WO2013135667A1 - Method for producing synthesis gas - Google Patents

Method for producing synthesis gas Download PDF

Info

Publication number
WO2013135667A1
WO2013135667A1 PCT/EP2013/054959 EP2013054959W WO2013135667A1 WO 2013135667 A1 WO2013135667 A1 WO 2013135667A1 EP 2013054959 W EP2013054959 W EP 2013054959W WO 2013135667 A1 WO2013135667 A1 WO 2013135667A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
hydrogen
threshold value
group
reactor
Prior art date
Application number
PCT/EP2013/054959
Other languages
German (de)
French (fr)
Inventor
Alexander Karpenko
Vanessa GEPERT
Emanuel Kockrick
Leslaw Mleczko
Albert TULKE
Daniel Gordon Duff
Ludger KASTER
Daniel Wichmann
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135667A1 publication Critical patent/WO2013135667A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2433Construction materials of the monoliths
    • B01J2219/2438Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/168Adjusting the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the production of synthesis gas, comprising the steps of providing a flow reactor, setting thresholds, comparing energy prices, energy composition with respect to regenerative sources and / or desired ratios of IL to CO, and selection between dry reforming / steam reforming modes on the one hand and reverse water gas shift reaction on the other.
  • An alternative method is autothermal reforming.
  • a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
  • DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states which essentially comprise the alternating (i) daytime operation and (ii) nighttime operation where the daily operation (i) mainly comprises dry reforming and steam reforming under the supply of regenerative energy and night operation (ii) mainly the partial oxidation of hydrocarbons and wherein the produced synthesis gas is used for the production of value products.
  • US 2007/003478 Al discloses the production of synthesis gas with a combination of steam reforming and oxidation chemistry. The process involves the use of solids to heat the hydrocarbon feed and cool the gaseous product.
  • WO 2007/042279 AI deals with a reformer system with a reformer for the chemical reaction of a hydrocarbon-containing fuel in a hydrogen gas-rich reformate gas, and electric heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
  • WO 2004/071947 A2 / US 2006/0207178 A1 relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the hydrogen produced, a renewable energy source for converting a hydrogen renewable resource into electrical energy for driving the compressor and a storage device for storing the hydrogen from the compressor.
  • the object of the present invention is to provide such a method.
  • it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for an alternating operation between two different modes of operation.
  • a method for the production of synthesis gas comprising the steps a) providing a flow reactor, which is arranged for the reaction of a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, wherein the heating level can be traversed by the fluid and at least one heating element, a catalyst is arranged and is heated there; b) setting a threshold value S l for the costs of the electrical energy available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor and / or a threshold S3 for a desired ratio of hydrogen to carbon monoxide in the resulting synthesis gas; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value S l and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2 and / or the ratio from hydrogen too
  • Carbon monoxide in the resulting synthesis gas with the threshold S3 d) reaction of hydrocarbons with carbon dioxide and / or water in the flow reactor, wherein carbon monoxide and hydrogen are formed, with electric heating by one or more heating elements, when the threshold value S l falls below and / or the floating value S2 exceeded and / or the Threshold S3 be fallen below, wherein at least a portion of the hydrogen formed is fed to a storage and / or a reaction in another reactor is fed; e) Reaction of carbon dioxide with hydrogen in the flow reactor, wherein carbon monoxide and water are formed, under electrical heating by one or more heating elements, when the threshold value S 1 is exceeded and / or the threshold value S2 is exceeded and / or the threshold value S3 is exceeded in which at least part of the hydrogen used originates from the previously stored hydrogen and / or originates from a reaction in another reactor.
  • the first threshold S l relates to the electricity costs for the reactor, in particular the cost of electrical heating of the reactor by the heating elements in the Fleizebenen. Here it can be determined to what extent the electric heating of the respective endothermic reaction is still economically reasonable.
  • the second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels.
  • the relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be derived are wind, solar, geothermal, wave and hydro.
  • the relative share can be determined by providing information to the energy supplier. If, for example, a plant's own regenerative energy sources such as solar power plants and wind turbines are used, this relative proportion of energy can also be indicated via performance monitoring.
  • the third threshold S3 relates to the requirements of the users of the synthesis gas in terms of its composition. Depending on your wishes, you can operate between an excess of hydrogen and a deficit.
  • the threshold value S l can be understood as a price upper limit
  • the visual threshold value S2 can be regarded as a requirement to use renewable energies to the greatest extent possible.
  • S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place.
  • a comparison of the desired values with the actual values in the method can now reach the conclusion that electrical energy is available inexpensively, enough electrical energy is available from renewable sources and / or the desired composition of the synthesis gas is maintained. Then the flow reactor is operated so that, for example, run a dry reforming reaction or a steam reforming reaction.
  • the hydrocarbons involved are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols.
  • alkanes methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
  • the RWGS reaction of methane is much less endothermic at +41 kJ / mol and is therefore suitable for times of high energy prices or too low a share of electrical energy from renewable sources.
  • the combustion of hydrogen can be used. It is both possible that the combustion of hydrogen in the RWGS reaction by metering of O2 into the educt gas (ideally, a locally distributed or lateral metering) takes place, as well as possible hydrogen-rich residual gases (for example, PSA exhaust gas), as be incurred in the purification of the synthesis gas, recycled and burned together with O2, which then the process gas is heated.
  • hydrogen-rich residual gases for example, PSA exhaust gas
  • endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 02 addition.
  • the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall).
  • This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively.
  • the hydrogen required for the desired ifc / CO ratio can then be added again.
  • the first option is to store the hydrogen withdrawn during the DR and SMR reactions in suitable storage tanks and then add it to the product of the RWGS reaction in an appropriate amount.
  • the cheaper for a Verbund site under certain circumstances - in a variant the extracted hydrogen is consumed in other reactions and, if necessary, is taken from hydrogen-producing reactions elsewhere in the Verbund site. Likewise, it is possible to feed the hydrogen into a central line of the site and to remove the required hydrogen from this line.
  • the process according to the invention provides for the DR, SMR and RWGS reactions to proceed in the same reactor. A mixed operation of two or three of the reactions is expressly intended.
  • One of the advantages of this approach is the gradual onset of the other reaction, for example, by continuously reducing the hydrogen supply while increasing the methane feed, or by continuously increasing the hydrocarbon feed while reducing the methane feed.
  • the degree of endothermy can be set arbitrarily.
  • FIG. 1 shows schematically a flow reactor in an expanded representation.
  • the hydrogen is stored in pressure accumulators, in caverns, in the form of hydrides and / or in the form of organic compounds.
  • Suitable pressure accumulators are, for example, pressure vessels, tube stores or pipelines.
  • Suitable hydride compounds are especially elemental hydrogen compounds such as PtH 2 , Mni l.
  • the hydrogen used in the reaction of carbon dioxide with hydrogen, at least part of the hydrogen used originates from the electrolysis of water.
  • the operating strategy of the water electrolysis can also be coupled to the parameters S l and S2: the electrolysis is carried out when the eleutician electric energy is cheap and / or if the proportion of electrical energy from renewable sources is large enough. This operating strategy yields an additional degree of freedom for the initial hydrogenation of RWGS phases.
  • the flow reactor comprises in the flow direction of the fluid a plurality of heating levels, which are electrically heated by heating elements and wherein the heating levels are permeable by the fluid, wherein a catalyst is arranged on at least one heating element and is heatable there, wherein further at least once an intermediate plane between two heating levels is arranged and wherein the intermediate plane is also traversed by the fluid.
  • FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing.
  • the fluid may be liquid or gaseous and may be single-phase or multi-phase.
  • the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
  • the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 13.
  • the heating levels 100, 101, 102, 103 are flowed through during operation of the reactor of the fluid and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the fluid. At least one heating element 1 10, 1 1 1, 1 12, 1 13, a catalyst is arranged and is heated there.
  • the catalyst may be directly or indirectly connected to the heating elements 1 10, 1 1 1, 1 12, 1 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • a ceramic intermediate level 200, 201, 202 between two levels of fuel 100, 101, 102, 103 are arranged, wherein the intermediate level (s) 200, 201, 202 are also traversed by the fluid in the operation of the reactor. This has the effect of homogenizing the fluid flow. It is also possible that additional Catalyst in one or more intermediate levels 200, 201, 202 or further Isolationsseiementen in the reactor is present.
  • Said at least one intermediate ceramic layer is preferably supported by a ceramic or metallic support frame and / or a ceramic or metallic support plane.
  • the material forms an AhC protective layer by the action of temperature in the presence of air / oxygen.
  • This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating.
  • the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure.
  • the formation of other protective layers such as Si-O-C systems.
  • the pressure in the reactor can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the Schuel ementen 1 10, 1 1 1, 1 12, 1 13 performed so that the actual electrical connections can be provided in the cold region of the reactor can.
  • the electrical heating is done with direct current or alternating current. By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are spirally, meandering, lattice-shaped and / or net-shaped.
  • At least one heating element 1 10, 11 1, 12, 13 can have a different amount and / or type of catalyst than the remaining heating elements 110, 11, 12, 13.
  • the heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged so that they can each be electrically heated independently.
  • the individual heating levels can be individually controlled and regulated.
  • In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in view of starting the reactor.
  • a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which reaches the highest temperatures and thus the highest conversion at the reactor outlet.
  • the (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 21 1, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 2 1 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may comprise, for example, a loose bed of solids and / or a one-piece porous solid. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids.
  • the case of the one-piece porous solid is shown in FIG. 1 shown.
  • the fluid flows through the intermediate plane via the pores of the solid.
  • the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • Another conceivable possibility is that one or more of the intermediate levels are voids.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0, 1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1.
  • Suitable catalysts can be selected for example from the group consisting of: (I) mixed metal oxides of the formula A (i-w-x) A 'A "x B (iy z) B' y B" z 03-Deita where:
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm Lu, Gd, Tb, Dy, Ho, Er, Tm. Yb, i ' l, Lu.
  • B, B 'and B are independently selected from the group: Cr, Mn, Fe, Bi, Cd,
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K. Rb, Cs, Sn, Sc, Y. La, Ce, Pr. Nd, Sm. Lu Gd, Tb, Dy. Ho, Er, Tm. Yb. ⁇ 1, Lu, Ni,
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I i f. Zr. Tb. W, Gd. Yb. Mg, Cd, Zn, Re, Ru. Rh. Pd, Os, Ir and / or Pt; and
  • B ' is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, II, Zr, Tb W, Gd, Yb, Mg, Cd and / or Zn;
  • Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt;
  • M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, I lo, Er, Tm, Yb and / or Lu;
  • L is selected from the group: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,
  • M is selected from the group: " I i, Zr, II for V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag and / or Au, and
  • L is selected from the group: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
  • Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, FIo, Er, Tm, Yb, and / or Lu;
  • a and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La. Ce, Pr. Nd, Sm. Eu, Gd. Tb. Y. l io. He,
  • Tm Tm, Yb, and / or Lu;
  • reaction products includes the catalyst phases present under reaction conditions. Preferred are for:
  • the reactor according to the invention may be modular.
  • a module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • an electric heating of at least one of the heating elements 110, 1111, 112, 13 takes place in the reactor provided. This can, but does not have to, be before the passage of a reactant through the flow reactor under at least partial reaction of the reactants of the fluid respectively.
  • the reactor can be modular.
  • a module can contain, for example, a heating level, an insulation level, electrical contact, and the corresponding further insulation materials and thermal insulation materials.
  • the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
  • the reaction temperature in the reactor is at least in places> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to ⁇ 1200 ° C and> 900 ° C to ⁇ 1100 ° C,
  • the average (median) contact time of the fluid to a heating element 110, 111, 112, 113 may be for example> 0.01 seconds to ⁇ 1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may For example, be> 0.001 seconds to ⁇ 5 seconds.
  • Preferred contact times are> 0.005 to ⁇ 1 second, more preferably> 0.01 to ⁇ 0.9 seconds.
  • the reaction can be carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The method comprises the steps of providing a flow reactor, defining threshold values, comparing energy prices, energy composition with regard to renewable sources, and/or desired ratios of H2 to CO, and selecting between the operating modes of dry reforming/steam reforming and reverse water gas shift reaction. The threshold value S1 concerns the costs of the electrical energy available for the flow reactor, and the threshold value S2 concerns the relative share of electrical energy from renewable sources of the electrical energy available for the flow reactor. A third threshold value S3 contains the desired H2/CO ratio in the product gas. Either dry reforming and/or steam reforming or RWGS is performed depending on the threshold values.

Description

V erfahren für die Svnthesegasherstellung  V experienced for the production of svnthesegas
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas, umfassend die Schritte des Bereitstellen eines Strömungsreaktors, Festlegen von Schwellwerten, Vergleichen von Energiepreisen, Energiezusammensetzung bezüglich regenerativer Quellen und/oder gewünschten Verhältnissen von I L zu CO sowie Auswahl zwischen den Betriebsweisen Dry Reforming/Steam Reforming einerseits und umgekehrter Wassergas-Shift-Reaktion andererseits. The present invention relates to a process for the production of synthesis gas, comprising the steps of providing a flow reactor, setting thresholds, comparing energy prices, energy composition with respect to regenerative sources and / or desired ratios of IL to CO, and selection between dry reforming / steam reforming modes on the one hand and reverse water gas shift reaction on the other.
Bedingt durch den verstärkten Ausbau regenerativer Energien entsteht ein fluktuierendes Energieangebot im Stromnetz. In Phasen günstiger Strompreise ergibt sich für den Betrieb von Reaktoren zur Durchführung endothermer Reaktionen, bevorzugt für die Herstellung von Synthesegas, die Möglichkeit eines wirtschaftlichen und ökonomisch sinnvollen Betriebs unter Ausnutzung der regenerativen Energien, wenn diese elektrisch beheizt werden. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of reactors for carrying out endothermic reactions, preferably for the production of synthesis gas, the possibility of an economical and economically meaningful operation taking advantage of renewable energies when they are electrically heated.
In Phasen, in welchen keine regenerativ erzeugte elektrische Energie verfügbar ist, muss dann eine andere Form der Energieversorgung der endothermen Reaktionen gewählt werden. In phases in which no regeneratively generated electrical energy is available, then another form of energy supply of the endothermic reactions must be selected.
Konventionell erfolgt die H erste l lung von Synthesegas mittels der Dampfreformierung von Methan. Aufgrund des hohen Wärmebedarfs der beteiligten Reaktionen erfo lgt deren Durchführung in von außen beheizten Reformerröhren. Charakteristisch für dieses Verfahren ist die Limitierung durch das Reaktionsgleichgewicht, eine Wärmetransportiimitierung und vor allem die Druck- und Temperaturlimitierung der eingesetzten Reformerröhren ( nickelbas ierte Stähle). Temperatur- und druckseitig resultiert daraus eine Limitierung auf maximal 900 °C bei ca. 20 bis 40 bar. Conventionally, the synthesis of synthesis gas takes place by means of the steam reforming of methane. Due to the high heat demand of the reactions involved erfo lling their implementation in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a Wärmransportiimitierung and especially the pressure and temperature limitation of the reformer tubes used (nickelbased steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 20 to 40 bar.
Ein alternatives Verfahren ist die autotherme Reformierung. Hierbei wird ein Teil des Brennstoffs durch Zugabe von Sauerstoff innerhalb des Reformers verbrannt, so dass das Reaktionsgas aufgeheizt wird und die ablaufenden endothermen Reaktionen mit Wärme versorgt werden. An alternative method is autothermal reforming. In this case, a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
Im Stand der Technik sind einige Vorschläge für eine interne Heizung von chemischen Reaktoren bekannt geworden. So beschreiben beispielsweise Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 die Simulation und experimentelle Analyse eines co-axialen, zylindrischen Methan-Dampfreformers unter Verwendung eines elektrisch beheizten A lumit- Katalysators (EHAC). Some proposals for internal heating of chemical reactors have become known in the art. For example, Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879, describe the simulation and experimental analysis of a coaxial, cylindrical methane steam reformer using an electrically heated alumite catalyst (EHAC).
Hinsichtlich eines Wechselbetrieb es beschreiben DE 10 2007 022 723 A I beziehungsweise US 2010/0305221 ein Verfahren zur Herstellung und Umsetzung von Synthesegas, das dadurch gekennzeichnet ist, dass es mehrere unterschiedliche Betriebszustände aufweist, die im Wesentlichen aus dem im Wechsel zueinander stehenden (i) Tagesbetrieb und (ii) Nachtbetrieb bestehen, wobei der Tagesbetrieb (i) hauptsächlich die trockene Reformierung und das Steam Reformmg unter der Zuführung von regenerativer Energie und der Nachtbetrieb (ii) hauptsächlich die partielle Oxidation von Kohlenwasserstoffen umfasst und wobei das hergestellte Synthesegas zur Herstellung von Wertprodukten verwendet wird. US 2007/003478 AI offenbart die Herstellung von Synthesegas mit einer Kombination von Dampfreformierungs- und Oxidationschemie. Das Verfahren beinhaltet die Verwendung von Feststoffen, um den Kohlenwasserstoff-Feed aufzuheizen und das gasförmige Produkt abzukühlen. Gemäß dieser Veröffentlichung kann Wärme dadurch konserviert werden, dass der Gasfluss von Feed- und Produktgasen intervallmäßig umgekehrt wird. WO 2007/042279 AI beschäftigt sich mit einem Reformersystem mit einem Reformer zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes in ein wasserstoffgasreiches Reformatgas, sowie elektrischen Heizmitteln, mittels welchen dem Reformer Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist, wobei das Reformersystem weiterhin einen Kondensator aufweist, der die elektrischen Heizmittel mit elektrischem Strom versorgen kann. With regard to alternating operation, DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states which essentially comprise the alternating (i) daytime operation and (ii) nighttime operation where the daily operation (i) mainly comprises dry reforming and steam reforming under the supply of regenerative energy and night operation (ii) mainly the partial oxidation of hydrocarbons and wherein the produced synthesis gas is used for the production of value products. US 2007/003478 Al discloses the production of synthesis gas with a combination of steam reforming and oxidation chemistry. The process involves the use of solids to heat the hydrocarbon feed and cool the gaseous product. According to this publication, heat can be conserved by reversing the gas flow of feed and product gases at intervals. WO 2007/042279 AI deals with a reformer system with a reformer for the chemical reaction of a hydrocarbon-containing fuel in a hydrogen gas-rich reformate gas, and electric heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
WO 2004/071947 A2/ US 2006/0207178 A I betreffen ein System zur Herstellung von Wasserstoff, umfassend einen Reformer zur Generierung von Was s ers to ff aus einem Kohlenwasserstoff-Treibstoff, einen Kompressor zur Komprimierung des erzeugten Wasserstoffs, eine erneuerbare Energiequelle zur Umwandlung einer erneuerbaren Ressource in elektrische Energie zum Antrieb des Kompressors und eine Speichervorrichtung zur Speicherung des Wasserstoffs von dem Kompressor. WO 2004/071947 A2 / US 2006/0207178 A1 relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the hydrogen produced, a renewable energy source for converting a hydrogen renewable resource into electrical energy for driving the compressor and a storage device for storing the hydrogen from the compressor.
Aus dem zuvor Gesagten wird deutlich, dass eine ökonomisch sinnvolle Herstellung von Synthesegas unter Ausnutzung von regenerativen Energiequellen gewisse Anforderungen an die Verfahrensdurchführung und den hierin eingesetzten Reaktor stellen. Einerseits muss eine effiziente elektrische Beheizung des Reaktors, das heißt eine effiziente Wärmeversorgung der endothermen Reaktion realisiert werden. Andererseits sollte für Phasen, in denen keine regenerativ erzeugte Energie nutzbar ist, die Möglichkeit zum anderweitigen Betrieb des Reaktors vorliegen. From what has been said above, it becomes clear that an economically sensible production of synthesis gas by utilizing regenerative energy sources places certain demands on the process procedure and the reactor used therein. On the one hand, an efficient electrical heating of the reactor, that is an efficient heat supply of the endothermic reaction must be realized. On the other hand, for phases in which no regeneratively generated energy is available, the possibility for other operation of the reactor should be present.
Die vorliegende Erfindung hat sich die Aufgabe gestellt, ein solches Verfahren bereitzustellen. Insbesondere hat sie sich die Aufgabe gestellt, ein Verfahren zur Herstellung von Synthesegas anzugeben, welches für einen Wechseibetrieb zwischen zwei verschiedenen Betriebsweisen geeignet ist. The object of the present invention is to provide such a method. In particular, it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for an alternating operation between two different modes of operation.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Synthesegas, umfassend die Schritte a) Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene umfasst, welche mittels eines oder mehrerer Heizelemente elektrisch beheizt wird, wobei die Heizebene von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist; b) Festlegen eines Schwellwertes S l für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Sc hwel l wertes S2 für den relativen Anteil von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S3 für ein gewünschtes Verhältnis von Wasserstoff zu Kohl enmonoxid im erhaltenen Synthesegas; und c) Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S l und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2 und/oder des Verhältnisses von Wasserstoff zuThis object is achieved by a method for the production of synthesis gas, comprising the steps a) providing a flow reactor, which is arranged for the reaction of a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, wherein the heating level can be traversed by the fluid and at least one heating element, a catalyst is arranged and is heated there; b) setting a threshold value S l for the costs of the electrical energy available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor and / or a threshold S3 for a desired ratio of hydrogen to carbon monoxide in the resulting synthesis gas; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value S l and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2 and / or the ratio from hydrogen too
Kohlenmonoxid im erhaltenen Synthesegas mit dem Schwellwert S3; d) Reaktion von Koh lenwasserstoffen mit Kohlendioxid und/oder Wasser in dem Strömungsreaktor, wobei Kohlenmonoxid und Wasserstoff gebildet werden, unter elektrischer Beheizung durch ein oder mehrere Heizelemente, wenn der Schwel lwert S l unterschritten und/oder der Schweilwert S2 überschritten und/oder der Schwellwert S3 unterschritten werden, wobei wenigstens ein Teil des gebildeten Wasserstoffs einer Speicherung zugeführt wird und/oder einer Reaktion in einem anderen Reaktor zugeführt wird; e) Reaktion von Kohlendioxid mit Wassersto ff i n dem Strömungsreaktor, wob ei Kohlenmonoxid und Wasser gebildet werden, unter elektrischer Beheizung durch ein oder mehrere Heizelemente, wenn der Schwellwert S l überschritten und/oder der Schwellwert S2 unterschritten und/Oder der Schwellwert S3 überschritten werden, wobei wenigstens ein Teil des eingesetzten Wasserstoffs aus dem zuvor gespeicherten Wasserstoff stammt und/oder aus einer Reaktion in einem anderen Reaktor stammt. Im erfindungsgemäßen Verfahren zum alternierenden Betrieb einer Synthesegasherstellung wird anhand von einem oder mehreren Schwellwerten entschieden, welche Betriebsart gewählt werden soll. Der erste Schwellwert S l betrifft die Elektrizitätskosten für den Reaktor, im Speziellen die Kosten für eine elektrische Beheizung des Reaktors durch die Heizelemente in den Fleizebenen. Hier kann festgelegt werden, bis zu welcher Höhe die elektrische Beheizung der jeweiligen endothermen Reaktion noch wirtschaftlich sinnvoll ist. Carbon monoxide in the resulting synthesis gas with the threshold S3; d) reaction of hydrocarbons with carbon dioxide and / or water in the flow reactor, wherein carbon monoxide and hydrogen are formed, with electric heating by one or more heating elements, when the threshold value S l falls below and / or the floating value S2 exceeded and / or the Threshold S3 be fallen below, wherein at least a portion of the hydrogen formed is fed to a storage and / or a reaction in another reactor is fed; e) Reaction of carbon dioxide with hydrogen in the flow reactor, wherein carbon monoxide and water are formed, under electrical heating by one or more heating elements, when the threshold value S 1 is exceeded and / or the threshold value S2 is exceeded and / or the threshold value S3 is exceeded in which at least part of the hydrogen used originates from the previously stored hydrogen and / or originates from a reaction in another reactor. In the method according to the invention for the alternate operation of a synthesis gas production, one determines which mode of operation is to be selected on the basis of one or more threshold values. The first threshold S l relates to the electricity costs for the reactor, in particular the cost of electrical heating of the reactor by the heating elements in the Fleizebenen. Here it can be determined to what extent the electric heating of the respective endothermic reaction is still economically reasonable.
Der zweite Schwellwert S2 betrifft den relativen Anteil von elektrischer Energie aus regenerativen Quellen, die für den Reaktor und auch wieder im Speziellen für die elektrische Beheizung des Reaktors durch die Heizelemente in den Heizebenen zur Verfügung steht. Der relative Anteil ist hierbei bezogen auf die gesamte elektrische Energie der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und kann selbstverständlich im zeitlichen Verlauf schwanken. Beispiele für regenerative Quellen, aus denen elektrische Energie gewonnen werden kann, sind Windenergie, Solarenergie, geothermaie Energie, Wellenenergie und Wasserkraft. Der relative Anteil kann durch Auskünfte beim Energieversorger bestimmt werden. Stehen beispielsweise auf einem Werksgelände eigene regenerative Energiequellen wie S o l aranl ag en o der Windenergieanlagen, so kann über eine Leistungsüberwachung auch dieser relative Energieanteil angegeben werden. The second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels. The relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be derived are wind, solar, geothermal, wave and hydro. The relative share can be determined by providing information to the energy supplier. If, for example, a plant's own regenerative energy sources such as solar power plants and wind turbines are used, this relative proportion of energy can also be indicated via performance monitoring.
Der dritte Schwellwert S3 betrifft die Anforderungen der Abnehmer des Synthesegases hinsichtlich seiner Zusammensetzung. Je nach Wunsch lässt sich zwischen einem Überschuss an Wasserstoff und einem Unterschuss operieren. The third threshold S3 relates to the requirements of the users of the synthesis gas in terms of its composition. Depending on your wishes, you can operate between an excess of hydrogen and a deficit.
So wie sich der Schweilwert S l beispielsweise als Preisobergrenze verstehen lässt, kann der Sehwellwert S2 als Vorgabe aufgefasst werden, im größtmöglichen vertretbaren Umfang erneuerbare Energien zu nutzen. Beispielsweise kann S2 lauten, dass ab einem Anteil von 5%, 10%, 20% oder 30% von elektrischer Energie aus erneuerbaren Quellen die elektrische Beheizung des Reaktors erfolgen soll. Just as the threshold value S l can be understood as a price upper limit, for example, the visual threshold value S2 can be regarded as a requirement to use renewable energies to the greatest extent possible. For example, S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place.
Ein Vergleich der Soll-Werte mit den Ist-Werten im Verfahren kann nun zu dem Ergebnis gelangen, dass elektrische Energie preisgünstig vorhanden ist, genug elektrische Energie aus erneuerbaren Quellen zur Verfügung steht und/oder die gewünschte Zusammensetzung des Synthesegases eingehalten wird. Dann wird der Strömungsreaktor so betrieben, dass beispielsweise eine Dry Reforming-Reaktion oder eine Steam Reforming-Reaktion ablaufen. Die beteiligten Kohlenwasserstoffe sind vorzugsweise Alkane, Alkene, Alkine, Alkanole, Alkenole und/oder Alkinole. Unter den Alkanen ist Methan besonders geeignet, unter den Alkanolen sind Methanol und/Oder Ethanol bevorzugt. Diese Reaktionen sind nachfolgend beispielhaft wiedergegeben: Dry Reforming von Methan (DR): CH4 + C02 ^ 2 CO + 2 H2 A comparison of the desired values with the actual values in the method can now reach the conclusion that electrical energy is available inexpensively, enough electrical energy is available from renewable sources and / or the desired composition of the synthesis gas is maintained. Then the flow reactor is operated so that, for example, run a dry reforming reaction or a steam reforming reaction. The hydrocarbons involved are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols. Among the alkanes, methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred. These reactions are exemplified below: Dry reforming of methane (DR): CH 4 + C0 2 ^ 2 CO + 2H 2
Steam Reforming von Methan (SMR): CH4 + I H) ^3 Hz + CO Die Dry Reforming-Reaktion von Methan ist mit +247 kJ/mol stark endotherm u nd die entsprechende Steam Reforming-Reaktion mit +206 kJ/mol ebenfalls endotherm. Somit benötigt der Betrieb des Reaktors vergleichsweise viel Energie für die elektrische Beheizung. Steam reforming of methane (SMR): CH 4 + IH) ^ 3 Hz + CO The dry reforming reaction of methane is strongly endothermic with +247 kJ / mol and the corresponding steam reforming reaction with +206 kJ / mol is also endothermic. Thus, the operation of the reactor requires comparatively much energy for the electrical heating.
Ergibt der Soll/Ist-Vergleich, dass elektrische Energie zu teuer ist, zuviel Energie aus nicht- regenerativen Quellen eingesetzt werden müsste und/oder das Synthesegas einen zu hohen Wasserstoffgehalt aufweist, so wird die Betriebsart des Strömungsreaktors umgestellt und eine umgekehrte Wassergas-Shift-Reaktion findet statt. If the target / actual comparison reveals that electrical energy is too expensive, too much energy should be used from non-regenerative sources and / or the synthesis gas has too high a hydrogen content, the operating mode of the flow reactor is changed and a reverse water gas shift Reaction takes place.
Umgekehrte Wassergas-Shift-Reaktion (RWGS): C02 + H2 ^ CO + I M ) Reverse Water Gas Shift Reaction (RWGS): C0 2 + H 2 ^ CO + IM )
Die RWGS-Reaktion von Methan ist mit +41 kJ/mol deutlich weniger endotherm und eignet sich daher für Zeiten hoher Energiepreise oder eines zu geringen Anteils an elektrischer Energie aus regenerativen Quellen. The RWGS reaction of methane is much less endothermic at +41 kJ / mol and is therefore suitable for times of high energy prices or too low a share of electrical energy from renewable sources.
Weiterhin kann als zusätzliche Beheizungsmethode die Verbrennung von Wasserstoff eingesetzt werden. Es ist sowohl möglich, dass die Verbrennung von Wasserstoff bei der RWGS-Reaktion durch Zudosierung von O2 in das Eduktgas (idealerweise eine örtlich verteilte oder seitliche Zudosierung) erfolgt, als auch möglich, dass wasserstoffreiche Restgase (zum Beispiel PSA- Abgas), wie sie bei der Aufreinigung des Synthesegases anfallen können, zurückgeführt und zusammen mit O2 verbrannt werden, wodurch dann das Prozessgas aufgeheizt wird. Furthermore, as an additional heating method, the combustion of hydrogen can be used. It is both possible that the combustion of hydrogen in the RWGS reaction by metering of O2 into the educt gas (ideally, a locally distributed or lateral metering) takes place, as well as possible hydrogen-rich residual gases (for example, PSA exhaust gas), as be incurred in the purification of the synthesis gas, recycled and burned together with O2, which then the process gas is heated.
In der Regel werden endotherme Reaktionen von außen durch die Wände der Reaktionsröhren beheizt. Dem gegenüber steht die autotherme Reformierung mit 02-Zugabe. Im hier beschriebenen Reaktorbetrieb kann über eine elektrische Beheizung innerhalb des Reaktors (die unerwünschte Alternative wäre elektrische Beheizung via Strahlung durch die Reaktorwand) die endotherme Reaktion effizient intern mit Wärme versorgt werden. Diese Art des Reaktorbetriebs wird insbesondere dann wirtschaftlich, wenn das aus dem Ausbau der regenerativen Energiequellen resultierende Überangebot kostengünstig genutzt werden kann. Im erfindungsgemäßen Verfahren ist vorgesehen, dass während der Wasserstoff bildenden Reaktionen zumindest ein Teil dieses Wasserstoffs einer Speicherung zugeführt wird und/oder einer Reaktion in einem anderen Reaktor zugeführt wird. Während der RWGS-Reaktion, in der gerade kein Wasserstoff gebildet wird, kann der für das gewünschte ifc/CO-Verhältnis benötigte Wasserstoff dann wieder hinzugefügt werden. Die erste Möglichkeit ist, den während der DR- und SMR-Reaktionen entnommenen Wasserstoff in geeigneten Vorratsbehältern zu speichern und ihn dann zu dem Produkt der RWGS-Reaktion in entsprechender Menge hinzuzufügen. Die für einen Verbundstandort unter Umständen günstigere - in variante sieht vor, dass der entnommene Wasserstoff in anderen Reaktionen verbraucht wird und bei Bedarf aus Wasserstoff erzeugenden Reaktionen an anderer Stelle des Verbundstandorts entnommen wird. Genauso ist es möglich, den Wasserstoff in eine Zentralleitung des Standorts einzuspeisen und aus dieser Leitung den benötigten Wasserstoff zu entnehmen. Das erfindungsgemäße Verfahren sieht vor, die DR-, SMR- und RWGS-Reaktionen in demselben Reaktor ablaufen zu lassen. Ein Mischbetrieb von zwei oder drei der Reaktionen ist ausdrücklich vorgesehen. Einer der Vorteile dieser Möglichkeit ist das allmähliche Anfahren der jeweils anderen Reaktion, zum Beispiel durch kontinuierliches Reduzieren der Wasserstoffzufuhr bei gleichzeitiger Erhöhung der Methanzufuhr oder durch kontinuierliches Erhöhen der Kohlenwasserstoffzufuhr bei gleichzeitiger Verringerung der Methanzufuhr. Insgesamt kann der Grad der Endothermie beliebig eingestellt werden. In general, endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 02 addition. In the reactor operation described here, the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall). This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively. In the process according to the invention, it is provided that during the hydrogen-forming reactions at least part of this hydrogen is fed to a storage and / or is fed to a reaction in another reactor. During the RWGS reaction, in which no hydrogen is currently being formed, the hydrogen required for the desired ifc / CO ratio can then be added again. The first option is to store the hydrogen withdrawn during the DR and SMR reactions in suitable storage tanks and then add it to the product of the RWGS reaction in an appropriate amount. The cheaper for a Verbund site under certain circumstances - in a variant, the extracted hydrogen is consumed in other reactions and, if necessary, is taken from hydrogen-producing reactions elsewhere in the Verbund site. Likewise, it is possible to feed the hydrogen into a central line of the site and to remove the required hydrogen from this line. The process according to the invention provides for the DR, SMR and RWGS reactions to proceed in the same reactor. A mixed operation of two or three of the reactions is expressly intended. One of the advantages of this approach is the gradual onset of the other reaction, for example, by continuously reducing the hydrogen supply while increasing the methane feed, or by continuously increasing the hydrocarbon feed while reducing the methane feed. Overall, the degree of endothermy can be set arbitrarily.
Die vorliegende Erfindung einschließlich bevorzugter Ausführungsformen wird in Verbindung mit der nachfolgenden Z eichnung weiter erläutert, ohne hierauf b eschränkt zu sein. Die Aus führungs formen können beliebig miteinander kombiniert werden, sofern sich nicht eindeutig das Gegenteil aus dem Kontext ergibt. The present invention including preferred embodiments will be further explained in connection with the following drawings without being limited thereto. The forms of execution can be combined with each other as long as the opposite of the context is not clear.
FIG. 1 zeigt schematisch einen Strömungsreaktor in expandierter Darstellung. FIG. 1 shows schematically a flow reactor in an expanded representation.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird der Wasserstoff in Druckspeichern, in Kavernen, in Form von Hydriden und/oder in Form von organischen Verbindungen gespeichert. Geeignete Druckspeicher sind beispielsweise Druck beh lt er, Röhrenspeicher oder Pipelines. Geeignete Hydridverbindungen sind insbesondere Element- Wasserstoffverbindungen wie PtH2, Mni l. CrH, TiH2, VH2, CrH2 und CeH2, Mg2NiH4 und/oder Mg( BI U ): Hinsichtlich der Speicherung in Form von organischen Verbindungen kommen insbesondere gasförmige Alkane, Alkene und Alkine mit 1 bis 5 C-Atomen sowie flüssige Alkohole wie Methanol und Ethanol sowie organische Säuren (Ameisensäure), Ether (Dimethylether), Aldehyde und Ketone in Betracht. In one embodiment of the process according to the invention, the hydrogen is stored in pressure accumulators, in caverns, in the form of hydrides and / or in the form of organic compounds. Suitable pressure accumulators are, for example, pressure vessels, tube stores or pipelines. Suitable hydride compounds are especially elemental hydrogen compounds such as PtH 2 , Mni l. CrH, TiH 2 , VH 2 , CrH 2 and CeH 2 , Mg 2 NiH 4 and / or Mg (BI U): With regard to the storage in the form of organic compounds in particular gaseous alkanes, alkenes and alkynes having 1 to 5 carbon atoms and liquid alcohols such as methanol and ethanol and organic acids (formic acid), ethers (dimethyl ether), aldehydes and ketones into consideration.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens stammt in der Reaktion von Kohlendioxid mit Wasserstoff wenigstens ein Teil des eingesetzten Wasserstoffs aus der Elektrolyse von Wasser. Auf diese Weise kann auch erreicht werden, dass während längerer RWGS-Phasen eine ausreichende Menge an Wasserstoff zur Verfügung steht. Die Betriebsstrategie der Wasserelektrolyse kann ebenfalls an die Parameter S l und S2 gekoppelt werden: die Elektrolyse wird dann durchgeführt, wenn el ektrische Energie günstig zur Verfügung steht und/oder wenn der Anteil von elektrischer Energie aus regenerativen Quellen groß genug ist. Durch diese Betriebsstrategie gewinnt man einen zusätzlichen Freiheitsgrad zur H erste l lung von Wasserstoff für RWGS-Phasen. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst der Strömungsreaktor gesehen in Strömungsrichtung des Fluids eine Mehrzahl von Heizebenen, welche mittels Heizelementen elektrisch beheizt werden und wobei die Heizebenen von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine Zwischenebene zwischen zwei Heizebenen angeordnet ist und wobei die Zwischenebene ebenfalls von dem Fluid durchströmbar ist. In a further embodiment of the process according to the invention, in the reaction of carbon dioxide with hydrogen, at least part of the hydrogen used originates from the electrolysis of water. In this way it can also be achieved that a sufficient amount of hydrogen is available during longer RWGS phases. The operating strategy of the water electrolysis can also be coupled to the parameters S l and S2: the electrolysis is carried out when the eleutische electric energy is cheap and / or if the proportion of electrical energy from renewable sources is large enough. This operating strategy yields an additional degree of freedom for the initial hydrogenation of RWGS phases. In a further embodiment of the method according to the invention, the flow reactor comprises in the flow direction of the fluid a plurality of heating levels, which are electrically heated by heating elements and wherein the heating levels are permeable by the fluid, wherein a catalyst is arranged on at least one heating element and is heatable there, wherein further at least once an intermediate plane between two heating levels is arranged and wherein the intermediate plane is also traversed by the fluid.
Der in FIG. 1 schematisch gezeigte erfindungsgemäß einzusetzende Strömungsreaktor wird von einem Reaktanden umfassenden Fluid von oben nach unten durchströmt, wie durch die Pfeile in der Zeichnung dargestellt. Das Fluid kann flüssig oder gasförmig sein und einphasig oder mehrphasig aufgebaut sein. Vorzugsweise, auch angesichts der möglichen Reaktionstemperaturen, ist das Fluid gasförmig. Es ist sowohl denkbar, dass das Fluid ausschließlich Reaktanden und Reaktionsprodukte enthält, aber auch, dass zusätzlich inerte Komponenten wie Inertgase im Fluid vorliegen. In Strömungsrichtung des Fluids gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 100, 101 , 102, 103 auf, welche mittels entsprechender Heizelemente 1 10, 1 1 1 , 1 12, 1 13 elektrisch beheizt werden. Die Heizebenen 100, 101 , 102, 103 werden im Betrieb des Reaktors von dem Fluid durchströmt und die Heizelemente 1 10, 1 1 1 , 1 12, 1 13 werden von dem Fluid kontaktiert. An mindestens einem Heizelement 1 10, 1 1 1 , 1 12, 1 13 ist ein Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. The in FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing. The fluid may be liquid or gaseous and may be single-phase or multi-phase. Preferably, also in view of the possible reaction temperatures, the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid. As seen in the direction of flow of the fluid, the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 13. The heating levels 100, 101, 102, 103 are flowed through during operation of the reactor of the fluid and the heating elements 1 10, 1 1 1, 1 12, 1 13 are contacted by the fluid. At least one heating element 1 10, 1 1 1, 1 12, 1 13, a catalyst is arranged and is heated there. The catalyst may be directly or indirectly connected to the heating elements 1 10, 1 1 1, 1 12, 1 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. In the reactor, therefore, the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
Für die Fleizelemente 1 10, 1 1 1 , 1 12, 1 13 kommen bevorzugt Heizleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, eingesetzt werden. Im Reaktor ist weiterhin mindestens einmal eine vorzugsweise keramische Zwischenebene 200, 201 , 202 zwischen zwei Fleizebenen 100, 101 , 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201 , 202 ebenfalls im Betrieb des Reaktors vom dem Fluid durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluidströmung. Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationseiementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen. Die Zwischenebenen können bei Bedarf insbesondere bei der POX-Reaktion als Flammsperre fungieren. Die genannte mindestens eine keramische Zwischenebene wird vorzugsweise von einem keramischen oder metallischen Traggerüst und/oder einer keramischen oder metallischen Tragebene getragen. For the Fleizelemente 1 10, 1 1 1, 1 12, 1 13 are preferably Heizleiterlegierungen such as FeCrAl alloys used. In addition to metallic materials, it is also possible to use electrically conductive Si-based materials, particularly preferably SiC. In the reactor at least once more preferably a ceramic intermediate level 200, 201, 202 between two levels of fuel 100, 101, 102, 103 are arranged, wherein the intermediate level (s) 200, 201, 202 are also traversed by the fluid in the operation of the reactor. This has the effect of homogenizing the fluid flow. It is also possible that additional Catalyst in one or more intermediate levels 200, 201, 202 or further Isolationsseiementen in the reactor is present. Then an adiabatic reaction can take place. If necessary, the intermediate levels can act as a flame barrier, especially in the POX reaction. Said at least one intermediate ceramic layer is preferably supported by a ceramic or metallic support frame and / or a ceramic or metallic support plane.
Bei der Verwendung von FeCrAl-Heizleitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatureinwirkung in Gegenwart von Luft/Sauerstoff eine AhC -Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundschicht eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heizleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich. Die Druckaufnahme im Reaktor kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt. Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizel ementen 1 10, 1 1 1 , 1 12, 1 13 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom. Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101 , 102, 103 Heizelemente 1 10, 1 1 1 , 1 12, 1 13 angeordnet sind, welche spiralförmig, mäanderfönnig, gitterförmig und/oder netzförmig aufgebaut sind. When using FeCrAl heating conductors, the fact can be exploited that the material forms an AhC protective layer by the action of temperature in the presence of air / oxygen. This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating. Thus, the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other heating conductors, the formation of other protective layers such as Si-O-C systems. The pressure in the reactor can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C. By means of appropriate devices, it can be ensured that, when the dew point is undershot, there is no condensation of water on the steel jacket. The electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the Heizel ementen 1 10, 1 1 1, 1 12, 1 13 performed so that the actual electrical connections can be provided in the cold region of the reactor can. The electrical heating is done with direct current or alternating current. By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are spirally, meandering, lattice-shaped and / or net-shaped.
Es ist weiterhin möglich, dass an zumindest einem H eizelement 1 10, 1 1 1 , 1 12, 1 13 eine von den übrigen Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 1 10, 1 1 1 , 1 12, 1 13 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. It is also possible for at least one heating element 1 10, 11 1, 12, 13 to have a different amount and / or type of catalyst than the remaining heating elements 110, 11, 12, 13. Preferably, the heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged so that they can each be electrically heated independently.
Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im H inblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizebenen 100, 101 , 102, 103 in Leistungseintrag, Katalysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In H inbl ick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. As a result, the individual heating levels can be individually controlled and regulated. In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in view of starting the reactor. If the individual heating levels 100, 101, 102, 103 differ in power input, catalyst charge and / or type of catalyst, a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which reaches the highest temperatures and thus the highest conversion at the reactor outlet.
Die (beispielsweise keramischen) Zwischenebenen 200, 201 , 202 respektive ihr Inhalt 210, 21 1 , 212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101 , 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 2 1 1 , 212 einer Zwischenebene 200, 201 , 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. The (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 21 1, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 2 1 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Die Zwischenebene 200, 201 , 202 kann beispielsweise eine lose Schüttung von Festkörpern und/oder einen einstückigen porösen Festkörper umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hin durchströmt. Der Fall des einstückigen porösen Festkörpers ist in FIG. 1 dargestellt. Das Fluid durchströmt die Zwischenebene über die Poren des Festkörpers. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. Eine weitere denkbare Möglichkeit ist, dass eine oder mehrere der Zwischenebenen Leerräume sind. The intermediate level 200, 201, 202 may comprise, for example, a loose bed of solids and / or a one-piece porous solid. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. The case of the one-piece porous solid is shown in FIG. 1 shown. The fluid flows through the intermediate plane via the pores of the solid. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite. Another conceivable possibility is that one or more of the intermediate levels are voids.
Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101 , 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201 , 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0, 1 : 1 bis < 10: 1 oder 0,5: 1 bis < 5: 1. With regard to the structural dimensions, it is preferred that the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to <100: 1 to each other. Even more advantageous are ratios of> 0, 1: 1 to <10: 1 or 0.5: 1 to <5: 1.
Geeignete Katalysatoren können beispielsweise ausgewählt sein aus der Gruppe bestehend aus: (I) Mischmetalloxide der Formel A (i-w-x)A„A"xB(i.y.z)B'yB"z03-deita wobei hier gilt: Suitable catalysts can be selected for example from the group consisting of: (I) mixed metal oxides of the formula A (i-w-x) A 'A "x B (iy z) B' y B" z 03-Deita where:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm. Lu. Gd, Tb, Dy, Ho, Er, Tm. Yb, i'l , Lu.A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm Lu, Gd, Tb, Dy, Ho, Er, Tm. Yb, i ' l, Lu.
Ni, Co, Pb, Bi und/oder Cd; und B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd,Ni, Co, Pb, Bi and / or Cd; and B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd,
Co, Cu, Ni, Sn, AI. Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, I i f. Zr, Tb, W, Gd. Yb. Mg, Li. Na, K. Ce und/oder Zn; und Co, Cu, Ni, Sn, Al. Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, I i f. Zr, Tb, W, Gd. Yb. Mg, Li. Na, K. Ce and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < deita < 1 ; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <deita <1;
(II) Mischmetalloxide der Formel A (ΐ-„-χ)Α„A"xB(i.y.z)B'yB"z03-deita wobei hier gilt: (II) mixed metal oxides of the formula A (ΐ - "- χ) Α" A "x B B 'y B (i y, z..)" Z 03-Deita which applies here:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K. Rb, Cs, Sn, Sc, Y. La, Ce, Pr. Nd, Sm. Lu. Gd, Tb, Dy. Ho, Er, Tm. Yb. Γ1 , Lu, Ni,A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K. Rb, Cs, Sn, Sc, Y. La, Ce, Pr. Nd, Sm. Lu Gd, Tb, Dy. Ho, Er, Tm. Yb. Γ1, Lu, Ni,
Co, Pb und/oder Cd; und Co, Pb and / or Cd; and
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I i f. Zr. Tb. W, Gd. Yb. Mg, Cd, Zn, Re, Ru. Rh. Pd, Os, Ir und/oder Pt; und B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I i f. Zr. Tb. W, Gd. Yb. Mg, Cd, Zn, Re, Ru. Rh. Pd, Os, Ir and / or Pt; and
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/Oder Pt; und B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt; and
B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi. Cd, Co, Cu, Ni, Sn. AI. Ga. Sc, Ti. V, Nb, Ta, Mo, Pb. I I f. Zr. Tb. W, Gd, Yb. Mg, Cd und/oder Zn; und B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, II, Zr, Tb W, Gd, Yb, Mg, Cd and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; (III) Mischungen von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1; (III) mixtures of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, I lo, Er, Tm, Yb und/oder Lu; M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, I lo, Er, Tm, Yb and / or Lu;
(IV) Mischmetalloxide der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: (IV) mixed metal oxides of the formula LO x (M ( y / z ) Al (2- y / z) 03) z; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,L is selected from the group: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,
Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m. Yb und/oder Lu; und Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m. Yb and / or Lu; and
M ist ausgewählt aus der Gruppe: "I i, Zr, I I f. V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und M is selected from the group: " I i, Zr, II for V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag and / or Au, and
1 < x < 2; 0 < y < 12; und 4 < z < 9; 1 <x <2; 0 <y <12; and 4 <z <9;
(V) Mischmetalloxide der Formel LO(Ah03)z; wobei hier gilt: (V) mixed metal oxides of the formula LO (AhO 3) z; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und L is selected from the group: Na, K, Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
4 < z < 9; 4 <z <9;
(VI) oxidischer Katalysator, der Ni und Ru umfasst. (VI) Oxide catalyst comprising Ni and Ru.
(VII) Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selen id der Metalle A und/oder B ist; wobei hier gilt: (VII) metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier is a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenium id of metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, FIo, Er, Tm, Yb, und/oder Lu; Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, FIo, Er, Tm, Yb, and / or Lu;
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La. Ce, Pr. Nd, Sm. Eu, Gd. Tb. y. l io. Er,A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La. Ce, Pr. Nd, Sm. Eu, Gd. Tb. Y. l io. He,
Tm, Yb, und/oder Lu; und/oder Tm, Yb, and / or Lu; and or
Reaktionsprodukte von (I) , (II), (III) , (IV), (V), (VI) und/o der (VII) i n Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI) and / o of (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C.
Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. Bevorzugt sind für: The term "reaction products" includes the catalyst phases present under reaction conditions. Preferred are for:
(I) LaN iO ; und/oder
Figure imgf000014_0001
(insbesondere LaNio,gFeo,203)
(I) LaN OK; and or
Figure imgf000014_0001
(especially LaNio, gFeo, 203)
(II) LaNio,9-o,99Ruo,oi-o,i03 und/oder L aN io,9-o,99Rho,o ι -o, ι O3 (insbesondere LaNio,95Ruo,o503 und/oder LaNio^sRho.osCb). (II) LaNio, 9-o, 99Ruo, oi-o, iO3 and / or LnNo, 9-o, 99Rho, o ι -o, ιO3 (especially LaNio, 95Ruo, o503 and / or LaNio ^ sRho. oscB).
(III) Pt-Rh auf Ce-Zr-Al-Oxid, Pt-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid (III) Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide
(IV) BaNiAInOi9, C a N i A I1 1O 19,
Figure imgf000014_0002
(IV) BaNiAl n Oi9, C a N i A I1 1O 19,
Figure imgf000014_0002
BaNio,92Ruo,o8Ai nOi9, BaNio,84Pto,i6A1 nOi9 und/oder BaRuo.osA 1,95019  BaNio, 92Ruo, o8Ai nOi9, BaNio, 84Pto, i6A1 nOi9 and / or BaRuo.osA 1,95019
(V) BaA1i20i9, SrAli20!9 und/oder CaAl!20i9 (V) BaA1i 2 0i9, SrAli 2 0 ! 9 and / or CaAl ! 2 0i9
(VI) Ni und Ru auf Ce-Zr-Al-Oxid, auf einem Oxid aus der Klasse der Perowskite und/oder au einem Oxid aus der Klasse der Hexaaluminate (VI) Ni and Ru on Ce-Zr-Al oxide, on an oxide of the class of perovskites and / or on an oxide of the class of hexaaluminates
(VII) Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Hu. Gd, I b. Dy,(VII) Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Hu. Gd, I b. Dy,
Ho, Er, Tm, Yb, und/oder Lu auf M02C und/oder WC. Ho, Er, Tm, Yb, and / or Lu on M0 2 C and / or WC.
Der erfindungsgemäße Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Zwischenebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. The reactor according to the invention may be modular. A module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
Im erfindungsgemäßen Verfahren erfolgt im bereitgestellten Reaktor ein elektrisches Beheizen wenigstens eines der Heizelemente 1 10, 1 11 , 112, 1 13. Dieses kann, muss aber nicht zeitlich vor dem Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids erfolgen. In the process according to the invention, an electric heating of at least one of the heating elements 110, 1111, 112, 13 takes place in the reactor provided. This can, but does not have to, be before the passage of a reactant through the flow reactor under at least partial reaction of the reactants of the fluid respectively.
Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine I s o lations eb ene , d i e e lektri s c he Kontaktierung und die entspre chenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. The reactor can be modular. A module can contain, for example, a heating level, an insulation level, electrical contact, and the corresponding further insulation materials and thermal insulation materials.
Wie bereits im Zusammenhang mit dem Reaktor erwähnt ist es vorteilhaft, wenn die einzelnen Heizelemente 110, 111, 112, 113 mit einer jeweils unterschiedlichen Heizleistung betrieben werden. As already mentioned in connection with the reactor, it is advantageous if the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
Hinsichtlich der Temperatur ist bevorzugt, dass die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. Mehr bevorzugte Bereiche sind > 800 °C bis < 1200 °C und > 900 °C bis < 1100 °C, Die durchs chnittliche (mittlere) Kontaktzeit des Fluids zu einem Heizelement 110, 111, 112, 113 kann beispielsweise > 0,01 Sekunden bis < 1 Sekunde betragen und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene 110, 111, 112, 113 kann beispielsweise > 0,001 Sekunden bis < 5 Sekunden betragen. Bevorzugte Kontaktzeiten sind > 0,005 bis < 1 Sekunden, mehr bevorzugt > 0,01 bis < 0,9 Sekunden. With regard to the temperature, it is preferred that the reaction temperature in the reactor is at least in places> 700 ° C to <1300 ° C. More preferred ranges are> 800 ° C to <1200 ° C and> 900 ° C to <1100 ° C, The average (median) contact time of the fluid to a heating element 110, 111, 112, 113 may be for example> 0.01 seconds to <1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may For example, be> 0.001 seconds to <5 seconds. Preferred contact times are> 0.005 to <1 second, more preferably> 0.01 to <0.9 seconds.
Die Reaktion kann bei einem Druck von > 1 bar bis < 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar. The reaction can be carried out at a pressure of> 1 bar to <200 bar. Preferably, the pressure is> 2 bar to <50 bar, more preferably> 10 bar to <30 bar.

Claims

Verfahren zur Herstellung von Synthesegas, umfassend die Schritte: a) Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene (100, 101, 102, 103) umfasst, welche mittels eines oder mehrerer Heizelemente (1 10,Method for producing synthesis gas, comprising the steps: a) Providing a flow reactor which is set up to react a fluid comprising reactants, the reactor comprising at least one heating level (100, 101, 102, 103), which is heated by means of one or more heating elements ( 1 10,
111 , 112, 113) elektrisch beheizt wird, wobei die Heizebene (100, 101, 102, 103) von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement (110, 111 ,111, 112, 113) is heated electrically, wherein the heating level (100, 101, 102, 103) can be flowed through by the fluid and at least one heating element (110, 111,
112, 113) ein Katalysator angeordnet ist und dort beheizbar ist; b) Festlegen eines Schwellwertes S l für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S2 für den relativen Anteil von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S3 für ein gewünschtes Verhältnis von Wasserstoff zu Kohlenmonoxid im erhaltenen Synthesegas; und c) Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert Sl und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2 und/oder des Verhältnisses von Wasserstoff zu Kohlenmonoxid im erhaltenen Synthesegas mit dem Schwellwert S3; d) Reaktion von Kohlenwasserstoffen mit Kohlendioxid und/oder Wasser i n dem Strömungsreaktor, wobei Kohlenmonoxid und Wasserstoff gebildet werden, unter elektrischer Beheizung durch ein oder mehrere Fleizelemente (110, 111, 112, 113), wenn der Schwellwert Sl unterschritten und/oder der Schwellwert S2 überschritten und/oder der Schwellwert S3 unterschritten werden, wobei wenigstens ein Teil des gebildeten Wasserstoffs einer Speicherung zugeführt wird und/oder einer Reaktion in einem anderen Reaktor zugeführt wird; e) Reaktion von Kohlendioxid mit Wasserstoff in dem Strömungsreaktor, wobei Kohlenmonoxid und Wasser gebildet werden, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (110, 111, 112, 113), wenn der Schwellwert S l überschritten und/oder der Schwellwert S2 unterschritten und/oder der Schwellwert S3 überschritten werden, wobei wenigstens ein Teil des eingesetzten Wasserstoffs aus dem zuvor gespeicherten Wasserstoff stammt und/oder aus einer Reaktion in einem anderen Reaktor stammt. 112, 113) a catalytic converter is arranged and can be heated there; b) determining a threshold value S l for the costs of the electrical energy available for the flow reactor and/or a threshold value S2 for the relative proportion of electrical energy from renewable sources of the electrical energy available for the flow reactor and/or a threshold value S3 for a desired ratio of hydrogen to carbon monoxide in the synthesis gas obtained; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value S1 and/or the relative proportion of electrical energy from renewable sources of the electrical energy available for the flow reactor with the threshold value S2 and/or the ratio of Hydrogen to carbon monoxide in the synthesis gas obtained with the threshold value S3; d) Reaction of hydrocarbons with carbon dioxide and/or water in the flow reactor, whereby carbon monoxide and hydrogen are formed, under electrical heating by one or more heating elements (110, 111, 112, 113), if the threshold value Sl is undershot and/or the threshold value S2 is exceeded and/or the threshold value S3 is not reached, with at least part of the hydrogen formed being fed to storage and/or fed to a reaction in another reactor; e) reaction of carbon dioxide with hydrogen in the flow reactor, whereby carbon monoxide and water are formed, under electrical heating by one or more heating elements (110, 111, 112, 113) when the threshold value S1 is exceeded and/or the threshold value S2 is undershot and / or the threshold value S3 is exceeded, with at least part of the hydrogen used comes from previously stored hydrogen and/or comes from a reaction in another reactor.
2. Verfahren gemäß Anspruch 1 , wobei der Wasserstoff in Druckspeichern, in Kavernen, in Form von Hydriden und/oder in Form von organischen Verbindungen gespeichert wird. 2. The method according to claim 1, wherein the hydrogen is stored in pressure accumulators, in caverns, in the form of hydrides and / or in the form of organic compounds.
3. Verfahren gemäß Anspruch 1 oder 2, wobei in der Reaktion von Kohlendioxid mit Wasserstoff wenigstens ein Teil des eingesetzten Wasserstoffs aus der Elektrolyse von Wasser stammt. 3. The method according to claim 1 or 2, wherein in the reaction of carbon dioxide with hydrogen at least part of the hydrogen used comes from the electrolysis of water.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei der Strömungsreaktor in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen (100, 101 , 102, 103) umfasst, welche mittels Heizelementen (1 10, 1 1 1 , 1 12, 1 13) elektrisch beheizt werden und wobei die Fleizebenen (100, 101 , 102, 103) von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement (100, 101 , 102, 103) ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine keramische Zwischenebene (200, 201 , 202) zwischen zwei Heizebenen (100, 101 , 102, 103) angeordnet ist und wobei die Zwischenebene (200, 201 , 202) ebenfalls von dem Fluid durchströmbar ist. 4. The method according to any one of claims 1 to 3, wherein the flow reactor, viewed in the flow direction of the fluid, comprises a plurality of heating levels (100, 101, 102, 103), which are provided by means of heating elements (1 10, 1 1 1, 1 12, 1 13 ) are electrically heated and wherein the fluid levels (100, 101, 102, 103) can flow through, a catalyst being arranged on at least one heating element (100, 101, 102, 103) and being heated there, furthermore at least once a ceramic intermediate level (200, 201, 202) is arranged between two heating levels (100, 101, 102, 103) and the fluid can also flow through the intermediate level (200, 201, 202).
5. Verfahren gemäß Anspruch 4, wobei in den Heizebenen (100, 101 , 102, 103) Heizelemente (1 10, 1 1 1 , 1 12, 1 13) angeordnet sind, weiche spiralförmig, mäanderförmig. gitterfönnig und/oder netzförmig aufgebaut sind. 5. The method according to claim 4, wherein in the heating levels (100, 101, 102, 103) heating elements (1 10, 1 1 1, 1 12, 1 13) are arranged, which are spiral, meandering. have a grid-shaped and/or net-shaped structure.
6. Verfahren gemäß Anspruch 4 oder 5, wobei an zumindest einem Heizelement (1 10, 1 1 1 , 1 12, 1 13) eine von den übrigen Heizelementen (1 10, 1 1 1 , 1 12, 1 13) verschiedene Menge und/oder Art des Katalysators vorliegt. 6. The method according to claim 4 or 5, wherein at least one heating element (1 10, 1 1 1, 1 12, 1 13) has a different amount and from the other heating elements (1 10, 1 1 1, 1 12, 1 13). /or type of catalyst is present.
7. Verfahren gemäß einem der Ansprüche 4 bis 6, wobei die Heizelemente (1 10, 1 1 1 , 1 12, 1 13) so eingerichtet sind, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. 7. The method according to any one of claims 4 to 6, wherein the heating elements (1 10, 1 1 1, 1 12, 1 13) are set up so that they can each be electrically heated independently of one another.
8. Verfahren gemäß einem der Ansprüche 4 bis 7, wobei das Material des Inhalts (210, 21 1 , 212) einer Zwischenebene (200, 20 1 . 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. 8. The method according to any one of claims 4 to 7, wherein the material of the content (210, 21 1, 212) of an intermediate level (200, 20 1, 202) is oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
9. Verfahren gemäß einem der Ansprüche 4 bis 8, wobei die Zwischenebene (200, 201 , 202) eine lose Schüttung von Festkörpern und/oder einen einstückigen porösen Festkörper umfasst. 9. The method according to any one of claims 4 to 8, wherein the intermediate level (200, 201, 202) comprises a loose bed of solids and / or a one-piece porous solid.
10. Verfahren gemäß einem der Ansprüche 4 bis 9, wobei die durchschnittliche Länge einer Heizebene (100, 101, 102, 103) in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene (200, 201 , 202) in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. 11. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei der Katalysator ausgewählt ist aus der Gruppe bestehend aus: 10. The method according to any one of claims 4 to 9, wherein the average length of a heating level (100, 101, 102, 103) viewed in the flow direction of the fluid and the average length of an intermediate level (200, 201, 202) viewed in the flow direction of the fluid have a ratio of > 0.01: 1 to < 100: 1 to each other. 11. The method according to any one of claims 1 to 10, wherein the catalyst is selected from the group consisting of:
(I) Mischmetalloxide der Formel A (i-w-x)A! wA"xB(i.y.z)B'yB"z03-deita wobei hier gilt: (I) Mixed metal oxides of the formula A (i- w -x)A ! w A" x B(i. y . z )B' y B" z 03-deita where the following applies:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La. Ce, Pr, Nd, Pm, Sm, hu. Gd, Tb, Dy, Ho, Er, i m. Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; und A, A' and A" are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La. Ce, Pr, Nd, Pm, Sm , hu. Gd, Tb, Dy, Ho, Er, i m. Yb, Tl , Lu, Ni, Co, Pb, Bi and/or Cd; and
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn. AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. Hf, Zr, Tb. W, Gd. Yb, Mg, Li, Na, K, Ce und/oder Zn; und 0 < w < 0.5; 0 < x < 0.5; 0 < y < 0.5; 0 < z < 0.5 und - 1 < delta < I ; B, B' and B" are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn. Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb Hf, ZR, Tb. W, Gd. Yb, Mg, Li, Na, K, Ce and/or Zn; and 0 <0.5; 0 <x <0.5; 0 <0.5; 0 <z < 0.5 and - 1 < delta < I ;
(II) Mischmetalloxide der Formel A (i.w-x)A' wA"xB(i-y-z)B'yB"z03-deita wobei hier gilt: (II) Mixed metal oxides of the formula A (i. w -x)A' w A" x B(i- y - z )B' y B" z 03-deita where the following applies:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba. Li. Na, K. Rb, Cs, Sn, Sc, Y. La, Ce, Pr, Nd, Sm, Eu, Gd. Tb. Dy, Ho, Er, i m. Yb. Tl , Lu, Ni, Co, Pb und/oder Cd; und A, A' and A" are independently selected from the group: Mg, Ca, Sr, Ba. Li. Na, K. Rb, Cs, Sn, Sc, Y. La, Ce, Pr, Nd, Sm, Eu , Gd. Tb. Dy, Ho, Er, im. Yb. Tl , Lu, Ni, Co, Pb and/or Cd; and
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I i f. Zr, Tb, W, Gd. Yb. Mg, Cd. Zn. Re, Ru. Rh. Pd, Os, ir und/oder Pt; und B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb. I i f. Zr, Tb, W, Gd. Yb. Mg, Cd. Zn. Re, Ru. Rh. Pd, Os, ir and/or Pt; and
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; und B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti,B' is selected from the group: Re, Ru, Rh, Pd, Os, Ir and/or Pt; and B" is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti,
V, Nb, Ta, Mo, Pb, Hf, Zr, Tb. W. Gd, Yb. Mg, Cd und/oder Zn: und V, Nb, Ta, Mo, Pb, Hf, Zr, Tb. W. Gd, Yb. Mg, Cd and/or Zn: and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0.5 und - I < delta < 1 ; (III) Mischungen von wenigstens zwei verschiedenen Metallen M 1 und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von A I, Ce und/oder Zr umfasst; wobei hier gilt: Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir,0<w<0.5;0<x<0.5; 0 < y <0.5; 0 < z < 0.5 and - I < delta <1; (III) mixtures of at least two different metals M 1 and M2 on a support comprising an oxide of Al, Ce and/or Zr doped with a metal M3; where the following applies here: Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir,
Os, Pd und/oder Pt; und Os, Pd and/or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb und/oder Lu; Tm, Yb and/or Lu;
(IV) Mischmetalloxide der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: (IV) mixed metal oxides of the formula LO x (M( y / z )Al(2-y/z)03)z; where the following applies here:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl. La, Ce, Pr, Nd, Sm. Eu, Gd, Tb, Oy. Ho, Er, Tm. Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl. La, Ce, Pr, Nd, Sm. Eu , Gd, Tb, Oy. Ho, Er, Tm. Yb and/or Lu; and
M ist ausgewählt aus der Gruppe: Ti, Zr, M is selected from the group: Ti, Zr,
1 1 f , V, Nb, l'a, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh. Ir, Ni, Pd. Pt. Zn, Cu, Ag und/oder Au; und 1 < x < 2; (X y < 1 2; und 4 < z < 9; 1 1 f , V, Nb, l ' a, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh. Ir, Ni, Pd. Pt. Zn, Cu, Ag and/or Au; and 1 < x <2; (X y < 1 2; and 4 < z <9;
(V) Mischmetalloxide der Formel LO(A1i03)z; wobei hier gilt: (V) mixed metal oxides of the formula LO(A1i03) z ; where the following applies here:
1. ist ausgewählt aus der Gruppe: Na, K. Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn,1. is selected from the group: Na, K. Rb. Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn,
In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und 4 < z < 9; In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and/or Lu; and 4 < z < 9;
(VI) oxidischer Katalysator, der Ni und Ru umfasst. (VI) oxide catalyst comprising Ni and Ru.
(VII) Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb. Dy, Ho, Er, I m, Yb, und/oder Lu; und (VII) metal Ml and/or at least two different metals Ml and M2 on and/or in a carrier, the carrier being a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and/or selenide of the metals A and/or Are; where the following applies here: Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb. Dy, Ho, Er, I m, Yb, and/or Lu; and
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, I i, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La, Ce, Pr. Nd, Sm, Eu, Gd, Tb.A and B are independently selected from the group: Be, Mg, Ca, Sc, I i, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La , Ce, Pr. Nd, Sm, Eu, Gd, Tb.
Dy, Ho, Er, Tm, Yb, und/oder Lu; und/oder Dy, Ho, Er, Tm, Yb, and/or Lu; and or
Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI) und/oder (VII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI) and/or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and/or water at a temperature of > 700 ° C
12. Verfahren gemäß einem der Ansprüche 4 bis 1 1 , wobei die einzelnen Heizelemente (1 10,12. The method according to any one of claims 4 to 1 1, wherein the individual heating elements (1 10,
1 1 1 , 112, 1 13) mit einer jeweils unterschiedlichen Heizleistung betrieben werden. 1 1 1 , 112, 1 13) can be operated with a different heating output.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, wobei die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. 13. The method according to any one of claims 1 to 12, wherein the reaction temperature in the reactor is at least in places >700 °C to <1300 °C.
14. Verfahren gemäß einem der Ansprüche 4 bis 13, wobei die durchschnittliche Kontaktzeit des Fluids zu einem Heizelement (1 10, 1 1 1 , 1 12, 1 13) > 0,001 Sekunden bis < 1 Sekunde beträgt und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene (1 10, 1 1 1 ,14. The method according to any one of claims 4 to 13, wherein the average contact time of the fluid to a heating element (1 10, 1 1 1, 1 12, 1 13) is > 0.001 seconds to < 1 second and / or the average contact time of the fluid to an intermediate level (1 10, 1 1 1 ,
1 12, 113) > 0,001 Sekunden bis < 5 Sekunden beträgt. 1 12, 113) > 0.001 seconds to < 5 seconds.
15. Verfahren gemäß einem der Ansprüche 1 bis 14, wobei die gewählte Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird. 15. The method according to any one of claims 1 to 14, wherein the selected reaction is carried out at a pressure of >1 bar to <200 bar.
PCT/EP2013/054959 2012-03-13 2013-03-12 Method for producing synthesis gas WO2013135667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203923.6 2012-03-13
DE102012203923 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135667A1 true WO2013135667A1 (en) 2013-09-19

Family

ID=47844370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054959 WO2013135667A1 (en) 2012-03-13 2013-03-12 Method for producing synthesis gas

Country Status (1)

Country Link
WO (1) WO2013135667A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016322A (en) * 2016-08-05 2018-02-14 한국과학기술원 Metal Oxide Supported Catalyst for Dry Reforming and Method of Preparing Syngas Using the Same
WO2020047091A1 (en) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
WO2020046638A1 (en) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
WO2021098980A1 (en) * 2019-11-18 2021-05-27 Linde Gmbh Method and device for the production of carbon monoxide by reverse water-gas shift
US11591214B2 (en) 2017-12-08 2023-02-28 Haldor Topsøe A/S Process and system for producing synthesis gas
US11649164B2 (en) 2017-12-08 2023-05-16 Haldor Topsøe A/S Plant and process for producing synthesis gas
US11932538B2 (en) 2017-12-08 2024-03-19 Haldor Topsøe A/S Process and system for reforming a hydrocarbon gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
US20020110507A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Method and apparatus for preheating of a fuel cell micro-reformer
WO2004071947A2 (en) 2003-02-06 2004-08-26 Ztek Corporation Renewable energy operated hydrogen reforming system
US20070003478A1 (en) 2005-06-29 2007-01-04 Becker Christopher L Synthesis gas production and use
WO2007042279A1 (en) 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
DE102007022723A1 (en) 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
US20020110507A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Method and apparatus for preheating of a fuel cell micro-reformer
WO2004071947A2 (en) 2003-02-06 2004-08-26 Ztek Corporation Renewable energy operated hydrogen reforming system
US20060207178A1 (en) 2003-02-06 2006-09-21 Ztek Corporation Renewable energy operated hydrogen reforming system
US20070003478A1 (en) 2005-06-29 2007-01-04 Becker Christopher L Synthesis gas production and use
WO2007042279A1 (en) 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
DE102007022723A1 (en) 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
US20100305221A1 (en) 2007-05-11 2010-12-02 Basf Se Method for producing synthesis gas
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL., INTERNATIONAL JOURNAL OFHYDROGEN ENERGY, vol. 32, 2007, pages 3870 - 3879

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016322A (en) * 2016-08-05 2018-02-14 한국과학기술원 Metal Oxide Supported Catalyst for Dry Reforming and Method of Preparing Syngas Using the Same
KR102056384B1 (en) 2016-08-05 2020-01-22 한국과학기술원 Metal Oxide Supported Catalyst for Dry Reforming and Method of Preparing Syngas Using the Same
US11618015B2 (en) 2016-08-05 2023-04-04 Korea Advanced Institute Of Science And Technology Dry reforming catalyst using metal oxide support, and method for preparing synthetic gas by using same
US11591214B2 (en) 2017-12-08 2023-02-28 Haldor Topsøe A/S Process and system for producing synthesis gas
US11649164B2 (en) 2017-12-08 2023-05-16 Haldor Topsøe A/S Plant and process for producing synthesis gas
US11932538B2 (en) 2017-12-08 2024-03-19 Haldor Topsøe A/S Process and system for reforming a hydrocarbon gas
WO2020047091A1 (en) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
WO2020046638A1 (en) * 2018-08-31 2020-03-05 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
US11505751B2 (en) 2018-08-31 2022-11-22 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
US11679367B2 (en) 2018-08-31 2023-06-20 Dow Global Technologies Llc Systems and processes for improving hydrocarbon upgrading
WO2021098980A1 (en) * 2019-11-18 2021-05-27 Linde Gmbh Method and device for the production of carbon monoxide by reverse water-gas shift

Similar Documents

Publication Publication Date Title
EP2825502A1 (en) Method for producing co and/or h2 in an alternating operation between two operating modes
WO2013135667A1 (en) Method for producing synthesis gas
Abdulrasheed et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances
Greluk et al. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming
US10093542B2 (en) Auto thermal reforming (ATR) catalytic structures
Larimi et al. Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts
DE69908242T2 (en) reformer
US8597383B2 (en) Metal supported silica based catalytic membrane reactor assembly
EP2935098B1 (en) Parallel preparation of hydrogen, carbon monoxide and carbon-comprising product
Zhai et al. Steam reforming of methane over Ni catalyst in micro-channel reactor
Sadykov et al. Syngas generation from hydrocarbons and oxygenates with structured catalysts
WO2013135660A1 (en) Axial flow reactor having heating planes and intermediate planes
WO2013135668A1 (en) Chemical reactor system, comprising an axial flow reactor with heating levels and intermediate levels
Divins et al. A million-microchannel multifuel steam reformer for hydrogen production
DE112004000518T5 (en) High performance fuel conditioning system Fuel cell power plant
WO2013135657A1 (en) Method for producing synthesis gas in alternating operation between two operating modes
WO2013135664A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium
Galletti et al. CO methanation as alternative refinement process for CO abatement in H2-rich gas for PEM applications
Rogozhnikov et al. Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning
Eleat et al. Catalytic performance and kinetic modeling of ethylene glycol steam reforming over surfactant-modified Pd–Ni/KIT-6
WO2013135666A1 (en) Axial flow reactor based on an fe-cr-al alloy
WO2013135665A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts in the form of partially substituted hexaaluminates
WO2013135663A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal
DE102020208605B4 (en) ENERGY CONVERSION SYSTEM
González-Cortés Green SCS: Hydrogen Production, Further Applications, Conclusion, and Path Forward

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13708477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13708477

Country of ref document: EP

Kind code of ref document: A1