby causing a large fluctuation of the steering angle θs. And unnecessary power consumption can be avoided.
 また、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として検出し(ステップS308)、後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する(ステップS309)。このとき、後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であれば、運転者がステアリングホイール1をしっかり握っていると判断し、付加反力Tpの付与を中止する(ステップS307)。このように、運転者がステアリングホイール1をしっかり握っているときには、意図的な車線変更を望んでいる可能性が高いと考えられる。すなわち、積極的な運転操作支援を望んでいない状況なので、ステアリングホイール1への付加反力Tpの付与を中止することで、運転者の意思を優先すると共に、不必要な電力消費を避けることができる。 Further, the steering angle θs at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later steering angle θs (t2) (step S308), and the absolute value of the later steering angle is detected. It is determined whether or not | θs (t2) | is larger than a predetermined threshold θ2 (step S309). At this time, if the absolute value | θs (t2) | of the steering angle at a later time is equal to or smaller than the threshold value θ2, it is determined that the driver is firmly holding the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S307). ). Thus, when the driver holds the steering wheel 1 firmly, it is considered that there is a high possibility of intentional lane change. That is, since the driver does not want to actively support driving operation, the intention of the driver is given priority and unnecessary power consumption is avoided by stopping the application of the additional reaction force Tp to the steering wheel 1. it can.
 そして、後刻操舵角の絶対値|θs(t1)|が閾値θ1以下で、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときに、運転者がステアリングホイール1を軽く握っていると判断し、さらに継続して運転者のステアリング操作を誘導方向へと誘導する(ステップS310)。具体的には、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力から、振動することのない誘導方向(右方向)への付加反力Tpへと切り替える。この振動することのない誘導方向(右方向)への付加反力Tpをステアリング操作系に入力することで、運転者のステアリング操作を誘導方向(右方向)へとスムーズに誘導することができる。これにより、運転者が積極的なインフォメーションを必要としているようなシーンで、効果的な運転操作支援を行うことができる。 Then, when the absolute value | θs (t1) | of the later steering angle is equal to or smaller than the threshold value θ1, and the absolute value | θs (t2) | It is determined that the vehicle is gripped, and the driver's steering operation is further guided in the guidance direction (step S310). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction to the additional reaction force Tp in the guidance direction (right direction) that does not vibrate. By inputting the additional reaction force Tp in the guidance direction (right direction) without vibration to the steering operation system, the driver's steering operation can be smoothly guided in the guidance direction (right direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
 なお、後刻操舵角θs(t2)を検出する時間t2は、ステアリングホイール1に対して付加反力Tpを付与し始めてから、振動における二つ目の変曲点に達するまでの時間である。このように、振動波形の変曲点では、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角θs(t2)は、付加反力Tpが入力される直前の初期操舵角付近(図14では略0)にある。したがって、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|と、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|とが大きく離れる時点となる。したがって、振動における二つ目の変曲点に達するまでの時間をt2として設定することで、運転者がステアリングホイール1を軽く握っているか、それともしっかり握っているかを精度よく判定することができる。すなわち、運転者がステアリングホイール1を軽く握っていれば、後刻操舵角の絶対値|θs(t2)|が閾値θ2を確実に超えるので、運転者の把持状態を正確に判定することができる。 The time t2 for detecting the steering angle θs (t2) at a later time is the time from the start of applying the additional reaction force Tp to the steering wheel 1 until the second inflection point in vibration is reached. Thus, at the inflection point of the vibration waveform, the later steering angle θs (t2) when the driver firmly holds the steering wheel 1 is in the vicinity of the initial steering angle just before the additional reaction force Tp is input (see FIG. 14 is substantially 0). Therefore, the absolute value | θs (t2) | of the later steering angle when the driver holds the steering wheel 1 firmly and the absolute value | θs of the later steering angle when the driver holds the steering wheel 1 lightly. (T2) This is the time when | Therefore, by setting the time to reach the second inflection point in vibration as t2, it is possible to accurately determine whether the driver is grasping the steering wheel 1 lightly or firmly. That is, if the driver holds the steering wheel 1 lightly, the absolute value | θs (t2) | of the steering angle at a later time surely exceeds the threshold value θ2, so that the driver's gripping state can be accurately determined.
 また、誘導方向(右方向)に向くときに相対的に大きい振幅とし、且つ誘導逆方向(左方向)に向くときに相対的に小さい振幅となるように付加反力Tpを設定する。これは、運転者がステアリングホイール1をしっかり把持している場合に、ステアリングホイール1が左方向と右方向に同程度だけ動くようにするためである。すなわち、誘導方向(右方向)に変化する波形のアドミタンスと振幅の積と、誘導逆方向(左方向)に変化する波形のアドミタンスと振幅の積を同一にすれば、付加反力Tpが誘導方向に向くときと誘導逆方向に向くときとで、操舵角θs(変化量)が一致するようになる。すなわち、運転者がステアリングホイール1をしっかり把持している場合、付加反力Tpを入力しても、付加反力Tpが入力される直前の初期操舵角付近で振動する。これにより、運転者がステアリングホイール1をしっかり把持し、ステアリング操作に対する積極的な誘導を望んでいないようなときに、操舵角θsが初期操舵角からずれてゆく(片流れする)ことを抑制することができる。
 その他の作用については、前述した第1実施形態と同様である。
Further, the additional reaction force Tp is set so as to have a relatively large amplitude when facing the guiding direction (right direction) and a relatively small amplitude when facing the guiding reverse direction (left direction). This is because when the driver holds the steering wheel 1 firmly, the steering wheel 1 moves to the same extent in the left direction and the right direction. That is, if the product of the admittance and amplitude of the waveform changing in the induction direction (right direction) and the product of the admittance and amplitude of the waveform changing in the induction reverse direction (left direction) are made the same, the additional reaction force Tp is generated in the induction direction. The steering angle θs (amount of change) becomes the same when facing the direction and the direction opposite to the guidance. That is, when the driver firmly holds the steering wheel 1, even if the additional reaction force Tp is input, the driver vibrates in the vicinity of the initial steering angle immediately before the additional reaction force Tp is input. This suppresses the steering angle θs from deviating (single-flowing) from the initial steering angle when the driver firmly holds the steering wheel 1 and does not want to actively guide the steering operation. Can do.
Other operations are the same as those in the first embodiment described above.
 《応用例1》
 本実施形態では、周辺環境認識装置16により、路面に標示された駐車枠を認識することで、自車両の現在位置から駐車位置までの目標軌道を設定し、設定した目標軌道に応じて誘導方向を設定しているが、これに限定されるものではない。例えば、ナビゲーションシステム17でルート案内を設定し、設定したルート案内に応じて誘導方向を設定してもよい。すなわち、交差点や分岐点を通過する際に、設定されたルート案内に従った進行方向を誘導方向として設定してもよい。このように、ルート案内に応じて誘導方向を設定することで、ナビゲーションシステム17と連動した運転操作支援により、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
<< Application Example 1 >>
In the present embodiment, the surrounding environment recognition device 16 recognizes the parking frame marked on the road surface, thereby setting the target trajectory from the current position of the host vehicle to the parking position, and the guidance direction according to the set target trajectory. However, the present invention is not limited to this. For example, route guidance may be set by the navigation system 17 and the guidance direction may be set according to the set route guidance. That is, when passing through an intersection or a branch point, the traveling direction according to the set route guidance may be set as the guidance direction. In this way, by setting the guidance direction according to the route guidance, the driving operation support in conjunction with the navigation system 17 provides the driver with the necessary information, and more appropriate and appropriate driving operation. Can be urged.
 《効果》
 次に、第2実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、異なる二つの周波数を予め設定し、誘導方向に向くときに相対的に低い周波数で振動すると共に、誘導逆方向に向くときに相対的に高い周波数で振動する付加反力Tpを設定する。
 このように、誘導方向に向くときに周波数を低くし、誘導逆方向に向くときに周波数を高くすることで、外乱の周波数とアドミタンスとの特性に基づき、特に或る程度の車速で走行し、微調整程度の僅かな操作量で済むようなシーンにおいて、適切なステアリング操作を促すことができる。
"effect"
Next, the effect of the main part in 2nd Embodiment is described.
(1) According to the driving operation support device according to the present embodiment, two different frequencies are set in advance, and the vibrations are relatively low when facing the guiding direction and are relatively when facing the guiding reverse direction. An additional reaction force Tp that vibrates at a high frequency is set.
In this way, by lowering the frequency when heading in the guidance direction and increasing the frequency when heading in the reverse direction of the guidance, the vehicle travels at a certain vehicle speed based on the characteristics of the disturbance frequency and admittance, Appropriate steering operation can be promoted in a scene where a slight operation amount of fine adjustment is required.
(2)本実施形態に係る運転操作支援装置によれば、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|と、運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|と、を予め求める。そして、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で閾値θ2を設定する。
 このように、運転者がステアリングホイール1をしっかり握っているときの後刻操舵角の絶対値|θs(t2)|よりも大きく、且つ運転者がステアリングホイール1を軽く握っているときの後刻操舵角の絶対値|θs(t2)|よりも小さな範囲で閾値θ2を設定することで、運転者の把持状態を正確に判定することができる。
(2) According to the driving operation support apparatus according to the present embodiment, the absolute value | θs (t2) | of the later steering angle when the driver firmly holds the steering wheel 1 The absolute value | θs (t2) | of the later steering angle when lightly grasping is obtained in advance. The absolute value of the later steering angle when the driver firmly holds the steering wheel 1 is larger than the absolute value | θs (t2) | The threshold θ2 is set in a range smaller than the value | θs (t2) |.
As described above, the absolute value of the later steering angle when the driver firmly holds the steering wheel 1 | θs (t2) | is greater than the absolute value | θs (t2) | By setting the threshold value θ2 in a range smaller than the absolute value | θs (t2) |
(3)本実施形態に係る運転操作支援装置によれば、付加反力Tpが誘導方向に向くときと誘導逆方向に向くときとで、操舵角θs(変化量)が一致するように、付加反力Tpにおける誘導方向に向くときと誘導逆方向に向くときとの振幅比を設定する。
 このように、付加反力Tpにおける誘導方向に向くときと誘導逆方向に向くときとの振幅比を設定することで、運転者がステアリングホイール1をしっかり把持している場合に、ステアリングホイール1が誘導方向へ動く量と、誘導逆方向へ動く量とを同等にすることができる。
(3) According to the driving operation support device according to the present embodiment, the addition is performed so that the steering angle θs (change amount) is the same when the additional reaction force Tp is directed in the guidance direction and when it is directed in the reverse direction. An amplitude ratio between the direction of the reaction force Tp in the induction direction and the direction in the reverse direction of the induction is set.
In this way, by setting the amplitude ratio between the direction of the additional reaction force Tp in the guidance direction and the direction in the guidance reverse direction, when the driver holds the steering wheel 1 firmly, the steering wheel 1 The amount of movement in the guiding direction can be made equal to the amount of movement in the guiding reverse direction.
《第3実施形態》
 《構成》
 本実施形態は、駐車時のステアリング操作を誘導することで運転操作支援を行うものであり、前述した第1実施形態における主にステップS202の処理を具体的に説明するものである。
 したがって、装置構成は、前述した第1実施形態と同様である。
 以下、付加反力設定部24で実行する付加反力設定処理について説明する。
 ここでも、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する目標軌道を設定し、ステアリング操作の誘導方向が左方向に設定される場合を例に説明する(図9参照)。なお、前述した第1実施形態と共通する部分については、詳細な説明を省略する。
<< Third Embodiment >>
"Constitution"
In the present embodiment, driving operation support is performed by guiding a steering operation during parking, and the process of step S202 in the first embodiment described above will be specifically described.
Therefore, the device configuration is the same as that of the first embodiment described above.
Hereinafter, the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
Here again, an example will be described in which a target trajectory for reversing and parking the vehicle is set for the parking frame located diagonally left rear of the host vehicle, and the steering operation guidance direction is set to the left ( (See FIG. 9). Detailed description of portions common to the first embodiment described above will be omitted.
 図15は、第3実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS401では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した路面の駐車枠を読込む。
 続くステップS402では、駐車枠における中心位置を自車両の目標駐車位置として設定し、この目標駐車位置までの距離や、駐車枠に対する姿勢(角度)に基づいて、自車両の現在位置から目標駐車位置までの目標軌道を設定する。
FIG. 15 is a flowchart illustrating an additional reaction force setting process according to the third embodiment.
First, in step S401, the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
In subsequent step S402, the center position in the parking frame is set as the target parking position of the host vehicle, and the target parking position is determined from the current position of the host vehicle based on the distance to the target parking position and the posture (angle) with respect to the parking frame. Set the target trajectory up to.
 続くステップS403では、自車両の車速Vと目標軌道とに応じて、ステアリング操作の誘導方向と目標操作量とを設定する。すなわち、目標軌道が左方向であるときには、ステアリング操作の誘導方向を左方向に設定すると共に、その目標軌道に従った目標操作量を設定する。また、目標軌道が右方向であるときには、ステアリング操作の誘導方向を右方向に設定すると共に、その目標軌道に従った目標操作量を設定する。
 続くステップS404では、自車両の現在位置と目標軌道との偏差を算出する。
 続くステップS405では、偏差に応じて誘導方向と目標操作量とを補正(再設定)する。
 続くステップS406では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
In the subsequent step S403, the steering operation guidance direction and the target operation amount are set according to the vehicle speed V and the target track of the host vehicle. That is, when the target trajectory is in the left direction, the steering operation guidance direction is set to the left direction, and the target operation amount according to the target trajectory is set. Further, when the target trajectory is in the right direction, the steering operation guidance direction is set to the right direction, and the target operation amount according to the target trajectory is set.
In the subsequent step S404, the deviation between the current position of the host vehicle and the target track is calculated.
In subsequent step S405, the guide direction and the target operation amount are corrected (reset) according to the deviation.
In the subsequent step S406, the additional reaction force Tp is set based on the steering operation guidance direction.
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導逆方向(右方向)に変化する振幅の小さい低周波の波形と、誘導方向(左方向)に変化する振幅の大きい高周波の波形と、を交互に繰り返している。
 続くステップS407では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
In the subsequent step S407, the direction is alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
 続くステップS408では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として読込む。
 続くステップS409では、後刻操舵角θs(t1)が誘導逆方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が予め定めた閾値θ1よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導逆方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断してステップS410に移行する。一方、後刻操舵角θs(t1)が誘導方向(左方向)である、又は後刻操舵角の絶対値|θs(t1)|が閾値θ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS411に移行する。
In the subsequent step S408, the steering angle θs at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the later steering angle θs (t1) .
In subsequent step S409, it is determined whether or not the later steering angle θs (t1) is in the reverse direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than a predetermined threshold θ1. To do. Here, when the later steering angle θs (t1) is in the reverse direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than the threshold value θ1, the driver holds the steering wheel 1. If not, the process proceeds to step S410. On the other hand, when the later steering angle θs (t1) is in the guiding direction (leftward), or when the absolute value | θs (t1) | of the later steering angle is equal to or smaller than the threshold θ1, the driver holds the steering wheel 1. And the process proceeds to step S411.
 ステップS410では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS411では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として読込む。
In step S410, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then the process returns to a predetermined main program.
In step S411, the steering angle θs at the time when a predetermined time t2 has elapsed since the input of the additional reaction force Tp to the steering operation system is read as a later steering angle θs (t2) .
 続くステップS412では、後刻操舵角θs(t2)が誘導方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS412に移行する。一方、後刻操舵角θs(t2)が誘導逆方向(右方向)である、又は後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であるときには、運転者がステアリングホイール1の把持をやめた、又は軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS410に移行する。
 ステップS413では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(左方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
In subsequent step S412, it is determined whether or not the later steering angle θs (t2) is in the guiding direction (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than a predetermined threshold θ2. . Here, when the steering angle θs (t1) at the later time is the guiding direction (leftward) and the absolute value | θs (t2) | Means that Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S412. On the other hand, when the later steering angle θs (t2) is in the reverse direction (right direction), or when the absolute value | θs (t2) | of the later steering angle is equal to or smaller than the threshold θ2, the driver holds the steering wheel 1. Means you quit or hold lightly. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S410.
In step S413, the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
 《作用》
 次に、第3実施形態の作用について説明する。
 ここでは、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する場合を例に説明する(図9参照)。
 先ず路面の駐車枠を認識し(ステップS401)、自車両の現在位置から駐車枠までの目標軌道を設定し(ステップS402)、その目標軌道に従ったステアリング操作の誘導方向を設定する(ステップS403)。ここでは、目標軌道が左方向となるため、ステアリング操作の誘導方向は左方向に設定される。そして、自車両の現在位置と目標軌道との偏差を算出し(ステップS404)、その偏差に応じて誘導方向と目標操作量とを改めて設定する(ステップS405)。そして、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS406)、その付加反力Tpを出力する(ステップS407)。
 その他の作用については、前述した第1実施形態と同様である。
<Action>
Next, the operation of the third embodiment will be described.
Here, a case where the vehicle is retracted and parked with respect to a parking frame located diagonally left rear of the host vehicle will be described as an example (see FIG. 9).
First, a parking frame on the road surface is recognized (step S401), a target trajectory from the current position of the host vehicle to the parking frame is set (step S402), and a steering operation guidance direction according to the target trajectory is set (step S403). ). Here, since the target trajectory is in the left direction, the steering operation guidance direction is set in the left direction. Then, the deviation between the current position of the host vehicle and the target track is calculated (step S404), and the guidance direction and the target operation amount are set again according to the deviation (step S405). Then, the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S406). Output (step S407).
Other operations are the same as those in the first embodiment described above.
 《効果》
 次に、第3実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、自車両の現在位置から駐車位置までの目標軌道を設定し、設定した目標軌道に応じて、誘導方向を設定する。
 このように、目標軌道に応じて、誘導方向を設定することで、駐車操作時に、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
"effect"
Next, the effect of the main part in 3rd Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the target trajectory from the current position of the host vehicle to the parking position is set, and the guidance direction is set according to the set target trajectory.
In this way, by setting the guidance direction according to the target trajectory, it is possible to positively give information required by the driver during parking operation and to promptly more appropriately drive the appropriate driving operation.
《第4実施形態》
 《構成》
 本実施形態は、走行車線からの逸脱を抑制するためにステアリング操作を誘導することで運転操作支援を行うものであり、前述した第2実施形態における主にステップS302の処理を具体的に説明するものである。
 したがって、装置構成は、前述した第2実施形態と同様である。
 以下、付加反力設定部24で実行する付加反力設定処理について説明する。
 ここでも、左側への車線逸脱傾向を検出し、ステアリング操作の誘導方向が右方向に設定される場合を例に説明する(図13参照)。なお、前述した第2実施形態と共通する部分については、詳細な説明を省略する。
<< 4th Embodiment >>
"Constitution"
In the present embodiment, driving operation support is performed by guiding a steering operation in order to suppress deviation from the driving lane, and the processing in step S302 in the second embodiment described above will be specifically described. Is.
Therefore, the device configuration is the same as that of the second embodiment described above.
Hereinafter, the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
Here again, an example will be described in which a lane departure tendency to the left is detected and the steering operation guidance direction is set to the right (see FIG. 13). Note that detailed description of portions common to the second embodiment described above is omitted.
 図16は、第4実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS501では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した路面の通行区分線を読込む。
 続くステップS502では、車速V、通行区分線までの距離、及び通行区分線に対する姿勢(角度)に応じて、目標軌道に対する所定時間後の自車位置となる推定横位置dを算出する。目標軌道とは、走行車線(車両通行帯)における幅方向中心を通り、通行区分線に沿った軌道である。
FIG. 16 is a flowchart illustrating an additional reaction force setting process according to the fourth embodiment.
First, in step S501, the surrounding environment of the host vehicle is recognized. In other words, the road marking line recognized by the surrounding environment recognition device 16 is read.
In the subsequent step S502, an estimated lateral position d, which is the vehicle position after a predetermined time with respect to the target track, is calculated according to the vehicle speed V, the distance to the traffic lane marking, and the attitude (angle) with respect to the traffic lane marking. The target track is a track along the traffic division line passing through the center in the width direction in the travel lane (vehicle lane).
 続くステップS503では、推定横位置の絶対値|d|が予め定めた閾値dsより大きいか否かを判定する。ここで、推定横位置の絶対値|d|が予め定めた閾値ds未満であるときには、運転操作支援によるステアリング操作の誘導は不要であると判断してステップS504に移行する。一方、推定横位置の絶対値|d|が予め定めた閾値dsより大きいときには、運転操作支援によるステアリング操作の誘導が必要であると判断してステップS505に移行する。 In subsequent step S503, it is determined whether or not the absolute value | d | of the estimated lateral position is larger than a predetermined threshold value ds. Here, when the absolute value | d | of the estimated lateral position is less than a predetermined threshold value ds, it is determined that the steering operation guidance by the driving operation support is unnecessary, and the process proceeds to step S504. On the other hand, when the absolute value | d | of the estimated lateral position is larger than a predetermined threshold value ds, it is determined that steering operation guidance by driving operation support is necessary, and the process proceeds to step S505.
 ステップS504では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS505では、推定横位置の絶対値|d|に応じて、ステアリング操作の誘導方向と目標操作量とを設定する。すなわち、推定横位置の絶対値|d|が小さくなる方向をステアリング操作の誘導方向に設定すると共に、推定横位置の絶対値|d|が大きいほど目標操作量を大きく設定する。例えば、推定横位置が目標軌道より左方向にあれば、左側への逸脱傾向であるため、ステアリング操作の誘導方向を右方向に設定し、推定横位置が目標軌道より左方向にあれば、右側への逸脱傾向であるため、ステアリング操作の誘導方向を左方向に設定する。
In step S504, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
In step S505, the steering operation guidance direction and the target operation amount are set according to the absolute value | d | of the estimated lateral position. That is, the direction in which the absolute value | d | of the estimated lateral position becomes smaller is set as the steering operation guiding direction, and the target operation amount is set larger as the estimated lateral position | d | For example, if the estimated lateral position is to the left of the target trajectory, there is a tendency to deviate to the left, so the steering operation guidance direction is set to the right direction. The steering operation guidance direction is set to the left direction.
 続くステップS506では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導方向(右方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(左方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返している。
In the subsequent step S506, an additional reaction force Tp is set based on the steering operation guidance direction.
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
 続くステップS507では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
 続くステップS508では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として読込む。
In the subsequent step S507, the directions are alternately changed in the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is output.
In the subsequent step S508, the steering angle θs at the time when a predetermined time t1 has passed after the input of the additional reaction force Tp to the steering operation system is read as the steering angle θs (t1) later.
 続くステップS509では、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が予め定めた閾値θ1よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断して上記のステップS504に移行する。一方、後刻操舵角θs(t1)が誘導逆方向(左方向)である、又は後刻操舵角の絶対値|θs(t1)|が閾値θ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS510に移行する。
 ステップS510では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として読込む。
In the subsequent step S509, it is determined whether or not the later steering angle θs (t1) is in the guiding direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than a predetermined threshold θ1. . Here, when the later steering angle θs (t1) is in the guiding direction (rightward) and the absolute value | θs (t1) | of the later steering angle is larger than the threshold value θ1, the driver holds the steering wheel 1. If it is determined that there is not, the process proceeds to step S504. On the other hand, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward), or when the absolute value | θs (t1) | of the later steering angle is equal to or less than the threshold value θ1, the driver holds the steering wheel 1. The process proceeds to step S510.
In step S510, the steering angle θs at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the steering angle θs (t2) at a later time.
 続くステップS511では、後刻操舵角θs(t2)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS511に移行する。一方、後刻操舵角θs(t2)が誘導方向(右方向)である、又は後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であるときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS504に移行する。
 ステップS512では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(右方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
In the subsequent step S511, it is determined whether or not the later steering angle θs (t2) is in the reverse direction (left direction) and the absolute value | θs (t2) | of the later steering angle is greater than a predetermined threshold θ2. To do. Here, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than the threshold θ2, the driver gently turns the steering wheel 1 It means holding. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S511. On the other hand, when the later steering angle θs (t2) is in the guiding direction (rightward) or the absolute value | θs (t2) | Means that Therefore, it is determined that the guidance by the driving operation support is not accepted or not desired, and the process proceeds to step S504.
In step S512, the output of the additional reaction force Tp that oscillates by alternately changing the direction in the guidance direction and the guidance reverse direction is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. To the predetermined main program.
 《作用》
 次に、第4実施形態の作用について説明する。
 ここでは、走行車線における左側の通行区分線に対して、自車両の逸脱傾向を検出した場合を例に説明する(図13参照)。
 先ず路面の通行区分線を認識し(ステップS501)、目標軌道に対する所定時間後の推定横位置dを算出し(ステップS502)、この推定横位置の絶対値|d|が予め定めた閾値dsより大きいか否かを判定する(ステップS503)。そして、推定横位置の絶対値|d|が予め定めた閾値dsより大きければ、推定横位置の絶対値|d|が小さくなる方向をステアリング操作の誘導方向に設定すると共に、推定横位置の絶対値|d|が大きいほど目標操作量を大きく設定する(ステップS505)。ここでは、左側の通行区分線に対する逸脱傾向であるため、ステアリング操作の誘導方向は右方向に設定される。そして、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS506)、その付加反力Tpを出力する(ステップS507)。
 その他の作用については、前述した第2実施形態と同様である。
<Action>
Next, the operation of the fourth embodiment will be described.
Here, the case where the deviation tendency of the own vehicle is detected with respect to the left traffic division line in the traveling lane will be described as an example (see FIG. 13).
First, a road marking line is recognized (step S501), an estimated lateral position d after a predetermined time with respect to the target trajectory is calculated (step S502), and the absolute value | d | of the estimated lateral position is determined from a predetermined threshold value ds. It is determined whether it is larger (step S503). If the absolute value | d | of the estimated lateral position is greater than a predetermined threshold value ds, the direction in which the absolute value | d | of the estimated lateral position is reduced is set as the steering operation guiding direction, and the absolute value of the estimated lateral position is determined. The larger the value | d | is, the larger the target operation amount is set (step S505). Here, the steering direction is set to the right direction because of the tendency to deviate from the left traffic line. Then, the directions are alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S506). Output (step S507).
Other operations are the same as those in the second embodiment described above.
 《効果》
 次に、第4実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、自車両のと通行区分線との相対関係を検出し、検出した通行区分線との相対関係に応じて、誘導方向を設定する。
 このように、走行車線に沿って走行するレーンキープ操作時に、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
"effect"
Next, the effect of the main part in 4th Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the relative relationship between the own vehicle and the traffic lane marking is detected, and the guidance direction is set according to the detected relative relationship with the traffic lane marking.
As described above, when the lane keeping operation is performed along the traveling lane, the information required by the driver can be positively given, and an appropriate driving operation can be promoted more actively.
《第5実施形態》
 《構成》
 本実施形態は、自車両周辺に存在する物体との接触を抑制するためにステアリング操作を誘導することで運転操作支援を行うものである。そこで、周辺環境認識装置16は、例えば車体前部や車体後部にレーザレーダを有し、自車両の前方及び側方に存在する物体や自車両の後方及び側方に存在する物体までの距離を認識しコントローラ20に入力する。
<< 5th Embodiment >>
"Constitution"
In the present embodiment, driving operation support is performed by guiding a steering operation in order to suppress contact with an object existing around the host vehicle. Therefore, the surrounding environment recognition device 16 has, for example, a laser radar at the front part of the vehicle body and the rear part of the vehicle body, and determines the distance to an object existing in front and side of the own vehicle and an object existing in the rear and side of the own vehicle. Recognize and input to controller 20.
 他の装置構成は、前述した第2実施形態と同様である。
 本実施形態では、例えば自車両が車線変更しようとしたときに障害物を検出し、その車線変更を中止するようなシーンを想定している。すなわち、或る程度の車速で走行し、微調整程度の僅かな操作量で済むようなシーンにおいて、適切なステアリング操作を促すものであるため、前述した第2実施形態と同様の処理を行う。
Other device configurations are the same as those of the second embodiment described above.
In the present embodiment, for example, a scene is assumed in which an obstacle is detected and the lane change is stopped when the host vehicle tries to change the lane. That is, in a scene where the vehicle travels at a certain vehicle speed and only a small amount of operation with a fine adjustment is required, an appropriate steering operation is urged, and thus the same processing as in the second embodiment described above is performed.
 以下、付加反力設定部24で実行する付加反力設定処理について説明する。
 ここでは、例えば自車両が左側の隣接車線に進入しようとしたときに、左後方から接近する車両を検出し、ステアリング操作の誘導方向が右方向に設定される場合を例に説明する。なお、前述した第2実施形態と共通する部分については、詳細な説明を省略する。
Hereinafter, the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
Here, for example, when the host vehicle is about to enter the adjacent lane on the left side, a vehicle approaching from the left rear is detected, and the steering operation guidance direction is set to the right direction. Note that detailed description of portions common to the second embodiment described above is omitted.
 図17は、第5実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS601では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した周辺物体までの距離を読込む。
 続くステップS602では、車速V、操舵角θs、横加速度Gy、ヨーレートγ等に基づいて、所定時間後の自車位置を算出する。
 続くステップS603では、所定時間後の自車位置に障害物が存在するか否かを判定する。ここで、所定時間後の自車位置に障害物が存在しないときには、運転操作支援によるステアリング操作の誘導は不要であると判断してステップS604に移行する。一方、所定時間後の自車位置に障害物が存在するときには、運転操作支援によるステアリング操作の誘導が必要であると判断してステップS605に移行する。
FIG. 17 is a flowchart illustrating an additional reaction force setting process according to the fifth embodiment.
First, in step S601, the surrounding environment of the host vehicle is recognized. That is, the distance to the surrounding object recognized by the surrounding environment recognition device 16 is read.
In the subsequent step S602, the vehicle position after a predetermined time is calculated based on the vehicle speed V, the steering angle θs, the lateral acceleration Gy, the yaw rate γ, and the like.
In a succeeding step S603, it is determined whether or not an obstacle exists at the vehicle position after a predetermined time. Here, when there is no obstacle at the vehicle position after a predetermined time, it is determined that the steering operation guidance by the driving operation support is unnecessary, and the process proceeds to step S604. On the other hand, if there is an obstacle at the vehicle position after a predetermined time, it is determined that steering operation guidance by driving operation support is necessary, and the process proceeds to step S605.
 ステップS604では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS605では、所定時間後に到達する自車位置での障害物との距離に応じて、ステアリング操作の誘導方向と目標操作量とを設定する。すなわち、障害物から離間する方向をステアリング操作の誘導方向に設定すると共に、障害物との距離が短いほど目標操作量を大きく設定する。例えば、自車両が左側の隣接車線に進入しようとしたときに障害物を検出したら、ステアリング操作の誘導方向を右方向に設定し、自車両が右側の隣接車線に進入しようとしたときに障害物を検出したら、ステアリング操作の誘導方向を左方向に設定する。
In step S604, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
In step S605, the steering operation guidance direction and the target operation amount are set according to the distance from the obstacle at the vehicle position that arrives after a predetermined time. That is, the direction away from the obstacle is set as the steering operation guiding direction, and the target operation amount is set larger as the distance from the obstacle is shorter. For example, if an obstacle is detected when the host vehicle is about to enter the left adjacent lane, the steering operation guidance direction is set to the right direction and the host vehicle is about to enter the right adjacent lane. Is detected, the steering operation guidance direction is set to the left direction.
 続くステップS606では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導方向(右方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(左方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返している。
In the subsequent step S606, the additional reaction force Tp is set based on the steering operation guidance direction.
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a large amplitude changing in the guiding direction (right direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (left direction) are alternately repeated.
 続くステップS607では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
 続くステップS608では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の操舵角θsを後刻操舵角θs(t1)として読込む。
In the subsequent step S607, the direction is alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
In the subsequent step S608, the steering angle θs at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is read as the steering angle θs (t1) at a later time.
 続くステップS609では、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が予め定めた閾値θ1よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導方向(右方向)であり、且つ後刻操舵角の絶対値|θs(t1)|が閾値θ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断して上記のステップS604に移行する。一方、後刻操舵角θs(t1)が誘導逆方向(左方向)である、又は後刻操舵角の絶対値|θs(t1)|が閾値θ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS610に移行する。
 ステップS610では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の操舵角θsを後刻操舵角θs(t2)として読込む。
In subsequent step S609, it is determined whether or not the later steering angle θs (t1) is in the guiding direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than a predetermined threshold θ1. . Here, when the later steering angle θs (t1) is in the guiding direction (right direction) and the absolute value | θs (t1) | of the later steering angle is larger than the threshold θ1, the driver holds the steering wheel 1. If it is not determined, the process proceeds to step S604. On the other hand, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward), or when the absolute value | θs (t1) | of the later steering angle is equal to or less than the threshold value θ1, the driver holds the steering wheel 1. The process proceeds to step S610.
In step S610, the steering angle θs at the time when a predetermined time t2 has passed after the input of the additional reaction force Tp to the steering operation system is read as the steering angle θs (t2) at a later time.
 続くステップS611では、後刻操舵角θs(t2)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が予め定めた閾値θ2よりも大きいか否かを判定する。ここで、後刻操舵角θs(t1)が誘導逆方向(左方向)であり、且つ後刻操舵角の絶対値|θs(t2)|が閾値θ2よりも大きいときには、運転者がステアリングホイール1を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS611に移行する。一方、後刻操舵角θs(t2)が誘導方向(右方向)である、又は後刻操舵角の絶対値|θs(t2)|が閾値θ2以下であるときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS604に移行する。
 ステップS612では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(右方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
In subsequent step S611, it is determined whether or not the later steering angle θs (t2) is in the reverse direction of guidance (leftward), and the absolute value | θs (t2) | of the later steering angle is larger than a predetermined threshold θ2. To do. Here, when the later steering angle θs (t1) is in the reverse direction of guidance (leftward) and the absolute value | θs (t2) | of the later steering angle is larger than the threshold θ2, the driver gently turns the steering wheel 1 It means holding. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S611. On the other hand, when the later steering angle θs (t2) is in the guiding direction (rightward), or when the absolute value | θs (t2) | Means that Therefore, it is determined that guidance by driving operation support is not accepted or desired, and the process proceeds to step S604.
In step S612, the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (right direction) that does not vibrate is replaced. And then return to a predetermined main program.
 《作用》
 次に、第5実施形態の作用について説明する。
 ここでは、自車両が車線変更しようとしたときに障害物を検出し、その車線変更を中止するようなシーンを想定している。
 先ず周辺物体までの距離までの距離を認識し(ステップS601)、所定時間後の自車位置を算出し(ステップS602)、所定時間後の自車位置に障害物が存在するか否かを判定する(ステップS603)。そして、所定時間後の自車位置に障害物が存在するときには、障害物から離間する方向をステアリング操作の誘導方向に設定すると共に、障害物との距離が短いほど目標操作量を大きく設定する(ステップS605)。ここでは、自車両が左側の隣接車線に進入しようとしたときに障害物を検出し、ステアリング操作の誘導方向は右方向に設定される。そして、そして、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS606)、その付加反力Tpを出力する(ステップS607)。
 その他の作用については、前述した第2実施形態と同様である。
<Action>
Next, the operation of the fifth embodiment will be described.
Here, a scene is assumed in which an obstacle is detected when the host vehicle tries to change lanes, and the lane change is stopped.
First, the distance to the distance to the surrounding object is recognized (step S601), the vehicle position after a predetermined time is calculated (step S602), and it is determined whether there is an obstacle at the vehicle position after the predetermined time. (Step S603). When there is an obstacle at the vehicle position after a predetermined time, the direction away from the obstacle is set as the steering operation guiding direction, and the target operation amount is set larger as the distance from the obstacle is shorter ( Step S605). Here, an obstacle is detected when the host vehicle is about to enter the left adjacent lane, and the steering operation guidance direction is set to the right direction. Then, the direction is alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set (step S606). Tp is output (step S607).
Other operations are the same as those in the second embodiment described above.
 《効果》
 次に、第5実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、自車両と自車両周辺に存在する物体との相対関係を検出し、検出した物体との相対関係に応じて、誘導方向を設定する。
 このように、自車両周辺に存在する物体との相対関係に応じて、誘導方向を設定することで、自車両周辺に障害となり得る物体が存在する中で走行する際に、運転者が必要とするインフォメーションを積極的に与え、より能動的に適切な運転操作を促すことができる。
"effect"
Next, the effect of the principal part in 5th Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the relative relationship between the host vehicle and an object existing around the host vehicle is detected, and the guidance direction is set according to the relative relationship with the detected object. .
In this way, by setting the guidance direction according to the relative relationship with the objects existing around the host vehicle, the driver is required when traveling in the presence of an object that can be an obstacle around the host vehicle. give information to positively, can be promoted more actively proper driving operation.
《第6実施形態》
 《構成》
 本実施形態は、ステアリング操作系に付加反力Tpを入力し始めてからのヨーレートγの変化に応じて、ステアリングホイール1の把持状態を判断するものである。
 装置構成は、前述した第1実施形態と同様である。
 以下、付加反力設定部24で実行する付加反力設定処理について説明する。
 ここでも、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する目標軌道を設定し、ステアリング操作の誘導方向が左方向に設定される場合を例に説明する(図9参照)。なお、前述した第1実施形態と共通する部分については、詳細な説明を省略する。
<< 6th Embodiment >>
"Constitution"
In the present embodiment, the gripping state of the steering wheel 1 is determined in accordance with the change in the yaw rate γ since the input of the additional reaction force Tp to the steering operation system.
The apparatus configuration is the same as that of the first embodiment described above.
Hereinafter, the additional reaction force setting process executed by the additional reaction force setting unit 24 will be described.
Here again, an example will be described in which a target trajectory for reversing and parking the vehicle is set for the parking frame located diagonally left rear of the host vehicle, and the steering operation guidance direction is set to the left ( (See FIG. 9). Detailed description of portions common to the first embodiment described above will be omitted.
 図18は、第6実施形態の付加反力設定処理を示すフローチャートである。
 先ずステップS701では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した路面の駐車枠を読込む。
 続くステップS702では、駐車枠つまり目標駐車位置までの距離や、駐車枠に対する姿勢(角度)に基づいて、自車両の現在位置から目標駐車位置までの目標軌道を設定し、その目標軌道に従ったステアリング操作の誘導方向を設定する。すなわち、目標軌道が左方向であるときには、ステアリング操作の誘導方向を左方向に設定し、目標軌道が右方向であるときには、ステアリング操作の誘導方向を右方向に設定する。
FIG. 18 is a flowchart illustrating an additional reaction force setting process according to the sixth embodiment.
First, in step S701, the surrounding environment of the host vehicle is recognized. That is, the road parking frame recognized by the surrounding environment recognition device 16 is read.
In subsequent step S702, a target trajectory from the current position of the host vehicle to the target parking position is set based on the distance to the parking frame, that is, the target parking position and the attitude (angle) with respect to the parking frame, and the target trajectory is followed. Sets the steering operation guidance direction. That is, when the target track is the left direction, the steering operation guidance direction is set to the left direction, and when the target track is the right direction, the steering operation guidance direction is set to the right direction.
 続くステップS703では、ステアリング操作の誘導方向に基づいて付加反力Tpを設定する。
 付加反力Tpは、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導逆方向(右方向)に変化する振幅の小さい低周波の波形と、誘導方向(左方向)に変化する振幅の大きい高周波の波形と、を交互に繰り返している。
In the subsequent step S703, the additional reaction force Tp is set based on the steering operation guidance direction.
The additional reaction force Tp is a waveform that changes directions alternately in the steering operation guidance direction and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. Here, a low-frequency waveform with a small amplitude that changes in the reverse direction of the induction (right direction) and a high-frequency waveform with a large amplitude that changes in the induction direction (left direction) are alternately repeated.
 続くステップS704では、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
 続くステップS705では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点のヨーレートγを後刻ヨーレートγ(t1)として読込む。
 続くステップS706では、後刻ヨーレートγ(t1)が誘導逆方向(右方向)であり、且つ後刻ヨーレートの絶対値|γ(t1)|が予め定めた閾値γ1よりも大きいか否かを判定する。
In the subsequent step S704, the directions are alternately changed in the steering direction of the steering operation and the reverse direction of the steering operation, and the additional reaction force Tp that vibrates at different frequencies in the guidance direction and the reverse direction of the guidance is output.
In the subsequent step S705, the yaw rate γ at the time when a predetermined time t1 has passed after the input of the additional reaction force Tp to the steering operation system is read as the yaw rate γ (t1) later.
In the subsequent step S706, it is determined whether or not the subsequent yaw rate γ (t1) is in the reverse direction (right direction) and the absolute value | γ (t1) | of the subsequent yaw rate is greater than a predetermined threshold γ1.
 閾値γ1は、誘導逆方向(右方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がステアリングホイール1を軽く把持していたときの後刻ヨーレートの絶対値|γ(t1)|よりも大きく、且つ運転者がステアリングホイール1を握っていなかったときの後刻ヨーレートの絶対値|γ(t1)|よりも小さな範囲で設定する。ここで、ステアリングホイール1を軽く把持していたときの後刻ヨーレートの絶対値|γ(t1)|とは、操舵角θsが例えば0.03程度(図10参照)のときに発生するにヨーレート値γ(0.03)であり、ステアリングホイール1を握っていなかったときの後刻ヨーレートの絶対値|γ(t1)|とは、操舵角θsが例えば0.16程度(図10参照)のときに発生するヨーレート値γ(0.16)である。したがって、γ(0.03)<γ1<γ(0.16)の関係となるように、閾値γ1は、例えば夫々の中間値として、操舵角θsが例えば0.09程度(図10参照)のときに発生するヨーレート値γ(0.09)に設定する。 Threshold γ1, if you enter the additional reaction force Tp of the low-frequency changes in the induced opposite direction (right direction), the absolute value of the later time the yaw rate when the driver had gripped lightly steering wheel 1 | gamma (t1 ) | greater than, and the driver absolute value of the later time yaw rate when not holding the steering wheel 1 | gamma (t1) | sets a smaller range than. Here, the absolute value | γ (t1) | of the later yaw rate when the steering wheel 1 is lightly held is the yaw rate value that occurs when the steering angle θs is about 0.03 (see FIG. 10), for example. γ (0.03) , and the absolute value of the yaw rate at a later time | γ (t1) | when the steering wheel 1 is not being gripped means that the steering angle θs is about 0.16 (see FIG. 10) The generated yaw rate value γ (0.16) . Therefore, the threshold value γ1 is set such that the steering angle θs is, for example, about 0.09 (see FIG. 10), for example, as an intermediate value so that γ (0.03) <γ1 <γ (0.16) . The yaw rate value γ (0.09) that occurs sometimes is set.
 ここで、後刻ヨーレートγ(t1)が誘導逆方向(右方向)であり、且つ後刻ヨーレートの絶対値|γ(t1)|が閾値γ1よりも大きいときには、運転者がステアリングホイール1を握っていないと判断してステップS707に移行する。一方、後刻ヨーレートγ(t1)が誘導方向(左方向)である、又は後刻ヨーレートの絶対値|γ(t1)|が閾値γ1以下であるときには、運転者がステアリングホイール1を握っていると判断してステップS708に移行する。 Here, when the later yaw rate γ (t1) is in the reverse direction (right direction) and the absolute value | γ (t1) | of the later yaw rate is larger than the threshold γ1, the driver does not hold the steering wheel 1. And the process proceeds to step S707. On the other hand, when the later yaw rate γ (t1) is in the guiding direction (leftward), or the absolute value | γ (t1) | of the later yaw rate is equal to or less than the threshold γ1, it is determined that the driver is holding the steering wheel 1. Then, the process proceeds to step S708.
 ステップS707では、ステアリング操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS708では、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点のヨーレートγを後刻ヨーレートγ(t2)として読込む。
 続くステップS709では、後刻ヨーレートγ(t2)が誘導方向(左方向)であり、且つ後刻ヨーレートの絶対値|γ(t2)|が予め定めた閾値γ2よりも大きいか否かを判定する。
In step S707, in order to stop the input of the additional reaction force Tp to the steering operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
In step S708, the yaw rate γ at the time when a predetermined time t2 has elapsed after the input of the additional reaction force Tp to the steering operation system is read as the yaw rate γ (t2) later.
In the subsequent step S709, it is determined whether or not the subsequent yaw rate γ (t2) is in the guiding direction (left direction) and the absolute value | γ (t2) | of the subsequent yaw rate is larger than a predetermined threshold γ2.
 閾値γ2は、ステアリング操作系に付加反力Tpを入力した場合に、運転者がステアリングホイール1を軽く把持していたときの後刻ヨーレートの絶対値|γ(t2)|よりも大きく、且つ運転者がステアリングホイール1をしっかり握っていたときの後刻ヨーレートの絶対値|γ(t2)|よりも小さな範囲で設定する。ここで、ステアリングホイール1を軽く把持していたときの後刻ヨーレートの絶対値|γ(t2)|とは、操舵角θsが例えば0程度(図10参照)のときに発生するにヨーレート値γ(0)であり、ステアリングホイール1を握っていたときの後刻ヨーレートの絶対値|γ(t2)|とは、操舵角θsが例えば0.04程度(図10参照)のときに発生するにヨーレート値γ(0.04)である。したがって、γ(0)<γ2<γ(0.04)の関係となるように、閾値γ2は、例えば夫々の中間値として、操舵角θsが例えば0.02程度(図10参照)のときに発生するにヨーレート値γ(0.02)に設定する。 The threshold γ2 is larger than the absolute value | γ (t2) | of the later yaw rate when the driver gently holds the steering wheel 1 when the additional reaction force Tp is input to the steering operation system, and the driver Is set in a range smaller than the absolute value | γ (t2) | of the yaw rate at a later time when the steering wheel 1 is firmly held. Here, the absolute value | γ (t2) | of the later yaw rate when the steering wheel 1 is lightly gripped is the yaw rate value γ ( 0) , and the absolute value of the later yaw rate when holding the steering wheel 1 | γ (t2) | is a yaw rate value that occurs when the steering angle θs is, for example, about 0.04 (see FIG. 10). γ (0.04) . Therefore, the threshold value γ2 is, for example, an intermediate value when the steering angle θs is, for example, about 0.02 (see FIG. 10) so that the relationship of γ (0) <γ2 <γ (0.04) is satisfied. When generated, the yaw rate value γ (0.02) is set.
 ここで、後刻ヨーレートγ(t1)が誘導方向(左方向)であり、且つ後刻ヨーレートの絶対値|γ(t2)|が閾値γ2よりも大きいときには、運転者がステアリングホイール1をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS710に移行する。一方、後刻ヨーレートγ(t2)が誘導逆方向(右方向)である、又は後刻ヨーレートの絶対値|γ(t2)|が閾値γ2以下であるときには、運転者がステアリングホイール1の把持をやめた、又は軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS707に移行する。
 ステップS710では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(左方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
Here, when the later yaw rate γ (t1) is in the guiding direction (leftward) and the absolute value | γ (t2) | of the later yaw rate is larger than the threshold γ2, the driver holds the steering wheel 1 firmly. Means that. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S710. On the other hand, when the later yaw rate γ (t2) is in the reverse direction (right direction), or the absolute value of the later yaw rate | γ (t2) | is equal to or less than the threshold γ2, the driver stops gripping the steering wheel 1. Or it means holding lightly. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S707.
In step S710, output of the additional reaction force Tp that vibrates by alternately changing the direction in the guidance direction and the reverse direction of the guidance is stopped, and the additional reaction force Tp in the guidance direction (left direction) that does not vibrate is replaced. And then return to a predetermined main program.
 《作用》
 次に、第6実施形態の作用について説明する。
 ここでは、自車両の斜め左後方に位置する駐車枠に対して、車両を後退させて駐車する目標軌道を設定し、ステアリング操作の誘導方向が左方向に設定される場合を例に説明する(図9参照)。
 先ず路面の駐車枠を認識し(ステップS701)、誘導方向を設定し(ステップS702)、付加反力Tpを設定し(ステップS703)、付加反力Tpを出力する(ステップS704)までは、前述した第1実施形態と同様である。
<Action>
Next, the operation of the sixth embodiment will be described.
Here, an example will be described in which a target trajectory for reversing and parking a vehicle is set for a parking frame located diagonally left rear of the host vehicle, and the steering operation guidance direction is set to the left direction ( (See FIG. 9).
First, the parking frame on the road surface is recognized (step S701), the guidance direction is set (step S702), the additional reaction force Tp is set (step S703), and the additional reaction force Tp is output (step S704). This is the same as the first embodiment.
 そして、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点のヨーレートγを後刻ヨーレートγ(t1)として検出し(ステップS705)、後刻ヨーレートγ(t1)が予め定めた閾値γ1よりも大きいか否かを判定する(ステップS706)。このとき、後刻ヨーレートの絶対値|γ(t1)|が閾値γ1よりも大きければ、運転者がステアリングホイール1を握っていないと判断し、付加反力Tpの付与を中止する(ステップS707)。このように、運転者がステアリングホイール1を握っておらず、運転者のステアリング操作を誘導できない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、ヨーレートγの大振れや不必要な電力消費を避けることができる。 Then, the yaw rate γ at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later yaw rate γ (t1) (step S705), and the later yaw rate γ (t1) is detected in advance. It is determined whether or not the threshold value is larger than the predetermined threshold value γ1 (step S706). At this time, if the absolute value | γ (t1) | of the later yaw rate is larger than the threshold value γ1, it is determined that the driver is not grasping the steering wheel 1, and the application of the additional reaction force Tp is stopped (step S707). As described above, in a situation where the driver does not hold the steering wheel 1 and the driver's steering operation cannot be guided, by stopping the application of the additional reaction force Tp to the steering wheel 1, Unnecessary power consumption can be avoided.
 また、ステアリング操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点のヨーレートγを後刻ヨーレートγ(t2)として検出し(ステップS708)、後刻ヨーレートの絶対値|γ(t2)|が予め定めた閾値γ2よりも大きいか否かを判定する(ステップS709)。このとき、後刻ヨーレートの絶対値|γ(t2)|が閾値γ2以下であれば、運転者がステアリングホイール1を軽く握っていると判断し、付加反力Tpの付与を中止する(ステップS707)。このように、運転者がステアリングホイール1を軽く握っており、積極的な運転操作支援を望んでいない状況では、ステアリングホイール1への付加反力Tpの付与を中止することで、不必要な電力消費を避けることができる。 Further, the yaw rate γ at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the steering operation system is detected as the later yaw rate γ (t2) (step S708), and the absolute value of the later yaw rate | γ ( t2) It is determined whether or not | is larger than a predetermined threshold value γ2 (step S709). At this time, if the absolute value | γ (t2) | of the yaw rate at a later time is equal to or smaller than the threshold γ2, it is determined that the driver is grasping the steering wheel 1 lightly, and the application of the additional reaction force Tp is stopped (step S707). . In this way, in a situation where the driver is lightly holding the steering wheel 1 and does not want to actively support driving operation, unnecessary power can be generated by stopping the application of the additional reaction force Tp to the steering wheel 1. Consumption can be avoided.
 そして、後刻ヨーレートの絶対値|γ(t1)|が閾値γ1以下で、且つ後刻ヨーレートの絶対値|γ(t2)|が閾値γ2よりも大きいときに、運転者がステアリングホイール1をしっかり握っていると判断し、さらに継続して運転者のステアリング操作を誘導方向へと誘導する(ステップS710)。具体的には、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力から、振動することのない誘導方向(左方向)への付加反力Tpへと切り替える。この振動することのない誘導方向(左方向)への付加反力Tpをステアリング操作系に入力することで、運転者のステアリング操作を誘導方向(左方向)へとスムーズに誘導することができる。これにより、運転者が積極的なインフォメーションを必要としているようなシーンで、効果的な運転操作支援を行うことができる。
 その他の作用については、前述した第1実施形態と同様である。
When the absolute value | γ (t1) | of the later yaw rate is equal to or smaller than the threshold value γ1 and the absolute value | γ (t2) | of the later yaw rate is larger than the threshold value γ2, the driver holds the steering wheel 1 firmly. The driver's steering operation is further guided in the guidance direction (step S710). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction of the guidance to the additional reaction force Tp in the guidance direction (left direction) that does not vibrate. By inputting the additional reaction force Tp in the guidance direction (left direction) without vibration to the steering operation system, the driver's steering operation can be smoothly guided in the guidance direction (left direction). Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
Other operations are the same as those in the first embodiment described above.
 《変形例1》
 本実施形態では、前述した第1実施形態をベースにして、ステアリング操作系に付加反力Tpを入力し始めてからのヨーレートγの変化に応じて、ステアリングホイール1の把持状態を判断しているが、これに限定されるものではない。他にも、前述した第2実施形態をベースにして、ステアリング操作系に付加反力Tpを入力し始めてからのヨーレートγの変化に応じて、ステアリングホイール1の把持状態を判断してもよい。
 以上、ヨーレートγが「状態変数」に対応し、後刻ヨーレートγ(t1)が「第一の後刻状態変数」に対応し、閾値γ1が「第一の閾値」に対応し、後刻ヨーレートγ(t2)が「第二の後刻状態変数」に対応し、閾値γ2が「第二の閾値」に対応する。
<< Modification 1 >>
In the present embodiment, the gripping state of the steering wheel 1 is determined based on the change in the yaw rate γ since the input of the additional reaction force Tp to the steering operation system based on the first embodiment described above. However, the present invention is not limited to this. In addition, the gripping state of the steering wheel 1 may be determined based on the change in the yaw rate γ after the input of the additional reaction force Tp to the steering operation system is based on the second embodiment described above.
As described above, the yaw rate γ corresponds to the “state variable”, the later yaw rate γ (t1) corresponds to the “first latter state variable”, the threshold γ1 corresponds to the “first threshold”, and the later yaw rate γ (t2 ) Corresponds to the “second later state variable”, and the threshold γ2 corresponds to the “second threshold”.
 《効果》
 次に、第6実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、車両挙動となるヨーレートγを、状態変数として検出する。
 このように、車両挙動となるヨーレートγを、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
"effect"
Next, the effect of the principal part in 6th Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the yaw rate γ that becomes the vehicle behavior is detected as a state variable.
Thus, by detecting the yaw rate γ that becomes the vehicle behavior as a state variable, the gripping state of the driver can be easily determined.
《第7実施形態》
 《構成》
 本実施形態は、運転者の加減速操作を誘導することで、運転操作支援を行うものであり、特に或る程度の車速で走行し、微調整程度の僅かな操作量で済むようなシーンにおいて、適切な加減速操作を促すものである。
 図19は、アクセル・ブレーキレバーによる加減速制御装置を示す概略構成図である。
 本実施形態は、車両の加減速を操る手動の加減速操作子としてアクセル・ブレーキレバー31を採用する。例えば、アクセル・ブレーキレバー31を前方へ押すと減速、後方へ引くと加速となる。
<< 7th Embodiment >>
"Constitution"
The present embodiment provides driving operation support by guiding the driver's acceleration / deceleration operation, especially in a scene where the vehicle travels at a certain vehicle speed and requires only a small amount of operation for fine adjustment. It encourages appropriate acceleration / deceleration operations.
FIG. 19 is a schematic configuration diagram showing an acceleration / deceleration control device using an accelerator / brake lever.
The present embodiment employs an accelerator / brake lever 31 as a manual acceleration / deceleration operator for manipulating the acceleration / deceleration of the vehicle. For example, when the accelerator / brake lever 31 is pushed forward, it is decelerated, and when it is pulled backward, it is accelerated.
 アクセル・ブレーキレバー31には、操作反力を付与する反力モータ32が連結してあり、反力モータ32を駆動制御することにより、加速操作方向、及び減速操作方向の何れか一方に、任意の付加反力Tpが入力される。
 エンジン出力制御装置33は、エンジン7におけるスロットルバルブの開度、燃料噴射量、点火時期などを調整することによって、エンジン出力(回転数やエンジントルク)を制御する。
The accelerator / brake lever 31 is connected to a reaction force motor 32 for applying an operation reaction force. By controlling the reaction force motor 32, any one of an acceleration operation direction and a deceleration operation direction can be arbitrarily set. The additional reaction force Tp is input.
The engine output control device 33 controls the engine output (the number of revolutions and the engine torque) by adjusting the throttle valve opening, the fuel injection amount, the ignition timing, and the like in the engine 7.
 ブレーキアクチュエータ34は、アンチスキッド制御(ABS)、トラクション制御(TCS)、スタビリティ制御(VDC:Vehicle Dynamics Control)等に用いられる制動流体圧制御回路を利用したものであり、各車輪のホイールシリンダを増圧、保圧、減圧することで、制動力を制御する。
 反力モータ32、エンジン出力制御装置33、及びブレーキアクチュエータ34は、コントローラ20によって駆動制御される。コントローラ20は、アクセル・ブレーキセンサ35、車速センサ14、及びヨーレートセンサ15で検出される各種信号を入力する。さらに、コントローラ20は、周辺環境認識装置16、及びナビゲーションシステム17から各種データを入力する。
The brake actuator 34 uses a brake fluid pressure control circuit used for anti-skid control (ABS), traction control (TCS), stability control (VDC: Vehicle Dynamics Control), and the like. The braking force is controlled by increasing pressure, holding pressure, and reducing pressure.
The reaction motor 32, the engine output control device 33, and the brake actuator 34 are driven and controlled by the controller 20. The controller 20 inputs various signals detected by the accelerator / brake sensor 35, the vehicle speed sensor 14, and the yaw rate sensor 15. Further, the controller 20 inputs various data from the surrounding environment recognition device 16 and the navigation system 17.
 アクセル・ブレーキセンサ35は、アクセル・ブレーキレバー31の加減速操作量Sを検出する。このアクセル・ブレーキセンサ35は、例えばポテンショメータであり、アクセル・ブレーキレバー31の加減速操作量を電圧信号に変換してコントローラ20に入力する。コントローラ20は、入力された電圧信号からアクセル・ブレーキレバー31の加減速操作量を判断する。 The accelerator / brake sensor 35 detects the acceleration / deceleration operation amount S of the accelerator / brake lever 31. The accelerator / brake sensor 35 is a potentiometer, for example, and converts the acceleration / deceleration operation amount of the accelerator / brake lever 31 into a voltage signal and inputs it to the controller 20. The controller 20 determines the acceleration / deceleration operation amount of the accelerator / brake lever 31 from the input voltage signal.
 コントローラ20は、先ず加減速操作量Sに応じて目標加減速度を設定し、設定した目標加減速度に応じてエンジン出力制御装置33、及びブレーキアクチュエータ34を駆動制御する。すなわち、アクセル・ブレーキレバー31が加速操作領域にあるときには、目標加減速度を加速側に設定し、駆動力が増加するようにエンジン出力制御装置33を駆動制御すると共に、制動力が抑制されるようにブレーキアクチュエータ34を駆動制御する。一方、アクセル・ブレーキレバー31が減速操作領域にあるときには、目標加減速度を減速側に設定し、駆動力が抑制されるようにエンジン出力制御装置33を駆動制御すると共に、制動力が増加するようにブレーキアクチュエータ34を駆動制御する。 The controller 20 first sets a target acceleration / deceleration according to the acceleration / deceleration operation amount S, and drives and controls the engine output control device 33 and the brake actuator 34 according to the set target acceleration / deceleration. That is, when the accelerator / brake lever 31 is in the acceleration operation region, the target acceleration / deceleration is set to the acceleration side, and the engine output control device 33 is driven and controlled so that the driving force increases, and the braking force is suppressed. The brake actuator 34 is driven and controlled. On the other hand, when the accelerator / brake lever 31 is in the deceleration operation region, the target acceleration / deceleration is set to the deceleration side so that the engine output control device 33 is driven and controlled so that the driving force is suppressed, and the braking force is increased. The brake actuator 34 is driven and controlled.
 また、反力モータ32に対する駆動制御については、前述した第1実施形態と同様である。すなわち、コントローラ20は、ベース反力Tbを設定すると共に、付加反力Tpを設定し、これらベース反力Tbと付加反力Tpとを加算して最終的な操作反力Trを設定し、この操作反力Trに応じて反力モータ32を駆動制御する。
 本実施形態では、例えば先行車両との接触(又は接近)を抑制するために加減速操作を誘導することで運転操作支援を行うものである。そこで、周辺環境認識装置16は、例えば車体前部や車体後部にレーザレーダを有し、自車両の前方及び側方に存在する物体や自車両の後方及び側方に存在する物体までの距離を認識しコントローラ20に入力する。
Further, the drive control for the reaction force motor 32 is the same as in the first embodiment described above. That is, the controller 20 sets the base reaction force Tb, sets the additional reaction force Tp, adds the base reaction force Tb and the additional reaction force Tp, and sets the final operation reaction force Tr. The reaction force motor 32 is driven and controlled according to the operation reaction force Tr.
In this embodiment, for example, driving operation support is performed by guiding an acceleration / deceleration operation in order to suppress contact (or approach) with a preceding vehicle. Therefore, the surrounding environment recognition device 16 has, for example, a laser radar at the front part of the vehicle body and the rear part of the vehicle body, and determines the distance to an object existing in front and side of the own vehicle and an object existing behind and side of the own vehicle. Recognize and input to controller 20.
 本実施形態では、例えば先行車両の減速によって車間時間(=車間距離÷自車速)が短くなるときに減速操作を誘導し、先行車両の加速によって車間時間が長くなるときに加速操作を誘導するようなシーンを想定している。すなわち、ある程度の車速で走行し、比較的少ない操作量で済むようなシーンにおいて、適切な加減速操作を促すものであるため、前述した第2実施形態と同様の処理を行う。 In the present embodiment, for example, a deceleration operation is induced when the inter-vehicle time (= inter-vehicle distance ÷ own vehicle speed) is shortened due to deceleration of the preceding vehicle, and an acceleration operation is induced when the inter-vehicle time is increased due to acceleration of the preceding vehicle. Is assumed to be a scene. That is, in a scene where the vehicle travels at a certain vehicle speed and a relatively small amount of operation is required, an appropriate acceleration / deceleration operation is urged, and thus the same processing as in the second embodiment described above is performed.
 以下、コントローラ20で実行する付加反力設定処理について説明する。
 図20は、第7実施形態の付加反力設定処理を示すフローチャートである。
 ステップS801では、自車両の周辺環境を認識する。すなわち、周辺環境認識装置16で認識した先行車両との車間距離を読込む。
 続くステップS802では、先行車両との車間距離を自車速Vで除し、先行車両に対する車間時間tdを算出する。
Hereinafter, the additional reaction force setting process executed by the controller 20 will be described.
FIG. 20 is a flowchart illustrating an additional reaction force setting process according to the seventh embodiment.
In step S801, the surrounding environment of the host vehicle is recognized. That is, the inter-vehicle distance with the preceding vehicle recognized by the surrounding environment recognition device 16 is read.
In subsequent step S802, the inter-vehicle distance with respect to the preceding vehicle is calculated by dividing the inter-vehicle distance from the preceding vehicle by the host vehicle speed V.
 続くステップS803では、車間時間tdが予め定めた閾値tbより短い、又は自車速Vが設定車速Vsより高いか否かを判定する。閾値tbは例えば1[sec]であり、設定車速Vsは例えば運転者がスイッチ操作などで予め入力した車速である。ここで、車間時間tdが予め定めた閾値tb以上で、且つ自車速Vが設定車速Vs以下であるときには、運転操作支援による少なくとも減速操作の誘導は不要であると判断してステップS804に移行する。一方、車間時間tdが予め定めた閾値tbより短い、又は自車速Vが設定車速Vsより高いときには、運転操作支援による減速操作の誘導が必要であると判断してステップS806に移行する。 In the subsequent step S803, it is determined whether the inter-vehicle time td is shorter than a predetermined threshold value tb or the own vehicle speed V is higher than the set vehicle speed Vs. The threshold value tb is, for example, 1 [sec], and the set vehicle speed Vs is, for example, a vehicle speed input in advance by the driver through a switch operation or the like. Here, when the inter-vehicle time td is equal to or greater than a predetermined threshold value tb and the host vehicle speed V is equal to or less than the set vehicle speed Vs, it is determined that at least a deceleration operation guidance by driving operation support is unnecessary, and the process proceeds to step S804. . On the other hand, when the inter-vehicle time td is shorter than the predetermined threshold value tb or the host vehicle speed V is higher than the set vehicle speed Vs, it is determined that a deceleration operation guidance by driving operation support is necessary, and the process proceeds to step S806.
 ステップS804では、車間時間tdが予め定めた閾値taより長いか否かを判定する。閾値taは例えば5[sec]である。ここで、車間時間tdが予め定めた閾値ta未満であるときには、運転操作支援による少なくとも減速操作の誘導は不要であると判断してステップS805に移行する。一方、車間時間tdが閾値taより長いときには、運転操作支援による加速操作の誘導が必要であると判断してステップS807に移行する。 In step S804, it is determined whether the inter-vehicle time td is longer than a predetermined threshold ta. The threshold value ta is, for example, 5 [sec]. Here, when the inter-vehicle time td is less than a predetermined threshold ta, it is determined that at least a deceleration operation guidance by driving operation support is unnecessary, and the process proceeds to step S805. On the other hand, when the inter-vehicle time td is longer than the threshold value ta, it is determined that the acceleration operation guidance by the driving operation support is necessary, and the process proceeds to step S807.
 ステップS805では、加減速操作系に対する付加反力Tpの入力を中止するために、付加反力Tpを0にリセットしてから所定のメインプログラムに復帰する。
 ステップS806では、減速方向を加減速操作の誘導方向に設定し、車間時間tdと閾値tbとの偏差に応じて減速方向の目標操作量を設定してからステップS808に移行する。すなわち、車間時間tdと閾値tbとの偏差が大きいほど目標操作量を大きく設定する。
In step S805, in order to stop the input of the additional reaction force Tp to the acceleration / deceleration operation system, the additional reaction force Tp is reset to 0 and then returns to a predetermined main program.
In step S806, the deceleration direction is set as the acceleration / deceleration operation guidance direction, the target operation amount in the deceleration direction is set according to the deviation between the inter-vehicle time td and the threshold value tb, and then the process proceeds to step S808. That is, the larger the deviation between the inter-vehicle time td and the threshold value tb, the larger the target operation amount is set.
 ステップS807では、加速方向を加減速操作の誘導方向に設定し、車間時間tdと閾値taとの偏差に応じて目標操作量を設定してからステップS808に移行する。すなわち、車間時間tdと閾値taとの偏差が大きいほど加速方向の目標操作量を大きく設定する。
 ステップS808では、加減速操作の誘導方向に基づいて付加反力Tpを設定する。
In step S807, the acceleration direction is set as the guidance direction of the acceleration / deceleration operation, and the target operation amount is set according to the deviation between the inter-vehicle time td and the threshold value ta, and then the process proceeds to step S808. That is, the larger the deviation between the inter-vehicle time td and the threshold value ta, the larger the target operation amount in the acceleration direction.
In step S808, the additional reaction force Tp is set based on the guiding direction of the acceleration / deceleration operation.
 付加反力Tpは、加減速操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する波形である。ここでは、誘導方向(減速方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(加速方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返している。
 続くステップS809では、加減速操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを出力する。
The additional reaction force Tp is a waveform that changes directions alternately in the induction direction of the acceleration / deceleration operation and the reverse direction of the operation, and vibrates at different frequencies in the induction direction and the reverse direction of the induction. Here, a low-frequency waveform with a large amplitude changing in the guiding direction (deceleration direction) and a high-frequency waveform with a small amplitude changing in the reverse direction (acceleration direction) are alternately repeated.
In the subsequent step S809, the direction is alternately changed in the guiding direction of the acceleration / deceleration operation and the reverse direction of the guiding operation, and an additional reaction force Tp that vibrates at different frequencies in the guiding direction and the guiding reverse direction is output.
 続くステップS810では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の加減速操作量Sを後刻加減速操作量S(t1)として読込む。
 続くステップS811では、後刻加減速操作量S(t1)が誘導方向(減速方向)であり、且つ後刻加減速操作量の絶対値|S(t1)|が予め定めた閾値Sh1よりも大きいか否かを判定する。
In the subsequent step S810, the acceleration / deceleration operation amount S at the time when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later acceleration / deceleration operation amount S (t1) .
In subsequent step S811, whether or not the subsequent acceleration / deceleration operation amount S (t1) is in the guiding direction (deceleration direction), and whether the absolute value | S (t1) | of the subsequent acceleration / deceleration operation amount is greater than a predetermined threshold value Sh1. Determine whether.
 閾値Sh1は、誘導方向(減速方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量の絶対値|S(t1)|よりも大きく、且つ運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量の絶対値|S(t1)|よりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量の絶対値|S(t1)|と、運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量の絶対値|S(t1)|との中間値を、閾値Sh1として設定する。 The threshold value Sh1 is the absolute value of the subsequent acceleration / deceleration operation amount when the driver is lightly holding the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input. | S (t1) | greater than, and the driver later time acceleration or deceleration operation amount of the absolute value of the time was not holding the accelerator and brake levers 31 | set at smaller than the range | S (t1). Specifically, the absolute value | S (t1) | of the acceleration / deceleration operation amount at a later time when the driver lightly held the accelerator / brake lever 31 and the driver did not hold the accelerator / brake lever 31. An intermediate value of the absolute value | S (t1) | of the subsequent acceleration / deceleration operation amount is set as the threshold value Sh1.
 ここで、後刻加減速操作量S(t1)が誘導方向(減速方向)であり、且つ後刻加減速操作量の絶対値|S(t1)|が閾値Sh1よりも大きいときには、運転者がアクセル・ブレーキレバー31を握っていないと判断して上記のステップS805に移行する。一方、後刻加減速操作量S(t1)が誘導逆方向(加速方向)である、又は後刻加減速操作量の絶対値|S(t1)|が閾値Sh1以下であるときには、運転者がアクセル・ブレーキレバー31を握っていると判断してステップS812に移行する。 Here, when the subsequent acceleration / deceleration operation amount S (t1) is in the guiding direction (deceleration direction) and the absolute value | S (t1) | of the subsequent acceleration / deceleration operation amount is larger than the threshold value Sh1, the driver It is determined that the brake lever 31 is not gripped, and the process proceeds to step S805. On the other hand, when the subsequent acceleration / deceleration operation amount S (t1) is in the reverse direction (acceleration direction), or when the absolute value | S (t1) | of the subsequent acceleration / deceleration operation amount is equal to or less than the threshold value Sh1, It is determined that the brake lever 31 is being gripped, and the process proceeds to step S812.
 ステップS812では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の加減速操作量Sを後刻加減速操作量S(t2)として読込む。
 続くステップS813では、後刻加減速操作量S(t2)が誘導逆方向(加速方向)であり、且つ後刻加減速操作量の絶対値|S(t2)|が予め定めた閾値Sh2よりも大きいか否かを判定する。
In step S812, the acceleration / deceleration operation amount S at the time when a predetermined time t2 has elapsed after starting to input the additional reaction force Tp to the acceleration / deceleration operation system is read as the acceleration / deceleration operation amount S (t2) later.
In subsequent step S813, whether the subsequent acceleration / deceleration operation amount S (t2) is in the reverse direction (acceleration direction) and whether the absolute value | S (t2) | of the subsequent acceleration / deceleration operation amount is larger than a predetermined threshold Sh2. Determine whether or not.
 閾値Sh2は、加減速操作系に付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量の絶対値|Sh(t2)|よりも大きく、且つ運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量の絶対値|Sh(t2)|よりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量の絶対値|Sh(t2)|と、運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量の絶対値|Sh(t2)|との中間値を、閾値Sh2として設定する。 The threshold value Sh2 is the absolute value | Sh (t2) | of the acceleration / deceleration operation amount at a later time when the driver gently holds the accelerator / brake lever 31 when the additional reaction force Tp is input to the acceleration / deceleration operation system. Is set within a range smaller than the absolute value | Sh (t2) | of the acceleration / deceleration operation amount afterward when the driver firmly holds the accelerator / brake lever 31. Specifically, the driver firmly held the accelerator / brake lever 31 as the absolute value | Sh (t2) | An intermediate value of the absolute value | Sh (t2) | of the subsequent acceleration / deceleration operation amount is set as the threshold value Sh2.
 ここで、後刻加減速操作量S(t1)が誘導逆方向(加速方向)であり、且つ後刻加減速操作量の絶対値|S(t2)|が閾値Sh2よりも大きいときには、運転者がアクセル・ブレーキレバー31を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS814に移行する。一方、後刻加減速操作量S(t2)が誘導方向(減速方向)である、又は後刻加減速操作量の絶対値|S(t2)|が閾値Sh2以下であるときには、運転者がアクセル・ブレーキレバー31をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS805に移行する。
 ステップS814では、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力を中止すると共に、振動することのない誘導方向(減速方向)への付加反力Tpを代わりに出力してから所定のメインプログラムに復帰する。
Here, when the subsequent acceleration / deceleration operation amount S (t1) is in the reverse direction (acceleration direction) and the absolute value | S (t2) | of the subsequent acceleration / deceleration operation amount is larger than the threshold value Sh2, the driver -It means that the brake lever 31 is lightly grasped. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814. On the other hand, when the subsequent acceleration / deceleration operation amount S (t2) is in the guiding direction (deceleration direction) or the absolute value | S (t2) | of the subsequent acceleration / deceleration operation amount is equal to or smaller than the threshold value Sh2, the driver This means that the lever 31 is firmly held. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S805.
In step S814, the output of the additional reaction force Tp that vibrates by alternately changing the direction in the guide direction and the reverse direction of the guide is stopped, and the additional reaction force Tp in the guide direction (deceleration direction) that does not vibrate is replaced. And then return to a predetermined main program.
 《作用》
 次に、第7実施形態の作用について説明する。
 本実施形態は、先行車両との接触(又は接近)を抑制するために加減速操作を誘導するものである。
 先ず先行車両との車間距離を検出し(ステップS801)、先行車両に対する車間時間tdを算出し(ステップS802)、この車間時間tdが予め定めた閾値tbより短い、又は自車速Vが設定車速Vsより高いか否かを判定する(ステップS803)。そして、車間時間tdが予め定めた閾値tbより短い、又は自車速Vが設定車速Vsより高いときには、減速方向を加減速操作の誘導方向に設定し、車間時間tdと閾値tbとの偏差に応じて減速方向の目標操作量を設定する(ステップS806)。
<Action>
Next, the operation of the seventh embodiment will be described.
In the present embodiment, an acceleration / deceleration operation is induced in order to suppress contact (or approach) with a preceding vehicle.
First, an inter-vehicle distance from the preceding vehicle is detected (step S801), an inter-vehicle time td for the preceding vehicle is calculated (step S802), and the inter-vehicle time td is shorter than a predetermined threshold value tb or the host vehicle speed V is set to the set vehicle speed Vs. It is determined whether or not it is higher (step S803). When the inter-vehicle time td is shorter than the predetermined threshold value tb or the host vehicle speed V is higher than the set vehicle speed Vs, the deceleration direction is set as the guiding direction of the acceleration / deceleration operation, and according to the deviation between the inter-vehicle time td and the threshold value tb. The target operation amount in the deceleration direction is set (step S806).
 また、車間時間tdが予め定めた閾値tb以上で、且つ自車速Vが設定車速Vs以下であるときには、車間時間tdが予め定めた閾値taより長いか否かを判定する(ステップS804)。そして、車間時間tdが閾値taより長いときには、加速方向を加減速操作の誘導方向に設定し、車間時間tdと閾値taとの偏差に応じて目標操作量を設定する(ステップS807)。 Further, when the inter-vehicle time td is equal to or greater than a predetermined threshold tb and the host vehicle speed V is equal to or less than the set vehicle speed Vs, it is determined whether or not the inter-vehicle time td is longer than a predetermined threshold ta (step S804). When the inter-vehicle time td is longer than the threshold value ta, the acceleration direction is set as the guiding direction of the acceleration / deceleration operation, and the target operation amount is set according to the deviation between the inter-vehicle time td and the threshold value ta (step S807).
 こうして、誘導方向と目標操作量を設定したら、ステアリング操作の誘導方向、及び誘導逆方向に交互に向きを変え、誘導方向と誘導逆方向とで異なる周波数によって振動する付加反力Tpを設定し(ステップS808)、その付加反力Tpを出力する(ステップS809)。
 先行車両への追従走行では、一般に或る程度の車速で走行し、微調整程度の僅かな操作量で済む。このようなシーンでは、運転者はアクセル・ブレーキレバー31を軽く握る傾向がある。すなわち、運転者がアクセル・ブレーキレバー31を軽く握るときこそ、運転者が積極的なインフォメーションを必要としているときであり、加減速操作を誘導する運転操作支援が効果的になる。
Thus, once the guidance direction and the target operation amount are set, the directions are alternately changed to the steering operation guidance direction and the guidance reverse direction, and an additional reaction force Tp that vibrates at different frequencies in the guidance direction and the guidance reverse direction is set ( In step S808, the additional reaction force Tp is output (step S809).
In the follow-up traveling to the preceding vehicle, generally, the vehicle travels at a certain vehicle speed, and a slight operation amount of fine adjustment is sufficient. In such a scene, the driver tends to grasp the accelerator / brake lever 31 lightly. That is, the time when the driver gently holds the accelerator / brake lever 31 is when the driver needs active information, and driving operation support for inducing acceleration / deceleration operations is effective.
 そこで、運転者がアクセル・ブレーキレバー31を軽く握っているときに、加減速操作を誘導方向へと誘導できるような付加反力Tpを設定する。具体的には、誘導方向(減速方向)に変化する振幅の大きい低周波の波形と、誘導逆方向(加速方向)に変化する振幅の小さい高周波の波形と、を交互に繰り返す付加反力Tpを設定する。これは、外乱の周波数とアドミタンスとの特性に従って決定しており、このような付加反力Tpを加減速操作系に入力とすることで、運転者がアクセル・ブレーキレバー31を軽く握っているときに、加減速操作量θを誘導方向(減速方向)へと誘導することができる。また、運転者がアクセル・ブレーキレバー31をしっかり握っているときには、付加反力Tpが入力される直前の初期減速操作量付近で、加減速操作量Sが誘導方向(減速方向)と誘導逆方向(加速方向)とに交互に振れることになる。また、運転者がアクセル・ブレーキレバー31を握っていないときには、加減速操作量Sが誘導方向(減速方向)へと大きく振れることになる。 Therefore, an additional reaction force Tp is set so that the acceleration / deceleration operation can be guided in the guiding direction when the driver is lightly holding the accelerator / brake lever 31. Specifically, an additional reaction force Tp that alternately repeats a low-frequency waveform with a large amplitude that changes in the guidance direction (deceleration direction) and a high-frequency waveform with a small amplitude that changes in the reverse direction of the guidance (acceleration direction). Set. This is determined according to the characteristics of disturbance frequency and admittance, and when the driver gently holds the accelerator / brake lever 31 by inputting such an additional reaction force Tp to the acceleration / deceleration operation system. In addition, the acceleration / deceleration operation amount θ can be guided in the guidance direction (deceleration direction). When the driver firmly holds the accelerator / brake lever 31, the acceleration / deceleration operation amount S is in the guidance direction (deceleration direction) and the guidance reverse direction near the initial deceleration operation amount immediately before the additional reaction force Tp is input. Swing alternately (acceleration direction). Further, when the driver does not hold the accelerator / brake lever 31, the acceleration / deceleration operation amount S greatly fluctuates in the guidance direction (deceleration direction).
 本実施形態では、運転者がアクセル・ブレーキレバー31を軽く握っているときだけ、加減速操作を誘導方向に誘導するものであり、運転者がアクセル・ブレーキレバー31をしっかり握っているとき、及び運転者がアクセル・ブレーキレバー31を握っていないときには、加減速操作の誘導を中止する。
 そこで、アクセル・ブレーキレバー31に対する運転者の把持状態を判定する。
In the present embodiment, the acceleration / deceleration operation is guided in the guiding direction only when the driver is lightly holding the accelerator / brake lever 31, and when the driver is firmly holding the accelerator / brake lever 31, and When the driver does not hold the accelerator / brake lever 31, the acceleration / deceleration operation is stopped.
Therefore, the gripping state of the driver with respect to the accelerator / brake lever 31 is determined.
 先ず、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の加減速操作量Sを後刻加減速操作量S(t1)として検出し(ステップS810)、後刻加減速操作量S(t1)が予め定めた閾値Sh1よりも大きいか否かを判定する(ステップS811)。このとき、後刻加減速操作量の絶対値|S(t1)|が閾値Sh1よりも大きければ、運転者がアクセル・ブレーキレバー31を握っていないと判断し、付加反力Tpの付与を中止する(ステップS805)。このように、運転者がアクセル・ブレーキレバー31を握っておらず、運転者の加減速操作を誘導できない状況では、アクセル・ブレーキレバー31への付加反力Tpの付与を中止することで、加減速操作量Sの大振れや不必要な電力消費を避けることができる。 First, the acceleration / deceleration operation amount S at the time when a predetermined time t1 has elapsed after the input of the additional reaction force Tp to the acceleration / deceleration operation system is detected as an acceleration / deceleration operation amount S (t1) later (step S810). It is determined whether the acceleration / deceleration operation amount S (t1) is larger than a predetermined threshold value Sh1 (step S811). At this time, if the absolute value | S (t1) | of the acceleration / deceleration operation amount is larger than the threshold value Sh1, it is determined that the driver is not holding the accelerator / brake lever 31, and the application of the additional reaction force Tp is stopped. (Step S805). In this manner, in a situation where the driver does not hold the accelerator / brake lever 31 and the driver's acceleration / deceleration operation cannot be guided, the application of the additional reaction force Tp to the accelerator / brake lever 31 is stopped. Large fluctuations in the deceleration operation amount S and unnecessary power consumption can be avoided.
 また、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の加減速操作量Sを後刻加減速操作量S(t2)として検出し(ステップS812)、後刻加減速操作量の絶対値|S(t2)|が予め定めた閾値Sh2よりも大きいか否かを判定する(ステップS813)。このとき、後刻加減速操作量の絶対値|S(t2)|が閾値Sh2以下であれば、運転者がアクセル・ブレーキレバー31をしっかり握っていると判断し、付加反力Tpの付与を中止する(ステップS805)。このように、運転者がアクセル・ブレーキレバー31をしっかり握っているときには、意図的な加速を望んでいる可能性が高いと考えられる。すなわち、積極的な運転操作支援を望んでいない状況なので、アクセル・ブレーキレバー31への付加反力Tpの付与を中止することで、運転者の意思を優先すると共に、不必要な電力消費を避けることができる。 Further, the acceleration / deceleration operation amount S at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the accelerator / brake lever 31 is detected as an acceleration / deceleration operation amount S (t2) later (step S812). It is determined whether or not the absolute value | S (t2) | of the acceleration / deceleration operation amount is larger than a predetermined threshold value Sh2 (step S813). At this time, if the absolute value | S (t2) | of the acceleration / deceleration operation amount is not more than the threshold value Sh2, it is determined that the driver firmly holds the accelerator / brake lever 31, and the application of the additional reaction force Tp is stopped. (Step S805). Thus, when the driver holds the accelerator / brake lever 31 firmly, it is considered that there is a high possibility that the driver desires intentional acceleration. That is, since the driver does not want to actively support driving operation, by canceling the application of the additional reaction force Tp to the accelerator / brake lever 31, priority is given to the driver's intention and unnecessary power consumption is avoided. be able to.
 そして、後刻加減速操作量の絶対値|S(t1)|が閾値Sh1以下で、且つ後刻加減速操作量の絶対値|S(t2)|が閾値Sh2よりも大きいときに、運転者がアクセル・ブレーキレバー31を軽く握っていると判断し、さらに継続して運転者の加減速操作を誘導方向へと誘導する(ステップS814)。具体的には、誘導方向、及び誘導逆方向に交互に向きを変えて振動する付加反力Tpの出力から、振動することのない誘導方向(減速方向)への付加反力Tpへと切り替える。この振動することのない誘導方向(減速方向)への付加反力Tpを加減速操作系に入力することで、運転者の加減速操作を誘導方向(減速方向)へとスムーズに誘導することができる。これにより、運転者が積極的なインフォメーションを必要としているようなシーンで、効果的な運転操作支援を行うことができる。
 その他の作用については、前述した第2実施形態と同様である。
When the absolute value | S (t1) | of the subsequent acceleration / deceleration operation amount is equal to or smaller than the threshold value Sh1, and the absolute value | S (t2) | of the subsequent acceleration / deceleration operation amount is larger than the threshold value Sh2, the driver It is determined that the brake lever 31 is lightly grasped, and further, the driver's acceleration / deceleration operation is continuously guided in the guiding direction (step S814). Specifically, the output is switched from the output of the additional reaction force Tp that alternately vibrates in the guidance direction and the reverse direction to the additional reaction force Tp in the guidance direction (deceleration direction) that does not vibrate. By inputting the additional reaction force Tp in the guidance direction (deceleration direction) without vibration to the acceleration / deceleration operation system, the driver's acceleration / deceleration operation can be smoothly guided in the guidance direction (deceleration direction). it can. Thereby, effective driving operation support can be performed in a scene where the driver needs active information.
Other operations are the same as those in the second embodiment described above.
 《応用例1》
 本実施形態では、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの加減速操作量Sの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しているが、これに限定されるものではない。すなわち、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば車速Vの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断してもよい。
<< Application Example 1 >>
In the present embodiment, the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31. However, the present invention is not limited to this. Is not to be done. That is, the gripping state of the accelerator / brake lever 31 may be determined according to, for example, a change in the vehicle speed V after the input of the additional reaction force Tp to the accelerator / brake lever 31 is started.
 図21は、応用例1を示す付加反力設定処理を示すフローチャートである。
 ここでは、前述したステップS810、S811、S812、S813の処理を、下記のように変更する。
 ステップS810では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の車速Vを後刻車速V(t1)として読込む。
 ステップS811では、後刻車速V(t1)が誘導方向(減速方向)であり、且つ後刻車速Vが予め定めた閾値V1よりも大きいか否かを判定する。
FIG. 21 is a flowchart showing an additional reaction force setting process showing the first application example.
Here, the processes of steps S810, S811, S812, and S813 described above are changed as follows.
In step S810, the vehicle speed V at the time when a predetermined time t1 has elapsed from the start of input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later vehicle speed V (t1) .
In step S811, it is determined whether the subsequent vehicle speed V (t1) is the guidance direction (deceleration direction) and the subsequent vehicle speed V is greater than a predetermined threshold value V1.
 閾値V1は、誘導方向(減速方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車速Vよりも大きく、且つ運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量によって実現される車速Vよりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車速Vと、運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量によって実現される車速Vとの中間値を、閾値V1として設定する。 The threshold value V1 is realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input. The vehicle speed V is set within a range that is greater than the vehicle speed V and is smaller than the vehicle speed V realized by the subsequent acceleration / deceleration operation amount when the driver does not hold the accelerator / brake lever 31. Specifically, the vehicle speed V realized by the acceleration / deceleration operation amount later when the driver gently holds the accelerator / brake lever 31 and the later time when the driver does not hold the accelerator / brake lever 31. An intermediate value with respect to the vehicle speed V realized by the acceleration / deceleration operation amount is set as the threshold value V1.
 ここで、後刻車速V(t1)が誘導方向(減速方向)であり、且つ後刻車速Vが閾値V1よりも大きいときには、運転者がアクセル・ブレーキレバー31を握っていないと判断して上記のステップS805に移行する。一方、後刻車速V(t1)が誘導逆方向(加速方向)である、又は後刻車速Vが閾値V1以下であるときには、運転者がアクセル・ブレーキレバー31を握っていると判断してステップS812に移行する。
 ステップS812では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の車速Vを後刻車速V(t2)として読込む。
Here, when the subsequent vehicle speed V (t1) is in the guiding direction (deceleration direction) and the subsequent vehicle speed V is greater than the threshold value V1, it is determined that the driver does not hold the accelerator / brake lever 31, and the above steps are performed. The process proceeds to S805. On the other hand, if the later vehicle speed V (t1) is in the reverse direction (acceleration direction) or the later vehicle speed V is equal to or lower than the threshold value V1, it is determined that the driver is holding the accelerator / brake lever 31, and the process proceeds to step S812. Transition.
In step S812, the vehicle speed V at the time when a predetermined time t2 has elapsed from the start of input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the later vehicle speed V (t2) .
 ステップS813では、後刻車速V(t2)が誘導逆方向(加速方向)であり、且つ後刻車速Vが予め定めた閾値V2よりも大きいか否かを判定する。
 閾値V2は、加減速操作系に付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車速Vよりも大きく、且つ運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量によって実現される車速Vよりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車速Vと、運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量によって実現される車速Vとの中間値を、閾値V2として設定する。
In step S813, it is determined whether or not the subsequent vehicle speed V (t2) is in the reverse direction (acceleration direction) and the subsequent vehicle speed V is greater than a predetermined threshold value V2.
The threshold value V2 is greater than the vehicle speed V realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when the additional reaction force Tp is input to the acceleration / deceleration operation system. In addition, the vehicle speed V is set in a range smaller than the vehicle speed V realized by the amount of acceleration / deceleration operation at a later time when the driver firmly holds the accelerator / brake lever 31. Specifically, the vehicle speed V realized by the acceleration / deceleration operation amount at a later time when the driver gently holds the accelerator / brake lever 31 and the later time when the driver holds the accelerator / brake lever 31 firmly. An intermediate value with the vehicle speed V realized by the acceleration / deceleration operation amount is set as the threshold value V2.
 ここで、後刻車速V(t1)が誘導逆方向(加速方向)であり、且つ後刻車速Vが閾値V2よりも大きいときには、運転者がアクセル・ブレーキレバー31を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS814に移行する。一方、後刻車速V(t2)が誘導方向(減速方向)である、又は後刻車速Vが閾値V2以下であるときには、運転者がアクセル・ブレーキレバー31をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS805に移行する。
 上記のように、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば車速Vの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しても、第7実施形態と同等の作用効果を得ることができる。
Here, when the subsequent vehicle speed V (t1) is in the reverse direction (acceleration direction) and the subsequent vehicle speed V is larger than the threshold value V2, it means that the driver is lightly holding the accelerator / brake lever 31. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814. On the other hand, when the later vehicle speed V (t2) is in the guiding direction (deceleration direction), or when the later vehicle speed V is equal to or less than the threshold value V2, it means that the driver holds the accelerator / brake lever 31 firmly. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S805.
As described above, even if the gripping state of the accelerator / brake lever 31 is determined according to, for example, a change in the vehicle speed V after the input of the additional reaction force Tp to the accelerator / brake lever 31, it is the same as in the seventh embodiment. The effect of this can be obtained.
 《応用例2》
 本実施形態では、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの加減速操作量Sの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しているが、これに限定されるものではない。すなわち、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば車間時間tdの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断してもよい。
<< Application Example 2 >>
In the present embodiment, the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31. However, the present invention is not limited to this. Is not to be done. That is, the holding state of the accelerator / brake lever 31 may be determined according to, for example, a change in the inter-vehicle time td after the input of the additional reaction force Tp to the accelerator / brake lever 31.
 図21は、応用例1を示す付加反力設定処理を示すフローチャートである。
 ここでは、前述したステップS810、S811、S812、S813の処理を、下記のように変更する。
 ステップS810では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t1が経過した時点の車間時間tdを後刻車間時間td(t1)として読込む。
 ステップS811では、後刻車間時間td(t1)が誘導方向(減速方向)であり、且つ後刻車間時間tdが予め定めた閾値td1よりも大きいか否かを判定する。
FIG. 21 is a flowchart showing an additional reaction force setting process showing the first application example.
Here, the processes of steps S810, S811, S812, and S813 described above are changed as follows.
In step S810, the inter-vehicle time td when a predetermined time t1 has elapsed since the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the inter-vehicle time td (t1) .
In step S811, it is determined whether the subsequent inter-vehicle time td (t1) is in the guidance direction (deceleration direction) and the subsequent inter-vehicle time td is greater than a predetermined threshold value td1.
 閾値td1は、誘導方向(減速方向)に変化する低周波の付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車間時間tdよりも大きく、且つ運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量によって実現される車間時間tdよりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車間時間tdと、運転者がアクセル・ブレーキレバー31を握っていなかったときの後刻加減速操作量によって実現される車間時間tdとの中間値を、閾値td1として設定する。 The threshold value td1 is realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when a low-frequency additional reaction force Tp that changes in the guiding direction (deceleration direction) is input. It is set within a range that is greater than the inter-vehicle time td and is smaller than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver does not hold the accelerator / brake lever 31. Specifically, the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver is holding the accelerator / brake lever 31 lightly, and when the driver is not holding the accelerator / brake lever 31 An intermediate value between the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount is set as the threshold value td1.
 ここで、後刻車間時間td(t1)が誘導方向(減速方向)であり、且つ後刻車間時間tdが閾値td1よりも大きいときには、運転者がアクセル・ブレーキレバー31を握っていないと判断して上記のステップS805に移行する。一方、後刻車間時間td(t1)が誘導逆方向(加速方向)である、又は後刻車間時間tdが閾値td1以下であるときには、運転者がアクセル・ブレーキレバー31を握っていると判断してステップS812に移行する。 Here, when the following inter-vehicle time td (t1) is in the guidance direction (deceleration direction) and the subsequent inter-vehicle time td is larger than the threshold value td1, it is determined that the driver is not grasping the accelerator / brake lever 31 and The process proceeds to step S805. On the other hand, when the following inter-vehicle time td (t1) is in the reverse direction (acceleration direction), or when the following inter-vehicle time td is less than or equal to the threshold value td1, it is determined that the driver is holding the accelerator / brake lever 31. The process proceeds to S812.
 ステップS812では、加減速操作系に付加反力Tpを入力し始めてから予め定めた時間t2が経過した時点の車間時間tdを後刻車間時間td(t2)として読込む。
 ステップS813では、後刻車間時間td(t2)が誘導逆方向(加速方向)であり、且つ後刻車間時間tdが予め定めた閾値td2よりも大きいか否かを判定する。
In step S812, the inter-vehicle time td when a predetermined time t2 has elapsed since the start of the input of the additional reaction force Tp to the acceleration / deceleration operation system is read as the inter-vehicle time td (t2) .
In step S813, it is determined whether the subsequent inter-vehicle time td (t2) is in the reverse direction (acceleration direction) and the subsequent inter-vehicle time td is greater than a predetermined threshold value td2.
 閾値td2は、加減速操作系に付加反力Tpを入力した場合に、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車間時間tdよりも大きく、且つ運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量によって実現される車間時間tdよりも小さな範囲で設定する。具体的には、運転者がアクセル・ブレーキレバー31を軽く把持していたときの後刻加減速操作量によって実現される車間時間tdと、運転者がアクセル・ブレーキレバー31をしっかり握っていたときの後刻加減速操作量によって実現される車間時間tdとの中間値を、閾値td2として設定する。 The threshold value td2 is greater than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver gently holds the accelerator / brake lever 31 when the additional reaction force Tp is input to the acceleration / deceleration operation system. In addition, it is set within a range smaller than the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver holds the accelerator / brake lever 31 firmly. Specifically, the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount when the driver is lightly holding the accelerator / brake lever 31, and the time when the driver holds the accelerator / brake lever 31 firmly. An intermediate value between the inter-vehicle time td realized by the subsequent acceleration / deceleration operation amount is set as the threshold value td2.
 ここで、後刻車間時間td(t1)が誘導逆方向(加速方向)であり、且つ後刻車間時間tdが閾値td2よりも大きいときには、運転者がアクセル・ブレーキレバー31を軽く握っていることを意味する。したがって、運転操作支援による誘導を受け入れている、又は望んでいると判断してステップS814に移行する。一方、後刻車間時間td(t2)が誘導方向(減速方向)である、又は後刻車間時間tdが閾値td2以下であるときには、運転者がアクセル・ブレーキレバー31をしっかり握っていることを意味する。したがって、運転操作支援による誘導を受け入れていない、又は望んでいないと判断して上記のステップS805に移行する。
 上記のように、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば車間時間tdの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しても、第7実施形態と同等の作用効果を得ることができる。
Here, when the following inter-vehicle time td (t1) is in the reverse direction (acceleration direction) and the subsequent inter-vehicle time td is larger than the threshold value td2, it means that the driver is lightly holding the accelerator / brake lever 31. To do. Therefore, it is determined that guidance by driving operation support is accepted or desired, and the process proceeds to step S814. On the other hand, when the following inter-vehicle time td (t2) is in the guiding direction (deceleration direction) or the following inter-vehicle time td is equal to or less than the threshold value td2, it means that the driver holds the accelerator / brake lever 31 firmly. Therefore, it is determined that guidance by driving operation support is not accepted or not desired, and the process proceeds to step S805.
As described above, even if the gripping state of the accelerator / brake lever 31 is determined according to, for example, a change in the inter-vehicle time td after the input of the additional reaction force Tp to the accelerator / brake lever 31, the seventh embodiment Equivalent effects can be obtained.
 《応用例3》
 本実施形態では、車両の加減速を操る加減速操作子としてのアクセル・ブレーキレバー31に付加反力Tpを付与することで、運転者の加減速操作を誘導しているが、これに限定されるものではない。例えば、車両の加速を操る加速操作子としてのアクセルペダルに付加反力Tpを付与することで、運転者の加速操作を誘導してもよい。また、車両の減速を操る減速操作子としてのブレーキペダルに付加反力Tpを付与することで、運転者の減速操作を誘導してもよい。なお、アクセルペダルやブレーキペダルに適用する場合には、ペダル踏込み方向、及びペダル踏み戻し方向に付加反力Tpを付与することから、つま先をペダルに固定するための金具(トゥクリップ)をペダルに設置する必要がある。
 このように、車両の加速及び減速の少なくとも一方を操る加減速操作子としてのペダルに付加反力Tpを付与する構成としても、第7実施形態と同等の作用効果を得ることができる。
<< Application Example 3 >>
In the present embodiment, the driver's acceleration / deceleration operation is induced by applying an additional reaction force Tp to the accelerator / brake lever 31 as an acceleration / deceleration operator that controls acceleration / deceleration of the vehicle. However, the present invention is not limited to this. It is not something. For example, the driver's acceleration operation may be induced by applying an additional reaction force Tp to an accelerator pedal as an acceleration operation element that controls acceleration of the vehicle. Further, the driver's deceleration operation may be guided by applying an additional reaction force Tp to a brake pedal as a deceleration operation element that controls the deceleration of the vehicle. In addition, when applied to an accelerator pedal or a brake pedal, an additional reaction force Tp is applied in the pedal depressing direction and the pedal depressing direction. Therefore, a bracket (toe clip) for fixing the toes to the pedal is provided on the pedal. It is necessary to install.
As described above, even when the additional reaction force Tp is applied to the pedal as an acceleration / deceleration operation element that controls at least one of acceleration and deceleration of the vehicle, the same effects as those of the seventh embodiment can be obtained.
 《応用例4》
 本実施形態では、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの加減速操作量Sの変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しているが、これに限定されるものではない。すなわち、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば移動距離(走行距離)に応じて、アクセル・ブレーキレバー31の把持状態を判断してもよい。
 これは、前述した応用例1の車速Vに代わる状態変数として、付加反力Tpを入力し始めてからの経過時間と車速とに基づいて算出される移動距離を用いる。
 このように、アクセル・ブレーキレバー31に付加反力Tpを入力し始めてからの例えば移動距離の変化に応じて、アクセル・ブレーキレバー31の把持状態を判断しても、第7実施形態と同等の作用効果を得ることができる。
<< Application Example 4 >>
In the present embodiment, the gripping state of the accelerator / brake lever 31 is determined according to the change in the acceleration / deceleration operation amount S after the addition reaction force Tp starts to be input to the accelerator / brake lever 31. However, the present invention is not limited to this. Is not to be done. That is, the gripping state of the accelerator / brake lever 31 may be determined according to, for example, the movement distance (travel distance) after the addition reaction force Tp starts to be input to the accelerator / brake lever 31.
This uses a travel distance calculated based on the elapsed time from the start of input of the additional reaction force Tp and the vehicle speed as a state variable instead of the vehicle speed V of the application example 1 described above.
Thus, even if the gripping state of the accelerator / brake lever 31 is determined according to, for example, a change in the moving distance after the input reaction force Tp starts to be input to the accelerator / brake lever 31, it is equivalent to the seventh embodiment. An effect can be obtained.
 以上、アクセル・ブレーキレバー31が「運転操作子」に対応し、反力モータ32が「操作力付与部」に対応し、ステップS803、S804、S806、S807の処理が「誘導方向設定部」に対応し、ステップS808の処理が「操作力設定部」に対応し、駆動制御部26が「制御部」に対応する。また、ステップS811、S805の処理が「操作支援中止部」に対応し、ステップS813、S814の処理が「操作支援切替部」に対応する。また、付加反力Tpが「操作力」に対応し、加減速操作量Sが「状態変数」に対応し、時間t1が「第一の時間」に対応し、後刻加減速操作量S(t1)が「第一の後刻状態変数」に対応し、閾値Sh1が「第一の閾値」に対応する。また、時間t2が「第二の時間」に対応し、後刻加減速操作量S(t2)が「第二の後刻状態変数」に対応し、閾値Sh2が「第二の閾値」に対応する。 As described above, the accelerator / brake lever 31 corresponds to the “driving operator”, the reaction motor 32 corresponds to the “operating force applying unit”, and the processes in steps S803, S804, S806, and S807 are changed to the “guidance direction setting unit”. Correspondingly, the processing in step S808 corresponds to the “operation force setting unit”, and the drive control unit 26 corresponds to the “control unit”. Further, the processes in steps S811 and S805 correspond to the “operation support cancel unit”, and the processes in steps S813 and S814 correspond to the “operation support switching unit”. The additional reaction force Tp corresponds to the “operation force”, the acceleration / deceleration operation amount S corresponds to the “state variable”, the time t1 corresponds to the “first time”, and the acceleration / deceleration operation amount S (t1 at a later time). ) Corresponds to the “first late state variable”, and the threshold value Sh1 corresponds to the “first threshold value”. Further, the time t2 corresponds to the “second time”, the subsequent acceleration / deceleration operation amount S (t2) corresponds to the “second subsequent state variable”, and the threshold Sh2 corresponds to the “second threshold”.
 《効果》
 次に、第7実施形態における主要部の効果を記す。
(1)本実施形態に係る運転操作支援装置によれば、運転操作子として、車両の加減速を操るアクセル・ブレーキレバー31を用い、このアクセル・ブレーキレバー31に対して付加反力Tpを付与する。
 このように、運転操作子として、アクセル・ブレーキレバー31を用いることで、運転者の加減速操作を誘導することができる。
"effect"
Next, the effect of the principal part in 7th Embodiment is described.
(1) According to the driving operation support apparatus according to the present embodiment, the accelerator / brake lever 31 that controls acceleration / deceleration of the vehicle is used as the driving operator, and the additional reaction force Tp is applied to the accelerator / brake lever 31. To do.
Thus, by using the accelerator / brake lever 31 as a driving operator, the driver's acceleration / deceleration operation can be guided.
(2)本実施形態に係る運転操作支援装置によれば、アクセル・ブレーキレバー31の加減速操作量Sを、状態変数として検出する。
 このように、アクセル・ブレーキレバー31の加減速操作量Sを、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
(2) According to the driving operation support apparatus according to the present embodiment, the acceleration / deceleration operation amount S of the accelerator / brake lever 31 is detected as a state variable.
Thus, by detecting the acceleration / deceleration operation amount S of the accelerator / brake lever 31 as the state variable, the gripping state of the driver can be easily determined.
(3)本実施形態に係る運転操作支援装置によれば、アクセル・ブレーキレバー31の加減速操作量Sに対応した車両挙動となる車速Vを、状態変数として検出することもできる。
 このように、車両挙動となる車速Vを、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
(3) According to the driving operation support device according to the present embodiment, the vehicle speed V that causes the vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31 can also be detected as a state variable.
Thus, by detecting the vehicle speed V, which is a vehicle behavior, as a state variable, it is possible to easily determine the gripping state of the driver.
(4)本実施形態に係る運転操作支援装置によれば、アクセル・ブレーキレバー31の加減速操作量Sに対応した車両挙動となる初期状態からの移動距離を、状態変数として検出することもできる。
 このように、車両挙動となる初期状態からの移動距離を、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
(4) According to the driving operation support device according to the present embodiment, the movement distance from the initial state that is the vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31 can also be detected as a state variable. .
As described above, by detecting the movement distance from the initial state as the vehicle behavior as the state variable, it is possible to easily determine the gripping state of the driver.
(5)本実施形態に係る運転操作支援装置によれば、アクセル・ブレーキレバー31の加減速操作量Sに対応した車両挙動となる、自車両と自車進路前方に存在する物体との相対関係を、状態変数として検出する。
 このように、自車両と自車進路前方に存在する物体との相対関係を、状態変数として検出することで、運転者の把持状態を容易に判定することができる。
(5) According to the driving operation support device according to the present embodiment, the relative relationship between the host vehicle and an object existing ahead of the host vehicle course that has a vehicle behavior corresponding to the acceleration / deceleration operation amount S of the accelerator / brake lever 31. Are detected as state variables.
Thus, by detecting the relative relationship between the host vehicle and the object existing ahead of the host vehicle path as the state variable, the gripping state of the driver can be easily determined.
 以上、本願が優先権を主張する日本国特許出願P2012-060429(2012年3月16日出願)の全内容は、ここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
As described above, the entire contents of the Japanese patent application P2012-060429 (filed on Mar. 16, 2012) to which the present application claims priority are incorporated herein by reference.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure will be apparent to those skilled in the art.
1     ステアリングホイール
2     ステアリングシャフト
3L、3R    転舵輪
4     ナックルアーム
5     タイロッド
6     ラックアンドピニヨン
7     ピニヨンシャフト
8     反力モータ
9     転舵モータ
10   クラッチ
11   操舵角センサ
12   転舵角センサ
13   ハブセンサ
14   車速センサ
15   ヨーレートセンサ
16   周辺環境認識装置
17   ナビゲーションシステム
20   コントローラ
21   転舵角制御部
22   操舵反力制御部
23   ベース反力設定部
24   付加反力設定部
25   加算部
26   駆動制御部
31   アクセル・ブレーキレバー
32   反力モータ
33   エンジン出力制御装置
34   ブレーキアクチュエータ
35   アクセル・ブレーキセンサ
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3L, 3R Steering wheel 4 Knuckle arm 5 Tie rod 6 Rack and pinion 7 Pinion shaft 8 Reaction force motor 9 Steering motor 10 Clutch 11 Steering angle sensor 12 Steering angle sensor 13 Hub sensor 14 Vehicle speed sensor 15 Yaw rate sensor 16 Ambient environment recognition device 17 Navigation system 20 Controller 21 Steering angle control unit 22 Steering reaction force control unit 23 Base reaction force setting unit 24 Additional reaction force setting unit 25 Addition unit 26 Drive control unit 31 Accelerator / brake lever 32 Reaction force motor 33 Engine output control device 34 Brake actuator 35 Accelerator / brake sensor

Claims (29)

  1.  運転者によって操作される運転操作子と、
     前記運転操作子に対して操作方向の一方及び他方に向けて操作力を付与可能な操作力付与部と、
     車両を誘導するための誘導方向を設定する誘導方向設定部と、
     前記運転操作子に対する前記操作力として、前記誘導方向設定部で設定した誘導方向、及び誘導逆方向に交互に向きを変え、且つ前記誘導方向と前記誘導逆方向とで異なる周波数によって振動する前記操作力を設定する操作力設定部と、
     前記操作力設定部で設定した前記操作力に応じて前記操作力付与部を駆動制御する制御部と、を備えることを特徴とする運転操作支援装置。
    A driving operator operated by the driver;
    An operation force applying unit capable of applying an operation force toward one and the other of the operation directions with respect to the driving operator;
    A guidance direction setting unit for setting a guidance direction for guiding the vehicle;
    As the operation force with respect to the driving operator, the operation is alternately changed in the guidance direction set by the guidance direction setting unit and the guidance reverse direction, and vibrates at different frequencies in the guidance direction and the guidance reverse direction. An operation force setting unit for setting force,
    And a control unit that drives and controls the operation force applying unit according to the operation force set by the operation force setting unit.
  2.  前記操作力設定部は、
     異なる二つの周波数を予め設定し、前記誘導逆方向に向くときに相対的に低い周波数とし、前記誘導方向に向くときに相対的に高い周波数とする前記操作力を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The operating force setting unit
    Two different frequencies are set in advance, and the operating force is set to be a relatively low frequency when facing in the guiding reverse direction and a relatively high frequency when facing in the guiding direction. Item 2. The driving operation support device according to Item 1.
  3.  前記操作力設定部は、
     異なる二つの周波数を予め設定し、前記誘導方向に向くときに相対的に低い周波数とし、前記誘導逆方向に向くときに相対的に高い周波数とする前記操作力を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The operating force setting unit
    Two different frequencies are set in advance, and the operation force is set to a relatively low frequency when facing in the guiding direction and a relatively high frequency when facing in the guiding reverse direction. Item 2. The driving operation support device according to Item 1.
  4.  前記運転操作子の操作量、及び前記操作量に対応した車両挙動のうち、少なくとも一方からなる状態変数を検出する状態変数検出部と、
     前記操作力を前記運転操作子に付与し始めてから予め定めた第一の時間が経過したときに、前記状態変数検出部で検出した状態変数を第一の後刻状態変数とし、前記第一の後刻状態変数の絶対値が予め定めた第一の閾値よりも大きいときに、前記運転操作子への振動する前記操作力の付与を中止する操作支援中止部と、を備えることを特徴とする請求項1に記載の運転操作支援装置。
    A state variable detection unit for detecting a state variable consisting of at least one of an operation amount of the driving operator and a vehicle behavior corresponding to the operation amount;
    The state variable detected by the state variable detection unit when the first predetermined time has elapsed since the start of applying the operating force to the driving operation element is set as the first latter state variable, and the first latter time An operation support stopping unit that stops applying the operating force that vibrates to the driving operator when the absolute value of the state variable is larger than a predetermined first threshold. The driving operation support device according to 1.
  5.  前記運転操作子の操作量、及び前記操作量に対応した車両挙動のうち、少なくとも一方からなる状態変数を検出する状態変数検出部と、
     前記操作力を前記運転操作子に付与し始めてから予め定めた第二の時間が経過したときに、前記状態変数検出部で検出した状態変数を第二の後刻状態変数とし、前記第二の後刻状態変数の絶対値が予め定めた第二の閾値よりも大きいときに、前記運転操作子への振動する前記操作力の付与を中止し、且つ前記運転操作子に対して前記誘導方向への前記操作力を付与する操作支援切替部と、を備えることを特徴とする請求項1に記載の運転操作支援装置。
    A state variable detection unit for detecting a state variable consisting of at least one of an operation amount of the driving operator and a vehicle behavior corresponding to the operation amount;
    The state variable detected by the state variable detector when the second predetermined time has elapsed since the start of applying the operating force to the driving operation element is set as the second subsequent state variable, and the second subsequent time When the absolute value of the state variable is larger than a predetermined second threshold value, the application of the operating force that vibrates to the driving operation element is stopped, and the driving operation element in the guidance direction is stopped. The operation support switching device according to claim 1, further comprising an operation support switching unit that applies an operation force.
  6.  前記第二の後刻状態変数の絶対値が予め定めた第二の閾値よりも小さいときに、前記運転操作子への振動する前記操作力の付与を中止する操作支援中止部と、を備えることを特徴とする請求項5に記載の運転操作支援装置。 An operation support stopping unit that stops applying the operating force that vibrates to the driver when the absolute value of the second later state variable is smaller than a predetermined second threshold value. The driving operation support apparatus according to claim 5, wherein
  7.  前記第一の時間は、
     前記運転操作子に対して前記操作力を付与し始めてから、前記振動における最初の極値に達するまでの時間であることを特徴とする請求項4に記載の運転操作支援装置。
    The first time is
    The driving operation support apparatus according to claim 4, wherein the driving operation support apparatus is a time from when the operation force is started to be applied to the driving operation element until the first extreme value in the vibration is reached.
  8.  運転者が前記運転操作子を把持しているときの前記第一の後刻状態変数の絶対値と、運転者が前記運転操作子を把持していないときの前記第一の後刻状態変数の絶対値と、を予め求め、
     前記第一の閾値は、
     運転者が前記運転操作子を把持しているときの前記第一の後刻状態変数の絶対値よりも大きく、且つ運転者が前記運転操作子を把持していないときの前記第一の後刻状態変数の絶対値よりも小さな範囲で設定されることを特徴とする請求項4に記載の運転操作支援装置。
    The absolute value of the first latter state variable when the driver is holding the driving operator, and the absolute value of the first latter state variable when the driver is not holding the driving operator And in advance,
    The first threshold is
    The first latter state variable when the driver is holding the driving operator and is larger than the absolute value of the first latter state variable and the driver is not holding the driving operator. The driving operation support device according to claim 4, wherein the driving operation support device is set in a range smaller than an absolute value of.
  9.  前記操作力設定部は、
     異なる二つの周波数を予め設定し、相対的に低い周波数から始まる前記操作力を設定することを特徴とする請求項4に記載の運転操作支援装置。
    The operating force setting unit
    The driving operation support apparatus according to claim 4, wherein two different frequencies are set in advance, and the operation force starting from a relatively low frequency is set.
  10.  前記第二の時間は、
     前記運転操作子に対して前記操作力を付与し始めてから、前記振動における二つ目の変曲点に達するまでの時間であることを特徴とする請求項5に記載の運転操作支援装置。
    The second time is
    The driving operation support apparatus according to claim 5, wherein the driving operation support apparatus is a time from when the operation force is started to be applied to the driving operation element until the second inflection point in the vibration is reached.
  11.  前記操作力設定部が、前記誘導逆方向に向くときに相対的に低い周波数とし、前記誘導方向に向くときに相対的に高い周波数とする前記操作力を設定した場合には、
     前記運転操作子に対する運転者の異なる二つの把持状態を予め定義すると共に、前記運転操作子に対する運転者の把持状態が相対的に低いときの前記第二の後刻状態変数の絶対値と、前記運転操作子に対する運転者の把持状態が相対的に高いときの前記第二の後刻状態変数の絶対値と、を予め求め、
     前記第二の閾値は、
     前記運転操作子に対する運転者の把持状態が相対的に低いときの前記第二の後刻状態変数の絶対値よりも大きく、且つ前記運転操作子に対する運転者の把持状態が相対的に高いときの前記第二の後刻状態変数の絶対値よりも小さな範囲で設定されることを特徴とする請求項5に記載の運転操作支援装置。
    When the operation force setting unit sets the operation force to be a relatively low frequency when facing the reverse direction of the guidance and a relatively high frequency when facing the guidance direction,
    Two different gripping states of the driver with respect to the driving operator are defined in advance, and the absolute value of the second later state variable when the gripping state of the driver with respect to the driving operator is relatively low, and the driving An absolute value of the second subsequent state variable when the gripping state of the driver with respect to the operator is relatively high, and in advance,
    The second threshold is:
    The absolute value of the second subsequent state variable when the gripping state of the driver with respect to the driving operator is relatively low, and the gripping state of the driver with respect to the driving operator is relatively high The driving operation support device according to claim 5, wherein the driving operation support device is set in a range smaller than an absolute value of the second later state variable.
  12.  前記操作力設定部が、前記誘導方向に向くときに相対的に低い周波数とし、前記誘導逆方向に向くときに相対的に高い周波数とする前記操作力を設定した場合には、
     前記運転操作子に対する運転者の異なる二つの把持状態を予め定義すると共に、前記運転操作子に対する運転者の把持状態が相対的に高いときの前記第二の後刻状態変数の絶対値と、前記運転操作子に対する運転者の把持状態が相対的に低いときの前記第二の後刻状態変数の絶対値と、を予め求め、
     前記第二の閾値は、
     前記運転操作子に対する運転者の把持状態が相対的に高いときの前記第二の後刻状態変数の絶対値よりも大きく、且つ前記運転操作子に対する運転者の把持状態が相対的に低いときの前記第二の後刻状態変数の絶対値よりも小さな範囲で設定されることを特徴とする請求項5に記載の運転操作支援装置。
    When the operating force setting unit sets the operating force to be a relatively low frequency when facing in the guiding direction and a relatively high frequency when facing in the guiding reverse direction,
    Two different gripping states of the driver with respect to the driving operator are defined in advance, and the absolute value of the second subsequent state variable when the gripping state of the driver with respect to the driving operator is relatively high, and the driving The absolute value of the second subsequent state variable when the gripping state of the driver with respect to the operator is relatively low is obtained in advance,
    The second threshold is:
    The absolute value of the second subsequent state variable when the gripping state of the driver with respect to the driving operator is relatively high, and the gripping state of the driver with respect to the driving operator is relatively low. The driving operation support device according to claim 5, wherein the driving operation support device is set in a range smaller than an absolute value of the second later state variable.
  13.  前記操作力設定部は、
     異なる二つの振幅を予め設定し、前記誘導逆方向に向くときに相対的に小さい振幅とし、前記誘導方向に向くときに相対的に大きい振幅とする前記操作力を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The operating force setting unit
    Two different amplitudes are set in advance, and the operating force is set to be a relatively small amplitude when facing in the reverse direction of the guidance, and a relatively large amplitude when facing in the direction of guidance. Item 2. The driving operation support device according to Item 1.
  14.  前記運転操作子に対する運転者の異なる二つの把持状態を予め定義し、
     前記操作力設定部は、
     前記誘導逆方向に向くときに相対的に低い周波数とし、前記誘導方向に向くときに相対的に高い周波数とする前記操作力を設定した場合には、
     前記運転操作子に対する運転者の把持状態が相対的に低い場合に、
     前記操作力が前記誘導逆方向に向くときと前記誘導方向に向くときとで、前記運転操作子の操作量、及び前記操作量に対応した車両挙動のうち、少なくとも一方からなる状態変数が一致するように、
     前記操作力における前記誘導逆方向に向くときと前記誘導方向に向くときとの振幅比を設定することを特徴とすることを特徴とする請求項13に記載の運転操作支援装置。
    Predefining two different gripping states of the driver for the driving operator,
    The operating force setting unit
    When the operating force is set to a relatively low frequency when facing in the guiding reverse direction and a relatively high frequency when facing in the guiding direction,
    When the gripping state of the driver with respect to the driving operator is relatively low,
    A state variable consisting of at least one of the operation amount of the driving operator and the vehicle behavior corresponding to the operation amount matches when the operation force is directed in the reverse direction of the guidance and when the operation force is directed in the guidance direction. like,
    The driving operation support apparatus according to claim 13, wherein an amplitude ratio between the direction of the operation force toward the reverse direction of the guidance and the direction of the direction of the guidance is set.
  15.  前記運転操作子に対する運転者の異なる二つの把持状態を予め定義し、
     前記操作力設定部は、
     前記誘導方向に向くときに相対的に低い周波数とし、前記誘導逆方向に向くときに相対的に高い周波数とする前記操作力を設定した場合には、
     前記運転操作子に対する運転者の把持状態が相対的に高い場合に、
     前記操作力が前記誘導方向に向くときと前記誘導逆方向に向くときとで、前記運転操作子の操作量、及び前記操作量に対応した車両挙動のうち、少なくとも一方からなる状態変数が一致するように、
     前記操作力における前記誘導方向に向くときと前記誘導逆方向に向くときとの振幅比を設定することを特徴とすることを特徴とする請求項13に記載の運転操作支援装置。
    Predefining two different gripping states of the driver for the driving operator,
    The operating force setting unit
    When the operating force is set to a relatively low frequency when facing the guiding direction and a relatively high frequency when facing the guiding reverse direction,
    When the gripping state of the driver with respect to the driving operator is relatively high,
    The state variable consisting of at least one of the operation amount of the driving operator and the vehicle behavior corresponding to the operation amount is the same when the operating force is directed in the guidance direction and when directed in the reverse direction of the guidance. like,
    The driving operation support device according to claim 13, wherein an amplitude ratio between the direction of the operation force toward the guidance direction and the direction of the guidance reverse direction is set.
  16.  前記運転操作子は、
     車両の操舵角を操るステアリング操作子からなることを特徴とする請求項1に記載の運転操作支援装置。
    The driving operator is
    The driving operation support apparatus according to claim 1, comprising a steering operator that controls a steering angle of the vehicle.
  17.  前記運転操作子は、
     車両の加速及び減速の少なくとも一方を操る加減速操作子からなることを特徴とする請求項1に記載の運転操作支援装置。
    The driving operator is
    The driving operation support apparatus according to claim 1, comprising an acceleration / deceleration operation element for operating at least one of acceleration and deceleration of the vehicle.
  18.  前記誘導方向設定部は、
     自車両の現在位置から駐車位置までの目標軌道を設定し、設定した目標軌道に応じて、前記誘導方向を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The guide direction setting unit includes:
    The driving operation support apparatus according to claim 1, wherein a target trajectory from the current position of the host vehicle to a parking position is set, and the guidance direction is set according to the set target trajectory.
  19.  前記誘導方向設定部は、
     自車両のと通行区分線との相対関係を検出し、検出した通行区分線との相対関係に応じて、前記誘導方向を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The guide direction setting unit includes:
    The driving operation support device according to claim 1, wherein a relative relationship between the own vehicle and a traffic lane marking is detected, and the guidance direction is set according to the detected relative relationship with the traffic lane marking.
  20.  前記誘導方向設定部は、
     自車両と自車両周辺に存在する物体との相対関係を検出し、検出した物体との相対関係に応じて、前記誘導方向を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The guide direction setting unit includes:
    The driving operation support apparatus according to claim 1, wherein a relative relationship between the host vehicle and an object existing around the host vehicle is detected, and the guidance direction is set according to the relative relationship with the detected object. .
  21.  前記誘導方向設定部は、
     ナビゲーションシステムによるルート案内を設定し、設定したルート案内に応じて、前記誘導方向を設定することを特徴とする請求項1に記載の運転操作支援装置。
    The guide direction setting unit includes:
    2. The driving operation support apparatus according to claim 1, wherein route guidance is set by a navigation system, and the guidance direction is set according to the set route guidance.
  22.  前記状態変数検出部は、
     前記運転操作子が車両の操舵角を操るステアリング操作子からなる場合、
     前記ステアリング操作子のステアリング操作量を、前記状態変数として検出することを特徴とする請求項16に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises a steering operator that controls the steering angle of the vehicle,
    The driving operation support device according to claim 16, wherein a steering operation amount of the steering operator is detected as the state variable.
  23.  前記状態変数検出部は、
     前記運転操作子が車両の操舵角を操るステアリング操作子からなる場合、
     前記ステアリング操作子の操作量に対応した車両挙動となるヨーレートを、前記状態変数として検出することを特徴とする請求項16に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises a steering operator that controls the steering angle of the vehicle,
    17. The driving operation support apparatus according to claim 16, wherein a yaw rate that is a vehicle behavior corresponding to an operation amount of the steering operator is detected as the state variable.
  24.  前記状態変数検出部は、
     前記運転操作子が車両の加速及び減速の少なくとも一方を操る加減速操作子からなる場合、
     前記加減速操作子の加減速操作量を、前記状態変数として検出することを特徴とする請求項17に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises an acceleration / deceleration operator that controls at least one of acceleration and deceleration of the vehicle,
    The driving operation support apparatus according to claim 17, wherein an acceleration / deceleration operation amount of the acceleration / deceleration operation element is detected as the state variable.
  25.  前記状態変数検出部は、
     前記運転操作子が車両の加速及び減速の少なくとも一方を操る加減速操作子からなる場合、
     前記加減速操作子の操作量に対応した車両挙動となる車速を、前記状態変数として検出することを特徴とする請求項17に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises an acceleration / deceleration operator that controls at least one of acceleration and deceleration of the vehicle,
    18. The driving operation support apparatus according to claim 17, wherein a vehicle speed at which a vehicle behavior corresponding to an operation amount of the acceleration / deceleration operation element is detected as the state variable.
  26.  前記状態変数検出部は、
     前記運転操作子が車両の加速及び減速の少なくとも一方を操る加減速操作子からなる場合、
     前記加減速操作子の操作量に対応した車両挙動となる初期状態からの移動距離を、前記状態変数として検出することを特徴とする請求項17に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises an acceleration / deceleration operator that controls at least one of acceleration and deceleration of the vehicle,
    18. The driving operation support apparatus according to claim 17, wherein a movement distance from an initial state in which a vehicle behavior corresponding to an operation amount of the acceleration / deceleration operation element is detected as the state variable.
  27.  前記状態変数検出部は、
     前記運転操作子が車両の加速及び減速の少なくとも一方を操る加減速操作子からなる場合、
     前記加減速操作子の操作量に対応した車両挙動となる、自車両と自車進路前方に存在する物体との相対関係を、前記状態変数として検出することを特徴とする請求項17に記載の運転操作支援装置。
    The state variable detector is
    When the driving operator comprises an acceleration / deceleration operator that controls at least one of acceleration and deceleration of the vehicle,
    18. The relative relationship between the host vehicle and an object existing ahead of the host vehicle course, which is a vehicle behavior corresponding to the operation amount of the acceleration / deceleration operator, is detected as the state variable. Driving operation support device.
  28.  車両を誘導するための誘導方向を設定し、
     運転操作子に対して操作力を付与するために、前記誘導方向、及び誘導逆方向に交互に向きを変え、且つ前記誘導方向と前記誘導逆方向とで異なる周波数によって振動する前記操作力を設定し、
     前記操作力を前記運転操作子に付与することを特徴とする運転操作支援方法。
    Set the guidance direction to guide the vehicle,
    In order to give an operating force to the driving operator, the operating force is changed alternately in the guiding direction and the reverse direction of the guidance, and the operating force that vibrates at different frequencies in the guiding direction and the reverse direction of the guidance is set. And
    A driving operation support method, wherein the operating force is applied to the driving operator.
  29.  車両を誘導するための誘導方向を設定し、
     運転操作子に対して操作力を付与するために、前記誘導方向、及び誘導逆方向に交互に向きを変え、且つ前記誘導方向と前記誘導逆方向とで異なる周波数によって振動する前記操作力を設定し、
     前記操作力を前記運転操作子に付与し、
     前記操作力を前記運転操作子に付与し始めてからの、前記運転操作子の操作量、及び前記操作量に対応した車両挙動のうち、少なくとも一方からなる状態変数の変化に応じて、前記運転操作子に対する運転者の把持状態を判定することを特徴とする把持状態判定方法。
    Set the guidance direction to guide the vehicle,
    In order to give an operating force to the driving operator, the operating force is changed alternately in the guiding direction and the reverse direction of the guidance, and the operating force that vibrates at different frequencies in the guiding direction and the reverse direction of the guidance is set. And
    Giving the operating force to the driving operator;
    The driving operation according to a change in a state variable consisting of at least one of an operation amount of the driving operator and a vehicle behavior corresponding to the operation amount after starting to apply the operating force to the driving operator. A gripping state determination method characterized by determining a gripping state of a driver with respect to a child.
PCT/JP2013/001628 2012-03-16 2013-03-12 Driving operation assisting device, driving operation assisting method, and holding state determination method WO2013136781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060429 2012-03-16
JP2012-060429 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013136781A1 true WO2013136781A1 (en) 2013-09-19

Family

ID=49160709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001628 WO2013136781A1 (en) 2012-03-16 2013-03-12 Driving operation assisting device, driving operation assisting method, and holding state determination method

Country Status (1)

Country Link
WO (1) WO2013136781A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218020A (en) * 2016-06-07 2017-12-14 本田技研工業株式会社 Vehicle control device, vehicle control method and vehicle control program
CN111661145A (en) * 2019-03-07 2020-09-15 丰田自动车株式会社 Vehicle control system
WO2023032009A1 (en) * 2021-08-30 2023-03-09 日産自動車株式会社 Vehicle control method and vehicle control apparatus
CN116039662A (en) * 2023-03-30 2023-05-02 深圳曦华科技有限公司 Automatic driving control method and related device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296601A (en) * 2007-05-29 2008-12-11 Nissan Motor Co Ltd Steering device, automobile, and steering operational status detecting method
JP2009280077A (en) * 2008-05-22 2009-12-03 Fuji Heavy Ind Ltd Lane deviation prevention device
JP2010202048A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Steering retaining state detection device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296601A (en) * 2007-05-29 2008-12-11 Nissan Motor Co Ltd Steering device, automobile, and steering operational status detecting method
JP2009280077A (en) * 2008-05-22 2009-12-03 Fuji Heavy Ind Ltd Lane deviation prevention device
JP2010202048A (en) * 2009-03-03 2010-09-16 Mazda Motor Corp Steering retaining state detection device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218020A (en) * 2016-06-07 2017-12-14 本田技研工業株式会社 Vehicle control device, vehicle control method and vehicle control program
CN111661145A (en) * 2019-03-07 2020-09-15 丰田自动车株式会社 Vehicle control system
CN111661145B (en) * 2019-03-07 2022-11-11 丰田自动车株式会社 Vehicle control system
WO2023032009A1 (en) * 2021-08-30 2023-03-09 日産自動車株式会社 Vehicle control method and vehicle control apparatus
CN116039662A (en) * 2023-03-30 2023-05-02 深圳曦华科技有限公司 Automatic driving control method and related device
CN116039662B (en) * 2023-03-30 2023-08-08 深圳曦华科技有限公司 Automatic driving control method and related device

Similar Documents

Publication Publication Date Title
US10046802B2 (en) Driving assistance control apparatus for vehicle
JP6252575B2 (en) Automatic driving device
JP6332170B2 (en) Automatic operation control device
CN107817791B (en) Vehicle control device
JP6575774B2 (en) Collision avoidance support device
WO2018079069A1 (en) Vehicle control device
JP4918818B2 (en) Vehicle travel support device
WO2018230101A1 (en) Driver change control device, driver change control program, and computer readable persistent tangible recording medium
JP6473734B2 (en) Vehicle control device
JP2018161996A (en) Travel control device of vehicle
JP2017013749A (en) Automatic driving vehicle control device
JP5853552B2 (en) Vehicle travel control device
JP5773155B2 (en) Lane departure prevention device
WO2016110729A1 (en) Target vehicle speed generation device and drive control device
JP2006264623A (en) Lane keeping supporting device
WO2016110733A1 (en) Target route generation device and drive control device
US10780920B2 (en) Deviation avoidance apparatus
CN110723209B (en) Lane departure avoidance apparatus
WO2013136781A1 (en) Driving operation assisting device, driving operation assisting method, and holding state determination method
AU2021200976A1 (en) Managing redundant steering system for autonomous vehicles
JP2001022444A (en) Steering control unit for vehicle
JP2020032949A (en) Automatic operation system
JP2015058842A (en) Contact avoidance control device and contact avoidance control method
JP6772940B2 (en) Autonomous driving system
JP6624117B2 (en) Vehicle driving support system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP