WO2013118872A1 - Method of manufacturing electron-source structure for nanocrystalline silicon electron-emitter array - Google Patents

Method of manufacturing electron-source structure for nanocrystalline silicon electron-emitter array Download PDF

Info

Publication number
WO2013118872A1
WO2013118872A1 PCT/JP2013/053069 JP2013053069W WO2013118872A1 WO 2013118872 A1 WO2013118872 A1 WO 2013118872A1 JP 2013053069 W JP2013053069 W JP 2013053069W WO 2013118872 A1 WO2013118872 A1 WO 2013118872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
emitter array
electron
electrode
electron emitter
Prior art date
Application number
PCT/JP2013/053069
Other languages
French (fr)
Japanese (ja)
Inventor
池上 尚克
江刺 正喜
越田 信義
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2013118872A1 publication Critical patent/WO2013118872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • H01J2237/0635Multiple source, e.g. comb or array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31777Lithography by projection
    • H01J2237/31781Lithography by projection from patterned cold cathode
    • H01J2237/31786Field-emitting cathode

Definitions

  • the present invention relates to an nc-Si electron emitter in which a nanocrystal silicon (hereinafter also referred to as nc-Si) electron emitter array and a control drive LSI for on / off control of electron emission from each electron emitter are integrated.
  • the present invention relates to a method of manufacturing an array electron source structure.
  • FIGS. 1 and 2 are a schematic diagram of an electron beam drawing apparatus using a single electron source, and a diagram showing a problem of throughput when using the electron beam drawing apparatus.
  • the size of the electron beam source (pixel ⁇ size ⁇ ) required for electron beam drawing has become smaller, and the electron beam that must be drawn per wafer
  • the density (pixels / wafer) increases exponentially, the progress of the drawing speed (pixels / sec) of the electron beam drawing apparatus cannot catch up with it, and it can be seen that the throughput decreases rapidly with the generation.
  • FIG. 3 shows a configuration example of conventional Multi-Electron Beam Lithography according to such a technique.
  • FIG. 4 shows a schematic diagram and features of the electron source structure used in PML2 (Projection Mask-Less Lithography) of IMS Nanofabrication AG, which is an example of the configuration of this type of apparatus.
  • PML2 Processing Mask-Less Lithography
  • an electron beam emitted from a single electron source is once expanded and then divided into a plurality of electron beams by irradiating an aperture array called Programmable Aperture Plate System (APS) with an acceleration voltage of 5 KeV.
  • APS Programmable Aperture Plate System
  • APS Programmable Aperture Plate System
  • APS is a mechanism that can mechanically open and close the aperture in conjunction with drawing data input in advance.
  • the electron beam divided into a plurality of parts through the APS is accelerated at 50 KeV and is reduced and projected onto the wafer.
  • the electron beam drawing pattern is controlled by APS mechanical operation control, there is a problem that the system becomes complicated and the apparatus becomes large.
  • nc-Si has a nano-silicon wire array structure in which a large number of nano-silicon crystal grains with a diameter of about 3 nm are connected. Each nano-silicon grain is insulated from each other and has a thin enough SiO 2 layer or SiON layer to allow electrons to tunnel. Covered with an insulating thin film layer.
  • the nc-Si electron source (1) can be turned on / off at a low voltage that can be controlled by CMOS, and (2) the energy of the emitted electron is high energy of several eV. , (3) has very high directivity, and (4) surface electron emission allows uniform and large area electron emission, and (5) the emission current is less dependent on the degree of vacuum, (6) It has the advantage that no complicated manufacturing process is required (low cost).
  • nc-Si thin film for example, a thin film such as Poly-Si (polycrystalline silicon) is deposited on a silicon wafer substrate, and then anodized in a solution containing HF to form a nanosilicon wire. An array structure is formed. After that, it can be produced by performing rapid thermal oxidation (Rapid Thermal Oxidation: RTO) treatment at a temperature of about 900 ° C., for example.
  • RTO Rapid Thermal Oxidation
  • the SiO 2 film formed by oxidation treatment such as RTO generates very high internal stress on the nc-Si thin film itself, so it is easily destroyed when external mechanical stress is applied. End up. Therefore, when the nc-Si electron source and the control drive LSI circuit are separately manufactured and integrated, the nc-Si thin film itself is handled and the electrical pads are accurately electrically connected to all the electrode pads of the drive LSI. There was a problem that it was extremely difficult to obtain a proper joint.
  • An object of the present invention is to solve these problems and to provide a method of manufacturing an electron source structure of an nc-Si electron emitter array suitable for integration with a control drive LSI circuit.
  • a nanocrystalline silicon electron emitter array having a plurality of electron emitters is formed on one surface of a substrate, and the substrate is attached to each electron emitter.
  • a substrate through-wiring penetrating through is electrically connected, a structure having a connection electrode provided at an end of the substrate through-wiring, and a drive electrode, for controlling and driving the nanocrystal silicon electron emitter array.
  • the nanocrystal silicon electron emitter array is disposed on the substrate having a through hole.
  • the conductive material on one side of the substrate is electrically connected to the working electrode.
  • Method of manufacturing a nanocrystal silicon electron emitter array structure with some or all of the conductive material on the opposite surface, characterized in that it is formed by anodic oxidation is provided by taking the connection.
  • the first invention there is provided a method for manufacturing a nanocrystal silicon electron emitter array structure, wherein an SOI substrate having an active layer is used as the substrate.
  • the first invention there is provided a method of manufacturing a nanocrystal silicon electron emitter array structure, wherein a silicon substrate is used as the substrate.
  • the first invention there is provided a method for manufacturing a nanocrystal silicon electron emitter array structure, wherein an insulating substrate is used as the substrate.
  • a structure in which a common electrode is formed on the entire surface as a part of the nanocrystal silicon electron emitter array, and a part other than the electron emission part is provided.
  • a method for manufacturing a nanocrystal silicon electron emitter array structure characterized in that an electrode having a film thickness larger than the electrode film thickness formed in the electron emission portion is formed.
  • the first invention is characterized in that a film made of a conductive material formed on the active layer is anodized by electrically connecting the SOI active layer and the working electrode.
  • a method of manufacturing a nanocrystalline silicon electron emitter array structure is provided.
  • a method of manufacturing a nanocrystal silicon electron emitter array structure wherein the active layer and the working electrode are electrically connected from the side wall of the SOI substrate.
  • a method of manufacturing a nanocrystal silicon electron emitter array structure wherein a portion other than the electron emission portion is covered with a Si 3 N 4 film or a SiC film Is provided.
  • an nc-Si electron emitter array is formed on an SOI or Si substrate or an insulating support, and a through electrode such as a TSV electrode electrically connected to each emitter is formed on the back surface of the substrate.
  • a structure is fabricated, and the TSV electrode and the drive electrode on the LSI are joined.
  • the electron source is structured in this way, the nc-Si thin film is supported by the surrounding Si structure in this structure, so that the internal stress derived from the nc-Si thin film itself is alleviated. Can be demonstrated. Therefore, the resistance to mechanical stress received from the outside during the manufacturing process and mounting is dramatically improved, and the stability is improved. Furthermore, miniaturization of the TSV electrode structure and the like makes it possible to increase the density.
  • the structure of the electron source of the nc-Si electron emitter array suitable for integration with the control drive LSI circuit can be realized.
  • FIG. 6 is a diagram for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the first embodiment of the present invention.
  • the TSV electrode structure connected to the nc-Si emitter is fabricated on the SOI substrate.
  • a buried oxide film (BOX layer) 2 is provided on a P-type Si substrate 1 having a thickness of 20 ⁇ m, and an n ++ -type SOI active layer 3 having a thickness of 2 ⁇ m, for example (resistivity is about 0.005 ⁇ cm).
  • the SOI substrate 4 provided with is prepared (step (1)).
  • a Poly-Si layer 5 is deposited on the SOI substrate 4 (step (2)).
  • the n ++ -type SOI active layer 3 / Poly-Si layer 5 is vertically processed by dry etching to form a recess 6 (step (3)).
  • the lower n ++ -type SOI active layer 3 is left on the BOX layer 2 by, for example, about 0.1 ⁇ m by adjusting the etching time.
  • an Si 3 N 4 film 7 is deposited on the entire surface by, for example, about 0.15 ⁇ m by LP-CVD (step (4)), and sidewall spacers 8 are formed on the pattern sidewalls by anisotropic etching on the entire surface.
  • This step is performed, for example, by etching in a CHF 3 / CF 4 gas plasma atmosphere using a parallel plate type RIE (Reactive Ion Etching) apparatus.
  • RIE Reactive Ion Etching
  • this portion is anodized in, for example, an HF + C 2 H 5 OH solution, and the surface of the Poly-Si layer 5 that is not covered with the Si 3 N 4 film 7 is selectively electrochemically etched. Convert to nc-Si (step (6)).
  • 9 is an nc-Si portion.
  • an O-ring seal mechanism that suppresses the penetration of the HF solution into this portion so that the peripheral portion that opens the contact hole for electrical connection in the subsequent step (step (15)) is not anodized.
  • FIG. 7 schematically shows an apparatus configuration for anodization including this mechanism.
  • a positive bias is applied from the electrode 22 from the back surface of the sample 21, and a negative potential is applied to the platinum electrode 24 placed opposite to the surface of the sample 21 in the solution 23 containing HF.
  • Anodization can be performed by applying (or ground potential), controlling the current density flowing through the sample 21 to, for example, 25 mA / cm 2 and allowing the current to flow for about 6 seconds.
  • an SOI substrate 4 is used as in this device and voltage is applied from the back side of the substrate, the Poly-Si layer 5 on the active layer 3 is not broken unless the BOX layer 2 is broken down by applying a large voltage. Cannot be anodized.
  • the sample side wall portion of the n ++ -type active layer 3 left on the BOX layer 2 by the etching in the step (3) is bypassed, and the working electrode and the Poly-Si shown in FIG. Electrical connection with the layer 5 is made so that an anode current flows.
  • the nc-Si portion 10 is oxidized (step (7)).
  • the temperature is increased from room temperature to 800 ° C. in 10 seconds in an O 2 gas atmosphere, and the temperature is increased from 800 ° C. to 900 ° C. in 10 seconds ⁇ 900 ° C. for 23 minutes.
  • an oxidized nc-Si portion 10 is formed, and the active layer 3 that electrically connected the emitters is completely insulated (SiO 2 ) as shown in step (7). Will be isolated.
  • a CVD SiO 2 film 11 is deposited on the back surface (step (8)), deep etching is performed up to the BOX layer 2 to form a through hole 12 (step (9)), and the SiO 2 side wall (sidewall is formed on the pattern side wall. Spacer) 13 is formed (step (10)). Then, the through-hole 12 is embedded with, for example, Ti / Cu 14 by plating (step (11)), an adhesion polyimide film 15 is deposited and patterned (step (12)), and bump-connected to the control drive LSI 16 (step) (13)).
  • 16-1 is an electron source driving Al electrode portion
  • 16-2 is an I / O portion electrode
  • 16-3 is an interlayer insulating film
  • 16-4 is a bump.
  • An electron source of an nc-Si electron emitter array can be produced by opening the contact hole 19 and forming an electrode 20 such as tungsten (step (15)).
  • each nc is connected from the LSI drive electrode side in conjunction with the drawing pattern data input from the outside.
  • An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling the drive voltage of 15V on / off of the -Si electron source.
  • an nc-Si electron emitter array is formed on an SOI substrate, and a structure in which TSV electrodes electrically connected to individual emitters are formed on the back surface of the substrate is manufactured.
  • the TSV electrode and the drive electrode on the LSI are joined.
  • the nc-Si thin film is supported by the surrounding Si structure, so that the internal stress derived from the nc-Si thin film itself can be reduced. be able to. Therefore, the resistance to mechanical stress received from the outside during the manufacturing process and mounting is dramatically improved, and the stability is improved. Furthermore, miniaturization of the TSV electrode structure enables high density.
  • a positive voltage can be applied to the surface from the wafer side wall through the SOI active layer during anodic oxidation, so that individual dots can be used regardless of the presence of the BOX layer (insulating layer). It becomes possible to nc-Si by etching the surface of polycrystalline Si electrochemically with low voltage without dielectric breakdown of the BOX layer.
  • FIG. 8 is a view for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the second embodiment of the present invention.
  • a TSV electrode structure connected to an nc-Si electron emitter is fabricated on a Si substrate.
  • a P-type Si substrate 31 having a thickness of 200 ⁇ m is prepared (step (1)).
  • the P-type Si substrate 31 is subjected to through etching using, for example, the same RIE apparatus used in the step (5) of the first embodiment (step (2)).
  • 32 is a through hole.
  • a thermal oxide film (SiO 2 film) 33 having a thickness of 1.0 ⁇ m is grown on the Si substrate 31 (step (3)), and an n ++ -Type Doped poly-Si film is further formed on the entire surface of the through hole 32. Is deposited more than the film thickness that completely fills, and then one surface is polished to leave a Doped Poly-Si film 34 having a film thickness of, for example, about 2 ⁇ m on the surface (step (4)).
  • a poly-Si film 35 is deposited on the polished surface (step (5)), and after patterning into a dot array until the underlying SiO 2 is exposed (step (6)), a thermal oxide film (SiO 2 film) 36 is grown, and an Si 3 N 4 film 37 is deposited on the entire surface by, for example, about 0.5 ⁇ m by LP-CVD (step (7)). Thereafter, for example, using a parallel plate type RIE apparatus, the electron emission portion 38 is opened by dry etching in a CHF 3 / CF 4 gas plasma atmosphere (step (8)).
  • anodization is performed, for example, in an HF + C 2 H 5 OH solution by using the apparatus configuration shown in FIG. 7, for example, and the Poly-Si surface not covered with the SiO 2 / Si 3 N 4 film is selectively selected.
  • Electrochemical etching is performed to convert this portion into nc-Si, and then an oxidation treatment is performed (step (9)).
  • 39 is an oxidized nc-Si portion.
  • the working electrode shown in FIG. 7 is electrically connected to the back surface of the sample, and a platinum electrode placed opposite to the sample surface in a solution containing HF is placed at the ground potential.
  • the current density flowing in the sample is controlled to 25 mA / cm 2 , for example, and a current is applied for about 6 seconds.
  • the BOX layer (insulating layer) as described in the first embodiment is not present in the middle of the substrate.
  • the Doped Poly-Si film 34 formed on the entire back side of the sample is formed in the silicon through hole. 32 is electrically connected to the individual dot-shaped Poly-Si back surface on the sample surface side. For this reason, by passing an anodic current through the Doped Poly-Si film 34 on the back side of the sample, it becomes possible to independently and selectively anodize the individual dot-like poly-Si surfaces on the front side of the sample.
  • the nc-Si oxidation treatment is performed in a O 2 gas atmosphere from room temperature to 800 ° C. in 10 seconds ⁇ 800 ° C. to 900 ° C. in 10 seconds ⁇ 900 Perform at 23 ° C. for 23 minutes.
  • step (10) the n + + type Doped poly-Si film 34 on the back surface is patterned (rear electrode formation) (step (10)), Au bumps 40-1 fabricated on the drive electrodes on the surface of the LSI drive circuit 40, and about Si—Au eutectic bonding is performed at 400 ° C. (step (11)).
  • 40-2 is an electronically driven Al electrode part
  • 40-3 is an I / O part electrode
  • 40-4 is an interlayer electrode
  • 40-5 is an adhesive polyimide.
  • the electron source of the nc-Si electron emitter array is manufactured by the above process.
  • each nc is connected from the LSI drive electrode side in conjunction with the drawing pattern data input from the outside.
  • An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling the drive voltage of 15V on / off of the -Si electron source.
  • an nc-Si electron emitter array is formed on a Si substrate, and a structure in which TSV electrodes electrically connected to individual emitters are formed on the back surface of the substrate is manufactured.
  • the TSV electrode and the driving electrode on the LSI are joined to form a structure that constitutes an electron source.
  • the nc-Si thin film is supported by the surrounding Si structure, the effect of relieving the internal stress derived from the nc-Si thin film itself can be exhibited. Therefore, the resistance and stability against the mechanical stress received from the outside during the manufacturing process and mounting are dramatically improved. Further miniaturization enables high density.
  • Si through-holes are opened at the first stage of the process, and after oxidizing the entire surface, Doped-Poly-Si is deposited on the entire wafer surface to completely fill the through-holes, and then on one side (front side) A dot-like polycrystalline Si structure was formed. This makes it possible to establish electrical connection with the working electrode for anodizing from the back side, and independently etch each dot-like Poly-Si surface into nc-Si. It became possible.
  • the electrode having a thickness greater than the thickness of the electrode formed in the electron emission portion is formed in a portion other than the electron emission portion, so that step coverage is improved and uniform electron emission is achieved. Is possible.
  • FIG. 9 is a view for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the third embodiment of the present invention.
  • a P-type Si substrate 51 having a thickness of 200 ⁇ m is prepared (step (1)).
  • the P-type Si substrate 51 is subjected to through etching using, for example, the same RIE apparatus used in the step (5) of the first embodiment (step (2)).
  • 52 is a through hole.
  • a thermal oxide film (SiO 2 film) 53 having a thickness of 1.0 ⁇ m is grown on the Si substrate 51 (step (3)), and an n ++ -Type Doped poly-Si film 54 is formed on the entire surface through the through hole. More than the film thickness in which 52 is completely buried is deposited, and then one surface is polished to leave a Doped Poly-Si film 54 having a film thickness of, for example, about 2 ⁇ m on the surface (step (4)).
  • a poly-Si film 55 is deposited on the polished surface (step (5)), and after patterning into a dot array (step (6)), a thermal oxide film (SiO 2 film) 56 is grown, and LP-CVD A Si 3 N 4 film 57 is deposited on the entire surface by, for example, about 0.5 ⁇ m (step (7)).
  • the electron emission portion 58 is opened by dry etching in a CHF 3 / CF 4 gas plasma atmosphere (step (8)).
  • anodization is performed, for example, in an HF + C 2 H 5 OH solution by using the apparatus configuration shown in FIG. 7, for example, and the Poly-Si surface not covered with the SiO 2 / Si 3 N 4 film is selectively selected.
  • Electrochemical etching is performed to convert this portion into nc-Si, and then an oxidation treatment is performed (step (9)).
  • 59 is an oxidized nc-Si portion.
  • the working electrode shown in FIG. 7 is electrically connected to the back surface of the sample, and a platinum electrode placed opposite to the sample surface in a solution containing HF is placed at the ground potential.
  • the current density flowing in the sample is controlled to 25 mA / cm 2 , for example, and a current is applied for about 6 seconds. Because doing the n ++ Doped Poly-Si implantation into silicon through hole 53 in the first stage in the construction process (step (4)), n ++ Doped Poly-Si which is formed on the sample back the entire surface The film 54 is electrically connected to the back surface of each dot-like Poly-Si 55 on the sample surface side through the silicon through hole 52. For this reason, by flowing an anodic current through the n ++ Doped Poly-Si film 54 on the back side of the sample, it becomes possible to independently and selectively anodize the individual dot-like poly-Si surfaces on the front side of the sample.
  • the nc-Si oxidation treatment is performed in an O 2 gas atmosphere from room temperature to 800 ° C. in 10 seconds ⁇ 800 ° C. to 900 ° C. in 10 seconds ⁇ 900 Perform at 23 ° C. for 23 minutes.
  • a glass substrate 61 for supporting the wafer is attached to the device surface side using the polymer 60 (step (10)), and the polishing thickness is controlled by, for example, chemical mechanical polishing (CMP) on the opposite side (back side).
  • CMP chemical mechanical polishing
  • the film is then thinned (step (11)).
  • the Poly-Si substrate 51 remaining on the back surface side is selectively removed by etching using, for example, SF 6 gas plasma (step (12)).
  • the exposed n ++ Doped Poly-Si 54 is covered with a resist 62 so as not to be etched.
  • an SiO 2 film is sputter-deposited as the insulating film 63 to selectively embed an insulator where the Poly-Si substrate 51 is removed (step (13)).
  • the resist 62 is removed, and, for example, a Cr / Au electrode 64 electrically connected to the exposed n ++ Doped Poly-Si through-wiring surface is formed, thereby forming a through-wiring electrode 65 on the back surface ( Step (14)).
  • a Cr / Au / In bump structure 66 is formed on the LSI drive electrode, and the bump electrode 66 is aligned with the Cr / Au penetrating wiring electrode 65 (64) on the back side of the electron source.
  • step (16) physical bonding between the bump and the through-wiring electrode is performed by performing Transient Liquid Phase Diffusion Bonding (TLP bonding) at about 200 ° C. 68 is formed (step (16)).
  • TLP bonding Transient Liquid Phase Diffusion Bonding
  • An Al electrode portion, 67-2 is an I / O electrode portion, and 67-3 is an interlayer insulating film.
  • a space 71 is secured for electrical contact with the input / output (I / O) pad portion 70 of the control LSI 67 (step (19)).
  • the electron source of the nc-Si electron emitter array is manufactured by the above process.
  • each LSI drive electrode side individually links with the drawing pattern data input from the outside.
  • An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling on / off of a driving voltage of 15 V to the nc-Si electron source.
  • the nc-Si electron emitter array is formed on the insulating SiO 2 support, the SiO 2 individual emitter electrically connected to the through wiring electrodes to produce a structure formed on the back surface insulating support, joining the driving electrodes on the through wiring electrodes and the LSI, by which the structure thus configuring the electron source, SiO 2 and nc-Si thin film in this structure Since it is supported by the support, the effect of relieving the internal stress derived from the nc-Si thin film itself can be exhibited. Therefore, even if the nc-Si electron emitter array is bonded onto the drive electrode on the drive control LSI, there is an effect that the resistance to internal stress can be stably maintained.
  • the parasitic capacitance is extremely small. For this reason, even when voltage application from the drive control LSI to the nc-Si electron emitter array is performed at high speed on / off operation, the delay time from the drive voltage output to the electron emission is practically negligible.
  • the Poly-Si support is selectively removed by etching.
  • a process of embedding these parts with SiO 2 insulating film was adopted. This makes it possible to use a process for forming through-wiring electrodes on a Si substrate, which is easier to miniaturize, instead of using the direct through-wiring electrode forming process directly on fine SiO 2 supports that are difficult to process at high aspect ratios. can do. Further, the nc-Si electron emitter array can be further miniaturized.

Abstract

Provided is a method of manufacturing an electron-source structure for a nanocrystalline silicon electron-emitter array, which is configured such that a structure section in which a nanocrystalline silicon electron-emitter array provided with a plurality of electron emitters is formed on one face of a substrate, with each of the electron emitters being electrically connected to a respective substrate-penetrating wiring that penetrates the substrate, and which comprises connection electrodes provided at end sections of the substrate-penetrating wirings, is joined to an LSI which comprises drive electrodes and which is for controlling/driving the nanocrystalline silicon electron-emitter array, via the connection electrodes and the drive electrodes. In this method, the nanocrystalline silicon electron-emitter array is formed by depositing a conductive material on both faces of the substrate that has penetration holes opened therethrough, including the inner surfaces of the penetration holes, and then electrically connecting the conductive material on one face of the substrate to a working electrode in order to anodize a portion or all of the conductive material on the opposite face.

Description

ナノクリスタルシリコン電子エミッタアレイ電子源構造の製造方法Method of manufacturing nanocrystal silicon electron emitter array electron source structure
 本発明は、ナノクリスタルシリコン(以下、nc-Siとも称する)電子エミッタアレイと、個々の電子エミッタからの電子放出をオン・オフ制御するための制御駆動用LSIを集積化したnc-Si電子エミッタアレイの電子源構造の製造方法に関するものである。 The present invention relates to an nc-Si electron emitter in which a nanocrystal silicon (hereinafter also referred to as nc-Si) electron emitter array and a control drive LSI for on / off control of electron emission from each electron emitter are integrated. The present invention relates to a method of manufacturing an array electron source structure.
 次世代半導体集積回路や多品種少量生産に対応したMEMS (Micro-Electrical -Mechanical-Systems)などで必要とされている超微細加工技術や安価なフォトマスク製造技術として、実用的なスループットをもったマスクレスで高解像度の電子線描画装置の必要性が近年益々高まっている。図1、図2はそれぞれ単一電子源を用いた電子線描画装置の概略図及びそれを用いた場合のスループットの問題を示す図である。 It has practical throughput as ultra-fine processing technology and inexpensive photomask manufacturing technology required for next-generation semiconductor integrated circuits and MEMS (Micro-Electrical-Mechanical-Systems) that support high-mix low-volume production In recent years, the need for a maskless, high-resolution electron beam drawing apparatus is increasing. 1 and 2 are a schematic diagram of an electron beam drawing apparatus using a single electron source, and a diagram showing a problem of throughput when using the electron beam drawing apparatus.
 世代とともにマスクパターンサイズの微細化、ウェハサイズの増加に伴い、電子線描画に必要とされる電子線源のサイズ(pixel size )が微細化され、ウェハ一枚当たりに描画しなければならない電子線の密度(pixels/wafer)が指数関数的に増加するため、電子線描画装置の描画速度(pixels/sec)の進歩がそれに追いつかず、スループットが世代とともに急激に低下していることが分かる。 As the mask pattern size becomes finer and the wafer size increases with the generation, the size of the electron beam source (pixel 電子 size 描画) required for electron beam drawing has become smaller, and the electron beam that must be drawn per wafer As the density (pixels / wafer) increases exponentially, the progress of the drawing speed (pixels / sec) of the electron beam drawing apparatus cannot catch up with it, and it can be seen that the throughput decreases rapidly with the generation.
 この問題を解決する方法として、例えばT. H. P. Changらによって非特許文献1に開示されているように、複数の電子源をそれぞれ独立に制御しながら並列描画するMulti Electron Beam Lithographyという手法が提案されている。図3にこのような手法による従来のMulti Electron Beam Lithographyの構成例を示す。このような手法によるシステムに用いる電子源の構造や製造方法に関しては実用化に向けて様々な研究開発が行われている。 As a method for solving this problem, for example, as disclosed in Non-Patent Document 1 by T. H. P. Chang et al., A method called Multi Electron Beam Lithography that performs parallel drawing while independently controlling a plurality of electron sources. Has been proposed. FIG. 3 shows a configuration example of conventional Multi-Electron Beam Lithography according to such a technique. Various researches and developments have been conducted for the practical use of electron source structures and manufacturing methods used in systems based on such methods.
 一例として、図4に、この種の装置の構成例であるIMS Nanofabrication AG社のPML2 (Projection Mask-Less Lithography)に用いられている電子源構造の概略図及び特長を示す。ここでは単一電子源から放出された電子線を一旦広げた後、5KeVの加速電圧でProgrammable Aperture Plate System (APS)と呼ばれるアパーチャーアレイに照射することによって複数の電子線に分割している。APSはあらかじめプログラム入力された描画データに連動してアパーチャーを機械的に開閉できる機構になっている。APSを通過して複数に分割された電子線は、50KeVで加速されウェハ上に縮小投影される。しかしながらこの手法では、電子線描画パターンの制御をAPSの機械的動作制御によって行うため、システムが複雑になると同時に、装置が大型化してしまうという問題があった。 As an example, FIG. 4 shows a schematic diagram and features of the electron source structure used in PML2 (Projection Mask-Less Lithography) of IMS Nanofabrication AG, which is an example of the configuration of this type of apparatus. Here, an electron beam emitted from a single electron source is once expanded and then divided into a plurality of electron beams by irradiating an aperture array called Programmable Aperture Plate System (APS) with an acceleration voltage of 5 KeV. APS is a mechanism that can mechanically open and close the aperture in conjunction with drawing data input in advance. The electron beam divided into a plurality of parts through the APS is accelerated at 50 KeV and is reduced and projected onto the wafer. However, in this method, since the electron beam drawing pattern is controlled by APS mechanical operation control, there is a problem that the system becomes complicated and the apparatus becomes large.
 一方、本発明者らは、nc-Si電子源についての研究を従来より行っている(特許文献1、2)。nc-Siは直径3nm程度の ナノシリコン結晶粒が多数連結されたナノシリコンワイヤーアレイ構造になっており、各ナノシリコン粒は互いに絶縁され且つ電子がトンネルできるだけの十分薄いSiO2層やSiON層などの絶縁薄膜層で覆われている。このnc-Siの最表面にTi/Au(=1nm/9nm)薄膜電極を形成し、その電極に電圧を印加すると、表面からAuの仕事関数を超える5V付近から電子が弾道放出されることが報告されている。 On the other hand, the present inventors have been conducting research on nc-Si electron sources (Patent Documents 1 and 2). nc-Si has a nano-silicon wire array structure in which a large number of nano-silicon crystal grains with a diameter of about 3 nm are connected. Each nano-silicon grain is insulated from each other and has a thin enough SiO 2 layer or SiON layer to allow electrons to tunnel. Covered with an insulating thin film layer. When a Ti / Au (= 1nm / 9nm) thin film electrode is formed on the outermost surface of this nc-Si and a voltage is applied to the electrode, electrons may be ballistically emitted from around 5V above the Au work function. It has been reported.
 このnc-Si電子源から放出される電子の特長を図5にまとめて示す。 The features of electrons emitted from this nc-Si electron source are summarized in FIG.
 この図に示すように、nc-Si電子源は、(1) CMOSで制御可能な低電圧でon/off動作が可能であり、(2) 放出電子のエネルギーは数eVに及ぶ高エネルギーであり、(3) 非常に高い指向性を持っており、更に、(4) 面電子放出であるため均一で大面積の電子放出が可能であり、(5) 放出電流の真空度依存性が小さく、(6) 複雑な製造プロセスが不要(コストが低い)といった利点を有している。 As shown in this figure, the nc-Si electron source (1) can be turned on / off at a low voltage that can be controlled by CMOS, and (2) the energy of the emitted electron is high energy of several eV. , (3) has very high directivity, and (4) surface electron emission allows uniform and large area electron emission, and (5) the emission current is less dependent on the degree of vacuum, (6) It has the advantage that no complicated manufacturing process is required (low cost).
特開2008-98119号公報JP 2008-98119 A WO 2011/096439 A1WO 2011/096439 A1
 ところで、上記したnc-Si薄膜を作製するには、例えばPoly-Si(多結晶シリコン)等の薄膜をシリコンウェハ基板上に堆積した後、HFを含む溶液中で陽極酸化することによってナノシリコンワイヤーアレイ構造を形成する。しかるべき後、例えば900℃程度の温度で急速熱酸化(Rapid Thermal Oxidation:RTO)処理を行うことによって作製することができる。 By the way, in order to produce the above-mentioned nc-Si thin film, for example, a thin film such as Poly-Si (polycrystalline silicon) is deposited on a silicon wafer substrate, and then anodized in a solution containing HF to form a nanosilicon wire. An array structure is formed. After that, it can be produced by performing rapid thermal oxidation (Rapid Thermal Oxidation: RTO) treatment at a temperature of about 900 ° C., for example.
 しかしながら、このようなHFを含む溶液中での陽極酸化処理や、900℃という高温プロセスはLSIの製造プロセスと整合しにくいため、LSI上にモノリシックにnc-Si電子源アレイ構造を作り込むことは極めて困難である。 However, since anodization in a solution containing HF and a high-temperature process of 900 ° C are difficult to match with the LSI manufacturing process, it is not possible to monolithically build an nc-Si electron source array structure on the LSI. It is extremely difficult.
 また、RTO等の酸化処理によって形成されるSiO2膜はnc-Si薄膜自身に対して非常に高い内部応力を発生させてしまうため、外部からの機械的なストレスが加わると容易に破壊されてしまう。したがって、nc-Si電子源と制御駆動用LSI回路を個別に作製して集積化しようとした場合、nc-Si薄膜自身をハンドリングして駆動用LSIの全ての電極パッドに対して正確に電気的な接合をとることが極めて難しいという問題があった。 In addition, the SiO 2 film formed by oxidation treatment such as RTO generates very high internal stress on the nc-Si thin film itself, so it is easily destroyed when external mechanical stress is applied. End up. Therefore, when the nc-Si electron source and the control drive LSI circuit are separately manufactured and integrated, the nc-Si thin film itself is handled and the electrical pads are accurately electrically connected to all the electrode pads of the drive LSI. There was a problem that it was extremely difficult to obtain a proper joint.
 一方、フラットパネルデイスプレイへの応用を目指して、アレイ状のnc-Si電子源と制御ICとを集積化した例が報告されているが、電子線露光装置で要求されるような高密度化が困難であるという問題があった。 On the other hand, an example in which an arrayed nc-Si electron source and a control IC are integrated has been reported for application to flat panel displays. There was a problem that it was difficult.
 本発明の目的は、これらの問題点を解決し、制御駆動用LSI回路との集積化に適したnc-Si電子エミッタアレイの電子源構造の製造方法を提供することにある。 An object of the present invention is to solve these problems and to provide a method of manufacturing an electron source structure of an nc-Si electron emitter array suitable for integration with a control drive LSI circuit.
 上記の目的を達成するため、本発明によれば、第1に、基板の一方の面上に複数の電子エミッタを備えたナノクリスタルシリコン電子エミッタアレイが形成され、個々の電子エミッタに前記基板を貫通する基板貫通配線が電気的に接続され、該基板貫通配線の端部に設けられた接続電極を有する構造部と、駆動電極を有し、前記ナノクリスタルシリコン電子エミッタアレイを制御駆動するためのLSIが、それぞれの電極を介して接合することにより構成されているナノクリスタルシリコン電子エミッタアレイ構造を製造する方法において、前記ナノクリスタルシリコン電子エミッタアレイを、貫通孔が開口された基板に対し、前記貫通孔内表面を含む基板両面に導電性材料を堆積させた後、前記基板の片面側の導電性材料と、作用電極との電気的な接続をとることにより反対面の導電性材料の一部又は全部を陽極酸化させて形成されることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 In order to achieve the above object, according to the present invention, first, a nanocrystalline silicon electron emitter array having a plurality of electron emitters is formed on one surface of a substrate, and the substrate is attached to each electron emitter. A substrate through-wiring penetrating through is electrically connected, a structure having a connection electrode provided at an end of the substrate through-wiring, and a drive electrode, for controlling and driving the nanocrystal silicon electron emitter array In a method for manufacturing a nanocrystal silicon electron emitter array structure in which an LSI is formed by bonding via respective electrodes, the nanocrystal silicon electron emitter array is disposed on the substrate having a through hole. After depositing a conductive material on both sides of the substrate including the inner surface of the through-hole, the conductive material on one side of the substrate is electrically connected to the working electrode. Method of manufacturing a nanocrystal silicon electron emitter array structure with some or all of the conductive material on the opposite surface, characterized in that it is formed by anodic oxidation is provided by taking the connection.
 第2に、上記第1の発明において、前記基板として、活性層を有するSOI基板を用いることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Secondly, in the first invention, there is provided a method for manufacturing a nanocrystal silicon electron emitter array structure, wherein an SOI substrate having an active layer is used as the substrate.
 第3に、上記第1の発明において、前記基板として、シリコン基板を用いることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Thirdly, in the first invention, there is provided a method of manufacturing a nanocrystal silicon electron emitter array structure, wherein a silicon substrate is used as the substrate.
 第4に、上記第1の発明において、前記基板として、絶縁性基板を用いることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Fourthly, in the first invention, there is provided a method for manufacturing a nanocrystal silicon electron emitter array structure, wherein an insulating substrate is used as the substrate.
 第5に、上記第1ないし第4のいずれかの発明において、前記ナノクリスタルシリコン電子エミッタアレイの部分として、全面に共通の電極が形成された構造であって、電子放出部以外の部分には、該電子放出部に形成された電極膜厚より厚い膜厚の電極が存在するものを形成することを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Fifth, in any one of the first to fourth inventions, a structure in which a common electrode is formed on the entire surface as a part of the nanocrystal silicon electron emitter array, and a part other than the electron emission part is provided. There is provided a method for manufacturing a nanocrystal silicon electron emitter array structure characterized in that an electrode having a film thickness larger than the electrode film thickness formed in the electron emission portion is formed.
 第6に、上記第1の発明において、SOI活性層と、作用電極との電気的な接続をとることにより前記活性層上に形成された導電性材料よりなる膜を陽極酸化することを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Sixth, the first invention is characterized in that a film made of a conductive material formed on the active layer is anodized by electrically connecting the SOI active layer and the working electrode. A method of manufacturing a nanocrystalline silicon electron emitter array structure is provided.
 第7に、上記第6の発明において、SOI基板側壁部から前記活性層と、作用電極との電気的な接続をとることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Seventh, in the sixth aspect of the invention, there is provided a method of manufacturing a nanocrystal silicon electron emitter array structure, wherein the active layer and the working electrode are electrically connected from the side wall of the SOI substrate. .
 第8に、上記第1から第7のいずれかの発明において、電子放出部以外の部分をSi3N4膜或いはSiC膜で被覆することを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法が提供される。 Eighth, in any one of the first to seventh aspects of the invention, a method of manufacturing a nanocrystal silicon electron emitter array structure, wherein a portion other than the electron emission portion is covered with a Si 3 N 4 film or a SiC film Is provided.
 本発明のナノクリスタルシリコン電子エミッタアレイ構造の製造方法では、典型的な例として、以下に述べるプロセスを用いる。 In the method of manufacturing a nanocrystal silicon electron emitter array structure of the present invention, the following process is used as a typical example.
 (I)ウェハ基板上に堆積した多結晶シリコンを多数のドットアレイ状に加工した後、電子放出部以外の部分をSi3N4膜或いはSiC膜等の絶縁膜で覆う。しかるべく後、HFを含む溶液中で多結晶シリコン表面が露出した部分を選択的に陽極酸化してnc-Si層を形成する。 (I) After the polycrystalline silicon deposited on the wafer substrate is processed into a large number of dot arrays, a portion other than the electron emission portion is covered with an insulating film such as a Si 3 N 4 film or a SiC film. Thereafter, the portion where the polycrystalline silicon surface is exposed is selectively anodized in a solution containing HF to form an nc-Si layer.
 (II)SOI基板上で(I)で述べた陽極酸化を行なう場合、ウェハ側壁から活性層を介して電圧印加することにより、陽極酸化するプロセスを用いる。 (II) When the anodic oxidation described in (I) is performed on the SOI substrate, a process of anodizing by applying a voltage from the wafer side wall through the active layer is used.
 (III)Si基板上で(I)で述べた方法で陽極酸化を行なう場合、はじめにSi貫通(Through Silicon Via:TSV)配線構造を作製した後、基板裏面からTSV配線を介して、表面側にドットアレイ状に加工された多結晶シリコンを陽極酸化するプロセスを用いる。 (III) Si When performing anodization mentioned methods on the substrate (I), initially Si penetration (T hrough S ilicon V ia: TSV) After preparing a wiring structure, through the TSV wiring from the back surface of the substrate, A process of anodizing polycrystalline silicon processed into a dot array on the surface side is used.
 (IV)Si基板に貫通孔を開口して全面酸化した後、Si基板全面に導電性材料を堆積して貫通孔を完全に埋め込んだ後、片面(表面)側にnc-Si電子エミッタアレイ構造を形成し、反対面(裏面)側を研磨厚を制御して研磨する。然るべく後、裏面側に残存したSi基板部を選択的にエッチング除去し、除去された部分に絶縁体を埋め込む。この構造体裏面の電極と制御駆動用LSI上の駆動電極とを接合するというプロセスを用いる。 (IV) After opening the through-hole in the Si substrate and oxidizing the entire surface, after depositing a conductive material on the entire surface of the Si substrate and completely filling the through-hole, the nc-Si electron emitter array structure on one side (surface) side The opposite surface (back surface) side is polished while controlling the polishing thickness. Thereafter, the Si substrate portion remaining on the back side is selectively removed by etching, and an insulator is embedded in the removed portion. A process of joining the electrode on the back of the structure and the drive electrode on the control drive LSI is used.
 本発明によれば、SOI若しくはSi基板上或いは絶縁性支持体上にnc-Si電子エミッタアレイを形成し、個々のエミッタと電気的に接続されたTSV電極等の貫通電極を基板裏面に形成した構造を作製し、このTSV電極等とLSI上の駆動電極を接合する。また、このように電子源を構成する構造にしたことにより、この構造ではnc-Si薄膜を周囲のSi構造体等で支えているため、nc-Si薄膜自身に由来する内部応力を緩和する効果を発揮することができる。したがって、製造プロセス中や実装時に外部から受ける機械的なストレスに対する耐性が飛躍的に改善され、安定性が向上する。更にTSV電極構造等の微細化により、高密度化が可能となる。 According to the present invention, an nc-Si electron emitter array is formed on an SOI or Si substrate or an insulating support, and a through electrode such as a TSV electrode electrically connected to each emitter is formed on the back surface of the substrate. A structure is fabricated, and the TSV electrode and the drive electrode on the LSI are joined. In addition, since the electron source is structured in this way, the nc-Si thin film is supported by the surrounding Si structure in this structure, so that the internal stress derived from the nc-Si thin film itself is alleviated. Can be demonstrated. Therefore, the resistance to mechanical stress received from the outside during the manufacturing process and mounting is dramatically improved, and the stability is improved. Furthermore, miniaturization of the TSV electrode structure and the like makes it possible to increase the density.
 したがって、制御駆動用LSI回路との集積化に適したnc-Si電子エミッタアレイの電子源の構造が実現できる。 Therefore, the structure of the electron source of the nc-Si electron emitter array suitable for integration with the control drive LSI circuit can be realized.
単一電子源を用いた従来の電子線描画装置の概略図である。It is the schematic of the conventional electron beam drawing apparatus using a single electron source. 単一電子源を用いた従来の電子線描画装置を用いた場合のスループットを示す図である。It is a figure which shows the throughput at the time of using the conventional electron beam drawing apparatus using a single electron source. 従来のMulti Electron Beam Lithographyの構成例を示す図である。It is a figure which shows the structural example of the conventional Multi * Electron * Beam * Lithography. PML2 (Projection Mask-Less Lithography)に用いられている電子源構造の概略図及び特長を示す図である。It is the figure which shows the schematic of the electron source structure used for PML2 (Projection | Mask-Less | Lithography), and the feature. nc-Si電子源から放出される電子の特長をまとめて示す図である。It is a figure which shows collectively the characteristic of the electron discharge | released from an nc-Si electron source. 本発明の第一の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 1st Example of this invention. 本発明の第一の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 1st Example of this invention. 本発明の第一の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 1st Example of this invention. 陽極酸化によりPoly-Siを電気化学エッチングしてnc-Siを作製する場合の装置構成例を示す図である。It is a figure which shows the example of an apparatus structure in case Poly-Si is electrochemically etched by anodic oxidation, and nc-Si is produced. 本発明の第二実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 2nd Example of this invention. 本発明の第二実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 2nd Example of this invention. 本発明の第二実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 2nd Example of this invention. 本発明の第三実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 3rd Example of this invention. 本発明の第三実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 3rd Example of this invention. 本発明の第三実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nc-Si electron emitter array electron source which concerns on the 3rd Example of this invention.
<第一の実施例>
 図6(図6A~図6C)は、本発明の第一の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。
<First embodiment>
FIG. 6 (FIGS. 6A to 6C) is a diagram for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the first embodiment of the present invention.
 本実施例では、nc-Siエミッタと接続するTSV 電極構造をSOI基板上に作製する。 In this example, the TSV electrode structure connected to the nc-Si emitter is fabricated on the SOI substrate.
 先ず、厚さ20μmのP-type Si基板1上に埋め込み型酸化膜(BOX層)2を設け、さらにその上に例えば2μm厚のn++-type SOI活性層3(抵抗率約0.005Ωcm)を設けたSOI基板4を用意する(工程(1))。そして、このSOI基板4上に、Poly-Si層5を堆積させる(工程(2))。 First, a buried oxide film (BOX layer) 2 is provided on a P-type Si substrate 1 having a thickness of 20 μm, and an n ++ -type SOI active layer 3 having a thickness of 2 μm, for example (resistivity is about 0.005 Ωcm). The SOI substrate 4 provided with is prepared (step (1)). Then, a Poly-Si layer 5 is deposited on the SOI substrate 4 (step (2)).
 次に、n++-type SOI活性層3/ Poly-Si層5をドライエッチングにより垂直加工し、凹部6を形成する(工程(3))。その際、エッチング時間を調整することにより、下層のn++-type SOI活性層3はBOX層2上に例えば0.1μm程度残す。 Next, the n ++ -type SOI active layer 3 / Poly-Si layer 5 is vertically processed by dry etching to form a recess 6 (step (3)). At that time, the lower n ++ -type SOI active layer 3 is left on the BOX layer 2 by, for example, about 0.1 μm by adjusting the etching time.
 次に、LP-CVD法により、Si3N4膜7を全面に例えば0.15μm程度堆積させ(工程(4))、全面異方性エッチングによりパターン側壁に側壁スペーサ(Sidewall Spacer)8を形成する(工程(5))。この工程は、例えば平行平板タイプのRIE(Reactive Ion Etching)装置を用い、CHF3/CF4ガスプラズマ雰囲気内でエッチングすることにより行う。なお、ここではSi3N4膜を用いたが、SiC膜等の他の保護層を用いてもよい。 Next, an Si 3 N 4 film 7 is deposited on the entire surface by, for example, about 0.15 μm by LP-CVD (step (4)), and sidewall spacers 8 are formed on the pattern sidewalls by anisotropic etching on the entire surface. (Step (5)). This step is performed, for example, by etching in a CHF 3 / CF 4 gas plasma atmosphere using a parallel plate type RIE (Reactive Ion Etching) apparatus. Although the Si 3 N 4 film is used here, another protective layer such as a SiC film may be used.
 然るべく後、例えばHF+C2H5OH溶液中で陽極酸化を行い、Si3N4膜7で覆われていないPoly-Si層5表面を選択的に電気化学エッチングすることにより、この部分をnc-Si化する(工程(6))。図中9がnc-Si化部分である。その際、後工程(工程(15))で電気的な接続をとるためのコンタクトホールを開口する周辺部分が陽極酸化されないように、この部分へのHF溶液の浸透を抑制するO-リングシール機構をもった装置を用いる。図7にこの機構を含めた陽極酸化のための装置構成を概略的に示す。 Thereafter, this portion is anodized in, for example, an HF + C 2 H 5 OH solution, and the surface of the Poly-Si layer 5 that is not covered with the Si 3 N 4 film 7 is selectively electrochemically etched. Convert to nc-Si (step (6)). In the figure, 9 is an nc-Si portion. At that time, an O-ring seal mechanism that suppresses the penetration of the HF solution into this portion so that the peripheral portion that opens the contact hole for electrical connection in the subsequent step (step (15)) is not anodized. Use a device with FIG. 7 schematically shows an apparatus configuration for anodization including this mechanism.
 一般にシリコン基板を用いる場合は、この図にあるように、試料21裏面から電極22より正のバイアスを加え、HFを含む溶液23中で試料21表面に対向して設置した白金電極24に負電位(或いはグランド電位)を与え、試料21に流れる電流密度を例えば25mA/cm2に制御して6秒程度電流を流すことにより、陽極酸化することができる。しかしながら本デバイスのようにSOI基板4を用いて、基板裏面側から電圧印加を行おうとした場合では、大きな電圧印加によってBOX層2を絶縁破壊しなければ活性層3の上のPoly-Si層5を陽極酸化することができない。そのため、工程(6)では、工程(3)のエッチングでBOX層2上に残したn++-type活性層3の試料側壁部をバイパスして、図7に示した作用電極とPoly-Si層5との電気的な接続をとり、陽極電流を流すようにする。 In general, when a silicon substrate is used, as shown in this figure, a positive bias is applied from the electrode 22 from the back surface of the sample 21, and a negative potential is applied to the platinum electrode 24 placed opposite to the surface of the sample 21 in the solution 23 containing HF. Anodization can be performed by applying (or ground potential), controlling the current density flowing through the sample 21 to, for example, 25 mA / cm 2 and allowing the current to flow for about 6 seconds. However, when an SOI substrate 4 is used as in this device and voltage is applied from the back side of the substrate, the Poly-Si layer 5 on the active layer 3 is not broken unless the BOX layer 2 is broken down by applying a large voltage. Cannot be anodized. Therefore, in the step (6), the sample side wall portion of the n ++ -type active layer 3 left on the BOX layer 2 by the etching in the step (3) is bypassed, and the working electrode and the Poly-Si shown in FIG. Electrical connection with the layer 5 is made so that an anode current flows.
 然るべく後、nc-Si部分10を酸化処理する(工程(7))。この工程は、例えばO2ガス雰囲気中で室温から800℃まで10秒で昇温→800℃から900℃まで10秒で昇温→900℃を23分保持の条件にて行う。この酸化処理によって酸化nc-Si部分10が形成され、工程(7)に図示したように各エミッタ同志を電気的につないでいた活性層3が完全に絶縁化(SiO2化)され、電気的に孤立化することになる。 Thereafter, the nc-Si portion 10 is oxidized (step (7)). In this step, for example, the temperature is increased from room temperature to 800 ° C. in 10 seconds in an O 2 gas atmosphere, and the temperature is increased from 800 ° C. to 900 ° C. in 10 seconds → 900 ° C. for 23 minutes. As a result of this oxidation treatment, an oxidized nc-Si portion 10 is formed, and the active layer 3 that electrically connected the emitters is completely insulated (SiO 2 ) as shown in step (7). Will be isolated.
 その後、裏面にCVD SiO2膜11を堆積し(工程(8))、BOX層2まで深堀のエッチングを行い、貫通孔12を形成し(工程(9))、パターン側壁にSiO2側壁(sidewall Spacer)13を形成する(工程(10))。そして、貫通孔12を例えばTi/Cu14でメッキ法により埋込み(工程(11))、接着用のポリイミド膜15を堆積・パターニングし(工程(12))、制御駆動用LSI16とバンプ接続する(工程(13))。図中16-1は電子源駆動Al電極部、16-2はI/O部電極、16-3は層間絶縁膜、16-4はバンプである。 Thereafter, a CVD SiO 2 film 11 is deposited on the back surface (step (8)), deep etching is performed up to the BOX layer 2 to form a through hole 12 (step (9)), and the SiO 2 side wall (sidewall is formed on the pattern side wall. Spacer) 13 is formed (step (10)). Then, the through-hole 12 is embedded with, for example, Ti / Cu 14 by plating (step (11)), an adhesion polyimide film 15 is deposited and patterned (step (12)), and bump-connected to the control drive LSI 16 (step) (13)). In the figure, 16-1 is an electron source driving Al electrode portion, 16-2 is an I / O portion electrode, 16-3 is an interlayer insulating film, and 16-4 is a bump.
 その後、Ti/Au(=1nm/9nm)表面電極17を形成し(工程(14))、制御駆動用LSI16上の入出力(I/O)パッド部18との電気的な接続をとるためのコンタクトホール19を開口し、タングステン等の電極20を形成する(工程(15))ことによってnc-Si電子エミッタアレイの電子源が作製できる。 Thereafter, a Ti / Au (= 1 nm / 9 nm) surface electrode 17 is formed (step (14)), and electrical connection with the input / output (I / O) pad portion 18 on the control drive LSI 16 is made. An electron source of an nc-Si electron emitter array can be produced by opening the contact hole 19 and forming an electrode 20 such as tungsten (step (15)).
 このnc-Si電子エミッタアレイ電子源の最表面に形成されたAu電極に例えば15Vの一定電圧を印加した状態で、外部から入力した描画パターンデータに連動して、LSI駆動電極側から個々のnc-Si電子源に15Vの駆動電圧をon/off制御することにより、ウェハ上に任意の2次元パターンを高速描画することができる。 In the state where a constant voltage of 15 V, for example, is applied to the Au electrode formed on the outermost surface of this nc-Si electron emitter array electron source, each nc is connected from the LSI drive electrode side in conjunction with the drawing pattern data input from the outside. An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling the drive voltage of 15V on / off of the -Si electron source.
 以上説明したように、本実施例の方法によればSOI基板上にnc-Si電子エミッタアレイを形成し、個々のエミッタと電気的に接続されたTSV電極を基板裏面に形成した構造を作製し、このTSV電極とLSI上の駆動電極を接合する。このように電子源を構成する構造にしたことにより、この構造ではnc-Si薄膜を周囲のSi構造体で支えているため、nc-Si薄膜自身に由来する内部応力を緩和する効果を発揮することができる。したがって、製造プロセス中や実装時に外部から受ける機械的なストレスに対する耐性が飛躍的に改善され、安定性が向上する。更にTSV電極構造の微細化により、高密度化が可能となる。 As described above, according to the method of the present embodiment, an nc-Si electron emitter array is formed on an SOI substrate, and a structure in which TSV electrodes electrically connected to individual emitters are formed on the back surface of the substrate is manufactured. The TSV electrode and the drive electrode on the LSI are joined. In this structure, the nc-Si thin film is supported by the surrounding Si structure, so that the internal stress derived from the nc-Si thin film itself can be reduced. be able to. Therefore, the resistance to mechanical stress received from the outside during the manufacturing process and mounting is dramatically improved, and the stability is improved. Furthermore, miniaturization of the TSV electrode structure enables high density.
 一方、上記製造プロセスにおいては、陽極酸化の際、ウェハ側壁からSOI活性層を介して表面に正の電圧を印加できるようにしたため、BOX層(絶縁層)の存在にもかかわらず、個々のドット状多結晶Si表面をBOX層を絶縁破壊することなく低電圧で電気化学的にエッチングし、nc-Si化することが可能となる。 On the other hand, in the above manufacturing process, a positive voltage can be applied to the surface from the wafer side wall through the SOI active layer during anodic oxidation, so that individual dots can be used regardless of the presence of the BOX layer (insulating layer). It becomes possible to nc-Si by etching the surface of polycrystalline Si electrochemically with low voltage without dielectric breakdown of the BOX layer.
<第二の実施例>
 図8(図8A~8C)は本発明の第二の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。
<Second Example>
FIG. 8 (FIGS. 8A to 8C) is a view for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the second embodiment of the present invention.
 本実施例では、nc-Si電子エミッタと接続するTSV 電極構造をSi基板上に作製する。 In this example, a TSV electrode structure connected to an nc-Si electron emitter is fabricated on a Si substrate.
 先ず、厚さ200μmのP-type Si基板31を準備する(工程(1))。このP-type Si基板31に対し、例えば第一の実施例の工程(5)で用いたと同様なRIE装置を用い、貫通エッチングを施す(工程(2))。図中32が貫通孔である。次に、Si基板31に厚さ1.0μmの熱酸化膜(SiO2膜)33を成長させ(工程(3))、さらに全面に n++-TypeのDoped poly-Si膜を貫通孔32が完全に埋まる膜厚以上堆積させ、その後片面を研磨してたとえば2μm程度の膜厚のDoped Poly-Si膜34を表面に残す(工程(4))。 First, a P-type Si substrate 31 having a thickness of 200 μm is prepared (step (1)). The P-type Si substrate 31 is subjected to through etching using, for example, the same RIE apparatus used in the step (5) of the first embodiment (step (2)). In the figure, 32 is a through hole. Next, a thermal oxide film (SiO 2 film) 33 having a thickness of 1.0 μm is grown on the Si substrate 31 (step (3)), and an n ++ -Type Doped poly-Si film is further formed on the entire surface of the through hole 32. Is deposited more than the film thickness that completely fills, and then one surface is polished to leave a Doped Poly-Si film 34 having a film thickness of, for example, about 2 μm on the surface (step (4)).
 次に、Poly-Si膜35を研磨面に堆積させ(工程(5))、下地のSiO2が露出するまでドットアレイ状にパターニング後(工程(6))、熱酸化膜(SiO2膜)36を成長させ、LP-CVD法により、Si3N4膜37を全面に例えば0.5μm程度堆積させる(工程(7))。その後、例えば平行平板タイプのRIE装置を用い、CHF3/CF4ガスプラズマ雰囲気内でドライエッチングすることにより、電子放出部38を開口させる(工程(8))。 Next, a poly-Si film 35 is deposited on the polished surface (step (5)), and after patterning into a dot array until the underlying SiO 2 is exposed (step (6)), a thermal oxide film (SiO 2 film) 36 is grown, and an Si 3 N 4 film 37 is deposited on the entire surface by, for example, about 0.5 μm by LP-CVD (step (7)). Thereafter, for example, using a parallel plate type RIE apparatus, the electron emission portion 38 is opened by dry etching in a CHF 3 / CF 4 gas plasma atmosphere (step (8)).
 然るべく後、例えば図7に示した装置構成により、例えばHF+C2H5OH溶液中で陽極酸化を行い、SiO2/ Si3N4膜で覆われていないPoly-Si表面を選択的に電気化学エッチングし、この部分をnc-Si化した後、酸化処理を行う(工程(9))。図中39が酸化nc-Si部分である。この陽極酸化は、図7に示した作用電極と試料裏面との電気的な接続をとり、HFを含む溶液中で試料表面に対向して設置した白金電極をグランド電位に設置し、実施例一と同様、試料に流れる電流密度を例えば25mA/cm2に制御して6秒程度電流を流すことにより行う。この構造では第一の実施例で述べたようなBOX層(絶縁層)が基板の途中に存在していない。 Accordingly, anodization is performed, for example, in an HF + C 2 H 5 OH solution by using the apparatus configuration shown in FIG. 7, for example, and the Poly-Si surface not covered with the SiO 2 / Si 3 N 4 film is selectively selected. Electrochemical etching is performed to convert this portion into nc-Si, and then an oxidation treatment is performed (step (9)). In the figure, 39 is an oxidized nc-Si portion. In this anodic oxidation, the working electrode shown in FIG. 7 is electrically connected to the back surface of the sample, and a platinum electrode placed opposite to the sample surface in a solution containing HF is placed at the ground potential. Similarly to the above, the current density flowing in the sample is controlled to 25 mA / cm 2 , for example, and a current is applied for about 6 seconds. In this structure, the BOX layer (insulating layer) as described in the first embodiment is not present in the middle of the substrate.
 また、工程の最初の段階(工程(4))でシリコン貫通孔32へのDoped Poly-Si埋込みを行なっているため、試料裏側全面に形成されているDoped Poly-Si膜34は、シリコン貫通孔32を介して試料表側の個々のドット状Poly-Si裏面と電気的に導通している。このため、試料裏側のDoped Poly-Si膜34に陽極電流を流すことにより、試料表側の個々のドット状poly-Si表面に独立且つ選択的に陽極酸化することが可能となる。nc-Siの酸化処理は、第一の実施例で述べたように、例えばO2ガス雰囲気中で室温から800℃まで10秒で昇温→800℃から900℃まで10秒で昇温→900℃を23分保持の条件にて行う。 In addition, since Doped Poly-Si is embedded in the silicon through hole 32 in the first stage of the process (Step (4)), the Doped Poly-Si film 34 formed on the entire back side of the sample is formed in the silicon through hole. 32 is electrically connected to the individual dot-shaped Poly-Si back surface on the sample surface side. For this reason, by passing an anodic current through the Doped Poly-Si film 34 on the back side of the sample, it becomes possible to independently and selectively anodize the individual dot-like poly-Si surfaces on the front side of the sample. As described in the first embodiment, for example, the nc-Si oxidation treatment is performed in a O 2 gas atmosphere from room temperature to 800 ° C. in 10 seconds → 800 ° C. to 900 ° C. in 10 seconds → 900 Perform at 23 ° C. for 23 minutes.
 その後、裏面のn++ TypeのDoped poly-Si膜34をパターニングし(裏面電極形成)(工程(10))、LSI駆動回路40表面の駆動電極上に作製したAuバンプ40-1と、約400℃にてSi-Au共晶接合する(工程(11))。なお、図中40-2は電子駆動Al電極部、40-3はI/O部電極、40-4は層間電極、40-5は接着用ポリイミドである。そして、Ti/Au(=1nm/9nm)表面電極42を電子放出部38を含む面に形成するが、第一の実施例で述べたようなTi/Au(=1nm/9nm)の極薄膜電極を全面に堆積させた場合、パターン化された電子源側壁部にTi/Au電極が完全に被覆できない部分が発生することが見受けられた。この場合、場所によっては電子放出しないおそれもある。そこで、この問題を改善すべく、はじめに電子放出部38以外の部分に例えばCu/Au (=10nm/300nm)電極41を厚く堆積させた後(工程(12))、電子放出部38にはTi/Au(=1nm/9nm)の薄い表面電極42を形成することで(工程(13))、電極の被覆の問題を改善することができた。その後、ハーフダイシングにより駆動制御用LSI40上の入出力(I/O)パッド部43との電気的なコンタクトをとるための空間44を確保する(工程(14))。以上のプロセスにより、nc-Si電子エミッタアレイの電子源が作製される。 Thereafter, the n + + type Doped poly-Si film 34 on the back surface is patterned (rear electrode formation) (step (10)), Au bumps 40-1 fabricated on the drive electrodes on the surface of the LSI drive circuit 40, and about Si—Au eutectic bonding is performed at 400 ° C. (step (11)). In the figure, 40-2 is an electronically driven Al electrode part, 40-3 is an I / O part electrode, 40-4 is an interlayer electrode, and 40-5 is an adhesive polyimide. Then, the Ti / Au (= 1 nm / 9 nm) surface electrode 42 is formed on the surface including the electron emitting portion 38, and the Ti / Au (= 1 nm / 9 nm) ultra-thin electrode as described in the first embodiment. It was found that a portion where the Ti / Au electrode could not be completely covered was generated on the patterned electron source side wall when depositing on the entire surface. In this case, electrons may not be emitted depending on the location. In order to solve this problem, first, for example, a Cu / Au (= 10 nm / 300 nm) electrode 41 is deposited thickly on a part other than the electron emission part 38 (step (12)), and then the Ti is not formed on the electron emission part 38. By forming the thin surface electrode 42 of / Au (= 1 nm / 9 nm) (step (13)), the problem of electrode coating could be improved. Thereafter, a space 44 for making electrical contact with the input / output (I / O) pad portion 43 on the drive control LSI 40 is secured by half dicing (step (14)). The electron source of the nc-Si electron emitter array is manufactured by the above process.
 このnc-Si電子エミッタアレイ電子源の最表面に形成されたAu電極に例えば15Vの一定電圧を印加した状態で、外部から入力した描画パターンデータに連動して、LSI駆動電極側から個々のnc-Si電子源に15Vの駆動電圧をon/off制御することにより、ウェハ上に任意の2次元パターンを高速描画することができる。 In the state where a constant voltage of 15 V, for example, is applied to the Au electrode formed on the outermost surface of this nc-Si electron emitter array electron source, each nc is connected from the LSI drive electrode side in conjunction with the drawing pattern data input from the outside. An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling the drive voltage of 15V on / off of the -Si electron source.
 以上説明したように、本実施例の方法によればSi基板上にnc-Si電子エミッタアレイを形成し、個々のエミッタと電気的に接続されたTSV電極を基板裏面に形成した構造を作製し、このTSV電極とLSI上の駆動電極を接合することにより、電子源を構成する構造にした。この構造ではnc-Si薄膜を周囲のSi構造体で支えているため、nc-Si薄膜自身に由来する内部応力を緩和する効果を発揮することができる。したがって、製造プロセス中や実装時に外部から受ける機械的なストレスに対する耐性・安定性が飛躍的に向上する。更に微細化により、高密度化が可能となる。 As described above, according to the method of the present embodiment, an nc-Si electron emitter array is formed on a Si substrate, and a structure in which TSV electrodes electrically connected to individual emitters are formed on the back surface of the substrate is manufactured. The TSV electrode and the driving electrode on the LSI are joined to form a structure that constitutes an electron source. In this structure, since the nc-Si thin film is supported by the surrounding Si structure, the effect of relieving the internal stress derived from the nc-Si thin film itself can be exhibited. Therefore, the resistance and stability against the mechanical stress received from the outside during the manufacturing process and mounting are dramatically improved. Further miniaturization enables high density.
 一方、その製造プロセスにおいては、工程の最初の段階でSi貫通孔を開口させ、全面酸化後、ウェハ全面にDoped Poly-Siを堆積して貫通孔を完全に埋め込んだ後、片側(表側)にドット状多結晶Si 構造を形成した。このことにより、裏側から陽極酸化を行うための作用電極との電気的な接続を取ることができ、個々のドット状Poly-Si表面に対して独立に電気化学エッチングを行い、nc-Si化することが可能となった。 On the other hand, in the manufacturing process, Si through-holes are opened at the first stage of the process, and after oxidizing the entire surface, Doped-Poly-Si is deposited on the entire wafer surface to completely fill the through-holes, and then on one side (front side) A dot-like polycrystalline Si structure was formed. This makes it possible to establish electrical connection with the working electrode for anodizing from the back side, and independently etch each dot-like Poly-Si surface into nc-Si. It became possible.
 また、電極の形成においては、電子放出部以外の部分には、電子放出部に形成された電極膜厚より厚い膜厚の電極を形成するようにしたため、ステップカバレッジが改善され、均一な電子放出が可能となる。 In addition, in the formation of the electrode, the electrode having a thickness greater than the thickness of the electrode formed in the electron emission portion is formed in a portion other than the electron emission portion, so that step coverage is improved and uniform electron emission is achieved. Is possible.
<第三の実施例>
 図9(図9A~図9C)は本発明の第三の実施例に係るnc-Si電子エミッタアレイ電子源の製造工程を説明する図である。
<Third embodiment>
FIG. 9 (FIGS. 9A to 9C) is a view for explaining a manufacturing process of the nc-Si electron emitter array electron source according to the third embodiment of the present invention.
 先ず、厚さ200μmのP-type Si基板51を準備する(工程(1))。このP-type Si基板51に対し、例えば第一の実施例の工程(5)で用いたと同様なRIE装置を用い、貫通エッチングを施す(工程(2))。図中52が貫通孔である。次に、Si基板51に厚さ1.0μmの熱酸化膜(SiO2膜)53を成長させ(工程(3))、さらに全面に n++-TypeのDoped poly-Si膜54を貫通孔52が完全に埋まる膜厚以上堆積させ、その後片面を研磨してたとえば2μm程度の膜厚のDoped Poly-Si膜54を表面に残す(工程(4))。 First, a P-type Si substrate 51 having a thickness of 200 μm is prepared (step (1)). The P-type Si substrate 51 is subjected to through etching using, for example, the same RIE apparatus used in the step (5) of the first embodiment (step (2)). In the figure, 52 is a through hole. Next, a thermal oxide film (SiO 2 film) 53 having a thickness of 1.0 μm is grown on the Si substrate 51 (step (3)), and an n ++ -Type Doped poly-Si film 54 is formed on the entire surface through the through hole. More than the film thickness in which 52 is completely buried is deposited, and then one surface is polished to leave a Doped Poly-Si film 54 having a film thickness of, for example, about 2 μm on the surface (step (4)).
 次に、Poly-Si膜55を研磨面に堆積させ(工程(5))、ドットアレイ状にパターニング後(工程(6))、熱酸化膜(SiO2膜)56を成長させ、LP-CVD法により、Si3N4膜57を全面に例えば0.5μm程度堆積させる(工程(7))。その後、例えば平行平板タイプのRIE装置を用い、CHF3/CF4ガスプラズマ雰囲気内でドライエッチングすることにより、電子放出部58を開口させる(工程(8))。 Next, a poly-Si film 55 is deposited on the polished surface (step (5)), and after patterning into a dot array (step (6)), a thermal oxide film (SiO 2 film) 56 is grown, and LP-CVD A Si 3 N 4 film 57 is deposited on the entire surface by, for example, about 0.5 μm (step (7)). Thereafter, for example, by using a parallel plate type RIE apparatus, the electron emission portion 58 is opened by dry etching in a CHF 3 / CF 4 gas plasma atmosphere (step (8)).
 然るべく後、例えば図7に示した装置構成により、例えばHF+C2H5OH溶液中で陽極酸化を行い、SiO2/ Si3N4膜で覆われていないPoly-Si表面を選択的に電気化学エッチングし、この部分をnc-Si化した後、酸化処理を行う(工程(9))。図中59が酸化nc-Si部分である。この陽極酸化は、図7に示した作用電極と試料裏面との電気的な接続をとり、HFを含む溶液中で試料表面に対向して設置した白金電極をグランド電位に設置し、実施例一と同様、試料に流れる電流密度を例えば25mA/cm2に制御して6秒程度電流を流すことにより行う。この構造では工程の最初の段階(工程(4))でシリコン貫通孔53へのn++ Doped Poly-Si埋込みを行なっているため、試料裏側全面に形成されているn++ Doped Poly-Si膜54は、シリコン貫通孔52を介して試料表側の個々のドット状Poly-Si55裏面と電気的に導通している。このため、試料裏側のn++Doped Poly-Si膜54に陽極電流を流すことにより、試料表側の個々のドット状poly-Si表面に独立且つ選択的に陽極酸化することが可能となる。nc-Siの酸化処理は、第一の実施例で述べたように、例えばO2ガス雰囲気中で室温から800℃まで10秒で昇温→800℃から900℃まで10秒で昇温→900℃を23分保持の条件にて行う。 Accordingly, anodization is performed, for example, in an HF + C 2 H 5 OH solution by using the apparatus configuration shown in FIG. 7, for example, and the Poly-Si surface not covered with the SiO 2 / Si 3 N 4 film is selectively selected. Electrochemical etching is performed to convert this portion into nc-Si, and then an oxidation treatment is performed (step (9)). In the figure, 59 is an oxidized nc-Si portion. In this anodic oxidation, the working electrode shown in FIG. 7 is electrically connected to the back surface of the sample, and a platinum electrode placed opposite to the sample surface in a solution containing HF is placed at the ground potential. Similarly to the above, the current density flowing in the sample is controlled to 25 mA / cm 2 , for example, and a current is applied for about 6 seconds. Because doing the n ++ Doped Poly-Si implantation into silicon through hole 53 in the first stage in the construction process (step (4)), n ++ Doped Poly-Si which is formed on the sample back the entire surface The film 54 is electrically connected to the back surface of each dot-like Poly-Si 55 on the sample surface side through the silicon through hole 52. For this reason, by flowing an anodic current through the n ++ Doped Poly-Si film 54 on the back side of the sample, it becomes possible to independently and selectively anodize the individual dot-like poly-Si surfaces on the front side of the sample. As described in the first embodiment, for example, the nc-Si oxidation treatment is performed in an O 2 gas atmosphere from room temperature to 800 ° C. in 10 seconds → 800 ° C. to 900 ° C. in 10 seconds → 900 Perform at 23 ° C. for 23 minutes.
 その後、ポリマー60を用いてデバイス表面側にウェハ支持用のガラス基板61を貼り付け(工程(10))、対向側(裏側)を例えば化学機械研磨(Chemical Mechanical Polishing: CMP)によって研磨厚を制御しながら薄膜化する(工程(11))。然るべく後、裏面側に残ったPoly-Si基板51部を、例えばSFガスプラズマを用いたエッチングによって選択的にエッチング除去する(工程(12))。その際、露出したn++Doped Poly-Si54がエッチングされないようにレジスト62でカバーしておく。 Thereafter, a glass substrate 61 for supporting the wafer is attached to the device surface side using the polymer 60 (step (10)), and the polishing thickness is controlled by, for example, chemical mechanical polishing (CMP) on the opposite side (back side). The film is then thinned (step (11)). After that, the Poly-Si substrate 51 remaining on the back surface side is selectively removed by etching using, for example, SF 6 gas plasma (step (12)). At this time, the exposed n ++ Doped Poly-Si 54 is covered with a resist 62 so as not to be etched.
 その後、絶縁膜63として例えばSiO2膜をスパッタ堆積することにより、Poly-Si基板51が除去されたところに選択的に絶縁体を埋め込む(工程(13))。その後レジスト62を除去し、露出したn++Doped Poly-Si貫通配線表面部に電気的に接続された例えばCr/Au電極64を作製することにより、裏面に貫通配線電極65が形成される(工程(14))。然るべく後、LSI駆動電極上に例えばCr/Au/Inのバンプ構造66を作製し、このバンプ電極66と上記電子源裏面側のCr/Au貫通配線電極65(64)の位置を合せを行い制御用LSI67と仮接合した後(工程(15))、約200℃にて液相拡散接合(Transient Liquid Phase Diffusion Bonding:TLP接合)することによってバンプ・貫通配線電極間で、物理的な接合68が形成される(工程(16))。なお、図中67-1は電子源駆動
Al電極部、67-2はI/O電極部、67-3は層間絶縁膜である。その後、ポリマー60を除去してガラス基板を取り除き(工程(17)))、電子源表面にTi/Au(=1nm/9nm)表面電極69を形成し(工程(18))、ハーフダイシングにより駆動制御用LSI67の入出力(I/O)パッド部70との電気的なコンタクトをとるための空間71を確保する(工程(19))。以上のプロセスにより、nc-Si電子エミッタアレイの電子源が作製され
る。
Thereafter, for example, an SiO 2 film is sputter-deposited as the insulating film 63 to selectively embed an insulator where the Poly-Si substrate 51 is removed (step (13)). Thereafter, the resist 62 is removed, and, for example, a Cr / Au electrode 64 electrically connected to the exposed n ++ Doped Poly-Si through-wiring surface is formed, thereby forming a through-wiring electrode 65 on the back surface ( Step (14)). Thereafter, for example, a Cr / Au / In bump structure 66 is formed on the LSI drive electrode, and the bump electrode 66 is aligned with the Cr / Au penetrating wiring electrode 65 (64) on the back side of the electron source. After temporary bonding to the control LSI 67 (step (15)), physical bonding between the bump and the through-wiring electrode is performed by performing Transient Liquid Phase Diffusion Bonding (TLP bonding) at about 200 ° C. 68 is formed (step (16)). In the figure, reference numeral 67-1 denotes an electron source drive.
An Al electrode portion, 67-2 is an I / O electrode portion, and 67-3 is an interlayer insulating film. Thereafter, the polymer 60 is removed to remove the glass substrate (step (17)), and a Ti / Au (= 1 nm / 9 nm) surface electrode 69 is formed on the surface of the electron source (step (18)), which is driven by half dicing. A space 71 is secured for electrical contact with the input / output (I / O) pad portion 70 of the control LSI 67 (step (19)). The electron source of the nc-Si electron emitter array is manufactured by the above process.
 このnc-Si電子エミッタアレイの電子源の最表面に形成されたAu電極にたとえば15Vの一定電圧を印加した状態で、外部から入力した描画パターンデータに連動して、LSI駆動電極側から個々のnc-Si電子源に15Vの駆動電圧をon/off制御することにより、ウェハ上に任意の2次元パターンを高速描画することができる。 In a state where a constant voltage of 15 V, for example, is applied to the Au electrode formed on the outermost surface of the electron source of this nc-Si electron emitter array, each LSI drive electrode side individually links with the drawing pattern data input from the outside. An arbitrary two-dimensional pattern can be drawn on a wafer at high speed by controlling on / off of a driving voltage of 15 V to the nc-Si electron source.
 以上説明したように、本実施例の方法によれば絶縁性のSiO2支持体上にnc-Si電子エミッタアレイを形成し、個々のエミッタと電気的に接続された貫通配線電極を当該SiO2絶縁支持体裏面に形成した構造を作製し、この貫通配線電極とLSI上の駆動電極を接合する、このように電子源を構成する構造としたことにより、この構造ではnc-Si薄膜をSiO2支持体で支えているため、nc-Si薄膜自身に由来する内部応力を緩和する効果を発揮することができる。したがって、nc-Si電子エミッタアレイを駆動制御用LSI上の駆動電極上に接合しても、内部応力に対する耐性を安定的に保持できる効果がある。更に、電子放出部周辺は全て絶縁体で覆われているため、寄生容量が極めて少ない。このため、駆動制御用LSIからnc-Si電子エミッタアレイへの電圧印加を高速でon/off動作させる場合においても、駆動電圧出力から電子放出までの遅延時間が実用上ほとんど無視できるレベルである。 As described above, according to the method of this embodiment the nc-Si electron emitter array is formed on the insulating SiO 2 support, the SiO 2 individual emitter electrically connected to the through wiring electrodes to produce a structure formed on the back surface insulating support, joining the driving electrodes on the through wiring electrodes and the LSI, by which the structure thus configuring the electron source, SiO 2 and nc-Si thin film in this structure Since it is supported by the support, the effect of relieving the internal stress derived from the nc-Si thin film itself can be exhibited. Therefore, even if the nc-Si electron emitter array is bonded onto the drive electrode on the drive control LSI, there is an effect that the resistance to internal stress can be stably maintained. Furthermore, since the entire area around the electron emission portion is covered with an insulator, the parasitic capacitance is extremely small. For this reason, even when voltage application from the drive control LSI to the nc-Si electron emitter array is performed at high speed on / off operation, the delay time from the drive voltage output to the electron emission is practically negligible.
 一方、その製造プロセスにおいては、先に貫通配線電極構造を有するPoly-Si支持体の上にnc-Si電子エミッタアレイを形成した後、当該Poly-Si支持体を選択的にエッチング除去し、除去された部分をSiO2絶縁膜で埋め込むプロセスを採用した。これにより、微細で高アスペクト比の加工が困難なSiO2支持体に対して直接貫通配線電極形成プロセスを用いる代わりに、微細化がより容易なSi基板への貫通配線電極を形成するプロセスを利用することができる。そして、nc-Si電子エミッタアレイをより微細化することが可能となる。 On the other hand, in the manufacturing process, after forming an nc-Si electron emitter array on a Poly-Si support having a through-hole electrode structure, the Poly-Si support is selectively removed by etching. A process of embedding these parts with SiO 2 insulating film was adopted. This makes it possible to use a process for forming through-wiring electrodes on a Si substrate, which is easier to miniaturize, instead of using the direct through-wiring electrode forming process directly on fine SiO 2 supports that are difficult to process at high aspect ratios. can do. Further, the nc-Si electron emitter array can be further miniaturized.
  1、31、51  P-type Si基板
  2  埋め込み酸化膜(BOX層)
  3  n++ -type SOI活性層
  4  SOI基板
  5、35、55  Poly-Si膜
  6  凹部
  7、37、57  Si3N4
  8  側壁スペーサ(saidewall spacer)
  9  nc-Si部分
 10、39、59  酸化nc-Si部分
 11  SiO2
 12  貫通孔
 13  SiO2側壁(sidewall spacer)
 14  Ti/Cu貫通導体
 15  ポリイミド膜
 16、40、67  制御駆動用LSI
 17  Ti/Au表面電極
 18、41、70  入出力(I/O)パッド部
 19  コンタクトホール
 20  電極
 21  試料
 22  電極
 23  HFを含む溶液
 24  白金電極
 32、52  貫通孔
 33、53  熱酸化膜(SiO2膜)
 34、54  Doped Poly-Si 膜
 36、56  熱酸化膜(SiO2膜)
 38、58  電子放出部
 60  ポリマー
 61  ガラス基板
 62  レジスト
 63  絶縁膜
 64  Cr/Au電極
 65  貫通配線電極
 66  バンプ電極
1, 31, 51 P-type Si substrate 2 Embedded oxide film (BOX layer)
3 n ++ -type SOI active layer 4 SOI substrate 5, 35, 55 Poly-Si film 6 Recess 7, 37, 57 Si 3 N 4 film 8 Sidewall spacer
9 nc- Si part 10, 39, 59 Oxide nc-Si part 11 SiO 2 film 12 Through hole 13 SiO 2 side wall (sidewall spacer)
14 Ti / Cu penetrating conductor 15 Polyimide film 16, 40, 67 Control drive LSI
17 Ti / Au surface electrode 18, 41, 70 Input / output (I / O) pad part 19 Contact hole 20 Electrode 21 Sample 22 Electrode 23 Solution containing HF 24 Platinum electrode 32, 52 Through hole 33, 53 Thermal oxide film (SiO 2 membranes)
34, 54 Doped Poly- Si film 36, 56 Thermal oxide film (SiO 2 film)
38, 58 Electron emitting portion 60 Polymer 61 Glass substrate 62 Resist 63 Insulating film 64 Cr / Au electrode 65 Through-wiring electrode 66 Bump electrode

Claims (8)

  1.  基板の一方の面上に複数の電子エミッタを備えたナノクリスタルシリコン電子エミッタアレイが形成され、個々の電子エミッタに前記基板を貫通する基板貫通配線が電気的に接続され、該基板貫通配線の端部に設けられた接続電極を有する構造部と、駆動電極を有し、前記ナノクリスタルシリコン電子エミッタアレイを制御駆動するためのLSIが、それぞれの電極を介して接合することにより構成されているナノクリスタルシリコン電子エミッタアレイ構造を製造する方法において、
     前記ナノクリスタルシリコン電子エミッタアレイを、貫通孔が開口された基板に対し、前記貫通孔内表面を含む基板両面に導電性材料を堆積させた後、前記基板の片面側の導電性材料と、作用電極との電気的な接続をとることにより反対面の導電性材料の一部又は全部を陽極酸化させて形成されることを特徴とするナノクリスタルシリコン電子エミッタアレイ構造の製造方法。
    A nanocrystal silicon electron emitter array having a plurality of electron emitters is formed on one surface of the substrate, and through-substrate wirings penetrating the substrate are electrically connected to the individual electron emitters. A nano-structure comprising a structure part having a connection electrode provided in the part and an LSI having a drive electrode and controlling and driving the nanocrystal silicon electron emitter array via each electrode. In a method of manufacturing a crystal silicon electron emitter array structure,
    After the conductive material is deposited on both sides of the substrate including the inner surface of the through-hole with respect to the substrate having the through-hole, the nanocrystal silicon electron emitter array has an action with the conductive material on one side of the substrate. A method of manufacturing a nanocrystal silicon electron emitter array structure, wherein the conductive material on the opposite surface is partly or entirely anodized by electrical connection with an electrode.
  2.  前記基板として、活性層を有するSOI基板を用いることを特徴とする請求項1に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 The method for manufacturing a nanocrystal silicon electron emitter array structure according to claim 1, wherein an SOI substrate having an active layer is used as the substrate.
  3.  前記基板として、シリコン基板を用いることを特徴とする請求項1に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 2. The method of manufacturing a nanocrystal silicon electron emitter array structure according to claim 1, wherein a silicon substrate is used as the substrate.
  4.  前記基板として、絶縁性基板を用いることを特徴とする請求項1に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 2. The method of manufacturing a nanocrystal silicon electron emitter array structure according to claim 1, wherein an insulating substrate is used as the substrate.
  5.  前記ナノクリスタルシリコン電子エミッタアレイの部分として、全面に共通の電極が形成された構造であって、電子放出部以外の部分には、該電子放出部に形成された電極膜厚より厚い膜厚の電極が存在するものを形成することを特徴とする請求項1から4のいずれか一項に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 As a portion of the nanocrystal silicon electron emitter array, a common electrode is formed on the entire surface, and the portion other than the electron emission portion is thicker than the electrode thickness formed on the electron emission portion. 5. The method of manufacturing a nanocrystal silicon electron emitter array structure according to claim 1, wherein an electrode is present.
  6.  SOI活性層と、作用電極との電気的な接続をとることにより前記活性層上に形成された導電性材料よりなる膜を陽極酸化することを特徴とする請求項1に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 2. The nanocrystal silicon electron according to claim 1, wherein a film made of a conductive material formed on the active layer is anodized by establishing electrical connection between the SOI active layer and the working electrode. Manufacturing method of emitter array structure.
  7.  SOI基板側壁部から前記活性層と、作用電極との電気的な接続をとることを特徴とする請求項6に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 The method for producing a nanocrystal silicon electron emitter array structure according to claim 6, wherein the active layer and the working electrode are electrically connected from the side wall of the SOI substrate.
  8.  電子放出部以外の部分をSi3N4膜或いはSiC膜で被覆することを特徴とする請求項1から7のいずれか一項に記載のナノクリスタルシリコン電子エミッタアレイ構造の製造方法。 The method for manufacturing a nanocrystal silicon electron emitter array structure according to any one of claims 1 to 7, wherein a portion other than the electron emission portion is covered with a Si 3 N 4 film or a SiC film.
PCT/JP2013/053069 2012-02-10 2013-02-08 Method of manufacturing electron-source structure for nanocrystalline silicon electron-emitter array WO2013118872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-027740 2012-02-10
JP2012027740A JP5914909B2 (en) 2012-02-10 2012-02-10 Nanocrystal silicon electron emitter array electron source structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013118872A1 true WO2013118872A1 (en) 2013-08-15

Family

ID=48947627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053069 WO2013118872A1 (en) 2012-02-10 2013-02-08 Method of manufacturing electron-source structure for nanocrystalline silicon electron-emitter array

Country Status (2)

Country Link
JP (1) JP5914909B2 (en)
WO (1) WO2013118872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777122A (en) * 2021-08-31 2021-12-10 中国科学院西安光学精密机械研究所 Parallel electron beam detection system based on nano electron source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001742A1 (en) * 2006-06-29 2008-01-03 Nikon Corporation Substrate structure manufacturing method, substrate structure, electron emitting element, electron emitting element manufacturing method, electron source, image display device, and laminated chip
JP2008098119A (en) * 2006-10-16 2008-04-24 Tokyo Univ Of Agriculture & Technology Electron source electrode and in-liquid electron emission device provided with the same and hydrogen generating method
JP2009155676A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Manufacturing method of periodical nanostructure, field emission electron source, and its manufacturing method
WO2011096439A1 (en) * 2010-02-02 2011-08-11 国立大学法人東京農工大学 Solid-state thin film forming method using electron source electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001742A1 (en) * 2006-06-29 2008-01-03 Nikon Corporation Substrate structure manufacturing method, substrate structure, electron emitting element, electron emitting element manufacturing method, electron source, image display device, and laminated chip
JP2008098119A (en) * 2006-10-16 2008-04-24 Tokyo Univ Of Agriculture & Technology Electron source electrode and in-liquid electron emission device provided with the same and hydrogen generating method
JP2009155676A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Manufacturing method of periodical nanostructure, field emission electron source, and its manufacturing method
WO2011096439A1 (en) * 2010-02-02 2011-08-11 国立大学法人東京農工大学 Solid-state thin film forming method using electron source electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIRA KUMAGAI: "Taso Nano Crystal Silicon Hakumaku no Taiseki Process Kaihatsu Oyobi sono Hakumaku Tokusei", 2004 NEN (HEISEI 16 NEN) SHUKI DAI 65 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 2, 1 September 2004 (2004-09-01), pages 734 *
NAOKATSU IKEGAMI: "Cho Heiretsu Denshisen Roko Sochiyo Active Matrix-gata nc-Si Men Denshigen no Kaihatsu", 2011 NEN SHUKI DAI 72 KAI THE JAPAN SOCIETY OF APPLIED PHYSICS GAKUJUTSU KOENKAI [KOEN YOKOSHU], 16 August 2011 (2011-08-16), pages 07 - 021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777122A (en) * 2021-08-31 2021-12-10 中国科学院西安光学精密机械研究所 Parallel electron beam detection system based on nano electron source

Also Published As

Publication number Publication date
JP2013164996A (en) 2013-08-22
JP5914909B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
US5637539A (en) Vacuum microelectronic devices with multiple planar electrodes
TWI596657B (en) Trap rich layer for semiconductor devices
US7786662B2 (en) Display using a movable electron field emitter and method of manufacture thereof
US20070290308A1 (en) Package of MEMS device and method for fabricating the same
CN110634783B (en) Apparatus and method for transferring chips from a source substrate to a target substrate
JP2007207753A (en) Manufacturing method of field emission element
WO2010147000A1 (en) Laminated wiring board
US7005783B2 (en) Solid state vacuum devices and method for making the same
JP5914909B2 (en) Nanocrystal silicon electron emitter array electron source structure and manufacturing method thereof
US20090140626A1 (en) Vacuum channel transistor and manufacturing method thereof
US9536706B2 (en) Self-aligned dynamic pattern generator device and method of fabrication
JP3097561B2 (en) Field emission cathode and method of manufacturing field emission device
JP2001035352A (en) Electron source, manufacture therefor and image forming device formed using the electron source
WO2014136154A1 (en) Electron beam generating apparatus, electron beam irradiation apparatus, electron beam exposure apparatus, and manufacturing method
JP4168989B2 (en) Electron source for electron beam exposure
JP2001283714A (en) Field-emission cold-cathode element, its manufacturing method, and field-emission-type display
JP5254549B2 (en) Semiconductor composite structure
WO2023197123A1 (en) Electron source chip and manufacturing method therefor, and electronic device
JP2694889B2 (en) Method of forming self-aligned gate structure and focusing ring
US11289404B2 (en) Semiconductor device and method
Ikegami et al. Fabrication of through silicon via with highly phosphorus-doped polycrystalline Si plugs for driving an active-matrix nanocrystalline Si electron emitter array
KR100459405B1 (en) Manufacturing method for field emission device
JP4241766B2 (en) Cold electron emitter for lighting lamp
JP3826539B2 (en) Method for manufacturing cold electron-emitting device
JP6208451B2 (en) Circuit board, electron beam generator, electron beam irradiation apparatus, electron beam exposure apparatus, and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746580

Country of ref document: EP

Kind code of ref document: A1