WO2013133110A1 - Cvd device - Google Patents

Cvd device Download PDF

Info

Publication number
WO2013133110A1
WO2013133110A1 PCT/JP2013/055263 JP2013055263W WO2013133110A1 WO 2013133110 A1 WO2013133110 A1 WO 2013133110A1 JP 2013055263 W JP2013055263 W JP 2013055263W WO 2013133110 A1 WO2013133110 A1 WO 2013133110A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
weight
film
cvd apparatus
less
Prior art date
Application number
PCT/JP2013/055263
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 浩二
本多 祐二
慶一 寺島
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to SG11201405405SA priority Critical patent/SG11201405405SA/en
Priority to JP2014503794A priority patent/JP6229136B2/en
Publication of WO2013133110A1 publication Critical patent/WO2013133110A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Definitions

  • the present invention relates to a CVD apparatus in which particles are reduced by surface-treating the inside of the apparatus.
  • a film deposition apparatus such as a CVD apparatus
  • the thin film adheres to the inner surface of the chamber, and the deposited thin film peels off to cause particle contamination on the deposition target substrate. May occur. Therefore, as a measure for preventing the above-described particle contamination, the inner surface of the chamber is subjected to blasting, or an adhesion-preventing plate subjected to blasting is attached to the inner surface of the chamber. By performing blasting in this way, when the thin film adheres to the inner surface of the chamber or the adhesion-preventing plate, it is a measure to suppress particle contamination by improving the adhesion with the thin film.
  • An object of one embodiment of the present invention is to provide a CVD apparatus that can reduce particle contamination on a substrate.
  • Each of the following (1) to (12) is a CVD apparatus according to one embodiment of the present invention.
  • a chamber A substrate holder disposed in the chamber and holding the substrate;
  • a gas introduction mechanism for introducing a source gas into the chamber; Comprising At least one of an inner surface of the chamber, the substrate holder, a deposition plate disposed in the chamber, a jig disposed in the chamber, and a gas shower member for introducing the source gas into the chamber in a shower shape
  • a film made of any one of metal, ceramics, plastic, and cermet are examples of any one of metal, ceramics, plastic, and cermet.
  • the CVD apparatus characterized in that the material contains 10% by weight or more of at least one of Cr, W and Mo.
  • the material contains Cr 1 wt% or more and 50 wt% or less, WC contains 0 wt% or more and 49 wt% or less, Mo contains 0 wt% or more and 49 wt% or less, and Cr, WC, and Mo are contained.
  • a CVD apparatus comprising 50% by weight or less in total, Fe, Si, C, B, Al and Cu in a total content of 0% by weight to 50% by weight, the balance being made of Ni and inevitable impurities .
  • the Fe is contained in an amount of 0 to 10% by weight
  • the Si is contained in an amount of 0 to 10% by weight
  • the C is contained in an amount of 0 to 3% by weight
  • the B is contained in an amount of 0 to 7% by weight.
  • a CVD apparatus comprising: 1 wt% or less, Al containing 0 wt% or more and 15 wt% or less, and Cu containing 0 wt% or more and 5 wt% or less.
  • the CVD apparatus characterized in that the material contains 9 wt% or more and 20 wt% or less of Cr.
  • the said material contains 3 to 10 weight% of Mo
  • the CVD apparatus characterized by the above-mentioned.
  • the CVD apparatus characterized in that the material contains WC in an amount of 30 wt% to 40 wt%.
  • the material contains 80% by weight or more of Mo, and the balance is made of impurities and inevitable impurities.
  • the CVD apparatus wherein the impurity is at least one of Fe, Si, and C.
  • a CVD apparatus, wherein the film made of the material is formed by thermal spraying.
  • the film formed on the substrate is a carbon film.
  • a CVD apparatus that can reduce particle contamination on a substrate can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically illustrating a plasma CVD apparatus according to one embodiment of the present invention.
  • FIG. 3 is a photograph showing the results of a tape peel test performed on samples 1 to 4 of the example.
  • FIG. 4 is a photograph showing the results of a tape peel test performed on Sample 5 of the Example.
  • FIG. 5 is a photograph showing the results of a tape peel test performed on samples 6 to 9 of comparative examples.
  • FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to one embodiment of the present invention.
  • the plasma CVD apparatus has a film formation chamber 101, and a lid 102 is disposed on the film formation chamber 101.
  • a film formation chamber 103 is formed in the film formation chamber 101 by covering the film formation chamber 101 with a lid 102.
  • a stage electrode 104 that holds a deposition target substrate (not shown) is disposed below the deposition chamber 103, and the stage electrode 104 is electrically connected to a high-frequency power source 106.
  • the stage electrode 104 also functions as an RF application electrode and functions as a substrate holder.
  • the periphery and the lower part of the stage electrode 104 are shielded by an earth shield 105.
  • a gas shower electrode 107 is disposed at a position parallel to the stage electrode 104 above the film forming chamber 103. These are a pair of parallel plate electrodes.
  • the periphery and upper part of the gas shower electrode 107 are shielded by an earth shield 108.
  • the gas shower electrode 107 is connected to the ground potential.
  • the gas shower electrode 107 also functions as a gas shower member that introduces the source gas into the film formation chamber 101 in a shower shape.
  • a plurality of inlets (not shown) for introducing a shower-like source gas are formed on the surface side of the deposition target substrate.
  • a gas introduction path (not shown) is provided inside the gas shower electrode 107.
  • One side of the gas introduction path is connected to the introduction port, and the other side of the gas introduction path is connected to a source gas supply mechanism (not shown).
  • the film forming chamber 101 is provided with an exhaust port 110 for evacuating the inside of the film forming chamber 103.
  • the exhaust port 110 is connected to an exhaust pump (not shown).
  • thermal spray film made of any material of metal, ceramics, plastic, and cermet is formed.
  • This thermal spray film is formed by thermal spraying, and the following films can be used. Note that thermal spraying is a surface treatment method in which particles that are melted or heated to a state close to that by spraying are sprayed onto the surface of the object to form a coating.
  • the first sprayed film is a film made of a material containing 10% by weight or more of at least one of Cr, W and Mo.
  • the second sprayed film has a Cr content of 1 to 50% by weight (preferably 5 to 50% by weight, more preferably 1 to 20% by weight, and even more preferably 5 to 15% by weight.
  • % By weight or less, or 9% by weight or more and 20% by weight or less, more preferably 9.50% by weight or more and 16.2% by weight or less, or 1% by weight or more and 10% by weight or less, more preferably 5% by weight or more and 10% by weight or less.
  • WC is contained in an amount of 0 to 49% by weight (preferably 0.01 to 49% by weight, more preferably 20 to 49% by weight, even more preferably 30 to 40% by weight).
  • Wt% or less more preferably 30 wt% or more and 35 wt% or less, or 20 wt% or more and 35 wt% or less
  • Mo is 0 wt% or more and 49 wt% or less (preferably 1 wt% or more 2 % By weight or less, more preferably 1% by weight or more and 10% by weight or less, still more preferably 3% by weight or more and 10% by weight or less, further preferably 3% by weight or more and 6% by weight or less, and still more preferably 3.83% by weight.
  • the impurities here are Fe, Si, C, B, Al and Cu.
  • Fe is 0% by weight to 10% by weight (or 0.01% by weight to 10% by weight, or 0.01% by weight to 7% by weight, or 2.90% by weight or more).
  • Si may be contained in an amount of 0 wt% to 10 wt% (or 0.01 wt% to 10 wt%, or 0 wt% to 5 wt%, or 0.01 wt%).
  • % To 5% by weight, or 3.89% by weight, or 0.01% to 3.89% by weight, or 1% to 3.89% by weight, or 2.9% by weight, or 0.01 wt% or more and 2.9 wt% or less, or 1 wt% or more and 2.9 wt% or less) may be contained, and C is 0 wt% or more and 3 wt% or less (or 1.5 wt% or less).
  • Al may be contained by 0 to 15% by weight.
  • the third sprayed film is a film made of a material containing Mo and the balance being made of inevitable impurities.
  • the fourth sprayed film is a film made of a material containing Mo by weight of 80% by weight or more and the balance being made of impurities and inevitable impurities.
  • the impurities are Fe, Si, and C.
  • a deposition target substrate (not shown) is inserted into the deposition chamber 103 of the plasma CVD apparatus, and the deposition target substrate is held on the stage electrode 104 in the deposition chamber.
  • the deposition target substrate is fixed on the stage electrode 104, the deposition chamber 101 is closed with a lid 102, and evacuated with an exhaust pump.
  • a shower-like source gas is introduced from the introduction port of the gas shower electrode 107 to the surface side of the deposition target substrate in the deposition chamber 103.
  • the source gas a gas containing carbon is used.
  • the film formation chamber is made a desired atmosphere by controlling to a predetermined pressure, a raw material gas flow rate, etc., and a high frequency (RF) is applied from a high frequency power source 106 to generate plasma, thereby forming a carbon film on the deposition target substrate.
  • RF high frequency
  • a sprayed film made of any of metal, ceramics, plastic, and cermet is formed on the inner surface of the film forming chamber 101, the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, respectively. Yes.
  • a sprayed film made of a material containing at least 10% by weight of Cr, W and Mo has good adhesion to the carbon film.
  • Cr is contained in an amount of 1 to 50% by weight
  • WC is contained in an amount of 0 to 49% by weight
  • Mo is contained in an amount of 0 to 49% by weight
  • Cr, WC and Mo are added in total.
  • the thermal spray film made of a material containing 50% by weight or less has better adhesion to the carbon film.
  • a sprayed film made of a material containing 80% by weight or more of Mo also has better adhesion to the carbon film.
  • the sprayed film is formed on the inner surface of the film forming chamber 101, the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, but the sprayed film is formed on the inner surface of the film forming chamber 101, It may be formed on at least one of the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, or other than these, for example, a deposition plate disposed in the film forming chamber, or disposed in the film forming chamber.
  • the deposition preventing plate is a plate for preventing the carbon film from adhering to the inner surface of the chamber, and is disposed on the inner surfaces of the film forming chamber 101 and the lid 102, for example.
  • a jig is a general term for instruments that use parts for fixing and mounting.
  • a jig is a processed product for installing or fixing a film formation substrate such as a silicon wafer at a specified position.
  • FIG. 2 is a cross-sectional view schematically illustrating a plasma CVD apparatus according to one embodiment of the present invention.
  • This plasma CVD apparatus has a symmetrical structure with respect to the film formation substrate (for example, a disk substrate) 111, and is an apparatus capable of simultaneously forming films on both surfaces of the film formation substrate 111.
  • the left side of the deposition target substrate 111 is shown, and the right side is omitted.
  • the plasma CVD apparatus has a chamber 112, and a hot cathode (cathode electrode) 113 is formed in the chamber 112. Both ends of the hot cathode 113 are electrically connected to an AC power source 115 located outside the chamber 112. One end of the AC power supply 115 is electrically connected to the ground 116.
  • a horn anode 114 having a funnel shape is disposed in the chamber 112, and the horn anode 114 is electrically connected to a DC power source 117.
  • the positive potential side of the DC power source 117 is electrically connected to the horn anode 114, and the negative potential side of the DC power source 117 is electrically connected to the ground 116.
  • a substrate holder (not shown) is disposed in the chamber 112, and a deposition target substrate 111 is held on the substrate holder.
  • the deposition target substrate 111 is electrically connected to a DC power source (DC power source) 122 as an ion acceleration power source.
  • the negative potential side of the DC power source 122 is electrically connected to the deposition target substrate 111, and the positive potential side of the DC power source 122 is electrically connected to the ground 116.
  • a plasma wall 118 is disposed in the chamber 112 so as to cover the space between the hot cathode 113 and the horn anode 114 and the deposition target substrate 111.
  • the plasma wall 118 has a cylindrical shape and is electrically connected to a float potential (not shown).
  • Thermal spray films are formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118, respectively.
  • This sprayed film can use the same method and the same material as in the first embodiment.
  • a method for forming a DLC (Diamond Like Carbon) film on the deposition target substrate 111 using the plasma CVD apparatus illustrated in FIG. 2 will be described.
  • the inside of the chamber 112 is set to a predetermined vacuum state, and for example, toluene (C 7 H 8 ) gas is introduced into the chamber 112 as a film forming source gas.
  • the hot cathode 113 is heated by supplying an AC current to the hot cathode 113 by the AC power supply 115. Further, a direct current is supplied to the horn anode 114 by a DC power source 117, and a direct current is supplied to the deposition target substrate 111 by a DC power source 122.
  • a large amount of electrons are emitted from the hot cathode 113 toward the horn anode 114, and glow discharge is started between the hot cathode 113 and the horn anode 114.
  • Toluene gas as a film forming raw material gas inside the chamber 112 is ionized by a large amount of electrons to be in a plasma state.
  • the reaction represented by the following formula (1) occurs.
  • the film-forming raw material molecules in the plasma state are directly accelerated by the negative potential of the film formation substrate 111, fly toward the film formation substrate 111, and adhere to the surface of the film formation substrate 111. Is done.
  • a thin DLC film is formed on the deposition target substrate 111.
  • the reaction of the following formula (2) occurs on the surface of the deposition target substrate 111.
  • the sprayed films are formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118, respectively. For this reason, when a DLC film is formed on the deposition target substrate 111 in the chamber 112, the DLC film adheres to the inner surface of the chamber 112 and the like, but the adhesion between the deposited DLC film and the sprayed film is good. The attached DLC film is difficult to peel off. As a result, particle contamination on the deposition target substrate 111 can be reduced.
  • the sprayed film is formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118.
  • the sprayed film is formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and It may be formed on at least one of the plasma walls 118, or other than these, for example, a jig disposed in the chamber, or a gas shower member for introducing the source gas into the chamber 112 in a shower shape.
  • a thermal spray film on a portion where a DLC film may adhere during the film formation process, particle contamination on the deposition target substrate can be reduced.
  • a plasma CVD apparatus is given as an aspect of the present invention, but another CVD apparatus (for example, a thermal CVD apparatus) may be used as another aspect of the present invention.
  • Example samples 1 to 5 Five sprayed films shown in Table 1 are formed on the surface of the substrate made of SUS by a spraying method.
  • the thermal spraying method at this time is a gas flame spraying method using powder.
  • Samples 1 to 5 each having five sprayed films formed on the substrate surface were prepared (see Table 1).
  • Samples 6 and 7 were prepared by blasting the surface of a substrate made of SUS and Al (see Table 2). In this blasting process, an alumina material having a particle size of F36 was used. Also, Al and Cu sprayed films are formed on the surface of the substrate made of SUS by the same spraying method as Samples 1-5.
  • samples 8 and 9 were prepared in which sprayed films of Al and Cu were formed on the substrate surface (see Table 2).
  • DLC films were formed on the sprayed films of Samples 1 to 5, 8, and 9 and on the substrates of Samples 6 and 7, respectively, under the following film forming conditions.
  • Film forming apparatus Plasma CVD apparatus shown in FIG. 1
  • Starting material Toluene (C 7 H 8 )
  • Gas flow rate 30sccm
  • Gas pressure 0.5Pa High frequency output frequency: 13.56 MHz
  • High frequency output 300W
  • DLC film thickness 100 nm
  • a tape peeling test was performed on each of the samples 1 to 9 on which the DLC film was formed by the following test method. The tape peeling test was performed according to JIS K 5400.
  • FIG. 3 is a photograph showing the results of a tape peel test performed on samples 1 to 4 of the example.
  • FIG. 4 is a photograph showing the results of a tape peel test performed on Sample 5 of the Example.
  • FIG. 5 is a photograph showing the results of a tape peel test performed on samples 6 to 9 of comparative examples.
  • FIG. 3 and Table 1 Samples 1, 3 and 4 of the example obtained a result ( ⁇ ) that the adhesion between the DLC film and the sprayed film was good, and Sample 5 of the example was DLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Provided is a CVD device wherein it is possible to reduce the particle contamination of a substrate. This CVD device for forming a film on a substrate by means of the CVD method is equipped with a chamber (101), a substrate holder (104) disposed within the chamber and for holding the substrate, and a gas introduction mechanism for introducing a raw material gas into the chamber, wherein a film formed from a material selected from among a metal, a ceramic, a plastic or a cermet is formed on at least one of the following: the inner surface of the chamber; the substrate holder; an attachment prevention plate disposed within the chamber; a tool disposed within the chamber; or a gas shower member for introducing the raw material gas into the chamber in a showering manner.

Description

CVD装置CVD equipment
 本発明は、装置内を表面処理することでパーティクルを低減したCVD装置に関する。 The present invention relates to a CVD apparatus in which particles are reduced by surface-treating the inside of the apparatus.
 CVD装置などの成膜装置では、チャンバー内の被成膜基板に薄膜を成膜するときに、チャンバー内面にも薄膜が付着し、その付着した薄膜が剥離することにより被成膜基板にパーティクル汚染が発生することがある。
 そこで、上記のパーティクル汚染を防止する対策として、チャンバー内面にブラスト処理を施したり、ブラスト処理を施した防着板をチャンバー内面に取り付けている。このようにブラスト処理を施すことにより、チャンバー内面または防着板に薄膜が付着した際に、薄膜との密着性が向上することで、パーティクル汚染を抑制しようとする対策である。しかし、この対策を施しても、パーティクル汚染を十分に抑えることはできない。
 また、上記のパーティクル汚染を防止する対策として、チャンバー内面などにパーティクルゲッターを貼る方法もある。しかし、この対策には、パーティクルゲッターが高価であること、プラズマCVD装置の電極表面に貼ると異常放電の原因となること、チャンバー内にシャワー状のガスを導入する導入口のような微細な構造の被処理基板には貼ることができないことなどの課題がある。
In a film deposition apparatus such as a CVD apparatus, when a thin film is deposited on a deposition target substrate in a chamber, the thin film adheres to the inner surface of the chamber, and the deposited thin film peels off to cause particle contamination on the deposition target substrate. May occur.
Therefore, as a measure for preventing the above-described particle contamination, the inner surface of the chamber is subjected to blasting, or an adhesion-preventing plate subjected to blasting is attached to the inner surface of the chamber. By performing blasting in this way, when the thin film adheres to the inner surface of the chamber or the adhesion-preventing plate, it is a measure to suppress particle contamination by improving the adhesion with the thin film. However, even if this measure is taken, particle contamination cannot be sufficiently suppressed.
As a measure for preventing the above-mentioned particle contamination, there is a method of sticking a particle getter on the inner surface of the chamber. However, for this measure, the particle getter is expensive, causes abnormal discharge when pasted on the electrode surface of the plasma CVD apparatus, and has a fine structure such as an inlet for introducing a shower-like gas into the chamber. There is a problem that it cannot be applied to the substrate to be processed.
 本発明の一態様は、基板へのパーティクル汚染を低減できるCVD装置を提供することを課題とする。 An object of one embodiment of the present invention is to provide a CVD apparatus that can reduce particle contamination on a substrate.
 下記の(1)~(12)それぞれは、本発明の一態様に係るCVD装置である。
(1)基板にCVD法により膜を成膜するCVD装置において、
 チャンバーと、
 前記チャンバー内に配置され、前記基板を保持する基板ホルダーと、
 前記チャンバー内に原料ガスを導入するガス導入機構と、
を具備し、
 前記チャンバーの内面、前記基板ホルダー、前記チャンバー内に配置された防着板、前記チャンバー内に配置された治具および前記原料ガスを前記チャンバー内にシャワー状に導入するガスシャワー部材の少なくとも一つに、金属、セラミックス、プラスチックおよびサーメットのいずれかの材料からなる膜が形成されていることを特徴とするCVD装置。
(2)上記(1)において、
 前記材料は、Cr、W及びMoの少なくとも一つを10重量%以上含有することを特徴とするCVD装置。
(3)上記(1)または(2)において、
 前記材料は、Crを1重量%以上50重量%以下含有し、WCを0重量%以上49重量%以下含有し、Moを0重量%以上49重量%以下含有し、且つCrとWCとMoを合計で50重量%以下含有し、Fe、Si、C、B、Al及びCuを合計で0重量%以上50重量%以下含有し、残部がNiおよび不可避的不純物からなることを特徴とするCVD装置。
(4)上記(3)において、
 前記Feを0重量%以上10重量%以下含有し、前記Siを0重量%以上10重量%以下含有し、前記Cを0重量%以上3重量%以下含有し、前記Bを0重量%以上7重量%以下含有し、前記Alを0重量%以上15重量%以下含有し、前記Cuを0重量%以上5重量%以下含有することを特徴とするCVD装置。
(5)上記(3)または(4)において、
 前記材料は、Crを9重量%以上20重量%以下含有することを特徴とするCVD装置。
(6)上記(3)乃至(5)のいずれか一項において、
 前記材料は、Moを3重量%以上10重量%以下含有することを特徴とするCVD装置。
(7)上記(3)乃至(6)のいずれか一項において、
 前記材料は、WCを30重量%以上40重量%以下含有することを特徴とするCVD装置。
(8)上記(2)において、
 前記材料は、Moを80重量%以上含有し、残部が不純物および不可避的不純物からなることを特徴とするCVD装置。
(9)上記(8)において、
 前記不純物は、Fe、Si及びCの少なくとも一つであることを特徴とするCVD装置。
(10)上記(1)乃至(9)のいずれか一項において、
 前記材料からなる膜は溶射によって形成されていることを特徴とするCVD装置。
(11)上記(1)乃至(10)のいずれか一項において、
 前記基板に成膜する前記膜は、炭素膜であることを特徴とするCVD装置。
Each of the following (1) to (12) is a CVD apparatus according to one embodiment of the present invention.
(1) In a CVD apparatus for forming a film on a substrate by a CVD method,
A chamber;
A substrate holder disposed in the chamber and holding the substrate;
A gas introduction mechanism for introducing a source gas into the chamber;
Comprising
At least one of an inner surface of the chamber, the substrate holder, a deposition plate disposed in the chamber, a jig disposed in the chamber, and a gas shower member for introducing the source gas into the chamber in a shower shape And a film made of any one of metal, ceramics, plastic, and cermet.
(2) In (1) above,
The CVD apparatus characterized in that the material contains 10% by weight or more of at least one of Cr, W and Mo.
(3) In the above (1) or (2),
The material contains Cr 1 wt% or more and 50 wt% or less, WC contains 0 wt% or more and 49 wt% or less, Mo contains 0 wt% or more and 49 wt% or less, and Cr, WC, and Mo are contained. A CVD apparatus comprising 50% by weight or less in total, Fe, Si, C, B, Al and Cu in a total content of 0% by weight to 50% by weight, the balance being made of Ni and inevitable impurities .
(4) In (3) above,
The Fe is contained in an amount of 0 to 10% by weight, the Si is contained in an amount of 0 to 10% by weight, the C is contained in an amount of 0 to 3% by weight, and the B is contained in an amount of 0 to 7% by weight. A CVD apparatus comprising: 1 wt% or less, Al containing 0 wt% or more and 15 wt% or less, and Cu containing 0 wt% or more and 5 wt% or less.
(5) In the above (3) or (4),
The CVD apparatus characterized in that the material contains 9 wt% or more and 20 wt% or less of Cr.
(6) In any one of (3) to (5) above,
The said material contains 3 to 10 weight% of Mo, The CVD apparatus characterized by the above-mentioned.
(7) In any one of (3) to (6) above,
The CVD apparatus characterized in that the material contains WC in an amount of 30 wt% to 40 wt%.
(8) In (2) above,
The CVD apparatus characterized in that the material contains 80% by weight or more of Mo, and the balance is made of impurities and inevitable impurities.
(9) In (8) above,
The CVD apparatus, wherein the impurity is at least one of Fe, Si, and C.
(10) In any one of the above (1) to (9),
A CVD apparatus, wherein the film made of the material is formed by thermal spraying.
(11) In any one of the above (1) to (10),
The CVD apparatus characterized in that the film formed on the substrate is a carbon film.
 本発明の一態様によれば、基板へのパーティクル汚染を低減できるCVD装置を提供することができる。 According to one embodiment of the present invention, a CVD apparatus that can reduce particle contamination on a substrate can be provided.
 図1は、本発明の一態様に係るプラズマCVD装置を概略的に示す断面図である。
 図2は、本発明の一態様に係るプラズマCVD装置を概略的に示す断面図である。
 図3は、実施例のサンプル1~4にテープ剥離試験を行った結果を示す写真である。
 図4は、実施例のサンプル5にテープ剥離試験を行った結果を示す写真である。
 図5は、比較例のサンプル6~9にテープ剥離試験を行った結果を示す写真である。
FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to one embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically illustrating a plasma CVD apparatus according to one embodiment of the present invention.
FIG. 3 is a photograph showing the results of a tape peel test performed on samples 1 to 4 of the example.
FIG. 4 is a photograph showing the results of a tape peel test performed on Sample 5 of the Example.
FIG. 5 is a photograph showing the results of a tape peel test performed on samples 6 to 9 of comparative examples.
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施形態の記載内容に限定して解釈されるものではない。
 (第1の実施形態)
 図1は、本発明の一態様に係るプラズマCVD装置を概略的に示す断面図である。
 プラズマCVD装置は成膜チャンバー101を有しており、この成膜チャンバー101の上部には蓋102が配置されている。成膜チャンバー101に蓋102をすることにより、成膜チャンバー101内には成膜室103が形成される。
 この成膜室103内の下方には被成膜基板(図示せず)を保持するステージ電極104が配置されており、このステージ電極104は高周波電源106に電気的に接続されている。ステージ電極104はRF印加電極としても作用し、また基板ホルダーとしても機能する。ステージ電極104の周囲及び下部はアースシールド105によってシールドされている。
 成膜室103内の上方には、ステージ電極104に対向して平行の位置にガスシャワー電極107が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極107の周囲及び上部はアースシールド108によってシールドされている。また、ガスシャワー電極107は接地電位に接続されている。ガスシャワー電極107は、原料ガスを成膜チャンバー101内にシャワー状に導入するガスシャワー部材としても機能する。
 ガスシャワー電極107の下方(ステージ電極上面側)には、被成膜基板の表面側にシャワー状の原料ガスを導入する複数の導入口(図示せず)が形成されている。ガスシャワー電極107の内部にはガス導入経路(図示せず)が設けられている。このガス導入経路の一方側は上記導入口に繋げられており、ガス導入経路の他方側は原料ガスの供給機構(図示せず)に接続されている。また、成膜チャンバー101には、成膜室103の内部を真空排気する排気口110が設けられている。この排気口110は排気ポンプ(図示せず)に接続されている。
 成膜チャンバー101の内面、蓋102の内面、ステージ電極104およびガスシャワー電極107それぞれに、金属、セラミックス、プラスチックおよびサーメットのいずれかの材料からなる溶射膜が形成されている。この溶射膜は、溶射によって形成されており、以下の膜を用いることができる。なお、溶射とは、加熱することで溶融またはそれに近い状態にした粒子を、物体表面に吹き付けて被膜を形成する表面処理方法である。
 第1の溶射膜は、Cr、W及びMoの少なくとも一つを10重量%以上含有する材料からなる膜である。
 第2の溶射膜は、Crを1重量%以上50重量%以下(好ましくは5重量%以上50重量%以下、より好ましくは1重量%以上20重量%以下、より一層好ましくは5重量%以上15重量%以下、または9重量%以上20重量%以下、さらに好ましくは9.50重量%以上16.2重量%以下、または1重量%以上10重量%以下、より好ましくは5重量%以上10重量%以下)含有し、WCを0重量%以上49重量%以下(好ましくは0.01重量%以上49重量%以下、より好ましくは20重量%以上49重量%以下、より一層好ましくは30重量%以上40重量%以下、さらに好ましくは30重量%以上35重量%以下、または20重量%以上35重量%以下)含有し、Moを0重量%以上49重量%以下(好ましくは1重量%以上20重量%以下、より好ましくは1重量%以上10重量%以下、より一層好ましくは3重量%以上10重量%以下、さらに好ましくは3重量%以上6重量%以下、さらに一層好ましくは3.83重量%以上6重量%以下)含有し、且つCrとWCとMoを合計で50重量%以下含有し、不純物を0重量%以上50重量%以下含有し、残部がNiおよび不可避的不純物からなる材料からなる膜である。
 ここでいう不純物は、Fe、Si、C、B、Al及びCuである。第2の溶射膜には、Feが0重量%以上10重量%以下(または0.01重量%以上10重量%以下、または0.01重量%以上7重量%以下、または2.90重量%以上7重量%以下)含有されていてもよく、Siが0重量%以上10重量%以下(または0.01重量%以上10重量%以下、または0重量%以上5重量%以下、または0.01重量%以上5重量%以下、または3.89重量%以下、または0.01重量%以上3.89重量%以下、または1重量%以上3.89重量%以下、または2.9重量%以下、または0.01重量%以上2.9重量%以下、または1重量%以上2.9重量%以下)含有されていてもよく、Cが0重量%以上3重量%以下(または1.5重量%以下、または0.75重量%以下、または0.5重量%以下)含有されていてもよく、Bが0重量%以上7重量%以下(または0.01重量%以上7重量%以下、または4.5重量%以下、または0.01重量%以上4.5重量%以下、または3.28重量%以下、または0.01重量%以上3.28重量%以下、または2.3重量%以下)含有されていてもよく、Alが0重量%以上15重量%以下(または9重量%以下、または0.01重量%以上9重量%以下)含有されていてもよく、Cuが0重量%以上5重量%以下(または0.01重量%以上5重量%以下、または1.9重量%以下、または0.01重量%以上1.9重量%以下)含有されていてもよい。
 第3の溶射膜は、Moを含有し、残部が不可避的不純物からなる材料からなる膜である。
 第4の溶射膜は、Moを80重量%以上含有し、残部が不純物および不可避的不純物からなる材料からなる膜である。ここで、不純物とは、Fe、Si、Cである。
 次に、上記プラズマCVD装置を用いた成膜方法について説明する。
 被成膜基板(図示せず)をプラズマCVD装置の成膜室103内に挿入し、この成膜室内のステージ電極104上に被成膜基板を保持する。
 次いで、この被成膜基板をステージ電極104上に固定し、成膜チャンバー101を蓋102で閉じ、排気ポンプで真空排気する。次いで、ガスシャワー電極107の導入口からシャワー状の原料ガスを成膜室103の被成膜基板の表面側に導入する。原料ガスとしては炭素を含有するガスを用いる。そして、所定の圧力、原料ガス流量などに制御することにより成膜室内を所望の雰囲気とし、高周波電源106により高周波(RF)を印加し、プラズマを発生させることにより被成膜基板に炭素膜を成膜する。
 本実施形態によれば、成膜チャンバー101の内面、蓋102の内面、ステージ電極104およびガスシャワー電極107それぞれに、金属、セラミックス、プラスチックおよびサーメットのいずれかの材料からなる溶射膜を形成している。このため、成膜チャンバー101内の被成膜基板に炭素膜を成膜するときに、成膜チャンバー101の内面等にも炭素膜が付着するが、この付着した炭素膜と溶射膜の密着性が良いため、付着した炭素膜が剥がれにくくなる。その結果、被成膜基板へのパーティクル汚染を低減することができる。また、Cr、W及びMoの少なくとも一つを10重量%以上含有する材料からなる溶射膜は炭素膜との密着性が良い。また、Crを1重量%以上50重量%以下含有し、WCを0重量%以上49重量%以下含有し、Moを0重量%以上49重量%以下含有し、且つCrとWCとMoを合計で50重量%以下含有する材料からなる溶射膜は、炭素膜との密着性がさらに良い。また、Moを80重量%以上含有する材料からなる溶射膜も炭素膜との密着性がさらに良い。
 なお、本実施形態では、溶射膜を、成膜チャンバー101の内面、蓋102の内面、ステージ電極104およびガスシャワー電極107それぞれに形成しているが、溶射膜を、成膜チャンバー101の内面、蓋102の内面、ステージ電極104およびガスシャワー電極107の少なくとも一つに形成してもよいし、これら以外のもの、例えば成膜チャンバー内に配置された防着板、成膜チャンバー内に配置された治具などに形成してもよい。つまり、成膜処理の際に炭素膜が付着する可能性のある部分に溶射膜を形成しておくことにより、被成膜基板へのパーティクル汚染を低減することができる。
 防着板は、チャンバーの内面に炭素膜が付着するのを防ぐための板であり、例えば成膜チャンバー101および蓋102それぞれの内面に配置される。
 治具とは、部品を固定・取付に用いる器具の総称であり、例えば、シリコンウェハの様な被成膜基板を指定の位置に設置、或いは固定するための加工品である。
 また、本実施形態では、本発明の一態様としてプラズマCVD装置の例を挙げているが、本発明の他の一態様としては他のCVD装置(例えば熱CVD装置)を用いてもよい。
 (第2の実施形態)
 図2は、本発明の一態様に係るプラズマCVD装置を概略的に示す断面図である。このプラズマCVD装置は被成膜基板(例えばディスク基板)111に対して左右対称の構造を有しており、被成膜基板111の両面に同時に成膜可能な装置であるが、図2では、被成膜基板111に対して左側を示し、右側は省略している。
 プラズマCVD装置はチャンバー112を有しており、このチャンバー112内にはホットカソード(カソード電極)113が形成されている。ホットカソード113の両端はチャンバー112の外部に位置する交流電源115に電気的に接続されている。交流電源115の一端はアース116に電気的に接続されている。
 チャンバー112内にはロート状の形状を有するホーンアノード114が配置されており、このホーンアノード114はDC電源117に電気的に接続されている。このDC電源117のプラス電位側がホーンアノード114に電気的に接続されており、DC電源117のマイナス電位側がアース116に電気的に接続されている。
 チャンバー112内には基板ホルダー(図示せず)が配置されており、この基板ホルダーには被成膜基板111が保持されている。被成膜基板111はイオン加速用電源としてのDC電源(直流電源)122に電気的に接続されている。このDC電源122のマイナス電位側が被成膜基板111に電気的に接続されており、DC電源122のプラス電位側がアース116に電気的に接続されている。
 チャンバー112内には、ホットカソード113及びホーンアノード114それぞれと被成膜基板111との間の空間を覆うようにプラズマウォール118が配置されている。このプラズマウォール118は、円筒形状を有しており、フロート電位(図示せず)に電気的に接続されている。
 チャンバー112の内面、基板ホルダー、ホーンアノード114およびプラズマウォール118それぞれに溶射膜が形成されている。この溶射膜は、第1の実施形態と同様の方法および同様の材料を用いることができる。
 次に、図2に示すプラズマCVD装置を用いて被成膜基板111にDLC(Diamond Like Carbon)膜を成膜する方法について説明する。
 まず、チャンバー112の内部を所定の真空状態とし、チャンバー112の内部に成膜原料ガスとして例えばトルエン(C)ガスを導入する。チャンバー112内が所定の圧力になった後、ホットカソード113に交流電源115によって交流電流を供給することによりホットカソード113が加熱される。また、ホーンアノード114にDC電源117によって直流電流を供給し、被成膜基板111にDC電源122によって直流電流を供給する。
 ホットカソード113の加熱によって、ホットカソード113からホーンアノード114に向けて多量の電子が放出され、ホットカソード113とホーンアノード114との間でグロー放電が開始される。多量の電子によってチャンバー112の内部の成膜原料ガスとしてのトルエンガスがイオン化され、プラズマ状態とされる。この際、下記式(1)のような反応が起きている。そして、プラズマ状態の成膜原料分子は、被成膜基板111のマイナス電位によって直接に加速されて、被成膜基板111の方向に向かって飛走して、被成膜基板111の表面に付着される。これにより、被成膜基板111には薄いDLC膜が形成される。この際、被成膜基板111の表面では下記式(2)の反応が起きている。
 C+e→C +2e ・・・(1)
 C +e→C+3H↑ ・・・(2)
 本実施形態によれば、チャンバー112の内面、基板ホルダー、ホーンアノード114およびプラズマウォール118それぞれに溶射膜を形成している。このため、チャンバー112内の被成膜基板111にDLC膜を成膜するときに、チャンバー112の内面等にもDLC膜が付着するが、この付着したDLC膜と溶射膜の密着性が良いため、付着したDLC膜が剥がれにくくなる。その結果、被成膜基板111へのパーティクル汚染を低減することができる。
 なお、本実施形態では、溶射膜を、チャンバー112の内面、基板ホルダー、ホーンアノード114およびプラズマウォール118それぞれに形成しているが、溶射膜を、チャンバー112の内面、基板ホルダー、ホーンアノード114およびプラズマウォール118の少なくとも一つに形成してもよいし、これら以外のもの、例えばチャンバー内に配置された治具、原料ガスをチャンバー112内にシャワー状に導入するガスシャワー部材などに形成してもよい。つまり、成膜処理の際にDLC膜が付着する可能性のある部分に溶射膜を形成しておくことにより、被成膜基板へのパーティクル汚染を低減することができる。
 また、本実施形態では、本発明の一態様としてプラズマCVD装置の例を挙げているが、本発明の他の一態様としては他のCVD装置(例えば熱CVD装置)を用いてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
(First embodiment)
FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to one embodiment of the present invention.
The plasma CVD apparatus has a film formation chamber 101, and a lid 102 is disposed on the film formation chamber 101. A film formation chamber 103 is formed in the film formation chamber 101 by covering the film formation chamber 101 with a lid 102.
A stage electrode 104 that holds a deposition target substrate (not shown) is disposed below the deposition chamber 103, and the stage electrode 104 is electrically connected to a high-frequency power source 106. The stage electrode 104 also functions as an RF application electrode and functions as a substrate holder. The periphery and the lower part of the stage electrode 104 are shielded by an earth shield 105.
A gas shower electrode 107 is disposed at a position parallel to the stage electrode 104 above the film forming chamber 103. These are a pair of parallel plate electrodes. The periphery and upper part of the gas shower electrode 107 are shielded by an earth shield 108. The gas shower electrode 107 is connected to the ground potential. The gas shower electrode 107 also functions as a gas shower member that introduces the source gas into the film formation chamber 101 in a shower shape.
Below the gas shower electrode 107 (on the upper surface side of the stage electrode), a plurality of inlets (not shown) for introducing a shower-like source gas are formed on the surface side of the deposition target substrate. A gas introduction path (not shown) is provided inside the gas shower electrode 107. One side of the gas introduction path is connected to the introduction port, and the other side of the gas introduction path is connected to a source gas supply mechanism (not shown). The film forming chamber 101 is provided with an exhaust port 110 for evacuating the inside of the film forming chamber 103. The exhaust port 110 is connected to an exhaust pump (not shown).
On the inner surface of the film forming chamber 101, the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, a sprayed film made of any material of metal, ceramics, plastic, and cermet is formed. This thermal spray film is formed by thermal spraying, and the following films can be used. Note that thermal spraying is a surface treatment method in which particles that are melted or heated to a state close to that by spraying are sprayed onto the surface of the object to form a coating.
The first sprayed film is a film made of a material containing 10% by weight or more of at least one of Cr, W and Mo.
The second sprayed film has a Cr content of 1 to 50% by weight (preferably 5 to 50% by weight, more preferably 1 to 20% by weight, and even more preferably 5 to 15% by weight. % By weight or less, or 9% by weight or more and 20% by weight or less, more preferably 9.50% by weight or more and 16.2% by weight or less, or 1% by weight or more and 10% by weight or less, more preferably 5% by weight or more and 10% by weight or less. And WC is contained in an amount of 0 to 49% by weight (preferably 0.01 to 49% by weight, more preferably 20 to 49% by weight, even more preferably 30 to 40% by weight). Wt% or less, more preferably 30 wt% or more and 35 wt% or less, or 20 wt% or more and 35 wt% or less), and Mo is 0 wt% or more and 49 wt% or less (preferably 1 wt% or more 2 % By weight or less, more preferably 1% by weight or more and 10% by weight or less, still more preferably 3% by weight or more and 10% by weight or less, further preferably 3% by weight or more and 6% by weight or less, and still more preferably 3.83% by weight. 6 wt% or less), and a total of 50 wt% or less of Cr, WC, and Mo, 0 wt% or more and 50 wt% or less of impurities, with the balance being Ni and inevitable impurities. It is a membrane.
The impurities here are Fe, Si, C, B, Al and Cu. In the second sprayed film, Fe is 0% by weight to 10% by weight (or 0.01% by weight to 10% by weight, or 0.01% by weight to 7% by weight, or 2.90% by weight or more). 7 wt% or less) and Si may be contained in an amount of 0 wt% to 10 wt% (or 0.01 wt% to 10 wt%, or 0 wt% to 5 wt%, or 0.01 wt%). % To 5% by weight, or 3.89% by weight, or 0.01% to 3.89% by weight, or 1% to 3.89% by weight, or 2.9% by weight, or 0.01 wt% or more and 2.9 wt% or less, or 1 wt% or more and 2.9 wt% or less) may be contained, and C is 0 wt% or more and 3 wt% or less (or 1.5 wt% or less). Or 0.75 wt% or less, or 0.5 wt% or less B may be contained in an amount of 0 to 7% by weight (or 0.01 to 7% by weight, or 4.5% by weight, or 0.01 to 4.5% by weight). % Or less, or 3.28% by weight or less, or 0.01% by weight or more and 3.28% by weight or less, or 2.3% by weight or less), and Al may be contained by 0 to 15% by weight. (Or 9 wt% or less, or 0.01 wt% or more and 9 wt% or less), and Cu is 0 wt% or more and 5 wt% or less (or 0.01 wt% or more and 5 wt% or less), or 1.9 wt% or less, or 0.01 wt% or more and 1.9 wt% or less).
The third sprayed film is a film made of a material containing Mo and the balance being made of inevitable impurities.
The fourth sprayed film is a film made of a material containing Mo by weight of 80% by weight or more and the balance being made of impurities and inevitable impurities. Here, the impurities are Fe, Si, and C.
Next, a film forming method using the plasma CVD apparatus will be described.
A deposition target substrate (not shown) is inserted into the deposition chamber 103 of the plasma CVD apparatus, and the deposition target substrate is held on the stage electrode 104 in the deposition chamber.
Next, the deposition target substrate is fixed on the stage electrode 104, the deposition chamber 101 is closed with a lid 102, and evacuated with an exhaust pump. Next, a shower-like source gas is introduced from the introduction port of the gas shower electrode 107 to the surface side of the deposition target substrate in the deposition chamber 103. As the source gas, a gas containing carbon is used. Then, the film formation chamber is made a desired atmosphere by controlling to a predetermined pressure, a raw material gas flow rate, etc., and a high frequency (RF) is applied from a high frequency power source 106 to generate plasma, thereby forming a carbon film on the deposition target substrate. Form a film.
According to the present embodiment, a sprayed film made of any of metal, ceramics, plastic, and cermet is formed on the inner surface of the film forming chamber 101, the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, respectively. Yes. For this reason, when a carbon film is deposited on the deposition target substrate in the deposition chamber 101, the carbon film adheres to the inner surface of the deposition chamber 101, and the adhesion between the deposited carbon film and the sprayed film. Therefore, the attached carbon film is difficult to peel off. As a result, particle contamination on the deposition target substrate can be reduced. Further, a sprayed film made of a material containing at least 10% by weight of Cr, W and Mo has good adhesion to the carbon film. Further, Cr is contained in an amount of 1 to 50% by weight, WC is contained in an amount of 0 to 49% by weight, Mo is contained in an amount of 0 to 49% by weight, and Cr, WC and Mo are added in total. The thermal spray film made of a material containing 50% by weight or less has better adhesion to the carbon film. Further, a sprayed film made of a material containing 80% by weight or more of Mo also has better adhesion to the carbon film.
In this embodiment, the sprayed film is formed on the inner surface of the film forming chamber 101, the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, but the sprayed film is formed on the inner surface of the film forming chamber 101, It may be formed on at least one of the inner surface of the lid 102, the stage electrode 104, and the gas shower electrode 107, or other than these, for example, a deposition plate disposed in the film forming chamber, or disposed in the film forming chamber. It may be formed on a jig or the like. That is, by forming a thermal spray film on a portion where a carbon film may adhere during the film formation process, particle contamination on the film formation substrate can be reduced.
The deposition preventing plate is a plate for preventing the carbon film from adhering to the inner surface of the chamber, and is disposed on the inner surfaces of the film forming chamber 101 and the lid 102, for example.
A jig is a general term for instruments that use parts for fixing and mounting. For example, a jig is a processed product for installing or fixing a film formation substrate such as a silicon wafer at a specified position.
In this embodiment, an example of a plasma CVD apparatus is given as an aspect of the present invention, but another CVD apparatus (for example, a thermal CVD apparatus) may be used as another aspect of the present invention.
(Second Embodiment)
FIG. 2 is a cross-sectional view schematically illustrating a plasma CVD apparatus according to one embodiment of the present invention. This plasma CVD apparatus has a symmetrical structure with respect to the film formation substrate (for example, a disk substrate) 111, and is an apparatus capable of simultaneously forming films on both surfaces of the film formation substrate 111. The left side of the deposition target substrate 111 is shown, and the right side is omitted.
The plasma CVD apparatus has a chamber 112, and a hot cathode (cathode electrode) 113 is formed in the chamber 112. Both ends of the hot cathode 113 are electrically connected to an AC power source 115 located outside the chamber 112. One end of the AC power supply 115 is electrically connected to the ground 116.
A horn anode 114 having a funnel shape is disposed in the chamber 112, and the horn anode 114 is electrically connected to a DC power source 117. The positive potential side of the DC power source 117 is electrically connected to the horn anode 114, and the negative potential side of the DC power source 117 is electrically connected to the ground 116.
A substrate holder (not shown) is disposed in the chamber 112, and a deposition target substrate 111 is held on the substrate holder. The deposition target substrate 111 is electrically connected to a DC power source (DC power source) 122 as an ion acceleration power source. The negative potential side of the DC power source 122 is electrically connected to the deposition target substrate 111, and the positive potential side of the DC power source 122 is electrically connected to the ground 116.
A plasma wall 118 is disposed in the chamber 112 so as to cover the space between the hot cathode 113 and the horn anode 114 and the deposition target substrate 111. The plasma wall 118 has a cylindrical shape and is electrically connected to a float potential (not shown).
Thermal spray films are formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118, respectively. This sprayed film can use the same method and the same material as in the first embodiment.
Next, a method for forming a DLC (Diamond Like Carbon) film on the deposition target substrate 111 using the plasma CVD apparatus illustrated in FIG. 2 will be described.
First, the inside of the chamber 112 is set to a predetermined vacuum state, and for example, toluene (C 7 H 8 ) gas is introduced into the chamber 112 as a film forming source gas. After the inside of the chamber 112 reaches a predetermined pressure, the hot cathode 113 is heated by supplying an AC current to the hot cathode 113 by the AC power supply 115. Further, a direct current is supplied to the horn anode 114 by a DC power source 117, and a direct current is supplied to the deposition target substrate 111 by a DC power source 122.
By heating the hot cathode 113, a large amount of electrons are emitted from the hot cathode 113 toward the horn anode 114, and glow discharge is started between the hot cathode 113 and the horn anode 114. Toluene gas as a film forming raw material gas inside the chamber 112 is ionized by a large amount of electrons to be in a plasma state. At this time, the reaction represented by the following formula (1) occurs. Then, the film-forming raw material molecules in the plasma state are directly accelerated by the negative potential of the film formation substrate 111, fly toward the film formation substrate 111, and adhere to the surface of the film formation substrate 111. Is done. As a result, a thin DLC film is formed on the deposition target substrate 111. At this time, the reaction of the following formula (2) occurs on the surface of the deposition target substrate 111.
C 7 H 8 + e → C 7 H 8 + +2 e (1)
C 7 H 8 + + e → C 7 H 2 + 3H 2 ↑ (2)
According to the present embodiment, the sprayed films are formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118, respectively. For this reason, when a DLC film is formed on the deposition target substrate 111 in the chamber 112, the DLC film adheres to the inner surface of the chamber 112 and the like, but the adhesion between the deposited DLC film and the sprayed film is good. The attached DLC film is difficult to peel off. As a result, particle contamination on the deposition target substrate 111 can be reduced.
In this embodiment, the sprayed film is formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and the plasma wall 118. However, the sprayed film is formed on the inner surface of the chamber 112, the substrate holder, the horn anode 114, and It may be formed on at least one of the plasma walls 118, or other than these, for example, a jig disposed in the chamber, or a gas shower member for introducing the source gas into the chamber 112 in a shower shape. Also good. That is, by forming a thermal spray film on a portion where a DLC film may adhere during the film formation process, particle contamination on the deposition target substrate can be reduced.
In this embodiment, an example of a plasma CVD apparatus is given as an aspect of the present invention, but another CVD apparatus (for example, a thermal CVD apparatus) may be used as another aspect of the present invention.
 (実施例のサンプル1~5)
 SUSからなる基板の表面に溶射法によって表1に示す5つの溶射膜を形成する。この際の溶射法はパウダーを用いたガスフレーム溶射法である。このようにして、5つの溶射膜それぞれが基板表面に形成されたサンプル1~5を用意した(表1参照)。
 (比較例のサンプル6~9)
 SUSおよびAlそれぞれからなる基板の表面をブラスト処理したサンプル6,7を用意した(表2参照)。この際のブラスト処理では粒度F36のアルミナ材を用いた。
 また、サンプル1~5と同様の溶射法によってSUSからなる基板の表面にAlおよびCuそれぞれの溶射膜を形成する。これにより、AlおよびCuそれぞれの溶射膜が基板表面に形成されたサンプル8,9を用意した(表2参照)。
 次に、下記の成膜条件によってサンプル1~5,8,9それぞれの溶射膜上およびサンプル6,7それぞれの基板上にDLC膜を成膜した。
 成膜装置: 図1に示すプラズマCVD装置
 出発原料: トルエン(C
 ガス流量: 30sccm
 ガス圧力: 0.5Pa
 高周波出力の周波数: 13.56MHz
 高周波出力: 300W
 DLC膜の膜厚: 100nm
 次に、DLC膜が成膜されたサンプル1~9それぞれにテープ剥離試験を下記の試験方法によって行った。
 テープ剥離試験は、JIS K 5400に準拠し、DLC膜にカッターナイフで1mm間隔の碁盤目状に切り込みを入れて、テープを貼り付けた後、テープを引き剥がした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図3は、実施例のサンプル1~4にテープ剥離試験を行った結果を示す写真である。図4は、実施例のサンプル5にテープ剥離試験を行った結果を示す写真である。図5は、比較例のサンプル6~9にテープ剥離試験を行った結果を示す写真である。
 図3、図4及び表1に示すように、実施例のサンプル1,3,4はDLC膜と溶射膜との密着性が良好な結果(○)が得られ、実施例のサンプル5はDLC膜と溶射膜との密着性が特に良好な結果(◎)が得られ、実施例のサンプル2はDLC膜と溶射膜との密着性がサンプル1,3,4より劣るがある程度の密着性を有する結果(△)が得られた。
 これに対し、図5及び表2に示すように、比較例のサンプル6~8はDLC膜と基板または溶射膜との密着性が悪いという結果(×)が得られ、比較例のサンプル9はDLC膜と溶射膜との密着性がサンプル6~9より良く、ある程度の密着性を有する結果(△)が得られた。
 本実施例によれば、チャンバー内の被成膜基板にDLC膜を成膜するときに、チャンバーの内面等にもDLC膜が付着しても、DLC膜との密着性が良い表1に示す溶射膜をチャンバーの内面等に形成することにより、この付着したDLC膜が剥がれにくくなり、その結果、被成膜基板へのパーティクル汚染を低減できることが確認された。
(Example samples 1 to 5)
Five sprayed films shown in Table 1 are formed on the surface of the substrate made of SUS by a spraying method. The thermal spraying method at this time is a gas flame spraying method using powder. In this way, Samples 1 to 5 each having five sprayed films formed on the substrate surface were prepared (see Table 1).
(Comparative sample 6-9)
Samples 6 and 7 were prepared by blasting the surface of a substrate made of SUS and Al (see Table 2). In this blasting process, an alumina material having a particle size of F36 was used.
Also, Al and Cu sprayed films are formed on the surface of the substrate made of SUS by the same spraying method as Samples 1-5. Thus, samples 8 and 9 were prepared in which sprayed films of Al and Cu were formed on the substrate surface (see Table 2).
Next, DLC films were formed on the sprayed films of Samples 1 to 5, 8, and 9 and on the substrates of Samples 6 and 7, respectively, under the following film forming conditions.
Film forming apparatus: Plasma CVD apparatus shown in FIG. 1 Starting material: Toluene (C 7 H 8 )
Gas flow rate: 30sccm
Gas pressure: 0.5Pa
High frequency output frequency: 13.56 MHz
High frequency output: 300W
DLC film thickness: 100 nm
Next, a tape peeling test was performed on each of the samples 1 to 9 on which the DLC film was formed by the following test method.
The tape peeling test was performed according to JIS K 5400. The DLC film was cut into a grid pattern with a 1 mm interval with a cutter knife, the tape was attached, and then the tape was peeled off.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
FIG. 3 is a photograph showing the results of a tape peel test performed on samples 1 to 4 of the example. FIG. 4 is a photograph showing the results of a tape peel test performed on Sample 5 of the Example. FIG. 5 is a photograph showing the results of a tape peel test performed on samples 6 to 9 of comparative examples.
As shown in FIG. 3, FIG. 4 and Table 1, Samples 1, 3 and 4 of the example obtained a result (◯) that the adhesion between the DLC film and the sprayed film was good, and Sample 5 of the example was DLC. The results show that the adhesion between the film and the sprayed film is particularly good (サ ン プ ル), and the sample 2 of the example is inferior to the samples 1, 3, and 4 in adhesion between the DLC film and the sprayed film, but has a certain degree of adhesion. A result (Δ) was obtained.
On the other hand, as shown in FIG. 5 and Table 2, the samples 6 to 8 of the comparative example had a result (x) that the adhesion between the DLC film and the substrate or the sprayed film was poor, and the sample 9 of the comparative example was The adhesion between the DLC film and the sprayed film was better than that of Samples 6 to 9, and a result (Δ) having a certain degree of adhesion was obtained.
According to this embodiment, when a DLC film is formed on the deposition target substrate in the chamber, even if the DLC film adheres to the inner surface of the chamber or the like, the adhesion to the DLC film is shown in Table 1. By forming the sprayed film on the inner surface of the chamber or the like, it was confirmed that the adhered DLC film was not easily peeled off, and as a result, particle contamination on the deposition target substrate could be reduced.
 101…成膜チャンバー
 102…蓋
 103…成膜室
 104…ステージ電極
 105,108…アースシールド
 106…高周波電源
 107…ガスシャワー電極
 110…排気口
 111…被成膜基板
 112…チャンバー
 113…カソード電極(ホットカソード)
 114…アノード電極(ホーンアノード)
 115…交流電源
 116…アース
 117…DC電源
 118…プラズマウォール
 122…DC電源
DESCRIPTION OF SYMBOLS 101 ... Film-forming chamber 102 ... Cover 103 ... Film-forming chamber 104 ... Stage electrode 105, 108 ... Earth shield 106 ... High frequency power source 107 ... Gas shower electrode 110 ... Exhaust port 111 ... Substrate to be formed 112 ... Chamber 113 ... Cathode electrode ( Hot cathode)
114 ... Anode electrode (horn anode)
115 ... AC power source 116 ... Ground 117 ... DC power source 118 ... Plasma wall 122 ... DC power source

Claims (11)

  1.  基板にCVD法により膜を成膜するCVD装置において、
     チャンバーと、
     前記チャンバー内に配置され、前記基板を保持する基板ホルダーと、
     前記チャンバー内に原料ガスを導入するガス導入機構と、
    を具備し、
     前記チャンバーの内面、前記基板ホルダー、前記チャンバー内に配置された防着板、前記チャンバー内に配置された治具および前記原料ガスを前記チャンバー内にシャワー状に導入するガスシャワー部材の少なくとも一つに、金属、セラミックス、プラスチックおよびサーメットのいずれかの材料からなる膜が形成されていることを特徴とするCVD装置。
    In a CVD apparatus for forming a film on a substrate by a CVD method,
    A chamber;
    A substrate holder disposed in the chamber and holding the substrate;
    A gas introduction mechanism for introducing a source gas into the chamber;
    Comprising
    At least one of an inner surface of the chamber, the substrate holder, a deposition plate disposed in the chamber, a jig disposed in the chamber, and a gas shower member for introducing the source gas into the chamber in a shower shape And a film made of any one of metal, ceramics, plastic, and cermet.
  2.  請求項1において、
     前記材料は、Cr、W及びMoの少なくとも一つを10重量%以上含有することを特徴とするCVD装置。
    In claim 1,
    The CVD apparatus characterized in that the material contains 10% by weight or more of at least one of Cr, W and Mo.
  3.  請求項1または2において、
     前記材料は、Crを1重量%以上50重量%以下含有し、WCを0重量%以上49重量%以下含有し、Moを0重量%以上49重量%以下含有し、且つCrとWCとMoを合計で50重量%以下含有し、Fe、Si、C、B、Al及びCuを合計で0重量%以上50重量%以下含有し、残部がNiおよび不可避的不純物からなることを特徴とするCVD装置。
    In claim 1 or 2,
    The material contains Cr 1 wt% or more and 50 wt% or less, WC contains 0 wt% or more and 49 wt% or less, Mo contains 0 wt% or more and 49 wt% or less, and Cr, WC, and Mo are contained. A CVD apparatus comprising 50% by weight or less in total, Fe, Si, C, B, Al and Cu in a total content of 0% by weight to 50% by weight, the balance being made of Ni and inevitable impurities .
  4.  請求項3において、
     前記Feを0重量%以上10重量%以下含有し、前記Siを0重量%以上10重量%以下含有し、前記Cを0重量%以上3重量%以下含有し、前記Bを0重量%以上7重量%以下含有し、前記Alを0重量%以上15重量%以下含有し、前記Cuを0重量%以上5重量%以下含有することを特徴とするCVD装置。
    In claim 3,
    The Fe is contained in an amount of 0 to 10% by weight, the Si is contained in an amount of 0 to 10% by weight, the C is contained in an amount of 0 to 3% by weight, and the B is contained in an amount of 0 to 7% by weight. A CVD apparatus comprising: 1 wt% or less, Al containing 0 wt% or more and 15 wt% or less, and Cu containing 0 wt% or more and 5 wt% or less.
  5.  請求項3または4において、
     前記材料は、Crを9重量%以上20重量%以下含有することを特徴とするCVD装置。
    In claim 3 or 4,
    The CVD apparatus characterized in that the material contains 9 wt% or more and 20 wt% or less of Cr.
  6.  請求項3乃至5のいずれか一項において、
     前記材料は、Moを3重量%以上10重量%以下含有することを特徴とするCVD装置。
    In any one of Claims 3 thru | or 5,
    The said material contains 3 to 10 weight% of Mo, The CVD apparatus characterized by the above-mentioned.
  7.  請求項3乃至6のいずれか一項において、
     前記材料は、WCを30重量%以上40重量%以下含有することを特徴とするCVD装置。
    In any one of Claims 3 thru | or 6,
    The CVD apparatus characterized in that the material contains WC in an amount of 30 wt% to 40 wt%.
  8.  請求項2において、
     前記材料は、Moを80重量%以上含有し、残部が不純物および不可避的不純物からなることを特徴とするCVD装置。
    In claim 2,
    The CVD apparatus characterized in that the material contains 80% by weight or more of Mo, and the balance is made of impurities and inevitable impurities.
  9.  請求項8において、
     前記不純物は、Fe、Si及びCの少なくとも一つであることを特徴とするCVD装置。
    In claim 8,
    The CVD apparatus, wherein the impurity is at least one of Fe, Si, and C.
  10.  請求項1乃至9のいずれか一項において、
     前記材料からなる膜は溶射によって形成されていることを特徴とするCVD装置。
    In any one of Claims 1 thru | or 9,
    A CVD apparatus, wherein the film made of the material is formed by thermal spraying.
  11.  請求項1乃至10のいずれか一項において、
     前記基板に成膜する前記膜は、炭素膜であることを特徴とするCVD装置。
    In any one of Claims 1 thru | or 10,
    The CVD apparatus characterized in that the film formed on the substrate is a carbon film.
PCT/JP2013/055263 2012-03-09 2013-02-21 Cvd device WO2013133110A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201405405SA SG11201405405SA (en) 2012-03-09 2013-02-21 Cvd apparatus
JP2014503794A JP6229136B2 (en) 2012-03-09 2013-02-21 CVD equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-052932 2012-03-09
JP2012052932 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013133110A1 true WO2013133110A1 (en) 2013-09-12

Family

ID=49116592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055263 WO2013133110A1 (en) 2012-03-09 2013-02-21 Cvd device

Country Status (3)

Country Link
JP (2) JP6229136B2 (en)
SG (1) SG11201405405SA (en)
WO (1) WO2013133110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114514A (en) * 2015-03-24 2016-10-05 램 리써치 코포레이션 Deposition of metal dielectric film for hardmasks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136544A (en) * 1992-10-29 1994-05-17 Sumitomo Metal Ind Ltd Plasma treatment device
JP2001247957A (en) * 1999-12-28 2001-09-14 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using same, and target device
JP2002033286A (en) * 2000-07-17 2002-01-31 Mitsubishi Heavy Ind Ltd Wafer-retaining table and semiconductor manufacturing equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321555A (en) * 1997-05-15 1998-12-04 Tokyo Electron Ltd Plasma film deposition device and cleaning method therefor
JPH11335842A (en) * 1998-05-22 1999-12-07 Hitachi Ltd Cvd device and cleaning of the device
KR20010062209A (en) * 1999-12-10 2001-07-07 히가시 데쓰로 Processing apparatus with a chamber having therein a high-etching resistant sprayed film
JP2002033497A (en) * 2000-07-14 2002-01-31 Nihon University Solar cell and panel thereof
JP2002088461A (en) * 2000-09-14 2002-03-27 Kawasaki Steel Corp Corrosion resisting roll
JP2002155372A (en) * 2000-11-17 2002-05-31 Mitsubishi Chemicals Corp Method and system for film deposition, and method for manufacturing information recording medium
JP4647249B2 (en) * 2004-06-09 2011-03-09 ルネサスエレクトロニクス株式会社 Thin film forming apparatus component and method of manufacturing the same
JP5053595B2 (en) * 2006-08-18 2012-10-17 正義 梅野 DLC film forming method and DLC film manufacturing apparatus
JP2009068067A (en) * 2007-09-13 2009-04-02 Covalent Materials Corp Plasma resistant ceramics sprayed coating
JP4704453B2 (en) * 2008-07-16 2011-06-15 株式会社プラズマイオンアシスト Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
JP2010171388A (en) * 2008-12-25 2010-08-05 Hitachi Kokusai Electric Inc Substrate processing apparatus, method of manufacturing semiconductor device, and reaction tube for processing substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136544A (en) * 1992-10-29 1994-05-17 Sumitomo Metal Ind Ltd Plasma treatment device
JP2001247957A (en) * 1999-12-28 2001-09-14 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using same, and target device
JP2002033286A (en) * 2000-07-17 2002-01-31 Mitsubishi Heavy Ind Ltd Wafer-retaining table and semiconductor manufacturing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114514A (en) * 2015-03-24 2016-10-05 램 리써치 코포레이션 Deposition of metal dielectric film for hardmasks
CN106024605A (en) * 2015-03-24 2016-10-12 朗姆研究公司 Deposition of metal dielectric film for hardmasks
JP2016181687A (en) * 2015-03-24 2016-10-13 ラム リサーチ コーポレーションLam Research Corporation Deposition of metal dielectric film for hardmasks
KR102500931B1 (en) * 2015-03-24 2023-02-16 램 리써치 코포레이션 Deposition of metal dielectric film for hardmasks

Also Published As

Publication number Publication date
JPWO2013133110A1 (en) 2015-07-30
JP2017179612A (en) 2017-10-05
SG11201405405SA (en) 2014-11-27
JP6229136B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP4394073B2 (en) Process gas introduction mechanism and plasma processing apparatus
JP5211332B2 (en) Plasma CVD apparatus, DLC film and thin film manufacturing method
CN102210196B (en) Plasma resistant coatings for plasma chamber components
JP7224096B2 (en) Thermal spraying method for parts for plasma processing apparatus and parts for plasma processing apparatus
US10519549B2 (en) Apparatus for plasma atomic layer deposition
TW201303955A (en) Plasma generation electrode and plasma treatment device
KR20160017662A (en) Method for removing hard carbon layers
TW201931513A (en) Y2O3-SiO2 protective coatings for semiconductor process chamber components
JP4181069B2 (en) Plasma processing equipment
TW202209477A (en) Etching processing apparatus, quartz member and plasma processing method
JP6229136B2 (en) CVD equipment
JP6573820B2 (en) Plasma processing apparatus member and plasma processing apparatus
JP2004190082A (en) Film deposition system for both pvd/cvd, and film deposition method using the system
US20110024040A1 (en) Deposit protection cover and plasma processing apparatus
JP2002306957A (en) Plasma treating device
JP4902054B2 (en) Sputtering equipment
JP2020193356A (en) Component for film deposition apparatus, and film deposition apparatus including the same
US20100155935A1 (en) Protective coating for semiconductor substrates
JP2004211168A (en) Cleaning method for treatment apparatus
US20230234160A1 (en) Diffusion bonding of pure metal bodies
JPS58185418A (en) Deposition of thick carbon film
TW202217908A (en) Process kit with protective ceramic coatings for hydrogen and nh3 plasma application
JP4107167B2 (en) Dry etching equipment
JPH08269718A (en) Formation of hard carbon film
JPH08225944A (en) Formation of hard carbon film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014503794

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13757161

Country of ref document: EP

Kind code of ref document: A1