WO2013114728A1 - X-ray ct device - Google Patents

X-ray ct device Download PDF

Info

Publication number
WO2013114728A1
WO2013114728A1 PCT/JP2012/081684 JP2012081684W WO2013114728A1 WO 2013114728 A1 WO2013114728 A1 WO 2013114728A1 JP 2012081684 W JP2012081684 W JP 2012081684W WO 2013114728 A1 WO2013114728 A1 WO 2013114728A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
relative position
ray
scan
subject
Prior art date
Application number
PCT/JP2012/081684
Other languages
French (fr)
Japanese (ja)
Inventor
豪 椋本
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012035389A external-priority patent/JP2013169358A/en
Priority claimed from JP2012265951A external-priority patent/JP2013176540A/en
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201280008746.6A priority Critical patent/CN103415254B/en
Priority to US13/980,505 priority patent/US9757075B2/en
Publication of WO2013114728A1 publication Critical patent/WO2013114728A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device

Definitions

  • Embodiments of the present invention relate to an X-ray CT apparatus.
  • An X-ray CT (Computed Tomography) apparatus is an apparatus that scans a subject with X-rays, collects data, and processes the collected data with a computer, thereby imaging the inside of the subject.
  • the X-ray CT apparatus emits X-rays to a subject a plurality of times from different directions, detects X-rays transmitted through the subject with an X-ray detector, and generates a plurality of detection data. collect.
  • the collected detection data is A / D converted by the data collection unit and then transmitted to the data processing system.
  • the data processing system forms projection data by pre-processing the detection data.
  • the data processing system executes a reconstruction process based on the projection data to form tomographic image data.
  • the data processing system forms volume data based on a plurality of tomographic image data as further reconstruction processing.
  • the volume data is a data set representing a three-dimensional distribution of CT values corresponding to a three-dimensional region of the subject.
  • the X-ray CT apparatus can perform MPR (Multi Planar Reconstruction) display by rendering volume data in an arbitrary direction.
  • the cross-sectional image (MPR image) displayed in MPR includes an orthogonal three-axis image and an oblique image.
  • An orthogonal triaxial image is an axial image showing a cross section orthogonal to the body axis, a sagittal image showing a cross section of the subject along the body axis, and a coronal showing a cross section of the subject along the body axis. Show the image.
  • the oblique image is an image showing a cross section other than the orthogonal three-axis image.
  • the X-ray CT apparatus renders volume data by setting an arbitrary line of sight, thereby forming a pseudo 3D image when the 3D region of the subject is viewed from this line of sight.
  • CT fluoroscopy is an imaging method that obtains an image of a region of interest of a subject in real time by irradiating the subject with X-rays continuously or intermittently.
  • images are created in real time by reducing the detection data collection rate and reducing the time required for reconstruction processing.
  • CT fluoroscopy is used, for example, when confirming the positional relationship between the tip of a puncture needle and a part from which a specimen is collected in a biopsy, or when confirming the position of a tube in the drainage method.
  • the drainage method is a method of discharging body fluid accumulated in the body cavity with a tube or the like.
  • scanning and prescribed medical practice may be performed alternately.
  • scanning and puncturing are alternately performed. Specifically, first, an MPR image of the subject is obtained by placing the subject at a predetermined scan position and performing CT fluoroscopy. Next, the subject is moved from the scan position to a predetermined treatment position, and puncture is performed while referring to the MPR image. When the puncture needle is inserted to some extent, the subject is again placed at the scan position and CT fluoroscopy is performed to obtain a new MPR image. Further, the subject is placed again at the treatment position, and the puncture is advanced while referring to the new MPR image. This operation is repeated until the biopsy is completed.
  • a puncture plan for determining the insertion path of the puncture needle may be implemented before puncturing. Scans are also performed in the puncture plan.
  • the problem to be solved by the present invention is to provide an X-ray CT apparatus capable of facilitating the work of arranging a subject at a desired position and reducing the time.
  • the X-ray CT apparatus includes a couch device, a gantry device, a forming unit, a drive unit, a storage unit, and a drive control unit.
  • the bed apparatus has a top plate on which a subject is placed.
  • the gantry device scans the subject by rotating a detection unit including an X-ray tube and an X-ray detector arranged to face each other.
  • the forming unit forms image data of the subject based on the data obtained by scanning.
  • a drive part changes the relative position between a top plate and a detection part.
  • the storage unit stores relative position information indicating a relative position when scanning is performed.
  • the drive control unit controls the drive unit when a new scan is performed, and arranges the top plate and the detection unit at the relative positions indicated by the stored relative position information.
  • the X-ray CT apparatus 1 includes a gantry device 10, a couch device 30, and a console device 40.
  • the gantry device 10 is an apparatus that irradiates the subject E with X-rays and collects X-ray detection data transmitted through the subject E.
  • the gantry device 10 includes an X-ray generator 11, an X-ray detector 12, a rotating body 13, a high voltage generator 14, a gantry driver 15, an X-ray diaphragm 16, and a diaphragm driver 17, And a data collection unit 18.
  • the X-ray generator 11 includes an X-ray tube that generates X-rays (for example, a vacuum tube that generates a conical or pyramidal beam, not shown). The generated X-rays are exposed to the subject E.
  • an X-ray tube that generates X-rays (for example, a vacuum tube that generates a conical or pyramidal beam, not shown). The generated X-rays are exposed to the subject E.
  • the X-ray detector 12 includes a plurality of X-ray detection elements (not shown).
  • the X-ray detector 12 detects X-ray intensity distribution data (hereinafter sometimes referred to as “detection data”) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element. Output as a current signal.
  • the X-ray detector 12 for example, a two-dimensional X-ray detector (surface detector) in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used.
  • the plurality of X-ray detection elements are provided, for example, in 320 rows along the slice direction.
  • a multi-row X-ray detector in this way, a three-dimensional region having a width in the slice direction can be imaged with one scan (volume scan).
  • the slice direction corresponds to the body axis direction of the subject E
  • the channel direction corresponds to the rotation direction of the X-ray generation unit 11.
  • the 2 is a component for detecting X-rays, and includes at least an X-ray generation unit 11 and an X-ray detector 12.
  • the rotating body 13 is a member that supports the X-ray generation unit 11 and the X-ray detector 12 at positions facing each other with the subject E interposed therebetween.
  • the rotating body 13 has an opening that penetrates in the slice direction.
  • a top plate on which the subject E is placed is inserted into the opening.
  • the rotating body 13 is rotated along a circular orbit centered on the subject E by the gantry driving unit 15. As a result, the subject E is scanned.
  • the gantry driving unit 15 has a mechanism for rotating the detection unit 101 for scanning and a mechanism for moving the detection unit 101.
  • the latter mechanism is the detection drive unit 102 shown in FIG.
  • the detection drive unit 102 translates and tilts (tilts) the detection unit 101.
  • This parallel movement is a displacement in an arbitrary direction.
  • this parallel movement includes one or more of a movement in the up-down direction, a movement in the left-right direction, and a movement in the front-rear direction.
  • the left-right direction indicates the short direction of the top plate 31 described later, that is, the body width direction of the subject E placed on the top plate 31.
  • the front-rear direction indicates the longitudinal direction of the top plate 31, that is, the body axis direction of the subject E placed on the top plate 31.
  • the up-down direction is a direction orthogonal to both the left-right direction and the front-rear direction.
  • Tilt is an operation for changing the tilt angle between the top plate 31 and the detection unit 101.
  • This inclination angle is defined as, for example, an angle formed by the normal direction of the upper surface of the top plate 31 and the normal direction of the surface on which the detection unit 101 is rotated during scanning (that is, the rotation surface of the rotating body 13). Can do.
  • the high voltage generator 14 applies a high voltage to the X-ray generator 11.
  • the X-ray generator 11 generates X-rays based on this high voltage.
  • the X-ray diaphragm unit 16 forms a slit (opening), and changes the size and shape of the slit so that the X-ray fan angle (divergence angle in the channel direction) output from the X-ray generation unit 11 and the X-rays are changed. Adjust the cone angle (spreading angle in the slice direction).
  • the diaphragm drive unit 17 drives the X-ray diaphragm unit 16 to change the size and shape of the slit.
  • the data collection unit 18 collects detection data from the X-ray detector 12 (each X-ray detection element). Further, the data collection unit 18 converts the collected detection data (current signal) into a voltage signal, periodically integrates and amplifies the voltage signal, and converts it into a digital signal. Then, the data collecting unit 18 transmits the detection data converted into the digital signal to the console device 40.
  • DAS Data Acquisition System
  • the subject E is placed on the top 31 (see FIG. 2) of the bed apparatus 30.
  • the couch device 30 is provided with a couchtop drive unit 32 for moving the subject E placed on the couchtop 31.
  • the top plate drive unit 32 can move the top plate 31 in the above-described vertical direction, left-right direction, and front-back direction.
  • the top-plate drive part 32 may be comprised so that the top-plate 31 can incline.
  • the detection drive unit 102 and the top plate drive unit 32 function as an example of a “drive unit” that changes the relative position between the top plate 31 and the detection unit 101.
  • both the mechanism (first drive unit) for moving the top plate 31 and the mechanism (second drive unit) for moving the detection unit 101 are provided, but only one of these mechanisms is provided. It is also possible to adopt a different configuration.
  • the control unit 41, the scan control unit 42, and the processing unit 43 include, for example, a processing device and a storage device.
  • a processing device for example, a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), or an ASIC (Application Specific Integrated Circuit) is used.
  • the storage device includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disc Drive).
  • the storage device stores a computer program for executing the function of each unit of the X-ray CT apparatus 1.
  • the processing device implements the above functions by executing these computer programs.
  • the control unit 41 controls each unit of the apparatus.
  • the internal configuration of the control unit 41 shown in FIG. 2 will be described later.
  • the scan control unit 42 integrally controls operations related to scanning with X-rays.
  • This integrated control includes control of the high voltage generation unit 14, control of the gantry driving unit 15, control of the aperture driving unit 17, and control of the bed apparatus 30.
  • the control of the high voltage generator 14 is to control the high voltage generator 14 so that a predetermined high voltage is applied to the X-ray generator 11 at a predetermined timing.
  • the control of the gantry driving unit 15 controls the gantry driving unit 15 so as to rotationally drive the rotating body 13 at a predetermined timing and a predetermined speed.
  • the control of the diaphragm control unit 17 controls the diaphragm driving unit 17 so that the X-ray diaphragm unit 16 forms a slit having a predetermined size and shape.
  • the control of the couch device 30 is to control the couch device 30 so that the top plate is moved to a predetermined position at a predetermined timing.
  • the scan is executed with the position of the top plate fixed.
  • the scan is executed while moving the top plate.
  • the processing unit 43 performs various processes on the detection data transmitted from the gantry device 10 (data collection unit 18).
  • the processing unit 43 includes a preprocessing unit 431, a reconstruction processing unit 432, a rendering processing unit 433, and a cross-sectional position determination unit 434.
  • the pre-processing unit 431 performs pre-processing including logarithmic conversion processing, offset correction, sensitivity correction, beam hardening correction, and the like on the detection data from the gantry device 10 to generate projection data.
  • the reconstruction processing unit 432 generates CT image data (tomographic image data or volume data) based on the projection data generated by the preprocessing unit 431.
  • the reconstruction processing of the tomographic image data for example, any method such as a two-dimensional Fourier transform method or a convolution / back projection method can be applied.
  • the volume data is generated by interpolating a plurality of reconstructed tomographic image data.
  • volume data reconstruction processing for example, an arbitrary method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be applied. In the volume scan using the multi-row X-ray detector described above, a wide range of volume data can be reconstructed.
  • the rendering processing unit 433 can execute, for example, MPR processing and volume rendering.
  • the MPR process is an image process for generating MPR image data representing a section by setting an arbitrary section to the volume data generated by the reconstruction processing unit 432 and performing a rendering process.
  • Volume rendering generates pseudo three-dimensional image data representing the three-dimensional region of the subject E by sampling volume data along an arbitrary line of sight (ray) and adding the values (CT values). Image processing.
  • the cross-section position determination unit 434 compares two image data obtained by scans performed at different timings, and determines whether or not the position of the cross-section of the subject E drawn by these image data is substantially the same. To do.
  • the cross-section position determination unit 434 functions as an example of a “determination unit”.
  • the cross-sectional position determination unit 434 obtains a difference image (subtraction image) between two pieces of image data, and determines whether or not the difference image substantially depicts anything. When it is determined that substantially nothing is depicted in the difference image, the cross-sectional position determination unit 434 determines that the cross-sectional positions rendered by these image data are substantially the same.
  • the cross-sectional position determination unit 434 extracts feature parts (organ, blood vessel, etc.) from each image data, and determines whether the shape and / or position of these feature parts are substantially the same. When it is determined that the shape and / or position of the characteristic portion is substantially the same, the cross-sectional position determination unit 434 determines that the cross-sectional positions drawn by these image data are substantially the same. Note that the process of determining the identity of the cross-sectional positions is not limited to these, and any image processing technique can be applied.
  • the cross-sectional position is“ substantially the same ” indicates that not only the case where the cross section is completely the same but also the case where a predetermined tolerance exists is included.
  • this allowable error exists when the number of pixels of the image depicted by the difference image is equal to or smaller than a predetermined threshold, when the shape and / or position error of the characteristic part is equal to or smaller than a predetermined threshold, There may be a case where an error in the position or orientation of an object (such as a puncture needle) depicted with the subject E is equal to or less than a predetermined threshold.
  • the storage unit 44 stores detection data, projection data, image data after reconstruction processing, and the like.
  • the display unit 45 includes a display device such as an LCD (Liquid Crystal Display).
  • the operation unit 46 is used for inputting various instructions and information to the X-ray CT apparatus 1.
  • the operation unit 46 includes, for example, a keyboard, a mouse, a trackball, a joystick, a foot switch, and the like.
  • the operation unit 46 may include a GUI (Graphical User Interface) displayed on the display unit 45.
  • the control unit 41 will be described with reference to FIG.
  • the control unit 41 includes an information storage unit 411, an information selection unit 412, a drive control unit 413, and a notification control unit 414.
  • the information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position between the top 31 and the detection unit 101 when the scan is performed. This relative position is obtained by the control contents of the drive control unit 413 with respect to the top plate drive unit 32 and the detection drive unit 102.
  • the drive control unit 413 moves the top plate 31 by transmitting a control signal to the top plate drive unit 32.
  • the drive control unit 413 moves the detection unit 101 by transmitting a control signal to the detection drive unit 102.
  • These control signals include information indicating the direction of movement and information indicating the amount of movement as the contents of the control.
  • a predetermined reference position is set in advance for each movement of the object by the top board driving unit 32 and the detection driving unit 102.
  • the information storage unit 411 stores a relative position between the reference position of the top plate 31 and the reference position of the detection unit 101 in advance. The relative position is expressed, for example, as coordinates in a preset three-dimensional coordinate system.
  • This three-dimensional coordinate system represents a position in a space where the gantry device 10 and the couch device 30 are installed, for example.
  • the drive control unit 413 sends the control content to the information storage unit 411 every time a control signal is transmitted.
  • the information storage unit 411 records the control content related to the movement of the top plate 31 and the control content related to the movement of the detection unit 101. Thereby, the information storage unit 411 can grasp the control history related to the movement of the top 31 and the control history related to the movement of the detection unit 101. Each control history starts from the corresponding reference position.
  • the information storage unit 411 can obtain the current positions of the top board 31 and the detection unit 101 as the coordinates by referring to these control histories.
  • the information storage unit 411 obtains the coordinates of the top plate 31 and the detection unit 101 at that time, and obtains the displacement between these coordinates. This displacement is a relative position between the top plate 31 and the detection unit 101.
  • the information storage unit 411 stores relative position information indicating the relative position in the storage unit 44.
  • the process which the information storage part 411 performs is not limited to this, The arbitrary techniques which can obtain
  • the information selection unit 412 will be described.
  • the information selection unit 412 selects one of the relative position information when the relative position information of two or more scans is stored in the storage unit 44 when the scan is executed a plurality of times.
  • the drive control unit 413 controls the top plate drive unit 32 and / or the detection drive unit 102 based on the relative position information selected by the information selection unit 412.
  • the information selection unit 412 functions as an example of a “selection unit”. An example of the operation of the information selection unit 412 will be described below.
  • the selection unit includes a display unit 45 and an operation unit 46 in addition to the information selection unit 412.
  • the display unit 45 displays two or more relative positions indicated in the two or more relative position information stored in the storage unit 44. These relative positions are presented as character information or image information, for example.
  • character information include identification information for each scan (for example, the name, number, etc. given to the scan, or the name of the target organ for the scan, etc.), information indicating the relative position (for example, numerical values indicating the displacement, top plate 31 and detection The coordinates indicating the position of the part 101).
  • image information include an icon indicating each scan, an icon indicating a target organ to be scanned, and an icon indicating a relative position.
  • the user designates a desired one of two or more relative positions displayed on the display unit 45 using the operation unit 46.
  • the information selection unit 412 reads relative position information corresponding to the designated relative position from the storage unit 44. Furthermore, the information selection unit 412 uses the current relative position as a starting point based on the read relative position information and the current positions of the table 31 and the detection unit 101, and / or the detection unit 101. Is moved to the relative position indicated by the relative position information, and the movement direction and the movement amount of the top 31 and / or the detection unit 101 are calculated. This calculation process is performed, for example, by obtaining a displacement between the coordinates of these relative positions in the three-dimensional coordinate system.
  • the information selection unit 412 sends information indicating the calculated movement direction and movement amount to the drive control unit 413.
  • the drive control unit 413 generates a control signal based on the information input from the information selection unit 412 and sends the control signal to the top plate drive unit 32 and / or the detection drive unit 102.
  • the top plate driving unit 32 and / or the detection driving unit 102 moves the top plate 31 and / or the detection unit 101 based on this control signal. Thereby, the top plate 31 and the detection unit 101 are arranged at the relative positions indicated by the relative position information selected by the information selection unit 412.
  • the selection unit includes an operation unit 46 in addition to the information selection unit 412.
  • the user performs a predetermined operation using the operation unit 46 in response to the scan.
  • “Corresponding to scan” includes before, during, and after the scan.
  • the term “before scan” includes an arbitrary timing from the previous scan to the current scan. Further, when the current scan is the first scan, it literally means before the current scan. After the scan includes an arbitrary timing between the current scan and the next scan.
  • the information selection unit 412 gives identification information to the relative position information stored in the storage unit 44 corresponding to the scan in which the predetermined operation is performed. This identification information is, for example, a flag.
  • the information selection unit 412 Before a scan (sometimes referred to as a new scan) is performed after the current scan, the information selection unit 412 performs a predetermined operation from two or more pieces of relative position information stored in the storage unit 44. Relative position information (relative position information to which identification information is added) in the performed scan is selectively read from the storage unit 44. The subsequent processing is the same as in the first operation example. Here, only one piece of relative position information is given identification information.
  • the information selection unit 412 deletes the identification information that has already been assigned, and the relative operation corresponding to the new predetermined operation is performed. Identification information is given to position information.
  • identification information can be given to two or more pieces of relative position information.
  • the notification control unit 414 performs notification when it is determined by the cross-sectional position determination unit 434 that the positions of the cross sections of the subject E depicted by the two image data are not substantially the same.
  • the notification control unit 414 functions as an example of a “notification unit”.
  • predetermined notification information can be displayed on the display unit 45.
  • This notification information is character information such as a warning message or image information indicating a warning. Further, a predetermined warning window may be displayed in a pop-up manner.
  • the notification unit includes a display unit 45 in addition to the notification control unit 414. Further, a warning sound or a warning message may be output by controlling a voice output unit (not shown). In this case, the notification unit includes an audio output unit in addition to the notification control unit 414.
  • the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10.
  • the control unit 41 sends a control signal to the scan control unit 42.
  • the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays.
  • the X-ray detector 12 detects X-rays that have passed through the subject E.
  • the data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan.
  • the data collection unit 18 sends the collected detection data to the preprocessing unit 431.
  • the information storage unit 411 stores the relative position information in the scan of step 1 in the storage unit 44 by performing, for example, any of the above-described operation examples.
  • the preprocessing unit 431 performs the above-described preprocessing on the detection data from the data collection unit 18 to generate projection data.
  • the reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions.
  • the rendering processing unit 433 generates MPR image data based on the volume data.
  • the MPR image data may be any image data of orthogonal three-axis images, or may be image data of oblique images based on arbitrarily set cross sections.
  • the control unit 41 causes the display unit 45 to display an image based on the image data formed in step 3.
  • step 8 Move the top / detector to the scan position
  • the control unit 41 that has received the scan instruction moves the top 31 and / or the detection unit 101 based on the relative position information stored in step 2 according to, for example, any of the above-described operation examples. Thereby, the top plate 31 and the detection unit 101 are arranged at the same relative position as the scan in Step 1.
  • step 1 another scan is executed.
  • the relative position information in step 2 may be stored at least once.
  • step 5 YES
  • the X-ray CT apparatus 1 includes a couch device 30, a gantry device 10, an image forming unit 435, a top plate driving unit 32 and / or a detection driving unit 102 (sometimes collectively referred to as a driving unit), and a storage unit. 44 and a drive control unit 413.
  • the bed apparatus 30 includes a top plate 31 on which the subject E is placed.
  • the gantry device 10 scans the subject E by rotating the detection unit 101 including the X-ray tube (X-ray generation unit 11) and the X-ray detector 12 that are arranged to face each other.
  • the image forming unit 435 forms image data of the subject E based on the data obtained by scanning.
  • the drive unit changes the relative position between the top plate 31 and the detection unit 101.
  • the storage unit 44 stores relative position information indicating a relative position when scanning is performed.
  • the drive control unit 413 controls the drive unit when a new scan is performed, and arranges the top plate 31 and the detection unit 101 at the relative positions indicated by the relative position information stored in the storage unit 44.
  • the relative position between the top 31 and the detection unit 101 when the scan has been performed in the past can be automatically reproduced. Therefore, it is possible to facilitate the work of arranging the subject E at the scan position and reduce the time.
  • the relative position may include any one or more of the following three: (1) a first relative position in the longitudinal direction (the front-rear direction) of the top plate 31; (2) the top plate 31 Second relative position in the lateral direction (the left-right direction); (3) Third relative position (the up-down direction) in a direction orthogonal to both the first relative position and the second relative position. Further, the relative position may include an inclination angle between the top plate 31 and the detection unit 101.
  • the X-ray CT apparatus 1 may be configured to store relative position information in one or more of the multiple scans when the scan is performed multiple times. Further, the X-ray CT apparatus 1 selects one of the two or more relative position information when storing the relative position information in two or more scans of the plurality of scans. And the drive control unit 413 may be configured to control the drive unit based on the selected relative position information. Thereby, two or more pieces of relative position information can be stored, and a desired relative position can be reproduced.
  • the selection unit may include a display unit 45 and an operation unit 46.
  • the display unit 45 displays two or more relative positions indicated by two or more relative position information.
  • the operation unit 46 is used to designate one of the two or more displayed relative positions.
  • the drive control unit 413 controls the drive unit based on relative position information corresponding to the designated relative position. Thereby, the user can selectively reproduce a desired relative position.
  • An example of the usage pattern will be described.
  • puncture for lung cancer puncture work is individually performed for a plurality of tumors. Relative position information can be stored for each of these tumors. Then, when performing a puncturing operation on a certain tumor, the scan position corresponding to this tumor can be automatically reproduced by selectively applying the relative position information corresponding to this tumor.
  • the selection unit may include an operation unit 46.
  • the selection unit When a predetermined operation is performed by the operation unit 46 in response to a scan, the selection unit performs a predetermined operation from two or more pieces of relative position information stored in the storage unit 44 before a new scan is performed. Select relative position information in the scan made.
  • the drive control unit 413 controls the drive unit based on the selected relative position information. Thereby, when the user wants to reproduce the scan position in the future, the user can perform a predetermined operation corresponding to the scan. This operation can be said to lock the scan position in a future scan. That is, the scan position is automatically reproduced in future scans.
  • the X-ray CT apparatus 1 may include a cross-sectional position determination unit 434 and a notification unit.
  • the cross-section position determination unit 434 compares the image data formed based on the data obtained by the past scan with the image data formed based on the data obtained by the new scan, and compares the two image data. To determine whether the positions of the cross-sections of the subject E drawn are substantially the same.
  • the notification unit notifies when the cross-section position determination unit 434 determines that the cross-section positions are not substantially the same.
  • reporting part contains the alerting
  • the processing unit 43 in the present embodiment includes a preprocessing unit 431, a reconstruction processing unit 432, and a rendering processing unit 433.
  • control unit 41 includes an information storage unit 411, an information selection unit 412, and a drive control unit 413.
  • the information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position between the top 31 and the detection unit 101 when the medical action is performed on the subject E. This relative position is obtained, for example, by the control content of the drive control unit 413 with respect to the top plate drive unit 32 and the detection drive unit 102.
  • the information storage unit 411 determines the coordinates of the top 31 and the detection unit 101 at that time based on an instruction input from the operation unit 46 or the like. Obtain the displacement between these coordinates. This displacement is a relative position between the top plate 31 and the detection unit 101.
  • the information storage unit 411 stores relative position information indicating the relative position in the storage unit 44.
  • the relative position information may be a value set in advance by the user (for example, the distance of the top 31 to the detection unit 101 is 600 mm).
  • position information of the top plate 31 and the detection unit 101 when the same subject was previously punctured to the same subject, and an initial position in the operating room where the X-ray CT apparatus 1 is disposed It is also possible to use the position information of the top plate 31 and the detection unit 101 in FIG. In these cases, the information storage unit 411 does not need to obtain the displacement of the coordinates of the top plate 31 and the detection unit 101.
  • the information selection unit 412 will be described.
  • the medical action for the subject E is executed a plurality of times and the relative position information for two or more medical actions is stored in the storage unit 44, the information selection unit 412 Select one.
  • the drive control unit 413 controls the top plate drive unit 32 and / or the detection drive unit 102 based on the relative position information selected by the information selection unit 412.
  • the operation of the information selection unit 412 in the present embodiment can be shown as a first operation example and a second operation example, as in the first embodiment. Since the first operation example is the same as that of the first embodiment, detailed description thereof is omitted.
  • the selection unit includes an operation unit 46 in addition to the information selection unit 412.
  • the user performs a predetermined operation using the operation unit 46 in response to the medical practice.
  • “Corresponding to medical practice” includes before the medical practice, during the medical practice, and after the medical practice. Before a medical practice includes any timing between the previous medical practice and the current medical practice. In addition, when the current medical practice is the first medical practice, it literally means before the current medical practice. After the medical practice includes any timing between the current medical practice and the next medical practice.
  • the information selection unit 412 gives identification information to the relative position information stored in the storage unit 44 in response to the medical practice for which a predetermined operation has been performed. This identification information is, for example, a flag.
  • the information selection unit 412 may select from the two or more pieces of relative position information stored in the storage unit 44.
  • Relative position information relative position information with identification information
  • the subsequent processing is the same as that of the first operation example (see the first embodiment).
  • only one piece of relative position information is given identification information.
  • the information selection unit 412 deletes the identification information that has already been assigned, and the relative operation corresponding to the new predetermined operation is performed. Identification information is given to position information.
  • identification information can be given to two or more pieces of relative position information.
  • the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10.
  • the control unit 41 sends a control signal to the scan control unit 42.
  • the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays.
  • the X-ray detector 12 detects X-rays that have passed through the subject E.
  • the data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan.
  • the data collection unit 18 sends the collected detection data to the preprocessing unit 431.
  • the preprocessing unit 431 performs the above-described preprocessing on the detection data from the data collection unit 18 to generate projection data.
  • the reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions.
  • the rendering processing unit 433 generates MPR image data based on the volume data.
  • the control unit 41 causes the display unit 45 to display an image based on the generated MPR image data.
  • the surgeon moves the subject E to a predetermined puncture work position (a position where medical practice is performed) by performing a predetermined operation and relatively moving the gantry device 10 and the top board 31. Then, the surgeon performs a puncturing operation on the subject E while referring to the image displayed in step 11. Puncturing in this embodiment is gradually advanced while alternately performing scanning and puncturing work. Note that when the gantry device 10 and the top plate 31 are relatively moved in step 12, the control unit 41 may move the top plate 31 and / or the detection unit 101 based on the relative position information stored in advance. Is possible.
  • the information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position information when the medical action in step 12 is performed, for example, by performing any of the above-described operation examples.
  • control unit 41 causes the display unit 45 to display an image based on the detection data obtained by the second scan.
  • the surgeon refers to the image displayed in step 15 and determines whether the puncture needle has reached the puncture target. If the puncture needle has not reached the puncture target (if the puncture has not been completed. In the case of N in step 16), further puncture work is required. In this case, it is necessary to move the subject E to the puncture work position again. Therefore, for example, an operator other than the operator instructs the movement of the top board 31 and / or the detection unit 101 via the operation unit 46 or the like.
  • the operator can input instructions on the console device 40 outside the operating room where the X-ray CT apparatus 1 and the like are arranged. For example, the operator inputs an instruction by clicking a “Move Out” icon displayed on the display unit 45.
  • step 17 The top plate / detection unit is moved to the puncture work position (medical practice position)
  • the control unit 41 that has received the instruction input in step 16 moves the top plate 31 and / or the detection unit 101 based on the relative position information stored in step 13, for example, according to any of the above-described operation examples.
  • the top board 31 and the detection part 101 are arrange
  • the surgeon performs a puncturing operation (step 12).
  • step 12 to step 17 are repeated, the relative position information in step 13 may be stored at least once.
  • step 16 YES
  • the X-ray CT apparatus 1 includes a couch device 30, a gantry device 10, an image forming unit 435, a top plate driving unit 32 and / or a detection driving unit 102 (sometimes collectively referred to as a driving unit), and a storage unit. 44 and a drive control unit 413.
  • the bed apparatus 30 includes a top plate 31 on which the subject E is placed.
  • the gantry device 10 scans the subject E by rotating the detection unit 101 including the X-ray tube (X-ray generation unit 11) and the X-ray detector 12 that are arranged to face each other.
  • the image forming unit 435 forms image data of the subject E based on the data obtained by scanning.
  • the drive unit changes the relative position between the top plate 31 and the detection unit 101.
  • the storage unit 44 stores relative position information indicating a relative position when a medical action on the subject E is performed.
  • the drive control unit 413 controls the drive unit when a new medical action is performed on the subject E, and places the top 31 and the detection unit 101 at the relative positions indicated by the relative position information stored in the storage unit 44. Arrange.
  • the relative position (or a preset relative position) between the top plate 31 and the detection unit 101 when the medical practice has been performed in the past is determined. Can be reproduced automatically. Therefore, it is possible to facilitate the work of arranging the subject E at the medical practice execution position and reduce the time.
  • the X-ray CT apparatus 1 is configured to store relative position information in one or more medical actions among the plurality of medical actions when the medical action on the subject E is performed a plurality of times. Good. Furthermore, the X-ray CT apparatus 1 selects one of the two or more relative position information when storing the relative position information in two or more of the medical actions.
  • the drive control unit 413 may be configured to control the drive unit based on the selected relative position information. Thereby, two or more pieces of relative position information can be stored, and a desired relative position can be reproduced.
  • the selection unit may include a display unit 45 and an operation unit 46.
  • the display unit 45 displays two or more relative positions indicated by two or more relative position information.
  • the operation unit 46 is used to designate one of the two or more displayed relative positions.
  • the drive control unit 413 controls the drive unit based on relative position information corresponding to the designated relative position. Thereby, the user can selectively reproduce a desired relative position.
  • An example of the usage pattern will be described.
  • puncture for lung cancer puncture work is individually performed for a plurality of tumors. Relative position information can be stored for each of these tumors. Then, when performing a puncturing operation on a certain tumor, by selectively applying the relative position information corresponding to the tumor, the medical practice position corresponding to the tumor can be automatically reproduced.
  • the selection unit may include an operation unit 46.
  • the selection unit stores two or more stored in the storage unit 44 before a new medical action on the subject E is performed.
  • the relative position information in the medical practice in which the predetermined operation is performed is selected from the relative position information.
  • the drive control unit 413 controls the drive unit based on the selected relative position information.
  • the storage unit 44 stores information indicating the relative position when the scan is performed and information indicating the relative position when the medical action on the subject E is performed as the relative position information.
  • the drive control unit 413 controls the drive unit when a new scan is performed, and arranges the top 31 and the detection unit 101 at the relative positions when the scan indicated by the stored relative position information is performed. . Further, the drive control unit 413 controls the drive unit when a new medical action is performed on the subject E, and the relative position when the medical action on the subject E indicated in the stored relative position information is performed.
  • the top plate 31 and the detection unit 101 are arranged.
  • the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10.
  • the control unit 41 sends a control signal to the scan control unit 42.
  • the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays.
  • the X-ray detector 12 detects X-rays that have passed through the subject E.
  • the data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan.
  • the data collection unit 18 sends the collected detection data to the preprocessing unit 431.
  • the information storage unit 411 causes the storage unit 44 to store information indicating the relative position when the scan in step 20 is performed as the relative position information, for example, by performing any of the operation examples described in the first embodiment. .
  • the preprocessing unit 431 performs preprocessing on the detection data from the data collection unit 18 to generate projection data.
  • the reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions.
  • the rendering processing unit 433 generates MPR image data based on the volume data.
  • the control unit 41 causes the display unit 45 to display an image based on the generated MPR image data.
  • Puncture work is performed
  • the surgeon moves the subject E to a predetermined puncture work position (a position where medical practice is performed) by performing a predetermined operation and relatively moving the gantry device 10 and the top board 31. Then, the surgeon performs a puncturing operation on the subject E while referring to the image displayed in step 22. Puncturing in this embodiment is gradually advanced while alternately performing scanning and puncturing work.
  • the information storage unit 411 causes the storage unit 44 to store, as the relative position information, information indicating the relative position when the medical action in Step 23 is performed, for example, by performing any of the above-described operation examples.
  • control unit 41 causes the display unit 45 to display an image based on the detection data obtained by the second scan.
  • the surgeon refers to the image displayed in step 26 to determine whether the puncture needle has reached the puncture target. If the puncture needle has not reached the puncture target (if the puncture has not been completed. In the case of N in step 27), further puncture work is required. In this case, the operator (or operator) instructs the top plate 31 and / or the detection unit 101 to move via the operation unit 46 or the like.
  • the control unit 41 that has received an instruction input in step 27 follows, for example, any of the operation examples described in the second embodiment, and based on the relative position information stored in step 24, the top plate 31 and / or the detection unit 101. Move. Thereby, the top board 31 and the detection part 101 are arrange
  • the relative position between the top 31 and the detection unit 101 when the scan has been performed in the past can be automatically reproduced.
  • the relative position between the top 31 and the detection unit 101 when the medical action has been performed in the past is automatically reproduced. can do. Therefore, it is possible to facilitate and reduce the time for placing the subject E at the scan position and the medical practice execution position.
  • the order in which the top 31 and / or the detection unit 101 is moved between the scan position and the puncture work position can be arbitrarily set.
  • the X-ray CT apparatus 1 first drives the top plate 31 and / or the detection unit 101 to puncture contrary to the present modification. Place at work position.
  • a preset value or the like can be used for the relative position information corresponding to the puncture work position in this case.
  • the X-ray CT apparatus 1 can also drive the top 31 and / or the detection unit 101 to place the subject E at the scan position.
  • An X-ray CT apparatus also scans a part of a subject with a predetermined motion (pulsation, respiratory motion, etc.).
  • a predetermined motion pulse, respiratory motion, etc.
  • the influence on the display content of the X-ray CT image by a predetermined motion is taken into consideration.
  • the stomach, lungs, and the like tend to have a larger range of movement due to breathing of the subject.
  • the shape and size of the part in the image are greatly changed according to the timing of executing the scan unless the influence of a predetermined motion is taken into consideration.
  • the site to be observed is displayed differently for each phase in the image, which may make observation difficult.
  • an X-ray CT apparatus that generates an X-ray CT image in accordance with a predetermined motion (pulsation, respiratory motion, etc.) has been proposed.
  • a biological signal or the like is received from an external apparatus and stored in association with collected data.
  • the external device is a device (a respiratory waveform acquisition device, an electrocardiograph, or the like) that acquires a biological signal or information representing a predetermined motion.
  • the above-described X-ray CT apparatus uses a period or phase in a biological signal or the like when generating an image.
  • a user can specify a specific phase in a cycle of a biological signal or the like based on stored data such as a biological signal.
  • the X-ray CT apparatus performs reconstruction processing on data corresponding to a designated phase among data collected over time. Such a reconstruction process is intended to make the shape and size of the display in the part uniform when generating an image of a part having a large predetermined motion.
  • the present embodiment is an X-ray CT apparatus capable of aligning the shape and size on the display without complicated operations when performing a fluoroscopic scan on a portion whose shape and size are changed by respiration.
  • the purpose is to provide.
  • FIG. 8 is a block diagram of an X-ray CT apparatus according to the third embodiment. Since “image” and “image data” have a one-to-one correspondence, in the present embodiment, they may be regarded as the same.
  • the X-ray CT apparatus 1 includes a gantry device 100, a couch device 200, and a console device 300.
  • the gantry device 100 is an apparatus that emits X-rays to the subject E and collects detection data of the X-rays that have passed through the subject E.
  • the gantry device 100 includes an X-ray generation unit 110, an X-ray detection unit 120, a rotating body 130, a high voltage generation unit 140, a gantry driving unit 170, an X-ray diaphragm unit 160, a diaphragm driving unit 150, A data collection unit 180.
  • the X-ray generation unit 110 includes an X-ray tube (for example, a vacuum tube that generates a cone-shaped or pyramid-shaped beam, not shown) that generates X-rays.
  • the generated X-ray is exposed to the subject E.
  • the X-ray detection unit 120 includes a plurality of X-ray detection elements (not shown).
  • the X-ray detection unit 120 detects X-ray intensity distribution data (detection data) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element, and outputs the detection data as a current signal.
  • a two-dimensional X-ray detector (surface detector) in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used.
  • the plurality of X-ray detection elements are provided in 320 rows along the slice direction, for example.
  • a multi-row X-ray detector in this way, it is possible to image a three-dimensional imaging region having a width in the slice direction by one rotation scan (volume scan).
  • the slice direction corresponds to the body axis direction of the subject E
  • the channel direction corresponds to the rotation direction of the X-ray generation unit 110.
  • the rotating body 130 is a member that supports the X-ray generation unit 110 and the X-ray detection unit 120 so as to face each other with the subject E interposed therebetween.
  • the rotating body 130 has an opening 130a penetrating in the slice direction.
  • the rotator 130 is arranged to rotate in a circular orbit around the subject E.
  • the high voltage generator 140 applies a high voltage to the X-ray generator 110.
  • the X-ray generation unit 110 generates X-rays based on the high voltage.
  • the gantry driving unit 170 rotates the rotating body 130.
  • the X-ray diaphragm 160 has a slit (opening) with a predetermined width, and by changing the width of the slit, the fan angle (expansion angle in the channel direction) of X-rays exposed from the X-ray generator 110 and the X-ray Adjust the cone angle of the line (the spread angle in the slice direction).
  • the diaphragm drive unit 150 drives the X-ray diaphragm unit 160 so that the X-rays generated by the X-ray generation unit 110 have a predetermined shape.
  • the bed apparatus 200 is an apparatus for placing and moving the subject E to be imaged.
  • the bed apparatus 200 includes a bed 210 and a bed driving unit 220.
  • the bed 210 includes a bed top plate 230 on which the subject E is placed and a base 240 that supports the bed top plate 230.
  • the couch top plate 230 can be moved by the couch driving unit 220 in the body axis direction of the subject E and in the direction orthogonal to the body axis direction. That is, the bed driving unit 220 can insert and remove the bed top plate 230 on which the subject E is placed with respect to the opening 130 a of the rotating body 130.
  • the base 240 can move the bed top plate 230 in the vertical direction (a direction orthogonal to the body axis direction of the subject E) by the bed driving unit 220.
  • the bed apparatus 200 may be configured not to include the bed top plate 230. That is, a configuration for moving the gantry device 100 relative to the bed device 200 is also included in the X-ray CT apparatus of the present embodiment.
  • the console device 300 is used for operation input to the X-ray CT apparatus 1.
  • the console device 300 also has a function of reconstructing CT image data (tomographic image data and volume data) representing the internal form of the subject E from the detection data collected by the gantry device 100.
  • the console device 300 includes an input unit 310, a display unit 320, a scan control unit 330, a setting unit 340, a processing unit 350, a storage unit 360, a display control unit 370, and a main control unit 380. Has been.
  • the input unit 310 is used as an input device that performs various operations on the console device 300.
  • the input unit 310 includes, for example, a keyboard, a mouse, a trackball, a joystick, and the like. Further, the GUI displayed on the display unit 320 can be used as the input unit 310.
  • the display unit 320 is configured by an arbitrary display device such as an LCD or a CRT display. Various X-ray CT images are displayed on the display unit 320. For example, a tomographic image, a volume rendering image, an MPR image, or the like is displayed on the display screen of the display unit 320. The display unit 320 may display a viewing box corresponding to the MPR image.
  • the display unit 320 displays a scan condition setting screen (not shown).
  • the display unit 320 displays an operation screen for scanning by the gantry device 100.
  • the display unit 320 displays a setting screen for various parameters used for the reconstruction process.
  • the display unit 320 displays a window level / window width setting screen.
  • the display unit 320 may display the setting screen.
  • the display unit 320 displays a designation screen for designating a respiratory waveform and a predetermined phase in the respiratory waveform. By the designation operation here, designation information described later is generated.
  • the GUI is displayed.
  • the display unit 320 displays a setting screen for parameters such as scan conditions, reconstruction processing, and image processing as a GUI.
  • the display unit 320 displays an operation screen such as a gantry / couch operation as a GUI.
  • the display unit 320 displays an operation screen for designating a range in a contrast image, a non-contrast image, a subtraction image, or the like as a GUI.
  • the scan control unit 330, the setting unit 340, the processing unit 350, the display control unit 370, and the main control unit 380 are, for example, a processing device (not shown) such as a CPU, GPU, or ASIC, and an illustration such as a ROM, RAM, or HDD. Storage device.
  • the storage device stores a control program for executing the function of each unit.
  • a processing device such as a CPU executes the functions of each unit by executing each program stored in the storage device.
  • the scan control unit 330 controls various operations related to X-ray scanning.
  • the scan control unit 330 receives a scan start instruction received from the input unit 310 or the like via the main control unit 380 and starts scanning by the gantry device 100. That is, the high voltage generation unit 140, the gantry driving unit 170, the diaphragm driving unit 150, the bed driving unit 220, and the like are controlled according to preset X-ray irradiation conditions, field of view, imaging range, scan mode, and slice thickness.
  • the X-ray irradiation conditions include parameters related to the irradiated X-rays.
  • This parameter includes, for example, a tube current mA, a tube voltage kV, a rotation speed of the X-ray tube (rotary body 130), a scan interval, and the like regarding the irradiated X-ray.
  • the scan control unit 330 irradiates X-rays intermittently. That is, the scan interval includes both the interval from the start point to the end point of one scan in the intermittent scan and the interval from the end point to the start point of the next scan. The scan interval is set in advance in a setting unit 340 described later.
  • the scan control unit 330 receives an X-ray irradiation instruction at the phase timing set by the setting unit 340 and starts scanning.
  • the scan control unit 330 receives a predetermined X-ray irradiation start instruction from the setting unit 340 and starts X-ray irradiation.
  • the setting of the X-ray irradiation start instruction will be described later.
  • the parameters related to the visual field include control parameters related to the operation of the X-ray diaphragm unit 160 controlled by the gantry driving unit 170.
  • the reconstruction condition includes a reconstruction function, a reconstruction interval, and the like.
  • Examples of the scan mode include scan methods (conventional scan, helical scan, etc.). In the case of the helical scan, a helical pitch is included, for example, conditions (operation speed, movement amount, etc.) regarding the operation of the bed top plate 230 by the bed driving unit 220.
  • the scan control unit 330 controls the bed driving unit 220 based on the setting information of the X imaging range. Thereby, the bed driving unit 220 moves the bed 210 according to a predetermined moving speed and moving amount. Further, the scan control unit 330 controls the high voltage generation unit 140 based on the setting information of the X-ray irradiation conditions. Thereby, the high voltage generation unit 140 performs control such as applying a high voltage to the X-ray generation unit 110 at a predetermined interval.
  • the scan control unit 330 controls the gantry driving unit 170 based on the setting information of the rotational speed of the rotator 130. As a result, the gantry driving unit 170 drives the rotating body 130 to rotate at a predetermined speed.
  • the scan control unit 330 controls the aperture driving unit 150 based on setting information such as a field of view. Thereby, the aperture driving unit 150 operates the X-ray aperture unit 160 to control the range of X-rays to be irradiated.
  • the scan control unit 330 controls the bed driving unit 220 based on the scan mode setting information. Thereby, the bed driving unit 220 moves the bed 210 according to a predetermined moving speed and moving amount.
  • the processing unit 350 performs various processes on the detection data transmitted from the gantry device 100 (data collection unit 180).
  • the processing unit 350 includes a preprocessing unit 350a, a reconstruction processing unit 350b, and an image generation unit 350c.
  • the pre-processing unit 350a performs pre-processing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on detection data detected by the gantry device 100 (X-ray detection unit 120) to create projection data. To do.
  • the reconstruction processing unit 350b performs a reconstruction process on the projection data created by the preprocessing unit 350a. This reconfiguration processing is performed based on the reconfiguration conditions received from the setting unit 340 via the main control unit 380.
  • an arbitrary method such as a two-dimensional Fourier transform method or a convolution / back projection method can be employed.
  • Volume data is created by interpolating a plurality of reconstructed tomographic image data.
  • any method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be adopted.
  • a multi-row X-ray detector is used as described above, a wide range of volume data can be reconstructed based on data obtained by volume scanning.
  • the image generation unit 350c performs image processing on the tomographic image data or volume data created by the reconstruction processing unit 350b to generate X-ray CT image data.
  • volume data MPR, surface rendering (Surface Rendering: SR, Shaded Surface Display: SSD), volume rendering (Volume Rendering: VR), MIP (Maximum Intensity Prediction), and MinIP (Maximum Immediate Prescription) Process.
  • image generation unit 350c performs image processing such as image sharpening, noise reduction / suppression, S / N ratio improvement, and contour enhancement on X-ray CT image data based on tomographic image data and volume data. .
  • FIG. 9 is a block diagram illustrating a schematic configuration of the setting unit 340 according to the third embodiment.
  • FIG. 10 is a conceptual diagram conceptually showing an example of the respiratory waveform of the subject monitored by the respiratory monitor 400 and an example of the scan timing.
  • the setting unit 340 includes an I / F (Interface) 340a, a respiratory waveform generation unit 340b, and a timing generation unit 340c.
  • the I / F 340a receives a respiration monitor signal output from the respiration monitor 400.
  • the respiration monitor 400 captures the movement of the subject due to respiration and outputs the respiration monitor signal.
  • the respiratory monitor 400 corresponds to, for example, a band-shaped pressure sensor that can be attached to surround the abdomen of the subject.
  • Another example is an airflow sensor that measures the respiratory flow rate of a subject.
  • it is an apparatus that obtains the motion state on the outer shape of the observation site by breathing the subject by photographing the observation site of the subject with a camera or the like and analyzing the movement of the observation site of the subject in the captured moving image or the like. May be.
  • the respiration waveform generation unit 340b generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a.
  • the horizontal axis indicates time and the vertical axis indicates the respiration level indicating the depth of respiration.
  • the upward direction indicates the height of the inspiration level
  • the downward direction indicates the height of the expiration level.
  • the respiration waveform generation unit 340b assigns the maximum value of the waveform as the maximum value of the inspiration level (inspiration peak) based on the waveform in the signal.
  • the respiratory waveform generation unit 340b assigns the minimum value of the waveform as the maximum value of the expiration level (peak of expiration). In addition, the respiratory waveform generation unit 340b sets an intermediate value between the maximum value of the inspiratory level and the maximum value of the expiratory level as a boundary value at which expiration and inspiration are switched.
  • the respiratory waveform generation unit 340b sets the boundary value between the maximum value of the inspiration level and the maximum value of the expiration level among the boundary values as an end point in one cycle of inspiration and the start in one cycle of expiration. Let it be a point. Similarly, the boundary value between the maximum value of the expiratory level and the maximum value of the inspiratory level is set as the end point in one cycle of exhalation and the start point in one cycle of inspiration.
  • the respiratory waveform generation unit 340b generates respiratory waveform data and further transmits the respiratory waveform data to the display control unit 370.
  • the display control unit 370 causes the display unit 320 to display the respiration waveform received from the respiration waveform generation unit 340b.
  • the respiration waveform generation unit 340b continues to generate a respiration waveform based on the respiration monitor signal received from the I / F 340a even after the scan timing setting information described below is set.
  • the timing generation unit 340c generates the X-ray irradiation start timing by the X-ray generation unit 110 controlled by the scan control unit 330 based on preset scan timing setting information. In addition, period information (interval) of X-ray irradiation controlled by the scan control unit 330 is generated. Specific examples are as follows.
  • the timing generation unit 340c reads scan timing setting information set in advance by the user from the storage unit 360.
  • This scan timing setting information may be set by the user on the respiration waveform display screen displayed on the display unit 320.
  • a cursor for designating an arbitrary phase in the respiratory waveform is displayed on the display unit 320 together with the respiratory waveform.
  • the designation information is sent to the timing generation unit 340c via the main control unit 380.
  • the timing generation unit 340c receives designation information.
  • the timing generation unit 340c specifies the phase designated in the respiratory waveform, that is, the maximum value of the inspiratory level, based on the designation information. Further, based on this, the timing generation unit 340c specifies the interval between the peaks of the intake air. Furthermore, the timing generation unit 340c generates X-ray irradiation cycle information based on this interval.
  • the period information is information for setting a time interval from the start time of one scan to the next scan start time in the intermittent scan. .
  • the timing generation unit 340c generates X-ray irradiation cycle information, X-ray irradiation time information, and a scan start instruction (first X-ray irradiation start timing).
  • the scan control unit 330 Upon receiving an instruction to start scanning, the scan control unit 330 causes the X-ray generation unit 110 to start X-ray irradiation.
  • the scan control unit 330 temporarily stops the irradiation based on the irradiation time information.
  • the designation information for setting these scan setting information not only the maximum value of the inspiratory level (inspiratory peak: maximum inspiratory) but also the maximum value of expiratory level (peak of expiratory: maximum expiratory) or Any phase such as an intermediate value between the maximum value of the expiration level and the inspiration level can be designated.
  • the storage unit 360 is configured by a semiconductor storage device such as a RAM or a ROM.
  • the storage unit 360 stores detection data, projection data, X-ray CT image data, and the like.
  • the display control unit 370 performs various controls related to image display. For example, based on the display instruction of the various X-ray CT image data described above, the image data is received from the storage unit 360 and displayed in a predetermined format. In addition, the display control unit 370 receives the image data of the various setting screens described above and displays them in a predetermined format.
  • the main control unit 380 performs overall control of the X-ray CT apparatus 1 by controlling operations of the gantry apparatus 100, the couch apparatus 200, and the console apparatus 300.
  • the main control unit 380 controls the scan control unit 330 to cause the gantry device 100 to perform a preliminary scan and a main scan and collect detection data.
  • the main control unit 380 controls the processing unit 350 to perform various processing (preprocessing, reconstruction processing, MPR processing, etc.) on the detected data.
  • the main control unit 380 controls the display control unit 370 to display an X-ray CT image on the display unit 320 based on the image data stored in the storage unit 360.
  • FIGS. 11 and 12 are flowcharts showing an outline of the operation of the X-ray CT apparatus 1 according to the third embodiment.
  • a description will be given from the setting of scan timing setting information and the generation of a scanogram to the scanning start instruction by the timing generation unit 340c, the intermittent scanning by the gantry device 100, and the end of the scanning.
  • the X-ray CT apparatus 1 In starting the scan, the X-ray CT apparatus 1 generates a scanogram. That is, the scan control unit 330 controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 based on preset scanning conditions, and scanograms are taken. .
  • the scan control unit 330 controls the bed driving unit 220 to relatively displace the positions of the bed top plate 230 and the gantry device 100 and consequently move the subject to the scan position.
  • the scan control unit 330 controls the gantry driving unit 170 to move the rotating body 130.
  • the scan controller 330 controls the high voltage generator 140 to scan the subject at a single X-ray projection angle.
  • the data collection unit 180 collects detection data based on X-rays that have passed through the subject. This collected data is sent to the console device 300. Based on the collected data received by the console device 300, the processing unit 350 generates a scanogram.
  • the scan range setting screen in this embodiment is not limited to that based on a scanogram. Therefore, the scanogram generation process may be omitted.
  • the display control unit 370 generates a scan range setting screen based on the scanogram and a predetermined format read from the storage unit 360 and causes the display unit 320 to display the scan range setting screen.
  • the scan range is set by the user or the like via the input unit 310.
  • the display control unit 370 stores the scan range in the storage unit 360 via the main control unit 380. .
  • the I / F 340 a receives a respiration monitor signal from the respiration monitor 400.
  • the respiration waveform generation unit 340b generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a.
  • the timing generation unit 340c receives designation information. Further, the timing generation unit 340c specifies a specified phase (for example, the maximum value of the intake level) based on the specification information. Thereby, the interval of the designated phase (for example, the peak of inspiration) is specified. Furthermore, the timing generation unit 340c generates X-ray irradiation cycle information based on this interval.
  • a specified phase for example, the maximum value of the intake level
  • the interval of the designated phase for example, the peak of inspiration
  • the timing generation unit 340c sets, as irradiation time information, a time during which a change in inspiration (or expiration) level in the respiratory waveform falls within a predetermined range.
  • the timing generation unit 340c generates time phase information indicating a time phase in the current respiration from the respiration waveform. Furthermore, the timing generation unit 340c generates an X-ray irradiation start timing, that is, a scan start instruction based on the time phase information and the designation information.
  • the scan range setting (S30 to S31) from the scanogram generation and the period information setting (S32 to S34) from the generation of the respiratory waveform may be performed in any order, which is a parallel process. Also good.
  • the scan control unit 330 receives a scan start instruction via the main control unit 380, and controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 to scan.
  • the scan control unit 330 determines whether the irradiation time based on the irradiation time information has elapsed based on the scan setting information (irradiation time information). If the scan control unit 330 determines that it has not elapsed (S38; No), this process is repeated.
  • the scan control unit 330 determines from the start of the previous irradiation based on the scan setting information (period information) whether the next X-ray irradiation start time has come. The scan controller 330 repeats this process until a predetermined time has elapsed (S40; No).
  • the main control unit 380 of the gantry device 100 determines whether there is a scan completion instruction via the input unit 310.
  • the main control unit 380 repeats the steps S37 to S42 when the instruction is not yet input (S42; No). That is, the X-ray CT apparatus 1 continues scanning.
  • the instruction is input (S42; Yes)
  • the X-ray CT apparatus 1 stops scanning.
  • the X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
  • FIG. 13 is a schematic block diagram illustrating an outline of the setting unit 340 according to the fourth embodiment.
  • the processing of the setting unit 340 is different from that in the third embodiment.
  • the operation and processing contents of each unit according to these differences may be different.
  • Other parts are the same as those of the X-ray CT apparatus 1 according to the third embodiment.
  • the difference from the third embodiment will be mainly described.
  • the setting unit 340 further includes a determination unit 340d.
  • the determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation.
  • the first respiration waveform indicates a respiration waveform that is the basis of the scan setting information.
  • the other second respiration waveform indicates each respiration waveform sequentially generated after the timing generation unit 340c instructs to start scanning.
  • the determination unit 340d displays the determination result.
  • the respiration waveform generation unit 340b continuously generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a after the scan generation instruction by the timing generation unit 340c.
  • the determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. Further, the determination unit 340d displays the result of this comparison. The result of the comparison is numerical information on the amount of deviation or the percentage of deviation. Alternatively, the determination unit 340d may display the first respiratory waveform and the second respiratory waveform in an overlapping manner in parallel with the display of the X-ray CT image.
  • the X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
  • the breathing cycle may change after the scan starts. For example, a change in the respiratory cycle due to coughing of the subject can be mentioned. In that case, the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning. .
  • the determination unit 340d in the setting unit 340 compares the first respiration waveform and the second respiration waveform, and displays the comparison result. Therefore, the user can easily grasp the difference between the scanning cycle and the breathing cycle during scanning. Thereby, for example, even when it becomes necessary to reset the scan and execute the scan again, the user can immediately make this determination. As a result, unnecessary scanning may be avoided, and in that case, unnecessary exposure can be prevented.
  • an X-ray CT apparatus 1 according to the fifth embodiment will be described with reference to FIG.
  • the processing of the setting unit 340 is different from that in the third embodiment.
  • the operation and processing contents of each unit according to these differences may be different.
  • Other parts are the same as those of the X-ray CT apparatus 1 according to the fourth embodiment.
  • the difference from the fourth embodiment will be mainly described.
  • the setting unit 340 further includes a determination unit 340d.
  • the determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation.
  • the first respiration waveform indicates a respiration waveform that is the basis of the scan setting information.
  • the other second respiration waveform indicates each respiration waveform sequentially generated after the timing generation unit 340c instructs to start scanning.
  • the determination unit 340d stops the scanning by the gantry device 100 when a predetermined threshold value is exceeded or the threshold value is reached as a result of the determination.
  • the determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. In addition, the determination unit 340d stores a threshold value of a deviation amount between the first respiratory waveform and the second respiratory waveform. Further, the determination unit 340d determines, based on this threshold value, whether the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold value. If the determination unit 340d determines that this condition is achieved, the determination unit 340d sends an instruction to stop scanning to the main control unit 380. The main control unit 380 stops scanning in the gantry device 100 based on the instruction. For example, the operations of the X-ray generation unit 110, the gantry driving unit 170, and the aperture driving unit 150 are stopped.
  • FIG. 14 is a flowchart showing an outline of the operation of the X-ray CT apparatus 1 according to the fifth embodiment.
  • the setting of the scan timing setting information, the generation of the scanogram, and the instruction to start the scan by the respiration waveform generation unit 340b are the same as in the third embodiment, and thus the description thereof is omitted. Therefore, a description will be given from intermittent scan start to scan completion.
  • the scan control unit 330 receives a scan start instruction via the main control unit 380, and controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 to scan.
  • the scan control unit 330 determines whether the irradiation time based on the irradiation time information has elapsed based on the scan setting information (irradiation time information). If the scan control unit 330 determines that it has not elapsed (S51; No), this process is repeated.
  • the scan control unit 330 determines from the start of the previous irradiation based on the scan setting information (period information) whether the next X-ray irradiation start time has come. The scan control unit 330 repeats this process until a predetermined time has elapsed (S53; No).
  • the determination unit 340d reads the first respiration waveform from the storage unit 360 and compares it with the second respiration waveform.
  • the X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
  • the breathing cycle may change after the scan starts. For example, a change in the respiratory cycle due to coughing of the subject can be mentioned. In that case, the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning. .
  • the determination unit 340d in the setting unit 340 compares the first respiratory waveform with the second respiratory waveform. Further, as a result of the comparison, it is determined whether the amount of deviation between both waveforms exceeds a threshold value, and if it exceeds, the scan is stopped. Therefore, the user can easily grasp the difference between the scan cycle and the breathing cycle during the scan. For example, even when it is necessary to reset scan settings and execute scans again, unnecessary scans may be avoided, and in this case, unnecessary exposure can be prevented.
  • the first respiratory waveform and the second respiratory waveform are compared, and if the comparison result, that is, the first respiratory waveform exceeds the threshold value, the gantry device This is a configuration in which scanning by 100 is stopped.
  • the present invention is not limited to such a configuration, and when the amount of deviation between the first respiratory waveform and the second respiratory waveform exceeds a threshold, preset designation information (arbitrary respiratory phase) is read, An arbitrary respiration phase (maximum exhalation, etc.) based on the designation information may be specified from the two respiration waveforms. Further, scan period information may be acquired thereby.
  • FIG. 15 is a schematic block diagram showing an outline of the X-ray CT apparatus 1 according to the sixth embodiment.
  • the configuration of the console device 300 is different from that in the third embodiment.
  • the operation and processing contents of each unit according to these differences may be different.
  • Other parts are the same as those of the X-ray CT apparatus 1 according to the fourth embodiment.
  • the difference from the fourth embodiment will be mainly described.
  • the X-ray CT apparatus 1 includes an output unit 390 such as a speaker in the console apparatus 300 of the present embodiment.
  • the determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation. As a result of the determination, the determination unit 340d causes the output unit 390 to output a guide voice via the main control unit 380 when a preset threshold value is exceeded or when the threshold value is reached.
  • the determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. In addition, the determination unit 340d stores a threshold value of a deviation amount between the first respiratory waveform and the second respiratory waveform. Furthermore, the determination unit 340d determines whether the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold based on this threshold. If the determination unit 340d determines that this condition has been achieved, the determination unit 340d sends a guide voice output instruction to the main control unit 380. The main control unit 380 outputs a guide voice in the output unit 390 based on the instruction.
  • the output unit 390 outputs a guide voice for breathing instructions.
  • the main control unit 380 reads a guide voice that prompts the subject to breathe at a predetermined depth from the storage unit 360 and causes the output unit 390 to output the guide voice.
  • voices are consciously urged to breathe at different depths, such as normal breathing (resting breathing) and deep breathing.
  • the determination unit 340d instructs the main control unit 380 to output a guide voice for a respiratory instruction.
  • the main control unit 380 receives the output instruction, and first reads predetermined guide voice data from the storage unit 360, for example.
  • the main control unit 380 causes the output unit 390 to output, for example, a “please ease” guide voice. According to this guide voice, since the depth of breathing of the subject is not intentionally adjusted, the subject continues normal breathing (resting breathing).
  • the main control unit 380 reads the next guide voice data from the storage unit 360 according to the difference between the first respiratory waveform and the second respiratory waveform. For example, based on the guide voice data, the main control unit 380 causes the output unit 390 to output the second necessary guide voice “Please take a breath”. According to this guide voice, the subject is encouraged to take a deep breath and the maximum inhalation state is guided.
  • the main control unit 380 reads the next guide voice data corresponding to the third guide voice data from the storage unit 360 after a predetermined time has elapsed since the second guide voice data was read. At this time, based on the guide voice data, the main control unit 380 causes the output unit 390 to output a voice “please exhale as soon as possible” based on the third required guide voice data. According to the guide voice, the subject is encouraged to breathe out and the maximum exhalation state is guided.
  • the main control unit 380 reads the next guide voice data corresponding to the fourth guide voice data from the storage unit 360 after a predetermined time has elapsed since the third guide voice data was read. At this time, based on the guide voice data, the main control unit 380 causes the output unit 390 to output a voice “Please take a short breath again” based on the fourth required guide voice data. According to this guide voice, deep breathing is again urged to the subject, and the maximum inhalation state is led again.
  • the breathing cycle may change after the scan is started.
  • a change in the respiratory cycle due to coughing of the subject can be mentioned.
  • the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning.
  • the determination unit 340d in the setting unit 340 compares the first respiratory waveform with the second respiratory waveform. Further, as a result of the comparison, it is determined whether or not the amount of deviation between both waveforms exceeds a threshold value, and if it exceeds, the output unit 390 outputs sound.
  • the subject's breathing cycle is changed from the preset cycle during the scan, the subject's breathing cycle can be adjusted again by the guide voice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided is an X-ray CT device that makes it possible to facilitate the work of arranging a subject to be tested in a scan position and to reduce the time used for said work. The X-ray CT device according to an embodiment of the present invention has a bed device, a frame device, a forming unit, a drive unit, a storage unit, and a drive control unit. The bed device has a top plate on which the subject to be tested is arranged. The frame device carries out a scan of the subject to be tested by rotating an X-ray tube and a detection unit comprising an X-ray detector that are arranged so as to face each other. The forming unit forms image data of the subject to be tested on the basis of data obtained from the scan. The drive unit changes the relative positions of the top plate and the detection unit. The storage unit stores relative position information indicating the relative positions at the time the scan was performed. The drive control unit controls the drive unit when a new scan is carried out and arranges the top plate and the detection unit in the relative positions indicated by the stored relative position information.

Description

X線CT装置X-ray CT system
 この発明の実施形態はX線CT装置に関する。 Embodiments of the present invention relate to an X-ray CT apparatus.
 X線CT(Computed Tomography)装置は、被検体をX線でスキャンしてデータを収集し、収集されたデータをコンピュータで処理することにより、被検体の内部を画像化する装置である。 An X-ray CT (Computed Tomography) apparatus is an apparatus that scans a subject with X-rays, collects data, and processes the collected data with a computer, thereby imaging the inside of the subject.
 具体的には、X線CT装置は、被検体に対してX線を異なる方向から複数回曝射し、被検体を透過したX線をX線検出器にて検出して複数の検出データを収集する。収集された検出データはデータ収集部によりA/D変換された後、データ処理系に送信される。データ処理系は、検出データに前処理等を施すことで投影データを形成する。続いて、データ処理系は、投影データに基づく再構成処理を実行して断層画像データを形成する。また、データ処理系は、更なる再構成処理として、複数の断層画像データに基づきボリュームデータを形成する。ボリュームデータは、被検体の3次元領域に対応するCT値の3次元分布を表すデータセットである。 Specifically, the X-ray CT apparatus emits X-rays to a subject a plurality of times from different directions, detects X-rays transmitted through the subject with an X-ray detector, and generates a plurality of detection data. collect. The collected detection data is A / D converted by the data collection unit and then transmitted to the data processing system. The data processing system forms projection data by pre-processing the detection data. Subsequently, the data processing system executes a reconstruction process based on the projection data to form tomographic image data. The data processing system forms volume data based on a plurality of tomographic image data as further reconstruction processing. The volume data is a data set representing a three-dimensional distribution of CT values corresponding to a three-dimensional region of the subject.
 X線CT装置は、ボリュームデータを任意の方向にレンダリングすることによりMPR(Multi Planar Reconstruction)表示を行うことができる。MPR表示された断面画像(MPR画像)には、直交3軸画像とオブリーク画像がある。直交3軸画像とは、体軸に対する直交断面を示すアキシャル像、体軸に沿って被検体を縦切りした断面を示すサジタル像、及び、体軸に沿って被検体を横切りした断面を示すコロナル像を示す。オブリーク画像は、直交3軸画像以外の断面を示す画像である。また、X線CT装置は、任意の視線を設定してボリュームデータをレンダリングすることで、この視線から被検体の3次元領域を見たときの擬似的3次元画像を形成する。 The X-ray CT apparatus can perform MPR (Multi Planar Reconstruction) display by rendering volume data in an arbitrary direction. The cross-sectional image (MPR image) displayed in MPR includes an orthogonal three-axis image and an oblique image. An orthogonal triaxial image is an axial image showing a cross section orthogonal to the body axis, a sagittal image showing a cross section of the subject along the body axis, and a coronal showing a cross section of the subject along the body axis. Show the image. The oblique image is an image showing a cross section other than the orthogonal three-axis image. Further, the X-ray CT apparatus renders volume data by setting an arbitrary line of sight, thereby forming a pseudo 3D image when the 3D region of the subject is viewed from this line of sight.
 CT透視(CTF:Computed Tomography Fluoroscopy)という撮影方法がある。CT透視とは、被検体にX線を連続的に又は間欠的に照射することにより、被検体の関心部位の画像をリアルタイムに得る撮影方法である。CT透視では、検出データの収集レートを短くし、再構成処理に要する時間を短縮することで、画像をリアルタイムに作成している。CT透視は、たとえば、生検において穿刺針の先端と検体を採取する部位との位置関係を確認する場合や、ドレナージ法においてチューブの位置確認を行う場合などに用いられる。なお、ドレナージ法とは、体腔内に貯まった体液をチューブ等によって排出する方法である。 There is an imaging method called CT fluoroscopy (CTF: Computed Tomography Fluoroscopy). CT fluoroscopy is an imaging method that obtains an image of a region of interest of a subject in real time by irradiating the subject with X-rays continuously or intermittently. In CT fluoroscopy, images are created in real time by reducing the detection data collection rate and reducing the time required for reconstruction processing. CT fluoroscopy is used, for example, when confirming the positional relationship between the tip of a puncture needle and a part from which a specimen is collected in a biopsy, or when confirming the position of a tube in the drainage method. The drainage method is a method of discharging body fluid accumulated in the body cavity with a tube or the like.
 CT透視では、スキャンと所定の医療行為とを交互に行うことがある。たとえば、CT透視で得られたボリュームデータに基づくMPR画像を参照しながら生検を行う場合には、スキャンと穿刺とが交互に行われる。具体的には、まず、被検体を所定のスキャン位置に配置させてCT透視を行うことで被検体のMPR画像を取得する。次に、被検体をスキャン位置から所定の処置位置に移動させ、このMPR画像を参照しながら穿刺を行う。ある程度穿刺針を挿入させたら、被検体を再度スキャン位置に配置させてCT透視を行なって新たなMPR画像を取得する。更に、被検体を再度処置位置に配置させ、この新たなMPR画像を参照しながら穿刺を進める。生検が完了するまでこの動作が繰り返し行われる。また、穿刺を行う前に、穿刺針の挿入経路を決定するための穿刺計画を実施する場合もある。穿刺計画においてもスキャンが行われる。 In CT fluoroscopy, scanning and prescribed medical practice may be performed alternately. For example, when performing a biopsy while referring to an MPR image based on volume data obtained by CT fluoroscopy, scanning and puncturing are alternately performed. Specifically, first, an MPR image of the subject is obtained by placing the subject at a predetermined scan position and performing CT fluoroscopy. Next, the subject is moved from the scan position to a predetermined treatment position, and puncture is performed while referring to the MPR image. When the puncture needle is inserted to some extent, the subject is again placed at the scan position and CT fluoroscopy is performed to obtain a new MPR image. Further, the subject is placed again at the treatment position, and the puncture is advanced while referring to the new MPR image. This operation is repeated until the biopsy is completed. In addition, a puncture plan for determining the insertion path of the puncture needle may be implemented before puncturing. Scans are also performed in the puncture plan.
特開2011-4980号公報JP 2011-4980 A 特開2007-000408号公報JP 2007-000408 A
 このようにスキャンと所定の医療行為とを繰り返し行う場合、被検体をスキャン位置に配置させる動作と医療行為の実施位置に配置させる動作とが交互に行われる。従来のX線CT装置では、被検体をスキャン位置や医療行為の実施位置に配置させる度に、その位置の調整を行なっていた。しかし、この作業は煩雑であり時間も掛かるため、術者や患者への大きな負担になっていた。 In this way, when the scan and the predetermined medical practice are repeatedly performed, the operation of placing the subject at the scan position and the action of placing the subject at the implementation position of the medical practice are alternately performed. In a conventional X-ray CT apparatus, the position of the subject is adjusted each time the subject is placed at a scan position or a medical practice position. However, since this operation is complicated and takes time, it is a heavy burden on the operator and the patient.
 この発明が解決しようとする課題は、被検体を所望の位置に配置させる作業の容易化及び時間短縮を図ることが可能なX線CT装置を提供することである。 The problem to be solved by the present invention is to provide an X-ray CT apparatus capable of facilitating the work of arranging a subject at a desired position and reducing the time.
 実施形態に係るX線CT装置は、寝台装置と、架台装置と、形成部と、駆動部と、記憶部と、駆動制御部とを有する。寝台装置は、被検体が載置される天板を有する。架台装置は、互いに対向して配置されたX線管及びX線検出器を含む検出部を回転させることにより被検体に対するスキャンを行う。形成部は、スキャンにより得られたデータに基づいて被検体の画像データを形成する。駆動部は、天板と検出部との間の相対位置を変更する。記憶部は、スキャンが行われたときの相対位置を示す相対位置情報を記憶する。駆動制御部は、新たなスキャンが行われるときに駆動部を制御して、記憶された相対位置情報に示す相対位置に天板と検出部とを配置させる。 The X-ray CT apparatus according to the embodiment includes a couch device, a gantry device, a forming unit, a drive unit, a storage unit, and a drive control unit. The bed apparatus has a top plate on which a subject is placed. The gantry device scans the subject by rotating a detection unit including an X-ray tube and an X-ray detector arranged to face each other. The forming unit forms image data of the subject based on the data obtained by scanning. A drive part changes the relative position between a top plate and a detection part. The storage unit stores relative position information indicating a relative position when scanning is performed. The drive control unit controls the drive unit when a new scan is performed, and arranges the top plate and the detection unit at the relative positions indicated by the stored relative position information.
第1実施形態に係るX線CT装置の構成を表すブロック図である。It is a block diagram showing the structure of the X-ray CT apparatus which concerns on 1st Embodiment. 第1実施形態に係るX線CT装置の構成を表すブロック図である。It is a block diagram showing the structure of the X-ray CT apparatus which concerns on 1st Embodiment. 第1実施形態に係るX線CT装置の動作例を表すフローチャートである。It is a flowchart showing the operation example of the X-ray CT apparatus which concerns on 1st Embodiment. 第2実施形態に係るX線CT装置の構成を表すブロック図である。It is a block diagram showing the structure of the X-ray CT apparatus which concerns on 2nd Embodiment. 第2実施形態に係るX線CT装置の構成を表すブロック図である。It is a block diagram showing the structure of the X-ray CT apparatus which concerns on 2nd Embodiment. 第2実施形態に係るX線CT装置の動作例を表すフローチャートである。It is a flowchart showing the operation example of the X-ray CT apparatus which concerns on 2nd Embodiment. 第1実施形態及び第2実施形態の変形例に係るX線CT装置の動作例を表すフローチャートである。It is a flowchart showing the operation example of the X-ray CT apparatus which concerns on the modification of 1st Embodiment and 2nd Embodiment. 第3実施形態にかかるX線CT装置のブロック図である。It is a block diagram of the X-ray CT apparatus concerning 3rd Embodiment. 第3実施形態にかかる設定部のブロック図である。It is a block diagram of the setting part concerning 3rd Embodiment. 第3実施形態にかかる呼吸波形の一例およびスキャンのタイミングの一例を示す概略図である。It is the schematic which shows an example of the respiratory waveform concerning 3rd Embodiment, and an example of the timing of a scan. 第3実施形態にかかるX線CT装置の動作の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of operation | movement of the X-ray CT apparatus concerning 3rd Embodiment. 第3実施形態にかかるX線CT装置の動作の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of operation | movement of the X-ray CT apparatus concerning 3rd Embodiment. 第4実施形態にかかる設定部のブロック図である。It is a block diagram of the setting part concerning 4th Embodiment. 第5実施形態にかかるX線CT装置の動作の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of operation | movement of the X-ray CT apparatus concerning 5th Embodiment. 第6実施形態にかかるX線CT装置の概略を示す概略ブロック図である。It is a schematic block diagram which shows the outline of the X-ray CT apparatus concerning 6th Embodiment.
<第1実施形態>
 第1実施形態に係るX線CT装置について図面を参照しながら説明する。
<First Embodiment>
The X-ray CT apparatus according to the first embodiment will be described with reference to the drawings.
[構成]
 図1及び図2を参照し、第1実施形態に係るX線CT装置1の構成例を説明する。なお、「画像」と「画像データ」を同一視する場合がある。
[Constitution]
A configuration example of the X-ray CT apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 and 2. Note that “image” and “image data” may be identified with each other.
 X線CT装置1は、架台装置10と、寝台装置30と、コンソール装置40とを含んで構成される。 The X-ray CT apparatus 1 includes a gantry device 10, a couch device 30, and a console device 40.
(架台装置)
 架台装置10は、被検体Eに対してX線を曝射し、被検体Eを透過したX線の検出データを収集する装置である。架台装置10は、X線発生部11と、X線検出器12と、回転体13と、高電圧発生部14と、架台駆動部15と、X線絞り部16と、絞り駆動部17と、データ収集部18とを有する。
(Mounting device)
The gantry device 10 is an apparatus that irradiates the subject E with X-rays and collects X-ray detection data transmitted through the subject E. The gantry device 10 includes an X-ray generator 11, an X-ray detector 12, a rotating body 13, a high voltage generator 14, a gantry driver 15, an X-ray diaphragm 16, and a diaphragm driver 17, And a data collection unit 18.
 X線発生部11は、X線を発生させるX線管(たとえば、円錐状や角錐状のビームを発生する真空管。図示なし)を含んで構成される。発生されたX線は被検体Eに対して曝射される。 The X-ray generator 11 includes an X-ray tube that generates X-rays (for example, a vacuum tube that generates a conical or pyramidal beam, not shown). The generated X-rays are exposed to the subject E.
 X線検出器12は、複数のX線検出素子(図示なし)を含んで構成される。X線検出器12は、被検体Eを透過したX線の強度分布を示すX線強度分布データ(以下、「検出データ」という場合がある)をX線検出素子で検出し、その検出データを電流信号として出力する。 The X-ray detector 12 includes a plurality of X-ray detection elements (not shown). The X-ray detector 12 detects X-ray intensity distribution data (hereinafter sometimes referred to as “detection data”) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element. Output as a current signal.
 X線検出器12としては、たとえば、互いに直交する2方向(スライス方向とチャンネル方向)にそれぞれ複数の検出素子が配置された2次元X線検出器(面検出器)が用いられる。複数のX線検出素子は、たとえば、スライス方向に沿って320列設けられている。このように多列のX線検出器を用いることにより、1回転のスキャンでスライス方向に幅を有する3次元の領域を撮影することができる(ボリュームスキャン)。なお、スライス方向は被検体Eの体軸方向に相当し、チャンネル方向はX線発生部11の回転方向に相当する。 As the X-ray detector 12, for example, a two-dimensional X-ray detector (surface detector) in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used. The plurality of X-ray detection elements are provided, for example, in 320 rows along the slice direction. By using a multi-row X-ray detector in this way, a three-dimensional region having a width in the slice direction can be imaged with one scan (volume scan). The slice direction corresponds to the body axis direction of the subject E, and the channel direction corresponds to the rotation direction of the X-ray generation unit 11.
 図2に示す検出部101は、X線を検出するための構成部位であり、少なくともX線発生部11とX線検出器12を含む。 2 is a component for detecting X-rays, and includes at least an X-ray generation unit 11 and an X-ray detector 12.
 回転体13は、X線発生部11とX線検出器12とを被検体Eを挟んで対向する位置に支持する部材である。回転体13は、スライス方向に貫通した開口部を有する。開口部には、被検体Eが載置された天板が挿入される。回転体13は、架台駆動部15によって、被検体Eを中心とした円軌道に沿って回転される。それにより被検体Eに対するスキャンが行われる。 The rotating body 13 is a member that supports the X-ray generation unit 11 and the X-ray detector 12 at positions facing each other with the subject E interposed therebetween. The rotating body 13 has an opening that penetrates in the slice direction. A top plate on which the subject E is placed is inserted into the opening. The rotating body 13 is rotated along a circular orbit centered on the subject E by the gantry driving unit 15. As a result, the subject E is scanned.
 架台駆動部15は、スキャンのために検出部101を回転させる機構と、検出部101を移動させるための機構とを有する。後者の機構が図2に示す検出駆動部102である。検出駆動部102は、検出部101を平行移動及び傾斜移動(チルト)させる。 The gantry driving unit 15 has a mechanism for rotating the detection unit 101 for scanning and a mechanism for moving the detection unit 101. The latter mechanism is the detection drive unit 102 shown in FIG. The detection drive unit 102 translates and tilts (tilts) the detection unit 101.
 この平行移動は任意の方向への変位である。たとえば、この平行移動には、上下方向への移動、左右方向への移動、及び、前後方向への移動のうちの1つ以上が含まれる。ここで、左右方向とは、後述の天板31の短手方向、つまり天板31に載置された被検体Eの体幅方向を示す。また、前後方向とは、天板31の長手方向、つまり天板31に載置された被検体Eの体軸方向を示す。上下方向とは、左右方向と前後方向の双方に直交する方向である。これら3つの方向のうち2つ以上の方向への移動が可能である場合、検出駆動部102は、これら2つ以上の方向への移動動作を組み合わせて、検出部101を任意の方向に移動させることができる。 This parallel movement is a displacement in an arbitrary direction. For example, this parallel movement includes one or more of a movement in the up-down direction, a movement in the left-right direction, and a movement in the front-rear direction. Here, the left-right direction indicates the short direction of the top plate 31 described later, that is, the body width direction of the subject E placed on the top plate 31. The front-rear direction indicates the longitudinal direction of the top plate 31, that is, the body axis direction of the subject E placed on the top plate 31. The up-down direction is a direction orthogonal to both the left-right direction and the front-rear direction. When the movement in two or more directions among these three directions is possible, the detection drive unit 102 moves the detection unit 101 in an arbitrary direction by combining the movement operations in these two or more directions. be able to.
 チルトは、天板31と検出部101との間の傾斜角度を変更する動作である。この傾斜角度は、たとえば、天板31の上面の法線方向と、スキャン時に検出部101が回転移動される面(つまり回転体13の回転面)の法線方向とが成す角度として定義することができる。 Tilt is an operation for changing the tilt angle between the top plate 31 and the detection unit 101. This inclination angle is defined as, for example, an angle formed by the normal direction of the upper surface of the top plate 31 and the normal direction of the surface on which the detection unit 101 is rotated during scanning (that is, the rotation surface of the rotating body 13). Can do.
 高電圧発生部14は、X線発生部11に対して高電圧を印加する。X線発生部11は、この高電圧に基づいてX線を発生させる。X線絞り部16は、スリット(開口)を形成し、このスリットのサイズ及び形状を変えることで、X線発生部11から出力されたX線のファン角(チャンネル方向の広がり角)とX線のコーン角(スライス方向の広がり角)とを調整する。絞り駆動部17は、X線絞り部16を駆動して、スリットのサイズ及び形状を変更する。 The high voltage generator 14 applies a high voltage to the X-ray generator 11. The X-ray generator 11 generates X-rays based on this high voltage. The X-ray diaphragm unit 16 forms a slit (opening), and changes the size and shape of the slit so that the X-ray fan angle (divergence angle in the channel direction) output from the X-ray generation unit 11 and the X-rays are changed. Adjust the cone angle (spreading angle in the slice direction). The diaphragm drive unit 17 drives the X-ray diaphragm unit 16 to change the size and shape of the slit.
 データ収集部18(DAS:Data Acquisition System)は、X線検出器12(各X線検出素子)からの検出データを収集する。更に、データ収集部18は、収集された検出データ(電流信号)を電圧信号に変換し、この電圧信号を周期的に積分して増幅し、デジタル信号に変換する。そして、データ収集部18は、デジタル信号に変換された検出データをコンソール装置40に送信する。 The data collection unit 18 (DAS: Data Acquisition System) collects detection data from the X-ray detector 12 (each X-ray detection element). Further, the data collection unit 18 converts the collected detection data (current signal) into a voltage signal, periodically integrates and amplifies the voltage signal, and converts it into a digital signal. Then, the data collecting unit 18 transmits the detection data converted into the digital signal to the console device 40.
(寝台装置)
 寝台装置30の天板31(図2参照)には被検体Eが載置される。寝台装置30には、天板31に載置された被検体Eを移動させるための天板駆動部32が設けられている。天板駆動部32は、たとえば、前述した上下方向、左右方向及び前後方向に天板31を移動可能とされる。また、天板駆動部32は、天板31を傾斜可能に構成されていてもよい。
(Bed apparatus)
The subject E is placed on the top 31 (see FIG. 2) of the bed apparatus 30. The couch device 30 is provided with a couchtop drive unit 32 for moving the subject E placed on the couchtop 31. For example, the top plate drive unit 32 can move the top plate 31 in the above-described vertical direction, left-right direction, and front-back direction. Moreover, the top-plate drive part 32 may be comprised so that the top-plate 31 can incline.
 検出駆動部102と天板駆動部32は、天板31と検出部101との間の相対位置を変更する「駆動部」の一例として機能する。なお、この実施形態では天板31を移動させる機構(第1の駆動部)と検出部101を移動させる機構(第2の駆動部)の双方を備えているが、これら機構の一方のみを設けた構成を採用することも可能である。 The detection drive unit 102 and the top plate drive unit 32 function as an example of a “drive unit” that changes the relative position between the top plate 31 and the detection unit 101. In this embodiment, both the mechanism (first drive unit) for moving the top plate 31 and the mechanism (second drive unit) for moving the detection unit 101 are provided, but only one of these mechanisms is provided. It is also possible to adopt a different configuration.
(コンソール装置)
 コンソール装置40は、X線CT装置1に対する操作入力に用いられる。また、コンソール装置40は、架台装置10から入力された検出データから被検体Eの内部形態を表すCT画像データ(断層画像データやボリュームデータ)を再構成する。コンソール装置40は、制御部41と、スキャン制御部42と、処理部43と、記憶部44と、表示部45と、操作部46とを含んで構成される。
(Console device)
The console device 40 is used for operation input to the X-ray CT apparatus 1. Further, the console device 40 reconstructs CT image data (tomographic image data and volume data) representing the internal form of the subject E from the detection data input from the gantry device 10. The console device 40 includes a control unit 41, a scan control unit 42, a processing unit 43, a storage unit 44, a display unit 45, and an operation unit 46.
 制御部41、スキャン制御部42及び処理部43は、たとえば処理装置と記憶装置を含んで構成される。処理装置としては、たとえば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、又はASIC(Application Specific Integrated Circuit)が用いられる。記憶装置は、たとえば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)を含んで構成される。記憶装置には、X線CT装置1の各部の機能を実行するためのコンピュータプログラムが記憶されている。処理装置は、これらコンピュータプログラムを実行することで、上記機能を実現する。制御部41は、装置各部を制御する。図2に示す制御部41の内部構成については後述する。 The control unit 41, the scan control unit 42, and the processing unit 43 include, for example, a processing device and a storage device. As the processing device, for example, a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), or an ASIC (Application Specific Integrated Circuit) is used. The storage device includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disc Drive). The storage device stores a computer program for executing the function of each unit of the X-ray CT apparatus 1. The processing device implements the above functions by executing these computer programs. The control unit 41 controls each unit of the apparatus. The internal configuration of the control unit 41 shown in FIG. 2 will be described later.
 スキャン制御部42は、X線によるスキャンに関する動作を統合的に制御する。この統合的な制御は、高電圧発生部14の制御と、架台駆動部15の制御と、絞り駆動部17の制御と、寝台装置30の制御とを含む。高電圧発生部14の制御は、X線発生部11に対して所定の高電圧を所定のタイミングで印加させるように高電圧発生部14を制御するものである。架台駆動部15の制御は、所定のタイミング及び所定の速度で回転体13を回転駆動させるように架台駆動部15を制御するものである。絞り制御部17の制御は、X線絞り部16が所定のサイズ及び形状のスリットを形成するように絞り駆動部17を制御するものである。寝台装置30の制御は、所定の位置に所定のタイミングで天板を移動させるように寝台装置30を制御するものである。なお、ボリュームスキャンでは、天板の位置を固定した状態でスキャンが実行される。また、ヘリカルスキャンでは、天板を移動させながらスキャンが実行される。 The scan control unit 42 integrally controls operations related to scanning with X-rays. This integrated control includes control of the high voltage generation unit 14, control of the gantry driving unit 15, control of the aperture driving unit 17, and control of the bed apparatus 30. The control of the high voltage generator 14 is to control the high voltage generator 14 so that a predetermined high voltage is applied to the X-ray generator 11 at a predetermined timing. The control of the gantry driving unit 15 controls the gantry driving unit 15 so as to rotationally drive the rotating body 13 at a predetermined timing and a predetermined speed. The control of the diaphragm control unit 17 controls the diaphragm driving unit 17 so that the X-ray diaphragm unit 16 forms a slit having a predetermined size and shape. The control of the couch device 30 is to control the couch device 30 so that the top plate is moved to a predetermined position at a predetermined timing. In the volume scan, the scan is executed with the position of the top plate fixed. In the helical scan, the scan is executed while moving the top plate.
 処理部43は、架台装置10(データ収集部18)から送信された検出データに対して各種処理を実行する。処理部43は、前処理部431と、再構成処理部432と、レンダリング処理部433と、断面位置判断部434とを含んで構成される。 The processing unit 43 performs various processes on the detection data transmitted from the gantry device 10 (data collection unit 18). The processing unit 43 includes a preprocessing unit 431, a reconstruction processing unit 432, a rendering processing unit 433, and a cross-sectional position determination unit 434.
 前処理部431は、架台装置10からの検出データに対して対数変換処理、オフセット補正、感度補正、ビームハードニング補正等を含む前処理を行って、投影データを生成する。 The pre-processing unit 431 performs pre-processing including logarithmic conversion processing, offset correction, sensitivity correction, beam hardening correction, and the like on the detection data from the gantry device 10 to generate projection data.
 再構成処理部432は、前処理部431により生成された投影データに基づいて、CT画像データ(断層画像データやボリュームデータ)を生成する。断層画像データの再構成処理としては、たとえば、2次元フーリエ変換法、コンボリューション・バックプロジェクション法等、任意の方法を適用することができる。ボリュームデータは、再構成された複数の断層画像データを補間処理することにより生成される。ボリュームデータの再構成処理としては、たとえば、コーンビーム再構成法、マルチスライス再構成法、拡大再構成法等、任意の方法を適用することができる。上述した多列のX線検出器を用いたボリュームスキャンにおいては、広範囲のボリュームデータを再構成することができる。 The reconstruction processing unit 432 generates CT image data (tomographic image data or volume data) based on the projection data generated by the preprocessing unit 431. As the reconstruction processing of the tomographic image data, for example, any method such as a two-dimensional Fourier transform method or a convolution / back projection method can be applied. The volume data is generated by interpolating a plurality of reconstructed tomographic image data. As volume data reconstruction processing, for example, an arbitrary method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be applied. In the volume scan using the multi-row X-ray detector described above, a wide range of volume data can be reconstructed.
 レンダリング処理部433は、たとえば、MPR処理とボリュームレンダリングを実行可能である。MPR処理は、再構成処理部432により生成されたボリュームデータに任意の断面を設定してレンダリング処理を施すことにより、この断面を表すMPR画像データを生成する画像処理である。ボリュームレンダリングは、任意の視線(レイ)に沿ってボリュームデータをサンプリングし、その値(CT値)を加算していくことにより、被検体Eの3次元領域を表す擬似的3次元画像データを生成する画像処理である。 The rendering processing unit 433 can execute, for example, MPR processing and volume rendering. The MPR process is an image process for generating MPR image data representing a section by setting an arbitrary section to the volume data generated by the reconstruction processing unit 432 and performing a rendering process. Volume rendering generates pseudo three-dimensional image data representing the three-dimensional region of the subject E by sampling volume data along an arbitrary line of sight (ray) and adding the values (CT values). Image processing.
 図2に示す画像形成部435は、前処理部431と、再構成処理部432と、レンダリング処理部433とを含む。画像形成部435は、スキャンにより得られたデータに基づいて被検体Eの画像データを形成する「形成部」の一例として機能する。 The image forming unit 435 shown in FIG. 2 includes a preprocessing unit 431, a reconstruction processing unit 432, and a rendering processing unit 433. The image forming unit 435 functions as an example of a “forming unit” that forms image data of the subject E based on data obtained by scanning.
 断面位置判断部434は、異なるタイミングで行われたスキャンにより得られた2つの画像データを比較して、これら画像データにより描出される被検体Eの断面の位置が実質的に同一であるか判断する。断面位置判断部434は「判断部」の一例として機能する。 The cross-section position determination unit 434 compares two image data obtained by scans performed at different timings, and determines whether or not the position of the cross-section of the subject E drawn by these image data is substantially the same. To do. The cross-section position determination unit 434 functions as an example of a “determination unit”.
 断面位置判断部434が実行する処理の例を説明する。断面の位置が実質的に同じである場合、2つの画像データは実質的に同じ画像を提示するものとなる。断面位置判断部434は、たとえば2つの画像データの差分画像(サブトラクション画像)を求め、この差分画像が実質的に何も描写していないか判定する。差分画像に実質的に何も描写されていないと判定された場合、断面位置判断部434は、これら画像データにより描出される断面位置は実質的に同一であると判断する。 An example of processing executed by the cross-section position determination unit 434 will be described. When the position of the cross section is substantially the same, the two image data present substantially the same image. For example, the cross-sectional position determination unit 434 obtains a difference image (subtraction image) between two pieces of image data, and determines whether or not the difference image substantially depicts anything. When it is determined that substantially nothing is depicted in the difference image, the cross-sectional position determination unit 434 determines that the cross-sectional positions rendered by these image data are substantially the same.
 他の処理例として、断面位置判断部434は、各画像データから特徴部位(臓器、血管等)を抽出し、これら特徴部位の形状及び/又は位置が実質的に同じであるか判定する。特徴部位の形状及び/又は位置が実質的に同じであると判定された場合、断面位置判断部434は、これら画像データにより描出される断面位置は実質的に同一であると判断する。なお、断面位置の同一性を判断する処理はこれらに限定されるものではなく、任意の画像処理技術を適用することができる。 As another processing example, the cross-sectional position determination unit 434 extracts feature parts (organ, blood vessel, etc.) from each image data, and determines whether the shape and / or position of these feature parts are substantially the same. When it is determined that the shape and / or position of the characteristic portion is substantially the same, the cross-sectional position determination unit 434 determines that the cross-sectional positions drawn by these image data are substantially the same. Note that the process of determining the identity of the cross-sectional positions is not limited to these, and any image processing technique can be applied.
 断面の位置が「実質的に同じ」とは、完全に同じ場合だけでなく、所定の許容誤差が存在する場合も含むことを示す。この許容誤差が存在する場合の例として、上記差分画像により描出されている画像の画素数が所定閾値以下である場合、上記特徴部位の形状及び/又は位置の誤差が所定閾値以下である場合、被検体Eとともに描出される物体(穿刺針等)の位置や向きの誤差が所定閾値以下である場合などがある。 “The cross-sectional position is“ substantially the same ”indicates that not only the case where the cross section is completely the same but also the case where a predetermined tolerance exists is included. As an example of the case where this allowable error exists, when the number of pixels of the image depicted by the difference image is equal to or smaller than a predetermined threshold, when the shape and / or position error of the characteristic part is equal to or smaller than a predetermined threshold, There may be a case where an error in the position or orientation of an object (such as a puncture needle) depicted with the subject E is equal to or less than a predetermined threshold.
 記憶部44は、検出データ、投影データ、再構成処理後の画像データ等を記憶する。表示部45は、LCD(Liquid Crystal Display)等の表示デバイスによって構成される。操作部46は、X線CT装置1に対する各種の指示入力や情報入力に用いられる。操作部46は、たとえばキーボード、マウス、トラックボール、ジョイスティック、フットスイッチ等により構成される。また、操作部46は、表示部45に表示されたGUI(Graphical User Interface)を含んでいてもよい。 The storage unit 44 stores detection data, projection data, image data after reconstruction processing, and the like. The display unit 45 includes a display device such as an LCD (Liquid Crystal Display). The operation unit 46 is used for inputting various instructions and information to the X-ray CT apparatus 1. The operation unit 46 includes, for example, a keyboard, a mouse, a trackball, a joystick, a foot switch, and the like. The operation unit 46 may include a GUI (Graphical User Interface) displayed on the display unit 45.
 図2を参照して制御部41について説明する。制御部41は、情報記憶部411と、情報選択部412と、駆動制御部413と、報知制御部414とを有する。 The control unit 41 will be described with reference to FIG. The control unit 41 includes an information storage unit 411, an information selection unit 412, a drive control unit 413, and a notification control unit 414.
 情報記憶部411は、スキャンが行われたときの天板31と検出部101との相対位置を示す相対位置情報を記憶部44に記憶させる。この相対位置は、天板駆動部32及び検出駆動部102に対する駆動制御部413の制御内容によって得られる。 The information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position between the top 31 and the detection unit 101 when the scan is performed. This relative position is obtained by the control contents of the drive control unit 413 with respect to the top plate drive unit 32 and the detection drive unit 102.
 この処理の具体例を説明する。駆動制御部413は、天板駆動部32に対して制御信号を送信することで天板31を移動させる。また、駆動制御部413は、検出駆動部102に対して制御信号を送信することで検出部101を移動させる。これら制御信号は、その制御内容として、移動方向を示す情報と移動量を示す情報とを含む。また、天板駆動部32及び検出駆動部102による対象物の移動には、それぞれ、所定の基準位置があらかじめ設定されている。情報記憶部411は、天板31の基準位置と検出部101の基準位置との間の相対位置をあらかじめ記憶している。相対位置は、たとえばあらかじめ設定された3次元座標系の座標として表現される。この3次元座標系は、たとえば架台装置10及び寝台装置30が設置された空間における位置を表現するものである。駆動制御部413は、制御信号を送信する度に、その制御内容を情報記憶部411に送る。情報記憶部411は、天板31の移動に関する制御内容と、検出部101の移動に関する制御内容とをそれぞれ記録する。それにより、情報記憶部411は、天板31の移動に関する制御履歴と、検出部101の移動に関する制御履歴とを把握することができる。各制御履歴は、対応する基準位置を始点とするものとする。情報記憶部411は、これら制御履歴を参照することにより、天板31及び検出部101のそれぞれの現在位置を上記座標として求めることができる。スキャンが実行されると、情報記憶部411は、そのときにおける天板31及び検出部101のそれぞれの座標を求め、これら座標の間の変位を求める。この変位が、天板31と検出部101との相対位置となる。情報記憶部411は、この相対位置を示す相対位置情報を記憶部44に記憶させる。なお、情報記憶部411が実行する処理はこれに限定されるものではなく、天板31と検出部101との相対位置を求めることが可能な任意の技術であってよい。 A specific example of this process will be described. The drive control unit 413 moves the top plate 31 by transmitting a control signal to the top plate drive unit 32. The drive control unit 413 moves the detection unit 101 by transmitting a control signal to the detection drive unit 102. These control signals include information indicating the direction of movement and information indicating the amount of movement as the contents of the control. A predetermined reference position is set in advance for each movement of the object by the top board driving unit 32 and the detection driving unit 102. The information storage unit 411 stores a relative position between the reference position of the top plate 31 and the reference position of the detection unit 101 in advance. The relative position is expressed, for example, as coordinates in a preset three-dimensional coordinate system. This three-dimensional coordinate system represents a position in a space where the gantry device 10 and the couch device 30 are installed, for example. The drive control unit 413 sends the control content to the information storage unit 411 every time a control signal is transmitted. The information storage unit 411 records the control content related to the movement of the top plate 31 and the control content related to the movement of the detection unit 101. Thereby, the information storage unit 411 can grasp the control history related to the movement of the top 31 and the control history related to the movement of the detection unit 101. Each control history starts from the corresponding reference position. The information storage unit 411 can obtain the current positions of the top board 31 and the detection unit 101 as the coordinates by referring to these control histories. When the scan is executed, the information storage unit 411 obtains the coordinates of the top plate 31 and the detection unit 101 at that time, and obtains the displacement between these coordinates. This displacement is a relative position between the top plate 31 and the detection unit 101. The information storage unit 411 stores relative position information indicating the relative position in the storage unit 44. In addition, the process which the information storage part 411 performs is not limited to this, The arbitrary techniques which can obtain | require the relative position of the top plate 31 and the detection part 101 may be used.
 情報選択部412について説明する。情報選択部412は、スキャンが複数回実行された場合において、2回以上のスキャンにおける相対位置情報が記憶部44に記憶された場合に、これら相対位置情報のうちの1つを選択する。駆動制御部413は、情報選択部412により選択された相対位置情報に基づいて、天板駆動部32及び/又は検出駆動部102の制御を行う。情報選択部412は「選択部」の一例として機能する。情報選択部412の動作の例を以下に説明する。 The information selection unit 412 will be described. The information selection unit 412 selects one of the relative position information when the relative position information of two or more scans is stored in the storage unit 44 when the scan is executed a plurality of times. The drive control unit 413 controls the top plate drive unit 32 and / or the detection drive unit 102 based on the relative position information selected by the information selection unit 412. The information selection unit 412 functions as an example of a “selection unit”. An example of the operation of the information selection unit 412 will be described below.
 第1の動作例を説明する。第1の動作例において、選択部は、情報選択部412に加えて表示部45と操作部46を含む。表示部45は、記憶部44に記憶されている2つ以上の相対位置情報に示す2つ以上の相対位置を表示する。これら相対位置は、たとえば文字情報として、又は画像情報として提示される。文字情報の例として、各スキャンの識別情報(たとえばスキャンに付された名称、番号等、又はスキャンの対象臓器名等)、相対位置を示す情報(たとえば上記変位を示す数値、天板31及び検出部101の位置を示す座標)などがある。画像情報の例として、各スキャンを示すアイコン、スキャンの対象臓器を示すアイコン、相対位置を示すアイコンなどがある。ユーザは、表示部45に表示された2つ以上の相対位置のうち所望のものを、操作部46を用いて指定する。情報選択部412は、指定された相対位置に対応する相対位置情報を記憶部44から読み出す。更に、情報選択部412は、読み出された相対位置情報と、天板31及び検出部101のそれぞれの現在位置とに基づいて、現在の相対位置を起点として天板31及び/又は検出部101を当該相対位置情報に示す相対位置まで移動させるための、天板31及び/又は検出部101の移動方向及び移動量を算出する。この算出処理は、たとえば上記3次元座標系におけるこれら相対位置の座標の間の変位を求めることにより行われる。情報選択部412は、算出された移動方向及び移動量を示す情報を駆動制御部413に送る。駆動制御部413は、情報選択部412から入力された情報に基づいて制御信号を生成し、天板駆動部32及び/又は検出駆動部102に送る。天板駆動部32及び/又は検出駆動部102は、この制御信号に基づいて天板31及び/又は検出部101を移動させる。それにより、天板31と検出部101が、情報選択部412により選択された相対位置情報に示す相対位置に配置される。 A first operation example will be described. In the first operation example, the selection unit includes a display unit 45 and an operation unit 46 in addition to the information selection unit 412. The display unit 45 displays two or more relative positions indicated in the two or more relative position information stored in the storage unit 44. These relative positions are presented as character information or image information, for example. Examples of character information include identification information for each scan (for example, the name, number, etc. given to the scan, or the name of the target organ for the scan, etc.), information indicating the relative position (for example, numerical values indicating the displacement, top plate 31 and detection The coordinates indicating the position of the part 101). Examples of image information include an icon indicating each scan, an icon indicating a target organ to be scanned, and an icon indicating a relative position. The user designates a desired one of two or more relative positions displayed on the display unit 45 using the operation unit 46. The information selection unit 412 reads relative position information corresponding to the designated relative position from the storage unit 44. Furthermore, the information selection unit 412 uses the current relative position as a starting point based on the read relative position information and the current positions of the table 31 and the detection unit 101, and / or the detection unit 101. Is moved to the relative position indicated by the relative position information, and the movement direction and the movement amount of the top 31 and / or the detection unit 101 are calculated. This calculation process is performed, for example, by obtaining a displacement between the coordinates of these relative positions in the three-dimensional coordinate system. The information selection unit 412 sends information indicating the calculated movement direction and movement amount to the drive control unit 413. The drive control unit 413 generates a control signal based on the information input from the information selection unit 412 and sends the control signal to the top plate drive unit 32 and / or the detection drive unit 102. The top plate driving unit 32 and / or the detection driving unit 102 moves the top plate 31 and / or the detection unit 101 based on this control signal. Thereby, the top plate 31 and the detection unit 101 are arranged at the relative positions indicated by the relative position information selected by the information selection unit 412.
 第2の動作例を説明する。第2の動作例において、選択部は、情報選択部412に加えて操作部46を含む。ユーザは、スキャンに対応し、操作部46を用いて所定操作を行う。「スキャンに対応し」とは、当該スキャンの前、当該スキャン中、当該スキャンの後を含むものとする。スキャンの前とは、前回のスキャンから今回のスキャンまでの間の任意のタイミングを含む。また、今回のスキャンが最初のスキャンである場合には、文字通り今回のスキャンの前を意味する。スキャンの後とは、今回のスキャンから次回のスキャンまでの間の任意のタイミングを含む。情報選択部412は、所定操作が行われたスキャンに対応して記憶部44に記憶された相対位置情報に対して識別情報を付与する。この識別情報はたとえばフラグである。上記今回のスキャンよりも後にスキャン(新たなスキャンと呼ぶことがある)が行われる前に、情報選択部412は、記憶部44に記憶された2つ以上の相対位置情報のうちから所定操作がなされたスキャンにおける相対位置情報(識別情報が付された相対位置情報)を記憶部44から選択的に読み出す。以降の処理は第1の動作例と同様である。ここで、識別情報が付与される相対位置情報は1つだけとする。既に識別情報が付与された相対位置情報が存在する場合に上記所定操作が新たに行われると、情報選択部412は、既に付与された識別情報を削除し、この新たな所定操作に対応する相対位置情報に識別情報を付与する。なお、2つ以上の相対位置情報に識別情報を付与できるように構成することも可能である。その場合、識別情報が付与されている2つ以上の相対位置情報に示す相対位置を、第1の動作例と同様にユーザにより指定可能に表示させるように構成することが可能である。 A second operation example will be described. In the second operation example, the selection unit includes an operation unit 46 in addition to the information selection unit 412. The user performs a predetermined operation using the operation unit 46 in response to the scan. “Corresponding to scan” includes before, during, and after the scan. The term “before scan” includes an arbitrary timing from the previous scan to the current scan. Further, when the current scan is the first scan, it literally means before the current scan. After the scan includes an arbitrary timing between the current scan and the next scan. The information selection unit 412 gives identification information to the relative position information stored in the storage unit 44 corresponding to the scan in which the predetermined operation is performed. This identification information is, for example, a flag. Before a scan (sometimes referred to as a new scan) is performed after the current scan, the information selection unit 412 performs a predetermined operation from two or more pieces of relative position information stored in the storage unit 44. Relative position information (relative position information to which identification information is added) in the performed scan is selectively read from the storage unit 44. The subsequent processing is the same as in the first operation example. Here, only one piece of relative position information is given identification information. When the predetermined operation is newly performed when there is relative position information to which identification information has already been added, the information selection unit 412 deletes the identification information that has already been assigned, and the relative operation corresponding to the new predetermined operation is performed. Identification information is given to position information. It is also possible to configure so that identification information can be given to two or more pieces of relative position information. In that case, it is possible to display the relative positions shown in the two or more pieces of relative position information to which the identification information is given in a manner that can be specified by the user as in the first operation example.
 報知制御部414について説明する。報知制御部414は、2つの画像データにより描出される被検体Eの断面の位置が実質的に同一でないと断面位置判断部434によって判断された場合に報知を行う。報知制御部414は「報知部」の一例として機能する。この報知処理の例として、所定の報知情報を表示部45に表示させることができる。この報知情報は、警告メッセージ等の文字情報、又は警告を示す画像情報である。また、所定の警告ウィンドウをポップアップ表示させるようにしてもよい。これらの場合、報知部は、報知制御部414に加えて表示部45を含む。また、図示しない音声出力部を制御して警告音や警告メッセージを出力させるようにしてもよい。この場合、報知部は、報知制御部414に加えて音声出力部を含む。 The notification control unit 414 will be described. The notification control unit 414 performs notification when it is determined by the cross-sectional position determination unit 434 that the positions of the cross sections of the subject E depicted by the two image data are not substantially the same. The notification control unit 414 functions as an example of a “notification unit”. As an example of the notification process, predetermined notification information can be displayed on the display unit 45. This notification information is character information such as a warning message or image information indicating a warning. Further, a predetermined warning window may be displayed in a pop-up manner. In these cases, the notification unit includes a display unit 45 in addition to the notification control unit 414. Further, a warning sound or a warning message may be output by controlling a voice output unit (not shown). In this case, the notification unit includes an audio output unit in addition to the notification control unit 414.
[動作]
 この実施形態に係るX線CT装置1の動作を説明する。図3に示すフローチャートは、穿刺を行う場合における動作例を示す。
[Operation]
The operation of the X-ray CT apparatus 1 according to this embodiment will be described. The flowchart shown in FIG. 3 shows an operation example in the case of puncturing.
(S1:スキャンを行う)
 まず、寝台装置30の天板31に被検体Eを載置し、架台装置10の開口部に挿入する。所定のスキャン開始操作がなされると、制御部41は、スキャン制御部42に制御信号を送る。この制御信号を受けたスキャン制御部42は、高電圧発生部14、架台駆動部15及び絞り駆動部17を制御して、被検体EをX線でスキャンさせる。X線検出器12は、被検体Eを透過したX線を検出する。データ収集部18は、スキャンに伴いX線検出器12から逐次に生成される検出データを収集する。データ収集部18は、収集された検出データを前処理部431に送る。
(S1: Perform scanning)
First, the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10. When a predetermined scan start operation is performed, the control unit 41 sends a control signal to the scan control unit 42. Upon receiving this control signal, the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays. The X-ray detector 12 detects X-rays that have passed through the subject E. The data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan. The data collection unit 18 sends the collected detection data to the preprocessing unit 431.
(S2:相対位置情報を記憶する)
 情報記憶部411は、たとえば前述の動作例のいずれかを行うことにより、ステップ1のスキャンにおける相対位置情報を記憶部44に記憶させる。
(S2: Store relative position information)
The information storage unit 411 stores the relative position information in the scan of step 1 in the storage unit 44 by performing, for example, any of the above-described operation examples.
(S3:画像データを形成する)
 前処理部431は、データ収集部18からの検出データに対して前述の前処理を施して投影データを生成する。再構成処理部432は、あらかじめ設定された再構成条件に基づく再構成処理を投影データに施すことにより、ボリュームデータを生成する。レンダリング処理部433は、ボリュームデータに基づくMPR画像データを生成する。MPR画像データは、直交3軸画像のいずれかの画像データでもよいし、任意に設定された断面に基づくオブリーク画像の画像データでもよい。
(S3: Form image data)
The preprocessing unit 431 performs the above-described preprocessing on the detection data from the data collection unit 18 to generate projection data. The reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions. The rendering processing unit 433 generates MPR image data based on the volume data. The MPR image data may be any image data of orthogonal three-axis images, or may be image data of oblique images based on arbitrarily set cross sections.
(S4:画像を表示する)
 制御部41は、ステップ3で形成された画像データに基づく画像を表示部45に表示させる。
(S4: display an image)
The control unit 41 causes the display unit 45 to display an image based on the image data formed in step 3.
(S5、S6:穿刺作業を行う)
 術者は、所定の操作を行って架台装置10と天板31とを相対的に移動させることで、所定の穿刺作業位置に被検体Eを移動させる。そして、術者は、ステップ4で表示された画像を参照しつつ、被検体Eに対する穿刺作業を行う。この実施形態における穿刺は、スキャンと穿刺作業とを交互に行いながら徐々に進められる。
(S5, S6: Puncture work is performed)
The surgeon moves the subject E to a predetermined puncture work position by performing a predetermined operation to relatively move the gantry device 10 and the top plate 31. Then, the surgeon performs a puncturing operation on the subject E while referring to the image displayed in step 4. Puncturing in this embodiment is gradually advanced while alternately performing scanning and puncturing work.
(S7:スキャンを指示する)
 穿刺作業が終了したら、術者は、所定の操作を行なって再度のスキャンを指示する。
(S7: Instruct scanning)
When the puncture operation is completed, the surgeon performs a predetermined operation and instructs another scan.
(S8:天板・検出部をスキャン位置に移動する)
 スキャンの指示を受けた制御部41は、たとえば前述の動作例のいずれかにしたがい、ステップ2で記憶された相対位置情報に基づいて天板31及び/又は検出部101を移動させる。それにより、天板31と検出部101が、ステップ1のスキャンと同じ相対位置に配置される。ステップ1に戻り、再度のスキャンが実行される。なお、ステップ1からの処理を繰り返す場合に、ステップ2における相対位置情報の記憶は少なくとも一回行えばよい。
(S8: Move the top / detector to the scan position)
The control unit 41 that has received the scan instruction moves the top 31 and / or the detection unit 101 based on the relative position information stored in step 2 according to, for example, any of the above-described operation examples. Thereby, the top plate 31 and the detection unit 101 are arranged at the same relative position as the scan in Step 1. Returning to step 1, another scan is executed. When the processing from step 1 is repeated, the relative position information in step 2 may be stored at least once.
 以上の処理が穿刺の終了(ステップ5:YES)まで繰り返される。 The above process is repeated until the end of puncture (step 5: YES).
[作用・効果]
 この実施形態に係るX線CT装置1の作用及び効果を説明する。
[Action / Effect]
The operation and effect of the X-ray CT apparatus 1 according to this embodiment will be described.
 X線CT装置1は、寝台装置30と、架台装置10と、画像形成部435と、天板駆動部32及び/又は検出駆動部102(まとめて駆動部と呼ぶことがある)と、記憶部44と、駆動制御部413とを有する。寝台装置30は、被検体Eが載置される天板31を有する。架台装置10は、互いに対向して配置されたX線管(X線発生部11)及びX線検出器12を含む検出部101を回転させることにより、被検体Eに対するスキャンを行う。画像形成部435は、スキャンにより得られたデータに基づいて被検体Eの画像データを形成する。駆動部は、天板31と検出部101との間の相対位置を変更する。記憶部44は、スキャンが行われたときの相対位置を示す相対位置情報を記憶する。駆動制御部413は、新たなスキャンが行われるときに駆動部を制御して、記憶部44に記憶された相対位置情報に示す相対位置に天板31と検出部101とを配置させる。 The X-ray CT apparatus 1 includes a couch device 30, a gantry device 10, an image forming unit 435, a top plate driving unit 32 and / or a detection driving unit 102 (sometimes collectively referred to as a driving unit), and a storage unit. 44 and a drive control unit 413. The bed apparatus 30 includes a top plate 31 on which the subject E is placed. The gantry device 10 scans the subject E by rotating the detection unit 101 including the X-ray tube (X-ray generation unit 11) and the X-ray detector 12 that are arranged to face each other. The image forming unit 435 forms image data of the subject E based on the data obtained by scanning. The drive unit changes the relative position between the top plate 31 and the detection unit 101. The storage unit 44 stores relative position information indicating a relative position when scanning is performed. The drive control unit 413 controls the drive unit when a new scan is performed, and arranges the top plate 31 and the detection unit 101 at the relative positions indicated by the relative position information stored in the storage unit 44.
 このX線CT装置1によれば、新たなスキャンを行うときに、過去にスキャンが行われたときの天板31と検出部101との相対位置を自動で再現することができる。したがって、被検体Eをスキャン位置に配置させる作業の容易化及び時間短縮を図ることが可能である。 According to the X-ray CT apparatus 1, when a new scan is performed, the relative position between the top 31 and the detection unit 101 when the scan has been performed in the past can be automatically reproduced. Therefore, it is possible to facilitate the work of arranging the subject E at the scan position and reduce the time.
 上記相対位置は次の3つのうちの任意の1つ以上を含んでいてもよい:(1)天板31の長手方向(上記前後方向)における第1の相対位置;(2)天板31の短手方向における第2の相対位置(上記左右方向);(3)第1の相対位置及び第2の相対位置の双方に直交する方向における第3の相対位置(上記上下方向)。また、上記相対位置は、天板31と検出部101との間の傾斜角度を含んでいてもよい。 The relative position may include any one or more of the following three: (1) a first relative position in the longitudinal direction (the front-rear direction) of the top plate 31; (2) the top plate 31 Second relative position in the lateral direction (the left-right direction); (3) Third relative position (the up-down direction) in a direction orthogonal to both the first relative position and the second relative position. Further, the relative position may include an inclination angle between the top plate 31 and the detection unit 101.
 X線CT装置1は、スキャンが複数回行われた場合において、複数回のスキャンのうちの1回以上のスキャンにおける相対位置情報を記憶するように構成されていてもよい。更に、X線CT装置1は、複数回のスキャンのうちの2回以上のスキャンにおける相対位置情報を記憶している場合に、当該2つ以上の相対位置情報のうちの1つを選択する選択部を有し、かつ、駆動制御部413が、選択された相対位置情報に基づいて駆動部の制御を行うように構成されていてもよい。これにより、2つ以上の相対位置情報を記憶させることができ、更に、所望の相対位置を再現させることが可能となる。 The X-ray CT apparatus 1 may be configured to store relative position information in one or more of the multiple scans when the scan is performed multiple times. Further, the X-ray CT apparatus 1 selects one of the two or more relative position information when storing the relative position information in two or more scans of the plurality of scans. And the drive control unit 413 may be configured to control the drive unit based on the selected relative position information. Thereby, two or more pieces of relative position information can be stored, and a desired relative position can be reproduced.
 選択部は、表示部45と操作部46とを有していてもよい。表示部45は、2つ以上の相対位置情報に示す2つ以上の相対位置を表示する。操作部46は、表示された2つ以上の相対位置のうちの1つを指定するために用いられる。駆動制御部413は、指定された相対位置に対応する相対位置情報に基づいて駆動部の制御を行う。これにより、ユーザは、所望の相対位置を選択的に再現させることが可能となる。その使用形態の例を説明する。肺ガンに対する穿刺では、複数の腫瘍に対して個別に穿刺作業を行う。これら腫瘍のそれぞれについて相対位置情報を記憶させることができる。そして、或る腫瘍に対する穿刺作業を行うときに、この腫瘍に対応する相対位置情報を選択的に適用することで、この腫瘍に対応するスキャン位置を自動的に再現させることができる。 The selection unit may include a display unit 45 and an operation unit 46. The display unit 45 displays two or more relative positions indicated by two or more relative position information. The operation unit 46 is used to designate one of the two or more displayed relative positions. The drive control unit 413 controls the drive unit based on relative position information corresponding to the designated relative position. Thereby, the user can selectively reproduce a desired relative position. An example of the usage pattern will be described. In puncture for lung cancer, puncture work is individually performed for a plurality of tumors. Relative position information can be stored for each of these tumors. Then, when performing a puncturing operation on a certain tumor, the scan position corresponding to this tumor can be automatically reproduced by selectively applying the relative position information corresponding to this tumor.
 選択部は操作部46を含んでいてもよい。スキャンに対応して操作部46により所定操作がなされた場合において、選択部は、新たなスキャンが行われる前に、記憶部44に記憶された2つ以上の相対位置情報のうちから所定操作がなされたスキャンにおける相対位置情報を選択する。駆動制御部413は、選択された相対位置情報に基づいて駆動部の制御を行う。これにより、ユーザは、将来スキャン位置を再現させたい場合に、当該スキャンに対応して所定操作を行うことができる。この操作は、将来のスキャンにおけるスキャン位置をロックするものと言える。つまり、将来のスキャンにおいて、当該スキャン位置が自動的に再現される。 The selection unit may include an operation unit 46. When a predetermined operation is performed by the operation unit 46 in response to a scan, the selection unit performs a predetermined operation from two or more pieces of relative position information stored in the storage unit 44 before a new scan is performed. Select relative position information in the scan made. The drive control unit 413 controls the drive unit based on the selected relative position information. Thereby, when the user wants to reproduce the scan position in the future, the user can perform a predetermined operation corresponding to the scan. This operation can be said to lock the scan position in a future scan. That is, the scan position is automatically reproduced in future scans.
 X線CT装置1は、断面位置判断部434と報知部とを有していてもよい。断面位置判断部434は、過去のスキャンにより得られたデータに基づき形成された画像データと、新たなスキャンにより得られたデータに基づき形成された画像データとを比較して、当該2つの画像データにより描出される被検体Eの断面の位置が実質的に同一であるか判断する。報知部は、断面位置判断部434により断面の位置が実質的に同一でないと判断された場合に報知を行う。報知部は、たとえば報知制御部414及び表示部45(又は音声出力部)を含む。スキャン位置を再現した場合であっても、被検体Eの体動などにより、以前と異なる断面の画像が得られることがある。この画像に穿刺針や穿刺対象などが適正に描出されていないこともあり得る。そうすると、穿刺作業を正確にかつ円滑に行うことができない。この構成を有するX線CT装置1によれば、このような事態の発生を術者等に知らせることが可能である。 The X-ray CT apparatus 1 may include a cross-sectional position determination unit 434 and a notification unit. The cross-section position determination unit 434 compares the image data formed based on the data obtained by the past scan with the image data formed based on the data obtained by the new scan, and compares the two image data. To determine whether the positions of the cross-sections of the subject E drawn are substantially the same. The notification unit notifies when the cross-section position determination unit 434 determines that the cross-section positions are not substantially the same. An alerting | reporting part contains the alerting | reporting control part 414 and the display part 45 (or audio | voice output part), for example. Even when the scan position is reproduced, a cross-sectional image different from the previous one may be obtained due to the body movement of the subject E or the like. It is possible that a puncture needle, a puncture target, and the like are not properly depicted in this image. Then, the puncture operation cannot be performed accurately and smoothly. According to the X-ray CT apparatus 1 having this configuration, it is possible to notify an operator or the like of the occurrence of such a situation.
<第2実施形態>
 第2実施形態に係るX線CT装置について図面を参照しながら説明する。本実施形態では、被検体Eに対する医療行為を行う実施位置に被検体Eを配置させる作業の容易化及び時間短縮を図ることが可能な構成について説明する。医療行為とは、たとえば、MPR画像を参照して被検体Eに対して穿刺針を挿入させる処置等をいう。なお、第1実施形態と同様の構成については、詳細な説明を省略する。
<Second Embodiment>
An X-ray CT apparatus according to the second embodiment will be described with reference to the drawings. In the present embodiment, a configuration capable of facilitating the work of arranging the subject E at an implementation position for performing a medical action on the subject E and shortening the time will be described. The medical practice refers to, for example, treatment for inserting a puncture needle into the subject E with reference to an MPR image. Note that detailed description of the same configuration as in the first embodiment is omitted.
[構成]
 図4及び図5を参照し、第2実施形態に係るX線CT装置1の構成例を説明する。
[Constitution]
A configuration example of the X-ray CT apparatus 1 according to the second embodiment will be described with reference to FIGS. 4 and 5.
 本実施形態における処理部43は、前処理部431と、再構成処理部432と、レンダリング処理部433とを含んで構成される。 The processing unit 43 in the present embodiment includes a preprocessing unit 431, a reconstruction processing unit 432, and a rendering processing unit 433.
 また、制御部41は、情報記憶部411と、情報選択部412と、駆動制御部413とを有する。 Further, the control unit 41 includes an information storage unit 411, an information selection unit 412, and a drive control unit 413.
 情報記憶部411は、被検体Eに対する医療行為が行われるときの天板31と検出部101との相対位置を示す相対位置情報を記憶部44に記憶させる。この相対位置は、たとえば、天板駆動部32及び検出駆動部102に対する駆動制御部413の制御内容によって得られる。 The information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position between the top 31 and the detection unit 101 when the medical action is performed on the subject E. This relative position is obtained, for example, by the control content of the drive control unit 413 with respect to the top plate drive unit 32 and the detection drive unit 102.
 天板31(被検体E)が医療行為の実施位置にある場合、操作部46等からの指示入力に基づき、情報記憶部411は、そのときにおける天板31及び検出部101のそれぞれの座標を求め、これら座標の間の変位を求める。この変位が、天板31と検出部101との相対位置となる。情報記憶部411は、この相対位置を示す相対位置情報を記憶部44に記憶させる。 When the top 31 (subject E) is at the medical practice position, the information storage unit 411 determines the coordinates of the top 31 and the detection unit 101 at that time based on an instruction input from the operation unit 46 or the like. Obtain the displacement between these coordinates. This displacement is a relative position between the top plate 31 and the detection unit 101. The information storage unit 411 stores relative position information indicating the relative position in the storage unit 44.
 なお、相対位置情報は、予めユーザが設定した値(たとえば、検出部101に対する天板31の距離が600mm)を用いることも可能である。或いは、相対位置情報として、過去に同一被検体に対する同一部位への穿刺作業を行った際の天板31及び検出部101の位置情報や、X線CT装置1が配置された手術室内の初期位置における天板31及び検出部101の位置情報を用いることも可能である。これらの場合、情報記憶部411は天板31及び検出部101の座標の変位を求める処理が不要となる。 It should be noted that the relative position information may be a value set in advance by the user (for example, the distance of the top 31 to the detection unit 101 is 600 mm). Alternatively, as relative position information, position information of the top plate 31 and the detection unit 101 when the same subject was previously punctured to the same subject, and an initial position in the operating room where the X-ray CT apparatus 1 is disposed It is also possible to use the position information of the top plate 31 and the detection unit 101 in FIG. In these cases, the information storage unit 411 does not need to obtain the displacement of the coordinates of the top plate 31 and the detection unit 101.
 情報選択部412について説明する。情報選択部412は、被検体Eに対する医療行為が複数回実行された場合において、2回以上の医療行為における相対位置情報が記憶部44に記憶された場合に、これら相対位置情報のうちの1つを選択する。駆動制御部413は、情報選択部412により選択された相対位置情報に基づいて、天板駆動部32及び/又は検出駆動部102の制御を行う。本実施形態における情報選択部412の動作は、第1実施形態と同様、第1の動作例及び第2の動作例として示すことができる。なお、第1の動作例は、第1実施形態と同様であるため詳細な説明を省略する。 The information selection unit 412 will be described. When the medical action for the subject E is executed a plurality of times and the relative position information for two or more medical actions is stored in the storage unit 44, the information selection unit 412 Select one. The drive control unit 413 controls the top plate drive unit 32 and / or the detection drive unit 102 based on the relative position information selected by the information selection unit 412. The operation of the information selection unit 412 in the present embodiment can be shown as a first operation example and a second operation example, as in the first embodiment. Since the first operation example is the same as that of the first embodiment, detailed description thereof is omitted.
 本実施形態における第2の動作例を説明する。第2の動作例において、選択部は、情報選択部412に加えて操作部46を含む。ユーザは、医療行為に対応し、操作部46を用いて所定操作を行う。「医療行為に対応し」とは、当該医療行為の前、当該医療行為中、当該医療行為の後を含むものとする。医療行為の前とは、前回の医療行為から今回の医療行為までの間の任意のタイミングを含む。また、今回の医療行為が最初の医療行為である場合には、文字通り今回の医療行為の前を意味する。医療行為の後とは、今回の医療行為から次回の医療行為までの間の任意のタイミングを含む。情報選択部412は、所定操作が行われた医療行為に対応して記憶部44に記憶された相対位置情報に対して識別情報を付与する。この識別情報はたとえばフラグである。上記今回の医療行為よりも後に医療行為(新たな医療行為と呼ぶことがある)が行われる前に、情報選択部412は、記憶部44に記憶された2つ以上の相対位置情報のうちから所定操作がなされた医療行為における相対位置情報(識別情報が付された相対位置情報)を記憶部44から選択的に読み出す。以降の処理は第1の動作例(第1実施形態参照)と同様である。ここで、識別情報が付与される相対位置情報は1つだけとする。既に識別情報が付与された相対位置情報が存在する場合に上記所定操作が新たに行われると、情報選択部412は、既に付与された識別情報を削除し、この新たな所定操作に対応する相対位置情報に識別情報を付与する。なお、2つ以上の相対位置情報に識別情報を付与できるように構成することも可能である。その場合、識別情報が付与されている2つ以上の相対位置情報に示す相対位置を、第1の動作例と同様にユーザにより指定可能に表示させるように構成することが可能である。 A second operation example in this embodiment will be described. In the second operation example, the selection unit includes an operation unit 46 in addition to the information selection unit 412. The user performs a predetermined operation using the operation unit 46 in response to the medical practice. “Corresponding to medical practice” includes before the medical practice, during the medical practice, and after the medical practice. Before a medical practice includes any timing between the previous medical practice and the current medical practice. In addition, when the current medical practice is the first medical practice, it literally means before the current medical practice. After the medical practice includes any timing between the current medical practice and the next medical practice. The information selection unit 412 gives identification information to the relative position information stored in the storage unit 44 in response to the medical practice for which a predetermined operation has been performed. This identification information is, for example, a flag. Before a medical practice (sometimes referred to as a new medical practice) is performed after the current medical practice, the information selection unit 412 may select from the two or more pieces of relative position information stored in the storage unit 44. Relative position information (relative position information with identification information) in a medical practice for which a predetermined operation has been performed is selectively read from the storage unit 44. The subsequent processing is the same as that of the first operation example (see the first embodiment). Here, only one piece of relative position information is given identification information. When the predetermined operation is newly performed when there is relative position information to which identification information has already been added, the information selection unit 412 deletes the identification information that has already been assigned, and the relative operation corresponding to the new predetermined operation is performed. Identification information is given to position information. It is also possible to configure so that identification information can be given to two or more pieces of relative position information. In that case, it is possible to display the relative positions shown in the two or more pieces of relative position information to which the identification information is given in a manner that can be specified by the user as in the first operation example.
[動作]
 本実施形態に係るX線CT装置1の動作を説明する。図6に示すフローチャートは、医療行為として穿刺を行う場合における動作例を示す。
[Operation]
The operation of the X-ray CT apparatus 1 according to this embodiment will be described. The flowchart shown in FIG. 6 shows an operation example when puncturing is performed as a medical practice.
(S10:スキャンを行う)
 まず、寝台装置30の天板31に被検体Eを載置し、架台装置10の開口部に挿入する。所定のスキャン開始操作がなされると、制御部41は、スキャン制御部42に制御信号を送る。この制御信号を受けたスキャン制御部42は、高電圧発生部14、架台駆動部15及び絞り駆動部17を制御して、被検体EをX線でスキャンさせる。X線検出器12は、被検体Eを透過したX線を検出する。データ収集部18は、スキャンに伴いX線検出器12から逐次に生成される検出データを収集する。データ収集部18は、収集された検出データを前処理部431に送る。
(S10: scan)
First, the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10. When a predetermined scan start operation is performed, the control unit 41 sends a control signal to the scan control unit 42. Upon receiving this control signal, the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays. The X-ray detector 12 detects X-rays that have passed through the subject E. The data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan. The data collection unit 18 sends the collected detection data to the preprocessing unit 431.
(S11:画像データを形成・表示する)
 前処理部431は、データ収集部18からの検出データに対して前述の前処理を施して投影データを生成する。再構成処理部432は、あらかじめ設定された再構成条件に基づく再構成処理を投影データに施すことにより、ボリュームデータを生成する。レンダリング処理部433は、ボリュームデータに基づくMPR画像データを生成する。制御部41は、生成されたMPR画像データに基づく画像を表示部45に表示させる。
(S11: Form and display image data)
The preprocessing unit 431 performs the above-described preprocessing on the detection data from the data collection unit 18 to generate projection data. The reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions. The rendering processing unit 433 generates MPR image data based on the volume data. The control unit 41 causes the display unit 45 to display an image based on the generated MPR image data.
(S12:穿刺作業を行う)
 術者は、所定の操作を行って架台装置10と天板31とを相対的に移動させることで、所定の穿刺作業位置(医療行為の実施位置)に被検体Eを移動させる。そして、術者は、ステップ11で表示された画像を参照しつつ、被検体Eに対する穿刺作業を行う。この実施形態における穿刺は、スキャンと穿刺作業とを交互に行いながら徐々に進められる。なお、ステップ12において架台装置10と天板31とを相対的に移動させる場合、制御部41は、予め記憶された相対位置情報に基づいて天板31及び/又は検出部101を移動させることも可能である。
(S12: Perform puncture work)
The surgeon moves the subject E to a predetermined puncture work position (a position where medical practice is performed) by performing a predetermined operation and relatively moving the gantry device 10 and the top board 31. Then, the surgeon performs a puncturing operation on the subject E while referring to the image displayed in step 11. Puncturing in this embodiment is gradually advanced while alternately performing scanning and puncturing work. Note that when the gantry device 10 and the top plate 31 are relatively moved in step 12, the control unit 41 may move the top plate 31 and / or the detection unit 101 based on the relative position information stored in advance. Is possible.
(S13:相対位置情報を記憶する)
 情報記憶部411は、たとえば前述の動作例のいずれかを行うことにより、ステップ12の医療行為が行われるときの相対位置情報を示す相対位置情報を記憶部44に記憶させる。
(S13: Store relative position information)
The information storage unit 411 causes the storage unit 44 to store relative position information indicating the relative position information when the medical action in step 12 is performed, for example, by performing any of the above-described operation examples.
(S14:再度のスキャンを行う)
 穿刺作業が終了したら、術者は、所定の操作を行なって再度のスキャンを指示する。スキャンの指示を受けた制御部41は、天板31及び/又は検出部101をスキャン位置まで移動させ、再度のスキャンを行う。
(S14: Scan again)
When the puncture operation is completed, the surgeon performs a predetermined operation and instructs another scan. Upon receiving the scan instruction, the control unit 41 moves the top plate 31 and / or the detection unit 101 to the scan position and performs another scan.
(S15:画像データを形成・表示する)
 そして、制御部41は、再度のスキャンで得られた検出データに基づく画像を表示部45に表示させる。
(S15: Form and display image data)
Then, the control unit 41 causes the display unit 45 to display an image based on the detection data obtained by the second scan.
(S16:穿刺の終了判断)
 術者は、ステップ15で表示された画像を参照し、穿刺針が穿刺対象に到達しているかどうかを判断する。穿刺針が穿刺対象に到達していない場合(穿刺が終了していない場合。ステップ16でNの場合)、更なる穿刺作業が必要となる。この場合、被検体Eを改めて穿刺作業位置まで移動させる必要がある。そこで、たとえば、術者以外の操作者が、操作部46等を介して天板31及び/又は検出部101の移動を指示する。操作者は、X線CT装置1等が配置された手術室外にあるコンソール装置40において指示入力を行うことができる。たとえば、操作者は、表示部45に表示された「Move Out」アイコンをクリックすることにより指示入力を行う。このように手術室外から天板31等を操作することにより、術者が直接、架台装置10に対して移動指示の入力操作を行う必要がない。よって、衛生面に優れる。なお、操作部46としてフットスイッチ等を用いることにより、衛生面に考慮しつつ、術者自身が当該指示入力を行うことも可能である。
(S16: Judgment completion)
The surgeon refers to the image displayed in step 15 and determines whether the puncture needle has reached the puncture target. If the puncture needle has not reached the puncture target (if the puncture has not been completed. In the case of N in step 16), further puncture work is required. In this case, it is necessary to move the subject E to the puncture work position again. Therefore, for example, an operator other than the operator instructs the movement of the top board 31 and / or the detection unit 101 via the operation unit 46 or the like. The operator can input instructions on the console device 40 outside the operating room where the X-ray CT apparatus 1 and the like are arranged. For example, the operator inputs an instruction by clicking a “Move Out” icon displayed on the display unit 45. Thus, by operating the top plate 31 and the like from outside the operating room, it is not necessary for the surgeon to directly input a movement instruction to the gantry device 10. Therefore, it is excellent in hygiene. In addition, by using a foot switch or the like as the operation unit 46, it is possible for the surgeon himself to input the instruction while considering hygiene.
(S17:天板・検出部を穿刺作業位置(医療行為の実施位置)に移動する)
 ステップ16において指示入力を受けた制御部41は、たとえば前述の動作例のいずれかにしたがい、ステップ13で記憶された相対位置情報に基づいて天板31及び/又は検出部101を移動させる。それにより、天板31と検出部101が、ステップ12の穿刺作業時と同じ相対位置に配置される(被検体Eを穿刺作業位置に配置する)。この状態で術者は穿刺作業を行う(ステップ12)。なお、ステップ12からステップ17を繰り返す場合に、ステップ13における相対位置情報の記憶は少なくとも一回行えばよい。
(S17: The top plate / detection unit is moved to the puncture work position (medical practice position))
The control unit 41 that has received the instruction input in step 16 moves the top plate 31 and / or the detection unit 101 based on the relative position information stored in step 13, for example, according to any of the above-described operation examples. Thereby, the top board 31 and the detection part 101 are arrange | positioned in the same relative position as the time of the puncture work of step 12 (the subject E is arrange | positioned in the puncture work position). In this state, the surgeon performs a puncturing operation (step 12). When step 12 to step 17 are repeated, the relative position information in step 13 may be stored at least once.
 以上の処理が穿刺の終了(ステップ16:YES)まで繰り返される。 The above processing is repeated until the end of puncture (step 16: YES).
[作用・効果]
 この実施形態に係るX線CT装置1の作用及び効果を説明する。
[Action / Effect]
The operation and effect of the X-ray CT apparatus 1 according to this embodiment will be described.
 X線CT装置1は、寝台装置30と、架台装置10と、画像形成部435と、天板駆動部32及び/又は検出駆動部102(まとめて駆動部と呼ぶことがある)と、記憶部44と、駆動制御部413とを有する。寝台装置30は、被検体Eが載置される天板31を有する。架台装置10は、互いに対向して配置されたX線管(X線発生部11)及びX線検出器12を含む検出部101を回転させることにより、被検体Eに対するスキャンを行う。画像形成部435は、スキャンにより得られたデータに基づいて被検体Eの画像データを形成する。駆動部は、天板31と検出部101との間の相対位置を変更する。記憶部44は、被検体Eに対する医療行為が行われるときの相対位置を示す相対位置情報を記憶する。駆動制御部413は、被検体Eに対する新たな医療行為が行われるときに駆動部を制御して、記憶部44に記憶された相対位置情報に示す相対位置に天板31と検出部101とを配置させる。 The X-ray CT apparatus 1 includes a couch device 30, a gantry device 10, an image forming unit 435, a top plate driving unit 32 and / or a detection driving unit 102 (sometimes collectively referred to as a driving unit), and a storage unit. 44 and a drive control unit 413. The bed apparatus 30 includes a top plate 31 on which the subject E is placed. The gantry device 10 scans the subject E by rotating the detection unit 101 including the X-ray tube (X-ray generation unit 11) and the X-ray detector 12 that are arranged to face each other. The image forming unit 435 forms image data of the subject E based on the data obtained by scanning. The drive unit changes the relative position between the top plate 31 and the detection unit 101. The storage unit 44 stores relative position information indicating a relative position when a medical action on the subject E is performed. The drive control unit 413 controls the drive unit when a new medical action is performed on the subject E, and places the top 31 and the detection unit 101 at the relative positions indicated by the relative position information stored in the storage unit 44. Arrange.
 このX線CT装置1によれば、新たな医療行為を行うときに、過去に医療行為が行われたときの天板31と検出部101との相対位置(或いは予め設定された相対位置)を自動で再現することができる。したがって、被検体Eを医療行為の実施位置に配置させる作業の容易化及び時間短縮を図ることが可能である。 According to the X-ray CT apparatus 1, when a new medical practice is performed, the relative position (or a preset relative position) between the top plate 31 and the detection unit 101 when the medical practice has been performed in the past is determined. Can be reproduced automatically. Therefore, it is possible to facilitate the work of arranging the subject E at the medical practice execution position and reduce the time.
 X線CT装置1は、被検体Eに対する医療行為が複数回行われた場合において、複数回の医療行為のうちの1回以上の医療行為における相対位置情報を記憶するように構成されていてもよい。更に、X線CT装置1は、複数回の医療行為のうちの2回以上の医療行為における相対位置情報を記憶している場合に、当該2つ以上の相対位置情報のうちの1つを選択する選択部を有し、かつ、駆動制御部413が、選択された相対位置情報に基づいて駆動部の制御を行うように構成されていてもよい。これにより、2つ以上の相対位置情報を記憶させることができ、更に、所望の相対位置を再現させることが可能となる。 Even if the X-ray CT apparatus 1 is configured to store relative position information in one or more medical actions among the plurality of medical actions when the medical action on the subject E is performed a plurality of times. Good. Furthermore, the X-ray CT apparatus 1 selects one of the two or more relative position information when storing the relative position information in two or more of the medical actions. In addition, the drive control unit 413 may be configured to control the drive unit based on the selected relative position information. Thereby, two or more pieces of relative position information can be stored, and a desired relative position can be reproduced.
 選択部は、表示部45と操作部46とを有していてもよい。表示部45は、2つ以上の相対位置情報に示す2つ以上の相対位置を表示する。操作部46は、表示された2つ以上の相対位置のうちの1つを指定するために用いられる。駆動制御部413は、指定された相対位置に対応する相対位置情報に基づいて駆動部の制御を行う。これにより、ユーザは、所望の相対位置を選択的に再現させることが可能となる。その使用形態の例を説明する。肺ガンに対する穿刺では、複数の腫瘍に対して個別に穿刺作業を行う。これら腫瘍のそれぞれについて相対位置情報を記憶させることができる。そして、或る腫瘍に対する穿刺作業を行うときに、この腫瘍に対応する相対位置情報を選択的に適用することで、この腫瘍に対応する医療行為の実施位置を自動的に再現させることができる。 The selection unit may include a display unit 45 and an operation unit 46. The display unit 45 displays two or more relative positions indicated by two or more relative position information. The operation unit 46 is used to designate one of the two or more displayed relative positions. The drive control unit 413 controls the drive unit based on relative position information corresponding to the designated relative position. Thereby, the user can selectively reproduce a desired relative position. An example of the usage pattern will be described. In puncture for lung cancer, puncture work is individually performed for a plurality of tumors. Relative position information can be stored for each of these tumors. Then, when performing a puncturing operation on a certain tumor, by selectively applying the relative position information corresponding to the tumor, the medical practice position corresponding to the tumor can be automatically reproduced.
 選択部は操作部46を含んでいてもよい。被検体Eに対する医療行為に対応して操作部46により所定操作がなされた場合において、選択部は、被検体Eに対する新たな医療行為が行われる前に、記憶部44に記憶された2つ以上の相対位置情報のうちから所定操作がなされた医療行為における相対位置情報を選択する。駆動制御部413は、選択された相対位置情報に基づいて駆動部の制御を行う。これにより、ユーザは、将来的に医療行為の実施位置を再現させたい場合に、当該実施位置に対応して所定操作を行うことができる。この操作は、将来の医療行為における実施位置をロックするものと言える。つまり、将来の医療行為において、当該医療行為の実施位置が自動的に再現される。 The selection unit may include an operation unit 46. When a predetermined operation is performed by the operation unit 46 in response to a medical action on the subject E, the selection unit stores two or more stored in the storage unit 44 before a new medical action on the subject E is performed. The relative position information in the medical practice in which the predetermined operation is performed is selected from the relative position information. The drive control unit 413 controls the drive unit based on the selected relative position information. Thereby, when the user wants to reproduce the implementation position of the medical practice in the future, the user can perform a predetermined operation corresponding to the implementation position. This operation can be said to lock the execution position in the future medical practice. That is, in the future medical practice, the implementation position of the medical practice is automatically reproduced.
<第1実施形態及び第2実施形態の変形例>
 X線CT装置1において、第1実施形態及び第2実施形態の構成を適用することも可能である。
<Modification of First Embodiment and Second Embodiment>
In the X-ray CT apparatus 1, the configurations of the first embodiment and the second embodiment can be applied.
 すなわち、本変形例に係る記憶部44は、スキャンが行われたときの相対位置を示す情報、及び被検体Eに対する医療行為が行われるときの相対位置を示す情報を相対位置情報として記憶する。 That is, the storage unit 44 according to the present modification stores information indicating the relative position when the scan is performed and information indicating the relative position when the medical action on the subject E is performed as the relative position information.
 駆動制御部413は、新たなスキャンが行われるときに駆動部を制御して、記憶された相対位置情報に示すスキャンが行われたときの相対位置に天板31と検出部101とを配置させる。更に、駆動制御部413は、被検体Eに対する新たな医療行為が行われるときに駆動部を制御して、記憶された相対位置情報に示す被検体Eに対する医療行為が行われるときの相対位置に天板31と検出部101とを配置させる。 The drive control unit 413 controls the drive unit when a new scan is performed, and arranges the top 31 and the detection unit 101 at the relative positions when the scan indicated by the stored relative position information is performed. . Further, the drive control unit 413 controls the drive unit when a new medical action is performed on the subject E, and the relative position when the medical action on the subject E indicated in the stored relative position information is performed. The top plate 31 and the detection unit 101 are arranged.
[動作]
 本変形例に係るX線CT装置1の動作を説明する。図7に示すフローチャートは、医療行為として穿刺を行う場合における動作例を示す。
[Operation]
The operation of the X-ray CT apparatus 1 according to this modification will be described. The flowchart shown in FIG. 7 shows an operation example when puncturing is performed as a medical practice.
(S20:スキャンを行う)
 まず、寝台装置30の天板31に被検体Eを載置し、架台装置10の開口部に挿入する。所定のスキャン開始操作がなされると、制御部41は、スキャン制御部42に制御信号を送る。この制御信号を受けたスキャン制御部42は、高電圧発生部14、架台駆動部15及び絞り駆動部17を制御して、被検体EをX線でスキャンさせる。X線検出器12は、被検体Eを透過したX線を検出する。データ収集部18は、スキャンに伴いX線検出器12から逐次に生成される検出データを収集する。データ収集部18は、収集された検出データを前処理部431に送る。
(S20: scan)
First, the subject E is placed on the top 31 of the bed apparatus 30 and inserted into the opening of the gantry apparatus 10. When a predetermined scan start operation is performed, the control unit 41 sends a control signal to the scan control unit 42. Upon receiving this control signal, the scan control unit 42 controls the high voltage generation unit 14, the gantry drive unit 15, and the aperture drive unit 17 to scan the subject E with X-rays. The X-ray detector 12 detects X-rays that have passed through the subject E. The data collection unit 18 collects detection data sequentially generated from the X-ray detector 12 along with the scan. The data collection unit 18 sends the collected detection data to the preprocessing unit 431.
(S21:スキャンにおける相対位置情報を記憶する)
 情報記憶部411は、たとえば第1実施形態に記載の動作例のいずれかを行うことにより、ステップ20のスキャンが行われたときの相対位置を示す情報を相対位置情報として記憶部44に記憶させる。
(S21: Store relative position information in scanning)
The information storage unit 411 causes the storage unit 44 to store information indicating the relative position when the scan in step 20 is performed as the relative position information, for example, by performing any of the operation examples described in the first embodiment. .
(S22:画像データを形成・表示する)
 前処理部431は、データ収集部18からの検出データに対して前処理を施して投影データを生成する。再構成処理部432は、あらかじめ設定された再構成条件に基づく再構成処理を投影データに施すことにより、ボリュームデータを生成する。レンダリング処理部433は、ボリュームデータに基づくMPR画像データを生成する。制御部41は、生成されたMPR画像データに基づく画像を表示部45に表示させる。
(S22: Form and display image data)
The preprocessing unit 431 performs preprocessing on the detection data from the data collection unit 18 to generate projection data. The reconstruction processing unit 432 generates volume data by subjecting the projection data to reconstruction processing based on preset reconstruction conditions. The rendering processing unit 433 generates MPR image data based on the volume data. The control unit 41 causes the display unit 45 to display an image based on the generated MPR image data.
(S23:穿刺作業を行う)
 術者は、所定の操作を行って架台装置10と天板31とを相対的に移動させることで、所定の穿刺作業位置(医療行為の実施位置)に被検体Eを移動させる。そして、術者は、ステップ22で表示された画像を参照しつつ、被検体Eに対する穿刺作業を行う。この実施形態における穿刺は、スキャンと穿刺作業とを交互に行いながら徐々に進められる。
(S23: Puncture work is performed)
The surgeon moves the subject E to a predetermined puncture work position (a position where medical practice is performed) by performing a predetermined operation and relatively moving the gantry device 10 and the top board 31. Then, the surgeon performs a puncturing operation on the subject E while referring to the image displayed in step 22. Puncturing in this embodiment is gradually advanced while alternately performing scanning and puncturing work.
(S24:医療行為における相対位置情報を記憶する)
 情報記憶部411は、たとえば前述の動作例のいずれかを行うことにより、ステップ23の医療行為が行われるときの相対位置を示す情報を相対位置情報として記憶部44に記憶させる。
(S24: Store relative position information in medical practice)
The information storage unit 411 causes the storage unit 44 to store, as the relative position information, information indicating the relative position when the medical action in Step 23 is performed, for example, by performing any of the above-described operation examples.
(S25:天板・検出部をスキャン位置に移動する)
 穿刺作業をある程度進めた後、術者は、所定の操作を行なって再度のスキャンを指示する。スキャンの指示を受けた制御部41は、たとえば第1実施形態に記載の動作例のいずれかにしたがい、ステップ21で記憶された相対位置情報に基づいて天板31及び/又は検出部101を移動させる。それにより、天板31と検出部101が、ステップ1のスキャンと同じ相対位置に配置される。X線CT装置1は、この状態で再度のスキャンを行う。
(S25: Move the top / detector to the scan position)
After advancing the puncturing work to some extent, the surgeon performs a predetermined operation and instructs another scan. The control unit 41 that has received the scan instruction moves the top board 31 and / or the detection unit 101 based on the relative position information stored in step 21, for example, according to any of the operation examples described in the first embodiment. Let Thereby, the top plate 31 and the detection unit 101 are arranged at the same relative position as the scan in Step 1. The X-ray CT apparatus 1 performs another scan in this state.
(S26:画像データを形成・表示する)
 そして、制御部41は、再度のスキャンで得られた検出データに基づく画像を表示部45に表示させる。
(S26: Form and display image data)
Then, the control unit 41 causes the display unit 45 to display an image based on the detection data obtained by the second scan.
(S27:穿刺の終了判断)
 術者は、ステップ26で表示された画像を参照し、穿刺針が穿刺対象に到達しているかどうかを判断する。穿刺針が穿刺対象に到達していない場合(穿刺が終了していない場合。ステップ27でNの場合)、更なる穿刺作業が必要となる。この場合、術者(または操作者)は、操作部46等を介して天板31及び/又は検出部101の移動を指示する。
(S27: Judgment completion)
The surgeon refers to the image displayed in step 26 to determine whether the puncture needle has reached the puncture target. If the puncture needle has not reached the puncture target (if the puncture has not been completed. In the case of N in step 27), further puncture work is required. In this case, the operator (or operator) instructs the top plate 31 and / or the detection unit 101 to move via the operation unit 46 or the like.
(S28:天板・検出部を穿刺作業位置(医療行為の実施位置)に移動する)
 ステップ27において指示入力を受けた制御部41は、たとえば第2実施形態に記載の動作例のいずれかにしたがい、ステップ24で記憶された相対位置情報に基づいて天板31及び/又は検出部101を移動させる。それにより、天板31と検出部101が、ステップ23の穿刺作業時と同じ相対位置に配置される(被検体Eを穿刺作業位置に配置する)。この状態で術者は穿刺作業を行う(ステップ23)。
(S28: The top plate / detection unit is moved to the puncture work position (medical practice position))
The control unit 41 that has received an instruction input in step 27 follows, for example, any of the operation examples described in the second embodiment, and based on the relative position information stored in step 24, the top plate 31 and / or the detection unit 101. Move. Thereby, the top board 31 and the detection part 101 are arrange | positioned in the same relative position as the time of the puncture operation of step 23 (the subject E is arrange | positioned in the puncture operation position). In this state, the surgeon performs a puncturing operation (step 23).
 以上の処理が穿刺の終了(ステップ27:YES)まで繰り返される。 The above processing is repeated until the end of puncture (step 27: YES).
 本変形例に係るX線CT装置1によれば、新たなスキャンを行うときに、過去にスキャンが行われたときの天板31と検出部101との相対位置を自動で再現することができる。更に、本変形例に係るX線CT装置1によれば、新たな医療行為を行うときに、過去に医療行為が行われたときの天板31と検出部101との相対位置を自動で再現することができる。したがって、被検体Eをスキャン位置及び医療行為の実施位置に配置させる作業の容易化及び時間短縮を図ることが可能である。 According to the X-ray CT apparatus 1 according to this modification, when performing a new scan, the relative position between the top 31 and the detection unit 101 when the scan has been performed in the past can be automatically reproduced. . Furthermore, according to the X-ray CT apparatus 1 according to this modification, when a new medical action is performed, the relative position between the top 31 and the detection unit 101 when the medical action has been performed in the past is automatically reproduced. can do. Therefore, it is possible to facilitate and reduce the time for placing the subject E at the scan position and the medical practice execution position.
 なお、天板31及び/又は検出部101をスキャン位置と穿刺作業位置の間で移動させる順番は任意に設定することが可能である。たとえば、予め被検体Eに対して穿刺する位置が明確に分かっている場合、本変形例とは逆に、X線CT装置1は、まず天板31及び/又は検出部101を駆動し、穿刺作業位置に配置させる。この場合の穿刺作業位置に対応する相対位置情報は、予め設定された値等を用いることができる。そして、穿刺作業をある程度進めた後、X線CT装置1は、天板31及び/又は検出部101を駆動し、被検体Eをスキャン位置に配置させることも可能である。 It should be noted that the order in which the top 31 and / or the detection unit 101 is moved between the scan position and the puncture work position can be arbitrarily set. For example, when the position for puncturing the subject E is clearly known in advance, the X-ray CT apparatus 1 first drives the top plate 31 and / or the detection unit 101 to puncture contrary to the present modification. Place at work position. For the relative position information corresponding to the puncture work position in this case, a preset value or the like can be used. After the puncturing operation has been advanced to some extent, the X-ray CT apparatus 1 can also drive the top 31 and / or the detection unit 101 to place the subject E at the scan position.
<第3実施形態>
 X線CT装置により、被検体における所定の運動(拍動や呼吸動等)を伴う部位のスキャンも行われている。当該スキャンにおいては、所定の運動によるX線CT画像の表示内容への影響が考慮される。例えば、胃や肺などは、被検体の呼吸による動きの幅が大きくなる傾向がある。このような部位のX線CT画像を表示する場合、所定の運動による影響を考慮しないと、画像における部位の形状やサイズが、スキャンを実行するタイミングに応じて大きく変更されてしまう。このような状況が生じると、画像において、観察対象の部位が時相ごとに異なって表示されてしまい、観察が困難になるおそれがある。
<Third Embodiment>
An X-ray CT apparatus also scans a part of a subject with a predetermined motion (pulsation, respiratory motion, etc.). In this scan, the influence on the display content of the X-ray CT image by a predetermined motion is taken into consideration. For example, the stomach, lungs, and the like tend to have a larger range of movement due to breathing of the subject. When an X-ray CT image of such a part is displayed, the shape and size of the part in the image are greatly changed according to the timing of executing the scan unless the influence of a predetermined motion is taken into consideration. When such a situation occurs, the site to be observed is displayed differently for each phase in the image, which may make observation difficult.
 このような問題を解消するため、所定の運動(拍動や呼吸動等)に合わせてX線CT画像を生成するX線CT装置が提案されている。このX線CT装置においては、被検体を反復的にスキャンしつつ、外部装置から生体信号等を受けて収集データに対応付けて記憶させる。外部装置は、生体信号や所定の運動を表す情報を取得する装置(呼吸波形取得装置、心電計等)である。 In order to solve such a problem, an X-ray CT apparatus that generates an X-ray CT image in accordance with a predetermined motion (pulsation, respiratory motion, etc.) has been proposed. In this X-ray CT apparatus, while a subject is repeatedly scanned, a biological signal or the like is received from an external apparatus and stored in association with collected data. The external device is a device (a respiratory waveform acquisition device, an electrocardiograph, or the like) that acquires a biological signal or information representing a predetermined motion.
 さらに上記のX線CT装置は、画像を生成する際、生体信号等における周期や位相を利用する。例えば、X線CT装置において画像を生成するにあたり、記憶された生体信号等のデータに基づき、ユーザーが生体信号等の周期における特定の位相を指定することができる。X線CT装置は、経時的に収集されたデータのうち、指定された位相に対応するデータに対して再構成処理を行う。このような再構成処理は、所定の運動の大きい部位の画像を生成する場合において、当該部位における表示上の形状やサイズを一様にしようとするものである。 Furthermore, the above-described X-ray CT apparatus uses a period or phase in a biological signal or the like when generating an image. For example, when generating an image in an X-ray CT apparatus, a user can specify a specific phase in a cycle of a biological signal or the like based on stored data such as a biological signal. The X-ray CT apparatus performs reconstruction processing on data corresponding to a designated phase among data collected over time. Such a reconstruction process is intended to make the shape and size of the display in the part uniform when generating an image of a part having a large predetermined motion.
 しかしながら、リアルタイムにX線CT画像を表示しようとする場合、ユーザーが生体信号(呼吸波形)等を参照して、所定の位相を指定してから再構成処理が行われるとなると、表示上のリアルタイム性が損なわれるおそれがある。また、生体信号等の周期における所定の時相を指定する操作は、ユーザーにとって困難または煩雑である。 However, when an X-ray CT image is to be displayed in real time, if reconstruction processing is performed after the user designates a predetermined phase with reference to a biological signal (respiration waveform) or the like, the real time on the display is displayed. May be impaired. In addition, an operation for designating a predetermined time phase in a cycle of a biological signal or the like is difficult or complicated for the user.
 例えば、X線CT画像を参照しながら、アブレーション、バイオプシー、ドレナージ等を行う場合、表示上のリアルタイム性が損なわれると、これらの処置に影響を及ぼすおそれがある。また、ユーザーは、処置とともに位相を指定しなければならず、この操作は困難または煩雑である。 For example, when performing ablation, biopsy, drainage or the like while referring to an X-ray CT image, if the real-time property on the display is impaired, these treatments may be affected. In addition, the user must specify the phase together with the treatment, and this operation is difficult or complicated.
 本実施形態は、呼吸により形状やサイズが変更される部位に対し透視スキャンする場合において、煩雑な操作を伴わずに、当該部位における表示上の形状やサイズを揃えることが可能なX線CT装置を提供することを目的とする。 The present embodiment is an X-ray CT apparatus capable of aligning the shape and size on the display without complicated operations when performing a fluoroscopic scan on a portion whose shape and size are changed by respiration. The purpose is to provide.
 図8~図12を参照して、第3実施形態におけるX線CT装置1の構成について説明する。図8は、第3実施形態にかかるX線CT装置のブロック図である。なお、「画像」と「画像データ」は一対一に対応するので、本実施形態においては、これらを同一視する場合がある。 The configuration of the X-ray CT apparatus 1 according to the third embodiment will be described with reference to FIGS. FIG. 8 is a block diagram of an X-ray CT apparatus according to the third embodiment. Since “image” and “image data” have a one-to-one correspondence, in the present embodiment, they may be regarded as the same.
[装置構成]
 図8に示すように、X線CT装置1は、架台装置100と、寝台装置200と、コンソール装置300とを含んで構成されている。
[Device configuration]
As shown in FIG. 8, the X-ray CT apparatus 1 includes a gantry device 100, a couch device 200, and a console device 300.
(架台装置)
 架台装置100は、被検体Eに対してX線を曝射し、被検体Eを透過した当該X線の検出データを収集する装置である。架台装置100は、X線発生部110と、X線検出部120と、回転体130と、高電圧発生部140と、架台駆動部170と、X線絞り部160と、絞り駆動部150と、データ収集部180とを有する。
(Mounting device)
The gantry device 100 is an apparatus that emits X-rays to the subject E and collects detection data of the X-rays that have passed through the subject E. The gantry device 100 includes an X-ray generation unit 110, an X-ray detection unit 120, a rotating body 130, a high voltage generation unit 140, a gantry driving unit 170, an X-ray diaphragm unit 160, a diaphragm driving unit 150, A data collection unit 180.
 X線発生部110は、X線を発生させるX線管球(例えば、円錐状や角錐状のビームを発生する真空管。図示なし)を含んで構成されている。発生したX線は被検体Eに対して曝射される。X線検出部120は、複数のX線検出素子(図示なし)を含んで構成されている。X線検出部120は、被検体Eを透過したX線の強度分布を示すX線強度分布データ(検出データ)をX線検出素子で検出し、その検出データを電流信号として出力する。X線検出部12は、例えば、検出素子が互いに直交する2方向(スライス方向とチャンネル方向)にそれぞれ複数配置された2次元のX線検出器(面検出器)が用いられる。複数のX線検出素子は、例えば、スライス方向に沿って320列設けられている。このように多列のX線検出器を用いることにより、1回転のスキャンでスライス方向に幅を有する3次元の撮影領域を撮影することができる(ボリュームスキャン)。なお、スライス方向は被検体Eの体軸方向に相当し、チャンネル方向はX線発生部110の回転方向に相当する。ただし、本実施形態におけるX線検出部120として、上述のような多列のX線検出器を用いる必要はない。 The X-ray generation unit 110 includes an X-ray tube (for example, a vacuum tube that generates a cone-shaped or pyramid-shaped beam, not shown) that generates X-rays. The generated X-ray is exposed to the subject E. The X-ray detection unit 120 includes a plurality of X-ray detection elements (not shown). The X-ray detection unit 120 detects X-ray intensity distribution data (detection data) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element, and outputs the detection data as a current signal. As the X-ray detector 12, for example, a two-dimensional X-ray detector (surface detector) in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used. The plurality of X-ray detection elements are provided in 320 rows along the slice direction, for example. By using a multi-row X-ray detector in this way, it is possible to image a three-dimensional imaging region having a width in the slice direction by one rotation scan (volume scan). The slice direction corresponds to the body axis direction of the subject E, and the channel direction corresponds to the rotation direction of the X-ray generation unit 110. However, it is not necessary to use a multi-row X-ray detector as described above as the X-ray detector 120 in the present embodiment.
 回転体130は、X線発生部110とX線検出部120とを被検体Eを挟んで対向するよう支持する部材である。回転体130は、スライス方向に貫通した開口部130aを有する。架台装置100内において、回転体130は、被検体Eを中心とした円軌道で回転するよう配置されている。 The rotating body 130 is a member that supports the X-ray generation unit 110 and the X-ray detection unit 120 so as to face each other with the subject E interposed therebetween. The rotating body 130 has an opening 130a penetrating in the slice direction. In the gantry device 100, the rotator 130 is arranged to rotate in a circular orbit around the subject E.
 高電圧発生部140は、X線発生部110に対して高電圧を印加する。X線発生部110は、当該高電圧に基づいてX線を発生させる。架台駆動部170は、回転体130を回転駆動させる。X線絞り部160は、所定幅のスリット(開口)を有し、スリットの幅を変えることで、X線発生部110から曝射されたX線のファン角(チャンネル方向の広がり角)とX線のコーン角(スライス方向の広がり角)とを調整する。絞り駆動部150は、X線発生部110で発生したX線が所定の形状となるようX線絞り部160を駆動させる。 The high voltage generator 140 applies a high voltage to the X-ray generator 110. The X-ray generation unit 110 generates X-rays based on the high voltage. The gantry driving unit 170 rotates the rotating body 130. The X-ray diaphragm 160 has a slit (opening) with a predetermined width, and by changing the width of the slit, the fan angle (expansion angle in the channel direction) of X-rays exposed from the X-ray generator 110 and the X-ray Adjust the cone angle of the line (the spread angle in the slice direction). The diaphragm drive unit 150 drives the X-ray diaphragm unit 160 so that the X-rays generated by the X-ray generation unit 110 have a predetermined shape.
 データ収集部180(DAS)は、X線検出部120(各X線検出素子)からの検出データを収集する。また、データ収集部180は、収集した検出データ(電流信号)を電圧信号に変換し、この電圧信号を周期的に積分して増幅し、デジタル信号に変換する。そして、データ収集部180は、デジタル信号に変換された検出データをコンソール装置300(処理部350(後述))に送信する。なお、データ収集部180で収集された検出データに基づき、再構成処理部350b(後述)が短時間で再構成処理を行い、リアルタイムにCT画像を取得するように構成してもよい。したがって、データ収集部180は、検出データの収集レートを短くする。 The data collection unit 180 (DAS) collects detection data from the X-ray detection unit 120 (each X-ray detection element). The data collection unit 180 converts the collected detection data (current signal) into a voltage signal, periodically integrates and amplifies the voltage signal, and converts it into a digital signal. Then, the data collection unit 180 transmits the detection data converted into the digital signal to the console device 300 (processing unit 350 (described later)). Note that, based on the detection data collected by the data collection unit 180, the reconstruction processing unit 350b (described later) may perform a reconstruction process in a short time and acquire a CT image in real time. Therefore, the data collection unit 180 shortens the collection rate of the detection data.
 (寝台装置)
 寝台装置200は、撮影対象の被検体Eを載置・移動させる装置である。寝台装置200は、寝台210と寝台駆動部220とを備えている。寝台210は、被検体Eを載置するための寝台天板230と、寝台天板230を支持する基台240とを備えている。寝台天板230は、寝台駆動部220によって被検体Eの体軸方向および体軸方向に直交する方向に移動することが可能となっている。すなわち、寝台駆動部220は、被検体Eが載置された寝台天板230を、回転体130の開口部130aに対して挿抜させることができる。基台240は、寝台駆動部220によって寝台天板230を上下方向(被検体Eの体軸方向と直交する方向)に移動させることが可能となっている。なお、寝台装置200において寝台天板230を含まない構成を用いることも可能である。すなわち、寝台装置200に対して架台装置100を移動させる構成も本実施形態のX線CT装置に含まれる。
(Bed apparatus)
The bed apparatus 200 is an apparatus for placing and moving the subject E to be imaged. The bed apparatus 200 includes a bed 210 and a bed driving unit 220. The bed 210 includes a bed top plate 230 on which the subject E is placed and a base 240 that supports the bed top plate 230. The couch top plate 230 can be moved by the couch driving unit 220 in the body axis direction of the subject E and in the direction orthogonal to the body axis direction. That is, the bed driving unit 220 can insert and remove the bed top plate 230 on which the subject E is placed with respect to the opening 130 a of the rotating body 130. The base 240 can move the bed top plate 230 in the vertical direction (a direction orthogonal to the body axis direction of the subject E) by the bed driving unit 220. Note that the bed apparatus 200 may be configured not to include the bed top plate 230. That is, a configuration for moving the gantry device 100 relative to the bed device 200 is also included in the X-ray CT apparatus of the present embodiment.
 (コンソール装置)
 コンソール装置300は、X線CT装置1に対する操作入力に用いられる。また、コンソール装置300は、架台装置100によって収集された検出データから被検体Eの内部形態を表すCT画像データ(断層画像データやボリュームデータ)を再構成する機能等を有している。コンソール装置300は、入力部310と、表示部320と、スキャン制御部330と、設定部340、処理部350と、記憶部360と、表示制御部370と、主制御部380とを含んで構成されている。
(Console device)
The console device 300 is used for operation input to the X-ray CT apparatus 1. The console device 300 also has a function of reconstructing CT image data (tomographic image data and volume data) representing the internal form of the subject E from the detection data collected by the gantry device 100. The console device 300 includes an input unit 310, a display unit 320, a scan control unit 330, a setting unit 340, a processing unit 350, a storage unit 360, a display control unit 370, and a main control unit 380. Has been.
  <入力部>
 入力部310は、コンソール装置300に対する各種操作を行う入力デバイスとして用いられる。入力部310は、例えばキーボード、マウス、トラックボール、ジョイスティック等により構成される。また、入力部310として、表示部320に表示されたGUIを用いることも可能である。
<Input section>
The input unit 310 is used as an input device that performs various operations on the console device 300. The input unit 310 includes, for example, a keyboard, a mouse, a trackball, a joystick, and the like. Further, the GUI displayed on the display unit 320 can be used as the input unit 310.
  <表示部>
 表示部320は、LCDやCRTディスプレイ等の任意の表示デバイスによって構成される。表示部320には、各種X線CT画像が表示される。例えば、表示部320の表示画面には、断層画像やボリュームレンダリング画像、MPR画像等が表示される。また、表示部320には、MPR画像に対応するビューイングボックスを表示してもよい。
<Display section>
The display unit 320 is configured by an arbitrary display device such as an LCD or a CRT display. Various X-ray CT images are displayed on the display unit 320. For example, a tomographic image, a volume rendering image, an MPR image, or the like is displayed on the display screen of the display unit 320. The display unit 320 may display a viewing box corresponding to the MPR image.
 また、表示部320はスキャン条件の設定画面(図示なし)を表示する。また、表示部320は架台装置100によるスキャンにかかる操作画面を表示する。また、表示部320は再構成処理に用いられる各種パラメータの設定画面を表示する。また、表示部320はウインドウレベル、ウインドウ幅の設定画面を表示する。また、入力部310によって造影剤注入器の制御パラメータの設定がなされる構成においては、表示部320がその設定画面を表示するように構成してもよい。また、表示部320は、呼吸波形および呼吸波形における所定の位相を指定するための指定画面を表示する。ここでの指定操作により、後述の指定情報が生成される。 Further, the display unit 320 displays a scan condition setting screen (not shown). The display unit 320 displays an operation screen for scanning by the gantry device 100. The display unit 320 displays a setting screen for various parameters used for the reconstruction process. The display unit 320 displays a window level / window width setting screen. In the configuration in which the control parameter of the contrast medium injector is set by the input unit 310, the display unit 320 may display the setting screen. The display unit 320 displays a designation screen for designating a respiratory waveform and a predetermined phase in the respiratory waveform. By the designation operation here, designation information described later is generated.
 また入力部310の少なくとも一部がGUIによって構成される場合は、そのGUIを表示する。例えば、表示部320は、スキャン条件、再構成処理、画像処理等のパラメータの設定画面をGUIとして表示する。また、表示部320は架台・寝台の動作などの操作画面をGUIとして表示する。また、表示部320は造影画像、非造影画像またはサブトラクション画像等において範囲指定を行う操作画面をGUIとして表示する。 If at least a part of the input unit 310 is configured with a GUI, the GUI is displayed. For example, the display unit 320 displays a setting screen for parameters such as scan conditions, reconstruction processing, and image processing as a GUI. In addition, the display unit 320 displays an operation screen such as a gantry / couch operation as a GUI. The display unit 320 displays an operation screen for designating a range in a contrast image, a non-contrast image, a subtraction image, or the like as a GUI.
  <制御部>
 スキャン制御部330、設定部340、処理部350、表示制御部370および主制御部380は、例えば、CPU、GPU、又はASICなどの図示しない処理装置と、ROM、RAMや、又はHDDなどの図示しない記憶装置とによって構成されている。記憶装置には、各部の機能を実行するための制御プログラムが記憶されている。CPUなどの処理装置が、記憶装置に記憶されている各プログラムを実行することで各部の機能を実行する。
<Control unit>
The scan control unit 330, the setting unit 340, the processing unit 350, the display control unit 370, and the main control unit 380 are, for example, a processing device (not shown) such as a CPU, GPU, or ASIC, and an illustration such as a ROM, RAM, or HDD. Storage device. The storage device stores a control program for executing the function of each unit. A processing device such as a CPU executes the functions of each unit by executing each program stored in the storage device.
  <スキャン制御部>
 スキャン制御部330は、X線スキャンに関する各種動作を制御する。スキャン制御部330は、主制御部380を介して入力部310等から受けたスキャン開始の指示を受け、架台装置100によるスキャンを開始する。つまり、あらかじめ設定されたX線照射条件、視野、撮影範囲、スキャンモード、スライス厚によって、高電圧発生部140、架台駆動部170、絞り駆動部150、寝台駆動部220等を制御する。
<Scan control unit>
The scan control unit 330 controls various operations related to X-ray scanning. The scan control unit 330 receives a scan start instruction received from the input unit 310 or the like via the main control unit 380 and starts scanning by the gantry device 100. That is, the high voltage generation unit 140, the gantry driving unit 170, the diaphragm driving unit 150, the bed driving unit 220, and the like are controlled according to preset X-ray irradiation conditions, field of view, imaging range, scan mode, and slice thickness.
 X線照射条件には、照射されるX線にかかるパラメータが含まれる。このパラメータは、例えば、照射されるX線に関する、管電流mA、管電圧kV、X線管(回転体130)の回転速度、スキャン間隔等が含まれる。本実施形態の一例において、スキャン制御部330は、間欠的にX線を照射する。すなわち、スキャンの間隔とは、間欠的なスキャンにおける、1スキャン分の開始時点から終了時点までの間隔と、当該終了時点から次のスキャンの開始時点までの間隔の双方を含む。このスキャン間隔については、後述する設定部340において予め設定される。また、スキャン制御部330は、設定部340において設定された位相のタイミングでX線の照射の指示を受けて、スキャンを開始する。 The X-ray irradiation conditions include parameters related to the irradiated X-rays. This parameter includes, for example, a tube current mA, a tube voltage kV, a rotation speed of the X-ray tube (rotary body 130), a scan interval, and the like regarding the irradiated X-ray. In an example of this embodiment, the scan control unit 330 irradiates X-rays intermittently. That is, the scan interval includes both the interval from the start point to the end point of one scan in the intermittent scan and the interval from the end point to the start point of the next scan. The scan interval is set in advance in a setting unit 340 described later. In addition, the scan control unit 330 receives an X-ray irradiation instruction at the phase timing set by the setting unit 340 and starts scanning.
 すなわち、スキャン制御部330は、設定部340から所定のX線の照射開始の指示を受け、X線の照射を開始する。X線の照射開始の指示の設定については後述する。 That is, the scan control unit 330 receives a predetermined X-ray irradiation start instruction from the setting unit 340 and starts X-ray irradiation. The setting of the X-ray irradiation start instruction will be described later.
 視野に関するパラメータには、架台駆動部170が制御するX線絞り部160の動作に関する制御パラメータが含まれる。再構成条件には、再構成関数、再構成間隔等が含まれる。スキャンモードとしては、例えばスキャン方式(コンベンショナルスキャン、ヘリカルスキャン等)が挙げられる。ヘリカルスキャンの場合はヘリカルピッチが含まれ、例えば寝台駆動部220による寝台天板230の動作に関する条件(動作速度、移動量等)等である。 The parameters related to the visual field include control parameters related to the operation of the X-ray diaphragm unit 160 controlled by the gantry driving unit 170. The reconstruction condition includes a reconstruction function, a reconstruction interval, and the like. Examples of the scan mode include scan methods (conventional scan, helical scan, etc.). In the case of the helical scan, a helical pitch is included, for example, conditions (operation speed, movement amount, etc.) regarding the operation of the bed top plate 230 by the bed driving unit 220.
 例えば、スキャン制御部330は、X撮影範囲の設定情報に基づき、寝台駆動部220を制御する。これにより、寝台駆動部220は、所定の移動速度、および移動量にしたがって寝台210を移動させる。また、スキャン制御部330はX線照射条件の設定情報に基づき、高電圧発生部140を制御する。これにより、高電圧発生部140は、所定の間隔でX線発生部110に高電圧を印加させる等の制御を行う。 For example, the scan control unit 330 controls the bed driving unit 220 based on the setting information of the X imaging range. Thereby, the bed driving unit 220 moves the bed 210 according to a predetermined moving speed and moving amount. Further, the scan control unit 330 controls the high voltage generation unit 140 based on the setting information of the X-ray irradiation conditions. Thereby, the high voltage generation unit 140 performs control such as applying a high voltage to the X-ray generation unit 110 at a predetermined interval.
 また、スキャン制御部330は、回転体130の回転速度の設定情報に基づき、架台駆動部170を制御する。これにより、架台駆動部170は、回転体130を所定の速度で回転駆動させる。また、スキャン制御部330は、視野等の設定情報に基づき絞り駆動部150を制御する。これにより、絞り駆動部150は、X線絞り部160を動作させ、照射されるX線の範囲を制御する。また、スキャン制御部330は、スキャンモードの設定情報に基づき、寝台駆動部220を制御する。これにより、寝台駆動部220は、所定の移動速度、および移動量にしたがって寝台210を移動させる。 Also, the scan control unit 330 controls the gantry driving unit 170 based on the setting information of the rotational speed of the rotator 130. As a result, the gantry driving unit 170 drives the rotating body 130 to rotate at a predetermined speed. The scan control unit 330 controls the aperture driving unit 150 based on setting information such as a field of view. Thereby, the aperture driving unit 150 operates the X-ray aperture unit 160 to control the range of X-rays to be irradiated. The scan control unit 330 controls the bed driving unit 220 based on the scan mode setting information. Thereby, the bed driving unit 220 moves the bed 210 according to a predetermined moving speed and moving amount.
  <処理部>
 処理部350は、架台装置100(データ収集部180)から送信された検出データに対して各種処理を実行する。処理部350は、前処理部350aと、再構成処理部350bと、画像生成部350cとを含んで構成されている。
<Processing unit>
The processing unit 350 performs various processes on the detection data transmitted from the gantry device 100 (data collection unit 180). The processing unit 350 includes a preprocessing unit 350a, a reconstruction processing unit 350b, and an image generation unit 350c.
 前処理部350aは、架台装置100(X線検出部120)で検出された検出データに対して対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する。 The pre-processing unit 350a performs pre-processing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on detection data detected by the gantry device 100 (X-ray detection unit 120) to create projection data. To do.
 再構成処理部350bは、前処理部350aで作成された投影データの再構成処理を行う。この再構成処理は、主制御部380を介して設定部340から受けた再構成条件に基づき、行われる。断層画像データの再構成には、例えば、2次元フーリエ変換法、コンボリューション・バックプロジェクション法等、任意の方法を採用することができる。ボリュームデータは、再構成された複数の断層画像データを補間処理することにより作成される。ボリュームデータの再構成には、例えば、コーンビーム再構成法、マルチスライス再構成法、拡大再構成法等、任意の方法を採用することができる。上述のように多列のX線検出器を用いる場合は、ボリュームスキャンにより得られたデータに基づき、広範囲のボリュームデータを再構成することができる。 The reconstruction processing unit 350b performs a reconstruction process on the projection data created by the preprocessing unit 350a. This reconfiguration processing is performed based on the reconfiguration conditions received from the setting unit 340 via the main control unit 380. For the reconstruction of the tomographic image data, for example, an arbitrary method such as a two-dimensional Fourier transform method or a convolution / back projection method can be employed. Volume data is created by interpolating a plurality of reconstructed tomographic image data. For the reconstruction of volume data, for example, any method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be adopted. When a multi-row X-ray detector is used as described above, a wide range of volume data can be reconstructed based on data obtained by volume scanning.
 画像生成部350cは、再構成処理部350bで作成された断層画像データまたはボリュームデータに対する画像処理を行い、X線CT画像データを生成する。例えば、ボリュームデータについては、MPRや、サーフェスレンダリング(Surface Rendering:SR,Shaded Surface Display:SSD)、ボリュームレンダリング(Volume Rendering:VR)、MIP(Maximum Intensity Prejection)、MinIP(Maximum Intensity Prejection)等のレンダリング処理を行う。さらに画像生成部350cは、断層画像データやボリュームデータに基づくX線CT画像データに対し、画像の鮮鋭化、ノイズの低減・抑制、S/N比の向上、輪郭の強調などの画像処理を行う。 The image generation unit 350c performs image processing on the tomographic image data or volume data created by the reconstruction processing unit 350b to generate X-ray CT image data. For example, for volume data, MPR, surface rendering (Surface Rendering: SR, Shaded Surface Display: SSD), volume rendering (Volume Rendering: VR), MIP (Maximum Intensity Prediction), and MinIP (Maximum Immediate Prescription) Process. Further, the image generation unit 350c performs image processing such as image sharpening, noise reduction / suppression, S / N ratio improvement, and contour enhancement on X-ray CT image data based on tomographic image data and volume data. .
  <設定部>
 次に、第3実施形態にかかる設定部340について図9および図10を参照して説明する。図9は、第3実施形態にかかる設定部340の概略構成を示すブロック図である。また図10は、呼吸モニタ400によりモニタされた被検体の呼吸波形の一例およびスキャンのタイミングの一例を概念的に示す概念図である。図9に示すように、設定部340は、I/F(Interface)340a、呼吸波形生成部340b、タイミング生成部340cを含んで構成される。
<Setting section>
Next, a setting unit 340 according to the third embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a block diagram illustrating a schematic configuration of the setting unit 340 according to the third embodiment. FIG. 10 is a conceptual diagram conceptually showing an example of the respiratory waveform of the subject monitored by the respiratory monitor 400 and an example of the scan timing. As shown in FIG. 9, the setting unit 340 includes an I / F (Interface) 340a, a respiratory waveform generation unit 340b, and a timing generation unit 340c.
 I/F340aは、呼吸モニタ400が出力した呼吸モニタ信号を受ける。呼吸モニタ400は、被検体の呼吸による動きを捉え、その呼吸モニタ信号を出力する。この呼吸モニタ400は、例えば被検体の腹部等を囲うように取り付け可能なバンド状の圧力センサが該当する。また他の例としては、被検体の呼吸の流量を測定するエアフローセンサが該当する。あるいは被検体の観察部位をカメラ等により撮影し、撮影した動画像等において被検体の観察部位の動きを解析することにより、被検体の呼吸による観察部位の外形上の運動状態を求める装置であってもよい。 The I / F 340a receives a respiration monitor signal output from the respiration monitor 400. The respiration monitor 400 captures the movement of the subject due to respiration and outputs the respiration monitor signal. The respiratory monitor 400 corresponds to, for example, a band-shaped pressure sensor that can be attached to surround the abdomen of the subject. Another example is an airflow sensor that measures the respiratory flow rate of a subject. Alternatively, it is an apparatus that obtains the motion state on the outer shape of the observation site by breathing the subject by photographing the observation site of the subject with a camera or the like and analyzing the movement of the observation site of the subject in the captured moving image or the like. May be.
 呼吸波形生成部340bは、I/F340aが受けた呼吸モニタ信号に基づき、図10に示すような呼吸波形を生成する。図10における呼吸波形は、横軸が時間、縦軸が呼吸の深さを示す呼吸レベルを示している。当該図面において、上方向が吸気レベルの高さ、下方向が呼気レベルの高さを示している。例えば、呼吸波形生成部340bは、呼吸モニタ信号を受けると、当該信号における波形に基づき、波形の最大値を吸気レベルの最大値(吸気のピーク)として割り当てる。同様に、呼吸波形生成部340bは、波形の最小値を呼気レベルの最大値(呼気のピーク)として割り当てる。また、呼吸波形生成部340bは、吸気レベルの最大値と呼気レベルの最大値との中間値を、呼気と吸気とが切り替わる境界値とする。 The respiration waveform generation unit 340b generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a. In the respiration waveform in FIG. 10, the horizontal axis indicates time and the vertical axis indicates the respiration level indicating the depth of respiration. In the drawing, the upward direction indicates the height of the inspiration level, and the downward direction indicates the height of the expiration level. For example, when receiving the respiration monitor signal, the respiration waveform generation unit 340b assigns the maximum value of the waveform as the maximum value of the inspiration level (inspiration peak) based on the waveform in the signal. Similarly, the respiratory waveform generation unit 340b assigns the minimum value of the waveform as the maximum value of the expiration level (peak of expiration). In addition, the respiratory waveform generation unit 340b sets an intermediate value between the maximum value of the inspiratory level and the maximum value of the expiratory level as a boundary value at which expiration and inspiration are switched.
 さらに呼吸波形生成部340bは、境界値のうち、吸気レベルの最大値から呼気レベルの最大値へ至るまでの間の境界値を吸気の1周期における終了点とするとともに、呼気の1周期における開始点とする。同様に、呼気レベルの最大値から吸気レベルの最大値へ至るまでの間の境界値を呼気の1周期における終了点とするとともに、吸気の1周期における開始点とする。 Further, the respiratory waveform generation unit 340b sets the boundary value between the maximum value of the inspiration level and the maximum value of the expiration level among the boundary values as an end point in one cycle of inspiration and the start in one cycle of expiration. Let it be a point. Similarly, the boundary value between the maximum value of the expiratory level and the maximum value of the inspiratory level is set as the end point in one cycle of exhalation and the start point in one cycle of inspiration.
 このようにして、呼吸波形生成部340bは、呼吸波形データを生成して、さらに呼吸波形データを表示制御部370に送信する。表示制御部370は、呼吸波形生成部340bから受けた呼吸波形を表示部320に表示させる。呼吸波形生成部340bは、次に述べるスキャンタイミング設定情報が設定された後も、I/F340aから受けた呼吸モニタ信号に基づき呼吸波形を生成し続ける。 In this way, the respiratory waveform generation unit 340b generates respiratory waveform data and further transmits the respiratory waveform data to the display control unit 370. The display control unit 370 causes the display unit 320 to display the respiration waveform received from the respiration waveform generation unit 340b. The respiration waveform generation unit 340b continues to generate a respiration waveform based on the respiration monitor signal received from the I / F 340a even after the scan timing setting information described below is set.
 タイミング生成部340cは、あらかじめ設定されたスキャンタイミング設定情報に基づき、スキャン制御部330が制御するX線発生部110によるX線の照射開始のタイミングを生成する。また、スキャン制御部330が制御するX線の照射の周期情報(間隔)を生成する。具体例としては次の通りである。 The timing generation unit 340c generates the X-ray irradiation start timing by the X-ray generation unit 110 controlled by the scan control unit 330 based on preset scan timing setting information. In addition, period information (interval) of X-ray irradiation controlled by the scan control unit 330 is generated. Specific examples are as follows.
 タイミング生成部340cは、あらかじめユーザーにより設定されたスキャンタイミング設定情報を記憶部360から読み出す。このスキャンタイミング設定情報は、表示部320に表示された呼吸波形の表示画面上でユーザーにより設定されてもよい。例えば、表示部320に呼吸波形とともに、呼吸波形における任意の位相を指定するためのカーソルを表示する。この例において、ユーザーが入力部310等において呼吸波形における任意の位相を指定すると、その指定情報が主制御部380を介してタイミング生成部340cに送られる。 The timing generation unit 340c reads scan timing setting information set in advance by the user from the storage unit 360. This scan timing setting information may be set by the user on the respiration waveform display screen displayed on the display unit 320. For example, a cursor for designating an arbitrary phase in the respiratory waveform is displayed on the display unit 320 together with the respiratory waveform. In this example, when the user designates an arbitrary phase in the respiration waveform using the input unit 310 or the like, the designation information is sent to the timing generation unit 340c via the main control unit 380.
 当該指定情報において吸気のピークが設定されている場合について説明する。タイミング生成部340cは、指定情報を受ける。タイミング生成部340cは、当該指定情報に基づき、当該呼吸波形において指定された位相、すなわち吸気レベルの最大値をそれぞれ特定する。さらにこれに基づきタイミング生成部340cは、吸気のピークの間隔を特定する。さらにタイミング生成部340cは、この間隔に基づいてX線の照射の周期情報を生成する。スキャン制御部330の制御により間欠的なスキャンが行われるが、当該周期情報は、当該間欠的なスキャンにおける1スキャンの開始時点から次のスキャン開始時点までの時間間隔を設定するための情報である。 The case where the peak of intake is set in the specified information will be described. The timing generation unit 340c receives designation information. The timing generation unit 340c specifies the phase designated in the respiratory waveform, that is, the maximum value of the inspiratory level, based on the designation information. Further, based on this, the timing generation unit 340c specifies the interval between the peaks of the intake air. Furthermore, the timing generation unit 340c generates X-ray irradiation cycle information based on this interval. Although intermittent scanning is performed under the control of the scan control unit 330, the period information is information for setting a time interval from the start time of one scan to the next scan start time in the intermittent scan. .
 また、タイミング生成部340cは、呼吸波形に基づいて照射時間情報を設定する。照射時間情報における照射時間は、上記間欠的なスキャンにおける1スキャン分の照射時間である。例えば、タイミング生成部340cは、呼吸波形における吸気レベルの変動が所定の範囲内に収まるような時間を照射時間として設定する。さらにタイミング生成部340cは、この周期情報と照射時間情報を記憶部360に記憶させる。また、タイミング生成部340cは、呼吸波形から現在の呼吸における時相を示す時相情報を生成する。さらにタイミング生成部340cは、時相情報および指定情報に基づき、X線の照射の開始タイミング、すなわち、スキャン開始の指示を生成する。生成されたスキャン開始の指示は、スキャン制御部330に送られる。 Also, the timing generator 340c sets irradiation time information based on the respiratory waveform. The irradiation time in the irradiation time information is an irradiation time for one scan in the intermittent scan. For example, the timing generation unit 340c sets the irradiation time as a time during which the change in the inspiratory level in the respiratory waveform falls within a predetermined range. Further, the timing generation unit 340c stores the period information and the irradiation time information in the storage unit 360. Further, the timing generation unit 340c generates time phase information indicating the time phase in the current respiration from the respiration waveform. Furthermore, the timing generation unit 340c generates an X-ray irradiation start timing, that is, a scan start instruction based on the time phase information and the designation information. The generated scan start instruction is sent to the scan control unit 330.
 このようにして、タイミング生成部340cは、X線の照射の周期情報、X線の照射時間情報、およびスキャン開始の指示(最初のX線の照射開始タイミング)を生成する。スキャン制御部330は、スキャン開始の指示を受けて、X線発生部110によりX線の照射を開始する。また、スキャン制御部330は、照射を開始させた後、照射時間情報に基づいて照射を一旦停止させる。 In this way, the timing generation unit 340c generates X-ray irradiation cycle information, X-ray irradiation time information, and a scan start instruction (first X-ray irradiation start timing). Upon receiving an instruction to start scanning, the scan control unit 330 causes the X-ray generation unit 110 to start X-ray irradiation. In addition, after starting the irradiation, the scan control unit 330 temporarily stops the irradiation based on the irradiation time information.
 なお、これらのスキャン設定情報を設定するための指定情報の設定においては、吸気レベルの最大値(吸気のピーク:最大吸気)だけでなく、呼気レベルの最大値(呼気のピーク:最大呼気)または、呼気レベルの最大値と吸気レベルとの中間値等、任意の位相が指定可能である。 In the setting of the designation information for setting these scan setting information, not only the maximum value of the inspiratory level (inspiratory peak: maximum inspiratory) but also the maximum value of expiratory level (peak of expiratory: maximum expiratory) or Any phase such as an intermediate value between the maximum value of the expiration level and the inspiration level can be designated.
  <記憶部、主制御部>
 記憶部360は、RAMやROM等の半導体記憶装置によって構成される。記憶部360は、検出データや投影データ、あるいはX線CT画像データ等を記憶する。表示制御部370は、画像表示に関する各種制御を行う。例えば、上述の各種X線CT画像データの表示指示に基づき、記憶部360から当該画像データを受け、所定のフォーマットにより表示する。また、表示制御部370は、上述した各種設定画面の画像データを受け、所定のフォーマットにより表示する。
<Storage unit, main control unit>
The storage unit 360 is configured by a semiconductor storage device such as a RAM or a ROM. The storage unit 360 stores detection data, projection data, X-ray CT image data, and the like. The display control unit 370 performs various controls related to image display. For example, based on the display instruction of the various X-ray CT image data described above, the image data is received from the storage unit 360 and displayed in a predetermined format. In addition, the display control unit 370 receives the image data of the various setting screens described above and displays them in a predetermined format.
 主制御部380は、架台装置100、寝台装置200およびコンソール装置300の動作を制御することによって、X線CT装置1の全体制御を行う。例えば、主制御部380は、スキャン制御部330を制御することで、架台装置100に対して予備スキャンおよびメインスキャンを実行させ、検出データを収集させる。また、主制御部380は、処理部350を制御することで、検出データに対する各種処理(前処理、再構成処理、MPR処理等)を行わせる。あるいは、主制御部380は、表示制御部370を制御することで、記憶部360に記憶された画像データ等に基づき、X線CT画像を表示部320に表示させる。 The main control unit 380 performs overall control of the X-ray CT apparatus 1 by controlling operations of the gantry apparatus 100, the couch apparatus 200, and the console apparatus 300. For example, the main control unit 380 controls the scan control unit 330 to cause the gantry device 100 to perform a preliminary scan and a main scan and collect detection data. In addition, the main control unit 380 controls the processing unit 350 to perform various processing (preprocessing, reconstruction processing, MPR processing, etc.) on the detected data. Alternatively, the main control unit 380 controls the display control unit 370 to display an X-ray CT image on the display unit 320 based on the image data stored in the storage unit 360.
[動作]
 次に、図11および図12を参照して、本実施形態にかかるX線CT装置1の動作について説明する。図11及び図12は、第3実施形態にかかるX線CT装置1の動作の概要を示すフローチャートである。ここでは、スキャンタイミング設定情報の設定およびスキャノグラムの生成を経て、タイミング生成部340cによるスキャン開始の指示、架台装置100による間欠的なスキャンおよびスキャンの終了までについて説明する。
[Operation]
Next, the operation of the X-ray CT apparatus 1 according to the present embodiment will be described with reference to FIGS. 11 and 12. 11 and 12 are flowcharts showing an outline of the operation of the X-ray CT apparatus 1 according to the third embodiment. Here, a description will be given from the setting of scan timing setting information and the generation of a scanogram to the scanning start instruction by the timing generation unit 340c, the intermittent scanning by the gantry device 100, and the end of the scanning.
 <S30>
 スキャンを開始するにあたり、X線CT装置1は、スキャノグラムを生成する。すなわち、あらかじめ設定されたスキャン条件に基づいてスキャン制御部330が架台装置100の高電圧発生部140、架台駆動部170、絞り駆動部150および寝台駆動部220等を制御してスキャノグラムの撮影をする。例えば、スキャン制御部330は、寝台駆動部220を制御して寝台天板230と架台装置100の位置を相対的に変位させ、結果的に被検体をスキャン位置へ移動させる。また、スキャン制御部330は架台駆動部170を制御し、回転体130を移動させる。またスキャン制御部330は、高電圧発生部140を制御し、単一のX線投影角度によって被検体をスキャンする。データ収集部180は被検体を透過したX線に基づいて検出データを収集する。この収集データは、コンソール装置300に送られる。コンソール装置300が受けた収集データに基づいて、処理部350がスキャノグラムを生成する。
<S30>
In starting the scan, the X-ray CT apparatus 1 generates a scanogram. That is, the scan control unit 330 controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 based on preset scanning conditions, and scanograms are taken. . For example, the scan control unit 330 controls the bed driving unit 220 to relatively displace the positions of the bed top plate 230 and the gantry device 100 and consequently move the subject to the scan position. The scan control unit 330 controls the gantry driving unit 170 to move the rotating body 130. The scan controller 330 controls the high voltage generator 140 to scan the subject at a single X-ray projection angle. The data collection unit 180 collects detection data based on X-rays that have passed through the subject. This collected data is sent to the console device 300. Based on the collected data received by the console device 300, the processing unit 350 generates a scanogram.
 なお、本実施形態におけるスキャン範囲設定画面はスキャノグラムに基づくものに限られない。したがって、スキャノグラムの生成工程が省略される場合がある。 Note that the scan range setting screen in this embodiment is not limited to that based on a scanogram. Therefore, the scanogram generation process may be omitted.
 <S31>
 表示制御部370は、スキャノグラムおよび記憶部360から読み出した所定のフォーマットに基づいて、スキャン範囲設定画面を生成し、表示部320に表示させる。スキャン範囲設定画面上で、ユーザー等により入力部310を介してスキャン範囲が設定される。このようにスキャン範囲設定画面上で、各スキャン範囲(例えば、ROI:Region of Interest)が設定されると、表示制御部370から主制御部380を介して記憶部360に当該スキャン範囲を記憶させる。
<S31>
The display control unit 370 generates a scan range setting screen based on the scanogram and a predetermined format read from the storage unit 360 and causes the display unit 320 to display the scan range setting screen. On the scan range setting screen, the scan range is set by the user or the like via the input unit 310. Thus, when each scan range (for example, ROI: Region of Interest) is set on the scan range setting screen, the display control unit 370 stores the scan range in the storage unit 360 via the main control unit 380. .
 <S32>
 I/F340aは、呼吸モニタ400から、呼吸モニタ信号を受ける。呼吸波形生成部340bは、I/F340aが受けた呼吸モニタ信号に基づき、図10に示すような呼吸波形を生成する。
<S32>
The I / F 340 a receives a respiration monitor signal from the respiration monitor 400. The respiration waveform generation unit 340b generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a.
 <S33>
 ユーザーが、入力部310等により表示部320に表示された呼吸波形の表示画面上で、任意の位相を指定すると、主制御部380を介して指定情報がタイミング生成部340cに送られる。
<S33>
When the user designates an arbitrary phase on the respiration waveform display screen displayed on the display unit 320 by the input unit 310 or the like, designation information is sent to the timing generation unit 340c via the main control unit 380.
 <S34>
 タイミング生成部340cは、指定情報を受ける。また、タイミング生成部340cは指定情報に基づき、指定された位相(例えば吸気レベルの最大値)をそれぞれ特定する。これにより、指定された位相(例えば吸気のピーク)の間隔を特定する。さらにタイミング生成部340cは、この間隔に基づいてX線の照射の周期情報を生成する。
<S34>
The timing generation unit 340c receives designation information. Further, the timing generation unit 340c specifies a specified phase (for example, the maximum value of the intake level) based on the specification information. Thereby, the interval of the designated phase (for example, the peak of inspiration) is specified. Furthermore, the timing generation unit 340c generates X-ray irradiation cycle information based on this interval.
 <S35>
 タイミング生成部340cは、呼吸波形における吸気(または呼気)レベルの変動が所定の範囲内に収まるような時間を照射時間情報として設定する。
<S35>
The timing generation unit 340c sets, as irradiation time information, a time during which a change in inspiration (or expiration) level in the respiratory waveform falls within a predetermined range.
 <S36>
 タイミング生成部340cは、呼吸波形から現在の呼吸における時相を示す時相情報を生成する。さらにタイミング生成部340cは、時相情報および指定情報に基づき、X線の照射の開始タイミング、すなわち、スキャン開始の指示を生成する。
<S36>
The timing generation unit 340c generates time phase information indicating a time phase in the current respiration from the respiration waveform. Furthermore, the timing generation unit 340c generates an X-ray irradiation start timing, that is, a scan start instruction based on the time phase information and the designation information.
 なお、スキャノグラムの生成からスキャン範囲の設定(S30からS31)と、呼吸波形の生成から周期情報の設定(S32からS34)との順序はいずれが先であってもよく、並行した処理であってもよい。 It should be noted that the scan range setting (S30 to S31) from the scanogram generation and the period information setting (S32 to S34) from the generation of the respiratory waveform may be performed in any order, which is a parallel process. Also good.
 <S37>
 スキャン制御部330は、主制御部380を介してスキャン開始の指示を受け、架台装置100の高電圧発生部140、架台駆動部170、絞り駆動部150および寝台駆動部220等を制御してスキャンをさせる。
<S37>
The scan control unit 330 receives a scan start instruction via the main control unit 380, and controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 to scan. Let
 <S38>
 スキャン制御部330は、スキャン設定情報(照射時間情報)に基づき、照射時間情報に基づく照射時間が経過したか判断する。スキャン制御部330は経過していないと判断した場合(S38;No)は、この処理を繰り返す。
<S38>
The scan control unit 330 determines whether the irradiation time based on the irradiation time information has elapsed based on the scan setting information (irradiation time information). If the scan control unit 330 determines that it has not elapsed (S38; No), this process is repeated.
 <S39>
 スキャン制御部330は照射時間が経過したと判断した場合(S38;Yes)は、X線発生部110を制御してX線の照射を一旦停止させる。
<S39>
When the scan control unit 330 determines that the irradiation time has elapsed (S38; Yes), the X-ray generation unit 110 is controlled to temporarily stop the X-ray irradiation.
 <S40>
 スキャン制御部330は、スキャンを中断すると、スキャン設定情報(周期情報)に基づき、前回の照射の開始から起算して、次のX線照射の開始の時間になったかを判断する。スキャン制御部330は所定時間が経過するまで(S40;No)、この処理を繰り返す。
<S40>
When the scan is interrupted, the scan control unit 330 determines from the start of the previous irradiation based on the scan setting information (period information) whether the next X-ray irradiation start time has come. The scan controller 330 repeats this process until a predetermined time has elapsed (S40; No).
 <S41>
 スキャン制御部330は次のX線照射の開始の時間になったと判断した場合(S40;Yes)は、X線発生部110を制御してX線の照射を再開させる。
<S41>
When the scan control unit 330 determines that it is time to start the next X-ray irradiation (S40; Yes), the X-ray generation unit 110 is controlled to restart the X-ray irradiation.
 <S42>
 架台装置100の主制御部380は、入力部310を介したスキャンの完了指示があったかを判断する。主制御部380は、当該指示が未だ入力されていない時点では(S42;No)、上記S37~S42の工程を繰り返す。つまり、X線CT装置1はスキャンを継続する。これに対し、当該指示が入力された場合(S42;Yes)、X線CT装置1はスキャンを停止する。
<S42>
The main control unit 380 of the gantry device 100 determines whether there is a scan completion instruction via the input unit 310. The main control unit 380 repeats the steps S37 to S42 when the instruction is not yet input (S42; No). That is, the X-ray CT apparatus 1 continues scanning. On the other hand, when the instruction is input (S42; Yes), the X-ray CT apparatus 1 stops scanning.
[作用効果]
 上述した第3実施形態にかかるX線CT装置1の作用および効果について説明する。
[Function and effect]
The operation and effect of the X-ray CT apparatus 1 according to the third embodiment described above will be described.
 本実施形態におけるX線CT装置1は、呼吸波形の表示画面上で、呼吸波形の任意の位相が指定されると、周期情報、照射時間情報、スキャン開始のタイミングを生成する。したがって、呼吸により形状やサイズが変更される部位に対し透視スキャンする場合において、煩雑な操作を伴わずに、当該部位における表示上の形状やサイズを揃えることが可能である。 The X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
<第4実施形態>
 次に、第4実施形態にかかるX線CT装置1について図13を参照して説明する。図13は、第4実施形態にかかる設定部340の概略を示す概略ブロック図である。第4実施形態においては、第3実施形態と比較して、設定部340の処理等が異なる。またこれらの相違に応じた各部の動作や処理内容も異なる場合がある。その他の部分は第3実施形態にかかるX線CT装置1と同様である。以下、第3実施形態との相違点を中心に説明する。
<Fourth embodiment>
Next, an X-ray CT apparatus 1 according to the fourth embodiment will be described with reference to FIG. FIG. 13 is a schematic block diagram illustrating an outline of the setting unit 340 according to the fourth embodiment. In the fourth embodiment, the processing of the setting unit 340 is different from that in the third embodiment. In addition, the operation and processing contents of each unit according to these differences may be different. Other parts are the same as those of the X-ray CT apparatus 1 according to the third embodiment. Hereinafter, the difference from the third embodiment will be mainly described.
[概要]
 第4実施形態にかかるX線CT装置1においては、設定部340において判断部340dをさらに備える。判断部340dは、第1の呼吸波形と第2の呼吸波形とを比較してズレがあるかを判断する。ここで、第1の呼吸波形は、スキャン設定情報の基礎となった呼吸波形を示す。他方の第2の呼吸波形は、タイミング生成部340cによりスキャン開始の指示がなされた後に順次生成された呼吸波形それぞれを示す。判断部340dは、判断の結果を表示する。
[Overview]
In the X-ray CT apparatus 1 according to the fourth embodiment, the setting unit 340 further includes a determination unit 340d. The determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation. Here, the first respiration waveform indicates a respiration waveform that is the basis of the scan setting information. The other second respiration waveform indicates each respiration waveform sequentially generated after the timing generation unit 340c instructs to start scanning. The determination unit 340d displays the determination result.
  <呼吸波形生成部>
 呼吸波形生成部340bは、タイミング生成部340cによるスキャン開始の指示の後も、継続して、I/F340aが受けた呼吸モニタ信号に基づき、図10に示すような呼吸波形を生成する。
<Respiration waveform generator>
The respiration waveform generation unit 340b continuously generates a respiration waveform as shown in FIG. 10 based on the respiration monitor signal received by the I / F 340a after the scan generation instruction by the timing generation unit 340c.
  <判断部>
 判断部340dは、スキャン開始の指示後に、呼吸波形生成部340bから第2の呼吸波形を受ける。また、記憶部360から第1の呼吸波形を読み出す。また、判断部340dは第1の呼吸波形と第2の呼吸波形とを比較する。さらに判断部340dは、この比較の結果を表示する。比較の結果とは、ズレ量の数値情報または、ズレの割合である。あるいは判断部340dが、X線CT画像の表示と並行して第1の呼吸波形と第2の呼吸波形とを重ねて表示してもよい。
<Decision part>
The determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. Further, the determination unit 340d displays the result of this comparison. The result of the comparison is numerical information on the amount of deviation or the percentage of deviation. Alternatively, the determination unit 340d may display the first respiratory waveform and the second respiratory waveform in an overlapping manner in parallel with the display of the X-ray CT image.
[作用効果]
 上述した第4実施形態にかかるX線CT装置1の作用および効果について説明する。
[Function and effect]
The operation and effect of the X-ray CT apparatus 1 according to the above-described fourth embodiment will be described.
 本実施形態におけるX線CT装置1は、呼吸波形の表示画面上で、呼吸波形の任意の位相が指定されると、周期情報、照射時間情報、スキャン開始のタイミングを生成する。したがって、呼吸により形状やサイズが変更される部位に対し透視スキャンする場合において、煩雑な操作を伴わずに、当該部位における表示上の形状やサイズを揃えることが可能である。 The X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
 スキャンが開始されてから、呼吸のサイクルが変わってしまう場合がある。例えば被検体の咳による呼吸の周期の変更等が挙げられる。その場合には、あらかじめ設定したスキャンの周期と呼吸の周期がずれ、直前またはその前のスキャンのときと比べて、生成される画像において臓器等の形状やサイズの変化が生じてしまう場合がある。この点、本実施形態におけるX線CT装置1は、設定部340における判断部340dが、第1の呼吸波形と第2の呼吸波形とを比較し、比較の結果を表示する。したがって、ユーザーはスキャン中にスキャンの周期と呼吸の周期とのズレを容易に把握することができる。これにより、例えば、スキャンの設定をし直してスキャンを改めて実行する必要が生じた場合にも、ユーザーは、直ちにこの判断をすることができる。その結果として、不要なスキャンを回避可能な場合があり、その場合には、不要な被ばくを防止することが可能である。 ∙ The breathing cycle may change after the scan starts. For example, a change in the respiratory cycle due to coughing of the subject can be mentioned. In that case, the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning. . In this regard, in the X-ray CT apparatus 1 according to the present embodiment, the determination unit 340d in the setting unit 340 compares the first respiration waveform and the second respiration waveform, and displays the comparison result. Therefore, the user can easily grasp the difference between the scanning cycle and the breathing cycle during scanning. Thereby, for example, even when it becomes necessary to reset the scan and execute the scan again, the user can immediately make this determination. As a result, unnecessary scanning may be avoided, and in that case, unnecessary exposure can be prevented.
<第5実施形態>
 次に、第5実施形態にかかるX線CT装置1について図14を参照して説明する。第5実施形態においては、第3実施形態と比較して、設定部340の処理等が異なる。またこれらの相違に応じた各部の動作や処理内容も異なる場合がある。その他の部分は第4実施形態にかかるX線CT装置1と同様である。以下、第4実施形態との相違点を中心に説明する。
<Fifth Embodiment>
Next, an X-ray CT apparatus 1 according to the fifth embodiment will be described with reference to FIG. In the fifth embodiment, the processing of the setting unit 340 is different from that in the third embodiment. In addition, the operation and processing contents of each unit according to these differences may be different. Other parts are the same as those of the X-ray CT apparatus 1 according to the fourth embodiment. Hereinafter, the difference from the fourth embodiment will be mainly described.
[概要]
 第5実施形態にかかるX線CT装置1においては、設定部340において判断部340dをさらに備える。判断部340dは、第1の呼吸波形と第2の呼吸波形とを比較してズレがあるかを判断する。ここで、第1の呼吸波形は、スキャン設定情報の基礎となった呼吸波形を示す。他方の第2の呼吸波形は、タイミング生成部340cによりスキャン開始の指示がなされた後に順次生成された呼吸波形それぞれを示す。判断部340dは、判断の結果として、あらかじめ設定された閾値を超えた場合、または閾値に到達した場合に架台装置100によるスキャンを停止させる。
[Overview]
In the X-ray CT apparatus 1 according to the fifth embodiment, the setting unit 340 further includes a determination unit 340d. The determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation. Here, the first respiration waveform indicates a respiration waveform that is the basis of the scan setting information. The other second respiration waveform indicates each respiration waveform sequentially generated after the timing generation unit 340c instructs to start scanning. The determination unit 340d stops the scanning by the gantry device 100 when a predetermined threshold value is exceeded or the threshold value is reached as a result of the determination.
  <判断部>
 判断部340dは、スキャン開始の指示後に、呼吸波形生成部340bから第2の呼吸波形を受ける。また、記憶部360から第1の呼吸波形を読み出す。判断部340dは第1の呼吸波形と第2の呼吸波形とを比較する。また、判断部340dは、第1の呼吸波形と第2の呼吸波形とのズレ量の閾値を記憶している。さらに判断部340dは、この閾値に基づき、第1の呼吸波形と第2の呼吸波形とのずれ量が閾値に到達したか、あるいは閾値を超えているかを判断する。判断部340dは、この条件を達成していると判断した場合は、主制御部380にスキャン停止の指示を送る。主制御部380は当該指示に基づき架台装置100におけるスキャンを停止させる。例えば、X線発生部110、架台駆動部170、絞り駆動部150の動作を停止させる。
<Decision part>
The determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. In addition, the determination unit 340d stores a threshold value of a deviation amount between the first respiratory waveform and the second respiratory waveform. Further, the determination unit 340d determines, based on this threshold value, whether the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold value. If the determination unit 340d determines that this condition is achieved, the determination unit 340d sends an instruction to stop scanning to the main control unit 380. The main control unit 380 stops scanning in the gantry device 100 based on the instruction. For example, the operations of the X-ray generation unit 110, the gantry driving unit 170, and the aperture driving unit 150 are stopped.
[動作]
 次に、図14を参照して、本実施形態にかかるX線CT装置1の動作について説明する。図14は、第5実施形態にかかるX線CT装置1の動作の概要を示すフローチャートである。ここでは、スキャンタイミング設定情報の設定、スキャノグラムの生成、呼吸波形生成部340bによるスキャン開始の指示については、第3実施形態と同様であるため、説明を割愛する。したがって、間欠的なスキャン開始からスキャンの完了までについて説明する。
[Operation]
Next, the operation of the X-ray CT apparatus 1 according to the present embodiment will be described with reference to FIG. FIG. 14 is a flowchart showing an outline of the operation of the X-ray CT apparatus 1 according to the fifth embodiment. Here, the setting of the scan timing setting information, the generation of the scanogram, and the instruction to start the scan by the respiration waveform generation unit 340b are the same as in the third embodiment, and thus the description thereof is omitted. Therefore, a description will be given from intermittent scan start to scan completion.
 <S50>
 スキャン制御部330は、主制御部380を介してスキャン開始の指示を受け、架台装置100の高電圧発生部140、架台駆動部170、絞り駆動部150および寝台駆動部220等を制御してスキャンをさせる。
<S50>
The scan control unit 330 receives a scan start instruction via the main control unit 380, and controls the high voltage generation unit 140, the gantry driving unit 170, the aperture driving unit 150, the bed driving unit 220, and the like of the gantry device 100 to scan. Let
 <S51>
 スキャン制御部330は、スキャン設定情報(照射時間情報)に基づき、照射時間情報に基づく照射時間が経過したか判断する。スキャン制御部330は経過していないと判断した場合(S51;No)は、この処理を繰り返す。
<S51>
The scan control unit 330 determines whether the irradiation time based on the irradiation time information has elapsed based on the scan setting information (irradiation time information). If the scan control unit 330 determines that it has not elapsed (S51; No), this process is repeated.
 <S52>
 スキャン制御部330は照射時間が経過したと判断した場合(S51;Yes)は、X線発生部110を制御してX線の照射を一旦停止させる。
<S52>
If the scan control unit 330 determines that the irradiation time has elapsed (S51; Yes), the X-ray generation unit 110 is controlled to temporarily stop the X-ray irradiation.
 <S53>
 スキャン制御部330は、スキャンを中断すると、スキャン設定情報(周期情報)に基づき、前回の照射の開始から起算して、次のX線照射の開始の時間になったかを判断する。スキャン制御部330は所定時間が経過するまで(S53;No)、この処理を繰り返す。
<S53>
When the scan is interrupted, the scan control unit 330 determines from the start of the previous irradiation based on the scan setting information (period information) whether the next X-ray irradiation start time has come. The scan control unit 330 repeats this process until a predetermined time has elapsed (S53; No).
 <S54>
 スキャン制御部330は次のX線照射の開始の時間になったと判断した場合(S53;Yes)は、X線発生部110を制御してX線の照射を再開させる。
<S54>
When the scan control unit 330 determines that it is time to start the next X-ray irradiation (S53; Yes), the X-ray generation unit 110 is controlled to restart the X-ray irradiation.
 <S55>
 判断部340dは、記憶部360から第1の呼吸波形を読み出し、第2の呼吸波形とを比較する。
<S55>
The determination unit 340d reads the first respiration waveform from the storage unit 360 and compares it with the second respiration waveform.
 <S56>
 また、判断部340dは、第1の呼吸波形と第2の呼吸波形とのズレ量が閾値に到達したか、あるいは閾値を超えているかを判断する。判断部340dは、この条件を達成していないと判断した場合(S56;No)は、S51~S56の処理を繰り返す。つまり、X線CT装置1はスキャンを継続する。これに対し、判断部340dは、この条件を達成していると判断した場合(S56;Yes)は、主制御部380にスキャン停止の指示を送る。主制御部380は当該指示に基づき架台装置100におけるスキャンを停止させる。例えば、X線発生部110、架台駆動部170、絞り駆動部150の動作を停止させる。なお、上記S55およびS56の処理については、便宜上S54の後に説明したが、S50のスキャン開始以降、S54の間に行われてもよい。また、本実施形態においても他の実施形態のようにスキャン停止の指示を受けてスキャンが停止される場合もある。
<S56>
Further, the determination unit 340d determines whether the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold value. If the determination unit 340d determines that this condition has not been achieved (S56; No), the processing of S51 to S56 is repeated. That is, the X-ray CT apparatus 1 continues scanning. On the other hand, if the determination unit 340d determines that this condition has been achieved (S56; Yes), it sends a scan stop instruction to the main control unit 380. The main control unit 380 stops scanning in the gantry device 100 based on the instruction. For example, the operations of the X-ray generation unit 110, the gantry driving unit 170, and the aperture driving unit 150 are stopped. The processing in S55 and S56 has been described after S54 for the sake of convenience, but may be performed during S54 after the start of scanning in S50. Also in this embodiment, the scan may be stopped in response to a scan stop instruction as in the other embodiments.
[作用効果]
 上述した第5実施形態にかかるX線CT装置1の作用および効果について説明する。
[Function and effect]
The operation and effect of the X-ray CT apparatus 1 according to the above-described fifth embodiment will be described.
 本実施形態におけるX線CT装置1は、呼吸波形の表示画面上で、呼吸波形の任意の位相が指定されると、周期情報、照射時間情報、スキャン開始のタイミングを生成する。したがって、呼吸により形状やサイズが変更される部位に対し透視スキャンする場合において、煩雑な操作を伴わずに、当該部位における表示上の形状やサイズを揃えることが可能である。 The X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
 スキャンが開始されてから、呼吸のサイクルが変わってしまう場合がある。例えば被検体の咳による呼吸の周期の変更等が挙げられる。その場合には、あらかじめ設定したスキャンの周期と呼吸の周期がずれ、直前またはその前のスキャンのときと比べて、生成される画像において臓器等の形状やサイズの変化が生じてしまう場合がある。この点、本実施形態におけるX線CT装置1は、設定部340における判断部340dが、第1の呼吸波形と第2の呼吸波形とを比較する。さらに比較の結果、双方の波形のズレ量が閾値を超えているか判断し、超えている場合はスキャンを停止させる。したがって、ユーザーはスキャン中にスキャンの周期と呼吸の周期とのズレを容易に把握できる。例えば、スキャンの設定をし直してスキャンを改めて実行する必要が生じた場合にも、不要なスキャンを回避可能な場合があり、その場合には、不要な被ばくを防止することが可能である。 ∙ The breathing cycle may change after the scan starts. For example, a change in the respiratory cycle due to coughing of the subject can be mentioned. In that case, the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning. . In this regard, in the X-ray CT apparatus 1 according to the present embodiment, the determination unit 340d in the setting unit 340 compares the first respiratory waveform with the second respiratory waveform. Further, as a result of the comparison, it is determined whether the amount of deviation between both waveforms exceeds a threshold value, and if it exceeds, the scan is stopped. Therefore, the user can easily grasp the difference between the scan cycle and the breathing cycle during the scan. For example, even when it is necessary to reset scan settings and execute scans again, unnecessary scans may be avoided, and in this case, unnecessary exposure can be prevented.
 また、スキャン停止の指示の操作を省略することができる場合があり、その場合、ユーザーの操作性が向上する。 Also, there are cases in which the operation to stop scanning can be omitted, and in this case, the user operability is improved.
<第5実施形態の変形例>
 次に、第5実施形態にかかるX線CT装置1の変形例について説明する。第5実施形態にかかるX線CT装置1では、第1の呼吸波形と第2の呼吸波形とを比較し、比較の結果、すなわち、第1の呼吸波形が閾値を超えていれば、架台装置100によるスキャンを停止させる構成である。しかしながら、このような構成に限られず、第1の呼吸波形と第2の呼吸波形とのズレ量が閾値を超えているときに、あらかじめ設定された指定情報(任意の呼吸位相)を読み出し、第2の呼吸波形から、指定情報に基づく任意の呼吸位相(最大呼気等)を特定してもよい。さらに、それによってスキャンの周期情報を取得してもよい。
<Modification of Fifth Embodiment>
Next, a modification of the X-ray CT apparatus 1 according to the fifth embodiment will be described. In the X-ray CT apparatus 1 according to the fifth embodiment, the first respiratory waveform and the second respiratory waveform are compared, and if the comparison result, that is, the first respiratory waveform exceeds the threshold value, the gantry device This is a configuration in which scanning by 100 is stopped. However, the present invention is not limited to such a configuration, and when the amount of deviation between the first respiratory waveform and the second respiratory waveform exceeds a threshold, preset designation information (arbitrary respiratory phase) is read, An arbitrary respiration phase (maximum exhalation, etc.) based on the designation information may be specified from the two respiration waveforms. Further, scan period information may be acquired thereby.
<第6実施形態>
 次に、第6実施形態にかかるX線CT装置1について図15を参照して説明する。図15は、第6実施形態にかかるX線CT装置1の概略を示す概略ブロック図である。第6実施形態においては、第3実施形態と比較して、コンソール装置300の構成等が異なる。またこれらの相違に応じた各部の動作や処理内容も異なる場合がある。その他の部分は第4実施形態にかかるX線CT装置1と同様である。以下、第4実施形態との相違点を中心に説明する。
<Sixth Embodiment>
Next, an X-ray CT apparatus 1 according to the sixth embodiment will be described with reference to FIG. FIG. 15 is a schematic block diagram showing an outline of the X-ray CT apparatus 1 according to the sixth embodiment. In the sixth embodiment, the configuration of the console device 300 is different from that in the third embodiment. In addition, the operation and processing contents of each unit according to these differences may be different. Other parts are the same as those of the X-ray CT apparatus 1 according to the fourth embodiment. Hereinafter, the difference from the fourth embodiment will be mainly described.
[概要]
 第6施形態にかかるX線CT装置1においては、本実施形態のコンソール装置300においてスピーカ等の出力部390を備えている。また、判断部340dは、第1の呼吸波形と第2の呼吸波形とを比較してズレがあるかを判断する。判断部340dは、判断の結果として、あらかじめ設定された閾値を超えた場合、または閾値に到達した場合、主制御部380を介してガイド音声を出力部390に出力させる。
[Overview]
The X-ray CT apparatus 1 according to the sixth embodiment includes an output unit 390 such as a speaker in the console apparatus 300 of the present embodiment. In addition, the determination unit 340d compares the first respiratory waveform and the second respiratory waveform to determine whether there is a deviation. As a result of the determination, the determination unit 340d causes the output unit 390 to output a guide voice via the main control unit 380 when a preset threshold value is exceeded or when the threshold value is reached.
  <判断部>
 判断部340dは、スキャン開始の指示後に、呼吸波形生成部340bから第2の呼吸波形を受ける。また、記憶部360から第1の呼吸波形を読み出す。判断部340dは第1の呼吸波形と第2の呼吸波形とを比較する。また、判断部340dは、第1の呼吸波形と第2の呼吸波形とのずれ量の閾値を記憶している。さらに判断部340dは、この閾値に基づき、第1の呼吸波形と第2の呼吸波形とのズレ量が閾値に到達したか、あるいは閾値を超えているかを判断する。判断部340dは、この条件を達成していると判断した場合は、主制御部380にガイド音声の出力指示を送る。主制御部380は当該指示に基づき出力部390におけるガイド音声を出力させる。
<Decision part>
The determination unit 340d receives the second respiration waveform from the respiration waveform generation unit 340b after an instruction to start scanning. Further, the first respiratory waveform is read from the storage unit 360. The determination unit 340d compares the first respiratory waveform with the second respiratory waveform. In addition, the determination unit 340d stores a threshold value of a deviation amount between the first respiratory waveform and the second respiratory waveform. Furthermore, the determination unit 340d determines whether the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold based on this threshold. If the determination unit 340d determines that this condition has been achieved, the determination unit 340d sends a guide voice output instruction to the main control unit 380. The main control unit 380 outputs a guide voice in the output unit 390 based on the instruction.
  <出力部>
 出力部390は、呼吸指示のためのガイド音声を出力する。例えば、主制御部380は、被検体に対して所定の深さの呼吸を行うように促すガイド音声を記憶部360から読み出して出力部390に出力させる。例えば通常の呼吸(安静時の呼吸)や深呼吸等の異なる深さの呼吸を音声により意識的に促す。
<Output unit>
The output unit 390 outputs a guide voice for breathing instructions. For example, the main control unit 380 reads a guide voice that prompts the subject to breathe at a predetermined depth from the storage unit 360 and causes the output unit 390 to output the guide voice. For example, voices are consciously urged to breathe at different depths, such as normal breathing (resting breathing) and deep breathing.
 記憶部360に記憶された、呼吸指示のガイド音声データのパターンの一例について以下、概要を説明する。判断部340dは、第1の呼吸波形と第2の呼吸波形とのズレ量が閾値に到達したか、あるいは閾値を超えていると判断すると、主制御部380に呼吸指示のガイド音声の出力指示を送る。主制御部380は出力指示を受け、まず記憶部360から、例えば所定のガイド音声データを読み出す。このとき主制御部380は、ガイド音声データに基づき、例えば「楽にしてください」のガイド音声を出力部390に出力させる。このガイド音声によれば、被検体の呼吸の深さを意図的に調整しないので、被検体は通常の呼吸(安静時の呼吸)を続ける。 An outline of an example of a breathing instruction guide voice data pattern stored in the storage unit 360 will be described below. When determining that the amount of deviation between the first respiratory waveform and the second respiratory waveform has reached or exceeded the threshold value, the determination unit 340d instructs the main control unit 380 to output a guide voice for a respiratory instruction. Send. The main control unit 380 receives the output instruction, and first reads predetermined guide voice data from the storage unit 360, for example. At this time, based on the guide voice data, the main control unit 380 causes the output unit 390 to output, for example, a “please ease” guide voice. According to this guide voice, since the depth of breathing of the subject is not intentionally adjusted, the subject continues normal breathing (resting breathing).
 また主制御部380は、記憶部360から第1の呼吸波形と第2の呼吸波形とのズレに応じて、次のガイド音声データを読み出す。例えば主制御部380はガイド音声データに基づき、2番目に必要なガイド音声「思い切り息を吸ってください」の音声を出力部390に出力させる。このガイド音声によれば、被検体に深呼吸を促し、最大吸気状態を導く。 The main control unit 380 reads the next guide voice data from the storage unit 360 according to the difference between the first respiratory waveform and the second respiratory waveform. For example, based on the guide voice data, the main control unit 380 causes the output unit 390 to output the second necessary guide voice “Please take a breath”. According to this guide voice, the subject is encouraged to take a deep breath and the maximum inhalation state is guided.
 また主制御部380は、2番目のガイド音声データを読み出してから所定時間の経過後、記憶部360から3番目のガイド音声データに応じた次のガイド音声データを読み出す。このとき主制御部380はガイド音声データに基づき、3番目に必要なガイド音声データに基づき「思い切り息を吐いてください」の音声を出力部390に出力させる。このガイド音声によれば、被検体に息を思いきり吐くことを促し、最大呼気状態を導く。 The main control unit 380 reads the next guide voice data corresponding to the third guide voice data from the storage unit 360 after a predetermined time has elapsed since the second guide voice data was read. At this time, based on the guide voice data, the main control unit 380 causes the output unit 390 to output a voice “please exhale as soon as possible” based on the third required guide voice data. According to the guide voice, the subject is encouraged to breathe out and the maximum exhalation state is guided.
 また主制御部380は、3番目のガイド音声データを読み出してから所定時間の経過後、記憶部360から4番目のガイド音声データに応じた次のガイド音声データを読み出す。このとき主制御部380はガイド音声データに基づき、4番目に必要なガイド音声データに基づき「もう一度思い切り息を吸ってください」の音声を出力部390に出力させる。このガイド音声によれば、被検体に、再度、深呼吸を促し、再び最大吸気状態を導く。 The main control unit 380 reads the next guide voice data corresponding to the fourth guide voice data from the storage unit 360 after a predetermined time has elapsed since the third guide voice data was read. At this time, based on the guide voice data, the main control unit 380 causes the output unit 390 to output a voice “Please take a short breath again” based on the fourth required guide voice data. According to this guide voice, deep breathing is again urged to the subject, and the maximum inhalation state is led again.
 また、再度、主制御部380はガイド音声データに基づき、「楽にしてください」の音声を出力部390に出力させることがある。このガイド音声によれば、被検体に通常の呼吸(安静時の呼吸)を促す。 In addition, again, the main control unit 380 may cause the output unit 390 to output “please make it easy” based on the guide voice data. According to this guide voice, the subject is encouraged to perform normal breathing (resting breathing).
[作用効果]
 上述した第6実施形態にかかるX線CT装置1の作用および効果について説明する。
[Function and effect]
The operation and effect of the X-ray CT apparatus 1 according to the above-described sixth embodiment will be described.
 本実施形態におけるX線CT装置1は、呼吸波形の表示画面上で、呼吸波形の任意の位相が指定されると、周期情報、照射時間情報、スキャン開始のタイミングを生成する。したがって、呼吸により形状やサイズが変更される部位に対し透視スキャンする場合において、煩雑な操作を伴わずに、当該部位における表示上の形状やサイズを揃えることが可能である。 The X-ray CT apparatus 1 in the present embodiment generates period information, irradiation time information, and scan start timing when an arbitrary phase of the respiratory waveform is designated on the respiratory waveform display screen. Therefore, when performing a fluoroscopic scan on a part whose shape and size are changed by breathing, it is possible to align the shape and size on display in the part without complicated operations.
 またスキャンが開始されてから、呼吸のサイクルが変わってしまう場合がある。例えば被検体の咳による呼吸の周期の変更等が挙げられる。その場合には、あらかじめ設定したスキャンの周期と呼吸の周期がずれ、直前またはその前のスキャンのときと比べて、生成される画像において臓器等の形状やサイズの変化が生じてしまう場合がある。この点、本実施形態におけるX線CT装置1は、設定部340における判断部340dが、第1の呼吸波形と第2の呼吸波形とを比較する。さらに比較の結果、双方の波形のズレ量が閾値を超えているか判断し、超えている場合は出力部390に音声を出力させる。スキャン中に被検体の呼吸の周期があらかじめ設定された周期と変更されてしまったときに、ガイド音声により再度被検体の呼吸の周期を調整することが可能である。 Also, the breathing cycle may change after the scan is started. For example, a change in the respiratory cycle due to coughing of the subject can be mentioned. In that case, the preset scanning cycle and the breathing cycle are shifted, and the shape and size of the organ and the like may change in the generated image as compared to the time immediately before or before the scanning. . In this regard, in the X-ray CT apparatus 1 according to the present embodiment, the determination unit 340d in the setting unit 340 compares the first respiratory waveform with the second respiratory waveform. Further, as a result of the comparison, it is determined whether or not the amount of deviation between both waveforms exceeds a threshold value, and if it exceeds, the output unit 390 outputs sound. When the subject's breathing cycle is changed from the preset cycle during the scan, the subject's breathing cycle can be adjusted again by the guide voice.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the scope of claims and the equivalents thereof.
 1 X線CT装置
 10 架台装置
 11 X線発生部
 12 X線検出部
 13 回転体
 14 高電圧発生部
 15 架台駆動部
 16 X線絞り部
 17 絞り駆動部
 18 データ収集部
 101 検出部
 102 検出駆動部
 30 寝台装置
 31 天板
 32 天板駆動部
 40 コンソール装置
 41 制御部
 411 情報記憶部
 412 情報選択部
 413 駆動制御部
 414 報知制御部
 42 スキャン制御部
 43 処理部
 431 前処理部
 432 再構成処理部
 433 レンダリング処理部
 434 断面位置判断部
 435 画像形成部
 44 記憶部
 45 表示部
 46 操作部
DESCRIPTION OF SYMBOLS 1 X-ray CT apparatus 10 Base apparatus 11 X-ray generation part 12 X-ray detection part 13 Rotor 14 High voltage generation part 15 Base drive part 16 X-ray aperture part 17 Aperture drive part 18 Data collection part 101 Detection part 102 Detection drive part DESCRIPTION OF SYMBOLS 30 Bed apparatus 31 Top plate 32 Top plate drive part 40 Console apparatus 41 Control part 411 Information storage part 412 Information selection part 413 Drive control part 414 Notification control part 42 Scan control part 43 Processing part 431 Pre-processing part 432 Reconstruction process part 433 Rendering processing unit 434 Section position determination unit 435 Image forming unit 44 Storage unit 45 Display unit 46 Operation unit

Claims (22)

  1.  被検体が載置される天板を有する寝台装置と、
     互いに対向して配置されたX線管及びX線検出器を含む検出部を回転させることにより前記被検体に対するスキャンを行う架台装置と、
     スキャンにより得られたデータに基づいて前記被検体の画像データを形成する形成部と、
     前記天板と前記検出部との間の相対位置を変更する駆動部と、
     スキャンが行われたときの前記相対位置を示す相対位置情報を記憶する記憶部と、
     新たなスキャンが行われるときに前記駆動部を制御して、記憶された前記相対位置情報に示す相対位置に前記天板と前記検出部とを配置させる駆動制御部と
     を有するX線CT装置。
    A bed apparatus having a top plate on which the subject is placed;
    A gantry device that scans the subject by rotating a detection unit including an X-ray tube and an X-ray detector that are arranged to face each other;
    A forming unit for forming image data of the subject based on data obtained by scanning;
    A drive unit for changing a relative position between the top plate and the detection unit;
    A storage unit that stores relative position information indicating the relative position when scanning is performed;
    An X-ray CT apparatus comprising: a drive control unit configured to control the drive unit when a new scan is performed, and to arrange the top plate and the detection unit at a relative position indicated by the stored relative position information.
  2.  被検体が載置される天板を有する寝台装置と、
     互いに対向して配置されたX線管及びX線検出器を含む検出部を回転させることにより前記被検体に対するスキャンを行う架台装置と、
     スキャンにより得られたデータに基づいて前記被検体の画像データを形成する形成部と、
     前記天板と前記検出部との間の相対位置を変更する駆動部と、
     前記被検体に対する医療行為が行われるときの前記相対位置を示す相対位置情報を記憶する記憶部と、
     前記被検体に対する新たな医療行為が行われるときに前記駆動部を制御して、記憶された前記相対位置情報に示す相対位置に前記天板と前記検出部とを配置させる駆動制御部と
     を有するX線CT装置。
    A bed apparatus having a top plate on which the subject is placed;
    A gantry device that scans the subject by rotating a detection unit including an X-ray tube and an X-ray detector that are arranged to face each other;
    A forming unit for forming image data of the subject based on data obtained by scanning;
    A drive unit for changing a relative position between the top plate and the detection unit;
    A storage unit that stores relative position information indicating the relative position when a medical action is performed on the subject;
    A drive control unit that controls the drive unit when a new medical action is performed on the subject and places the top plate and the detection unit at a relative position indicated by the stored relative position information. X-ray CT system.
  3.  前記相対位置は、前記天板の長手方向における第1の相対位置、前記天板の短手方向における第2の相対位置、前記第1の相対位置及び前記第2の相対位置の双方に直交する方向における第3の相対位置、並びに前記天板と前記検出部との間の傾斜角度のうちの1つ以上を含む
     ことを特徴とする請求項1に記載のX線CT装置。
    The relative position is orthogonal to both the first relative position in the longitudinal direction of the top plate, the second relative position in the short direction of the top plate, the first relative position, and the second relative position. The X-ray CT apparatus according to claim 1, comprising one or more of a third relative position in a direction and an inclination angle between the top plate and the detection unit.
  4.  スキャンが複数回行われた場合、前記記憶部は、前記複数回のスキャンのうちの1回以上のスキャンにおける前記相対位置情報を記憶する
     ことを特徴とする請求項1に記載のX線CT装置。
    The X-ray CT apparatus according to claim 1, wherein when the scan is performed a plurality of times, the storage unit stores the relative position information in one or more of the plurality of scans. .
  5.  前記複数回のスキャンのうちの2回以上のスキャンにおける前記相対位置情報を前記記憶部が記憶している場合に、当該2つ以上の前記相対位置情報のうちの1つを選択する選択部を有し、
     前記駆動制御部は、選択された前記相対位置情報に基づいて前記駆動部の制御を行う
     ことを特徴とする請求項4に記載のX線CT装置。
    A selection unit that selects one of the two or more relative position information when the storage unit stores the relative position information in two or more scans of the plurality of scans; Have
    The X-ray CT apparatus according to claim 4, wherein the drive control unit controls the drive unit based on the selected relative position information.
  6.  前記選択部は操作部を含み、
     スキャンに対応して前記操作部により所定操作がなされた場合において、前記選択部は、新たなスキャンが行われる前に、前記記憶部に記憶された2つ以上の前記相対位置情報のうちから前記所定操作がなされたスキャンにおける前記相対位置情報を選択し、
     前記駆動制御部は、選択された前記相対位置情報に基づいて前記駆動部の制御を行う
     ことを特徴とする請求項5に記載のX線CT装置。
    The selection unit includes an operation unit,
    In a case where a predetermined operation is performed by the operation unit in response to a scan, the selection unit selects the relative position information from the two or more relative position information stored in the storage unit before a new scan is performed. Select the relative position information in a scan where a predetermined operation has been performed,
    The X-ray CT apparatus according to claim 5, wherein the drive control unit controls the drive unit based on the selected relative position information.
  7.  過去のスキャンにより得られたデータに基づき形成された画像データと、新たなスキャンにより得られたデータに基づき形成された画像データとを比較して、当該2つの画像データにより描出される前記被検体の断面の位置が実質的に同一であるか判断する判断部と、
     前記断面の位置が実質的に同一でないと判断された場合に報知を行う報知部と
     を有することを特徴とする請求項1に記載のX線CT装置。
    The subject image drawn by the two image data by comparing the image data formed based on the data obtained by the past scan and the image data formed based on the data obtained by the new scan A determination unit that determines whether or not the positions of the cross-sections are substantially the same;
    The X-ray CT apparatus according to claim 1, further comprising: a notification unit that performs notification when it is determined that the positions of the cross sections are not substantially the same.
  8.  前記被検体に対する医療行為が複数回行われた場合、前記記憶部は、前記複数回の医療行為のうちの1回以上の医療行為における前記相対位置情報を記憶する
     ことを特徴とする請求項2に記載のX線CT装置。
    The medical device stores the relative position information in one or more medical actions of the plurality of medical actions when the medical action on the subject is performed a plurality of times. X-ray CT apparatus described in 1.
  9.  前記複数回の医療行為のうちの2回以上の医療行為における前記相対位置情報を前記記憶部が記憶している場合に、当該2つ以上の前記相対位置情報のうちの1つを選択する選択部を有し、
     前記駆動制御部は、選択された前記相対位置情報に基づいて前記駆動部の制御を行う
     ことを特徴とする請求項8に記載のX線CT装置。
    Selection that selects one of the two or more relative position information when the storage unit stores the relative position information of two or more times of the plurality of medical actions Part
    The X-ray CT apparatus according to claim 8, wherein the drive control unit controls the drive unit based on the selected relative position information.
  10.  前記選択部は操作部を含み、
     被検体に対する医療行為に対応して前記操作部により所定操作がなされた場合において、前記選択部は、被検体に対する新たな医療行為が行われる前に、前記記憶部に記憶された2つ以上の前記相対位置情報のうちから前記所定操作がなされた医療行為における前記相対位置情報を選択し、
     前記駆動制御部は、選択された前記相対位置情報に基づいて前記駆動部の制御を行う
     ことを特徴とする請求項9に記載のX線CT装置。
    The selection unit includes an operation unit,
    In a case where a predetermined operation is performed by the operation unit in response to a medical action on the subject, the selection unit may store two or more stored in the storage unit before a new medical action is performed on the subject. Selecting the relative position information in the medical practice in which the predetermined operation was performed from the relative position information,
    The X-ray CT apparatus according to claim 9, wherein the drive control unit controls the drive unit based on the selected relative position information.
  11.  前記選択部は、
     前記2つ以上の前記相対位置情報に示す2つ以上の相対位置を表示する表示部と、
     表示された前記2つ以上の相対位置のうちの1つを指定するための操作部と、
     を有し、
     前記駆動制御部は、指定された相対位置に対応する前記相対位置情報に基づいて前記駆動部の制御を行う
     ことを特徴とする請求項5に記載のX線CT装置。
    The selection unit includes:
    A display unit for displaying two or more relative positions indicated in the two or more relative position information;
    An operation unit for designating one of the two or more displayed relative positions;
    Have
    The X-ray CT apparatus according to claim 5, wherein the drive control unit controls the drive unit based on the relative position information corresponding to a designated relative position.
  12.  前記駆動部は、前記天板を駆動する第1の駆動部及び/又は前記検出部を駆動する第2の駆動部を含む
     ことを特徴とする請求項1に記載のX線CT装置。
    The X-ray CT apparatus according to claim 1, wherein the driving unit includes a first driving unit that drives the top plate and / or a second driving unit that drives the detection unit.
  13.  被検体が載置される天板を有する寝台装置と、
     互いに対向して配置されたX線管及びX線検出器を含む検出部を回転させることにより前記被検体に対するスキャンを行う架台装置と、
     スキャンにより得られたデータに基づいて前記被検体の画像データを形成する形成部と、
     前記天板と前記検出部との間の相対位置を変更する駆動部と、
     スキャンが行われたときの前記相対位置を示す情報、及び前記被検体に対する医療行為が行われるときの前記相対位置を示す情報を相対位置情報として記憶する記憶部と、
     新たなスキャンが行われるときに前記駆動部を制御して、記憶された前記相対位置情報に示すスキャンが行われたときの相対位置に前記天板と前記検出部とを配置させ、且つ前記被検体に対する新たな医療行為が行われるときに前記駆動部を制御して、記憶された前記相対位置情報に示す被検体に対する医療行為が行われるときの相対位置に前記天板と前記検出部とを配置させる駆動制御部と、
     を有するX線CT装置。
    A bed apparatus having a top plate on which the subject is placed;
    A gantry device that scans the subject by rotating a detection unit including an X-ray tube and an X-ray detector that are arranged to face each other;
    A forming unit for forming image data of the subject based on data obtained by scanning;
    A drive unit for changing a relative position between the top plate and the detection unit;
    A storage unit for storing, as relative position information, information indicating the relative position when the scan is performed, and information indicating the relative position when the medical action on the subject is performed;
    The driving unit is controlled when a new scan is performed, the top plate and the detection unit are arranged at a relative position when the scan indicated by the stored relative position information is performed, and The driving unit is controlled when a new medical action is performed on the sample, and the top plate and the detection unit are placed at a relative position when the medical action on the subject indicated by the stored relative position information is performed. A drive control unit to be disposed;
    X-ray CT apparatus.
  14.  被検体の呼吸の周期を示す周期情報と、前記呼吸における所定の時相を示す時相情報とをあらかじめ記憶する記憶部と、
     前記被検体をX線でスキャンして、データを収集する収集部と、
     前記時相情報に基づき前記収集部によるスキャンを開始させ、かつ前記周期情報に基づく周期で前記収集部にスキャンを反復的に実行させる制御部と、
     前記スキャンにより収集されたデータに基づいて、前記被検体の画像を反復的に生成する画像生成部と、を備えた
     ことを特徴とするX線CT装置。
    A storage unit that stores in advance cycle information indicating the breathing cycle of the subject and time phase information indicating a predetermined time phase in the breath;
    A collection unit that scans the subject with X-rays and collects data;
    A control unit that starts scanning by the collection unit based on the time phase information, and that causes the collection unit to repeatedly execute scanning at a period based on the period information;
    An X-ray CT apparatus comprising: an image generation unit that repeatedly generates an image of the subject based on data collected by the scan.
  15.  前記時相情報に示す時相は最大呼気における時相である
     ことを特徴とする請求項14に記載のX線CT装置。
    The X-ray CT apparatus according to claim 14, wherein the time phase indicated by the time phase information is a time phase at maximum expiration.
  16.  前記時相情報に示す時相は最大吸気における時相である
     ことを特徴とする請求項14に記載のX線CT装置。
    The X-ray CT apparatus according to claim 14, wherein the time phase indicated in the time phase information is a time phase at maximum inspiration.
  17.  前記時相情報に示す時相は最大呼気と最大吸気との中間における時相である
     ことを特徴とする請求項14に記載のX線CT装置。
    The X-ray CT apparatus according to claim 14, wherein the time phase indicated in the time phase information is a time phase between maximum exhalation and maximum inspiration.
  18.  前記収集部のスキャンと並行して新たな周期情報を取得する取得部と、
     前記記憶部に記憶された前記周期情報と、前記新たな周期情報との差があらかじめ設定された範囲内にあるか判断する判断部と、を備えた
     ことを特徴とする請求項15に記載のX線CT装置。
    An acquisition unit for acquiring new cycle information in parallel with the scan of the collection unit;
    The determination unit according to claim 15, further comprising: a determination unit configured to determine whether a difference between the period information stored in the storage unit and the new period information is within a preset range. X-ray CT system.
  19.  前記画像と共に前記差を表示する表示部を備えた
     ことを特徴とする請求項18に記載のX線CT装置。
    The X-ray CT apparatus according to claim 18, further comprising a display unit that displays the difference together with the image.
  20.  前記判断部により前記差が前記範囲内にないと判断されたことに応じ、前記制御部は、前記収集部のスキャンを停止させる
    ことを特徴とする請求項18に記載のX線CT装置。
    The X-ray CT apparatus according to claim 18, wherein the control unit stops scanning of the acquisition unit when the determination unit determines that the difference is not within the range.
  21.  前記判断部により前記差が前記範囲内にないと判断されたことに応じ、
     前記制御部は、前記新たな周期における所定の時相に基づき、前記収集部によるスキャンを実行させる
    ことを特徴とする請求項18に記載のX線CT装置。
    In response to the determination that the difference is not within the range,
    The X-ray CT apparatus according to claim 18, wherein the control unit causes the acquisition unit to perform a scan based on a predetermined time phase in the new cycle.
  22.  出力部をさらに備え
     前記記憶部は、前記被検体の呼吸を調整するためのガイド音声情報をさらに記憶し、
     前記判断部により、前記差が前記範囲内にないと判断されたことに応じ、前記制御部は、前記出力部を制御して、前記ガイド音声情報に基づく音声を出力させる
    ことを特徴とする請求項18に記載のX線CT装置。
    Further comprising an output unit, wherein the storage unit further stores guide voice information for adjusting respiration of the subject,
    The control unit controls the output unit to output sound based on the guide sound information when the determination unit determines that the difference is not within the range. Item 20. An X-ray CT apparatus according to Item 18.
PCT/JP2012/081684 2012-02-02 2012-12-06 X-ray ct device WO2013114728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280008746.6A CN103415254B (en) 2012-02-02 2012-12-06 X ray CT device
US13/980,505 US9757075B2 (en) 2012-02-02 2012-12-06 X-ray CT system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-020431 2012-02-02
JP2012020431 2012-02-02
JP2012035389A JP2013169358A (en) 2012-02-21 2012-02-21 X-ray ct apparatus
JP2012-035389 2012-02-21
JP2012265951A JP2013176540A (en) 2012-02-02 2012-12-05 X-ray ct device
JP2012-265951 2012-12-05

Publications (1)

Publication Number Publication Date
WO2013114728A1 true WO2013114728A1 (en) 2013-08-08

Family

ID=48904790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081684 WO2013114728A1 (en) 2012-02-02 2012-12-06 X-ray ct device

Country Status (1)

Country Link
WO (1) WO2013114728A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331853A (en) * 2020-03-03 2021-09-03 株式会社日立制作所 X-ray CT apparatus and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204728A (en) * 1986-03-05 1987-09-09 株式会社日立メデイコ X-ray ct apparatus
JPS63222740A (en) * 1987-03-12 1988-09-16 株式会社 日立メデイコ X-ray ct apparatus
JP2002102220A (en) * 2000-09-29 2002-04-09 Toshiba Corp Ivr-ct apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204728A (en) * 1986-03-05 1987-09-09 株式会社日立メデイコ X-ray ct apparatus
JPS63222740A (en) * 1987-03-12 1988-09-16 株式会社 日立メデイコ X-ray ct apparatus
JP2002102220A (en) * 2000-09-29 2002-04-09 Toshiba Corp Ivr-ct apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331853A (en) * 2020-03-03 2021-09-03 株式会社日立制作所 X-ray CT apparatus and control method thereof
CN113331853B (en) * 2020-03-03 2023-08-15 富士胶片医疗健康株式会社 X-ray CT apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US9757075B2 (en) X-ray CT system
JP5317580B2 (en) X-ray CT system
JP6636500B2 (en) Imaging method
WO2010101208A1 (en) X-ray ct device and tomography method
JP2007021217A (en) Method for generating image in body range of moving living body and x-ray diagnostic equipment
US10639415B2 (en) Medical imaging apparatus and controlling method thereof
JP6509131B2 (en) X-ray CT apparatus, image processing apparatus, and image reconstruction method
US10537293B2 (en) X-ray CT system, image display device, and image display method
JP2017522943A (en) Automatic or assisted region of interest localization in X-ray diagnosis and treatment
JP6283872B2 (en) X-ray CT system, X-ray CT system
JP2007202913A (en) Radiation tomograph
JP2013172792A (en) Medical image diagnostic apparatus
JP2013169392A (en) X-ray ct apparatus and image display method
JP5670045B2 (en) Image analysis apparatus, image analysis method, and image analysis program
JP6165438B2 (en) X-ray CT system
EP3079584B1 (en) Method and system for respiratory monitoring during image guided interventional procedures
WO2013114728A1 (en) X-ray ct device
JP5963163B2 (en) Medical diagnostic imaging equipment
JP6662612B2 (en) Medical image diagnostic equipment
JP2013176540A (en) X-ray ct device
JP2013169358A (en) X-ray ct apparatus
JP6877881B2 (en) Medical image processing device, X-ray CT device and image processing method
JP5238894B1 (en) X-ray CT system
JP6073607B2 (en) X-ray CT apparatus, image display program for X-ray CT apparatus
JP5931642B2 (en) X-ray CT system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13980505

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867501

Country of ref document: EP

Kind code of ref document: A1